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The Ernst Strüngmann Forum

Founded on the tenets of scienti� c independence and the inquisitive nature of 
the human mind, the Ernst Strüngmann Forum is dedicated to the continual 
expansion of knowledge. Through its innovative communication process, the 
Ernst Strüngmann Forum provides a creative environment within which ex-
perts scrutinize high-priority issues from multiple vantage points.

This process begins with the identi� cation of themes. By nature, a theme 
constitutes a problem area that transcends classic disciplinary boundaries. It 
is of high-priority interest and requires concentrated, multidisciplinary input 
to address the issues involved. Proposals are received from leading scientists 
active in their � eld and are selected by an independent Scienti� c Advisory 
Board. Once approved, a steering committee is convened to re� ne the scienti� c 
parameters of the proposal and select the participants. Approximately one year 
later, a focal meeting is held to which circa forty experts are invited.

Preliminary discussion around this theme began in the hallways of FIAS 
in 2007, shortly after Christoph von der Malsburg and I arrived in Frankfurt. 
Our talks expanded to include Bill Phillips, who was visiting FIAS at the time, 
and Wolf Singer. In August, 2008, the steering committee—comprised of 
Sten Grillner, Bill Phillips, Steve Silverstein, Wolf Singer, Olaf Sporns, and 
Christoph von der Malsburg—met to identify the key issues for debate and 
select the participants for the focal meeting, which was held in Frankfurt am 
Main, Germany, from August 16–21, 2009.

The activities and discourse surrounding a Forum begin well before par-
ticipants arrive in Frankfurt and conclude with the publication of this volume. 
Throughout each stage, focused dialog is the means by which participants 
examine the issues anew. Often, this requires relinquishing long-established 
ideas and overcoming disciplinary idiosyncrasies that might otherwise inhibit 
joint examination. However, when this is accomplished, a unique synergism 
results and new insights emerge.

This volume conveys the synergy that arose from a group of diverse ex-
perts, each of whom assumed an active role, and is comprised of two types 
of contributions. The � rst provides background information on key aspects of 
the overall theme. These chapters have been extensively reviewed and revised 
to provide current understanding of the topics. The second (Chapters 5, 9, 13, 
and 18) summarizes the extensive discussions that transpired. These chapters 
should not be viewed as consensus documents nor are they proceedings; they 
transfer the essence of the discussions, expose the open questions that still 
remain, and highlight areas for future research.

An endeavor of this kind creates its own unique group dynamics and puts 
demands on everyone who participates. Each invitee contributed not only their 
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time and congenial personality, but a willingness to probe beyond that which 
is evident, and I wish to extend my sincere gratitude to all. A special word 
of thanks goes to the steering committee, the authors of the background pa-
pers, the reviewers of the papers, and the moderators of the individual working 
groups (Sten Grillner, Terry Sejnowski, Bob Desimone, and Steve Silverstein). 
To draft a report during the Forum and bring it to its � nal form in the months 
thereafter is no simple matter, and for their efforts, we are especially grateful 
to Evan Balaban, Mayank Mehta, Edvard Moser, and Andreas Engel. Most 
importantly, I wish to extend my appreciation to the chairpersons, Christoph 
von der Malsburg, Bill Phillips, and Wolf Singer, whose support throughout 
this project was invaluable.

A communication process of this nature relies on institutional stability and 
an environment that encourages free thought. The generous support of the 
Ernst Strüngmann Foundation, established by Dr. Andreas and Dr. Thomas 
Strüngmann in honor of their father, enables the Ernst Strüngmann Forum to 
conduct its work in the service of science. In addition, the following valu-
able partnerships are gratefully acknowledged: the Scienti� c Advisory Board, 
which ensures the scienti� c independence of the Forum; the German Science 
Foundation, which provided � nancial support for this theme; and the Frankfurt 
Institute for Advanced Studies, which shares its vibrant intellectual setting 
with the Forum.

Long-held views are never easy to put aside. Yet, when this is achieved, 
when the edges of the unknown begin to appear and gaps in knowledge are 
able to be de� ned, the act of formulating strategies to � ll these becomes a most 
invigorating exercise. It is our hope that this volume will convey a sense of this 
lively exercise and extend the inquiry further, as scientists continue to explore 
the mechanisms and manifestations of distributed dynamic coordination in the 
brain and mind across species and levels of organization.

Julia Lupp, Program Director 
Ernst Strüngmann Forum
Frankfurt Institute for Advanced Studies (FIAS)
Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
http://� as.uni-frankfurt.de/esforum/
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Preface

Brain and mind have been studied by an exponentially growing number of 
scientists in the � elds of cognitive science, neuroscience, and molecular biol-
ogy. As a consequence, tremendous treasures of knowledge have been accu-
mulated. Given this exuberance, individual scientists are driven to ever � ner 
specializations. This can be a double-edged sword, because it is then too easy 
to lose sight of the grand picture. Thus, periodically, the attempt must be made 
to revisit the essential questions concerning the functions and mechanisms of 
brain and mind. The Strüngmann Forum Series is an ideal platform in which 
to accomplish this.

Supported by generous donors and a superb team of organizers-cum-under-
cover book editors, the Ernst Strüngmann Forum has revitalized the tradition 
once associated with the Dahlem Workshops and has the clout to assemble 
a quorum of the leading scientists in a given � eld. Equally important to this 
end is the format developed by the Forum: an intense week devoted entirely 
to discussion, avoiding time normally eaten up by talks, presentations, and 
statements of opinion and diverting detail. The essence of these concentrated 
discussions is distilled in strenuous nightly sessions into reports and, together 
with background papers written by a select group of exponents of the � eld, are 
published in book form, with this one being the � fth in the series.

Dynamic coordination is a crucial aspect of what brain and mind are all 
about: it is the ability to � exibly apply skills, knowledge, and situation aware-
ness to the achievement of current goals. In planning this Forum, we were well 
aware that this capability and the mechanisms behind it are still in the dark to a 
very large extent. The purpose of the Forum was therefore not seen as bringing 
in a rich harvest in the fall but rather as plowing and sowing the � eld in spring. 
Turning points in science occur when an issue has reached maturity, when a 
critical mass of new facts cries out for a new synthesis, and when there is a 
general sense of urgency to reconsider basic assumptions. Developments in the 
last decade or two have powerfully stirred up interest in context sensitivity, in 
binding mechanisms, in the dynamical organization of temporal patterns and 
synchrony relations of neural signals, and in the agile adaptation of synaptic 
ef� cacy on all timescales. These developments alone, we felt, would be suf-
� cient to shake up our collective thoughts at this Forum. It is evident that the 
longed-for new and generally acknowledged synthesis has not yet grown out 
of our efforts. In our opinion, however, this Forum and its report provide an 
authoritative account of current views of the pressing problems surrounding 
the issue of dynamic coordination in the brain. We hope that they will help 



xiv Preface 

drive the neural and cognitive sciences toward the revolution that is necessary 
if we are to � nally understand the fundamental functions and mechanisms of 
mind and brain.

Christoph von der Malsburg, William A. Phillips, and Wolf Singer
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Dynamic Coordination 
in Brain and Mind

William A. Phillips, Christoph von der 
Malsburg, and Wolf Singer

Abstract

This chapter discusses the concept of dynamic coordination and the major issues that 
it raises for the cognitive neurosciences. In general, coordinating interactions are those 
that produce coherent and relevant overall patterns of activity, while preserving the es-
sential individual identities and functions of the activities coordinated. Dynamic coor-
dination is the coordination that is created on a moment-by-moment basis so as to deal 
effectively with unpredictable aspects of the current situation. Different computational 
goals for  dynamic coordination are distinguished and issues discussed that arise con-
cerning local cortical circuits, brain systems, cognition, and evolution. Primary focus is 
on dynamic coordination resulting from widely distributed processes of  self-organiza-
tion, but the role of central executive processes is also discussed.

Introduction: Basic Concepts, Hypotheses, and Issues

How Is Flexibility Combined with Reliability?

The universe is lawful but unpredictable. Regularities make life possible, but 
unpredictability requires it to be �exible, so, biological systems must combine 
reliability with � exibility. Neural activity must reliably convey sensory infor-
mation, cognitive contents, and motor commands, but it must do so � exibly 
and creatively if it is to generate novel but useful percepts, thoughts, and ac-
tions in novel circumstances. Neural activity, however, is widely distributed, 
which suggests that activity is dynamically coordinated so as to produce co-
herent patterns of macroscopic activity that are adapted to the current  context, 
without corrupting the information that is transmitted by the local signals.

It is clear that, both within and between brain regions, different cells or 
groups of cells convey information about different things. New techniques 
and �ndings continue to add to our knowledge of this local selectivity and 
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its gradual adaptation to different environments and tasks. Much of cognitive 
neuroscience is therefore primarily concerned with � nding out what is dealt 
with where; that is, with localizing brain functions. We need now to understand 
better how these diverse activities are coordinated. Most locally specialized 
streams of activity can affect most others, either directly or indirectly. In that 
sense, the brain operates as an integrated whole. It is also clear that percepts, 
thoughts, and actions are normally, in some sense, both “coherent” and “rel-
evant” to the current context, and psychological studies provide much informa-
tion on the underlying processes. However, we do not yet have widely agreed 
conceptions of “coherence” and “relevance,” nor of the dynamic coordinat-
ing interactions by which they are achieved. A central goal of this Forum was 
therefore to review the relevant evidence, to assess the underlying concepts, 
and to evaluate possible ways of exploring the major issues that arise.

Prima facie, the need to combine � exibility with reliability raises dif� cul-
ties because of contrasting requirements. To be reliable, neural codes must 
code for the same thing when used at different times and in different contexts; 
however, to be � exible, codes must be used in different ways at different times 
and in different contexts. The notion of dynamic coordination directly raises 
this issue because it emphasizes the need to combine and sequence activities in 
a context-sensitive way that changes from moment to moment, while implying 
that the activities coordinated maintain their distinct identities.

Thus, fundamental issues arise for neurobiology, neurocomputational the-
ory, cognitive psychology, and  psychopathology. Does dynamic coordination 
depend on speci� c synaptic or local circuit mechanisms? Does it depend on 
distinct neural pathways? Can the capabilities and requirements of dynamic 
coordination be clari� ed by neurocomputational theory? What are the cogni-
tive consequences of dynamic coordination, and what are the psychopathologi-
cal consequences of its malfunction?

How Is Holism Combined with Localism?

Localism and  holism have been contrasting themes throughout the history of 
neuroscience, with the evidence for localism being clearly dominant (Finger 
1994). Emphasis upon holistic organization has waxed and waned within both 
neuroscience and psychology. The form of holism known as Gestalt psychol-
ogy was strong for a few decades from the 1920s, but has had limited impact 
since then. It is now ready for a renaissance in which its phenomenological 
methods are complemented by rigorous psychophysical methods, and its spec-
ulations concerning electrophysiological �elds are replaced by better founded 
neural network theories (Kovács 1996; Watt and Phillips 2000).

The apparent con�ict between localism and holism is clearly shown by 
studies of the visual cortex. The classic studies of Kuf� er, Hubel, Wiesel, and 
many others provide strong support for localism. They show that individu-
al cells or small populations of cells convey information about very speci� c 



Dynamic Coordination in Brain and Mind 3

aspects of visual input. Higher levels within the hierarchy of processing com-
pute more abstract descriptions, but local selectivity is maintained up to at 
least object recognition levels, and probably beyond. Analogous forms of local 
selectivity have been found throughout all perceptual and motor modalities. 
In contrast, many other experiments clearly show that activity in the visual 
cortex is strongly affected by a surrounding context that extends far beyond the 
“classical  receptive � eld” (Gilbert 1992; Kovács 1996). There is now evidence 
for many forms of contextual modulation, dynamic organization, and task de-
pendence throughout all levels of the visual system (Albright and Stoner 2002; 
Lamme and Spekreijse 2000). Such � ndings provide clear support for the ho-
listic tradition and have led some to doubt the value of the classical localist 
tradition, emphasizing instead the rich nonlinear dynamics of highly connected 
networks. As it is clear that the arguments and evidence are very strong for 
both localism and  holism, a better understanding is needed of how they are 
combined. 

What Is Dynamic Coordination?

Though various aspects of the notion of  dynamic coordination have long been 
implicit in neuroscience, it is still in need of a clear explicit expression. Here, 
we provide an informal perspective and brie�y discuss more formal views. 
For further discussion of coordination and its functions, see von der Malsburg 
(this volume).

Simply put, dynamic coordination refers jointly to fundamental neuro-
computational functions such as  contextual  gain modulation (Phillips and 
Silverstein 2003; Tiesinga et al. 2005),  dynamic  grouping (e.g., Singer 2004), 
dynamic linking (e.g., Wolfrum et al. 2008), and  dynamic routing (e.g., Fries 
2005). All imply that novel context-sensitive patterns of macroscopic activity 
can be created by modulating the strength and precise timing of local neural 
signals without corrupting the information that these local signals transmit. For 
example, consider  attention, which is a paradigmatic case of gain modulation. 
There is ample evidence that attention ampli�es or suppresses signals con-
veyed by local processors, but with little or no effect on the receptive � eld se-
lectivity of the cells generating those signals (Deco and Thiele 2009; Reynolds 
and Heeger 2009; Maunsell 2004). There is also ample evidence that concur-
rent contextual inputs from far beyond the classical receptive �eld can produce 
similar modulatory effects on the strength and timing of local signals (Gilbert 
1992; Lamme 2004). Evidence concerning contextual modulation, grouping, 
linking, and routing was discussed in depth at the Forum and is reviewed in the 
following chapters.

The proposed distinction between  coding and coordinating interactions can 
be clari�ed by considering coordination at a molecular level. The genetic code 
that was �rst discovered in the structure of DNA concerns the mapping of 
codons (i.e., sequences of three bases along the DNA chain) to amino acids. 
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This coding has remained essentially constant throughout the history of life on 
Earth. We now know that expression of those codes is controlled in a highly 
context-sensitive way by noncoding sequences and epigenetic mechanisms to 
ensure effective adaptation to current circumstances. Furthermore, we know 
that only a small percentage of codons code for amino acids and that the ma-
jority are involved in coordinating their expression. Thus, the effects of coding 
sequences, noncoding sequences, and epigenetic mechanisms are seamlessly 
intertwined, but coding and coordinating  mechanisms have nevertheless been 
clearly distinguished.

Our working assumption is that the distinction between coding and coor-
dinating interactions can also be applied to brain function. At each level of 
hierarchical processing, single-unit or  population  codes are used to represent 
many diverse entities. At each level, expression of those codes is � exibly con-
trolled in a highly context-sensitive way by various coordinating interactions 
to ensure effective adaptation to current circumstances. The effects of coding 
and coordinating interactions are seamlessly intertwined in all neuronal activ-
ity and behavior, but they are clearly distinguishable. Under natural conditions 
the selection, timing, and ampli� cation or suppression of signals is coordinated 
with concurrent stimuli and current goals. The contribution of these coordinat-
ing interactions can be greatly reduced by presenting isolated stimuli to anes-
thetized animals. When this is done we � nd a highly selective and hierarchical 
functional architecture, as revealed by much of neuroscience since the 1950s. 
The selectivity thus discovered has led to fundamental concepts such as that of 
 receptive � eld selectivity and regional specialization. In stark contrast to the 
genetic code, however, receptive � eld coding is not � xed; it adapts to the envi-
ronment in which the organism � nds itself. This adaptation is usually gradual, 
as when visual cortex adapts to the statistical structure of visual input, but it 
may also operate more rapidly. When it does, the new codes must remain reli-
able over the time span of their use, and their rate of creation must not outrun 
the ability of projective sites to interpret them correctly.

As our primary focus is on dynamic coordination rather than on local selec-
tivity, we must � rst make clear that local selectivity does make a crucial contri-
bution to neural activity in awake-behaving animals in natural environments. 
First, any system that learns from examples must � nd some way to overcome 
the “curse of  dimensionality” (Bellman 1961; Edelman 2008a); that is, an ex-
ponential increase in the number of samples required with dimensionality. This 
can be done by � rst mapping the input into low-dimensional subspaces or man-
ifolds. Fortunately, neural systems can do this because the natural input they 
receive has a hierarchical structure that can be exploited to reduce dimension-
ality. Second, there is plenty of evidence showing that neural systems discover 
and exploit this hierarchical structure. For example, at the macroscopic level 
of neuroimaging, cognitive neuroscience is replete with evidence for reliable 
local selectivity within and between cortical regions in awake-behaving sub-
jects, as well as across subjects within and between species. Much remains to 
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be discovered, however, concerning this local selectivity. Prima facie evidence 
that “context” modi� es local selectivity may therefore be more easily inter-
preted by re� ning notions of the local selectivity involved.

Thus, in arguing for a central role for  coordinating interactions, we are not 
arguing against a role for local selectivity. Rather, we take that as a given and 
then argue that the selectivity is, and must be, so great that coordination is 
inevitably required. Figure 1.1 demonstrates the modulatory role of context in 
vision to emphasize our central concern with the Gestalt level of organization 
created by these coordinating interactions.  Contextual modulation is common 
in perception and can be seen as using  Bayesian inference or prior probabili-
ties to interpret input (Schwartz et al. 2007). In response to discussion of the 
concept of dynamic coordination (e.g., Moser et al., this volume), we must 

Figure 1.1 Demonstration of the strength and validity of  contextual disambiguation, 
based on a computer-generated demonstration of lightness constancy by Edward Adel-
son (MIT) and on a painting by René Magritte. The upper panel is a photograph (taken 
by Ben Craven, http://bencraven.org.uk/) of a real checkerboard and pipe. The central 
light-gray square of the checkerboard actually transmits less light to the camera (or 
eye) than the arrowed dark-gray square because of the pipe’s shadow. The lower panel, 
where all but the arrowed black square and the central white square of the checkerboard 
are deleted, demonstrates this; cues that the visual system uses to disambiguate re� ec-
tance from incident light intensity have been removed. Most people will see the central 
square as being much lighter in the upper panel than in the lower. The central squares 
are, however, identical and are in both panels darker (brightness about 27, as measured 
by Photoshop) than the arrowed square (brightness about 33). Such contextual disam-
biguation is ubiquitous throughout perception, demonstrating that the capabilities of 
 attention are highly constrained. We cannot voluntarily ignore the surrounding context 
(e.g., when looking at the central square in the upper panel). We think that we can attend 
to independent elements of sensory  awareness, but we cannot. This is but one of several 
common, but false, beliefs about the nature of  consciousness.



6 W. A. Phillips, C. von der Malsburg, and W. Singer 

emphasize that the concept does not imply that coordinating interactions have 
no effect on  local  circuit activities. On the contrary, they can have signi� cant 
effects. The point is that these effects preserve local selectivity. This obvi-
ously applies to dynamic   grouping,  linking, and  routing, and in relation to  con-
textual disambiguation by  gain  modulation. Tiesinga, Fellous, and Sejnowski 
(2008:106) state that “multiplicative gain modulation is important because it 
increases or decreases the overall strength of the neuron’s response while pre-
serving the stimulus preference of the neuron.”

To some it might seem that, in principle, coding and coordinating interac-
tions cannot be distinguished, because signals necessarily transmit information 
about everything that affects them. This intuition is misleading. The informa-
tion that is transmitted speci� cally about a modulatory or coordinating input 
given the coding, or  receptive � eld, tends to be negligible, even when that 
modulating input has a large effect on the transmission of receptive � eld infor-
mation (Kay et al. 1998). Therefore, conditional mutual information measures 
can be used to distinguish coordinating from coding interactions (Smyth et 
al. 1996). By applying these measures to two alternative forced-choice data 
obtained in a texture segregation task with multiple cues, it was found—as pre-
dicted—that  cue fusion is a coding rather than coordinating interaction, where-
as attention involves coordinating rather than  coding interactions (Phillips and 
Craven 2000).

Three formal conceptions are discussed by Engel et al. (this volume):  coher-
ent infomax (e.g., Kay et al. 1998), coordination dynamics (e.g., Kelso 1995), 
and  predictive  coding under the  free energy principle (e.g., Friston 2009; Friston 
and Keibel 2009). They were found to have much in common, including em-
phasis upon the necessity for  dimensionality reduction, correlations between 
dimensions, and the distinction between driving and modulating interactions. 
A major difference in emphasis between coordination dynamics and coherent 
infomax is that the former is concerned with coordination in general, whereas 
the latter has been predominantly used in relation to dynamic coordination 
in particular. Another difference is that the formal analyses of coordination 
dynamics have been applied mainly to sensorimotor coordination, whereas co-
herent infomax has been applied mainly to perception. Optimization under the 
free energy principle is the most general and extends beyond coherent infomax 
by formally including a loop back from motor output to sensory input, thus en-
abling the system to achieve its objectives both by adapting itself to its world, 
and its world to itself.

Above we used the notion of  dynamic coordination to mean coordination 
that is generated on a moment-by-moment basis so as to deal effectively with 
the current situation. It contrasts with  prespeci� ed  coordination, i.e., those 
activity patterns that are explicitly speci� ed and available before the current 
tasks and stimulus conditions are known. Highly practiced or stereotypical pat-
terns of coordinated activity do not have to be created dynamically as they 
are already available. For example, the coordinated motions of the limbs that 
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produce normal locomotion are so well speci� ed prior to their use that they do 
not need to be created anew each time. Such skills may be acquired or re� ned 
by learning, but once acquired they function as prespeci� ed components from 
which appropriate patterns of activity can be built. Stereotypical patterns of co-
ordination can be highly stable and can act as strong attractors in the dynamic 
landscape (Kelso 1995).  Dynamic coordination, by contrast, is that which can-
not be prespeci� ed because the relevant stimulus conditions or tasks are not 
known until they arise. For example, in � gure–ground segregation, the particu-
lar set of low-level features that are to be grouped to form a Gestalt can often 
be determined only after the stimulus is available (Watt and Phillips 2000). 
 Prespeci� ed and dynamic  coordination may be seen as the contrasting ends of 
a spectrum, rather than as a dichotomy, because novel patterns of coordination 
are usually built from familiar components. In some cases the novelty may be 
great; in others small. Possible ways of characterizing this spectrum and of 
placing various cognition functions on it, such as  Gestalt perception,  attention, 
and cognitive control, were major topics at this Forum.

Finally, we wish to emphasize three points concerning  population  coding, 
hierarchy, and downward causation. First, we assume that coding is more reli-
able at the level of the local population, than at the level of single cells. Second, 
interpretations computed at higher levels of the hierarchy depend upon co-
ordinating interactions at lower levels, and higher-level interpretations serve 
as a context that modulates activity at lower levels. Third, as holistic Gestalt 
organization can have large effects on local activity, it provides clear examples 
of downward causation from macroscopic to microscopic levels.

What Neural Mechanisms Express Dynamic Coordination?

The dilemma mentioned earlier—how to guarantee stability in the representa-
tion of local information transmission while permitting �exibility in building 
situation-dependent representations—can only be solved by clearly discrimi-
nating between local information transmission and relational Gestalt organiza-
tion. One possibility is  temporal  binding, according to which the neurons to 
be bound into a group synchronize their signals in time, such that neuronal 
identity and rate of �ring in a given interval signals local meaning, whereas the 
temporal �ne structure expresses relations to other neurons. Neurons would 
thus always convey two orthogonal messages in parallel: they would � rst sig-
nal whether the feature for which they serve as a symbol is present and then 
they would communicate with which other neurons they cooperate in this very 
moment to form a holistic representation.

One common view proposes that feature identity and salience are conveyed 
by labeled line and rate codes. The  binding-by-synchrony hypothesis propos-
es that, in addition, grouping information is conveyed by the temporal � ne 
structure of the discharge sequence which allows for the de�nition of precise 
temporal relations between simultaneously active neurons, especially if they 
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engage in oscillatory activity (Singer, this volume). In this way, graded rela-
tions can be encoded by varying degrees of synchrony and/or phase shifts and 
nested relations by  phase locking among oscillations of different frequencies, 
known as  n:m locking. Such dynamically organized  spatiotemporal  patterns 
self-organize on the backbone of networks with � xed anatomical connections 
and change rapidly in a context-dependent way without requiring changes of 
the backbone, because effective  coupling among anatomically connected neu-
rons is not only determined by synaptic ef� ciency but also by the temporal 
relations between the respective discharges, and in dynamic systems these can 
change rapidly (Womelsdorf et al. 2007). A second hypothetical mechanism 
would be based on rapidly and reversibly switching synapses, such that groups 
of neurons that are to express integration into a pattern do so by momentarily 
activating a network of mutual connections. These two mechanisms are not 
mutually exclusive and may indeed be like two sides of the same coin: signal 
correlations switching synaptic strengths, synaptic strengths modulating sig-
nal correlations (von der Malsburg 1981/1994). Alternately, synapses could 
be actively controlled by dedicated “control units” (Lücke et al. 2008). A third 
mechanism would require that for each local feature to be signaled (such as a 
visual edge at a given position and orientation), there must be several alternate 
neurons, each carrying their own distinct connection patterns. By selecting 
among these neurons, the system could express integration of the signaled fact 
into this or that network. Figure–ground separation could thus be expressed 
by representing each possible visual element by two neurons: an f-neuron and 
a g-neuron. Within the � gure, f-neurons would be active; within the ground, 
g-neurons would be.

Mechanisms for  contextual  gain modulation, including those underlying  at-
tention, play a major role in dynamic coordination; they amplify activity rel-
evant to current stimulus and task contexts while suppressing activity that is 
irrelevant. One mechanism discussed at this Forum concerns the “ windows 
of opportunity” for pyramidal cell spiking that are provided by synchronizing 
the activity of fast-spiking  inhibitory interneurons (see Whittington et al., this 
volume). This mechanism is clearly modulatory rather than driving, and relates 
dynamic coordination to  synchrony,  rhythms, and  psychopathology.

To What Extent Does Dynamic Coordination Depend on Distributed 
Self-organization and to What Extent on Executive “Control”?

A pervasive idea holds  that dynamic coordination  is the result of interpreta-
tion and strategic planning by a  central executive housed in  prefrontal cortex 
(PFC). Conceptual dif�culties with this idea and evidence from several dis-
ciplines suggest, however, that coordination is primarily distributed. It arises 
predominantly from many local coordinating interactions between the local 
processors themselves, rather than simply being imposed by commands from 
the PFC. This does not contradict the idea that PFC may function to formulate, 
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initiate, and monitor strategic plans, but rather emphasizes the dynamic coor-
dination that arises through  self-organization in addition to any contribution 
from the  PFC.

As it is now well established that different areas within the PFC have dis-
tinct roles, PFC activities may themselves need to be dynamically coordinated. 
Thus, it is possible that basic mechanisms of dynamic coordination also oper-
ate within the PFC. The classic concept of self-organization does not include 
 goal orientation, which is a hallmark of strategic planning. The extent to which 
goal orientation can arise within a highly distributed self-organized system is 
therefore a major issue that remains to be addressed in future research.

These issues can be seen as analogous to those concerning the organization 
of society. The assumption that the PFC is necessary to coordinate activity is 
equivalent to the assumption that without commands from a central govern-
ment, humankind is left only with anarchy. Originally, “anarchy” referred to 
the order that arises without a ruler. That it has now come to mean the absence 
of order clearly reveals the common but false assumption that without a ruler 
there cannot be order.

Themes and Variations

In seeking a better understanding of dynamic coordination, we begin with the 
assumption that it takes several different forms, all sharing some basic proper-
ties. Throughout, our search for common themes is not intended to imply that 
there are no variations. On the contrary, one of the central goals is to under-
stand both the themes and the variations. For example, when we ask whether 
there is a  canonical cortical  microcircuit that includes mechanisms for dynam-
ic coordination, we assume that both themes and variations will be important.

Computational Goals of Dynamic Coordination

Coordination is a major issue within distributed computing technologies (Singh 
and Huhns 2005) and must often be solved dynamically at run-time, rather 
than being hard-wired (Moyaux et al. 2006). The same applies to perceptual 
organization in computer vision, and the great amount of research devoted to 
this in many labs clearly shows that it is a major, and, as yet, unresolved issue. 
Within the brain, two basic goals can be distinguished:  contextual disambigua-
tion, which uses context to disambiguate local signals, and  dynamic  grouping, 
which organizes them into coherent subsets. These goals require knowledge 
of what predicts what, and thus some form of learning analogous to latent 
structure analysis (e.g., Becker and Hinton 1992; Kay et al. 1998). At least 
three other goals can also be distinguished:  dynamic linking,  dynamic rout-
ing, and  dynamic embedding. All contribute to the � exibility and power of 
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cognition, as well as to  Gestalt perception,  attention,  working memory, and 
thought, in particular.

Contextual Disambiguation

Local activity can be ambiguous in several ways. How is it to be interpreted? 
Is it relevant to the current task? These ambiguities can be greatly reduced 
by using information from the broader context within which the signals oc-
cur. Neurophysiology, psychophysics, and neuropsychology all show context 
sensitivity to be very widespread, and examples will be given in later sections.

Long ago work on computer vision demonstrated a crucial role for  con-
textual disambiguation at higher levels of object and scene perception (e.g., 
Clowes 1971). Many recent computational studies also show the effectiveness 
of context-sensitive disambiguation at the level of local feature processing 
(Kruger and Wörgötter 2002). Bayesian techniques or, more generally, proba-
bilistic techniques such as factor graphs are highly relevant, as context, given 
in the form of conditional probabilities, can be used to reduce uncertainty of 
interpretation of local data.

Dynamic Grouping

At each level of processing, activity must be dynamically grouped into coher-
ent subsets so that it can have appropriate effects at subsequent levels. Without 
such grouping, storing sensory patterns in their entirety in memory would be 
of little use, because they are unique and have no direct connection to each 
other. It is necessary to extract signi� cant patterns from a given input, patterns 
that generalize from one situation to others. These signi� cant patterns are to be 
found by grouping mechanisms. The principles of Gestalt psychology provide 
criteria by which this grouping may be achieved. They have been much studied 
and discussed in relation to what has been referred to as the “binding problem.” 
Previous discussions of binding use inconsistent terminology, however, so that 
our intended meaning must be clari� ed: “Grouping” means organizing a set of 
data into subsets upon which some operations are to be performed. Dynamic 
grouping and prespeci� ed grouping must be distinguished, as explained above, 
because they have different requirements and constraints.  Dynamic  grouping 
must then be divided into attentive and preattentive, because some forms of 
dynamic grouping occur rapidly and in parallel across the visual � eld, whereas 
others are slower, serial, and require attention (Watt and Phillips 2000).

Dynamic Routing

The evidence for functional localization and automatic processing up to high 
levels of analysis shows clearly that much inter-regional communication is 
prespeci� ed. Many cognitive functions require � exibility in communication 
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between brain regions (Fries 2005), however, so the fundamental capabilities 
and constraints of such � exible routing, its neural implementation, and cogni-
tive consequences were major issues of discussion at this Forum.

Dynamic Embedding

Groups within groups can  be described as being “embedded” or “nested.” This 
embedding is dynamic when it is created as required by novel circumstances, 
rather than being given by a  prespeci� ed hierarchy. It is most obviously rel-
evant to linguistic syntax and metacognition (e.g., thoughts about thoughts that 
incorporate novel syntactic structures within novel syntactic structures).

To demonstrate more precisely what we mean by dynamic embedding, let 
ABCD stand for variables and abcd represent their realized values in a par-
ticular instance. Prespeci� ed grouping processes specify a subset of items on 
which to perform some operation: grouping ABCD as (AB) (CD) organizes 
four variables into two subsets in the same way for all values of the variables. 
Dynamic grouping processes also organize the items into subsets, but can do 
so only after the realized values are known: grouping abcd as (ab) (cd). Most 
models of hierarchical processing assume prespeci� ed levels of embedding: 
grouping ABCD as ((AB) (CD)), i.e., as two groups at a lower level and as 
one group at a higher level. Such networks have considerable computational 
power, but cannot create novel hierarchies of embedding. An important issue 
is therefore whether meta-cognitive processes, such as analogies, syntax, and 
thoughts about thoughts, require dynamically embedded groupings (Hummel 
and Holyoak 2005). If so, some phylogenetic and ontogenetic differences may 
be due to the evolution and development of that speci� c capacity (Penn et al. 
2008). The neuronal dynamics that could embody any such capability have yet 
to be discovered. Using a simple marker that signals whether two elements are 
members of the same group, such as whether the spike trains are synchronized 
or not, would not be adequate (Hummel and Holyoak 1993) because different 
markers would be required for different levels of grouping. One suggestion is 
that dynamic embedding may involve synchronizing activity within different 
frequency bands; however, this hypothesis now requires further examination.

Dynamic Coordination at Four Levels of Organization

Corresponding to the framework of this Forum, we outline the speci� c issues 
that were relevant to each discussion group.

Evolution of Dynamic Coordination

Working  on  the assumption that dynamic and  prespeci� ed  coordination can-
not be disentangled, Balaban et al. (this volume) focused extensively on 
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comparative anatomy and coordination in general. Clearly, their discussions 
point out the need for a better understanding of the distinction between  pre-
speci� ed and dynamic  coordination.

If processes of dynamic coordination make major contributions to  Gestalt 
perception, attention, and  working memory, then they should be found in 
many, if not all, species. If, in addition, processes of dynamic coordination play 
a central role in higher visuospatial cognition, relational  reasoning, language, 
and � uid intelligence in general, then some of those processes may vary greatly 
across species, while some may be found in only a few. Important evolution-
ary issues arise, therefore, at the level of  microcircuits,  system architectures, 
cognitive capabilities, and subcortical structures.

Microcircuits

What microcircuit commonalities exist across species? What role do any such 
commonalities play in dynamic coordination? Is there evidence of differences 
in the microcircuitry across species that could be relevant to differences in 
their ability to coordinate activity? In particular, we need comparative studies 
of the local circuit mechanisms identi� ed below as making major contributions 
to dynamic coordination.

System Architectures

System architectures vary greatly across species, but are any of these differ-
ences of particular relevance to dynamic coordination? For example, as long-
range lateral and descending connections play a major role in dynamic coor-
dination, comparative studies of their size or organization may reveal relevant 
evolutionary changes.

Cognitive Capabilities

To what extent does the evolution of cognitive capabilities arise from the evo-
lution of new forms of dynamic coordination? Are there evolutionary quantum 
leaps in the ability to coordinate behavior? How do Gestalt perception, at-
tention, working memory, and  executive control evolve? Are some forms of 
thought or relational reasoning found in only a few species, such as humans? 
Do they depend upon dynamic mappings between novel relational structures? 
To what extent does human language depend upon capabilities already present 
in higher forms of visuospatial cognition, and to what extent upon underlying 
capabilities unique to language? Does  consciousness involve dynamic coordi-
nation, and do new forms of consciousness evolve as new forms of dynamic 
coordination emerge? Do  episodic  memory and  insightful problem solving re-
quire any special form of coordination? Though there is relevant comparative 
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data on such cognitive capabilities (Grodzinski and Clayton, this volume), 
much more is needed. 

Subcortical Structures

Do subcortical structures, such as the  basal ganglia, play a major role in dy-
namic coordination, and if so, do their roles change in the course of evolution-
ary development? Such questions are of particular importance because there 
has long been evidence that tonically active neurons in the striatum play a 
central role in coordinating the distributed modular circuitry of corticobasal 
channels (Graybiel et al. 1994; Aosaki et al. 1995), thus providing an analogy 
in adaptive motor control to “binding” processes hypothesized to contribute to 
the coordination of perceptual processes.

Dynamic Coordination in Local Cortical Microcircuits

Much is known about the anatomical and physiological properties of lo-
cal cortical microcircuits. Thus, Mehta et al. (this volume) focused on the 
following issues.

Canonical Cortical Microcircuits

Is there a  canonical cortical  microcircuit (e.g., as dicussed by Douglas and 
Martin 2007), and, if so, what are its major variants? Commenting on evidence 
for the basic nonuniformity of the cerebral cortex, Rakic (2008) concludes that 
although cortex is generally organized into vertical columns, the size, cellu-
lar composition, synaptic organization, and expression of signaling molecules 
varies dramatically across both regions and species. Our working hypothesis 
is that, although there is variation, it is not so great as to remove all functional 
commonalities.

Elementary Computational Operations and Mechanisms

What elementary computational operations are performed by cortical micro-
circuits, and, in particular, are there mechanisms that make a special contribu-
tion to dynamic coordination? Possible mechanisms include those underlying 
“modulatory” as contrasted with  “driving” interactions (Sherman and Guillery 
1998), “ contextual � elds” as contrasted with “ receptive � elds” (Kay et al. 1998; 
Phillips and Singer 1997), local circuit mechanisms for gain control (Tiesinga 
and Sejnowski 2004), and local circuit mechanisms for coordinating phase re-
lations between rhythmic activities (Whittington and Traub 2003).  Rhythms 
were thought to be highly relevant because they have a special role in  dynamic 
 grouping, attention, and other relevant cognitive processes (Buzsáki 2006).
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Is Feedforward Transmission Driving?

How and why does  feedforward transmission (e.g., from thalamus to primary 
sensory regions) have such a dominant effect on activity, when it constitutes 
less than 10% of synaptic input (e.g., to layer IV cells)? From a functional 
point of view, it seems likely that this occurs because feedforward transmission 
is primarily driving, whereas lateral and descending connections are primarily 
coordinating.

Glutamate Receptor Subtypes

Are some glutamate receptor subtypes of particular relevance to dynamic co-
ordination? Prima facie,  NMDA receptors seem to function as highly selective 
gain controllers and thus could help mediate coordination within the cognitive 
system (Phillips and Singer 1997). This hypothesis is supported by evidence 
that NMDA receptor malfunction or dysregulation constitutes a crucial part of 
the  pathophysiology of cognitive disorganization in psychosis (Phillips and 
Silverstein 2003).

It is usually said that NMDA receptors are relevant to cognition because 
of their role in synaptic plasticity and learning. This view, however, neglects 
all of the evidence which shows that they have large and immediate effects on 
ongoing activity. NMDA receptors amplify activity that is relevant to the cur-
rent context and suppress that which is irrelevant. Therefore, they have a major 
impact on current information processing—not simply on learning. Indeed, it 
can be argued that their role in learning is secondary to their role in current pro-
cessing (i.e., synaptic plasticity tends to record those patterns of neural activity 
that were selectively ampli� ed because of their coherence and relevance to 
the context within which they occurred). Differences between NMDA receptor 
subtypes may be of particular importance because they have different temporal 
dynamics. For example, the 2A subtype has faster deactivation kinetics than 
the 2B subtype, and thus may play a special role in rapid and precise cognitive 
processes.

Inhibitory Interneurons

What  do inhibitory local circuit interneurons and the various subtypes of 
 GABA receptors contribute? They have a central role in generating and co-
ordinating rhythmic activities (Whittington and Traub 2003), in enhancing at-
tended activities (Tiensinga and Sejnowski 2004), and in suppressing those 
that are irrelevant. Thus, in combination with NMDA receptors, they may play 
a central role in dynamic coordination. This hypothesis is supported by evi-
dence implicating GABAergic neurotransmission in the pathophysiology of 
disorganized cognition (e.g., as in  schizophrenia; Lewis et al. 2005).
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Apical and Distal Dendritic Compartments

Are some coordinating interactions predominantly mediated by  apical and 
 distal dendritic compartments? Prima facie, it seems that basal and proximal 
synapses are well placed to have a central role in driving postsynaptic activity, 
and that apical and distal compartments are well placed to receive and integrate 
inputs from the modulatory context. Modeling studies support this hypothesis 
(e.g., Körding and König 2000; Spratling and Johnson 2006).

Windows of Opportunity Created by Rhythmically 
Synchronized Disinhibition

Pyramidal cells receive strong perisomatic inhibitory input from fast-spiking 
basket cells, which temporarily prohibits spiking. “ Windows of opportunity” 
for  pyramidal cell spiking are provided by the periods of recovery from this 
inhibition. The effects of excitatory inputs to principal cells can therefore 
be modulated by controlling these windows of opportunity. In part, this de-
pends upon how synchronized the inhibitory inputs are, because when they 
are synchronized so are the periods of recovery from inhibition. Models of 
 gain modulation through synchronized disinhibition show that it could play a 
major role in attention, coordinate transformation, the perceptual constancies, 
and many other cases of  contextual disambiguation (Salinas and Sejnowski 
2001; Tiesinga et al. 2008). These models show that such gain modulation is 
particularly effective at gamma frequencies. Furthermore, as  synchronization 
of the phases of these windows of opportunity within and between cortical 
regions could contribute to  dynamic  grouping,  linking, and  routing, they could 
play a central role in all four main neurocomputational functions referred to 
jointly as dynamic coordination. Thus, this aspect of local circuit function may 
play a pivotal role in future studies of dynamic coordination. Furthermore, it 
is also closely related to NMDA and GABAergic function,  gamma and  beta 
  rhythms, and the  pathophysiology of cognitive disorganization in disorders 
such as  schizophrenia (Roopun et al. 2008).

Synaptic Assemblies

The notion of “ synaptic  assemblies” is outlined by Mehta et al. (this volume). 
It potentially provides a far richer and more dynamic concept than does that 
of Hebbian “ cell assemblies,” and may be more centrally involved in dynamic 
coordination. Most importantly, it is inherently a relational concept, as it is 
concerned with connections between cells, rather than simply with the activity 
of the cells themselves. This resonates with the idea of the rapid formation, 
matching, and dissolution of effective network architectures as used within 
dynamic link architectures (Wolfrum et al. 2008).
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Dynamic Coordination in Brain Systems

Lateral and Descending Connections

Is coordination in perceptual hierarchies predominately achieved through lat-
eral and descending connections? Our working assumption is that this is so, 
at least to a �rst approximation. If  feedforward drive is the primary determi-
nant of  receptive � eld selectivity, then lateral and descending connections may 
modulate the effects of that drive so as to increase overall coherence within and 
between different levels of the hierarchy (Lamme and Roelfsema 2000). An 
analogy with Bayesian techniques may be of relevance here because feedfor-
ward pathways can be seen as transmitting the data to be interpreted, whereas 
lateral and descending pathways carry information about conditional prob-
abilities that are used to help disambiguate the perceptual decisions (Körding 
and Wolpert 2004). As some lateral and descending connections may actively 
� ll in missing data, these connections will need to be distinguished from those 
that are purely modulatory.

Contextual Modulation

What does the neurophysiological evidence for  contextual modulation tell us 
about dynamic coordination? Many such studies have been conducted and all 
show that activity in perceptual areas is modulated by contextual input from 
far beyond the classical receptive � eld (Gilbert 1992; Lamme and Spekreijse 
2000).  Contextual disambiguation is therefore a widespread and common pro-
cess in perceptual systems. Similar forms of contextual modulation may also 
apply to the neural activities underlying  working memory and thought.

Neural Bases of Gestalt Grouping

How does neural activity discover and signal perceptual Gestalts? It is clear 
that temporal proximity plays a central role in determining what events are 
grouped, but one version of this is of particular relevance here: the hypothesis 
that dynamically created groupings are signaled by synchronizing the spike 
trains of activities that are to be processed as a whole, and by desynchroniz-
ing those that are to be segregated. This hypothesis has led to many empirical 
studies and much debate. 

It is possible that information about different properties of speci� ed regions 
of space (e.g., color, texture, depth, and motion) is linked via their reference 
to common spatial locations. This cannot apply, however, to the linking of in-
formation that arises from different regions of space as required to distinguish 
� gure from ground. Psychophysical studies of contour integration and of lat-
eral interactions between distinct spatial channels suggest that, in addition to 
the inputs specifying their receptive � eld selectivity, cells in visual cortex have 
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“ association � elds” that amplify coherent groupings. Neurophysiological stud-
ies of this possibility are therefore of central importance (Seriés et al. 2003), 
and a central goal for future research must be to assess the extent to which the 
Gestalt criteria for dynamic grouping are implemented by such connections.

Temporal Structure and Synchrony

What  is the role of synchrony and high frequency rhythms in neuronal signal-
ing? One possibility is that spike rate and spike  synchronization operate in a 
complementary way such that salience can be enhanced by increasing either or 
both. Evidence for this is provided by physiological studies of brightness induction 
(Biederlack et al. 2006) and by psychophysical studies which suggest a central role 
for synchronized rate codes in � gure–ground segregation (Hancock et al. 2008).

Both  synchrony and high frequency (gamma and  beta)  rhythms have been 
implicated in attention, short-term memory, associative memory, sensorimotor 
coordination,  consciousness, and learning (Melloni et al. 2007; Singer 2004; 
Wespatat et al. 2004). Both were major foci for discussion at this Forum (see 
Singer and Moser et al., both this volume). In conscious perception, for ex-
ample, selective attention aids the formation of coherent object representations 
by coordinating the resolution of many widely distributed local competitions, 
and physiological studies (e.g., Fries et al. 2001) suggest that synchrony plays 
a role in attentional coordination. Furthermore, computational studies (e.g., 
Tiesinga et al. 2005) show that synchronized disinhibition could play a funda-
mental role in  contextual  gain modulation, thus extending the potential role of 
rhythmic synchrony to cover all four fundamental neurocomputational func-
tions, referred to jointly as dynamic coordination.

Dynamic Linking

How is  dynamic linking in  object  recognition and  graph matching generally 
achieved? As mentioned earlier,  pattern  recognition is best based on assess-
ment not only of the presence of � gural elements (feature-based recognition) 
but also of the correctness of their spatial or temporal relations (correspon-
dence-based recognition). Such recognition amounts to graph matching; that 
is, to the comparison of a stored model of the pattern and the potential instance 
to be recognized, where both have the form of a graph with feature-labeled 
nodes and links to represent neighborhood relationships. During graph match-
ing or recognition, dynamic links between corresponding nodes must be estab-
lished, as modeled in Wolfrum et al. (2008).

Neuronal Bases of Attention

What are the neuronal bases of  attention? This issue is of central importance 
because selective enhancement of the relevant and suppression of the irrelevant 
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are major forms of dynamic coordination. Many speci� c issues concerning at-
tention arise: How is attention related to synchrony? Do stimulus-based and 
task-based in� uences on salience have essentially similar kinds of effect? 
What determines the balance between them? What is the current status of the 
neurobiological evidence for biased-competition models, and what further evi-
dence is needed? Why do attention and working memory have such limited ca-
pacity? Did evolution get stuck in a dead end somehow, or do these limitations 
re� ect fundamental underlying computational constraints? What can we learn 
from neurological disorders of attention? Do Bayesian models of salience and 
visuospatial attention clarify these issues? 

One major conclusion was that  biased competition, in the form of normal-
ization models (Reynolds and Heeger 2009), is currently best able to explain 
the modulatory effects of attention at the local circuit level.

Dynamic Routing

How � exible  is the routing of  information � ow between cortical areas, and how is 
that � exibility achieved? Communications between brain regions are largely pre-
speci� ed by the cortical architecture. For example, V2 responds to activity in V1 
and affects activity in V3 and V4, regardless of the current task. Some communi-
cation must be � exible, however, as some tasks and circumstances require novel 
routing of information (e.g., from sensory to motor areas). The central proposal 
discussed at the Forum was that such dynamic routing is achieved by coordinat-
ing the phases of transmission and receptivity across brain regions (Fries 2005; 
Womelsdorf et al. 2007), and much evidence was thought to support this proposal.

The Role of Prefrontal Cortex

In  what ways does the PFC have a special role in coordination, and how well 
is activity coordinated by distributed processes of  self-organization indepen-
dently of any contribution from PFC? Does activity in the various components 
of PFC need to be coordinated, and, if so, how is that achieved?

Dynamic Coordination in Cognition and Behavior

The computational capabilities provided by dynamic coordination at the neuronal 
level have major consequences for  Gestalt perception, attention,  working mem-
ory and thought, and thus for learning as well. We assume that they are crucial 
to language, but have focused more on their relevance to visuospatial cognition. 

Gestalt Perception

What  do psychophysical studies tell us about Gestalt organization in percep-
tion? Does it operate within all perceptual pathways? How does it develop? 
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Evidence indicates a major role for Gestalt organization in dimensionality re-
duction and  contextual modulation (Kovács, this volume). However, although 
knowledge of contextual relationships in image structure begins to be acquired 
in the � rst few months of life, evidence shows that it continues to develop over 
several years in human vision (Doherty et al. 2010; Kovács 2000).

Contextual Disambiguation

To what extent does cognition use  context to reduce local uncertainty? A vast 
literature is available showing context sensitivity in a wide range of cognitive 
domains. Our focus was on consistency constraints in the perception of edges, 
surfaces and objects, because they provide paradigmatic examples of such co-
ordinating interactions.

Structured descriptions are fundamental to cognition. It is obvious that 
language depends on descriptions generated by a grammar, which, though � -
nite, enables us to produce and understand in�nitely many novel sentences. 
Analogous “grammars” have been used to interpret line drawings of opaque 
polyhedra (solid objects with straight edges) in computer vision (e.g., Clowes 
1971). Clowes demonstrated formally how local ambiguity can be reduced 
by using “co-occurrence restrictions,” and showed their relevance to human 
vision using demonstrations of ambiguity, paraphrase, and anomaly, just as 
Chomsky did for language.

Figure 1.2a is ambiguous in several ways: it can be seen as a tent or as a 
book standing up (i.e., the central vertical edge can be seen as folding either 
outwards or inwards). Changes of viewing angle reduce this ambiguity (Figure 
1.2a, b), thus demonstrating how context resolves local ambiguity; the arrow 
and fork junctions that are ambiguous in Figure 1.2a are disambiguated by the 
other junctions in Figure 1.2b and Figure 1.2c.

The equivalence of one interpretation of Figure 1.2a with Figure 1.2b and of 
another with Figure 1.2c shows that perception distinguishes between scenes 
and images, just as language comprehension distinguishes between deep and 
surface structures. Figure 1.2d is evidence that objects are seen as structures, 
and not merely as members of a prespeci�ed category. Though you had never 
seen a tent with such a hole before, you have now, and that required you to 
create an internal description of a new distal structure and to map image frag-
ments to parts of that structure.

The local ambiguities in such pictures and their resolution using contextual 
constraints are made explicit in Figure 1.3, which is based on the computer 
vision system developed by Clowes (1971). His analysis is deterministic, but 
would be more relevant to human  perception if formulated in Bayesian or other 
statistical terms.

The arcs linking compatible local interpretations in Figure 1.3 are empha-
sized here because they clearly show essential properties of  coordinating inter-
actions. They resolve local ambiguity by applying co-occurrence constraints 
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to select coherent subsets of the local interpretations that are made possible 
by the locally available data, thereby playing a major role in determining the 
Gestalt created. Assuming that different local interpretations are conveyed by 
different neuronal populations, this clearly demonstrates our assumption that 
macroscopic organization can have large effects on local microcircuit activity. 
Eleven vertices can be seen in the object in Figure 1.3. If each has at least three 
alternative interpretations, when considered independently, then there would 
be at least 311 possible combinations. From that host of possibilities, coor-
dinating interactions select the few that are coherent when taken as a whole. 
Our assumption is that this is done by selectively amplifying and grouping the 
neuronal activity representing local interpretations that are coherent.

These demonstrations do not imply that global coherence is necessary for 
 perception. The importance of  global  coherence is often thought to be demon-
strated by impossible � gures. Take, for example, Figure 1.4, which is known 
as the  devil’s pitchfork because it has three round prongs at one end but two 
square prongs at the other. Such drawings do bring global inconsistencies to 
our attention, but they also show that contextual constraints are primarily local. 
We clearly see the various possible local interpretations, even though they are 
not globally coherent. Indeed, such drawings are only perceived as impossible 

(a)

(b) (c)

(d) (e)

Figure 1.2 Local ambiguities disambiguated by  context. The central edge of (a) can 
be seen as folding either inwards or outwards, because the arrow junction at the top and 
the fork junction at the bottom of that edge are ambiguous. This ambiguity is reduced 
in (b) and (c), where the context provided by the other junctions makes one interpreta-
tion more probable than the others. Drawing (d) shows that interpretation is not merely 
categorization, but relates structured descriptions in the picture and scene domains. 
Drawing (e) shows how context can reveal another possible (though improbable) in-
terpretation of (a), i.e., as a chevron-shaped hole through which part of a more distant 
edge can be seen.
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because the local consistencies map so strongly on to partial three-dimensional 
structures. Without that, the drawing would simply look like an arbitrary col-
lection of lines. Thus, such impossible � gures can be thought of as showing 
the primacy of local over global coherence. An alternative perspective is to 
view this demonstration as showing that all elements of the whole � gure may 
be bound if attended to as a whole, even though those elements are not seen as 
forming a single coherent structure.

Attention and Working Memory

What do cognitive studies of  attention tell us about dynamic coordination? 
They seem to be of central importance, and show the conditions under which 
relevant signals can be enhanced and irrelevant suppressed. Many issues re-
main to be resolved, however, before we understand why and how this occurs. 
Cognitive studies support  biased competition models of  attention (Duncan 

a

b

1 2

Junction Possible corners in the scene domain

Maps to
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mappings

Maps to

or or

orororor

Figure 1.3 Example of how the Clowes’ (1971) algorithm used contextual constraints 
to interpret line drawings of solid objects with plane surfaces and straight edges. The 
drawing at the top shows two further interpretations of junctions in Figure 1.2a. Here, 
regions 1 and 2 can be seen as being on two separate limbs of a block with a square 
column cut into one corner. The two upper edges of junction “a” would then be convex, 
and the edge joining “a” and “b” would be concave. Regions 1 and 2 can also be seen 
as the two sides of a square column rising into the top corner of a ceiling. The two up-
per edges would then be concave, and the edge joining “a” and “b” would be convex. 
Locally possible interpretations of the arrow junction at “a” and the fork junction at “b” 
as corners are shown below, with hatching indicating a surface that disappears behind 
an edge, solid lines indicating convex edges, and dotted lines concave edges. When 
junctions share an edge, as do “a” and “b,” only certain combinations are compatible. 
Surfaces are regions surrounded by a set of compatible mappings from junctions to 
corners. Objects are a compatible set of surfaces.
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2006), and their more recent formulation as normalization models (Reynolds 
and Heeger 2009), but how can that support be clari� ed and strengthened? 
Are competitions resolved by a single  central executive controller or locally, 
as suggested by independence of their resolution across modalities (Hupé et 
al. 2008)? What is the role of attention in creating coherent percepts? How are 
con� icts between stimulus-driven effects on salience and task-driven effects 
on relevance resolved? Attention is needed to bind features that are not already 
bound pre-attentively (Treisman 1999). However, some dynamic grouping oc-
curs pre-attentively (Watt and Phillips 2000). So, what determines whether or 
not attention is required? What do cognitive studies tell us about how and why 
the capacities of attention and  working memory are so limited? Is working 
memory a major source of contextual in� uence on current processing, and how 
convincing are the neuronal models proposed as explanations of those in� u-
ences (e.g., Kerns et al. 2004)? Some working memory studies have been inter-
preted as indicating the importance of dynamic grouping that is implemented 
by neuronal synchrony (e.g., Luck and Vogel 1999), but how strong is that 
evidence? Can theories of attentional selection based on dynamic link architec-
tures (e.g., von der Malsburg and Schneider 1986) be tested psychophysically? 
Although these issues were discussed in depth at this Forum (see Engel et al., 
this volume), it is clear that they provide major goals for future research.

Reasoning

Are there  any theories of relational thinking that are both psychologically and 
neurally plausible? Does relational reasoning require special forms of dynamic 
coordination? Though Hummel and Holyoak (2005) imply that it does, they 
propose a model in which the critical binding of roles to �llers is achieved us-
ing the same form of  synchronization thought to underlie dynamic grouping 
in general.

The use of context to resolve local ambiguities, as shown in Figure 1.3, is 
an example of an approach to constraint satisfaction that can generally be ap-
plied to reasoning and problem solving. As the network of constraints grows, 

Figure 1.4 The  devil’s pitchfork. Although there is no globally coherent interpreta-
tion as a three-dimensional object, local consistencies are strong enough to produce 
partial perception of three-dimensional structure. This can be thought of as showing the 
primacy of local over global coherence.
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the possibility of checking for global consistency becomes less feasible; thus 
it is unlikely that fully global consistency can be established for rich knowl-
edge structures, such as those in human cognition. The best that can then be 
done is to maximize local consistencies and minimize local inconsistencies 
(Dechter 1992). 

Central Executive Functions

Do cognitive studies imply the existence of a  central executive, and, if so, what 
are its speci� c responsibilities and capabilities? What do they tell us about its 
internal organization, and about the way in which the activities of its separate 
components are coordinated? Do these cognitive studies lead to the same con-
clusions as physiological investigations of  PFC? Among the participants at this 
Forum, there was wide agreement that executive processes (e.g., cognitive con-
trol) play an important role in coordinating other activities, and are themselves 
highly dependent on the dynamic coordination of their various components.

The Distinction between Multimodal Coordination 
and Multimodal Sensor Fusion

How is multimodal coordination related to sensor fusion? Multimodal “inte-
gration” has been extensively studied, but the term “integration” is ambigu-
ous. It often refers to  sensor fusion, where inputs from different modalities are 
combined so as to produce an output signal within which the separate contribu-
tions are not distinguished. This is not the same as multimodal coordination, 
however, because in that case the separation between modalities is maintained 
even though the signals that they generate are coordinated.

Bayesian Analyses

Are Bayesian analyses relevant? Discussed in depth at this Forum (see Triesch 
et al., this volume), we think that they are useful because they account for 
much behavioral data. In addition, they compute posterior probabilities using 
data and priors in fundamentally different ways that match our distinction be-
tween  driving and modulatory interactions, particularly if the  Bayesian infer-
ence is implemented so as to amplify transmission of predicted signals (e.g., 
Kay and Phillips, submitted; Spratling 2008).

The Relation between Cognition and the Precise 
Temporal Structure of Neural Activity

What is the status of the evidence relating  synchrony and  brain rhythms to 
cognition? Addressed by both Tallon-Baudry and Engel et al. (this volume), it 
was agreed that such studies may be pivotal, potentially relating fundamental 
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cognitive functions to neural activity at the population and local circuit levels. 
Furthermore, as noted next, they also provide a link to  psychopathology.

Disorders of Dynamic Coordination

What do failures of  dynamic coordination in various forms of  psychopathology 
tell us about its role in normal brain function? What do studies of the pathophysi-
ology of those conditions reveal about its neuronal mechanisms? Silverstein (this 
volume) shows that psychopathology can provide a rich source of evidence link-
ing behavior and cognition to neural activity at population and synaptic levels. 
In support of this view, consider the � ndings of Roopun et al. (2008). They show 
how the windows of opportunity for  pyramidal cell spiking at gamma and beta 
frequencies depend on GABAergic and  NMDA receptor activity, and they relate 
those mechanisms to changes in cortical dynamics that occur in schizophrenia. 
Furthermore, they provide evidence that there are variations in those rhythms and 
mechanisms across cortical regions, so we now need to discover the computation-
al, cognitive, and psychopathological consequences of such variations. Finally, 
it was agreed that the theories of Friston (1999) and of Phillips and Silverstein 
(2003) have much in common. Friston suggested that the “ disconnection” theory 
of  schizophrenia could be referred to as the “ dysconnection” theory. This label 
would then apply to both theories if it is understood that it is not connections in 
general that are malfunctional, but coordinating connections in particular.

Conclusion

Dynamic coordination makes fundamental contributions to brain function and 
cognition. Much is already known about why and how it does so, but much more 
remains to be discovered. Many concretely speci� ed issues and predictions have 
now been identi� ed that can be investigated using well-established or recently de-
veloped techniques. Over the coming decades, we expect substantial advances in 
our understanding of dynamic coordination in the brain, thereby building reliable 
bridges between neurobiological and psychological perspectives on mental life.
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 Cortical Circuits
Consistency and Variability across 

Cortical Areas and Species

Jon H. Kaas

Abstract

Neurons in  local circuits in the  neocortex of mammals need both to extract reliably 
meaningful information from their dominant activating inputs and to modify their re-
sponses to these inputs in the  context of inputs that are activating other local circuits. 
Neocortex has structural features to mediate both of these tasks. Neocortex is character-
ized by an arrangement of neurons with different types of inputs and outputs into six 
traditionally de� ned layers and a pattern of dense, vertical interconnections between 
neurons across these layers. This arrangement is consistent with the general conclu-
sion that narrow, vertical columns of neurons interact intensely to form local-circuit 
processing units that reliably extract information from a small number of activating 
inputs that largely terminate in layer 4. In addition, neurons in these circuits are in� u-
enced by lateral connections that interconnect groups of columns, as well as by more 
widespread subcortical modulating inputs and  feedback connections from other cortical 
areas. Some or all of these connections may provide contextual modi� cations within 
and dynamic coordination between the vertical arrays of cortical neurons. While basic 
features of columnar arrangements of cortical neurons and their connectional patterns 
with other columns are likely similar across cortical areas and mammalian taxa, they 
also clearly differ in ways that likely re� ect areal and species requirements and special-
izations. Some of these differences are outlined here. 

Introduction

The focus of this chapter is on the structural features of  neocortex of mammals 
that allow information to be extracted from inputs to narrow vertical arrays of 
highly interactive neurons, the  cortical columns or modules (Mountcastle 1997; 
DeFelipe 2005; Douglas and Martin 2007; Thomson and Lamy 2007), and on 
the features that allow neurons in different columns to interact dynamically. 
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Across mammals and within most cortical areas, neocortex is subdivided into 
six traditionally de� ned layers (Figure 2.1). Neurons within these layers have 
different functional roles based, in part, on having different inputs and outputs 
(Peters and Jones 1984). In brief, cortical activation is highly dependent on 
thalamic or cortical inputs into layer 4; layer 3 has lateral connections within 
the cortical area and projects to other cortical areas; layer 5 provides mainly 
subcortical projections; and layer 6 provides  feedback connections to the tha-
lamic or cortical source of layer 4 activation. The vertical connections between 
neurons of different layers are both very dense and very restricted in lateral 
spread (Figure 2.2). However, more sparse distributions of axons spread out 
laterally from neurons in layers 1, 3, and 5 to contact nearby neurons in other 
vertical columns of highly interconnected neurons. These lateral intrinsic con-
nections provide the structural framework for interacting across cortical col-
umns, possibly by inducing temporal synchronies between neurons in different 
columns (Singer and Gray 1995). In addition, widely distributed inputs from 
the  brainstem and  thalamus modulate the activity patterns across cortical col-
umns and feedback connections from higher cortical areas, which are generally 
less speci� c in their terminations than the feedforward connections and are 
likely to have an integrating role. 

While this brief depiction of the basic processing circuitry of cortex serves 
as a useful guide, it does not take into account the variability that exists in 
this circuitry across cortical areas and across mammalian species. As such 
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Figure 2.1 (a) The laminar arrangement of cells in the  neocortex of a typical mammal 
(area 17 of a prosimian galago). Six layers are traditionally identi� ed in most, but not 
all cortical areas. (b) The primary activating inputs from the thalamus or other areas 
of cortex, a, are to layer 4. Other thalamic and cortical inputs, b, are to other layers, 
while brainstem modulating inputs, c, are to layer 1. Intrinsic neurons are excitatory or 
inhibitory on other neurons, and they can be of several types. Output neurons are largely 
pyramidal neurons which project to other cortical areas, d, mainly subcortical targets, e, 
or provide feedback to thalamic nuclei or areas of cortex providing inputs.
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variability in structure implies variability in function, some of the structural 
variability that occurs is reviewed here.  

Cortical Layers Vary in Distinctiveness and Differentiation

Comparative studies suggest that early mammals had few cortical areas, on 
the order of 20–25, and that these areas were not very distinct architectoni-
cally from each other (Kaas 2007). In addition, cortical layers, although appar-
ent, were not markedly different in cellular makeup or in histochemistry. No 
specialized agranular motor cortex was present (Beck et al. 1996). In sensory 
areas, layer 4 was populated mainly with intrinsic neurons rather than pyrami-
dal neurons; however, because of their size, these layer 4 neurons could more 
appropriately be called stellate cells, rather than granule or powder (koniocel-
lular) neurons, which are tiny cells found in the highly specialized sensory cor-
tex of some mammals. The six main layers did not have very distinct sublayers. 
Overall, there were relatively few classes of neurons, the morphological and 
histochemical variations across neurons of a class were small, and the intrin-
sic connections in cortex were similar across areas in early mammalian spe-
cies. Thus, except for functional differences imposed by the distinct activating 

Figure 2.2 Neurons and axons labeled by an injection of a tracer into deeper cortical 
layers in a slice of neocortex of an owl monkey. Note the dense spread of axons to the 
more super� cial layers immediately over the injection site (dense core of labeled neu-
rons—dark spots), the sparseness of long lateral connections, and the bundles of output 
axons to the thalamus and  brainstem, as well as to other areas of cortex.
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inputs to areas of cortex, and the differing targets for outputs, the basic com-
putations in the vertical cortical processing units across most cortical areas in 
early mammalian species were likely to be highly similar.

In many cortical areas of numerous mammals, this ancestral pattern of weak 
cortical lamination and limited cellular differentiation appears to have changed 
very little. There are, however, mammals where there clearly have been major 
modi� cations. In one example, the  neocortex of whales and other Cetacea is so 
modi� ed, and to some extent regressed, that some investigators have postulat-
ed that they had retained structural features of the “initial” mammalian brains 
(Glezer et al. 1988). More likely, their brains have been severely modi� ed as 
an adaptation to their unusual marine lifestyle (Marino 2007). The cytoarchi-
tecture of neocortex of Cetacea is unique in not having a detectable layer 4 (or 
possibly having a very meager layer 4), while layer 1 is very thick, layer 2 is 
pronounced, and other layers are very indistinct. Additionally, there is little 
difference from region to region that would suggest morphological specializa-
tions for different kinds of processing in different cortical areas (e.g., Hof and 
Van der Gucht 2007). Unlike other mammals, the majority of afferents from 
the thalamus, and presumably those that are feedforward from area to area, ap-
pear to go to layer 1 rather than layer 4. Thus, cortical circuits in these marine 
mammals appear to be quite different from those in most mammals.

The  lamination pattern of  primary visual cortex ( V1) of tarsiers is perhaps 
at the other extreme of differentiation (Collins et al. 2005). In Nissl-stained 
sections, layer 3 has three distinct sublayers that differ in cell packing and 
cell sizes; layer 4 also has three distinct sublayers; layer 5 has two; and layer 
6 has two (using the numbering of layers according to Hässler 1967, which 
places layers 4A and 4B of Brodmann in layer 3). The overall laminar appear-
ance of area 17 is reminiscent of the distinct lamination of the optic tectum of 
predatory birds. Surely these morphological distinctions re� ect functionally 
signi� cant modi� cations of the basic circuitry of primary visual cortex in these 
highly visual predators.  

These two extremes of cortical lamination patterns only hint at the great 
variability that exists in cortical lamination features across cortical areas and 
across mammals. Using histochemical, immunohistochemical, and receptor 
binding procedures, it is now possible to reveal laminar, areal, and species dif-
ferences in a great number of factors that are likely to be important in neuronal 
circuit functions. For example, the monoclonal antibody Cat-301, which reacts 
with neurons associated with the magnocellular visual processing stream of 
primates, reveals different laminar patterns of antigen expression in prima-
ry visual cortex of cats, monkeys, and tree shrews (Jain et al. 1994). Layers 
across cortical areas vary in such features as the expression of synaptic zinc, 
cytochrome oxidase, parvalbumin, calbindin, vesicular glutamate transporters, 
and neuro� lament markers. While layers in homologous cortical areas across 
species often have similar relative levels of expression of these markers, there 
is considerable variability (Hof et al. 1999; Wong and Kaas 2008, 2009a, b). 
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Layers and cortical areas differ in the patterns of expression of the various 
neurotransmitter receptors such that cortical areas can be recognized by a “� n-
gerprint” of their neurotransmitter pro� le (Zilles et al. 2002). Although the 
functional signi� cance of such structural and histochemical variability in corti-
cal layers is not always clear, it suggests that the operations of cortical circuits 
likely vary with such features.

Neuron Densities and Proportions to Glia and Other 
Nonneural Cells Vary across Areas and Species

A frequent assumption among neuroscientists is that  cortical modules contain 
approximately the same numbers of neurons (for a brief review, see Rakic 
2008). In one study that is often cited in support of this assumption, Rockel et 
al. (1980) counted the number of neurons in a narrow strip (30 �m) of cortex 
through the depth of cortex for several areas and � ve species; he reported that 
these were a fairly constant number (about 110) as studied in all areas and 
species, except for the primary visual cortex of macaque and humans (about 
270). The results of more recent studies do not support the conclusion that 
 neuron density is constant, but instead indicate that there is considerable varia-
tion in neuronal density across cortical areas and across species. If all of  neo-
cortex is considered, one recent estimate is that the average number of neu-
rons underneath 1 mm2 of cortical surface varies by about three times across 
primate species (Herculano-Houzel et al. 2008). Furthermore, primate brains 
consistently have a larger number of neurons than rodent brains of a matching 
size (Herculano-Houzel et al. 2007). Consistent with the early observations of 
Rockel et al. (1980) on macaques and humans, all primates appear to have a 
much higher density of neurons in primary visual cortex than in other areas of 
cortex (Collins and Kaas, unpublished). Yet, this density varies with species, 
and other visual areas, especially V2, have higher values than most cortical ar-
eas.  In macaques, primary somatosensory cortex (area 3b) also has an elevated 
density of neurons. If one makes the assumption that cortical processing col-
umns are of the same width across areas and species, the numbers of neurons 
within such columns vary greatly. This would certainly impact the processing 
within a column.

Dendritic Arbors of Cortical Pyramidal Cells Vary 
in Extent across Cortical Areas and Species

Some of the best evidence for how pyramidal cell morphology varies across 
cortical areas and species comes from a series of studies by Elston and his 
coworkers. By injecting layer 3  pyramidal neurons with Lucifer Yellow and 
viewing labeled dendritic arbors in tangential cortical slices, these researchers 
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have been able to demonstrate great variability in the sizes of the basal den-
dritic � elds. In macaque monkeys, for example, basal arbors of layer 3 pyrami-
dal cells were smallest in primary visual cortex and were progressively larger 
across visual areas V2, V4, TEO and TE; the largest arbors were for neurons 
in  prefrontal cortex (Figure 2.3) (Elston 2003; Elston et al. 1999). In contrast, 
the layer 3 pyramidal cells in tree shrews had larger arbors in V1, while V2 and 
temporal visual cortex had neurons with progressively smaller arbors. Other 
features of dendrites are also variable (Elston et al. 2005). For example, the 
pyramidal cells in V1 of tree shrews had twice the number of dendritic spines 
as those of primates. In addition, Elston et al. (1999) reported that peak spine 
density, re� ecting synaptic contacts, was over three times higher for layer 3 
pyramidal cells in higher-order visual area TE than in primary visual cortex of 
macaque monkeys. Elston (2003:1134) proposed that such regional variations 
in pyramidal cell structure “are likely to underlie fundamental differences in 
cortical circuitry,” leading to “different functional capacities.” If the widths 
of cortical columns correspond to the widths of the � elds of basal dendrites, 
columns with neurons that have widespread basal dendritic arbors would be 
larger than those having neurons with restricted arbors. Columns that are larger 
in diameter would typically have greater numbers of neurons, although this is 
not necessarily the case, as neuronal densities vary.

Pyramidal neuron sizes vary as well. The specialized  Betz pyramidal neu-
rons of primary motor cortex and  Meynert  pyramidal neurons of primary vi-
sual cortex are known for their extra large size, which appears to be a special-
ization for fast  conduction of axon potentials over long distances. Meynert 
neurons project cortically to visual area MT (middle temporal) and subcorti-
cally to superior colliculus, whereas Betz cells project to motorneuron pools in 
the brainstem and spinal cord. Both Betz and  Meynert neurons also have long 
widespread basal dendrites that summarize information over a larger expanse 
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V1 V2 V4 TEO TE

PFC

Figure 2.3 A dorsolateral view of the  brain of a macaque monkey showing the relative 
sizes of the basal dendritic arbors of layer 3 pyramidal neurons in progressively higher-
order visual areas (V1–TE) and in prefrontal cortex (PFC). Modi� ed after Elston (2003).
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of cortex than other pyramidal neurons. In a comparative study of Betz and 
Meynert neurons, Sherwood et al. (2003) found that terrestrial patas monkeys 
had larger Betz neurons than any of the great apes, even though patus monkey 
brains are about four times smaller. As Betz and Meynert neurons tend to be 
larger overall in larger brains, the authors suggested that the large Meynert 
neurons might be a terrestrial adaptation for visually detecting predators, a 
problem that could be more pronounced for patus monkeys, since they live in 
the open savannah. Also, several primates, including tarsiers, had larger Betz 
neurons than predicted from  brain size. As small, nocturnal visual predators, 
tarsiers might bene� t from rapid grasping as well as escape movements. Betz 
cells are smaller than expected in the relatively slow moving prosimian gala-
gos (Otolemur). The large dendrite arbors of  Betz and Meynert neurons sug-
gest that they integrate information over several cortical columns to form a 
hypercolumn. Thus, cortical circuit processing would differ in cortical areas 
that have the large  Betz or  Meynert neurons.

As another modi� cation of cortical  pyramidal cells, humans, but not apes or 
monkeys, have a novel mesh of dendrites in layer 3 (Brodmann’s layer IVA) of 
primary visual cortex (Preuss and Coleman 2002; Preuss et al. 1999). Because 
this meshwork is related to the magnocellular pathway, Preuss and Coleman 
(2002) suggest that this modi� cation in cortical circuitry subserves the visual 
perception of rapid orofacial consequences of speech.

Other Neuron Types Also Vary with Cortical Area and Species

Perhaps the neuron type currently receiving the most attention by neuroscien-
tists and other readers is the Von Economo neuron: a spindle-shaped neuron 
with a simpli�ed dendrite arbor. These neurons were once thought to be found 
only in humans and certain great apes (Nimchinsky et al. 1999; Allman et al. 
2002), but they now have been described in elephant and whale brains (Hof 
and Van der Gucht 2007). Von Economo neurons are unusual in that they are 
considerably larger than nearby pyramidal cells, while having a large  apical 
dendrite extending toward the cortical surface and a single basal dendrite ex-
tending toward the  white matter. They appear to be restricted to the anterior 
cingulate cortex and frontal insular cortex of great apes, humans, whales and 
elephants. One suggestion is that these spindle cells or von Economo neurons 
have a special role in neural mechanisms related to social and emotional func-
tions (Seeley et al. 2006). Whatever the case may be, their presence, in only a 
few cortical areas of a few taxa with very large brains, indicates that all cortical 
circuits are not the same.

There is some suggestion that another rare type of pyramidal neuron—the 
inverted pyramidal cell—is more frequent in large-brained mammals (Qi et al. 
1999). This neuron type, however, is sometimes thought to be a result of errors 
in development, rather than being a functionally distinct type. This possibility 
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has not been suggested for the  Von Economo neuron, although their appear-
ance in the very large brains of members of distantly related taxa suggests that 
they could re� ect developmental factors associated with such large brains.

Other studies have demonstrated variations across areas and species in the 
distributions of  inhibitory interneurons (DeFelipe et al. 1999; Hof et al. 1999; 
Sherwood and Hof 2007). The inhibitory double bouquet cell is present in the 
cortex of primates but not in rodents, lagomorphs, or ungulates. The impact 
of this anatomical difference is uncertain, but this inhibitory neuron could be 
critical in constraining and forming receptive � eld response properties to sen-
sory stimuli. Inhibitory neurons also vary in distribution across species and 
the thalamic nuclei that project to neocortex (Arcelli et al. 1997; Penny et 
al. 1984). For example, GABAergic neurons are typically found in the visual 
lateral geniculate nucleus, but often not in the somatosensory ventroposterior 
nucleus. Furthermore, in mammals with few GABAergic neurons in the thala-
mus, intrinsic and projecting neurons vary little in size, whereas intrinsic neu-
rons are smaller than projecting neurons in species where thalamic intrinsic 
neurons are widespread.

Patterns of Intrinsic Horizontal Areal 
Connections Vary across Areas and Taxa

Horizontal cortical connections that link various vertical arrays of cells within 
cortical areas appear to exist in all mammals and in all cortical areas. Although 
those connections are most dense near their cells of origin, the sparser, longer 
horizontal connections seem well suited for the role of coordinating the ac-
tivities of groups of columns of cortical neurons, as widely proposed (Gilbert 
1992; Singer and Gray 1995). The surface-view patterns of the distributions of 
these horizontal connections, however, are quite variable, apparently in ways 
related to the functional organization of cortical areas. The differences in the 
patterns of intrinsic horizontal connections in primary visual cortex of tree 
shrews and squirrels are, perhaps, the most dramatic in this regard. Squirrels 
and tree shrews are highly similar, visually dominated, diurnal mammals with 
well-developed visual systems. They are also members of the same major 
branch of mammalian evolution (Euarchontoglires). Tree shrews, however, 
have a remarkably widespread, patchy distribution of intrinsic horizontal con-
nections with any location in V1 (Rockland and Lund 1982; Sesma et al. 1984), 
whereas the distribution pattern in squirrels is diffuse and even, rather than 
patchy (Van Hooser et al. 2006). The reason for this difference appears to re-
late to how neurons selective for stimulus orientation are distributed in V1, as 
cells with similar preferences are adjacent in V1 of tree shrews but distributed 
in squirrels. Thus, the long-range horizontal connections in V1 of tree shrews 
(and some other mammals, including primates) are patchy as they interconnect 
distributed patches of neurons with matching orientation preferences, but they 



Consistency and Variability across Cortical Areas and Species 33

are not in squirrels (and most other mammals) where orientation selective cells 
are not grouped by preference similarity (for a review, see Van Hooser 2007).

The intrinsic connections in V1 of primates re� ect another pattern that 
indicates that other functional classes of neurons are sometimes selectively 
interconnected. Primates have a distribution of cytochrome oxidase patches, 
called blobs, which are missing from V1 of most mammals. Neurons in the 
blob regions are thought to be especially involved in color processing, and not 
in mediating sensitivity to stimulus orientation. Overall, blob regions are con-
nected over the long intrinsic connections with other blob regions, and inter-
blob regions with the interblob regions (Yabuta and Callaway 1998); however, 
signi� cant differences in these patterns exist such that in galagos, and likely 
other prosimian primates, the extra long intrinsic connections involve blobs 
(Cusick and Kaas 1988). Furthermore, in galagos even the callosal connec-
tions between blob regions of V1 are rather extensive, including blobs quite 
distant from the outer border of V1 representing the vertical meridian (Cusick 
et al. 1984). Thus, the intrinsic connection system involving blobs can be more 
widespread than that for interblobs, and species differ in the extents of these 
widespread connections between blobs.

As for V1, where intrinsic horizontal connections may or may not be patchy, 
motor cortex of cats has an even distribution of horizontal connections, leading 
to the conclusion that these connections “bind together” the representations 
of a variety of muscles (Capaday et al. 2009). In contrast, intrinsic horizontal 
connections are patchy in primary motor cortex of macaque monkeys (Lund et 
al. 1993), suggesting that motor cortex functions differently in monkeys than 
it does in cats. Finally, and for uncertain reasons, the intrinsic connections of 
prefrontal cortex in macaques terminate in stripes rather than patches (Levitt 
et al. 1993).

Distributions of intrinsic connections are in� uenced in other ways by the 
somatotopy of primary somatosensory cortex (S1 or area 3b). In the S1 rep-
resentation of the whiskers of the face in rats, intrinsic horizontal connections 
are more extensive between the representations of anterior-posterior rows of 
whiskers than vertical arches of whiskers (Kim and Ebner 1999). In a similar 
manner, intrinsic connections in the hand representation in area 3b of monkeys 
are more extensive along the length of the representation of individual digits, 
than across these representations (Fang et al. 2002). In addition, although the 
face representation adjoins that of digit 1, there are few connections across the 
hand–face border.

Although there could be many more examples, these few illustrate the point 
that the universally present intrinsic connections are quite variable in extent 
and distribution pattern. This variability implies that cortical areas within 
and across species vary in the ways cortical columns interact with each other. 
Overall, it appears likely that patchy and stripe-like patterns of intrinsic con-
nections in cortical areas signify a like-to-like pattern of connections between 
groups of neurons with similar response properties, while diffuse, evenly 
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distributed (at comparable distances from origin) patterns suggest a lack of 
speci� city in such connections.

Feedback Connections

Connections from higher to lower areas in hierarchies of cortical areas provide 
another source of widespread neuronal interactions, as  feedback connections 
are generally thought to be more widespread and less speci� c than feedfor-
ward connections (e.g., Krubitzer and Kaas 1990). Thus, patchiness is less 
pronounced than in feedforward connections and can participate in the coor-
dination of processing in different processing streams. Nevertheless, feedback 
connections are generally more dense in the matching than non-matching feed-
forward  modules, and thus vary in ways that re� ect the modular organization 
of target areas (Salin and Bullier 1995).

Conclusions

One of the great temptations for overworked neuroscientists is to ignore, deny, 
or oversimplify the complex variability within and across nervous systems. In 
initial stages of development, models of nervous systems need obviously to 
depend on a few simplifying assumptions, but ultimately realistic models must 
re� ect the organizations of real nervous systems. If we focus on mammalian 
neocortex, it is useful to remember that mammals with  neocortex emerged at 
least 250 million years ago, and since that time formed the many branches of 
the mammalian radiation. A cladistic analysis, together with evidence from the 
fossil record, suggests that neocortex of early mammals occupied proportion-
ally little of the brain, and that it was divided into few cortical areas, perhaps 
20–25, that were poorly differentiated in cellular structure and rather similar 
(Kaas 2007). No present-day mammals have completely retained their ances-
tral organization, although the brains of some extant mammals have clearly 
changed much more than others. Perhaps human brains have changed the most, 
with human cortex now having more neurons than any other mammal, and 
having perhaps 200 functionally and structurally distinct processing areas. In 
addition to variably increasing the numbers of cortical areas across species 
(and in some cases, reducing them), cortical areas variably become more dif-
ferent in laminar and cellular structure. Thus, it is now unreasonable to assume 
that all cortical local circuits are the same, and that cortex varies simply in 
numbers of such circuits and types of inputs and outputs. Instead, we should 
explore and document this variability further, and use this variability as experi-
ments of nature to understand how local circuits function and interact.
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Sequence Coding and Learning
Gilles Laurent

Abstract

The topic pertaining to “ sequence  coding and   learning” is deceptively wide ranging. 
Sequences or activity patterned in time in the brain can be linked to the nature of the 
physical world, to the nature and needs of active motion in the world, and to the fact 
that brains are dynamic systems. Coding, as it pertains to brains, is by contrast a rather 
fuzzy, ill-de� ned, and plastic notion. In the context of this discussion, it refers to the 
idea that information is contained in patterned activity. This chapter discusses some 
of the assumptions that go into such a statement, and reasons why we should tread 
carefully when addressing the issue. For instance, circuit dynamics might exist and be 
useful, even if the spike patterns they generate are never explicitly decoded. Linking 
sequences to codes is thus far from trivial. While learning requires no de� nition here, 
it is useful to be reminded of the likely coevolution of learning and representation sys-
tems in the brain:  perception and  memory depend on one another; this implies that the 
rules underlying brain “codes” must be constrained, at least in part, by those underlying 
learning (and vice versa). Given this, how do we go about testing the idea that learning 
helps generate stable dynamic attractors for perception and action?

Sequences

I  can think of at least three groups of reasons to introduce the importance of 
dynamics in brain activity. Some are a re� ection of  temporal structure in the 
world. Others are linked to the constraints of action in a physical world. The 
third set is internal and linked to the dynamic nature of neurons and circuits 
(Gerstner 1995; Theunissen and Miller 1995). This division is somewhat ar-
ti� cial and used here solely for the purpose of description. Most likely, all 
features, causes, and consequences of brain dynamics have been in� uenced by 
one another throughout the evolution of neural systems.

Temporal Structure in the World

Life, as seen from an individual’s own perspective, could be described as a 
sequence of interactions with the world that occurs between birth and death. 
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This sequence is locally nonrandom, due mainly to the laws of physics—where 
this cat stands now strongly predicts where it will be some time from now; the 
earth-day has a certain periodicity, etc.—and therefore contains large amounts 
of information (e.g., correlations) which are of great value for survival. Such 
correlations occur over a variety of timescales (subseconds to years); not sur-
prisingly, brains evolved to detect and take advantage of them. This can be 
seen, for example, in motion sensitivity, in the deciphering of speech/song 
sound patterns, in circadian entrainment, and in many other pattern-sensitive 
attributes of sensory systems (Carr 1993). This de� nition extends to sensory 
experience which is itself the result of sequences of motor action, as in the 
emergence of place � elds in rodent hippocampus and in their sequential ac-
tivation during behavior or certain phases of rest and sleep (O’Keefe 1993; 
Mehta et al. 2000).

Action as Ordered Sequences of Muscle Recruitment

Conversely, brains generate motor actions through the ordered recruitment of 
muscle groups. This, too,  is greatly constrained by the physics of the world 
(air, ground, water), of the plant generating the action (skeleton—when there 
is one—tendons, muscles, etc.), and of the interactions between them. Not 
surprisingly, therefore, action is often the expression and consequence of 
highly optimized motor “programs” encoded as sequential muscle recruit-
ments in specialized circuits (Georgopoulos et al. 1986; Ekeberg et al. 1991; 
Llinás 1991). The mapping between motor program and action is, however, 
not always simple. Insect � ight, for instance, can be generated by the ner-
vous system in two main ways. First, motoneuron � ring frequency deter-
mines the wing-beat frequency in a one-to-one manner. In such species (most 
large � ying insects), wing-beat frequencies are usually low. Second, moto-
neurons serve simply to bring the myo-skeletal system in a resonant regime; 
in this way, wing-beat frequency can far exceed neural driving frequencies 
(e.g., � ies, mosquitoes). Neuronal patterning is thus adapted to the physics 
of the plant and to a number of complex features, such as inertial and vis-
cous forces generated by motion in a viscous medium. Sound production by 
animals obeys the same basic rules and constraints. Most motor programs 
(speech/song production, locomotion, skilled action) require re� nement 
through learning and thus must involve some comparison between a measure 
of execution and a kind of template or desired output. Some programs are ex-
ecuted in an open-loop con� guration, but even those often require calibration 
through learning. Here, as well, the timescale of such programs of sequential 
activity is widely variable (subseconds to hours), implying learning rules 
with wide dynamic ranges, or many learning rules to cover this dynamic 
range well.
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Brains as Dynamic Systems

A third source of dynamics in the brain is purely internal. Brains are group-
ings of neurons and ordered couplings between them. Because neurons and 
synapses are themselves endowed with dynamic properties (FitzHugh 1961; 
Connors and Gutnick 1990; Izhikevich 2001)—due, for example, to the ca-
pacitive and resistive (usually nonlinear) nature of membranes, to diffusion 
and depletion, to channels and receptors kinetics—neural circuits are complex 
dynamic systems, with preferred behaviors and collective emergent properties 
(Brunel 2000; Gerstner et al. 1996; Maass et al. 2002; Rabinovich et al. 2008; 
van Hemmen et al. 1990). Some of them are relatively easy to detect and de-
scribe: oscillations or limit cycles (von der Malsburg 1981/1994; Gray et al. 
1989; Eckhorn et al. 1988; Singer and Gray 1995; Engel et al. 1991; Laurent 
1996, 2002), propagating waves (Lubenov and Siapas 2009). Others are not: 
complex spatiotemporal patterns of activity lacking periodicity or obvious 
large-scale spatial order (Diesmann et al. 1999; Stopfer et al. 2003; Mazor and 
Laurent 2005). While the kinds of patterning described in the previous two 
sections are linked causally to interactions with the external world (e.g., think 
of both the sensation and the production of sound), the kinds of sequences and 
patterning alluded to here are linked to the external world in only an indirect 
way. The sequences of activity seen in the early  olfactory system in response 
to odors, for example, are not a result of sequences in a time-varying input; 
they are a consequence of, and therefore re� ect (possibly encode), a particular, 
time-invariant, odorant signal; they are solely generated by and located in the 
nervous system. Generally speaking, this describes cases where the dynamic 
attributes of the representation are not a simple re� ection of the dynamics of 
the input that drives activity (Rabinovich et al. 2008). Oscillatory patterns of 
activity (in the retina, in visual cortex, in olfactory systems, in hippocampus) 
are one form of such temporally ordered activity. A looming question, there-
fore, is whether those dynamics are useful and if so, for what?

Coding

Linking Neural Dynamics to Coding Is Dif� cult

I would expect  that most attendees at this Forum would agree that in our � eld 
of experimental systems neuroscience, there exist at least some incontrovert-
ible examples of  spatiotemporal  patterning, indicative of some form of col-
lective order (e.g.,  synchronization, periodicity, waves of activity, seemingly 
random yet deterministic sequences of � rings). Clearly, more experimental 
work is needed to better assess the brain’s dynamic landscape, to characterize 
the properties and behavior of speci� c systems, and to classify the observed 
diversity of patterning. I would argue, however, that single clear examples are 
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suf�cient to prove the existence of such ordered phenomena in neural circuits 
and justify the study of their causes, consequences, and signi� cance. Where 
this is accomplished (i.e., with which circuits, brain regions, or animal species) 
has no real importance to me at this point, other than practical considerations.

What is less clear, in my opinion, is whether we can say with equal con� -
dence that such brain dynamics have been clearly linked to coding in the above 
examples. I can see at least two reasons for this hesitation.

First, coding (as in, “neural codes”) is a rather fuzzy notion in neurosci-
ence. In sensory neuroscience, it is now conventional to assess coding (as in, 
these retinal ganglion cells code for X) on the basis of (for instance) a measure 
of mutual information between an input and a response set (or distributions) 
(Bialek and Rieke 1992; Berry et al. 1997). Yet, neural codes are not codes 
in the sense of Shannon’s (1948) information theory: brains are not channels 
optimized for information propagation. A brain selects, prunes, “computes,” 
and generates a highly selective, adapted, and specialized output—not a copy 
of its input. A brain is also rife with complex recurrent paths, impossible to 
map simply onto a source-receiver model of  information � ow. However, the 
 information theory approach is undoubtedly valuable: it de� nes what can be 
extracted by an observer from a spike train. The problem, in the end, lies with 
de� ning the observer (can or should a neuron be considered to be equivalent 
to an ideal observer?) and its approach to read-out (e.g., spatiotemporal inputs, 
initial and time-varying states, nonlinearities). For practical reasons, I would 
thus de� ne  neural codes very locally and base those de� nitions on the proper-
ties of the “decoder.”

Second, proving that  temporal structure in neural activity has any func-
tional consequence is an extremely dif� cult task. It is dif� cult experimentally 
because selective manipulation (in space and in time) of spiking has, until re-
cently, been impossible on a large and distributed scale. (While still lacking 
high spatial speci� city, recent optogenetic techniques now enable the temporal 
manipulation of cell populations.) Proving the relevance of  temporal pattern-
ing is dif� cult as well because brain activity patterns are the expression of 
a collective behavior, itself prone to adaptive rearrangement: to take a crude 
analogy, the loss of a mid� elder in a soccer team can be rapidly overcome 
when the other players assume new roles and behaviors. This compensation 
is not solely an expression of redundancy; it reveals an ability of the system 
to change adaptively. The criteria traditionally applied to experimental data 
(necessity and suf� ciency) to assign functional signi� cance may thus often 
be inadequate. We need to be open to different/additional assays and criteria.

Decoupling “Encoding” and “Decoding”

An argument  often advanced  by those who doubt the relevance of  tempo-
ral  codes is that they are dif� cult to read out. While this argument is disput-
able, I would like to introduce the notion that dynamics and patterning do not 
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necessarily mean codes: more precisely, what we often describe as “encod-
ing” and “decoding”—the two sides of the “coding” coin—may not always be 
coupled to one another. Stated differently, dynamics and  temporal patterning 
may be useful even in cases in which the patterns themselves are not decoded.

Imagine that a particular sensory input, S (e.g., an visual scene), causes, in 
a particular part of the brain, a complex  spatiotemporal  pattern of activity, PS. 
In purely descriptive terms, one could say that PS represents or “encodes” S. 
This is technically true from our perspective as outside observers. It might be, 
however, that the PS is nothing more than the expression of the brain’s physi-
cal response to S, as would be that of many other similarly stimulated dynamic 
systems. Furthermore, it is possible that the decoding of PS by downstream 
neurons or networks involves no sequence decoding per se. This does not mean 
that PS, as a dynamical pattern, is not relevant. It may, however, reveal that its 
value is only implicit in the code.

Analogy

If you have learned a racquet sport such as tennis at one point in your life, you 
will have learned the value of the “follow-through”—the seemingly stylistic 
exercise of keeping the racquet in motion toward some imaginary position af-
ter the racquet has hit the ball. This, of course, appears completely nonsensical 
to a beginner: “Why does it matter what I do after I have hit the ball”? Trivially, 
the answer is that what I do after the time of contact is at least in part a conse-
quence of what I did before, including at the time of contact; what I do after 
the hit is a consequence of the unfolding of a sequence of actions that preceded 
it: I cannot have one without the other because it is part of the physics of the 
system (the outside world, the ball, the body and, possibly, the brain itself). As 
far as the outcome of the game is concerned, however, the decoding of this ac-
tion (i.e., the quality and accuracy of the hit) is transitory: the action sequence 
is implicitly contained in the hit, but it is not decoded as a sequence of move-
ments. To summarize, the action sequence (“encoding”) is necessary, but the 
read-out (“decoding”) is done only transiently, at some appropriate moment 
throughout the motion. Hence, the dynamics, as the expression of a system’s 
physical properties, are indispensable but do not embody the code itself.

Example

The system that my lab has studied for 15 years or so, the  insect olfactory 
system, is dynamically rich. When an odor is presented, a population of some 
1,000  projection neurons (PNs) in the antennal lobe (the functional analogs of 
mitral cells in the vertebrate olfactory bulb) becomes transiently synchronized, 
forming a distributed oscillatory pattern (~20 Hz) in which different subsets of 
PNs � re at each oscillation cycle. An odor representation is thus a speci� c time 
series of PN-activity vectors, updated at each oscillation cycle; these sequences 
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of PN-activity vectors can also be imagined as odor-speci� c trajectories in the 
phase space de� ned by this system. These trajectories are stimulus speci� c 
and, provided that the stimulus is sustained for a long enough duration (>1.5 
s), they contain three epochs: (a) an on-transient that leaves the baseline state, 
(b) a � xed-point attractor, and (c) an off-transient that leads back to baseline 
along a path different from the on-transient. The transients and the � xed point 
are all odor speci� c, but analysis of pairwise distances between the trajectories 
that correspond to different stimuli shows that distances are greatest when the 
system is in motion (during both on- and off-transients), not between steady-
state attractors corresponding to the different odors. Interestingly, the targets 
of these PNs, called mushroom-body Kenyon cells (KCs), are active mainly 
when PN activity is in motion—not when PN steady-state has been reached. In 
fact, KC responses are highest when separation between PN vectors is great-
est (i.e., during the initial phase of the on- and the off- transients). This leads 
to two conclusions: First, while circuit dynamics seem to serve an important 
function (here, decorrelation of representations), they do not appear to serve a 
coding purpose in the traditional sense; that is, there is no evidence that down-
stream areas decode the sequences of PN output. Second, a signi� cant portion 
of a trajectory, its � xed-point attractor, does not even appear to be read out by 
targets (Mazor and Laurent 2005). This begs the question of the use, if any, of 
� xed attractors in this system. Whatever this use may be, it does not seem to be 
in the embodiment of a representation.

In conclusion, the existence of dynamics in a representation does not, in 
and of itself, prove that the dynamics are part of the “code,” or a message to be 
decoded. The dynamics may be the result of properties of the system, and they 
may even be useful (e.g., in optimizing representations). However, they are not 
necessarily a feature that requires explicit decoding. 

Learning

Learning and Perception Are Not Separable

The practicalities and sociology of neuroscience as a human endeavor are such 
that the subareas of  learning/memory and  perception/coding overlap only oc-
casionally. Attendance at any large neuroscience meeting will often con� rm 
this impression. Yet, perception is dif� cult to imagine without learning, and 
vice versa. Perception and  recognition would not be what they are without 
templates/representations stored for classi� cation and comparison, or without 
some trace of recent history. Conversely, the ability to learn seems pointless 
if it did not serve future comparisons between immediate input and a bank 
of memory traces—comparisons that are needed for perception, recognition, 
and adaptive action. It follows then that the mechanisms underlying sensa-
tion and perception should, somewhere, express the requirements imposed by 
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learning, storage, and recall; this is simply because circuits must have evolved 
with these coexisting constraints. When we talk about neural codes (ignoring 
for now the ambiguity of the term), therefore, we should not forget that their 
formats may be optimized not for coding per se, but for learning and recall as 
well. In other words, the attributes of biological learning rules, presumably 
adapted to the statistical structure of the world and to the intrinsic properties of 
the brain, should be interpreted as an added constraint on the formats of senso-
ry and motor codes. This is particularly relevant to our thinking about “neural 
codes,” especially if those (a) are at least partly dynamical in nature or (b) have 
substrates that express dynamical properties. I am reminded of this every time I 
use my bike’s lock, a perfect example of procedural memory: while the lock’s 
combination escapes me now, it springs back to me reliably every time I start 
spinning the rotating face of the lock. In conclusion, thinking about codes and 
representations can only bene� t from including the constraints and necessities 
of learning and recall.

Learning Rules and Sequence Coding

Recent experimental results  on the mechanisms of plasticity (long-term poten-
tiation, asymmetric Hebbian rules,  spike timing-dependent plasticity) have al-
lowed realistic links to be drawn between learning and network activity (Hebb 
1949; Herz et al. 1989; Bliss and Collingridge 1993; Markram et al. 1997; 
Bell et al. 1997; Bi and Poo 1998; Cassenaer and Laurent 2007). In a typical 
example, an externally imposed sequence of activity leads, through a learning 
phase, to the selective modi� cation of synaptic weights via application of a 
learning rule with an appropriate time window; thus, the training sequence 
can, after learning is terminated, be recalled or replayed in the absence of the 
external drive, very much as in a feedforward “syn� re” chain. The practical 
consequence can be the recall of a full sequence (as a path in physical space 
or as in procedural learning), a bias for recall of a particular pattern upon ap-
propriate seeding (as in the recall of selective memories). In all cases, the main 
idea is that the pattern has become a stable attractor for activity. The theoretical 
questions that these ideas raise are many and complex:

• What are the best dynamical models to explain such behavior? What 
do they predict?

• How stable can such dynamic attractors be, given the known biophysi-
cal properties of neurons and synapses (and their non-fully determin-
istic behavior)?

• Similarly, what is the tolerance to external noise for such representa-
tion mode?

• What is the gain on memory capacity (relative to classical � xed-point 
attractor models) for such systems?
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• What are the constraints that such rules impose on representation 
density/sparseness?

• Do such representation modes require (or work best with) a discrete 
timeframe?

• Do they allow time compression/warping? 

As a dedicated experimentalist, I would argue that many of the critical answers 
(or hints to those answers) will be given by experiments and offer the follow-
ing as examples of crucial issues to be addressed:

• What are promising experimental systems to study these issues?
• What are the criteria needed to establish � rmly the existence of   spatio-

temporal  patterning in circuits? In other words, if I were given a neu-
ronal system with dynamical attractors, would I even detect its nature?

• What are the criteria needed to establish the functional relevance of 
spatiotemporal patterning?

• What are the different forms that this relevance could take?
• What constraints would the existence of such attractors impose on the 

learning rules we know?
• Assuming that many of the learning rules we know are used main-

ly for homeostatic regulation (e.g., on weight distributions, timing), 
how plastic must they be to underlie the formation of stable dynamical 
attractors?
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What Can Studies of 
Comparative Cognition Teach 

Us about the Evolution of 
Dynamic Coordination?

Uri Grodzinski and Nicola S. Clayton

Abstract

The � eld  of comparative cognition  has provided examples of the cognitive abilities of 
many mammal and bird species, such as some “understanding” of physical properties 
and the use of episodic-like memory of past events to alter behavior � exibly. Although 
the seemingly complex behavior exhibited by an animal may be the outcome of cogni-
tive mechanisms, it need not be: often, associative learning principles, or � xed action 
patterns that form without associative experience (“ innate rules”), or a combination 
thereof are all that is required. Distinguishing experimentally between these accounts 
is one of the main concerns of comparative cognition. This chapter outlines what is 
necessary for connecting the � eld of comparative cognition with the subject of dynamic 
coordination. Because animal cognition studies are performed on many species from 
diverse taxa, analyzing the type of coordination required to pass the tasks they include 
may shed light on the evolution of (dynamic) coordination. Speci� cally, the convergent 
evolution of particular cognitive abilities in primates and corvids implies that the type 
of coordination necessary for these abilities has evolved at least twice. In this respect, 
one future challenge is to clarify which principles of coordination are shared (and which 
are different) between mammals, with their laminar cortex, and birds, with a forebrain 
that is not laminated. Several recent examples of animal cognition are explored and the 
sort of coordination they require is discussed.

Marrying Comparative Cognition and Dynamic Coordination

A common assumption in cognitive neuroscience is that cognition has evolved 
in a homologous manner, such that the cognitive abilities exhibited by different 
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extant species have all developed from the same basic abilities present in their 
last common ancestor. Like other traits, however, cognitive ones can also 
evolve through a process of  convergent  evolution in which distantly related 
species independently evolve similar solutions to similar problems. When at-
tempting to study cognitive abilities, there is much bene� t to be gained from 
taking a comparative approach to the study of cognition, where many species 
from diverse phylogenetic taxa are compared for their cognitive abilities. This 
way we can assess the relative importance to the evolution of cognition of (a) 
phylogenetic  homology (common ancestry) and (b) differences in selection 
pressures across species and taxa.

Comparing primates and  corvids (the crow family) provides one clear case 
of convergence in cognitive abilities (Emery and Clayton 2004; Seed, Emery 
et al. 2009). Nonhuman primates and corvids show remarkably similar abil-
ities to behave � exibly in ways suggesting that they understand features in 
their physical and social worlds. If the reptilian common ancestor of birds and 
mammals did not possess these abilities, then this supports the hypothesis that 
cognitive abilities have evolved convergently in these groups. The comparison 
between the neuroarchitecture of  avian forebrains and the mammalian neocor-
tex has suffered from mistakenly attributing a striatal developmental origin to 
most of the avian forebrain, while in fact most of it is derived from the em-
bryo’s pallium (Reiner et al. 2004; see also Balaban et al., this volume). Thus, 
areas in the avian forebrain are homologous to the  mammalian neocortex, to 
which they also correspond functionally. Although these similarities are now 
well accepted, there are still major differences in the neuroarchitecure of mam-
malian and avian  forebrains. Most notably, whereas the cortex of primates and 
other mammals has a laminar organization, the avian forebrain lacks such a 
laminated organization and is instead nuclear in its organization. This � nding, 
together with the cognitive parallels, implies that it is feasible to evolve similar 
(computational?) solutions to complex problems, based on different underly-
ing neural mechanisms. 

The principles of coordination between different local brain functions may 
also have evolved convergently, along with cognition. However, in order to 
begin considering dynamic coordination in a comparative way, at least two 
routes are possible. First, we may investigate the brains of different species di-
rectly to determine how different brain functions are coordinated. This may be 
done for a small number of species, for which methodology has already been 
developed and whose brain is relatively well studied. Another, indirect route, 
is to use the extensive research of (behavioral) comparative cognition in order 
to draw a general picture of which taxa are likely to exhibit the capacity for 
dynamic coordination. Marrying comparative cognition and dynamic coordi-
nation may allow us to assess the sort of coordination in a very large number of 
species from diverse taxa. To do so, however, we must �rst clarify the relation 
between cognitive abilities exhibited by animals such as primates and corvids, 
on the one hand, and the (minimal) sort of coordination that is required in 
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order to exhibit them, on the other hand. This is what we attempt to explore 
in this chapter. In the following sections we consider the type of coordination 
necessary in  episodic-like  memory and in several primate and  corvid studies 
of  physical cognition.

Concentrating on such studies requires justi� cation because many, much 
simpler tasks require some sort of coordination between different local brain 
functions. In other words, different brain areas, in charge of different computa-
tional tasks, have to “talk to each other” to achieve many of the behaviors per-
formed regularly by animals (e.g.,  grooming; see Balaban et al., this volume). 
Coordination might therefore be inherently dynamic if it involves the  synchro-
nization of oscillating groups of neurons, and many examples of behaviors 
and basic cognitive abilities (e.g.,  Gestalt perception,  selective  attention, and 
working memory) that involve this type of dynamic coordination have been 
discussed by both Moser et al. and Engel et al. (this volume). We may need to 
consider, however, additional or special forms of coordination when trying to 
understand what makes some species able to solve tasks that others cannot. In 
this chapter, therefore, we will distinguish between cases in which the coordi-
nation required is either prespeci� ed in the brain itself (Phillips et al., this vol-
ume), or is speci� ed directly by the outside world, and those tasks in which the 
solution must somehow come from within the brain. Performing a well-trained 
skill, such as walking, is an example of  prespeci� ed  coordination (Phillips 
et al., this volume), and so is  classical conditioning. Even if the stimuli to be 
associated are novel, precluding a prespeci� ed connection between their rep-
resentations in the brain, and even if the coordination involves synchronizing 
oscillations (and is therefore dynamic in that sense), the representations to be 
connected could be directly speci� ed by external events. In contrast, we will 
discuss studies in comparative cognition where we suspect that solving the task 
requires the animal to come up with the solution itself, where the very identity 
of what should be coordinated, as well as the form of the coordination, needs 
to come from within the brain. Before we continue, however, we must � rst 
clarify how comparative cognition research distinguishes different accounts 
for � exible behavior.

Different Accounts in Comparative Cognition

Comparative cognition has devoted much empirical effort to distinguishing 
between different accounts to explain  �exible behaviors. Consider the case 
in which an animal performs behavior A in context a, whereas it performs 
another type of behavior B, in another context b. Perhaps the simplest account 
for this �exibility in behavior is an “ innate rule” that speci�es that the type of 
behavior is dependent on a particular  context. Such a rule is “innate” in the 
sense that its formation does not require the explicit ontogenetic experience 
with the different outcomes of behaviors A and B in contexts a and b, but 
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instead develops even in an animal naïve to these outcomes, presumably as a 
result of selection pressures acting on the development of this rule in its ances-
tors. Another account of  � exible behavior is  associative  learning, whereby the 
rule for performing A in context a (and B in context b), for example, may be 
created through reinforcing only behavior A in context a and only behavior B 
in  context b (for a simple account of how this works, see Dickinson 1980). In 
comparative cognition research,  innate rules and associative learning mecha-
nisms are usually taken as the alternative accounts to a cognitive one. What a 
cognitive account of the above rule would imply is that the animal has some 
appreciation of the reasons for each behavior being appropriate in a differ-
ent context. Although it is unclear how this can occur, such an appreciation 
would be bene� cial as it allows much more � exibility in generalization to new 
contexts. For example, if in a new context c the reasons that made behavior A 
bene� cial in context a remain the same, the animal will be able to transfer to 
this new context (or new task), whereas depending on associative learning or 
innate rules will not enable such � exibility.

We hope that we have made clearer the alternative accounts for � exible 
behavior that the � eld of comparative cognition addresses, and the empiri-
cal ways to distinguish between them. In many cases it is still unclear which 
account is more plausible in each case (for a simple associative-learning 
account of what may at � rst sight appear to be pigeons insightfully stack-
ing boxes on top of one another to obtain food that would otherwise be out 
of reach, see Epstein et al. 1984), but this is not the focus of our chapter. 
Instead, we now attempt to consider what kinds of coordination between 
different brain functions are required to achieve � exible behavior accord-
ing to these different behavioral accounts. Innate rules seem to require only 
the coordination that can be prespeci� ed by natural selection. In the case 
of associative learning, previous experience may prespecify the coordina-
tion needed for behavior to be � exible so that it can be adequate in differ-
ent contexts and tasks. In contrast, behavioral � exibility that is based on an 
appreciation of reasons that make such � exibility bene� cial may require a 
dynamic coordination which is neither prespeci� ed in the brain nor obvious 
from observing the outside world. In the following sections we offer a few 
examples of studies in comparative cognition and discuss their relation to dy-
namic coordination. In many cases there is still an ongoing empirical debate 
on whether or not simpler explanations can account for some of the � ndings 
and on whether human and animal abilities are comparable. Here, we will 
not go into these debates, but rather present the � ndings and their interpreta-
tions to make the connection between comparative cognition and particular 
forms of dynamic coordination. The particular forms to be considered are 
those involved in episodic memory and in problem solving, and which may 
require more than the basic forms of associative learning, selective  attention, 
and  working memory.
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What Coordination Does Episodic-like Memory Require?

To recall  a fact, such as “Frankfurt was �rst founded in the �rst century,” we 
do not necessarily need to remember when, where, and how we learned this 
information, and neither do we have to have been there ourselves. In contrast 
with such factual or “semantic” knowledge about the past,  episodic  memory 
contains the speci�c “what, where, and when” information of a previous event 
that we have personally experienced (Tulving 1972). For example, UG recalls 
how, as part of a security check at the Frankfurt airport in the summer of 1994, 
he was required to exhibit his puny juggling skills to demonstrate that his jug-
gling clubs were indeed what they were. At �rst sight, it seems that episodic 
memory would require new coordination in that the memory of a past event 
can be used to make a later decision. For example, imagine that you realize 
you have lost your wallet and try to trace your steps back to remember where 
you have left it. This is essentially different from making a mental note of put-
ting your wallet in the drawer, but does it indeed require a novel coordination 
between different functions?

Episodic-like  memory has recently become an area of research in com-
parative cognition, starting with experiments showing that western scrub-jays 
remember the what, where, and when of caching a food item (Clayton and 
Dickinson 1998, 1999; Clayton et al. 2001, 2003). The term “episodic-like” 
memory is used when considering animal memory (Clayton and Dickinson 
1998) because current de�nitions of human episodic memory necessitate the 
subject being consciously aware that the past memories are his or her own and 
that he or she re-experiences the event when remembering (Tulving 2005), 
characteristics which cannot be assessed without language and ones that be-
come part of our identity. With study species now including other birds, such as 
magpies and pigeons, rats, nonhuman primates, meadow voles, and honeybees 
(reviewed in Crystal 2009; Dere et al. 2006; Schwartz et al. 2005), episodic-
like memory seems like a good candidate for exploring the relation between 
cognitive capacities and the sort of coordination they require. To do this, let 
us look more closely at some of the �rst experiments showing episodic-like 
memory in nonhuman animals.

To study episodic-like memory in western scrub-jays, Clayton, Dickinson 
and colleagues capitalized  on the fact that these birds readily hide food in the 
lab as well as in the wild (Clayton and Dickinson 1998, 1999; Clayton et al. 
2001, 2003). Indeed, western scrub-jays scatter-hoard many types of food in 
multiple locations and recover them hours, days, or months later (Curry et 
al. 2002). The types of food cached include various types of nuts as well as 
invertebrates, which perish much quicker. Thus, these jays might need to form 
a speci�c  what–where–when memory for each caching event in order to re-
cover the food on time. As mentioned above, distinguishing between cognitive 
and simpler accounts is a key feature in comparative cognition research. In a 
study that shows that scrub-jays remember the content of caches they made, 
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as well as whether they have already recovered them, Clayton and Dickinson 
(1999) explicitly ruled out a simpler associative account, which is useful for 
our analysis of the type of coordination needed.

In the � rst experiment in that study, scrub-jays were � rst allowed to cache 
peanuts in one tray and then dog kibbles in another. Before they were allowed 
to recover from the two trays (simultaneously), they were pre-fed on one type 
of these food types. Consequently, they preferentially chose to recover from 
the tray where they had cached the other type of food. This suggests that they 
remember what they have cached where; however, there was a simpler expla-
nation for these results, based on a  classical (Pavlovian) conditioning between 
each tray and the food type that had been cached in it. According to this ac-
count, such an association was formed during the caching phases, such that 
the stimuli of each tray elicit the representation of a different food type. The 
motivation to approach one of the food types was decreased due to pre-feeding 
and therefore the sight of the tray associated with it elicited less approach than 
the sight of the tray associated with a food type that was still highly valued. For 
our purposes, it is obvious that the coordination between the representations of 
location, types of food, and motivation to approach could all be prespeci� ed 
during the caching session or before then. There is no need, according to this 
account, for dynamic coordination; that is, for the type of coordination which 
is “created on a moment-by-moment basis so as to deal effectively with unpre-
dictable aspects of the current situation” (Phillips et al., this volume).

However, a second experiment ruled out this simple account. In this experi-
ment, both pine nuts and kibbles were cached in both trays, but only one food 
type was subsequently recovered by the jays from each of the trays. Then, the 
jays were pre-fed one of the food types and consequently chose to recover from 
the tray that still contained the other food type. This showed not only that jays 
remember what they had cached where (ruling out the simple conditioning 
account) but also that they register at recovery that the food they recover is 
no longer in place. The coordination needed here is obviously more complex, 
as we discuss below. Before we do that, however, it is worthwhile to consider 
brie� y what else is known about scrub-jay memory for cached items.

Scrub-jays prefer wax moth larva (“wax worms”) to peanuts, but after ex-
periencing that worms take a short time to decay (and that peanuts do not 
decay), the jays searched preferentially for peanuts when allowed to recover 
both types of food at a time when worms would have already degraded. When 
allowed to recover after a shorter time had elapsed since caching, short enough 
for worms to stay fresh, they preferentially search for the worms (Clayton and 
Dickinson 1998), suggesting that jays remember when and where they cached 
each type of food. Another study (Clayton et al. 2001) showed that the what, 
where, and when components form an integrated memory which is retrieved 
as a whole, and also suggested that the memory of the caching location elic-
its the two other components; namely, time and content. In addition, the jays 
are able to incorporate � exibly new semantic information about decay rates, 
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acquired after caching, and use this information to alter their recovery deci-
sions (Clayton et al. 2003).

Taken together, the above studies depict a complex combination of func-
tions, schematically illustrated in Figure 4.1. For each caching event, episodic 
information about food type, location, and time of caching is encoded to form 
an integrated event-speci� c memory. When deciding which caches to recover, 
jays take into account semantic information about the decay rates of different 
food types, e.g., “After 4 days, worms have already perished.” This rule can be 
altered if new information is available, even after caching, providing further 
support that the jays do not encode their recovery decisions themselves during 
caching, but rather encode what–where–when information, which is later used 
when these decisions are made (see Clayton et al. 2003). As mentioned above, 
jays also remember whether they had already recovered each item (Clayton 
and Dickinson 1999). Finally,  motivation for different food types can be 
changed through feeding. At recovery, motivation, episodic-like and semantic 
information are all used to make the correct decision: recover at the site which, 
according to the decay-rate rule previously experienced, contains a food type 
that is still edible, and for which there is current motivation.

Episodic-like memory in these jays is thus a complex decision-making sys-
tem.  Dynamic coordination is required between episodic, semantic, and moti-
vational functions (Figure 4.1), and in each caching event a new, event-speci� c 
connection must be made between the functions for location, time, and content. 
However, all of the above does not necessarily require that the fundamental 
way in which these different functions are coordinated be dynamic and change 
according to the task or between caching and recovery. This is because the 
sort of coordination needed to make recovery decisions does not in itself need 
to change when it is time to decide. For example, the possible coordination 

Where (location)
e.g., left tray, right tray

When (time)

 

Motivation
e.g.,  for worms, for peanuts

Recovery-Decision

Which tray 
to recover from?

Previous recovery 
of this cache?

What (content)
e.g., worms, peanuts

Semantic information about decay rates
e.g., “Worms perish after 3 days”

“Peanuts remain fresh”

Figure 4.1 Schematic structure of coordination between different brain functions 
which may be required to solve the episodic-like memory tasks in Clayton and Dickin-
son (1998, 1999) and Clayton et al. (2001, 2003).
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structure given in Figure 4.1 may allow the jays to solve all of the tasks in the 
above-mentioned experiments without changing anything but the data that is 
substituted in the different “brain functions.” Information about the time that 
had elapsed since caching can be gained using the episodic-like memory of the 
caching event, whatever it is; then, this elapsed time could be compared with 
the semantic information about decay rates, whatever that information may 
be; motivation, despite changing frequently, will also affect the decision in 
a constant manner. All this does not change even if the test retention interval 
between caching and recovery has not yet been experienced by the jays (as in 
Clayton et al. 2003).

A somewhat different approach to studying episodic-like memory is to ask 
the subject unexpectedly to report their memory of past events. Zentall et al. 
(2001) investigated whether pigeons could report on whether they had just 
pecked a key or not. First they trained them to peck a red key, if they had just 
pecked, and green if they had not. In a second training phase, two different 
keys were used: yellow was followed by food whereas blue was not. Finally, 
the pigeons were given a test: either yellow or blue were presented, with only 
yellow eliciting a pecking response due to its previous association with food. 
Immediately thereafter, the bird was to choose between red and green, and 
they tended to choose the correct key according to their initial pecking or non-
pecking action. Note that trials in the second training phase (presenting yellow 
or blue) did not include the question, “Did you just peck or not?” (i.e., choos-
ing red or green, which was done during other “refreshing trials” in phase 2). 
In addition, a second test used novel stimuli which the pigeons either pecked 
or not, again followed by the red/green choice. Therefore, the authors suggest 
it is very unlikely that the pigeons would encode the correct response to this 
question (using semantic information) when they peck or do not peck during 
the tests. Rather, when given this question, they would need to retrieve their 
memory of what they had just done. While this provides more evidence for 
episodic-like memory in an animal model, even passing this test does not nec-
essarily require dynamic coordination. The connections between pecking and 
choosing red (and between refraining and choosing green) were established in 
the � rst training phase; the connection between yellow (but not blue) and food 
was established in the second phase. All of these connections would have to 
be used during the test, but new ones, or the rearrangement of old ones, are not 
necessary. In that sense, again, the task does not require the coordination to be 
created moment-by-moment.

To conclude, passing the above tasks involves coordination of episodic and 
semantic information and, in some of the experiments, also  motivation for dif-
ferent food types. However, as far as we can tell, it seems that episodic-like 
memory does not necessarily require the structure of coordination to change 
dynamically. There is, of course, a need for coordination throughout the task; 
however, the way in which the representations of the different keys relate to 
one another and to the task at hand do not change. Of course, there is always a 
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possibility that the actual computational manner in which such tasks are solved 
involves special forms of coordination after all, at least in some species. All 
we can say at this stage is that they are not necessarily needed in this case. In 
a similar manner, we shall now try to analyze studies from another realm of 
cognition, the physical one.

What Coordination Does Physical Cognition Require?

When subjects are able to solve new tasks based solely on their underlying 
physical properties, this suggests that they appreciate or “understand” some-
thing about these physical properties, and that we may bestow the successful 
subject some “physical cognition” or “ causal understanding.” While the com-
putational and neuroanatomical details of how such feats are accomplished are 
largely unclear, physical cognition seems, at � rst glance, to require the estab-
lishment of a novel coordination between the speci� c properties (affordances) 
of a new task and some physical “rules” which the subject has already learned. 
Many studies of physical cognition include an initial training period, where 
subjects learn to perform a task, and may or may not also learn the physical 
rules governing this task. Then, “ transfer tests” are performed to determine 
what the subject understands about these physical rules. These tests are most 
relevant for our purposes, as they include a novel situation which is unsolvable 
using only the associative learning acquired in the training phase or general-
izing from the stimuli in the training task. Rather, the subject has to somehow 
apply the physical reasons or rules that underlie the success of its behavior in 
the training phase. The question is whether passing these transfer tests really 
requires any rearranging of the coordination present before the test. To address 
this question, we shall explore a few examples of primate and  corvid physical 
cognition and attempt to outline the properties of the coordination they require.

Understanding the Properties of a Trap

A classical example of a physical cognition experiment, � rst used with pri-
mates and recently also with birds, is the  trap tube. In the � rst version of these 
experiments (Visalberghi and Limongelli 1994), the training phase included a 
transparent horizontal tube with a trap-hole at its center, next to which a food 
reward was placed. The idea is to test whether the subject will learn to push 
the food reward to the correct direction (i.e., away from the trap), using a stick 
 tool. Some of the capuchins, chimpanzees, woodpecker � nches, and others 
tested learned the � rst task (reviewed in Martin-Ordas et al. 2008). After a 
subject mastered this task, a transfer test was performed with the tube inverted 
so that the trap was no longer functional. All primates tested still continued to 
push the food away from the trap, even when the tube was inverted, whereas 
one woodpecker did not. It has been rightfully argued that continuing to push 
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away from the nonfunctional trap bears no cost, and therefore this does not 
necessarily imply lack of physical understanding (Silva et al. 2005).

Since these studies were conducted, a modi� cation of this task was intro-
duced where two traps are placed in either side of the food reward, but only 
one is nonfunctional. This allows experimenters to assess what animals under-
stand about the properties of traps, such as when an object will become lodged 
in a trap as opposed to when it will pass along the top of it or fall through 
the bottom. Versions of this experiment were conducted with rooks (Seed et 
al. 2006), and subsequently this design was adopted to test New Caledonian 
crows (Taylor et al. 2009) and chimpanzees (Seed, Call et al. 2009). The trans-
fer tests suggest that some of the individuals tested have some understanding 
of the physical rules of the task in all three species. There is not yet a consensus 
among researchers as to the correct way to interpret success of only a small mi-
nority of the subjects. In addition, in some of these studies the transference was 
not made in the � rst trial but in the � rst block or blocks of trials; thus learning 
cannot be ruled out completely. We might need to wait for more experimental 
results in order to draw strong conclusions from our analysis. However, at this 
stage we are only trying to determine what form of coordination passing such 
transfer tests (on the � rst trial) seems to require.

In the rook and New Caledonian crow studies, a two-trap tube was used 
(Seed et al. 2006; Taylor et al. 2009), the con� guration of which was altered 
by the experimenter to make only one trap functional. In the chimpanzee study 
(Seed, Call et al. 2009), a conceptually similar two-trap box design was used 
(Figure 4.2), which enabled testing  physical cognition without the need for 
using  tools. The subjects could reach the food with their � ngers and push it to 

A B

C D

Figure 4.2 The two-trap box design used to test chimpanzees’ understanding of phys-
ical properties (adapted with permission from Seed, Call et al. 2009). Con� gurations A 
and B were used in phase 1; con� gurations C and D in the transference tests (see text 
for details). The white circle marks the location of the food reward at the beginning of 
the trial, and the arrow marks the hole through which the food may be extracted if the 
subject pushes it in the correct direction.
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either side. In con� guration A, there was one functional trap (left-hand side of 
Figure 4.2A); the other trap was made nonfunctional by placing a shelf piece 
that prevented the food from falling, enabling its extraction through the side 
exit. In con� guration B, the trap was nonfunctional due to the blocking piece 
being removed so that the food could drop through the bottom exit. Six out of 
the eight subjects successfully learned these two con� gurations and were then 
given the transfer tests (Figure 4.2, con� gurations C and D) to assess what 
they had encoded about the task. Note that in these transfer con� gurations, the 
blocking pieces which made the trap functional in A and B were removed to 
prevent a subject from acting according to the rule “push away from the block-
ing piece” to pass these tests (in D two different blockers were placed at the 
very bottom of the trap).

Applying such a rule, as well as rules such as “push toward the supporting 
shelf,” does not seem to require any special form of coordination. However, to 
pass both transfer tests (C and D) the subject must apply some understanding 
of the fact that the shelf piece prevents the food from falling (e.g., “surface 
continuity prevents falling”). In C, the conclusion should be to avoid the shelf 
piece because the only way to get the food is by allowing it to fall through the 
bottom exit (the side exists are blocked), whereas in D the conclusion should 
be to push towards the shelf piece to prevent the food from falling and being 
trapped by the bottom blocker. Thus, an additional rule should have been en-
coded during the acquisition of A and B, or from previous experiences, to en-
able transference to both C and D. Namely, something in the form of “objects 
cannot go through barriers,” which would be applied to the side and bottom 
blockers in con� gurations C and D, respectively. Such “abstraction from rules” 
may enable passing transfer tests without any understanding of unobservable 
forces such as gravity (for further discussion, see Seed et al. 2006; Seed, Call 
et al. 2009).

 The relevant question for our purposes is whether applying such rules re-
quires any special form of coordination between functions operating in these 
tasks, in the sense that the type of coordination between the representations 
of surfaces, solid objects, and the food item needs to be created moment-
by-moment according to the attributes of each transference condition (see 
above). Our feeling is that there is no such requirement inherent to passing 
these transfer tests. If, say, the rules (a) “surface continuity prevents falling” 
and (b) “objects cannot go through barriers” are encoded before the transfer 
tests are given, then passing the transfer tests “only” requires applying them 
to the different surfaces and barriers. In other words, once such rules are en-
coded, a generalization of “barrier” is enough to enable the transference. How 
such abstract rules are encoded in the � rst place is another interesting ques-
tion, and is probably far from being trivial. Evidently, only one rook (Seed et 
al. 2006) and one or two chimpanzees (Seed, Call et al. 2009) seemed to be 
able to do so.
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“Insightfully” Bending a Wire to Make a Hook

New Caledonian crows are known to manufacture and use  tools in the wild 
(Hunt 1996) and have recently been used in experiments to assess their un-
derstanding of physical properties. In one such study, a female crow (Betty) 
spontaneously shaped a hook tool out of a straight wire (Weir et al. 2002). This 
occurred during an experiment designed for different reasons, where subjects 
had to choose a hook tool over a straight one and use it to lift a bucket with a 
food reward, placed inside a vertical clear tube. In this instance, the provided 
hook tool was taken by the male, leading the female to shape her own hook 
from the remaining straight tool; in subsequent trials she (but not the male) 
continued shaping hooks when provided only with straight wire (Weir et al. 
2002). In another study (Bird and Emery 2009), four rooks were � rst given ex-
perience using a hook tool to retrieve a food reward in a similar bucket-lifting 
task, and subsequently they succeeded in choosing a functional hook tool over 
a nonfunctional “hook” tool (with a backwards end). Then, they were provided 
with only a straight wire and spontaneously shaped it into a hook to retrieve 
the food bucket. It is very unlikely that hook shaping in the above studies could 
have been prespeci� ed through  associative  learning or as an innate behavior, 
given that the rooks have not, in fact, been observed to use tools in the wild and 
that the birds showed spontaneous manufacture of hook-shaped tools.

In both studies, the subjects had presumably already encoded the connec-
tion between a hook tool and lifting the bucket, but not the possibility of bend-
ing a straight wire into a hook. Thus, the presentation of the apparatus may 
have elicited a representation of the appropriate hook tool, but it seems to 
us that the course of action leading from a straight wire to a hook required a 
new connection to be made. The fact that the connection is new to the animal 
means that it cannot be prespeci� ed (Phillips et al., this volume). Perhaps, 
even more importantly, the type of coordination needed here (leading to the 
correct solution) is not prespeci� ed either, nor imposed in its entirety by the 
observable properties of the task, as would be true for an associative learning 
task (see above). That is, the task affordances suggest a way of action, but do 
not explicitly specify it. Instead, the subjects must somehow creatively � nd 
the right answer. In other words, a form of dynamic coordination is required 
to solve the task “insightfully,” apparently existing at least in these two  corvid 
species. Interestingly, as Bird and Emery (2009) point out, one de� nition of 
“ insight” states explicitly that it may involve a “sudden adaptive reorganiza-
tion of experience” (Thorpe 1964:110). Claims for insightful behavior have 
been documented in primates and birds before, but in some cases simpler ex-
planations involving the “chaining” of preexisting behaviors, which do not 
seem to require insight, were not excluded (e.g., see the associative account 
of box-stacking in pigeons by Epstein et al. 1984). Nevertheless, this � eld 
appears to hold a promise of providing a good behavioral tool for assessing 
coordinating abilities in different species, and it will thus be very interesting 
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to explore what computational mechanisms are enough to enable the insight 
involved in each case.

Using a Stick to Do a Stone’s Job 

The four rooks in the above study were also trained to insert a stone into a 
clear vertical tube in order to collapse a platform at its bottom, so that a food 
reward placed on the platform will drop (Bird and Emery 2009). In a series of 
transfer tests, Bird and Emery show that the rooks can choose a stone of cor-
rect size for the tube diameter of the tube (both from provided stones and also 
from stones picked from the ground) and orient it correctly when necessary for 
insertion. These transfers suggest that during initial training the rooks encoded 
something about the stone being of correct size compared to the diameter of 
the tube. It is quite remarkable that they encode this property, especially given 
the fact that during initial training all stones were of correct size. However, 
once encoded, a rule such as “compare size of stone to tube diameter” can 
be applied to solve the above-mentioned transfer tests without requiring in-
sight. Another transfer test, however, seems to require a novel connection to 
be made. The rooks were given either a heavy stick, which they could drop 
into the tube to get the reward, or a light stick, which would not collapse the 
platform if dropped. On the � rst trial, all four rooks retained their grip of the 
light stick instead of dropping it, inserted it into the tube and pushed it, pro-
viding the force necessary to collapse the platform and get the food reward. 
This immediate transfer shows that during previous training and testing with 
the stones, the rooks encoded something about the necessity of collapsing the 
platform, which they used. However, this representation of the collapse of the 
platform is not enough to plan how to achieve that with the stick (having only 
been given experience with dropping stones to do so). Success in this transfer 
task thus seems to require a novel, “ insightful” connection between the proper-
ties of the light stick and the way in which it can be used to achieve the collapse 
of the platform, again suggesting a sophisticated form of dynamic coordination 
in this corvid.

Open Questions and Future Directions

In addition to the examples analyzed above, there are other areas of research 
in comparative cognition which may be interesting with respect to the type of 
coordination they require. “ Transitive inference” is the ability to infer a previ-
ously unencountered relation between two objects from their relation to one 
or more other objects (e.g., if A > B and B > C, it can be inferred that A > C). 
Does this inference of unencountered relations require any special coordina-
tion between their representations (through the representations of the relations 
which have been encountered)? Long thought to be uniquely human, evidence 
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is accumulating that nonhumans have various degrees of  transitive inference 
(reviewed in Vasconcelos 2008), making the coordination required of even 
greater interest.

The attribution of mental states (e.g., knowledge, ignorance,  motivation, 
belief) to another individual may also require projecting oneself into another’s 
perspective, but does this require any reorganization of information in a way 
which is not prespeci� ed? Whether nonhumans are able to attribute mental 
states is still a matter of controversy (e.g., Penn and Povinelli 2007), with evi-
dence showing that some nonhuman primates and corvids may have such abili-
ties (e.g., Emery and Clayton 2001; Hare et al. 2000). In any case, it could be 
bene� cial to analyze what computational work is needed for one individual 
to use representations of unobservable states of another, and whether this in-
volved any special form of coordination.

Finally, the ability to “think about one’s own thoughts,” or  metacognition, 
may require some reorganization of the existing data (i.e., to apply a cognitive 
function such as “knowing” on one’s own knowledge). Recently, evidence has 
been reported that Rhesus monkeys choose to “opt-out” and not even be given 
the latter part of a match to sample a test when they do not remember the sam-
ple well, suggesting that they “know when they remember” (Hampton 2001).

Regarding the  convergent  evolution of primate and corvid cognition (and 
possibly of dynamic coordination), questions remain as to how the structurally 
different avian and mammalian brains allow comparable cognitive abilities, 
and whether these structural differences necessarily confer different pathways 
or constraints in the evolution of cognition and that of dynamic coordination.

Our analysis of the coordination between different cognitive functions in a 
few animal cognition studies was a very schematic description. This is mainly 
because little is known about the way in which abstract rules, for example, 
are encoded in an animal’s mind, and which brain functions are involved in 
such computations. Future research into the mechanisms governing these re-
cently discovered cognitive abilities may enable a more detailed description. 
However, perhaps even at this early stage there is a better way to represent the 
coordination required in such behavioral tasks of which we are unaware.

As mentioned above, studies in comparative cognition are usually concerned 
with distinguishing cognitive explanations from simpler explanations such as 
 associative  learning. In addition, many of the studies have been inspired by 
realms of human cognition and many of the current debates are concerned with 
whether or not a certain ability that animals exhibit is comparable with its hu-
man counterpart (for a discussion of the extent to which  episodic-like  memory 
in animals captures the core components of human episodic recall, see, e.g., 
Tulving 2005). As such, these studies might not easily lend themselves to an 
analysis of dynamic coordination of the kind we have attempted here. A more 
productive way to proceed may thus be to design behavioral experiments for 
the purpose of distinguishing between different types of coordination, and spe-
ci� cally for assessing an animal’s capability to reorganize the information it 
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already has in a novel way which can only be created when it is tested. If such 
experiments can be implemented in a diverse selection of species, it could en-
able drawing a phylogenetic tree of coordinating capabilities.
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Introduction

What insights  does comparative biology provide for furthering scienti� c un-
derstanding of the evolution of dynamic coordination? Our discussions cov-
ered three major themes: (a) the fundamental unity in functional aspects of 
neurons, neural circuits, and neural computations across the animal kingdom; 
(b) brain organization –behavior relationships across animal taxa; and (c) the 
need for broadly comparative studies of the relationship of neural structures, 
neural functions, and behavioral coordination. Below we present an overview 
of neural machinery and computations that are shared by all nervous systems 
across the animal kingdom, and the related fact that there really are no “sim-
ple” relationships in coordination between nervous systems and the behavior 
they produce. The simplest relationships seen in living organisms are already 
fairly complex by computational standards. These realizations led us to think 
about ways that brain similarities and differences could be used to produce 
new insights into complex brain–behavior phenomena (including a critical ap-
praisal of the roles of cortical and noncortical structures in mammalian be-
havior), and to think brie�y about how future studies could best exploit com-
parative methods to elucidate better general principles underlying the neural 
mechanisms associated with behavioral coordination. In our view, it is unlikely 
that the intricacies interrelating neural and behavioral coordination are due to 
one particular manifestation (such as neural oscillation or the possession of a 
six-layered cortex). Instead of considering the human cortex to be the standard 
against which all things are measured (and thus something to crow about), 
both broad and focused comparative studies on behavioral similarities and dif-
ferences will be necessary to elucidate the fundamental principles underlying 
dynamic coordination.
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Comparative Approaches to Brain Structure and 
Function: Is Cortex Something to Crow About?

Conversations combining evolution and coordinative phenomena in behav-
ior and the nervous system are intellectually bewildering, because they might 
progress along a diverse number of lines. For example, a common approach for 
evolutionary biologists is to attempt to pinpoint the ultimate reasons underly-
ing selection for behavioral coordinating mechanisms. In contrast, neurosci-
entists often prefer to think about more mechanistic aspects of brain structure 
and function without the need for explicit speci� cation of the evolutionary 
force(s) selecting for particular classes of functionality. For example, this vol-
ume is � lled with attempts to elucidate meaningful connections between co-
ordinative phenomena in the  brain and behavioral/cognitive abilities. In many 
instances, the mammalian cerebral cortex is assumed to subserve many of the 
computations underlying complex behaviors, and it is also assumed that such 
computations are not possible with other neural organizations. In the follow-
ing discussion, we emphasize an evolutionary perspective and the unique and 
powerful insights that can be achieved from a broadly comparative approach 
to the mechanistic neurobehavioral questions at hand. 

A comparative approach can elucidate mechanisms that mediate behavioral 
and neural coordination by revealing broad classes of constraints that sepa-
rate organisms. For example, a particular organism could simply have neural 
machinery that is incompatible with instantiating particular cellular or circuit 
functions, or that is unable to � exibly organize circuits into � eeting, larger-
scale assemblies that are necessary to perform particular kinds of computa-
tions. We � rst consider whether there are any fundamental “ phase transitions” 
seen across groups of organisms in the basic components that build neural 
circuits, and in the kind of computations that these can perform. Similarly, we 
consider whether there are any major transitions in kind in the types of ba-
sic neural building blocks that behaviors are assembled from, for example the 
often-heard distinction between “hardwired” and “ � exible” behaviors.

The Fundamental Unity of the Functional 
Aspects of Neurons, Neural Circuits, and Neural 

Computations across the Animal Kingdom

It is a useful exercise to examine whether different animal groups, which 
people subjectively associate with different levels of behavioral complexity 
(e.g., roundworms, as compared to honeybees, as compared to sparrows, as 
compared to humans), have nervous systems that function in fundamentally 
different ways. Do there appear to be any major phylogenetic transitions in 
the basic building blocks of nervous systems that might limit the kinds of  cell 
assemblies which can be realized, or the kinds of basic computations that can 
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be accomplished? Such building blocks include the structural and functional 
components of cells, their molecular constituents, the types of substances they 
use to communicate, and the kinds of interactions they have.  A quick way of 
obtaining an answer is to survey that part of the animal kingdom without back-
bones—the invertebrates—to see whether human brains contain some basic 
structural or functional feature that the brain of an insect or a mollusc lacks. 

The few invertebrate species that have been studied to date do not do justice 
to the diversity of invertebrates, because there are a few dozen invertebrate 
phyla (e.g., molluscs, arthropods, �atworms, roundworms) compared to only 
one vertebrate phylum (chordates). Some of the invertebrate phyla have enor-
mous numbers of species: there are about one million known (and between 
5–10 million estimated) species of insects, thought to represent 90% of the dif-
fering life forms on Earth, compared to close to 60,000 species of vertebrates 
(The World Conservation Union’s 2007 IUCN Red List of Threatened Species, 
based on summary statistics from 1996–2007). When discussing invertebrates, 
therefore, we talk about a tiny known sample in a pool with enormous diversity. 

To perform evolutionary analyses, one needs to consider the  phylogenetic 
relationships of the organisms under study. Based on current molecular and 
anatomical evidence, there are three major groups of metazoa (Figure 5.1): 
the deuterostomia (to which vertebrates belong), the lophorochrozoa (to which 
annelids, and molluscs, such as the octopus and squid, belong), and ecdysozoa 
(to which the nematodes, insects, and other arthropods belong) (Mitchell et al. 
1988). Several representative subgroups from each of these major groups have 
been intensively studied in neuroscience, such as rodents and birds among ver-
tebrates, annelid worms among lophotrochozoa, and fruit� ies and roundworms 
among ecdysozoa. With this wealth of information it is now becoming possible 
to ask whether there are basic principles underlying nervous systems functions 
across phyla.

To facilitate this exercise, we have de� ned seven broad areas in which to 
compare invertebrate and vertebrate nervous systems, and we have examined 
how invertebrate nervous systems rate in each of these areas: molecular build-
ing blocks (e.g., structural, cell-signaling molecules, ion channels),  neuronal 
geometry, nervous system size/scale, mapping/connectivity relations between 
neurons, local circuit motifs, local computation, and global emergent properties.

Molecular Building Blocks

The explosion of molecular data made available by gene-sequencing studies 
performed on vertebrates and invertebrates has clearly indicated that there are 
no known broad classes of molecules involved in mammalian or other verte-
brate brains that are absent in invertebrate brains. This is true for ligand-gated 
channels, voltage-gated channels, gap junctions, the neurotransmitters,  neuro-
modulators and their receptors used for intercellular communication, as well as 
for the second-messenger pathways used intracellularly to plastically change 
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operational characteristics of cells (some of these same molecules are also 
found in plants). For example, invertebrates have  NMDA channels, inward 
recti� er current channels, and Ca-activated K channels (Bargmann 1998). 
Consequently, these neurons exhibit all of the complex phenomena shown by 
mammalian neurons, including dendritic nonlinearities and intrinsic resonance. 
Some neuromodulator systems involved in learning or “mood” regulation in 
vertebrates, such as dopamine and serotonin, are present in invertebrates and 
appear to be used in behavioral circuits in similar ways (Fiala 2007). 

Some similarities are functional rather than sequence-based. Odorant recep-
tors, for example, show cross-phylum similarities in the diversity of the three-
dimensional structure of the sites on receptor cells that bind odorant molecules, 
even if vertebrates and invertebrates may not employ similar sequences in the 
parts of the proteins that de� ne these binding regions (Benton 2006). In such 
cases, the functional similarity in vertebrate and invertebrate odorant-binding 
mechanisms may be the result of selection for similar functions in vertebrate 
and invertebrate  olfactory receptors (convergent evolution), rather than shared 
ancestry. Vertebrates and insects also use different mechanisms to transduce 
molecular binding of speci� c odorants into neural impulses (secondary mes-
senger systems vs. direct channel gating) (Wicher et al. 2008; Nakagawa and 
Vosshall 2009).

There are also other differences in the deployment of particular mechanisms 
that both vertebrates and invertebrates possess. For example, photoreceptor 
conductances are hyperpolarizing in insects but depolarizing in vertebrates. In 
vertebrates, glutamate is the main excitatory neurotransmitter in the CNS, while 
acetylcholine is the transmitter at the neuromuscular junction. In insects, this re-
lationship is reversed. In both vertebrates and invertebrates, there are consider-
able species differences in the elaboration and functional specialization of class-
es of nervous system molecules. For example, the number of variant forms of 
particular neurotransmitter receptors may differ in the two groups. The NMDA 
receptor has two major forms found in both vertebrates and invertebrates, but 
vertebrates have a component of the receptor (the NR2B subunit) that is not 
found in insects (Ryan et al. 2008; Emes et al. 2008; Ryan and Grant 2009).

So,  the basic molecular components of vertebrate and invertebrate neurons 
appear to be shared and, when this is not the case, similar functions appear to 
have evolved convergently. There are also examples of divergences from this 
general pattern in all groups to meet special circumstances. However, the plac-
es in the nervous system where common molecular components get deployed 
are not necessarily consistent across phyla. 

Neuronal Geometry

Santiago Ramon y Cajal (1911) was  of the opinion that insect brains are to 
vertebrate brains what � ne watches are to grandfather clocks: “the quality of 
the psychic machine does not increase with the zoological hierarchy. It is as if 
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we are attempting to equate the qualities of a great wall clock with those of a 
miniature watch.” However, there exists as wide a diversity of dendritic/axo-
nal geometries and shapes (linear, planar, three-dimensional, sparse to dense) 
among insect neurons as among vertebrate ones. Some invertebrate neurons 
are very strictly polarized with clearly separated input and output � elds, linked 
via a neurite with a spike initiation zone. Others have intermingled pre- and 
postsynaptic sites forming local dendro-dendritic circuits. Some neurons, in-
volved in motor coordination between different segments in arthropods can 
have multiple spike initiation zones (typically one per segment), a feature nev-
er described, to our knowledge, in vertebrates. 

A feature characteristic (though not universal) of most vertebrate neu-
rons—a soma interposed between dendritic and axonal segments—is absent 
in most invertebrate neurons, in which somata are often devoid of synapses. 
Invertebrate neuropil is thus typically devoid of cell bodies, and the  spike ini-
tiation zone is located on a neuritic segment. Whether the incorporation of cell 
bodies within the neuropil seen in vertebrate brains is a requirement for their 
increased growth and/or  lamination (or conversely, a constraint that precludes 
large size increases of invertebrate brains) is not known, but the correlation 
is suggestive. 

Molecular � ngerprinting studies within vertebrates (mammals, birds, rep-
tiles, amphibians, and � sh) and invertebrates (insects, nematodes, and anne-
lids) have revealed that the centralized nervous systems in both groups are 
developmentally controlled by many of the same genes that are expressed in 
speci� c cell types of developing mammalian cortex,  basal ganglia, and spinal 
cord. For example, the layer V cortex-speci� c transcription factor ER81 is also 
found in the forebrain  projection neurons in the arcopallium of birds, and in the 
anterior part of the nervous systems of annelids (Laudet et al. 1999). Annelids 
have differentiating neurogenic zones that express the same molecules that 
have been used as cortical and basal ganglia markers in vertebrates. The  Hox 
genes, which are involved in the control of body segmentation, divide the ner-
vous systems of vertebrates and invertebrates into similar segments (Pearson et 
al. 2005). In spite of some differences in cellular structure between vertebrates 
and invertebrates, the same global structural and molecular principles appear 
to produce comparable cell types across the animal kingdom. 

Brain Size and Scale

Some invertebrates  are minute, such as the parasitic mites of insects, whereas 
others are gigantic, such as the giant squid (up to 14 meters in length). A sense 
of scale can be derived from the following numbers. The brain of Drosophila 
contains about 250,000 neurons, whereas that of a large insect contains about 1 
million. The mushroom body of a cockroach—a structure containing odorant-
processing cells and interneurons and which may be analogous to parts of the 
vertebrate forebrain—contains 300,000 Kenyon cells (greater than the number 
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of pyramidal cells in a rat’s hippocampus). A large arthropod, such as a ten-
year-old horseshoe crab, has tens of millions of neurons in its brain, mostly 
in its mushroom body (Laurent 2002). Cephalopod brains are even larger; the 
brain size of a giant squid is thought to be the largest invertebrate  brain cur-
rently on the planet, but is essentially unknown.

Synapse numbers are not very well characterized, though this is likely to 
change in the near future. Known ranges of convergence on single neurons in 
one species (locust) are between a few (order 10) in some early visual neurons, 
and many hundreds onto Kenyon cell dendrites (Jortner et al. 2007; Turner 
et al. 2008). Divergent synapses are even less well characterized, but known 
examples are between ~1 in the synapse between the lobular giant movement 
detector and the the descending contralateral movement detector of the locust 
(Rind 1984), and ~20,000 in locust antennal lobe  projection neuron–Kenyon 
cell populations (Jortner et al. 2007).

 Conduction velocity is one feature in which vertebrates were thought to 
have come up with an evolutionary novelty: the myelin sheaths that enclose 
axons. Whereas invertebrate groups do not appear to have a myelin basic pro-
tein—a building block often used in vertebrate preparations to detect the pres-
ence of myelin—crustaceans, shrimps, annelids, and copepods do have sheaths 
that enclose axons in similar ways and which function physiologically in the 
same way as myelin (Hartline and Colman 2007).

Mapping Relations between Neurons

Topographic neural maps exist in insects that are comparable to ones found in 
mammals. Some examples are the somatotopic map of the wind-sensitive cer-
cal sensory system in crickets and cockroaches (Jacobs and Theunissen 1996), 
functionally similar to the dermatotopic somatosensory maps in the S1/layer 
IV of rodent somatosensory cortex; the tonotopic map in the auditory system 
of bush crickets (Imaizumi and Pollack 1999), which is similar to the tonotopic 
auditory maps of mammalian auditory pathways; and the nontopographic pro-
jections from the antennal lobe neurons to the mushroom bodies of the locust’s 
“generalist” olfactory system, similar to the ones seen in the nonpheromonal 
portion of the  olfactory system of mammals (Jortner et al. 2007). Finally, one 
�nds regions in which there is clear connectional structure (e.g., the olfac-
tory receptor cell projections to insect antennal lobes or to vertebrate olfactory 
bulbs) but in which the underlying rules of the mapping are equally unknown.

While it is often thought that the connectivity of invertebrate brains is rig-
idly speci�ed genetically, earlier studies on genetically identical water� eas 
and grasshoppers indicate that this was not always the case (Macagno et al. 
1973; Goodman 1978). More recent data indicate that genetically identi� -
able Drosophila Kenyon cells cannot be identi�ed on the basis of their tuning 
to odors, whereas the neurons presynaptic to them can (Murthy et al. 2008). 
Similarly, using genetic and developmental manipulations, it has been shown 
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that the number of morphological local interneuron types in the antennal lobes 
of several thousands of individual � ies exceeds the number of local interneu-
ron types in any one antennal lobe (Liqun Luo, pers. comm.). These pieces of 
evidence suggest that interindividual variations of internal connectivity, simi-
lar in kind to those seen in vertebrate brains, also exist in the brains of insects. 
Experience-dependent modulation of the strength of local connections is well-
known across a wide variety of invertebrate systems (Roberts and Glanzmann 
2003; Cassenaer and Laurent 2007), so vertebrate and insect brains appear to 
share similar basic principles for establishing and changing connectivity.

However, there are three connectional features known in vertebrates that 
have not so far been found in invertebrates: (a) sensory and motor maps that 
are registered with each other in an interconnected way, such as those seen in 
the mammalian or avian superior colliculus; (b) massive feedback loops such 
as those seen between the primary cortices and  thalamus in mammalian brains; 
and (c) nesting of sequences of modular local circuits, such as those seen in 
mammalian hippocampal circuits.

Local Circuit Motifs

There are no apparent differences between invertebrate and vertebrate circuits 
in   local circuit motifs. Both vertebrate and invertebrate circuits can include: 
local or global–local inhibition, reciprocal inhibition, feedforward inhibition, 
 lateral inhibition, lateral excitation, focal convergence (olfactory glomeruli), 
wide divergence (50%), and all-to-all negative feedback (Laurent 1999).

Local Computation or Operations

There are no major differences between vertebrate and invertebrate nervous 
systems, of which we are aware, for local computations and operations. Insect 
brain systems exhibit shunting inhibition, dendritic multiplication, infra- and 
supra-linear summation, plastic changes mediated via synaptic Hebbian rules, 
Elementary Motion Detection and directional selectivity, and gating by effer-
ence copies (Poulet and Hedwig 2002, 2006; Gabbiani et al. 2005; Cassenaer 
and Laurent 2007).

Global Emergent Properties

Invertebrate nervous systems exhibit  the functional recon� guration of network 
output (frequency and phase) in response to  neuromodulators (e.g., crustacean 
stomatogastric system; Marder and Bucher 2007), the adaptive regularization 
of synchronized oscillatory output by synaptic, timing-dependent plasticity 
(e.g., locust  olfactory system; Cassenaer and Laurent 2007), and various forms 
of oscillatory  synchronization at frequencies from < 1 Hz (Limax) to 20–30 
Hz (Schistocerca) (Laurent and Davidowitz 1994; Gelperin and Tank 1990). 
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The frequency range of oscillations discovered thus far is narrower than in 
vertebrates, and high frequency bouts nested within lower frequency ones have 
not yet been described.

The overall conclusion of these considerations is that there is a common 
mechanistic toolkit at multiple levels, from the molecules that participate in 
neural structure and function, to properties of single cells, to properties of  cell 
assemblies, shared by all animals with nervous systems. While species differ-
ences can exist at many of these levels, the overwhelming impression is that 
the mechanisms underlying neural computations and the nature of those com-
putations do not undergo dramatic phylogenetic shifts.

The reasons for such conservation of neural computational functions across 
phyla and ecological niches may be found in boundary constraints that apply 
to the evolution of neural computation. As noted by Herbert Simon (1973): 
“…nature is organized in levels, and the pattern at each level is most clearly 
discerned by abstracting from the detail of the levels far below.…nature is or-
ganized in levels because hierarchical structures—systems of Chinese boxes— 
provide the most viable form for any system of even moderate complexity” (cf. 
the discussion of hierarchical abstraction in Edelman 2008a:30–31). 

The implication of Simon’s insight for understanding neural systems is that 
homogeneously interconnected (i.e., unstructured) networks of basic units 
would not scale up well for all but the simplest tasks, placing them at a dis-
advantage relative to networks that embody hierarchical abstraction through 
the existence of multiple levels of organization and multiple functional units 
at each level (Edelman 2003). This computational constraint should be kept 
in mind as we attempt to understand the neural basis of complex coordinated 
behaviors that exhibit serial order (Lashley 1951). Indeed, computational con-
siderations suggest that the most complex types of these behaviors (including 
language), which require dynamic coordination across many levels of abstrac-
tion, timescales, and individuals, would be unlearnable and unsustainable in 
the absence of a properly structured and presumably dynamically coordinated 
computational substrate (neural or arti� cial).

Computational considerations also offer a solution to the usual puzzle of 
explaining, without resorting to conceptual “skyhooks” (Dennett 1995), how 
complex functions, and the correspondingly complex neural  architectures that 
support them, can evolve without disrupting the existing mechanisms. The so-
lution arises from the concept of  subsumption architecture: an approach to 
incremental and nondisruptive augmentation of function proposed by Brooks 
(1991) and developed by him and others in the context of evolutionary robot-
ics (see Sloman and Chrisley 2005). In a subsumption architecture, modi� ca-
tions to an existing circuit are initially introduced as modulatory add-ons that 
do not disrupt its functioning; subsequent evolution may cause the original 
circuit to be eventually completely replaced by the novel components acting 
in concert, or its encapsulation and persistence as a fall-back mechanism that 
continues to provide basic functionality (e.g., the decorticate cat, which will be 
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discussed later). Clearly, smooth functioning of subsumption-based neural sys-
tems requires dynamic coordination among their components at all levels. In 
this process, evolutionarily newer organizational entities may exert dispropor-
tionate amounts of control over preexisting entities; an example of the kind of 
downward causation (Thompson and Varela 2001; Edelman 2008b) that may 
arise in such cases has been aptly described by Shakespeare near the end of 
Hamlet’s famous soliloquy:

Thus conscience does make cowards of us all,
And thus the native hue of resolution

Is sicklied o’er with the pale cast of thought,
And enterprise of great pitch and moment
With this regard their currents turn awry

And lose the name of action.

Brain Similarities and Differences Can Be Used to 
Gain Novel and Fundamental Insights into 

Complex Brain–Behavior Relationships 

All Levels of Coordination between the Nervous System and Behavior 
Are “Complex” though Some May Be More “Complex” than Others

The idea of a common mechanistic and computational neuronal toolkit that is 
applicable across animal species is fundamentally antagonistic to notions that 
there is some kind of scala naturae, according to which species with “simpler” 
nervous systems exhibit “simple” forms of behavior, while it is only species 
that share particular brain features with humans (such as the possession of 
large swaths of six-layered cortex in their forebrains) that are capable of show-
ing “complex” behavior. 

With few exceptions, every perceptual/cognitive/motor act in which an or-
ganism engages involves problems of coordination and control which must 
be adapted to the immediate conditions and circumstances that exist when the 
act is performed. To do this, both vertebrates and invertebrates appear to have 
organized local circuits that are wired together at relatively early stages of de-
velopment (typically in the embryo) called  central pattern generators (CPGs). 
These circuits were originally discovered in the context of neural work relat-
ing the organization of circuits in the vertebrate spinal cord to locomotion, and 
such locomotory circuits have broad similarities in organization and function 
in species ranging from lampreys to mammals (Grillner 2003, 2006). Such 
circuits exist in both the motor and sensory domains, and may exist in more 
abstract domains of function not easily characterized as either sensory or mo-
tor. A good example of a fairly complex, nonspinal implementation of these 
circuits and the fundamental role that comparative work can play in elucidating 
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them was shown by experiments using developmental manipulations of the 
species identity of brain cells in avian embryos.

Balaban and collaborators used early transplants of neural tube tissue be-
tween quail and chicken embryos to examine species differences in neural cir-
cuits associated with “crowing,” a vocalization that male chickens and quails 
use in the context of mate attraction as well as agonistic interactions (the chick-
en form is the well-known rooster “cock-a-doodle-doo” vocalization). Unlike 
the functionally similar “song” vocalizations of songbirds, which will be dis-
cussed below, “crowing” is a vocal motor sequence that does not depend on 
imitative   learning. A songbird (or a human) who is deaf from an early age will 
later sing a song (or produce speech) that is not generally recognizable, while 
a congenitally deaf chicken will sing a song that may have subtle de� ciencies 
but is nevertheless unmistakably recognizable. By transplanting both large and 
small sets of adjacent cells along the entire brain primordium between chick-
ens and quails at a time in development when brain regions have already been 
determined, but neurons have not yet started to differentiate, Balaban et al. 
(1988) found a midbrain region that transferred the acoustic characteristics of 
the vocalization between species but left the head movements used to deliver 
it unaltered. Balaban (1997) then found a  brainstem region that transferred 
the head movements used to deliver the vocalization between species but not 
the acoustic characteristics of the sound. The latter transplants also revealed a 
rostrocaudal organization in the circuits mediating the sequence of head move-
ments delivered with the crowing vocalization. Transplants that differed in 
their rostrocaudal extent reliably transferred different temporal portions of the 
head movement sequence of the donor species. These transplants had no effect 
on the kinematic characteristics of other head movements that chickens and 
quail perform identically (such as yawning), and transplanted animals showed 
perfect integration between head movement and vocal aspects of the behavior. 
In operations conducted between two chickens, animals with similar trans-
plants showed normal chicken behavior.

Although the concept of a CPG may seem to belong exclusively in the mo-
tor domain, it does have a close counterpart in perception: the classical  re-
ceptive � eld (RF). Computationally, the RF is simply a template: a � lter that 
responds with a certain degree of selectivity to stimuli that appear within a 
region of the input space. In mammalian vision, for instance, the RFs of neu-
rons in the lateral geniculate nucleus of the  thalamus have a circular center-
surround organization in the visual � eld whose response pro� le is well ap-
proximated by a difference of Gaussians, which is to say that they respond 
well to spots of light against a dark background or vice versa (depending on the 
neuron). Feedforward “recognizers” for progressively more complex shapes 
can be constructed from RF-like building blocks (Edelman 1999); these, how-
ever, need to be coordinated in some fashion if more sophisticated function, 
such as compositional treatment of shapes and scenes, is required (Edelman 
and Intrator 2003).
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The existence of CPG-like circuits involved in  perception was shown by 
Long et al. (2001), who found a region at the junction between the midbrain 
and thalamus that transferred preferential response to parental warning calls 
between the two species. Under normal circumstances, chicken and quail 
chicks have the ability to walk and feed themselves within a short time after 
hatching; in the presence of danger, there is an acoustically distinctive vocal-
ization that parent birds give to call the young. This vocalization is acousti-
cally different in chickens and quail, and young animals hatched in the absence 
of prior exposure to these calls, and given equal experience with them in a 
choice situation, show a statistically signi� cant preference for approaching the 
calls of their own species (Park and Balaban 1991). Animals with the effective 
transplant produced individuals who had signi� cant statistical preferences for 
approaching the call of the donor species, and the strength of their prefer-
ence was signi� cantly stronger than that of unoperated donor individuals (the 
quail donor species develops at a faster rate than the host chicken species). 
The vocalizations of transplanted animals were not affected by the transplants, 
precluding an indirect effect of changes to the individual’s own vocalizations 
as an explanation for the effect on auditory-mediated approach preferences. 

While many of the early scientists who discovered CPGs emphasized their 
stereotypy, CPGs must be modulated to adapt � exibly to the changing circum-
stances that are part of the everyday lives of all organisms. For example, in the 
case of chickens, young animals appear to learn the auditory characteristics of 
the danger calls of their particular parents rapidly (Kent 1987, 1989). If they 
suddenly � nd themselves in the care of new parents, they have the capability 
to “relearn” their responses to the calls of the new set of parents. In the case of 
locomotory circuits, they must � exibly regulate their parameters with feedback 
from the environment to compensate for path obstructions, changes in angle of 
the ground surface, and other behavioral acts that an organism may be engag-
ing in during locomotion.

This interplay between circuit elements that attain their functional char-
acteristics early in development (like CPGs) and other circuit elements that 
recruit them � exibly into higher-order sequences of behavior and mediate 
plastic changes within them is a feature shared by all behaviors in all organ-
isms. There is no behavior that is truly “hardwired,” and no behavior that is 
completely  � exible. Locomotion in insects and � sh, the detection of particular 
objects in visual scenes by cats and primates, and people’s participation in con-
versations all utilize a complex interplay between CPGs and other circuits that 
are � exibly mediated. The neural difference between the singing behavior of a 
bird that learns its song by imitation (like a cardinal) and one that does not (like 
a chicken) resides in differences in the interaction of neural circuits that are 
recruited during these tasks (Jarvis 2004). These species differences depend 
on differences in connectivity patterns laid down during embryonic develop-
ment. The net result is that songbird brains during the learning period bring 
together information about a desired song form, together with information on 
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the vocalization that they have just produced, whereas chicken brains do not. 
Both species � exibly use a combination of sensory, motor, and other CPGs 
together with other circuits to perform their respective behaviors.

Learning General Principles from Different Brain 
Organizations That Solve Similar Problems

A major advantage of comparative studies using species differences is to an-
alyze how different brain organizations solve similar problems. With regard 
to problems of behavioral coordination, social communication is perhaps the 
quintessential example of a widely spread complex, coordinated activity. Two 
major vertebrate taxa—birds and mammals—have achieved considerable so-
phistication in their use of vocal communication, and in the means by which 
vocal behavior is acquired.

Oscine song birds, like humans, need exposure to their species vocaliza-
tions during development to produce normal vocal social signals in adulthood 
(Doupe and Kuhl 1999). Both oscine songs and human speech are vocal ex-
amples of imitation, a complex type of learning which is considered important 
for human social cognitive abilities. Although  vocal imitation ability is rare, 
evidence for nonvocal imitation is starting to accumulate in many taxa (re-
viewed in Huber et al. 2009; Zentall 2004). For a behavior to be considered an 
imitation, an organism needs to perform a motor output corresponding to the 
sensory input of another organism’s behavior that it has observed prior to pro-
ducing the behavior. This is known as “the  correspondence problem”(reviewed 
in Heyes 2009). The discovery of so-called “ mirror” neurons, which are ac-
tive when an action is perceived as well as when it is performed (Ferrari et al. 
2009; Gallese et al. 1996) or in songbirds when a song is heard versus sung 
(Prather et al. 2008), suggests a mechanism by which the brain solves this 
problem (Ferrari et al. 2009). However, the existence of such neurons in the 
adult brain does not explain how the “right connections” came to be made in 
the �rst place. For example, connections between the visual input of a grasping 
movement and the motor output of grasping require an ontogenetic explana-
tion. Such connections can either be speci�ed during brain development and 
preexist prior to their use, as in the CPG examples described above, or could 
be built during ontogeny by the co-occurrence of the corresponding output 
and input when the individual itself performs a behavior. In this latter case, the 
formation of the “right” connections between these two systems would depend 
on mechanisms of neural plasticity that would need to be deployed properly in 
these pathways to make such learning possible (the hypothesis of associated 
sequence learning, and the evidence for it, are reviewed in Catmur et al. 2009; 
Heyes 2001).

As we have discussed, the computational problem of correspondence needs 
to be solved to imitate. However, it is also important to distinguish between 
imitation and other types of  social  learning which do not require overcoming 
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the  correspondence problem. In many cases, the probability of performing a 
certain behavior, or the speed of learning a new behavior, is increased by ob-
serving another individual (a “demonstrator”) perform the behavior. Instead of 
imitation, however, this can be attributed to observation increasing the prob-
ability that the subject will engage in similar behavior that it already has in its 
repertoire (“social facilitation,” e.g., Fiorito and Scotto 1992), or will act to 
achieve the same goal achieved by the demonstrator (“emulation”). Note we 
are not at all dismissing the complexity of these other forms of  social  learning, 
but are simply pointing out the fact that they pose different computational chal-
lenges and that they need to be distinguished before anything can be said about 
what it is that the animal’s nervous system needs to compute.

Mammals and Birds: Similar Levels of Behavioral Complexity 
Despite Major Differences in Brain Organization

Comparing Avian and Mammalian Brain Organization

One of the better understood comparative analyses involves brain compari-
sons between birds and mammals. This analysis has challenged and forced 
a revision to the classical view of  brain evolution and the supremacy of the 
mammalian cortex (Reiner et al. 2004; Jarvis et al. 2005). The classical view 
is that the  avian cerebrum, along with that of other vertebrates, evolved in pro-
gressive dorsal-to-ventral stages from so-called primitive to advanced species 
(Edinger 1908). The current view holds that the avian cerebrum, and those of 
other vertebrates, was inherited as a package consisting of pallial, striatal, and 
pallidal domains, which together function in perceiving and producing com-
plex behaviors (Jarvis et al. 2005; see also Figure 5.2). This current view is as-
sociated with a new brain terminology for birds developed by an international 
consortium of neuroscientists.

According to the classical view, evolution was unilinear and progressive, 
from �sh to amphibians, to reptiles, to birds and mammals, to primates, and 
�nally to humans, ascending from “lower” to “higher” intelligence in a chron-
ological series. Proponents of this view believed that the brains of extant verte-
brates retained ancestral structures, and thus the origin of speci�c human brain 
subdivisions could be traced back in time by examining the brains of extant 
nonhuman vertebrates. They also believed that evolution occurred in progres-
sive stages of increasing complexity and size, and culminated with the human 
cerebrum. Thus Edinger (1908) argued that there was �rst the old brain—the 
paleoencephalon (also called the  basal ganglia or subpallium), which con-
trolled instinctive behaviors—followed by the addition of a new brain—the 
neoencephalon (also called the pallium or mantle at the top), which controlled 
learned and intelligent behaviors. To support this view, he and his students 
named the telencephalic subdivisions with the pre�xes “paleo” (oldest), “ar-
chi” (archaic), and “neo” (new) to designate the presumed relative order of 
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evolutionary appearance of that subdivision. To these pre� xes, the root word 
“striatum” was added for the presumed paleoencephalic subdivisions and “pal-
lium” (meaning mantle), or “cortex,” for the presumed  neoencephalic subdivi-
sions. Fish were thought to have only “paleostriatum” (old striatum) and paleo-
cortex was said to be the antecedent of the human globus pallidus. Amphibians 
were said then to evolve an archistriatum (i.e., amygdala) above the paleostria-
tum and an archicortex, the antecedant of the human hippocampus. Reptiles 
were said to evolve a neostriatum, which they passed onto birds, who then 
evolved a hyperstriatum. Birds and reptiles were not thought to “advance” the 
paleocortex and archicortex. Instead, mammals were thought to have evolved 
from the paleocortex and/or archicortex, a “neocortex.” The archicortex and 
paleocortex with their 2–3 cell layers were assumed to be primitive; the neo-
cortex with its six layers was assumed to be more recently evolved and a sub-
strate for more sophisticated behavior. The avian cerebrum was thought to 
consist primarily of basal ganglia territories, and these were thought to control 
mostly primitive behaviors. This classical view was codi� ed in the major com-
parative neuroanatomy text by Ariëns-Kappers, Huber, and Crosby (1936) and 
became pervasive throughout neuroscience. However, this view is now known 
to be incorrect. 

Based on molecular, cellular, anatomical, electrophysiological, develop-
mental, lesion, and behavioral evidence, an international consortium of spe-
cialists in avian, mammalian, reptilian, and � sh neurobiology published a new 
nomenclature that represents the current understanding of avian telencephalic 
organization and homologies with mammals and other vertebrates (Jarvis et 
al. 2005; Reiner et al. 2004). They concluded that the  telencephalon is orga-
nized into three main, developmentally distinct domains that are homologous 
in � sh, amphibians, reptiles, birds, and mammals: pallial, striatal, and pallidal 
domains. It is hypothesized that the telencephalon of early � shes possessed all 
three domains, which were then inherited as a package by later vertebrates, 
including birds, and independently modi� ed by them. The consortium elimi-
nated all phylogeny-based pre� xes (paleo-, archi-, and neo-) that erroneously 
implied the relative age of each subdivision. 

They also concluded that the organization of the true  basal ganglia among 
vertebrates (i.e., distinct nuclear striatal and pallidal domains) is quite con-
served. Some key similarities between vertebrates, best studied in birds and 
mammals, include a high enrichment of dopaminergic axon terminals in the 
striatum that originate from a homologous substantia nigra pars compacta and 
ventral tegmental area neurons of the midbrain. Both avian and mammalian 
striatum contain two major classes of spiny neuron types: those with the neu-
ropeptide substance P (SP) and those with the neuropeptide enkephalin (ENK), 
which project to two different neuron populations in the pallidum. In both 
birds and mammals, the SP neurons seem to be involved in promoting planned 
movement, while the ENK neurons seem to be involved in inhibiting unwanted 
movements. Both the avian and mammalian striatum participate not only in 
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instinctive behavior and movement, but also in motor learning. Developmental 
studies indicate that the avian and mammalian subpallium consists of two sep-
arate histogenetic zones that express different sets of transcription factors: a 
dorsal zone that corresponds to the lateral ganglionic eminence and that selec-
tively expresses the transcription factors Dlx1 and Dlx2 but not Nkx2.1, and 
a ventral zone that corresponds to the medial ganglionic eminence and selec-
tively expresses all three transcription factors. The lateral ganglionic eminence 
gives rise to the striatum; the medial ganglionic eminence gives rise to the 
pallidum. Similar striatal and pallidal territories have been found in reptiles.

In contrast, the organization of vertebrate pallial domains differs to a greater 
degree. Like the striatum, the avian and reptilian pallium has a nuclear type of 
organization. The avian hyperpallium, however, possesses a unique organiza-
tion so far found only in birds; its dorsal surface consists of semilayered subdi-
visions and might have evolved more recently than the mammalian six-layered 
cortex, since birds evolved well after mammals (by ~50–100 million years) 
(Jarvis et al. 2005). The six-layered cortex is a pallial organization unique to 
mammals. As all major groups of living mammals (monotremes, marsupials, 
and placentals) have a six-layered cortex, it was presumably inherited from 
their common  therapsid ancestor over 200 million years ago. As all nonmam-
malian therapsids are now extinct, it is dif� cult to trace the evolutionary histo-
ry of mammalian telencephalic organization from stem amniotes to mammals: 
layered, nuclear, or otherwise. Thus, the reptilian nuclear pallial organization 
cannot be assumed to represent the ancestral condition for mammals, as it is 
for birds. 

Comparing Avian and Mammalian Cognitive Behaviors

Based  on the modern view, the adult avian pallium, as in mammals, comprises 
~75% of the telencephalic volume. This realization of a relatively large and 
well-developed avian pallium that processes information in a similar manner 
to mammalian sensory and motor cortices may help to explain some of the 
cognitive abilities of birds. Recent studies show that some bird species may 
have behavioral complexity on a par with nonhuman primates. Some of the 
best examples come from studies of physical cognition, where the classical 
trap-tube test has been used both with primates and birds (reviewed in Martin-
Ordas et al. 2008; see also Grodzinski and Clayton, this volume). Many pri-
mate and other species have been trained to use a tool to push a piece of food 
placed in a transparent tube away from a trap, but subsequently failed to show 
an understanding of the properties of the trap as they continued to do so when 
the tube was inverted; the trap became ineffective (Martin-Ordas et al. 2008). 
In fact, the �rst nonhuman species to demonstrate such an understanding in 
modi�ed versions of the trap-tube design are two species of birds: rooks (Seed 
et al. 2006) and New Caledonian crows (Taylor et al. 2009), recently joined 
by chimpanzees (Seed, Emery et al. 2009; see also Grodzinski and Clayton, 
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this volume). The striking abilities of tool-using New Caledonian crows (Weir 
et al. 2002) and nontool-using rooks (Bird and Emery 2009) to manufacture, 
manipulate, and use tools in novel ways suggests some understanding of the 
physical properties of the tasks at hand, the likes of which are yet to be shown 
in other nonhumans. In another � eld of comparative cognition research, social 
cognition,  food-caching  corvids have attracted recent attention. When these 
birds try to steal each others’ caches, as well as when they apply a number of 
cache-protection strategies to avoid being pilfered, they are most sensitive to 
their competitors’ location and previous knowledge (Bugnyar and Heinrich 
2005; Emery and Clayton 2001). This suggests a sort of “ theory of mind” com-
parable  to that previously suggested in chimpanzees (Hare et al. 2001). The 
recent developments in the � eld of comparative cognition also include stud-
ies showing bird  episodic-like  memory (reviewed in Grodzinski and Clayton, 
this volume) and  transitive inference (Vasconcelos 2008). Other work has also 
shown that pigeons can memorize up to 725 different visual patterns, learn to 
discriminate categorically objects as “human-made” versus “natural,” discrim-
inate cubistic and impressionistic styles of painting, communicate using visual 
symbols, rank patterns using transitive inferential logic, and occasionally “lie” 
(reviewed in Jarvis et al. 2005). Together, all of these studies point out that the 
behavioral complexity of some bird species is comparable with that of the most 
behaviorally advanced nonhuman primates.

Some bird species even possess traits found in humans and not in nonhu-
man primates. The most notable is the rare skill of  vocal imitation, or more 
broadly  vocal  learning. Not only do oscine songbirds have this trait, but par-
rots and hummingbirds do as well. This trait is a critical substrate in humans 
for spoken language and with the exceptions of cetaceans, bats, elephants, and 
possibly sea lions, it has not been found in any other mammal (Jarvis 2004; 
Janik and Slater 2000). Parrots, in addition, can learn human words and use 
them to communicate reciprocally with humans. African gray parrots, in par-
ticular, can use human words in numerical and relational concepts, abilities 
once thought unique to humans (Pepperberg 2006).  

In general, these cognitive functions include important contributions from 
the  telencephalon, including  the six-layered cortex in mammals  and the nu-
clear pallial areas in birds. The mammalian six-layered cortical architecture 
does not appear, therefore, to be the only neuroarchitectural solution for the 
generation of complex cognitive behaviors. Pallial-cortical folding is also not 
required. Birds’ brains do not exhibit the complex pattern of gyral and sulcal 
folds in their pallia that mammals do; among mammals, such folding is more 
related to absolute  brain size than it is to behavioral complexity.

The best-studied comparative circuit example is the vocal learning/speech 
brain pathways in birds and humans (reviewed in Jarvis 2004). The major 
groups of vocal-learning birds are distantly related to each other and seem to 
have evolved similar solutions, although not identical solutions, as humans for 
the generation of imitative vocal learning behavior. Vocal learning and vocal 



76 E. Balaban et al. 

nonlearning birds and mammals (i.e., nonhuman primates and chickens) have 
very similar auditory pathways to the  telencephalon, used for complex audito-
ry processing and  auditory  learning. Thus, this is not a rare trait. However, only 
vocal learners (songbirds, parrots, hummingbirds, and humans) have brain re-
gions in their cerebrums (pallium and striatum with pallidal cells) that control 
the acoustic structure and syntax of their vocalizations. These systems in birds 
consist of seven comparable vocal brain nuclei segregated into two pathways: 
a posterior vocal motor pathway responsible for production of learned song 
and calls (determined only in songbirds and parrots) and anterior nuclei (con-
nectivity examined only in songbirds and parrots), which are part of an anterior 
vocal pathway responsible for  vocal imitation and modi� cation (Figure 5.2). 

(c) Songbird brain subdivisions

(a) Songbird brain

Figure 5.2 Avian and mammalian brain relationships. (a) Side view of a songbird 
(zebra � nch) and (b) human brain to represent avian and mammalian species. The song-
bird cerebrum covers the thalamus, whereas the human cerebrum covers the thalamus 
and midbrain. Inset (left) next to the human brain is the zebra � nch brain drawn to the 
same scale. Sagittal view of brain subdivisions according to the modern understand-
ing of (c) avian and (d) mammalian brain relationships (Reiner et al. 2004; Jarvis et 
al. 2005). Solid white lines are lamina, which are cell-sparse zones separating brain 
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This motor pathway is similar to descending motor pathways in mammals, and 
the anterior pathway is similar to cortical- basal-ganglia-thalamic loops. These 
two pathways have nuclei that are functionally analogous to human cortical, 
striatal, and thalamic regions required for speech acquistion and production 
(Jarvis 2004).

Evolution of Brain Pathways for Complex Traits

How might a complex trait like vocal learning have independently evolved a 
similar circuit diagram in birds and mammals? Recent studies have suggested 

(b) Human brain

(d) Human brain subdivisions

subdivisions. Large white areas in the human cerebrum are axon pathways called  white 
matter. Dashed white lines separate primary sensory neuron populations from adjacent 
regions. The avian pallium consists of large nuclear regions, whereas the human is 
layered. Both are involved in vocal learning. The song learning system for the songbird 
brain is shown. Black arrows, the posterior vocal pathway; white arrows, the anterior 
vocal pathway; dashed arrows, connectivity between the two pathways. Figure based 
on (Jarvis et al. 2005; Reiner et al. 2004).
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that the telencephalic vocal nuclei of vocal learning birds are embedded within 
a larger brain system that is active during the production of limb and body 
movements (Feenders et al. 2008). Likewise, in humans, the unique “spoken 
language” brain areas not found in nonhuman primates are either embedded 
within, or adjacent to, motor-learning brain areas found in nonhuman primates 
(reviewed in Jarvis et al. 2005; Feenders et al. 2008). These and related � nd-
ings have led to a “motor” theory for the origin of vocal learning. The basic 
idea is that a preexisting motor system in a vocal nonlearner ancestor is orga-
nized as two sub-pathways: an anterior premotor pathway that forms a pallial-
basal-ganglia-thalamic-pallial loop and a posterior motor pathway that sends 
descending projections to  brainstem and spinal cord premotor and �-motor 
neurons. Subsequently, a mutational event or events caused  projections of de-
scending pallial-spinal/cortico-spinal neurons, which normally synapse onto 
nonvocal motor neurons, to synapse instead onto vocal motor neurons in vo-
cal learners. Thereafter, cerebral vocal brain regions developed out of adja-
cent motor brain regions using the preexisting connectivity and genes. Such 
a mutational event would be expected to occur in genes that regulate  synaptic 
 connectivity.

According to this hypothesis, the vocal learning pathways in birds are anal-
ogous to those in humans, in that they are newly evolved neural systems per-
forming complex computations for learned vocal communication. They are, 
however, homologous in that they share a deep homology with premotor and 
motor neural circuits that may have existed before the split of birds and mam-
mals over 300 million years ago. This type of brain pathway evolution with 
shared mechanisms of a deep past is not only restricted to vocal learning, but 
can apply across multiple traits that require dynamic coordination. 

Reconsidering How Different Forebrain Regions Apportion Their Labors

The six-layered mammalian  neocortex is often assumed to control practically 
all aspects of behavior, from the simplest joint movement to the most complex 
aspects of cognition. Classic lesion studies from several decades ago teach us, 
however, that subcortical forebrain structures are able to handle many aspects 
of complex, goal-directed behaviors. For instance, Bjunsten et al. (1976) stud-
ied cats whose cortex was removed some weeks after birth (leaving all other 
parts of the brain intact), and who were able to move around in an explor-
atory way, become hungry, search for food, and eat. They could solve tasks 
in a T-maze and �nd their way out of a complex maze (Sten Grillner and Ulf 
Norrsell, per. comm.). They reacted emotionally, could successfully attack and 
drive normal cats away, and went through periods of sleep as well as display-
ing other aspects of relatively normal circadian rhythms. They were thus able 
to perform most, if not all, aspects of the standard goal-directed motor rep-
ertoire that cats typically show in a constrained laboratory environment, and 
their movements were well adapted to this environment. This clearly suggests 



Evolution of Dynamic Coordination 79

that the subcortical infrastructure of the mammalian brain is capable of sub-
serving a higher level of behavioral function than is generally assumed. These 
old observations were unfortunately not accompanied by precise quantitative 
studies of the “cognitive de� cits” which inevitably will occur in animals with-
out a cortex. We believe that specifying the unique contributions of cortex to 
behavior is an extremely important line of research using modern techniques 
for the quantitative study of behavior, as well as histochemical and imaging 
analyses to study the progression of the structural and biochemical effects of 
the lesions over time and their correlations with behavioral effects.

Subcortical forebrain structures, in particular the  basal ganglia, are critical 
for maintaining the goal-directed aspect of motor behavior after the neocor-
tical lesions. How could this come about? The striatum, the input level of 
the basal ganglia, receives a prominent topographic input from nearly all 
of cortex (making up about 55% of its inputs); it receives the other 45% of 
its inputs from the  thalamus (Doig et al. 2009; J. P. Bolam, pers. comm.). 
Part of the thalamic input is sent to both cortex and striatum. Devoid of 
the cortical input to the striatum (after lesions), it will have to rely entirely 
on the direct input it receives from the thalamus. Although a fairly detailed 
knowledge is available on cell types, synaptic interaction, synaptic markers, 
dopamine innervation, and membrane properties, we do not yet understand 
the detailed mode of operation of the striatal microcircuitry that most likely 
plays a prominent role in determining which motor or cognitive programs 
are selected at any given instant. The striatum becomes severely incapaci-
tated after dopamine denervation as in Parkinson’s disease, which affects all 
aspects of action, motor and cognitive coordination. The output side of the 
basal ganglia is more well de� ned, and it contains subpopulations of spon-
taneously active GABAergic neurons which, at rest, are thought to keep the 
different  brainstem motor centers under tonic inhibition (in addition to the 
thalamocortical projections). There are different subpopulations that control 
not only saccadic eye movements but also a variety of other motor centers 
(e.g., those that control locomotion, posture, chewing). The subcortical fore-
brain structures are required for the goal-directed aspect, whereas brainstem 
animals can be made to coordinate the different motor acts (e.g., walking, 
chewing, eye movements, or pecking), but not in the context of goal-directed 
adaptive behavior.

In summary, although a lot more work needs to done, the comparative 
work emphasized in this discussion shows that the opportunity to study 
analogous behavioral systems, which vary considerably in their complex-
ity across taxa, is of great theoretical and practical importance. Such stud-
ies cannot only suggest which neural mechanisms and computations co-
vary with behavioral complexity, but will also give us a better quantitative 
grounding for relating circuit complexity, computational complexity and 
behavior.
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Functions That Appear to Be Solved in Similar 
Ways: Comparisons across Diverse Taxa

Although the emphasis in this section has been laid on comparative work ex-
amining differences, we thought it was important to point out the future prom-
ise of work examining how similar structures can be put to a variety of uses. 
One example could be provided by the glomerulus, a neural structure that is 
common to both invertebrate and vertebrate  olfaction, and which also has a 
very high degree of correspondence in the � rst-order computations it carries 
out despite evidence that it  convergently evolved in these separate taxa. We 
believe that much can be learned in the future from studies that elucidate the 
diversity of mechanisms and computations of functionally equivalent struc-
tures at a very � ne scale of resolution

Need for a Broad Comparative Model System to Study 
the Relationship of Neural Structures, Neural Functions, 
and Behavioral Coordination, and for Universal Metrics 
for Quantifying the Complexity of Behavioral Tasks

There is a need to develop broad comparative neural and behavioral “model 
systems” to study analogous neural systems across diverse taxa. A promising 
area for such studies would be a behavior that is widely distributed among 
a variety of vertebrate and invertebrate species and which is organized into 
sequences.  Grooming behavior is one ideal candidate, as it is widely distrib-
uted (Sachs 1988).  Next, it would be important to identify instantiations in 
particular species that differ in complexity, with examples of several different 
species at each level of complexity studied, and to compare their neural cor-
relates. This would have the joint advantages of providing people interested 
in dynamic coordination with an independent set of tools to bring to bear on 
questions relating neural oscillations, synchrony, and behavioral coordination, 
as well as providing scientists with an empirical method for sifting out the 
neural mechanisms that vary with particular aspects of behavioral complexity, 
which can then be targeted for more expensive and time-consuming mechanis-
tic explorations. 

Such studies could also bolster the adoption and improvement of common 
methodologies for quantifying behavioral complexity, a � eld that has great 
promise thanks to the introduction of new and powerful computational tech-
niques. Traditionally, the description of coordinated behaviors, such as rodent 
grooming (Aldridge and Berridge 1998) or spoon-feeding a baby (Duncan 
1997), have been primarily heuristic. A variety of computational tools are 
now available for conducting formal quantitative analysis of the complexity 
of animal behaviors. It is tempting to divide those a priori into continuous 
and discrete, but we stress that in many borderline cases, this decision itself 
should be left to a quantitative analysis with a clearly de� ned set of criteria. 
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For example, does the pre-shaping of the hand prior to grasping an object con-
sist of a series of discrete steps? In the general case, the record of an instance 
of a behavior consists of a trajectory in the space de� ned by the measurement 
variables. A bundle of such trajectories can be processed to determine whether 
they are amenable to a low-dimensional description (i.e., in a manifold whose 
dimensionality is lower than the nominal dimensionality of the measurement 
space) or whether a discrete, sequentially modular representation in terms of 
“dynamical symbols” is in order (Dale and Spivey 2005; Edelman 2008b).

More complex behaviors exhibited by animals are likely to be sequentially 
modular and hierarchically structured, for reasons of computational tractabil-
ity, and better � t to the structure of the environment. For such behaviors, a 
natural formal tool for representation and complexity analysis is grammar. For 
instance, if a behavior is described in terms of a � nite set of states and the 
transitions among them, it can be represented concisely in the form of a so-
called regular grammar. If the transitions are probabilistic, the grammar would 
have a corresponding annotation. Other classes of formal grammars, such as 
context-free or context-sensitive, as de� ned in computer science (Bod et al. 
2003; Hopcroft and Ullman 1979) can be used to describe progressively more 
complex behaviors, including language. The computational methods of infer-
ring a grammar from behavioral data and for using it for complexity analysis, 
which are akin to the problems of language acquisition and of parsing, may be 
highly nontrivial, but they are certainly worth the trouble. Behavioral science, 
and with it the neuroscience of behavior, cannot be considered sound unless it 
rests on a reasonable quantitative measurement methodology. 

Finally, more comparative studies are needed which identify commonalities 
and differences in neuron structure, cell types, and the ways that brain regions 
are speci� ed and connectivity develops across taxa. We believe that a more 
extensive across-taxa neural-comparative toolkit will enable better-informed 
conclusions about the neural  architectures that support dynamic coordination 
and all other types of computational tasks accomplished by neural systems.

Conclusions

Broad comparative data are necessary to make stronger inferences about the 
relationship between structure and function. Vertebrates and invertebrates have 
a common basic neural toolkit that evolutionary processes build upon to gener-
ate diverse, but shared forms and principles. The tool kit consists of common 
genes, cell types, connections, and computations.

Within vertebrates, inroads have been made in understanding the relation-
ships between birds and mammals. However, more of this type of work must 
be conducted with reptiles, amphibians, and � sh.

There is, to date, no general understanding of the functional signi� cance 
of having a layered (mammal) versus clustered (bird) pallium, since similar 
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behavioral capabilities appear to be attained by both types of organization. 
Similarly, there is no rigorous evidence-based understanding of the division of 
labor between pallial (cortex) and nonpallial ( basal ganglia) forebrain struc-
tures in mammals, despite widespread beliefs about this issue. Both the six-
layered mammalian cortex and the nuclear pallial divisions of the  avian  brain 
are able to support vocal imitation and other complex cognitive behaviors once 
thought unique to humans.

Given that coordination occurs at the levels of neurons, circuits, and be-
havior within and among organisms across the whole animal kingdom, it is 
unlikely that coordination or oscillation as such is limited to particular neural 
 architectures, such as a six-layered cortex. A cortex may turn out to be some-
thing to crow about for some as-yet-unidenti� ed behavioral or computational 
traits, but it certainly does not work to work in isolation. Both broad and fo-
cused comparative studies on behavioral similarities and differences will be 
necessary to elucidate � rst principles underlying such phenomena.



6

 Modeling  Coordination in the 
Neocortex at the Microcircuit 

and Global Network Level
Anders Lansner and Mikael Lundqvist

Abstract

A key role for computational modeling in neuroscience is to connect cortical micro-
scopic processes at the cellular and synaptic level with large-scale cortical dynamics 
and coordination underlying perceptual and cognitive functions. Data-driven and hy-
pothesis-driven approaches have complementary roles in such modeling. The Hebbian 
cell assembly and attractor network paradigm has a potential to explain the holistic pro-
cessing and global coordination characteristic of cortical information processing and 
dynamics. The pros and cons of such a view are described. A large-scale model of corti-
cal layers 2/3 formulated along these lines exhibit the fundamental holistic perceptual 
and associative memory functions performed by the cortex. Such a model can provide 
important insights into the possible roles of oscillations and synchrony for processing 
and dynamic coordination and it highlights important issues related to cortical  connec-
tivity, modularization and layered structure.

Introduction

Today, massive amounts of data are available about the brain from many dif-
ferent sources as well as from molecular, subcellular, neuronal, and network 
levels, and more keeps accumulating due to increasingly advanced measure-
ment techniques. Despite this, our mechanistic understanding of the normal 
and dysfunctional brain,  in terms of how processes at these different levels 
interact dynamically to produce cognitive phenomena and overt behavior, is 
greatly lacking. Such an understanding would clearly open up new avenues 
in the search for more effective drugs and therapies for severe diseases and 
disorders affecting the brain. Perhaps the only tools that offer some hope of 
eventually reaching this understanding are mathematical modeling and  com-
puter simulation. A computational model can organize ef�ciently new data in a 
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coherent fashion so as to generate new experimentally testable questions. This 
may eventually enable us to formulate quantitative theoretical models and thus 
achieve a more general understanding of the phenomena under study.

By necessity, the acquisition of data about the brain is largely determined by 
what is possible to measure, not by what we need to know to build better com-
putational models. This tends to cause some detachment between experimen-
talists and modelers in the sense that the latter experience a patchiness of data 
where critical pieces are missing, whereas the former feel they produce data 
that is ignored by modelers. In the early stages of formalizing a scienti� c � eld, 
the approach has typically been one of starting from the fundamentals and 
gradually adding more detail and complexity. In some instances of less com-
plex and more accessible neural systems, we have already seen a productive 
interaction between experimental and computational neuroscience (Kozlov et 
al. 2009), and we expect this to develop further in the near future.

As in other � elds, multiscale  modeling will be important in brain science, as 
it will allow us to relate detailed dynamical processes at the cellular, subcellu-
lar, and microcircuit level with cognitive phenomena at the level of brain-scale 
neuronal networks. Software tools, which allow  large-scale network models 
comprising a mix of biophysically and biochemically detailed spiking neu-
ron models, simpli� ed integrate-and-� re neurons, and mesoscopic nonspiking 
population units to be de� ned and simulated, have been developed and are 
now available in the � eld of neuroinformatics. The most simpli� ed mesoscopic 
models may represent some cortical regions with only one or two units and 
thus connect to, for example, dynamic causal modeling techniques used for 
analysis of brain imaging data.

The neocortex, which is the largest part of the human brain and the site 
of higher cognitive functions, has been a favorite subject for brain modelers. 
Computational models with some level of biological detail have been proposed 
and investigated for more than half a century. As more data has been acquired 
and as computers have become more powerful, models have increased in size 
and sophistication. Today, supercomputers are used to model large-scale neu-
ronal networks with a high degree of detail in their component neurons and 
synapses. If current trends in computing continue, we should be able to simu-
late in real time detailed models of the entire human brain in about � fteen to 
twenty years.

Since there has been and still is quite some uncertainty with respect to the 
relevant experimental data, every neuronal network model to date is explor-
ative and hypothetical. Nevertheless, several of even the early cortex mod-
els have been able to display interesting features of, for example,  associative 
 memory, dynamic activity, and coordination, replicating some of the key char-
acteristics of the system modeled. Although abstract and without much bio-
logical detail, these models nevertheless provided a framework for studying 
important phenomena beyond what could be grasped intuitively and conceptu-
ally. Only by continuing in this same spirit and by bringing models closer to 
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data can we maintain some hope of reaching a true mechanistic understanding 
of this very complex system.

In this chapter, we focus on attempts in computational neuroscience to con-
nect cortical microscopic processes, at the cellular and synaptic level, with 
large-scale cortical dynamics and coordination more directly related to per-
ceptual and cognitive functions. We discuss to what extent models might be 
data driven and the role of hypotheses in this research, as well as possible 
interpretations and functional implications of the dynamics observed in large-
scale cortex simulations. We consider the role of oscillations and synchrony for 
processing and dynamic coordination. Finally, we argue for complementing 
the now dominating reductionist approach with more of a synthesis of compo-
nents to achieve a coherent global picture. This will allow us to discuss the new 
directions in brain modeling, with more of model-driven experiments.

Data- and Hypotheses-driven Approaches to Modeling

Despite the enormous efforts in experimental brain science, one of the pri-
mary challenges of brain  modeling is the relative patchiness of data. There is 
indeed a lot of data available, but this abundance has been driven largely by 
the capabilities of our recording equipment, rather than by what is the most 
important for building quantitative models. Heroic attempts to build “bottom-
up” data-driven models of a part of the neocortical network without additional 
assumptions or hypotheses about function and mechanisms are therefore very 
high risk undertakings. It may be possible to gather high resolution data about 
single cells and synapses, as well as population data about types of cells and 
synapses and the distribution and intricate function of ion channels and neuro-
modulators acting on them. However, modeling work shows that, for instance, 
the dynamic function of and information processing performed by a cortical 
neuronal network is likely to be critically dependent on its  synaptic  connec-
tivity at a local and global scale (Figure 6.1). The cortical networks are to a 
signi�cant extent formed by activity-dependent processes individual for each 
brain. Therefore, with current technology it will be hard, if not impossible, to 
get the wiring right. Statistical approaches and pooling of data from different 
animals and regions is most likely to miss their target. Likewise, detailed re-
constructions of local pieces of cortex are still very limited in their spatial ex-
tent. Nevertheless, such projects will provide valuable information to constrain 
and re�ne current and future quantitative and computational models.

An alternative to modeling is a hypothesis-driven or “ top-down” approach. 
Starting from some conceptual theory of the fundamental functions of cortex, 
one builds a model gradually, by entering the basic elements �rst and adding ad-
ditional relevant details one by one. This strategy has historically proven quite 
successful in many scienti�c and engineering �elds. A useful theory should 
take into account data from many different sources and levels of description: 
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from anatomical and physiological data on the neuronal and synaptic levels to 
experimental observations at the psychological and cognitive levels.  Synaptic 
connectivity may be formed by using a  Hebbian  learning rule to store a set of 
memory  patterns. Current  hypothesis-driven models of cortex take only a frac-
tion of the data available into account and thus are always at risk of leaving 
out relevant information. Typically, modelers need to � ll in some critical data 
that is missing or con� icting. These parts of the model should be regarded as 
predictions. If later falsi� ed by new information, models must be reexamined 
and, if no work-around is found, they should be revised or entirely discarded.

Hebbian Cell Assemblies and the Attractor Network Paradigm

Though  the diversity  of hypotheses about basic principles of operation of cor-
tex has been pruned over the years, through exposure to increasing amounts 
of experimental data, a number of different ones still remain. Among some of 
the more vital and general theories of cortical function today, we � nd  syn� re 
chains (Abeles 1991),  liquid state machines (Maass et al. 2002), and localist 
models of cognition (Bowers 2009). However, the oldest and currently most 
well-developed theory dates back to Hebb’s cell assembly theory (1949). It 
has more recently been formalized in terms of attractor networks (Hop� eld 
1982; Amit 1989) and has been extensively studied, both mathematically and 
by means of computer simulations.
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Figure 6.1 Dynamics of network with structured vs. permuted connection matrix. 
The � gure shows the spike raster from runs of two networks. Patterned stimuli are given 
at the times indicated by the arrows. They differed only in that the left one had memory 
patterns stored in attractors; the right one had the same connections as the left, except 
that the pre- and postsynaptic cells were randomly permuted. Thus, both network con-
nectivities obeyed the experimentally measured pair-wise connection statistics between 
different neuron types. As can be seen, this difference results in dramatically different 
responses to a patterned input.
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The most well-known component of Hebb’s theory is that of coactivation-
triggered (Hebbian)  synaptic plasticity, and this part has been largely veri� ed 
by later experiments, which have also extended our knowledge about synaptic 
plasticity far beyond the original proposal. The more controversial and less 
acknowledged aspects of Hebb’s theory concern the network-level conse-
quences of such processes. Hebb proposed that the wiring together of groups 
of neurons activated by the same stimulus would form mental objects in the 
cortex, which he called cell assemblies. They constitute the internal represen-
tations of the corresponding objects in the external world, and their existence 
changes the network dynamics, resulting in phenomena such as  after-activity, 
 � gure–ground  segmentation, and  perceptual completion and  rivalry effects. 
This view allows fundamental cognitive functions (e.g., content-addressable 
 associative  memory and association chains) to be conceptually understood in 
terms of processes at the neuronal and synaptic level. Several of these proper-
ties are prominent in the corresponding abstract computational models (e.g., a 
 Hop� eld network model of associative memory).

The term “attractor” stems from the analysis of the dynamical properties of 
such abstract  recurrent arti� cial neural networks. Due to the symmetric con-
nection matrix, their state always evolves from an initial state to the closest 
� x-point attractor and remains there. If a slow dynamics, corresponding to 
 neuronal adaptation or  synaptic depression, is introduced in such a model, the 
attractor state is destabilized and may shift its position in state space or even 
become transient; that is, it is not formally a � x-point attractor any longer. 
Such a network typically displays a more complex limit cycle dynamics, which 
can be described as the state jumping between the memorized states, visiting 
them for some time determined by the time constants of adaptation and de-
pression, typically in the order of some hundreds of milliseconds. We refer to 
this here as the  attractor states corresponding to memorized  patterns becoming 
 quasi-stable. 

Adaptation and synaptic depression are common features of, for example, 
pyramidal cells and synapses between these in  layers 2/3. Therefore, a similar 
dynamics as described above, but even more complex due to the spiking pro-
cess itself, can be seen in networks of biophysically detailed model neurons 
and synapses. Here the state of a unit in the abstract network corresponds to, 
for example, the average instantaneous spiking frequency of the neurons in a 
local population of some tens or hundreds of neurons.

It needs to be emphasized that the basic attractor network paradigm primar-
ily takes into account the  recurrent cortical  connectivity most prominent in 
layers 2/3 and 5. The  holistic processing is assumed to be supported by this 
connectivity and the more re� ned, speci� c, and  invariant neuronal response 
properties and representations likely found in higher-order sensory and asso-
ciation cortex. This view is thus incomplete as it disregards the important as-
pects of how such response properties and representations are formed by  self-
organization and  learning. Such processes can be attributed to the  feedforward 



88 A. Lansner and M. Lundqvist 

processing stream of cortex with  layer 4 as a key player in transforming the 
input from different sensor arrays to a  sparse, decorrelated, and distributed 
code suitable for further attractor network processing. In the following, we 
will assume that the internal representations have already been transformed in 
this manner.

The cortical network, with its  feedforward, lateral, and feedback projec-
tions, forms a brain-scale  recurrent network structure which may support 
global attractor dynamics and top-down in� uences on earlier sensory areas. 
Attractors extending over large parts of cortex would exert a powerful dynamic 
coordination (e.g., in the form of  multimodal integration). A current target of 
 large-scale cortex simulations is to � nd out if the known strength and distribu-
tion of cortical long-range  connectivity is suf� cient to sustain such wide area 
coordinated and  quasi-stable attractor states.  

Criticisms of the Attractor Network Hypothesis

Though attractive as a working hypothesis for the primary holistic “Gestalt” 
processing functions of the cortex, this paradigm has been criticized on several 
points. First, it is obvious that the abstract models have very simplistic units 
and connectivity, and that they violate Dale’s law of separate excitatory and 
inhibitory units. Further, their dense activity and full connectivity is quite dif-
ferent from the sparse activity and highly diluted connectivity typical for real 
cortex. In addition, the connection matrix needs to be symmetric to guarantee 
a well-behaved dynamics, and this seems highly unlikely to hold in reality. A 
spiking attractor network was also expected to have problems generating the 
low rate irregular discharge patterns of neurons in vivo, and a network with 
neurons � ring at low rate was suspected to converge too slowly. Here we will 
discuss these criticisms and show how many of them have now been shown to 
be invalid. We will illustrate how attractor memory models have been brought 
closer to biological reality in terms of their constituent components and net-
work structure as well as the kind of attractor dynamics and oscillatory activity 
they display.

There were further concerns about the storage capacity of the original 
 Hop� eld network being unreasonably low. However, later theoretical analysis 
and simulations have shown that an attractor network is actually an ef� cient 
associative memory in an information theoretic sense, and that its storage ca-
pacity scales linearly with the number of synapses (Amit et al. 1987). With 
realistically low activity levels, the number of distinct attractors possible to 
store is much larger than the number of units in the network.

Let us now turn to the biological plausibility of this paradigm and describe 
a plausible mapping of the attractor network paradigm to a simulation model 
of cortical layers 2/3. We have used this model to interpret experimental data 
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on perceptual processing and  associative  memory functions as well as cortical 
oscillatory phenomena and  synchrony at different frequencies and timescales.

Cortical Local Subnetworks and Functional  Microcircuits

When building a cortex model, one must confront, early on, the issue of pos-
sible repetitive elements other than neurons. It has repeatedly been suggested 
and discussed that the cortex actually comprises a mosaic of modules, such as 
functional columns or other types of  subnetworks (Mountcastle 1978; Favorov 
and Kelly 1994; Rockland and Ichinohe 2004; Yoshimura et al. 2005). Such 
local networks would be more densely connected (like 10–25%) within them-
selves than to the outside and would likely be selectively targeted by incoming 
�bers from  thalamus. They may be spatially segregated in, for instance, an 
anatomical minicolumn or may be anatomically diffuse (i.e., intermingled with 
other similar modules). Possibly in smaller brains (e.g., in the mouse), single 
or only a few neurons would be in each module; however, in larger cortices 
(e.g., in primates) each module may need to be more connected than a single 
pyramidal cell could reasonably sustain. This would make it necessary for sev-
eral  pyramidal cells to cooperate, such that the modules would be larger and 
perhaps even more anatomically distinct (DeFelipe 2006). Such a  minicolum-
nar structure might also generate a patchy long-range connectivity, as is seen 
in cortex (Fitzpatrick 1996).

Other data suggests that these local subnetworks are organized in bundles to 
form larger modules (i.e., macrocolumns,  hypercolumns, or barrels; Hubel and 
Wiesel 1977) and there are abstract models that incorporate such a modular 
structure (Kanter 1988; Sandberg et al. 2003). A hypercolumn may be assumed 
to represent, in a discretely coded fashion, some attribute of the external world. 
For instance, in the primary visual cortex the orientation or direction of an edge 
stimulus at a certain position on the retina is assumed to be represented by el-
evated activity in a corresponding  orientation column in primary visual cortex. 
This also leads to sparse activity in the network, on the order of about 1–5%. 
Such an activity level is in accordance with overall activity densities of about 
1% and an average spiking frequency of 0.16 Hz, estimated from metabolic 
constraints (Lennie 2003).

To investigate the extent to which the attractor network paradigm is com-
patible with this data, we have designed and simulated a biophysically de-
tailed large-scale model of cortical layers 2/3 (Lundqvist et al. 2006). In this 
top-down model,  the microcircuitry implements two types of modular struc-
tures, corresponding to minicolumns and hypercolumns. Each minicolumn is 
a network unit and comprises thirty pyramidal cells and a couple of dendritic 
targeting and vertically projecting interneurons, for example,  double bouquet 
(RSNP) cells that inhibit cells in the minicolumn to which they belong. Their 
role is described in the next section. Each hypercolumn is a bundle of up to 
a hundred minicolumns together with about an equal number of  basket cells. 
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The latter are driven by nearby  pyramidal cells and their axonal arborizations 
extend over the entire hypercolumn, providing negative feedback and turning 
the hypercolumn into a kind of  winner-take-all module.

Global Recurrent Connectivity Supporting Holistic Processing

Once this model  of the local modular structure of the cortex is in place, it is 
quite obvious to see how the global, long-range  connectivity could implement 
the memory-encoding connection matrix of the attractor network. The largest-
scale model that we have simulated comprised several thousand of such hy-
percolumn modules, where  memory patterns were stored by connecting sets 
of coactive minicolumns, one per hypercolumn. Hebbian plasticity rules typi-
cally give a connection matrix with a positive and a negative component. Our 
network represented the positive elements of the connection matrix by direct 
intracortical or corticocortical pyramidal-pyramidal synapses, whereas the 
negative elements of the connection matrix were disynaptic via  double bou-
quet cells in the target  minicolumn. This suggests a speci� c role and synaptic 
input for this type of cells, which is compatible with known data but where the 
details are not yet con� rmed. Given some spatial modularization of the target 
area, in terms of functional minicolumns, this will give rise to the patchy long-
range connectivity experimentally observed in several cortical areas.

In our model, the long-range connectivity is very sparse at the cell-to-cell 
level. Typically, in our largest network, out of the 900 possible  long-range 
excitatory synapses from a source to a target minicolumn, only �ve are instan-
tiated randomly. This gives a connection matrix which is sparse and nonsym-
metric at the microscopic level, but symmetric at the macroscopic level of 
minicolumn units. As mentioned above, in theory, attractor networks need to 
have a symmetric connection matrix to have a guaranteed  convergence to an 
attractor. In practice, we � nd that the network state does converge despite the 
sparse connectivity and this microscopic deviation from symmetry.

In the largest-scale model, comprising 22 million model neurons and 11
billion synapses, the connection densities and PSP amplitudes have been set 
to re�ect experimental data from, for example, Thompson et al. (2002) and 
Binzegger et al. (2007). The average number of synapses onto single cells of 
different kinds are then held �xed as the network is scaled (Djurfeldt et al. 
2008), whereby a single cell receives approximately the same synaptic in-
put current regardless of network size. The network is driven by input from 
a few layer 4 pyramidal cells that are activated directly via noise injection 
and connects with a probability of 50% to the above pyramidal cells in the 
same minicolumn.

The  sparse and low rate activity in the layer 2/3 network has some impor-
tant implications for the balance between thalamic input,  local  connectivity, 
and long-range contextual in�uence. Though the latter connections are more 
numerous, only a few percent will be active due to the sparse activity in the 
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presynaptic population. Despite their relatively low numbers, thalamic input 
in� uences the network activity signi� cantly in the model and can by itself 
switch the activity from one active state to another.

Attractor Memory Dynamics and Holistic Perceptual Processing

What can we say about the dynamics of memory retrieval in a biologically 
detailed cortical network model, such as the one described above? The most 
important questions concern holistic processing in terms of  attractor conver-
gence,  after-activity,  associative  memory, and perceptual  completion and  ri-
valry. The two latter are clear examples of how long-range “contextual” and 
coordinating interactions can modify and even override (rivalry) local pro-
cessing. This aspect has been examined in numerous simulations; all of these 
operations were found to be prominent, occurring on the same timescale as 
observed psychophysically, in less than a hundred milliseconds (Lansner and 
Fransén 1992; Fransén and Lansner 1998; Sommer and Wennekers 2001). This 
is true even if a fragmented and noisy  pattern is given as input or if two patterns 
are stimulated simultaneously, as in a  pattern rivalry situation. The capacity to 
store and reliably retrieve patterns parallels that of the isomorphic abstract as-
sociative  memory network.

Due to  adaptation and  synaptic depression in the network, after-activity 
will typically be restricted to a few hundred milliseconds, following which 
the activity terminates. If the input is still on, the second-best matching pat-
tern may activate, and there may be a slow oscillating activity with the two 
memory states alternately in the foreground. This is reminiscent of the alternat-
ing perception of ambiguous stimuli as in the Necker Cube illusion. In other 
situations (e.g., hippocampal place �elds), attractors may be overlapping and 
temporally chained, thus forming more of a line attractor structure (Lisman 
and Buzsáki 2008).

Notably, the network dynamics is highly sensitive to the higher-order con-
nectivity structure. The statistics provided by pair-wise recordings or from 
morphological reconstruction is not enough to determine uniquely the network 
structure or its dynamics. For instance, the prominent attractor dynamics seen 
in our model, which results from a long-range connectivity set up according to 
a  Hebbian  learning rule to store a number of  distributed patterns, is not seen 
in the same network where the long-range connectivity is permuted randomly 
(Figure 6.1). In both cases, pair-wise connectivity statistics is constrained in 
the same way according to experimental data; however, in one, an attractor 
state is entered whereas in the other only a weak disturbance of the  ground 
state results.

With suf� cient unspeci�c background activation, the state of our simulated 
network will under certain conditions spontaneously jump between attractors 
in a complex, presumably chaotic fashion and at about  theta frequency (~5 
Hz). This may relate to the dynamics of different kinds of ongoing activity 
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recorded in cortex in vitro and in slices in vivo (Lehmann et al. 1998; Grinvald 
et al. 2003; Ikegaya et al. 2004). During such activity, the internal state of a cell 
may show plateaus and hyperpolarized periods. If the network is stimulated 
during ongoing spontaneous activity, it typically switches quickly to the stimu-
lated pattern. This switch is, however, somewhat less likely to occur during 
the early part of a newly triggered attractor state, which has been suggested to 
provide a mechanistic explanation for the cognitive bottleneck phenomenon of 
 attentional blink (Lundqvist et al. 2006). 

The duration and intensity of an  attractor state is quite sensitive to changes 
in model parameters relating to Ca–KCa channels and dynamics (Lundqvist 
et al. 2006). Several of the monoamine  neuromodulators (e.g., serotonin and 
acetylcholine) act on these processes. This suggests a possible connection be-
tween these parameters of the model and neuromodulation of ongoing and 
stimulus triggered cortical dynamics.

Coordination in the form of  burst  synchronization at about  theta frequency 
occurs over long distances (with conduction delays of tens of milliseconds) in 
the model, and it could be assumed to extend over large parts of the cortex. 
Such coordination would be important, for example, for cross-modal integra-
tion and top-down expectancy phenomena and could be observed in  local � eld 
potential (LFP) and EEG recordings (Engel et al. 2001).  Top-down excitation 
via back-projections from attractors formed in higher cortical areas, as well as 
facilitatory in� uences from subcortical structures involved in motivational and 
drive regulation, may guide  attention (Ardid et al. 2007). At the global cortical 
level, a single coherent activity mode seems to dominate the entire network 
most of the time due to  lateral inhibition. Such competition may ultimately be 
a mechanism responsible for the apparent unity of our  consciousness and the 
serial nature of thought processes at the macroscopic level, in contrast to the 
massively parallel processing at the microscopic level.

 Microcircuits and  Fast  Oscillations

Network dynamics, with its  quasi-stable attractor states, has the potential to 
generate a slow rhythmic activity in the theta frequency range. This can be 
seen even in the mesoscopic models with nonspiking population units. While 
implementing this kind of network with spiking units, faster rhythmic dynam-
ics emerges in the higher frequency ranges of   alpha,  beta, and  gamma  oscil-
lations. The latter has gained special interest due to its correlation with at-
tention, perceptual processing, and consciousness (Engel et al. 2001). Alpha 
and beta  oscillations characteristic of resting conditions are replaced by faster 
oscillations during active processing. The general trend in experimental data 
seems to be that faster oscillations are more localized to layers or columns and 
more short-lived (Sirota et al. 2008). This suggests that the origin of fast (e.g., 
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gamma) oscillations may be the microcircuit whereas slower oscillations arise 
from interactions over longer ranges.

Oscillations in the gamma frequency range emerge readily in simulated mi-
crocircuits, as a result of strong  feedback inhibition, and can even do so in 
a network of recurrently connected inhibitory neurons when subject to some 
background excitation. Notably,  gap junctions between inhibitory interneurons 
are not necessary to generate prominent fast oscillations. The main factors that 
decide the frequency in  excitatory-inhibitory (E-I) networks is the type of  con-
nectivity, the relation between excitation and inhibition, and the synaptic time 
constants (Brunel and Wang 2003).

In our own large-scale simulations (Djurfeldt et al. 2008), global alpha and 
beta frequency oscillations during inactivity were replaced by gamma fre-
quencies and a more focal pattern of activation (Figure 6.2). Under certain 
conditions with low background activation, the network model displayed a 
nonspeci� c,  noncoding ground state in which beta frequency oscillations were 
prominent (Figure 6.1), and the pyramidal cells � red at around 1 Hz. Stimulus-
triggered activation of a  coding state increased signi� cantly the power in the 
gamma band (Figure 6.3).

Gamma oscillations emerged due to the interplay between  pyramidal cells 
of an active  minicolumn and feedback inhibition from nearby  basket cells. 
This regime also allowed for an approximate balance between excitatory and 

Ground state Stimulus �Active state
(a)

(b)

(c)

# s
pik

es

Time (s)
0 0.3 0.6

0

5

10

10
mV

Figure 6.2  Oscillatory activity in ground and active states. Distribution of spiking 
within a  hypercolumn during ground state (left) and active state (right). Average spiking 
frequency is coded by gray scale for each minicolumn: dark gray < 1 Hz; light gray ~ 
2 Hz; black > 5 Hz. (a) Spike raster for the background and foreground minicolumns 
separated by at dashed line. (b) Average Vm for a foreground (dashed) and background 
(solid) minicolumn during ground state (0–0.3 s) and active state (0.3–0.6 s). (c) Time 
histogram of n:o spikes in the entire hypercolumn.
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inhibitory currents in both ground and active states, and as a result cells � red 
irregularly as seen in vivo. In contrast to gamma oscillations, those in the alpha 
and  beta frequency range were generated by activity and feedback inhibition 
of a much more diffuse and low-rate nature. In the ground state of the network, 
single cell-� ring rates were very low, and the increase in oscillatory frequency 
thus signaled an increase in selectivity during attractor states.

Furthermore, the increase of cortical gamma oscillations can be entrained 
by the slower theta rhythm in  hippocampus (Sirota et al. 2008). An interpre-
tation of this from the attractor paradigm standpoint would be that (a) theta 
rhythm results from wandering between task relevant attractors and (b) gamma 
oscillations can be generated in each attractor state. Thus, according to our 
simulations,  oscillations in several different frequency bands emerge from the 
underlying  attractor dynamics during spontaneous as well as stimulus-driven 
activity. The slower oscillations seem to re� ect the very important mechanism 
of attractor destabilization which paces spontaneous network activity and the 
“� ow of thought,” but what about the functional role of gamma oscillations?

Does Synchrony Hold Information or Have 
Computational Advantages?

Due  to the local feedback inhibition via basket cells, adjacent pyramidal cells 
tend to be synchronized in simulated  E-I networks. Most network models 
simulate only this local part of a neural network so that the same inhibitory 
network of basket cells controls the activity in the entire network. However, if 
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Figure 6.3 Synthetic  LFP spectrogram. The network started out in the  ground state 
and entered an active state after two seconds due to stimulation. The signal was pro-
duced from 30 local pyramidal cells entering foreground (a) and background (b). The 
average signal from � ve runs is plotted.
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larger networks that extend beyond the lateral extension of basket cells were 
investigated, they would involve several  hypercolumns. If each of these code 
for a distinct feature, with  minicolumns discretely coding for speci� c values, 
would the phase of the gamma oscillations signal which feature values belong 
together in a group, binding the different parts of an object together globally? If 
so, synchronization over long distance might help, for instance, to discriminate 
� gure–background, to bind several segments of an object as a single perceived 
entity, or to form the perception of a novel object by temporary synchroniza-
tion of previously learned features. Experimental observations support the idea 
that synchronization may be involved in such binding; for example, if attention 
is shifted toward a stimulus that is processed by the recorded cells, there is an 
increase in local  coherence in gamma oscillations (Fries, Reynolds et al. 2001). 
True  phase coding should, however, imply  synchronization on the millisecond 
level spanning over several hypercolumns.

One model that displayed feature binding through  phase locking was that 
of Ritz et al. (1994). They showed that a semi-realistic network model could 
segment a complex scene into previously learned objects by such a mecha-
nism. The representations of different objects oscillated out of phase relative 
to each other so that temporal synchronization on a � ne timescale signaled 
how features (pixels in this case) were grouped into objects. When the network 
oscillated at gamma frequencies, up to four objects could be separated. Each 
population, however, was coupled to distinct interneurons; thus inhibition did 
not induce competition. Furthermore, the network was not supporting persis-
tent activity and was strictly input driven. Such network architecture is hard to 
reconcile with what is currently known about cortical  connectivity.

Simulations highlight two problems that must be solved for phase coding to 
work in a realistic cortical network model. First, how can several local popula-
tions of pyramidal cells be active simultaneously within about 25 ms if they 
share the same local inhibitory network? In oscillatory networks pyramidal 
cell � ring is a self-terminating process since it activates strong feedback inhibi-
tion. Therefore each oscillatory cycle will set up a racing condition or winner-
take-all process, where the phase-leading population will terminate the activity 
of the other populations (Fries et al. 2007). This is presumably an important 
mechanism behind the  rivalry observed in perceptual processing. According 
to our experience, it is very hard, if not impossible, to tune a network model 
with  recurrent inhibition so that more than one population � res in each gamma 
cycle. To resolve this issue it is important to investigate if nearby cortical pyra-
midal cells receive feedback inhibition from distinct inhibitory networks, or if 
 selective inhibition, via dendritic targeting inhibitory interneurons, is predomi-
nantly of a feedforward kind, activated from distant pyramidal cells as in our 
network model described above.

Second, we need to understand how populations of pyramidal cells that 
do not share the same local inhibition (i.e., belong to distinct functional hy-
percolumns) are able to � re phase-locked with each other. Since inhibitory 
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interneurons are key players in generating locally synchronous oscillatory ac-
tivity, how is the pace and phase kept over distances longer than those directly 
accessible to them? One solution might be  long-range excitation; however, in 
our own model, this induces only a weak synchrony between minicolumns in 
different hypercolumns (Lundqvist et al. 2006). Recent modeling has shown 
further that synchrony between populations can only be achieved with strong 
inter-regional  coupling (Honey et al. 2007) and that increase in synchrony 
cannot be separated from an increase in � ring rates. This suggests that phase 
locking does not occur in the absence of rate modulation and that oscillations 
and  synchronization are emergent features of spiking attractor dynamics in 
networks controlled by strong feedback inhibition.

Thus, it appears to us unlikely that several gamma oscillation modes could 
robustly exist independently in the same cortical location, or that assemblies 
are bound together by phase locking over longer distances. Still, oscillations 
in the gamma range are obviously prominent features of active cortical pro-
cessing, and they readily emerge in network models. They might still convey 
computational advantages since the saliency of synchronized signals is heavily 
increased, allowing for self-sustained activity with very low (metabolically 
favorable) � ring rates. Furthermore, transitions between  coding states are very 
fast in the oscillatory regime (Fries et al. 2007), since there are only small 
differences in net excitation between foreground and background states, and 
relatively few thalamic inputs can strongly in� uence the network activity as 
described above.

Plasticity in the  Microcircuit and Global Network

Activity-dependent plasticity has an obvious role in the attractor network 
paradigm; namely, in the formation of  global cortical  connectivity that es-
tablishes the attractor structure of the network. A standard form of  Hebbian 
learning seems to be suf�cient to support the  holistic processing of such 
networks. However, several interesting issues open up when viewed from a 
broader perspective.

For example, an  STDP-type learning rule seems well suited for a gamma 
oscillating network and might even impose a temporal structure reminiscent of 
 syn�re chains to the attractor dynamics, where subgroups of the assembly are 
sequentially activated. True  sequence  learning, as already suggested by Hebb, 
could readily be achieved in an attractor network provided that the pre–post 
timing window is somewhat widened and possibly made asymmetric. This 
would suggest that the synapses involved in global cortical connectivity could 
display a spectrum of temporal selectivity for LTP induction.

In addition, we note that our depiction is to a signi�cant degree incompat-
ible with attractor models of  working memory, based on persistent activity 
(Camperi and Wang 1998). These models rely on  attractor states for actual 
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storage of memory items over time. Since an attractor network model sup-
ports only reluctantly the simultaneous activation of more than one state, 
multiple-item working memory would pose a problem for a realistic model. 
Alternatively, we suggest that working memory is based instead on fast-induc-
ing, volatile Hebbian synaptic plasticity (Sandberg et al. 2003), with possible 
spontaneous cyclic activation of a limited number of attractor states represent-
ing items in working memories. Such a mechanism would unify long- and 
short-term forms of memory, and data on fast synaptic plasticity suggest that 
this is a realistic possibility (Hoffman et al. 2002). 

Furthermore, the type of learning rules expected to operate should be quite 
different, depending on what type of processing and cortical layer we con-
sider. From the perspective of the attractor network paradigm, the  feedforward 
processing stream via  layer 4 is likely to be involved in transforming internal 
representations to make them suitable for processing in higher-order attrac-
tor networks.  Decorrelation and  sparsi� cation of representations might rely 
on learning rules that combine Hebbian  synaptic plasticity in incoming feed-
forward synapses with competitive  learning of some  anti-Hebbian type in the 
 recurrent (inhibitory) connectivity. This may be complemented by some form 
of intrinsic excitability that acts to avoid unused units (e.g., depolarization of 
neurons that respond infrequently relative to those that respond frequently). 
Different approaches to generating such distributed, sparse, and overcomplete 
neural representations are currently under investigation. 

Discussion and Conclusions

We have surveyed and summarized work related to the attractor network para-
digm of cortical function, based on simulation results from a  large-scale bio-
physically detailed network model with a modular structure of  minicolumns 
and  hypercolumns. We have concluded that such a network model readily per-
forms associative memory and attractor network functions likely to underlie 
holistic cortical processing. Attractor dynamics may come in the form of spon-
taneous ongoing activity at about theta frequency, or the network may display 
a stable  ground state that can be replaced by some active coding state triggered 
by an incoming stimulus.  Neuronal adaptation and  synaptic depression in the 
model makes the coding  attractor states quasi-stable. The precise sequence of 
spontaneous recall depends on the overlap structure of the connection matrix 
in this model. However, in real cortex, additional mechanisms are likely to 
in�uence attractor state duration and transitions (e.g., sequence storing con-
nections and loops involving various subcortical structures related to goals, 
drives, and  motivations).

In this context we proposed that working memory is based on fast Hebbian 
synaptic plasticity rather than persistent activity, which we see as a memory 
readout process rather than storage per se. Attended and task-relevant objects 
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are loaded into working memory in a palimpsest fashion such that older memo-
ries are written over, and the items thus encoded may be cyclically activated. 
This view uni� es mechanisms behind short- and long-term forms of memory 
in a biologically plausible manner and makes it quite straightforward to envi-
sion interactions between working memory and long-term memory, as well as 
memory consolidation based on repeated reinstatement.

Fast  oscillations in the  gamma frequency range emerge readily and in� u-
ence potently the dynamics of the network model studied. Spiking statistics 
during different states show prominent spike synchronization between nearby 
cells that share the same inhibitory  subnetwork; there is also a weak tendency 
for spike synchrony and phase locking over longer distances. Oscillations and 
spike synchrony in the gamma range may provide a functional advantage (e.g., 
promoting low rate � ring and quicker and easier transitions between different 
attractor states). One could expect that a network with continuous STDP learn-
ing could induce further � ne structure in spiking patterns, like syn� re chains. 
Random networks with  STDP learning have been simulated, but this needs to 
be further examined in a network with attractors stored.

We addressed the important question of whether more than one attractor can 
be active in the same gamma cycle of about 25 milliseconds, independently 
and out of phase with each other. We conclude that in our simulation model, 
 lateral inhibition induced  rivalry and competition is prominent, thus prevent-
ing such uncoupled ongoing activities. However, coordination in the form of 
 theta  burst  synchronization occurs globally over the entire model network and 
could be assumed to occur over large parts of real cortex. This might be re-
lated to generation of low frequency brain  rhythms in the theta–alpha range 
and phenomena like EEG microstates; it also could be important for dynamic 
coordination in the form of cross-modal integration, for bottlenecks in  percep-
tion (e.g.,  attentional blink), and ultimately for the sequential nature and unity 
of  consciousness.

Future Perspectives

The cortical model of holistic processing discussed here is still incomplete, 
and work is ongoing to incorporate the missing cortical layers, most impor-
tantly  layer 4, which presumably provides the circuitry for transforming iconic 
sensory representations to a  sparse and decorrelated format better suited for 
subsequent attractor network processing. Applying such mechanisms recur-
sively in the cortical  feedforward processing stream from one cortical area to 
the next could be expected to form units in higher-order areas with speci� c 
response properties that support some degree of invariant recognition. More 
large-scale simulations of network models comprising several interacting cor-
tical areas, based on density data and distribution of  synaptic connections as 
well as conduction delays of long-range inter-areal  connectivity, are required 
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to understand dynamic coordination and synchronization phenomena better at 
this macroscopic scale. Another component function lacking so far in the mod-
el, yet crucial for perception and memory, is  temporal sequence processing and 
generation. A plausible addition to the model is Hebbian synapses with a time-
delayed and possibly asymmetric pre- and postsynaptic induction window.

We are now beginning to see a constructive partitioning of the main functions 
of the brain and have had initial success in constructing computational models 
of its different parts. Phenomena like  perceptual  grouping,  multimodal integra-
tion,  rivalry, and  associative recall from fragmentary information can already be 
well understood from the perspective of attractor network dynamics, and under-
standing the interaction between  working and  long-term  memory as well as the 
mechanisms behind memory consolidation by reinstatement processes seems to 
be within reach. In addition to  perception and memory, there are obviously other 
equally important major functions to consider: motor control, motor learning, 
sensorimotor integration, and behavior selection, as well as the emotional and 
motivational systems so important for  goal-directed behavior and learning. 

Though it is often convenient to study the different functions separately, efforts 
must be made to reassemble the modeled results. Integration is necessary to ensure 
that partitioning is plausible and that the different models can really cooperate ef-
� ciently so as to provide suf� cient composite functionality. Multiscale  modeling at 
the systems level, using high-performance computers, is necessary to address all of 
the relevant aspects simultaneously, with a maintained degree of biological detail.

As a � nal veri� cation, such a whole brain model, or constructed brain, needs 
to be embodied in the form of an agent and immersed in a complex environ-
ment that provides dynamic input and feedback, depending on the output ac-
tions generated. The new challenges include, for instance, the detection of  task-
relevant data as well as the processing involved in the timely selection of the 
best action, while allowing on-line  reinforcement  learning to enhance internal 
representations, motor programs, and stimulus-response mappings to improve 
performance in future similar situations. Such embodied models will link the 
computational branch of brain science directly to core problems in information 
science and technology, including cognitive computing and  robotics. An in-
creased mechanistic understanding of brain function will not only have a major 
impact on improving health in our society; it may also catalyze breakthroughs 
in information technology, thus paving the way for important applications of 
novel brain-inspired technology in the service of humankind. Today, this may 
appear as fantasy and speculation. However, if our knowledge of the brain, to-
gether with the capacity and parallelism of computers, continues to develop at 
the current pace, we may very well reach this stage in a few decades.





7

Oscillation-supported 
Information Processing 

and Transfer at the 
Hippocampus–Entorhinal–

Neocortical Interface
György Buzsáki and Kamran Diba

Abstract

As information  is propelled along the multisynaptic feedforward loops of the entorhi-
nal–hippocampal system, each stage adds unique features to the incoming informa-
tion (Figure 7.1). Such local operations require time, and are generally re� ected by 
macroscopic oscillations. In each oscillatory cycle, recruitment of principal neurons is 
temporally protracted and terminated by the buildup of inhibition. In addition to provid-
ing a temporal framework in which information can be packaged, oscillatory  coupling 
across networks can facilitate the exchange of information and determine the direction 
of activity � ow. Potential mechanisms in the entorhinal–hippocampal system support-
ing these hypotheses are described. 

Oscillations Provide the Structure for Information 
Processing in the Hippocampus

Two major network patterns dominate the  hippocampal system:  theta  oscilla-
tions (4–10 Hz) and  sharp waves with their associated ripples (140–200 Hz). 
Theta and sharp-wave patterns also de�ne states of the hippocampus: the  theta 
state is associated with exploratory (“preparatory”) movement and  REM sleep, 
whereas intermittent sharp waves mark immobility, consummatory behaviors, 
and  slow-wave  sleep. These two competing states bias the direction of  infor-
mation �ow to a great extent, with neocortical–hippocampal transfer taking 
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place mainly during theta  oscillations and hippocampal–neocortical transfer 
during sharp waves (Isomura et al. 2006). 

The extracellularly recorded theta oscillation is the result of coherent mem-
brane potential oscillations across neurons in all hippocampal subregions 
(Buzsáki 2002). Theta currents derive from multiple sources, including syn-
aptic currents, intrinsic currents of neurons, dendritic Ca2+ spikes, and other 
voltage-dependent membrane oscillations. Theta frequency modulation of 
perisomatic interneurons provides an outward current in somatic layers and 
phase-biases the power of ongoing  gamma frequency oscillations (30–100 Hz), 
the result of which is a theta-nested gamma burst. Excitatory afferents form ac-
tive sinks (inward current) at con� ned dendritic domains within cytoarchitec-
turally organized layers in every region. Each layer-speci� c excitatory input 
is complemented by one or more families of interneurons with similar axo-
nal projections (Freund and Buzsáki 1996; Klausberger and Somogyi 2008), 
forming layer-speci� c “theta” dipoles. The resulting rich consortium of theta 
generators in the hippocampal and parahippocampal regions is coordinated by 
the medial septum and a network of long-range interneurons. Furthermore, 
the power, coherence, and phase of theta oscillators can � uctuate signi� cantly 
in a layer-speci� c manner as a function of overt behavior and/or the memory 
“load” to support task performance (Montgomery et al. 2009). 

Figure 7.1 Multiple loops of the hippocampal–entorhinal circuits. The long loop con-
necting the layer 2 entorhinal cortex (EC), granule cells (gc), CA3, CA1, and subiculum 
(S) back to the layer 5 EC is supplemented by multiple shortcuts and superimposed 
loops. The shortest loop between the EC and hippocampus is the path from the layer 3 
EC to CA1 and back to the layer 5 EC. Excitatory traf� c in the multiple loops is con-
trolled by a large family of interneurons, whose connections are not loop-like (Freund 
and Buzsáki 1996). mc: mossy cells of the hilus; A: amygdala; RE: nucleus reuniens of 
thalamus; pFC: prefrontal, anterior cingulate cortex.
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Theta-nested gamma oscillations are generated primarily by the interac-
tion between interneurons and/or between principal cells and interneurons. In 
both scenarios, the frequency of oscillations is largely determined by the time 
course of  GABAA receptor-mediated inhibition. Neurons that discharge within 
the time period of the gamma cycle (8–30 ms) de� ne a  cell assembly (Harris 
et al. 2003). Given that the membrane time constant of pyramidal neurons in 
vivo is also within this temporal range, recruiting neurons into this assembly 
time window is the most effective mechanism for discharging the downstream 
postsynaptic neuron(s) on which the assembly members converge. Although 
 gamma  oscillations can emerge in each hippocampal region, they can be coor-
dinated across regions by either excitatory connections or long-range interneu-
rons. The  CA3–CA1 regions appear to form a large coherent gamma oscillator, 
due to the interaction between the recurrently excited CA3 pyramidal cells and 
their interneuron targets in both CA3 and  CA1 regions. This “CA3 gamma 
generator” is normally under the suppressive control of the entorhinal–dentate 
gamma generator, and its power is enhanced severalfold when the entorhinal–
dentate input is attenuated (Bragin et al. 1995).  Entorhinal circuits generate 
their own gamma oscillations by largely similar rules, and these (generally 
faster) rhythms can be transferred and detected in the hippocampus.

When the subcortical modulatory inputs decrease in tone, theta oscillations 
are replaced by large amplitude � eld potentials called  sharp waves (SPW). 
SPWs are initiated by the self-organized population bursts of the CA3 pyra-
midal cells (Buzsáki et al. 1983). The CA3-induced depolarization of CA1 
pyramidal cell dendrites results in a prominent extracellular negative wave, 
from which the SPW derives its name, in the stratum radiatum. The CA1 SPWs 
are associated with   fast-� eld oscillations (140–200 Hz), or “ripples” con� ned 
to the CA1 pyramidal cell layer (O’Keefe and Nadel 1978; Buzsáki et al. 
1992). At least two factors contribute to the � eld ripples. First, the synchronous 
discharge of pyramidal neurons generates repetitive “mini populations spikes” 
that are responsible for the spike-like appearance of the troughs of ripples in 
the pyramidal cell layer. Second, the rhythmic positive “wave” components 
re� ect synchronously occurring oscillating inhibitory postsynaptic potentials 
(IPSPs) in the pyramidal cells because the CA3–CA1  pyramidal cells strongly 
drive perisomatic interneurons during the SPW. In the time window of SPWs, 
50,000–100,000 neurons discharge synchronously in the CA3–CA1–subicular 
complex–entorhinal axis. The population burst is characterized by a three- to 
� vefold gain of network excitability in the CA1 region, preparing the circuit 
for  synaptic plasticity (Csicsvari et al. 1999a). SPWs have been hypothesized 
to play a critical role in transferring transient memories from the hippocampus 
to the neocortex for permanent storage (Buzsáki 1989), and this hypothesis is 
supported by numerous experiments demonstrating that the neuronal content 
of the SPW ripple is largely determined by recent waking experiences (Wilson 
and McNaughton 1994; Foster and Wilson 2006; Csicsvari et al. 2007).
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Reciprocal Information Transfer by Oscillations

Oscillations  and neuronal synchrony create effective mechanisms  for the 
storage, readout, and transfer of information between different structures. 
Oscillations impose a spatiotemporal structure on neural ensemble activity 
within and across different brain areas, and allow for the packaging of infor-
mation in quanta of different durations. Furthermore, oscillations support the 
bidirectional � ow of information across different structures through the chang-
ing of the temporal offset in the oscillation-related � ring (Amzica and Steriade 
1998; Chrobak and Buzsáki 1998b; Sirota et al. 2003; Buzsáki 2005; Siapas 
et al. 2005). Most importantly, exchanging information across structures by 
oscillations involves mechanisms different from what is usually meant by the 
term “information transfer.”

In the usual sense, transfer of information involves two structures, or sys-
tems, which can be designated as the “source” (sender) and “target” (receiver). 
Typically, the information transfer process is assumed to be unidirectional and 
passive: the source sends the information to an ever-ready recipient. In sys-
tems coupled by oscillations, however, the method appears to be different; we 
refer to this process as “ reciprocal information transfer” (Sirota and Buzsáki 
2005; Sirota et al. 2008). The reciprocal process implies that a target structure 
takes the initiative by temporally biasing the activity in the sender (informa-
tion source) structure (Sirota et al. 2003; Fries 2005; Sirota and Buzsáki 2005; 
Isomura et al. 2006; Womelsdorf et al. 2007). Biasing is achieved by the strong 
output (“duty cycle”) of the receiver so that the information, contained in � ner 
timescale gamma-structured spike trains, reaches the recipient structure in its 
most sensitive state (the “perturbation” cycle), ideal for reception. Below, we 
illustrate this principle using the state-dependent communication between the 
hippocampus and neocortex. 

In the waking state, transfer of neocortical information to the hippocampus 
can be initiated by the hippocampus via theta-phase biasing of neocortical net-
work dynamics, as re� ected in the  local � eld potential (LFP) by transient gam-
ma oscillations in widespread and relatively isolated neocortical areas (Sirota 
et al. 2008). As a result, locally generated gamma oscillations from multiple 
neocortical locations are time biased so that the information contained in their 
gamma bursts arrive back at the hippocampus at a phase of the theta cycle opti-
mal for maximal perturbation of hippocampal networks and plasticity (Huerta 
and Lisman 1996; Holscher et al. 1997). In the CA1 region, this corresponds 
to the positive (least active, i.e., recipient) phase of the theta cycle (Csicsvari 
et al. 1999b). This is also the phase at which a hippocampal neuron discharges 
when the rat enters its place � eld (O’Keefe and Recce 1993). In short, through 
 theta-phase biasing, the hippocampus can affect multiple neocortical sites so 
that it can effectively receive information from the resulting neocortical assem-
blies, by way of the entorhinal cortex (EC), at the optimal time frame. 
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The direction of information transfer during  slow-wave sleep at the hip-
pocampal–neocortex axis is largely opposite to that in the waking theta state. 
As discussed earlier, in the absence of theta oscillations, the CA3–CA1 re-
gion gives rise to SPWs. The synchronous discharge of CA1 neurons and 
downstream subicular and EC neurons provides a most effective output to the 
neocortex (Chrobak and Buzsáki 1994). During sleep the information source 
(sender) is the hippocampus but, again, the transfer of information is initiated 
by the receiver (now the neocortex). This latter process has been hypothesized 
to be critical in consolidating the learned information acquired in the waking 
state (Buzsáki 1989). 

A caveat in this two-stage model of information transfer and  memory con-
solidation is the absence of a mechanism to coordinate and guide the hippo-
campal output temporally to the ongoing activity in the neocortical circuits 
that gave rise to the experience-dependent hippocampal input. In other words, 
a mechanism must exist to allow the hippocampal output during sharp wave 
ripples (SWRs) to address the relevant neocortical circuits. Below, we outline 
one such potential mechanism.

While the hippocampus is generating SPWs during slow-wave sleep, large 
areas of the neocortex oscillate coherently at a slow frequency (0.5–1.5 Hz) 
(Steriade et al. 1993a, b; Destexhe et al. 1999). During these slow oscilla-
tions, large areas of the  neocortex and  paleocortex (Isomura et al. 2006) toggle 
coherently between active (UP) and silent (DOWN) states, although isolated 
cortical modules can also shift between states, independent of surrounding 
areas (Figure 7.2). The DOWN–UP transitions can trigger K complexes and 

D1 D2 D3 D4

100 ms

Figure 7.2 Global and local neocortical DOWN states ( delta waves) during slow-
wave sleep. Example of simultaneously recorded  local � eld potentials (LFPs) and unit 
activity at three intracortical locations in the somatosensory area of the rat (~1 mm 
spaced). Note that DOWN states (shaded area) can be synchronous and global (D1, D4) 
or localized only to a small area (D2, D3). While the effects of global and synchronous 
neocortical patterns can be detected in the hippocampus by the macroscopic LFP, more 
localized � ring patterns may exert only a subtle effect on the activity of the hippocam-
pus. After Sirota and Buzsáki (2005).
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associated sleep spindles in the thalamocortical system (Amzica and Steriade 
1997; Molle et al. 2002; Massimini et al. 2004). These same shifts also af-
fect the timing and presumably cellular composition of the hippocampal SPWs 
(Siapas and Wilson 1998; Battaglia et al. 2004). The synchronous cortical 
unit discharges, associated with the  thalamocortical  spindles, can lead to an 
increased � ring of hippocampal neurons within 30–50 ms, and this increase in 
activity is often coincident with SWRs. The impact of neocortical oscillations 
on hippocampal circuits can be demonstrated by the DOWN–UP transition-in-
duced sinks in the hippocampus, mediated by the entorhinal input (Figure 7.3).

Thus, the temporal coordination of thalamocortical sleep spindles and hip-
pocampal SPWs (Siapas and Wilson 1998) by the slow oscillations offer a 
reasonable framework for hippocampal–neocortical information transfer. 
The DOWN–UP transitions and associated thalamocortical spindles trigger 
organized � ring patterns of neocortical neurons which, in turn, lead to the 
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Figure 7.3 Neocortical UP state-related excitation of hippocampal neurons. (a) Per-
forant path (PP) stimulation-evoked LFP responses (black traces) and the derived  cur-
rent-source density (CSD) map. Note sinks (blue) in the dentate molecular layer (ml) 
and CA1 str. lacunosum-moleculare (lm). Box plots, group data of sink maxima posi-
tions (green, lm; blue, ml). (b) Averaged hippocampal LFP traces and CSD triggered 
by DOWN–UP transitions in an intracellularly recorded layer 3 entorhinal neuron. Box 
plots, group data. Similar observations were also made in the naturally sleeping rat. 
Modi� ed after Isomura et al. (2006).
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activation of speci� c subpopulations of hippocampal neurons. These activated 
hippocampal neurons then give rise to SPW-related synchronous outputs and 
readdress the neocortex. Because the  SPW is a punctuated event (~100 ms), 
whereas the UP state and  sleep  spindle are temporally protracted (~0.5–1 s), 
the hippocampal output can be directed to the still active neocortical assem-
blies. The temporal coordination of these events facilitates conditions in which 
unique neocortical inputs to the hippocampus and, in turn, hippocampal out-
puts to the neocortex might be modi� ed selectively (Buzsáki 1989; Wilson and 
McNaughton 1994; Sirota et al. 2003; Steriade and Timofeev 2003). In this 
information transfer process, the neocortex serves as the target (“receiver”) of 
the information from the “source” (sender), hippocampus; nevertheless, the 
initiator of the events is the neocortical slow oscillation.

Propagation of Activity through Multiple Stages 
of the Hippocampus Is State-dependent

Propagation of neuronal signals across multiple anatomical regions are fre-
quently explained by “box-and-arrow” illustrations, where large populations 
of neurons in each layer or region are replaced by a single “mean neuron,” 
representing a homogeneously behaving population (Figure 7.4). While it is 
tempting to designate circumscribed and speci� c computations for each layer 
or region, such a simpli�ed view may not adequately describe information 
processing and propagation. Much computation can take place at the interface 
between layers with control being exerted on local circuit computations by the 
global hippocampal states. Furthermore, representation of an initiating event 
is not merely transferred from one layer to the next but changes progressively. 
Depending on the previous history of the brain and the event, each layer may 
add unique information to the representation.

Timing is critical to the propagation of novel information. For example, a 
strongly synchronous input, such as an arti�cial electrical pulse or an epileptic 
interictal spike, may propagate through multiple layers at a high speed, limited 
primarily by axon conduction and synaptic delays. However, physiological in-
formation rarely advances at such high speed. The fastest physiological speed 
of spike transmission in hippocampal networks occurs during SPW ripples. 
During SPWs, the CA3-initiated population burst propagates through the CA1, 
subiculum, entorhinal  layer 5, and  layers 2/3 in just 15–20 ms. While the pattern 
is propelled through these feedforward layers, the large SPW-related increase 
in excitation in the hippocampus is balanced by the progressive buildup of in-
hibition in successive layers. In layer 5, inhibition balances the SPW-induced 
excitation and inhibition in layers 2/3 overcomes the excitation. Because of the 
increasing inhibition in successive layers, SPW activity rarely reverberates in 
the hippocampal–entorhinal cortex loop, although multiple reverberations can 
occur in  epilepsy.
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The situation is dramatically different from  SPWs in the theta state. The de-
lay between the peak population � ring rates in the entorhinal input layers (lay-
ers 2 and 3) and that of their respective target populations in dentate/CA3 and 
CA1 is severalfold longer during the theta state than during SPWs. Typically, 
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Figure 7.4 Temporal relationship between layer- or region-speci� c population � ring 
patterns and  theta current sinks in the hippocampus. In each region and layer, most neu-
rons are silent or � re at low rates, with only a minority of neurons discharging at high 
frequency. The preferred theta phase of low and high � ring neurons is different (ad-
vancing to earlier phase in EC2, DG, CA3, and CA1 neurons). Firing rate is illustrated 
by color intensity. The height of the histograms re� ects the proportion of neurons with 
different discharge rates. Below:  CSD theta traces are superimposed on a histological 
section in the  CA1–dentate gyrus axis, with highlighted pyramidal cell and granule 
cell. Note phase-reversed sinks in CA1 str. lacunosum–moleculare (lm) and dentate 
molecular layers (ml) and phase-shifted sink (relative to lm sink) in str. radiatum (pyr, 
pyramidal layer). Tilted arrows indicate the temporal (phase) offsets between the peak 
of population � ring in an upstream layer and the theta sinks in the target layers with 
the expected delays (based on axonal  conduction velocity; 30° or ~ 10 ms). Note that 
whereas the population patterns correctly predict the timing of the dendritic sinks in 
their respective target layers, the propagation of spiking activity between upstream and 
downstream neuronal populations cannot be deduced from a simple integration of the 
inputs (after Mizuseki et al. 2009 and Montgomery et al. 2009).
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the delays correspond to approximately half of one theta cycle (50–70 ms). 
Importantly, the current sinks in dentate/CA3 and CA1 pyramidal cell den-
drites occur within 10–15 ms after the peak of the population activity in ento-
rhinal layers 2 and 3, as expected by the  conduction velocities of the entorhinal 
afferents. However, the buildup to maximum population activity in these hip-
pocampal regions actually takes another 50 ms or so (Figure 7.4).

Addressing the potential causes of the delayed spiking activity during 
theta  oscillations requires a thorough understanding of the temporal evolu-
tion of spike patterns of principal cells. As described above, the hippocampal 
theta oscillation is not a single entity but a consortium of multiple oscilla-
tors. Hippocampal principal cells can be activated by either environmental 
landmarks (“ place cells”; O’Keefe and Nadel 1978) or internal memory cues 
(Pastalkova et al. 2008). During its active state, the spike train of a principal 
cell oscillates faster than the LFP, and the frequency difference between the 
neuron and the LFP gives rise to phase interference (known as “phase preces-
sion”; O’Keefe and Recce 1993). As an example, entering the place � eld of a 
typical  CA1 place cell by the rat is marked by a single spike on the peak of the 
locally derived theta LFP. As the animal moves into the � eld, the spikes occur 
at progressively earlier phases. The “lifetime” (i.e., the duration of activity) of 
pyramidal neurons in the septal part of the hippocampus corresponds to 7–9 
theta cycles, during which a full wave phase advancement (360°) may take 
place. In addition to spike phase advancement, the number of spikes emitted 
by the neuron increases and decreases as well, with the maximum probability 
of spiking at the trough of theta, coinciding with the center of the place � eld 
(Dragoi and Buzsáki 2006). In short, spikes can occur at all phases of the theta 
cycle but with the highest probability at the trough. Neither the phase advance-
ment of spikes nor the increased probability of spiking in the � ring � eld of 
the CA1 pyramidal cell can be explained by simple integration of the direct 
entorhinal layer 3 inputs, because spikes of layer 3 pyramidal cells are phase-
locked to the positive peak of the CA1 pyramidal cell layer theta (as re� ected 
by the sink in the str. lacunosum moleculare; see Figure 7.4), which is at the 
theta phase with the least probability of spiking for CA1 neurons. Therefore, 
the entorhinal input cannot be the sole initiator of each spike, especially for 
those occurring in the earlier phases of the theta cycle. The situation is similar 
in the entorhinal layer 2–dentate granule cell/ CA3 cell network because peak 
� ring of these neuronal populations is also delayed by approximately half of 
one theta cycle (Mizuseki et al. 2009). It is important to emphasize that neither 
the evolution of spike discharge activity nor the associated theta phase preces-
sion of spikes are necessarily controlled by environmental inputs;  identical 
patterns can also occur during  memory recall,  route planning, and even  REM 
 sleep (Pastalkova et al. 2008).

Although the exact source of the additional spikes at unseeded phases 
of the theta cycle is not known, they may derive from local circuit mecha-
nisms, according to the following hypothesis: Hippocampal neurons, initially 
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discharged by the entorhinal input, begin to interact with each other to form 
transient assemblies, which individually oscillate faster than the ongoing pop-
ulation theta, re� ected in the LFP. The oscillation frequency of the active  cell 
assembly determines the magnitude of spike phase advancement and the “life 
time” of the assembly (i.e., the size of the � ring � eld in spatial metric). From 
this perspective, the role of the entorhinal input is to add new members to the 
perpetually shifting and oscillating cell assemblies rather than to “drive” each 
spike directly in the hippocampus. The selected assembly members then begin 
to interact with each other for a limited time period, which is the  theta cycle, 
and excitation is spread to connected neurons: within each theta cycle, multiple 
(7 to 9) assemblies interact with each other.

What is the functional signi� cance of these interactions? For hippocam-
pal cell pairs with overlapping place � elds, the  temporal structure of spike 
trains within a theta cycle re� ects the distances between the place � eld centers 
and their sequential activation during the run (Skaggs et al. 1996; Dragoi and 
Buzsáki 2006). Within the theta cycle, the relative timing of neuronal spikes 
re� ects the upcoming sequence of locations in the path of the rat, with larg-
er time lags representing larger distances. These cross-neuronal time delays 
are independent of the running speed of the rat and are not affected by other 
environmental manipulations (Diba and Buzsáki 2008). The cross-neuronal 
 temporal lags are speci� c to theta dynamics because the same sequences can 
be observed during SPWs but with shorter interneuron time delays (Diba and 
Buzsáki 2007).

The “� xed” temporal delays driven by theta dynamics have consequences 
for mechanisms of hippocampal coding. The � rst is a sigmoid relationship be-
tween within-theta time lags and distance representations, because the natural 
upper limit of distance coding by theta-scale time lags is the duration of the 
theta cycle (120–150 ms). As a result, upcoming locations that are more proxi-
mal are given better representation, with poorer resolution of locations in the 
distant future; distances larger than 50 cm are poorly resolved by neurons in 
the dorsal hippocampus because their expected temporal lags would otherwise 
exceed the duration of the theta cycle. Therefore, they fall on the plateau part 
of the sigmoid. Another consequence is that temporal resolution scales with the 
size of the place � eld; smaller place � elds provide temporal lags, which rep-
resent very � ne spatial resolution, whereas larger place � elds that encompass 
the enclosure simultaneously provide a much coarser distance representations 
(Figure 7.5). These multiscale representations take place simultaneously, and 
possibly scale along the septotemporal axis of the hippocampus (Maurer et al. 
2005; Kjelstrup et al. 2008). Assuming that locations can be regarded as analo-
gous to individual items in a memory buffer (Lisman and Idiart 1995; Dragoi 
and Buzsáki 2006), this temporal compression mechanism limits the “register 
capacity” for the number of items that can be stored within a single theta cy-
cle “ memory buffer.” By the same analogy, the sigmoid relationship suggests 
that episodic recall is high for the spatiotemporal conditions that surround a 
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recalled event, whereas the relationships among items representing the far past 
or far future, relative to the recalled event, are progressively less resolved.

How can the mechanism responsible for maintaining theta-scale time de-
lays be protected from � ring rate changes, environmental modi� cations, and 
other factors that constantly affect hippocampal neurons? A working model is 
illustrated in Figure 7.6. The simple hypothesis is that interneuron-mediated 
inhibition provides a “window of opportunity” during which a postsynaptic 
neuron may spike, according to its excitatory inputs. The timing of this win-
dow may be established by the combined effect of presynaptic excitatory activ-
ity and inhibition. Through recurrent and feedforward connections, the spiking 
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Figure 7.5 Sequence compression scales with place-� eld size. (a) Cell pairs are 
shown in groups of 100 (3200 pairs in total) with colors linked to the mean place-� eld 
size for the pairs; cf. (b) for corresponding values. Best linear � t is also depicted, il-
lustrating that a smaller place � eld shows � ner resolution but lower distance compres-
sion. Similarly, larger place � elds provide the majority of points representing larger 
distances. (b) The slope of the best-� t line (“ sequence compression slope”) decreases 
with increasing � eld-size.
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of interneurons (e.g., inh 2 in Figure 7.6) is tightly coupled to changes in the 
drive from the leading assembly (e.g., by neuron 1 in Figure 7.6), thus effec-
tively determining timing for the trailing assembly (represented by neuron 2), 
which is in turn coupled to other inhibitory partners, and so on. In short, the 
stability of time lags between neurons arises from the  theta network dynamics.

Using this hypothetical mechanism, let us consider the following paradox: 
Since nearly every place cell in the hippocampus oscillates faster than the on-
going LFP, how does the combined population generate a slower frequency 
output than its constituents? The answer lies in the strict temporal delays be-
tween active neurons. Consider 100 identical, partially overlapping,  place cell 

Figure 7.6  Microcircuit for temporal lag stability. While receiving excitatory input 
from unspeci� ed sources,  pyramidal cells (e.g., cell 1, red) are effectively inhibited 
by circuit interneurons (inh 1, red) and, in turn, drive other interneurons (inh 2, blue) 
that inhibit additional cells (e.g., cell 2), etc. In this � gure, the synaptic ef� cacy of the 
individual components is inversely proportional to the length of the connection arrow. 
For example, to produce an action potential, pyramidal cells integrate excitatory input 
over many sources, whereas a small amount of excitatory input is suf� cient to trigger a 
spike in an interneuron. Cells � re when excitation exceeds inhibition. The middle panel 
depicts the excitatory drives for the two interdependent place cells 1 and 2 (colors cor-
respond) on a 2-m long track, with inhibition for each superimposed with a dashed line. 
Excitatory and inhibitory input to cell 2 are delayed relative to excitatory and inhibitory 
input to cell 1, resulting in net time lag dt. When the track length is shortened (1 m-long; 
bottom), the rise in excitatory drives occurs over a shorter duration (i.e., fewer theta 
cycles), and the place � elds are shifted relative to each other. Inhibition to cell 2 (e.g., 
inh 2) is strongly coupled to the spiking of the earlier � ring place-cell (1), and in our 
model, oscillates at this cell’s frequency (and shows phase-precession). Hence the time 
lag of the trailing cell (2) is maintained relative to that of the leading cell (1), with the 
consequence that distance representations of the two neurons scale with the size of the 
apparatus (Diba and Buzsáki 2008). A similar mechanism may be responsible for the 
stable time lags across neurons at different travel velocities. 
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assemblies that evolve while the rat navigates. With zero time delays between 
the neurons, the population frequency would have to be identical to the fre-
quency of place cells. However, the insertion of temporal lags between cell 
pairs, in proportion to their distance representations of the environment, can 
slow the momentary population � ring frequency. In this scenario, it turns out 
that the mean population frequency, also re� ected by the LFP, is equal to the 
mean of the oscillation frequencies of the individual neurons plus the mean 
time lag (Geisler and Buzsáki, unpublished). In summary, the period of   theta 
oscillations is largely determined by the time lags between active neuron pairs. 
Conversely, the ensuing theta dynamics constrains the propagation of activ-
ity across neurons. Such “bidirectional causation” is the essence of emerging 
dynamics of interacting neurons, and these constraints determine the speed of 
state-dependent computations in hippocampal circuits.

Conclusion

Our discussion on the temporal dynamics of networks was largely con� ned to 
hippocampal networks, which reside in the dorsal (septal) part of the structure. 
Although recent � ndings point to quantitative differences in place representa-
tions of more ventral hippocampal neurons (Maurer et al. 2005; Kjelstrup et al. 
2008), the mechanisms discussed above may apply to the entire hippocampus. 
Since the hippocampal theta oscillations are coherent along the entire septo-
temporal axis of the hippocampus, they may serve as a temporal integration 
mechanism for combining local computations taking place at all segments and 
representing both spatial and nonspatial information. Furthermore, the com-
putational principles discussed for the operations of the hippocampal circuits 
likely apply to other systems with similar forms of oscillatory dynamics.
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What Are the Local Circuit 
Design Features Concerned 

with Coordinating Rhythms?
Miles A. Whittington, Nancy J. Kopell, 

and Roger D. Traub

Abstract

This chapter outlines some of the basic features of neuronal circuits that underlie the 
rich diversity of population rhythms that can be generated in very small regions of 
cortex. Areas of cortex less than a millimeter square can generate rhythms from slow 
waves up to very fast oscillations using combinations of intrinsic neuronal properties 
combined with chemical and electrical  synaptic  connectivity pro� les. Multiple con-
currently generated rhythms can display many different forms of coordination: While 
mechanisms underlying coordination within individual frequency bands may play a 
role across frequencies, it is becoming clear that novel modes of coordination, such as 
concatenation, may also take place. The number of different neocortical rhythms ca-
pable of being generated so far shows a � xed relationship in the spectral domain. Build-
ing lower frequencies through concatenation of coexistent higher frequencies, across 
the EEG frequency range, provides a putative way to reconcile the existence of discrete 
frequency bands with the power law continuum observed in long-term EEG recordings.

Rhythm Generation in Cortex

The mammalian cortex in situ generates rhythmic activity  over a very broad 
range of frequencies. The majority of these frequencies are capable of being 
replicated in vitro in small slices of tissue containing all layers of cortex with 
dimensions down to less than 1 mm. Rhythmic bistability in neuronal mem-
brane potential, corresponding to repetitive periods of population activity and 
quiescence, occurs at frequencies around and below 0.1 Hz spontaneously in 
the absence of external excitation or neuromodulation. At the other end of the 
spectrum, neocortical tissue excited with glutamatergic or cholinergic receptor 
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activation generates transient population frequencies up to 400 Hz. Analysis 
of long-term local � eld potential, far-� eld potential, and extracranial EEG 
recordings suggest a continuum of spectral activity between these extremes, 
typically with a power law relationship between spectral energy and frequency. 
However, carefully controlled cognitive and motor-behavioral tasks, and spe-
ci�c patterns of cortical activation and neuromodulation, reveal a range of dis-
crete frequency bands in vivo and in vitro respectively. In older cortex, with one 
main layer of principal cells, these discrete rhythms exhibit an interrelationship 
such that modal frequencies have a ratio approximating to the natural log (e, 
c.2.7; Buzsáki and Draguhn 2004). In polymodal areas of neocortex, with at 
least two main principal cell layers (crudely, deep and super� cial pyramidal 
cells), approximately twice as many peaks per spectral band are seen with ratio 
near e0.5 (c.1.6; Roopun, Kramer et al. 2008). In the latter case, combination 
of such sets of frequencies can produce spectra that approximate very well to 
the power law relationships seen in long-term in vivo recordings (Figure 8.1).

The apparent correlation between the number of different populations of 
principal cells and the number of discrete frequency bands seen, and the abil-
ity to reproduce a huge range of these frequency bands in very small sections 
of cortex, suggests that the majority of basic rhythm-generating properties 
of neuronal populations may be held within local circuits. This counters the 
notion that slower and slower frequencies are generated as emergent prop-
erties of larger and larger networks. Instead, it supports the idea proposed 
by Mountcastle (1978) that the neocortex is functionally and anatomically 
modular, down to the scale of individual columns. Is this, however, feasible? 
Columns, of which there are many functional subtypes, each contain neurons 
of many different types based on morphology, spiking patterns, synaptic tar-
gets, and immunocytochemical signature. There are over seven different types 
of principal cells and many more different subtypes of  inhibitory interneurons 
(the primary coordinators of local circuit behavior). Thus, if speci� c rhythms 
emerge as a property of speci� c local circuits containing different, intercon-
nected principal cells and interneurons, then a great many different rhythms are 
possible in such a small region. Next we discuss some of the better-understood 
properties of local circuits and their member neurons that in� uence network 
rhythm generation and coordination.

Which Features of Local Circuits Generate Rhythms?

Even  the simplest local  circuits have many properties that favor rhythm gen-
eration. While many of these are often found to operate synergistically, it is 
worth considering them separately to get a sense of why rhythms are so ubiq-
uitous a feature of electrical activity in cortical resting state and response to 
input. In addition, the local circuit mechanisms that generate rhythms are often 
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Figure 8.1�Multiple discrete frequencies of local circuit rhythm: relation to long-term 
EEG spectra. (a) Multiple modal peak frequencies of persistent rhythms generated in 
isolated neocortex in vitro. All rhythms were generated in secondary somatosensory 
(parietal) cortical slices maintained in arti� cial cerebrospinal � uid (aCSF). Rhythms 
were recorded as local � eld potentials (LFPs); resulting spectra (from 60 s epochs of 
data) are plotted with powers normalized to modal peak. In control slices, �1 (~1.5 
Hz) rhythms were generated spontaneously after > 1 h incubation in normal aCSF; �2 
(2–3 Hz) rhythms were generated by bath application of cholinergic agonist carbachol 
(2 �M). Both delta rhythms had maximal amplitudes in  layer 5. In the presence of the 
glutamatergic receptor agonist kainate (10 nM), � (6–8 Hz) rhythms were recorded in 
 layers 2/3 and occurred concurrently with �2 rhythms in layer 5. Following transient 
activation of cortex by pressure ejection of glutamate, � (~10 Hz) rhythms were gener-
ated. Peak amplitude was in layer 5 and was present concurrently with � and 	1 rhythms 
in layers 2/3 and layer 4, respectively. Following tonic activation by kainate (400 nM), 
	1 (13–17 Hz) rhythms were generated alone by partial blockade of AMPA/kainate 
receptors; 	2 (22–27 Hz) rhythms were generated in layer 5 by kainate (400 nM) and 
always occurred concurrently with 
1 (30–50 Hz) rhythms in layers 2/3 in this brain 
region. Also generated by kainate (400 nM) were 
2 (50–80 Hz) rhythms, but these 
occurred in layer 5 in aCSF with reduced chloride ion concentration. Additional peak 
frequencies at � 100 Hz are generated by brief, intense periods of excitation but rarely 
met the criteria for persistence and thus are not considered here. (b) Similar ratios of ad-
jacent frequency bands can be generated by  concatenation of an initial Gaussian white 
noise source with mean frequency 200 Hz and standard deviation 10% of mean. Lower 
frequencies were generated from this source by iterating period n = period n–1 + period 
n–2. (c) By transforming the initial noisy signal into a set of periods (1000 consecutive 
period widths) iterative concatenation of this set, keeping all previous iteration sums, a 
power law spectrum (“synthetic,” black line) results which closely resembles that from 
10 minutes of human temporal cortical  ECoG data (“ECoG,” red line).
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also those mechanisms manipulated in larger-scale networks to coordinate 
rhythms spatially and spectrally.

Intrinsic Properties

Individual neurons often show subthreshold membrane potential oscillations. 
In some cases, these oscillations occur over a narrow range of frequencies, 
such as for inferior olivary neurons, but more often the frequency is deter-
mined, to some extent, by background mean membrane potential (Hutcheon 
and Yarom 2000). Subthreshold oscillations occur mainly at the lower end of 
the EEG spectrum. Frequencies around  delta, theta, and  alpha are most com-
mon but  oscillations within the beta band are also seen in neocortical pyrami-
dal cells. While these rhythms occur in the absence of action potential gen-
eration, they can precipitate spiking when neurons are close to sodium spike 
threshold. The resulting interaction between a subthreshold rhythm and all-
or-none spike generation results in mixed-mode oscillations that may lead to 
very robust, regular outputs from neurons in the absence of patterned input, or 
more complex oscillations on multiple timescales with exquisite sensitivity to 
individual intrinsic conductances (Krupa et al. 2008). They are also closely re-
lated to the phenomenon of resonance in neurons (Hutcheon and Yarom 2000). 
Here, intrinsic properties produce a highly selective frequency � lter for neu-
ronal inputs, effectively dictating in which local circuit rhythm a neuron may 
actively participate.

The intrinsic conductances that give rise to subthreshold oscillations are 
manyfold. In general at least two conductances are required, with at least par-
tially overlapping, but opposing membrane voltage sensitivities. If such pairs 
of conductances were instantaneously active, or both constantly active, then a 
stable equilibrium for membrane potential would be reached. However, with 
a temporal component—essentially the activation and inactivation/deactiva-
tion kinetics of the channels involved—the system “hunts” constantly for, but 
never reaches, a stable equilibrium state. The resulting oscillation, therefore, 
has a frequency related to the kinetics of the component conductances. Most 
commonly involved conductances include those generated by persistent so-
dium channels, low-threshold activated calcium channels, HCN channels, and 
a wide range of potassium channels. Of the latter, it is worth noting the  m-
current, which can “tune” frequencies of axonally generated rhythms (Roopun 
et al. 2006) and potassium channels, which are sensitive to the ATP content 
of neurons, allowing network rhythm generation to be linked to the metabolic 
state of the cortex (Cunningham et al. 2006).

Synaptic Excitation

In cortex, a proportion of principal neurons are locally coupled by excitatory 
synapses. While it is theoretically possible for such networks to generate local 
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rhythms alone, the occurrence of these excitatory connections locally is rather 
sparse. Estimates from paired principal cell recordings put   connectivity prob-
abilities between ca. 1:400 and ca. 1:40 per randomly sampled local cell pair. 
In addition, the pre- and postsynaptic properties of local excitatory synapses 
indicate this form of local communication is, for the most part, rather weak. 
Action potential-initiated presynaptic glutamate release probability is very low 
for single action potentials (but grows markedly for rapid trains), and post-
synaptic unitary events generate target neuron membrane potential changes 
of a fraction of a millivolt. Excitatory synapses are usually compartmentally 
localized on dendrites, with sometimes considerable electrotonic distances be-
tween synapse and cell soma, again making such activity a rather weak driver 
of local network rhythms. However, in certain situations the properties above 
can combine to produce strong local activity. In models of epiletiform activity, 
a preponderance for burst discharge generation favors glutamate release and 
temporal summation of dendritic excitatory postsynaptic events. This, coupled 
with lowered levels of inhibition to reduce postsynaptic voltage shunt can lead 
to overt, locally synchronous network bursting rhythms in the  theta to low  beta 
frequency ranges (Traub et al. 1987). Combinations of recurrent excitation 
and intrinsic conductances (above) are seen to generate very low (>1 Hz) fre-
quency rhythms in more physiological conditions. For example, temporal sum-
mation of background kainate receptor-mediated recurrent excitatory events 
can combine with intrinsic conductances to generate slow-wave oscillations in 
some cortical areas (Cunningham et al. 2006), a phenomenon recently termed 
“group pacemaking” when seen in central pattern-generating circuits.

Synaptic Inhibition

Synaptic inhibition is a critical, causal feature of rhythm generation in local 
networks for frequencies ranging from the theta to gamma range (~ 4–80 Hz). 
Local circuit interneurons are readily induced to �re by even extremely low 
levels of excitatory neuronal activity within a network. Differences between 
excitatory inputs to interneurons and to other principal cells may underlie this. 
Presynaptically, glutamate release occurs with a high probability, even for 
single action potentials reaching the terminal. The resulting unitary postsyn-
aptic responses are considerably larger than counterparts in principal cells and 
have much faster kinetics, which affords a high degree of temporal precision 
to interneuron activation. Coordinated recruitment of local interneurons is also 
common, with a high degree of recurrent synaptic inhibition and gap junction-
mediated excitation between interneurons of many different types observed. 
This, coupled with the enormous convergence of excitatory inputs to interneu-
rons and divergence of inhibitory outputs back to principal cells, provides an 
ideal substrate for the generation of locally synchronous population rhythms.

With synaptic inhibition-based rhythms, the frequency is set predominant-
ly by the kinetics of the inhibitory postsynaptic potentials onto participating 
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neurons. For  gamma  rhythms generated solely by tonic depolarization of in-
terneurons, it is the inhibitory postsynaptic potential between interneurons 
that sets the frequency. The size and kinetics of these events can support local 
population  rhythms from a frequency of ~30 Hz up to ~80 Hz, but not higher 
(Traub et al. 1996). Recent reports of cortical activity patterns with frequencies 
above this have labeled the rhythm “high  gamma.” This may be slightly mis-
leading as such rhythms cannot be supported by synaptic inhibition and clearly 
involve different network mechanisms (see below). Inhibition-based rhythms 
dependent on phasic-synaptic excitation of interneurons are more dependent 
on the kinetics and amplitude of inhibitory events onto principal cell periso-
matic compartments. As such, their frequency range tends to be lower (only 
going up to ~60 Hz), re� ecting the slower kinetics of this form of inhibition 
compared to recurrent interneuronal inhibition. Lower frequencies than gam-
ma can also be produced by inhibition in a manner that is also dependent on 
postsynaptic inhibitory event kinetics. Theta  rhythms depend on GABAergic 
inhibition to distal dendrites of principal cells. While the resulting inhibitory 
postsynaptic event at somata is broadened and slowed by cable properties of 
dendrites, it has also been shown that the dendritic synaptic current itself has 
much slower kinetics than those generated by perisomatic targeting interneu-
rons (Banks et al. 2000).

Gap Junctions

Local circuit rhythms occurring at frequencies faster than the conventional 
gamma band (“high gamma” VFO, “ripples”) may occur transiently associ-
ated with high frequency discharges in interneurons (Buzsáki et al. 1992), but 
appear to be generated primarily by nonchemical synaptic communication 
between neighboring principal cells when studied in vitro. In particular,  gap 
junctions between axonal compartments have been shown via dye coupling 
and electron microscopy (see Hamzei-Sichani et al. 2007) and can support 
very rapid transmission of action potentials from one axon to another. Sparse 
(>2 gap junctions per axon)  local  connectivity of this type generates rhythms 
up to several hundreds of Hertz, with period duration determined as a sta-
tistical property of the “random” network of coupled axons: the mean “path 
length.” These  very fast  oscillations (VFO) are often seen nested within slower 
rhythms: In  layer 5 neocortical neurons, gap-junctionally coupled axons gener-
ate very transient epochs of VFO which are organized into a beta2 frequency 
population rhythm by the intrinsic properties of individual axons (mainly the 
m-current). During persistent gamma rhythms, VFO is also seen nested within 
each gamma period and is the fundamental driving force behind such rhythms 
(Traub et al. 2003). VFO is also seen accompanying neocortical theta rhythms, 
alpha  rhythms, and even up states, suggesting that gap-junctionally coupled 
axonal networks may represent the primary source of “noise” used by local 
cortical circuits to generate rhythms.
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Which Features Are Involved in Dynamic Coordination?

Coordination within a Frequency Band

Synchronization, with near-zero millisecond delay, is a feature of spike gen-
eration in populations of neurons responding to patterned sensory input (Gray 
and Singer 1989). The occurrence of a set of neurons that, at least transiently, 
generate spikes at the same time is used as a de� nition of a  cell assembly—a 
subset of all active neurons in a population whose coordinated spike timing 
represents a central code for features in the sensorium.   Zero-phase synchrony 
among cortical neurons can be readily achieved if each neuron receives a pre-
cisely identical pattern of ascending input, but it is dif� cult to see how such 
an input can occur, at least for thalamocortical inputs, when the duration and 
onset kinetics of activation are relatively slow. In such a case the assumption 
is that synchrony is generated from properties of the cortical neuronal net-
work itself, yet how can this occur when direct connectivity between principal 
cells is far from 1:1 (see above), kinetics of such  connectivity are rather slow, 
and conduction delays between neurons are � nite and distributed over a broad 
range relative to the temporal precision observed? The key appears to be in 
the dominance of feedforward inhibitory neuronal activation in corticocortical 
connections. Here, both local and distal principal cell outputs can converge 
on single interneuron populations to generate temporally precise postsynaptic 
events which, in turn, can tightly control the timing of local principal cells. For 
these reasons it is perhaps not surprising that cortical rhythms during which 
synchrony is most readily observable are often inhibition-based (e.g.,  gamma 
and  beta   oscillations).

For gamma rhythms, the mechanisms that are perhaps best understood are 
those involving the coordination of activity in multiple, spatially separated 
neuronal populations. Consider a local gamma-generating circuit that com-
prise principal neurons and perisomatic targeting interneurons and provide a 
source of phasic,  GABAA receptor-mediated synaptic inhibition. Such a circuit 
controls the timing of principal cell spiking via simple, local feedback inhibi-
tion, effectively providing a window of opportunity for principal cell spike 
generation a few milliseconds wide every gamma period. Many such local 
circuits may exist independently in cortex in the absence of functional connec-
tivity between them, but such independence implies no � xed phase relation-
ship between spike timings for neurons in different local circuits (Figure 8.2a). 
However, with connectivity between separate local circuits, coordination of 
each gamma rhythm is readily observed. The key feature of such coupled net-
works that provides the mechanism for this coordination is  feedforward in-
hibition. Interneurons in a local circuit receive temporally precise excitatory 
synaptic input from both local and distal principal cells in such a manner that 
the phase difference, and conduction delay, between local circuits is effectively 
coded in the time difference between  spike doublets generated in one gamma 
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period—the � rst spike arising from local synaptic excitation, the second com-
ing from the distal  feedforward input (Figure 8.2b; Traub et al. 1996). 

The consequence of spike doublet generation is a compound inhibitory in-
put to principal cells, which effectively prolongs the gamma period during 
which spike doublets occur. For such a system to provide a means for principal 

Figure 8.2��Feedforward inhibition provides a substrate for long-range synchrony 
during  gamma rhythms. (a) At its most basic level, the local circuit gamma generator 
consists of reciprocal synaptic connections between principal neurons and interneurons. 
Principal neurons also have long-range axon collaterals that preferentially target distal 
interneurons. Without these, principal cell spiking in two such local circuits is not coor-
dinated. Scheme shows the pattern of interneuron and principal spiking for the left-hand 
local circuit compared to the principal spiking in the unconnected right hand circuit. 
(b) With functional long-range feedforward inhibition, interneurons receive excitatory 
inputs from both local and distal principal cell populations (de� ned by a common mean 
delay, illustrated as P1 and P2, respectively). This generates spike doublets and prolongs 
the period of inhibition projected to local principal cells. This prolonged period of in-
hibition causes phase delay and brings the two principal cell spikes into synchrony. (c) 
The above mechanism is exquisitely sensitive to the amplitude and kinetics of excit-
atory input onto fast spiking interneurons. Disruption of this with genetic manipulation 
of AMPA receptor subunits causes excessive spike generation in interneurons and con-
sequent disruption in long-range synchrony (Fuchs et al. 2001).
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cell spike times to converge on synchrony, the relationship between spike dou-
blet interval and period duration change has to be nonlinear. This nonlinearity 
is observed both experimentally and in computational models: The shorter the 
doublet interval, the smaller the second component of the principal cell–in-
hibitory synaptic event through basic paired pulse depression. If the time dif-
ference between distal and local inputs to an interneuron is very short, then 
the probability of generating the second spike in a doublet decreases owing 
to the kinetics of spike after hyperpolarizations in interneurons. This latter 
mechanism is suf� cient, alone, to induce synchrony with spike doublets in 
computational models. In addition, this method of “correction” for spike tim-
ing differences can only work when spike delays are less than ca. 20% of the 
period length. This implies that coordination of rhythms over longer conduc-
tion delays requires longer period widths (slower frequencies). A comparison 
of the synchronizing properties of inhibition-based gamma and  beta  rhythms 
has shown that beta rhythms are indeed more effective coordinators of activity 
across longer conduction delays for this very reason (Kopell et al. 2000). A 
prediction from this mechanism is that disruption of interneuronal spike dou-
blet generation should have a detrimental effect on coordination of gamma 
rhythms over distance. Such an effect is observed if the kinetics of excitatory 
inputs to interneurons is altered genetically (Figure 8.2c; Fuchs et al. 2001).

The mechanism described above links principal cell spike generation caus-
ally to the generation of coordinated gamma rhythms themselves. However, 
more recent evidence using powerful and elegant analysis of relative spike 
times has revealed that stable sequences of spikes can occur within the duration 
of the window of activity afforded by gamma rhythms (about 5 ms maximum). 
In the visual cortex, stable phase differences between spike times and the on-
going gamma rhythm correspond to the “goodness of � t” between stimulus 
presented and the orientation preference for individual cells (Fries et al. 2007). 
It is dif� cult to consider how such small but robust interspike intervals can be 
maintained using conventional models of  rhythm generation which involve 
orthodromic neuronal spike generation: Combinations of a stable population 
of rhythm and spike rate differences around the population frequency would 
lead to phase precession rather than stable phase differences, and heterogeneity 
in neuronal excitation amplitude and timing do not generate stable, non-zero 
phase differences—at least during gamma rhythms in hippocampus.

To generate robust phase differences in the order of a few milliseconds, 
a system is needed with network time constant of equivalent order or less. 
Such a system exists when considering gap junctional connectivity between 
principal cell axons (see above). Networks of interconnected axons generate 
rhythms with periods dictated by the network structure itself. Activity percolat-
ing through a randomly connected network has a mean path length: the average 
number of intermediate axons an action potential needs to “jump” across to 
travel from any given axon to another. Each “jump” takes a � nite time, ca. 0.25 
ms. The period of oscillation in such a system is therefore the mean path length 
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multiplied by this time constant.  Types of slower population rhythm exist in 
which such activity underlies the pattern of synaptic events observed (e.g., 
persistent gamma  rhythms and  beta2 rhythms in association cortex). During 
persistent gamma rhythms, principal cell spikes are predominantly antidromic, 
with activity originating directly in axons. The  temporal structure generated by 
such axonal network activity is directly observable in the compound excitatory 
synaptic events that recruit interneurons (Figure 8.3; Traub et al. 2003). An 
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Figure 8.3�Evidence for  nonsynaptic axo-axonic  connectivity underlying persistent 
gamma rhythms. (a) The underlying feature of local circuits that supports persistent 
 oscillations in the gamma and also beta2 band appears to involve direct, gap-junctional 
connectivity between axonal compartments of principal cells. Local axonal collater-
als form a sparsely interconnected network that allows action potentials to pass from 
one principal cell to another. (b) Anatomical evidence for this is far from equivocal. 
Time-lapsed dye- coupling images, however, show passage of dye from one axonal 
compartment to another in a nearby cell (left), and FRIL electronmicroscopy shows 
small-diameter gap junctions between hippocampal principal cell axons (right). At least 
some of the connections involved in these gap junctions are of the type cx36, shown 
by the anti-Cx36 immunogold beads (Hamzei-Sichani et al. 2007). (c) Computational 
modeling of random, locally connected axons from regular spiking pyramidal cells re-
produces many of the features of nonsynaptic communication underlying  VFO and 
gamma rhythms. Scheme shows a small part of a large network of axons demonstrating 
the pro� le of connectivity needed. (d) Such connectivity allows activity to percolate 
through the network, generating sequences of action potentials with short, but � nite, 
phase delays when seeded from the same source. Changing sources of initial action 
potentials also changes the pattern of phase delays, as observed in compound synaptic 
potentials to local circuit interneurons during gamma rhythms.
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additional consequence of such a mechanism is that stable, though brief, rela-
tive spike delays are readily generated, with the sequence of spike generation 
dictated by the network structure and the origin of the � rst spike in a sequence 
(Figure 8.3)—a simple,  nonsynaptic analog of  syn� re chains. While such a 
mechanism provides an attractive working hypothesis for very rapid spike se-
quences, during a slower rhythm it is not without problems. Spike propagation 
through axonal plexi is exquisitely sensitive to well-characterized synaptic ex-
citatory and inhibitory events, but requires that somatic action potentials be 
predominantly antidromically generated—something that runs counter to the 
conventional neuronal doctrine. 

Coordination between  Frequency Bands

In addition to coordination of rhythms of the same  frequency, generated in 
spatially separate cortical regions, coordination of  rhythms of different fre-
quencies is also seen. This can occur in a single brain region or in multiple, 
interconnected regions, and takes a variety of forms. One of the most com-
monly observed interactions between frequencies is the amplitude modulation 
of a higher frequency coordinated with the phase of a lower frequency— nest-
ing. This is seen for multiple rhythms nested within neocortical  delta activity 
(Lakatos et al. 2005; Figure 8.4) but is currently best studied in  hippocampus, 
where VFO is seen nested within gamma rhythms which are, in turn, nested 
within  theta  rhythms.  

The local circuit features required for nesting of gamma within theta 
rhythms are understood at a basic level. Gamma rhythms are generated by 
reciprocal interaction between principal cells and fast-spiking, perisomatic-
targeting interneurons, whereas theta rhythms may occur from the coordinated 
output of a different subset of interneurons providing slower inhibition to dis-
tal dendritic compartments of principal cells. This compartmental separation 
of two inhibitory inputs allows a division of labor such that theta rhythms 
organize dendritic excitatory inputs in “packets” during a broad window of 
opportunity around 50–100 ms wide. Perisomatic gamma frequency inhibition 
then coordinates the output from these excitatory epochs at a � ner timescale. 
Evidence suggests that appropriate nesting of gamma and theta inputs, and 
thus timing bursts of gamma frequency input with excitatory input, is done 
by mutual interaction between the two interneuron subtypes: Theta frequency 
outputs from oriens-lacunosum molecular interneurons organize basket cell 
outputs into packets of spikes coincident with the period of maximal dendritic 
principal cell excitation. In turn, output from basket cells provides trains of 
inhibition to oriens-lacunosum molecular interneurons to activate an intrinsic 
h-current and thus time rebound spiking in these cells (Rotstein et al. 2005).

Other forms of interaction can be seen in phase synchrony measures across 
frequency bands in cortex. Here synchrony is seen when the period length 
of one locally generated rhythm is an integer multiple of another locally 
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generated rhythm (Figure 8.4). Such a situation requires that outputs from at 
least one neuron be critical to both rhythm-generating circuits. Paired neuronal 
recordings in human cortex suggest that this is entirely feasible, with multiple 
delay times evident for a single neuron activation of a number of different, 
interconnected local neurons (Molnar et al. 2008). When period lengths for 
two or more local rhythms are closely—but not exactly—matched, variable 
phase relationships may occur. Rhythmic changes in phase relationship are 
seen between super� cial and deep neocortical laminae-generating gamma and 
beta2 frequency rhythms, respectively. Here, the pattern of phase change is de-
termined by the trigonometric identity relating the two coexistent frequencies 
(Roopun, Cunningham et al. 2008; Figure 8.4).

This latter example of coordination of  rhythms between different local cor-
tical laminae reveals some aspects of the dynamic complexity inherent in a 
system with discrete sequences of rhythm, illustrated in Figure 8.1. In particu-
lar, with the ratio of adjacent frequencies seen in neocortex (ca. 1.6), the rate of 
phase change seen between two adjacent rhythms in the sequence corresponds 
to the frequency of the next rhythm in the sequence. For example, super� cial 
gamma rhythms and deep beta2 rhythms in parietal cortex generate a phase re-
lationship that cycles at beta1 frequencies (Figure 8.5a). What is also apparent 

Figure 8.4�Common signatures for cross-frequency coordination. (a) When frequen-
cy ratio (R) is irrational, the phase relationship between two concurrently generated 
frequencies is nonstationary. Traces show LFP activity in super� cial and deep cortical 
laminae during concurrent 
1 and 	2 rhythm expression (Roopun, Cunningham et al. 
2008). In this case, average synchrony between oscillators is near zero, with a peri-
odic change in instantaneous phase corresponding to the sum of the periods of the two 
rhythms shown. (b) When R is an integer, a stable phase difference can be seen between 
the two rhythms recorded from single or pairs of brain regions. The � gure shows band-
pass � ltered activity within the 
1 and � bands in MEG recordings, and the correspond-
ing plot of phase difference between the bands (modi� ed and reproduced with permis-
sion from Palva et al. 2005). (c) When R is relatively large, “ nesting” of coexpressed 
frequencies may occur. The phenomenon is observed as an amplitude modulation of 
one frequency relative to the phase of a lower frequency. The � gure shows the nesting 
of spontaneous 
1 rhythms within a concurrent � rhythm, and the concurrent amplitude 
modulation of the � rhythm by a coexistent �1 rhythm in macaque supragranular cortex. 
(Figure modi� ed and reproduced with permission from Lakatos et al. 2005).
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is that, following a period of concurrent gamma and beta2 rhythm generation, 
reduction in excitation to the cortex stabilizes the phase relationship between 
deep and super� cial layers, with the beta1 frequency now manifest directly in 
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Figure 8.5�Local circuit features underlying period concatenation. (a) Somatosensory 
cortical slices generate concurrent 
 and 	2 rhythms in super� cial (LII) and deep (LV) 
laminae, respectively. Reduction in excitation to cortex translates these two rhythms 
into a single 	1 frequency rhythm seen in all laminae. Generation of a 	1 rhythm from 
two preceding rhythms changes the phase relationship between laminae. With 
 and 
	2 rhythms, interlaminar phase difference is nonstable showing rapid, rhythmic phase 
precession repeating every ~60 ms. Emergence of 	1 oscillations stabilizes interlaminar 
phase relationship, with lag and lead times corresponding to the original 
 and 	2 period 
lengths (b) The 	1 rhythm is accompanied by a pattern of spike generation in neurons 
suggesting  concatenation: LV intrinsically bursting (IB) cells activate fast spiking (FS) 
interneurons with short latency. Super� cial pyramids (RS) spike on the rebound of an 
inhibitory postsynaptic potential (IPSP) from these FS cells and proceed to activate low 
threshold spiking (LTS) interneurons with short latency. Following a slow inhibitory 
synaptic event from LTS cells, IB cells rebound to spike again. (c) The sequence of con-
catenated spiking of FS and LTS cells can be seen in the inhibitory synaptic potential 
generation in individual LTS cells. In addition, the concatenation sequence of IB and 
RS cell spiking is also visible in this cell type.
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the raw local � eld potential in both layers (Figure 8.5b). Clues as to how this 
occurs come from the nature of this stable phase relationship: The periods of 
the original two rhythms (gamma and beta2 frequency) are observed in the 
cross correlation, suggesting that one period of the observed � eld potential 
beta1 rhythm is composed of sequential periods of the original gamma and 
beta2 oscillations. In other words, the two rhythms now have concatenated 
periods, with the simple sum of the two original periods corresponding to the 
new beta1 rhythm generated by reduced excitatory drive.

Two features of the local neocortical network appear vital in facilitating 
this concatenation process. First, as the degree of excitation of cortical neurons 
needs to be reduced to see this phenomenon, there is insuf� cient tonic drive 
to principal cells to sustain spontaneous action potential generation. Instead, 
spikes are generated through rebound excitation mediated by activation of an 
intrinsic conductance, Ih (Kramer et al. 2008). Second, interneurons must still 
be active to provide the hyperpolarization required to bring membrane po-
tential of principal cells down to levels where Ih can participate in rebound 
depolarizations. Two subtypes of interneuron are required for the coordina-
tion of super� cial and deep layer local circuits to generate the concatenation 
sequence. First, burst � ring in layer 5 principal cells activates super� cial fast-
spiking interneurons. These interneurons provide a brief inhibitory postsyn-
aptic potential to super� cial principal cells (as they would do during gamma 
rhythms) inducing a rebound action potential thereafter. This super� cial princi-
pal cell output is suf� cient to activate the second interneuron subtype involved: 
low threshold spiking cells. Output from these interneurons target dendrites 
of principal cells, producing a slower inhibitory postsynaptic potential which 
causes rebound spiking approximately one beta2 period later (Figure 8.5c). 
Thus, as seen for coordination of gamma rhythms alone, both interneurons and 
intrinsic neuronal properties also combine to provide a mechanism for coordi-
nation of rhythms at different frequencies.

Why Have Dynamic Coordination of Rhythms?

The role of dynamic coordination within a frequency band has been highlight-
ed particularly well for gamma and beta  rhythms with respect to cognition 
and motor control, respectively. In each case, the key feature of the rhythm is 
that it temporally coordinates �ring patterns of neurons to provide “windows 
of opportunity” for coactivation. The phase relationship between a rhythm at 
two spatially separate sites governs the relative timing of local activity at one 
site and distal synaptic inputs from the other. Such a relationship powerfully 
modulates the ability of one site to interact with the other and controls the de-
gree of synaptic plasticity at each site, thus also in�uencing future interactions. 
Therefore, the degree of coherence of rhythms (whether �eld potentials or 
spike trains) has been shown to signal the degree of “communication” between 
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structures: a large-scale network property with documented behavioral corre-
lates (e.g., Baker 2007; Fries 2005). In addition, even small changes  in mecha-
nisms underlying such interactions may correlate with underlying pathology in 
psychiatric illness (e.g., Phillips and Silverstein 2003; Roopun, Cunningham 
et al. 2008). Whether we can apply that which we have learned from such 
studies to coordination across different coexistent frequency bands remains to 
be elucidated.

The observation of multiple discrete frequencies in neocortex suggests a 
possible general scheme of rhythm generation where different “frequency 
channels” are used to process different forms of information. However, thus 
far this has been observed mainly in association cortex, and the in vitro experi-
mental models used provided a highly reduced and stable rhythm-generating 
environment. Transient, as opposed to persistent, cortical drive generates a 
broad range of frequencies, and thalamic—and external sensory—involvement 
in cortical function also generates variable frequencies. For example, thalamo-
cortical spindle oscillations may vary in frequency from within the  delta band 
up to beta frequencies, variable whisking frequency (around the theta/alpha 
bands) can be matched by oscillations in super� cial barrel cortex, and cortical 
theta rhythms may be variably paced by the sniff cycle in rodents. In addition, 
frequencies of network rhythm can be observed in cortical regions other than 
association areas that do not � t the concatenation sequence.  Gamma  rhythms 
in primary, auditory, and visual cortices have different frequencies which do 
not directly correspond to that seen in parietal cortex, and entorhinal cortex 
can generate two gamma rhythms through different local circuits, only one of 
which is frequency-matched to the gamma rhythms seen in association cortex.

Questions remain: Are different discrete frequencies, and their coordination 
patterns, of any importance to cortical function? Do they just represent a very 
speci� c activity state of cortex whose dynamic signature we can record and 
recognize? Are they purely epiphenomenal? Do they form the substrate for all 
higher-order dynamics in brain? Given their overt expression in isolated, per-
sistently oscillating association cortex, concatenated sequences of frequency 
bands may represent a spectral baseline upon which polymodal sensory and 
neuromodulatory in� uences may act. The functional signi� cance of the ratio 
between multiple frequencies illustrated here for gamma and beta rhythms is 
not yet understood for neuroscience, though it has been much discussed in 
the context of other natural systems. In the current context, this ratio fosters 
minimal interference between coexistent frequencies, something that could not 
be relied upon in a system composed of multiple, continually variable rhythm 
generators. It has been proposed that sensory information may be handled more 
ef� ciently if it is processed along multiple “channels” with differing temporal 
scales (Wiskott and Sejnowski 2002). For example, evidence for the segrega-
tion of sensory information into different “frequency channels” is apparent 
from studies examining how different levels of detail in the visual � eld are pro-
cessed (Smith et al. 2006). In this study, perception based on processing coarse 
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level features occurred at theta frequencies, whereas perception of objects re-
quiring more detailed features was associated with a faster, beta frequency 
rhythm—an observation which � ts with the decrease in precision of tuning 
curves for visual cortical neurons with decreased spike frequencies. A ratio 
of ca. 1.6 between coexpressed frequencies may permit many “channels” for 
information processing to coexist with minimal temporal interference (multi-
plexing). In addition, a framework of discrete network frequencies, as opposed 
to a continuum of oscillation states, better matches the discrete anatomical 
organization of networks in neocortex into hierarchies and clusters (Sporns et 
al. 2004).

An additional advantage of coordination between discrete frequency bands 
is that the cortex can perform “simple math” to combine information held in 
different “frequency channels” (i.e., the concatenation process highlighted 
above). Successive concatenation steps are feasible with the ratio of discrete 
frequencies observed in association cortex. Thus information processed at 
gamma and beta2 frequencies may combine into a beta1 frequency code. This 
code may coordinate with other regions oscillating at beta2 frequencies to gen-
erate an  alpha frequency and so on. As the concatenation process required for 
this implies the generation of speci� c phase relationships between component 
local circuits, multiple higher frequencies may then be “packed,” albeit crude-
ly, into a single lower frequency rhythm and unpacked for further processing at 
a later stage. For example, the relationship between  delta  rhythms and higher 
frequency components during sensory processing (e.g., Lakatos et al. 2005) 
suggests that during  slow-wave sleep, subsequent delta rhythm generation may 
provide a substrate to replay coordinated multiple frequencies associated with 
previous sensory events.

Summary

The association between cortical  rhythm generation and cortical function 
is strong for many aspects of sensory processing (particularly with gamma 
rhythms) and motor control ( beta  rhythms). The mechanisms of rhythm gen-
eration, per se, not only provide a substrate for temporal control of neuronal 
spike �ring but are also labile to the pattern and degree of spiking of principal 
cells in local and spatially separate circuits. Thus, a combination of intrinsic, 
chemical, and electrical synaptic properties of neurons and their resulting local 
networks provides a powerful but highly labile means by which to translate 
cortical inputs and outputs into a temporal code based on principal cell spike 
patterns. What is becoming increasingly clear is that even very small local 
circuits in cortex have suf�ciently diverse features to generate many network 
rhythms concurrently. The major challenges arising from this are to under-
stand the temporal patterns produced by multiple frequencies, the underlying 
mechanisms by which they interact, and the consequences for generations of 
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principal cell spike codes. Each challenge must be considered if we are to fur-
ther understand the cortical temporal landscape as it relates to the behavior of 
the whole organism.
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Introduction

What are the mechanisms underlying the emergence of mind from the activity 
of groups of neurons? This is a dif� cult question that has to be addressed at 
many levels of neural organization, all of which need to be integrated. The fol-
lowing discussion of the set of neural mechanisms, neural activity patterns, and 
animal behaviors sketches a few simple, but general and robust, neural mecha-
nisms at all the different levels ranging from synapses to neurons, to networks 
and behavior, and is illustrated using experimental observations primarily from 
cortical and hippocampal activity patterns during behavior. The focus is on a 
few key mechanisms such as energy-ef� cient  sparse codes of mental represen-
tations, need for synchrony among sparse codes for information transmission, 
and the contribution of recurrent connections between excitatory and inhibi-
tory neurons in generating synchronous activity, oscillations, and competition 
among networks to facilitate fast and � exible behavior.

At the level of the mind, animals can perceive different components of a 
rapidly changing natural scene such as luminance, contrast, local features (e.g., 
lines), and global features (e.g., shapes). Similarly, when an animal navigates 
in the world, neurons can � exibly represent the position of the animal in a 
given environment, the composition of the environment, the head direction, the 
running speed, etc. These mental representations of the world are � exible and 
dynamic, determined and modulated by a range of environmental, behavioral, 
and neural parameters.

What are the mechanisms by which the brain generates these � exible men-
tal representations? How do these mental representations across different brain 
regions interact to generate perception and decision making?
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What Is the Right Anatomical Level of Investigation?

The � exible behaviors outlined above depend on common features of the neu-
roanatomical substrates underlying these mental representations. Historically, 
models of cortical circuits have been designed to capture a speci� c feature of 
the experimental data. An alternative strategy that leads to a “predictive  con-
nectivity” starts with the assumption that there is a basic (“ canonical”)  circuit 
common across the entire neocortex (see Figure 9.1). This assumption justi� es 
the use of the rich cache of structure, function, and neurochemistry to build 
more biologically realistic models. The models can then be challenged to pro-
vide an explanation of cortical activity patterns. To the extent that the simula-
tions are successful, the model can quantitatively predict the connectivity pat-
tern of the circuits in that area. The ability to test a prediction about structure 
is a radical departure from the traditional descriptive and anatomical methods 
of circuit analysis. In combination with new tools for tracing pathways and 
combining structure with function, this predictive structural modeling will not 
only greatly accelerate circuit analysis in neocortex, but will provide a far more 
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Figure 9.1 (a) Canonical circuit of neocortex. Three populations of neurons interact: 
the inhibitory, GABAergic population indicated by smooth cells; the excitatory popu-
lation by a super� cial layer population (P2+3 (4)); and a deep layer population (P5 + 
6). The connections between them are indicated by edges and arrows. The functional 
weights of the connections are indicated by the thickness of the edges. (b) Graph of the 
dominant interactions between signi� cant excitatory cell types in neocortex and their 
subcortical relations. The nodes of the graph are organized spatially; vertical dimension 
corresponds to the layers of cortex and horizontal to its lateral extent. Edges and arrows 
indicate the relations between excitatory neurons (P: pyramidal) in a local patch of neo-
cortex, which are essentially those described originally by Gilbert and Wiesel (1983) 
and Gilbert (1983) for visual cortex. Thin edges indicate excitatory connections to and 
from subcortical structures and inter-areal connections. Thal:  thalamus; Sub: other sub-
cortical structures, such as the basal ganglia.
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comprehensive and synthetic explanation of the computational strategies used 
in different cortical areas.

There are several common features of cortical anatomy shared across many 
brain regions. The  neocortex is organized in a number of layers and columns. 
Major elements of the  canonical cortical  microcircuit of a column have been 
well described. For example, the excitatory, pyramidal neurons within  layer 
2/3 in a neocortical column are recurrently connected, as are the neurons with-
in  layer 5/6. The thalamic inputs arrive primarily in  layer 4 whereas layers 
5 and 6 send the output of a cortical column to other brain areas. Further, 
synaptic inputs are exquisitely organized on the extensive pyramidal neuronal 
dendrites, which have nonlinear properties. Also, there are neuromodulatory 
inputs speci� c to different layers, which could play a key role in information 
processing, as will be discussed later.

In addition to many other features of the canonical cortical circuit, there 
is one common feature in all of these layers, namely the presence of a wide 
variety of GABAergic inhibitory interneurons. While these inhibitory neu-
rons comprise only about 20% of the neural population, they strongly control 
cortical activity because  of their recurrent connections to excitatory neurons. 
Inhibitory synapses are often found near the soma, which can in� uence all ex-
citatory inputs � owing from the dendrites to soma. Further, not only are the ex-
citatory neurons recurrently connected to each other within and across layers, 
so are the inhibitory neurons. Such recurrently connected  excitatory-inhibitory 
networks (denoted E-I networks) are ubiquitous: They are found not only in 
most parts of neocortex and hippocampus, but in many other structures as well.

In addition, cortical circuits receive powerful neuromodulatory inputs. 
Monoamine  neuromodulators dopamine, norepinephrine, and serotonin are 
released by cells in discrete nuclei in the  brainstem and midbrain that project 
heavily to basal ganglia and cortical regions. Most psychotherapeutic and psy-
choactive drugs, which have profound effects on cognition, act on receptors of 
monoamines. These include antidepressant and antipsychotic drugs as well as 
hallucinogens and stimulants such as amphetamine, cocaine, and methylphe-
nidate. This suggests that monoamines are a critical component of neuronal 
machinery underlying perception and complex behaviors. The topography of 
their projections to cortical regions, as well as their targeted receptors, is quite 
diverse. For example, dopamine projections tend to be heavier to deeper corti-
cal layers whereas norepinephrine projections are heavy in super� cial layers. 
The receptor type and the signal transduction mechanisms used by these neuro-
modulators are diverse, with the exception of one of the subtypes of serotonin 
receptors—G-protein coupled receptors. The localization of these receptors is 
also specialized. For example, some subtypes of serotonin receptors are pri-
marily localized on GABA interneurons. In addition, monoamine receptors, 
especially the dopamine receptors, are mostly localized extrasynaptically, sug-
gesting that they produce slow and somewhat sustained effects on the state of 
cortical microenvironments. In the case of dopamine, the density of dopamine 
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transporters in cortical areas is sparse and thus the release of dopamine has the 
capacity to diffuse away from presynaptic sites and act more diffusely.

For generality, the following discussion will be focused on how generic 
E-I networks process information and how  neuromodulators in� uence the pro-
cess, keeping in mind that this is a simpli� cation. The precise details, such as 
various intrinsic properties of the different cell types, their dendritic geometry, 
and the exact connectivity patterns within and across cortical columns, would 
need to be investigated in the future to understand the neuroanatomical basis 
of perception. The goal is to probe the system at progressively more detailed 
biological levels, while deciphering the emergent properties of the system at 
each level, which can be robustly tested both experimentally and theoretically.

How Do E-I Neural Networks Oscillate?

Converging evidence suggests that the E-I network is balanced; that is, the 
total amount of excitation and inhibition are comparable most of the time, 
even though the total amount of activity can vary over a wide range. In the 
absence of stimuli, under most conditions, cortical neurons are active at a low 
rate with an ensemble average of about 0.1 Hz, which varies systematically 
across layers. When stimuli arrive, a small fraction of the excitatory stimu-
lus-responsive neurons increase their instantaneous �ring rates to 10 or even 
100 Hz. This increased activation of pyramidal neurons drives the feedback 
inhibitory neurons, which in turn brie�y shut down the pyramidal neurons. 
This reduces the excitatory drive onto inhibitory interneurons which generates 
release from inhibition synchronously across a number of pyramidal neurons. 
Consequently, pyramidal neurons increase their spiking activity in synchrony. 
A key parameter governing the frequency of such E-I network synchronized 
oscillations is the time constant of the inhibitory  GABAA receptors of 10–30 
ms, resulting in about 30–100 Hz gamma frequency  oscillations. Thus, oscilla-
tions in the gamma range can be a signature of cortical activation. Notably, this 
simple description for generating  gamma  oscillations applies only to excitatory 
neurons connected recurrently to inhibitory ones. The additional recurrent con-
nections within the populations of neurons of the same type would profoundly 
in�uence the strength and frequency of oscillations.  Synchronization of oscil-
lations across different E-I networks is another, even more complex process.

Thus, in a simple scenario, stimulus-driven elevation in the �ring of ex-
citatory neurons can have two concurrent effects: (a) elevated �ring of the 
excitatory and inhibitory neurons, and (b) synchronized oscillations. Notably, 
both the oscillation frequencies and the degree of synchronicity between oscil-
lations in�uence neural information processing.

It is important to discuss the following four points: the range of oscillation 
frequencies, alternative mechanisms for generating oscillations, mechanisms 
that modulate oscillation frequency, and synchrony without oscillations.
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Oscillations with frequencies ranging from 0.1–200 Hz have been common-
ly observed in several neocortical areas as well as in the hippocampus and the 
olfactory system. Here, the focus is on oscillations that occur on the timescales 
relevant for processing natural stimuli (i.e., less than about half a second), so 
that they can modulate neural processing. This means that the focus will be 
on frequencies greater than about 2 Hz. Synchronized oscillations of a variety 
of frequencies appear in numerous brain regions during  perception,  attention, 
working memory, motor planning,  sleep,  epilepsy and  Parkinson’s disease. For 
example, 4–12 Hz   theta oscillations are prominent in the rodent and primate 
hippocampus during spatial exploration. They have been reported in visual, 
parietal, and prefrontal cortices during maintenance of information in working 
memory. Somewhat higher frequencies, 10–30 Hz or beta frequency  oscilla-
tions, have been reported in the visual and motor cortices. The 40–120 Hz 
gamma  oscillations are induced by visual stimuli in numerous visual cortical 
areas and  prefrontal cortex, and they also occur in the hippocampus. In addi-
tion, bursts of 140–250 Hz ripple oscillations occur in the hippocampus during 
quiet wakefulness. The focus here is on the theta and gamma oscillations that 
appear in the neocortex and hippocampus during cognitive tasks.

The E-I network is not the only mechanism that can generate synchronized 
oscillations. Neurons are endowed with a variety of conductances and intrinsic 
mechanisms which can also make them respond rhythmically when a � xed 
amount of current or neuromodulators are applied, even when isolated from 
a network.

The key issue is: How do groups of oscillating neurons get synchronized? 
Invariably, this is achieved through their  coupling with the rest of the network. 
For example, neurons in the reticular nucleus of  thalamus oscillate in isola-
tion, whereas these oscillations are synchronized through coupling between 
these neurons directly or through the thalamocortical loop. This mechanism is 
thought to  generate  sleep spindles. Similarly, septal neurons oscillate in isola-
tion and are likely synchronized by their recurrent connection to the hippo-
campus, resulting in synchronous theta oscillations. Finally, even when the 
E-I network in a cortical column oscillates at gamma frequency, an important 
question is: How do  oscillations of different cortical columns  synchronize? In 
all these cases, further questions arise: How do these oscillators respond to a 
stimulus? Does an excitatory spike from another oscillator speed up the sub-
sequent spike from a given oscillator or delay it? In other words, how do the 
oscillations change as a function of the phase at which inputs arrive from other 
oscillators? Thus, it is important to study how oscillations change as a function 
of the phase at which inputs arrive. Such dependence is called a  phase resetting 
curve and has been investigated for a variety of physical and neural systems.

The frequency of neural oscillations can be modulated by several means. 
For example, neuromodulators can generate a threefold change in the effec-
tive time constant of  GABAA receptors, resulting in a concomitant change in 
the frequency of gamma oscillations. Further, cholinergic levels alter spike 
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frequency adaptation of pyramidal neurons, which would in� uence the E-I 
balance and spike timing in an E-I network. The levels of neuromodulators 
change with behavioral state and attention, resulting in state-dependent modu-
lation of amplitude, power, and synchrony of neural oscillations. For example, 
neuromodulators can raise the membrane potential of neurons. This can make 
it easier for the neurons to respond to a small amount of stimulation, and may 
make the E-I network more likely to oscillate.

Finally, two important features of  oscillations need to be distinguished: 
synchrony and rhythmicity. Synchrony can occur without rhythmicity and 
vice versa. In particular, synchronous activation of groups of neurons oc-
curs almost invariably, often without oscillations, when a strong stimulus is 
abruptly activated.

Neural synchrony is important for ef� cient and rapid transmission of infor-
mation between brain regions. For example, individual neurons in a cortical 
column receive information from only about 100 thalamic neurons. To inte-
grate this input and generate a spike, a cortical neuron typically needs to be 
depolarized by about 20 mV. Given the small amplitude (
1 mV) and short du-
ration (~10 ms) of cortical excitatory, AMPAR-mediated postsynaptic poten-
tials, this small amount of thalamic neurons can only activate an entire cortical 
column if the inputs are synchronized within a 10 ms time window.

There are several advantages of transmitting information using synchro-
nous activity. First, only a small number of active neurons, or a sparse code, is 
suf�cient to transmit information from one area to another, as opposed to asyn-
chronous transmission which would require more activity. Given that spike 
generation consumes energy, sparse synchronous codes are energy ef� cient. 
Second, compared to the asynchronous systems, synchronous  sparse codes can 
be brief, allowing the system to respond rapidly to changing stimuli. Finally, 
the synchrony-based codes allow the system to be � exible, requiring only small 
changes in the relative timings of groups of neurons to make one group drive 
the downstream neurons more effectively than through asynchronous codes.

Synchronous activity can be generated by two different mechanisms. 
Synchrony can be evoked by a transient stimulus or through dynamic interac-
tions between internal temporally organized activity patterns, such as oscil-
lations. The latter can generate synchronous activity across multiple cycles 
of oscillation. Subsequent sections will discuss computational advantages of 
this process.

Why Aren’t Gamma Oscillations Always 
Observed during Behavior?

The E-I network is ubiquitous, and synchronized oscillations are a likely mode 
of the E-I networks, yet there are instances in which oscillations are not ap-
parent. There are several reasons for this. It is often dif� cult to detect gamma 
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oscillations in the spike train of a single neuron because, even when modulated 
by gamma oscillations, neurons often do not spike at suf� ciently high rates 
to be active on every gamma cycle. Also, neurons often join the population 
rhythm for only brief epochs. This probabilistic � ring and rapidly changing 
neural assembly can appear to be nonrhythmic when analyzing the activity 
of single units in isolation. An alternative method for detecting synchronized 
oscillations of ensembles of neurons is through the measurement of the  lo-
cal � eld potential (LFP) and the analysis of its power spectrum. Notably, the 
power in the LFP spectrum decays inversely with the increase in frequency, 
which makes it more dif� cult to detect activity in the gamma band than in the 
lower frequencies. Here, analysis methods that compensate for this systematic 
tendency of power spectra can improve the ability to detect gamma oscilla-
tions. Further, the nature of the electrode used to measure the LFP in� uences 
the power of the measured oscillations: sharp, high-impedance electrodes in-
tegrate activity over a small pool of neurons, which may not be suf� cient to 
detect synchronous oscillations above the electrical noise. Signals can be im-
proved by using blunter electrodes, which additionally allow the detection of 
synchronous gamma activity in multiunit activity.

Presentation of visual stimuli within a receptive � eld, such as moving bars 
or gratings, are likely to generate synchronized gamma oscillations for at least 
several seconds in anesthetized animals. Similar oscillations may be more dif-
� cult to detect in behaving animals because the � xations last shorter as eyes 
move on average three times a second, moving the stimuli rapidly in and out 
of the receptive � elds. This may augment the � uctuations of neural activity, 
resulting in rapid � uctuation of gamma power and frequency, and making de-
tection by standard methods dif� cult. Time-frequency domain analyses may 
counter this problem by estimating the strength of gamma oscillations in small-
er, relatively unperturbed windows of time.

Additionally, one should measure the gamma activity in a region that is 
likely to be critically involved in processing of the presented stimulus such that 
neurons are likely to be driven at high rates. A more strongly driven E-I circuit 
is more likely to be accompanied by strong gamma oscillations.

Finally, as discussed above, an E-I circuit will not always generate syn-
chronous gamma oscillations. Nevertheless, information processing based on 
precise synchronization in sparse cortical circuits may take place. One possible 
reason is that synchronized activity patterns do not always follow limit-cycle 
attractors, characteristic of regular oscillations, but instead more irregular, 
maybe even chaotic   attractors. As a consequence of the more broadband nature 
of these processes, auto-correlograms often show the familiar, a few milli-
seconds wide center peak � anked by troughs but lack satellite peaks. Another 
possibility is that synchronous events could occur through syn� re chain mech-
anisms, which do not require regularly repeating activation of neurons. Both, 
chaotic  attractors and  syn� re chains represent internal mechanisms of synchro-
nization (induced  synchronization) as they do not require precise locking to 
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stimulus events. Finally, synchrony can also be evoked by an external input. 
For example, a � ashed visual stimulus or an auditory “click” can trigger syn-
chrony. In these cases the synchronous activity is locked in time to the stimulus 
and can be detected in a peri-stimulus time histogram (PSTH).

How Do Gamma Oscillations Interact with 
Lower Frequency Oscillations?

Generating gamma oscillations in an  E-I network requires a fair amount of 
activity, which costs energy and would be dif� cult to sustain continuously. One 
way to bring that network to an oscillatory state is by driving these neurons 
externally, as discussed above. Here, it is important to synchronize gamma 
oscillations across multiple interacting modules. This can be a dif� cult task 
when the modules are far apart, where the transmission delays, combined with 
complex  phase resetting curves, may make it dif� cult to generate synchrony. 
This raises the question: Are there other, transmission-delay independent ways 
to increase the long-range synchrony of gamma oscillations?

One possibility to make gamma oscillations more prominent is to suppress 
the lower frequency oscillations, thereby increasing the signal-to-noise ratio. 
The power spectra of neural activity show ~1/f dependence on frequency f, 
with a large amount of power in low frequency signals. A small suppression 
of low frequency signals can signi� cantly improve the relative contribution 
of the gamma power, making the gamma oscillations more effective in modu-
lating spiking activity. This enhancement of gamma ef� cacy induced by low 
frequency suppression has been reported in several sensory cortical areas dur-
ing attention and voluntary movements. Further, cortical activity is modulated 
by synchronous activity in the  delta band (0.5–3 Hz) during quiet wakefulness 
and sleep, and this low frequency activity disappears during active engagement 
in a task and in conjunction with an increase in the gamma power.

Mechanisms also exist under which lower frequency oscillations can fa-
cilitate synchronization of gamma power � uctuations across large distances. 
Neurons in the hippocampus oscillate synchronously at theta frequency and 
project to a majority of neocortical areas. During the phase of  theta  oscillation, 
in which the hippocampus is more active, it can activate the target neocortical 
neurons, thereby enabling gamma frequency oscillations in those neocortical 
areas. The reverse happens at the phases of theta oscillations where hippocam-
pal neurons are less active. Thus, the power of neocortical gamma oscillations 
would be modulated by the phase of hippocampal theta oscillations. This has 
been observed in behaving animals, including humans. Similarly, the phase of 
lower frequency oscillations modulates the power of neocortical gamma oscil-
lations during  slow-wave sleep, with higher gamma power appearing during 
the more depolarized phase of slow oscillations.
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Thus, lower frequency oscillations can modulate gamma oscillations in two 
different ways. First, removal of the incoherent lower frequency oscillations 
can enhance gamma power. Second, the coherent lower frequency oscillations 
can facilitate synchronous modulation of gamma power across neocortical ar-
eas. Neuromodulators can also in� uence this process, in some cases removing 
low frequency oscillations and in others, facilitating them. This suggests that 
some form of optimization may occur, adjusting the balance between low and 
high frequency oscillations to maximize the ef� cacy of information process-
ing. As a � rst step toward understanding how oscillations in� uence informa-
tion processing, this interaction is discussed at the level of single neurons, of 
ensembles of neurons, and ensembles of neuronal networks.

How Do Oscillations In� uence the Neural 
Representation at a Single Neuron Level?

Neurons respond in a graded fashion to sensory stimuli by altering their av-
erage activity levels: optimal stimuli evoke greater amount of activity than 
suboptimal stimuli. This is the classic  rate code. For example, hippocampal 
place cells change their �ring rates as a function of the spatial location of an 
animal, and neurons in the primary visual cortex change their mean � ring rates 
as a function of the orientation of a stimulus. Further, hippocampal place cell 
activity is modulated by synchronized theta rhythm, and visual cortical activity 
is modulated by gamma rhythm. Thus the neural responses are modulated by 
two very different forces: by stimuli anchored in physical space and by inter-
nally generated  oscillations. The former contain information about the external 
world, the latter about internal processing and timing. How do the stimulus-
driven responses interact with synchronized oscillations? Would such interac-
tion serve any purpose?

In the simplest scenario, the neuron will simply sum up the two inputs and 
generate a spike when this input exceeds a threshold. Thus, when the stimulus-
based input is low, the neuron would spike at only that phase of oscillation 
when the oscillatory input is high so that the total input is suf�cient to reach 
spike threshold. On the other hand, when the stimulus-evoked input is high, 
the neuron can spike even at the phase of oscillation when the oscillatory in-
put is minimal. Thus, an interaction between the input and oscillation gener-
ates a  phase code: When the inputs are strong, neurons will respond at every 
phase of oscillation; when the inputs are weak, neurons can respond only at 
the peak of oscillation when the oscillatory drive is maximal. At intermediate 
values of input, the outcome is a combination of phases. Thus, interaction be-
tween rate-coded inputs and synchronized oscillations would generate a phase-
coded output.

Such phase-code and rate-phase, or rate-latency transformation has been 
observed in the hippocampus and is called  phase precession (i.e., the phase of 
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theta  oscillation at which place cells spike varies systematically as a function 
of the animal’s position).  For example, on linear tracks, a place cell � res spikes 
near the trough of theta oscillation as the animal enters the place � eld, and the 
theta phase of spike precesses to lower values as the animal traverses farther 
in the place � eld.  Phase precession has been observed in several parts of the 
 entorhinal–hippocampal circuit, along with correlated changes in � ring rates. 
Recent studies have shown a mathematically similar phase code in the visual 
system where neurons spike at an earlier phase of gamma oscillation when 
driven maximally by the optimal stimulus, but at later phases of gamma oscil-
lation when driven by suboptimal stimuli. Further, rate-latency transformation 
can be detected in the structure of spatiotemporal receptive � elds of direction-
selective visual cortical neurons when probed using randomly � ashed bars. 
Similar measurements in other structures are likely to detect similar phase 
codes. Further, when slowly rotating oriented bars are presented to visual cor-
tex, they may generate gamma-phase progression, and so may single bars pass-
ing over a series of direction selective receptive � elds in area MT or V1.

These  phase codes have several computational and functional advantages. 
First, they enable the postsynaptic neuron to decode the stimulus parameters 
by simply measuring the phase of the oscillation at which the presynaptic neu-
ron spiked. This phase or latency is clearly de� ned by the period of the oscil-
lations. This is in contrast to a rate code where one has to specify arbitrarily 
the interval of time over which spike count has to be averaged to obtain an 
estimate of a rate code. Second, stimulus-evoked activation of groups of neu-
rons that represent stimuli in a sequence several seconds long would generate 
a compressed version of the stimulus sequence within an oscillation cycle due 
to the rate-phase transformation, possibly allowing these stimuli to be bound 
together and perceived as a chunk. Third, this temporally precise sequence of 
activation of neurons would facilitate the induction of spike timing-dependent 
plasticity, thereby generating a permanent record of the group of coactivated 
neurons in terms of the strengths of synapses connecting them. This would not 
only involve strengthening of synapses, but also weakening of synapses, espe-
cially the ones that correspond to nonsequential activation.

This mechanism of rate-phase transformation can thus be used to learn tem-
poral sequences that occur over a timescale of a second, even though  synaptic 
plasticity mechanisms operate on timescales of milliseconds. Similar learning 
of sequences may occur in other scenarios as well, where oscillations are im-
posed by other means. For example, systematic movements of the eyes across 
a natural scene every third of a second could induce oscillations where se-
quentially perceived views of the scene are brought together to form a stable, 
coherent percept using short- and long-term synaptic plasticity mechanisms. 
In addition to the relative timing of spikes between the stimulus-selective ex-
citatory neurons, inhibitory spikes and neuromodulatory inputs are likely to 
determine the pattern of synaptic modi� cations.
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While these mechanisms would work well for learning sequences of events 
that occur over a period of about a second, it remains to be determined how 
sequences of events that occur several minutes or hours apart can be learned 
via hitherto unknown mechanisms. Further, the above discussion of neural 
responses assumed that they are � xed and can be described in terms of a re-
ceptive � eld. Next we question this assumption and discuss the possibility of 
dynamic receptive � elds.

Are Neural Representations Static or Dynamic?

In a typical study of neural information processing, the experimenter measures 
the changes in neural activity in response to a variety of stimuli. The neurons 
may respond strongly to one set of stimuli and less so to others. The pattern of 
neural responses to stimuli de� nes the neuron’s receptive � eld.

The notion of a  receptive � eld guides our thinking on how single neurons 
represent information but also has several limitations:

1. There are an in� nite number of possible stimuli, varying across many 
dimensions. Hence, it is dif� cult to � nd the stimulus or set of stimuli 
that drive the neuron optimally within a � nite amount of time.

2. Internal variables, such as arousal and neuromodulatory state, modu-
late neural responses.

3. Not only the stimuli within the receptive � eld, but even stimuli outside 
the classical receptive � eld modulate the responses.

4. The responses of many neurons in the visual system are affected by the 
attentional level and the reward value of the stimulus.

5. Most importantly, during natural behavior, stimuli are not static and do 
not appear in isolation. Instead, a large number of visual stimuli typi-
cally appear simultaneously and the stimulus con� guration changes 
rapidly.

As a consequence of these � ve in� uences, the classical receptive � eld of a 
neuron can change dramatically between situations. For example, transient in-
activation of the somatosensory cortex or of a sensory organ generates a large 
reorganization of the sensory map—a process that occurs within a second. In 
the hippocampus, past experience can result in a complete reorganization of 
the spatial selectivity of place cells. This reorganization is called remapping. 
Remapping can occur even on short timescales (~minutes), not just over days. 
In addition, when stimuli are presented in a sequence, visual cortical neurons 
not only respond to the onset of the stimulus but the responses depend on the 
sequential position of the stimulus as well: some neurons � re maximally to the 
presentation of the � rst stimulus in the sequence, irrespective of the identity of 
that stimulus. Finally, recent experiments show that hippocampal neurons � re 
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in a sequence even when the animal is sleeping or is running without changing 
its position (i.e., in a � xed running wheel).

These results suggest that neural responses are dynamic and can change 
rapidly with changes in stimulus con� gurations and internal variables, such as 
past experiences. This should not be surprising. As discussed earlier, to be en-
ergy ef� cient, neuronal codes need to be  sparse and synchronous. Depending 
on the  connectivity state of the network, recent history of neural and synaptic 
activity, and the nature of stimuli, different groups of neurons and synapses 
may become synchronously active and may hence drive different downstream 
neurons. Short-term dynamics of neurons and synapses can play an important 
role in generating such  dynamic receptive � elds.

This raises the question of how the downstream neurons interpret the mes-
sages sent by dynamically changing upstream neurons. Clearly, the postsyn-
aptic neurons not only respond to just one presynaptic neuron but to an en-
tire ensemble. Thus, dynamic reorganization of neural responses should be 
coordinated across an ensemble of neurons. The following discussion sketches 
an oscillation-based mechanism of dynamic coordination of neural codes 
across ensembles.

Neural Attractors, Cell Assemblies,  Synaptic  Assemblies, 
Oscillations, and Dynamic Coordination

Information  is thought to be represented by the activity patterns of groups of 
neurons. Fault tolerant, stable, content addressable, and associative representa-
tion of stimuli across an ensemble of neurons can be implemented using the 
 Hop�eld  attractor dynamics. For �xed point  attractors, there are large energy 
barriers between the different representations, represented by local energy 
minima, whereas the energy required to make transitions between stimuli along 
some other dimension may be negligible in the case of continuous attractors. 
The stability and convergence of attractor dynamics are achieved through it-
erative processing of information in a  recurrent network of excitatory neurons. 
Recent studies show that  attractor dynamics can work even in sparsely active 
E-I networks. Such networks may show attractor dynamics with or without 
oscillations. It remains to be seen if the oscillations can facilitate the attractor 
dynamics.

How can the attractor dynamics generate �exible and dynamic neural re-
sponses? The answer may lie in ef� cient networks with short-term dynamics. 
As discussed above, energetically it is ef�cient for a small group of neurons 
to �re a few spikes synchronously to drive the postsynaptic neuron. Estimates 
show that in a period of about 20 ms, a suf�cient period for the postsynaptic 
neuron to integrate the inputs and �re a spike, only about 500 neurons may 
need to be coactive out of a population of 300,000 CA1 neurons. Similarly 
sparse representations of stimuli are also present within neocortical circuits, 
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given the similarly low mean � ring rates of principal cells in various neo-
cortical layers. Experiments in vitro indicate that within this time window, 
pyramidal cells can linearly integrate the activity of hundreds of presynaptic 
inputs and then discharge. The minimum number of presynaptic neurons may 
be even an order of magnitude smaller if presynaptic neurons terminate on the 
same dendritic segment and discharge within a time window <20 ms. Further, 
in the hippocampus, inhibitory interneurons respond much more effectively 
than principal cells and hence, a single action potential of a presynaptic prin-
cipal cell may be suf� cient to discharge an interneuron. Release from potent 
inhibition would generate synchronous computation in a population of target 
excitatory neurons.

The ef� cacy of a handful of neurons in driving the downstream neuron will 
therefore depend on several parameters. For example, if the synapses from 
these neurons are located near each other on the downstream neuron’s den-
drite, synchronous activation of these synaptic inputs may cooperate to gener-
ate a dendritic spike. This would increase the effective strength of such groups 
of synapses, thereby altering the structure of the attractor and increasing the 
ability of a small number of input neurons to drive the downstream neuron. 
Similarly, the amount of synchrony, within a 20 ms window, between the ac-
tivation of these synapses would strongly in� uence their effective strength in 
driving the downstream neuron. Recent studies show that although neural re-
sponses, as a function of input strength, are threshold-linear in an asynchro-
nous condition, neural responses are sigmoidal in the synchronous condition: 
low synchrony results in no response, and above some threshold amount of 
synchrony the result is a maximal response. Thus, small changes in the input 
synchrony may activate different sets of neurons. This can be rapidly reorga-
nized by recent history, which would in� uence the synaptic strength via short-
term plasticity, resulting in convergence to different attractors. This dynam-
ics could explain the rapid reorganization of hippocampal and somatosensory 
maps with past history or with small changes in stimuli. Further, synchronous 
inhibition in an E-I network would synchronously release excitatory neurons 
from inhibition during gamma oscillations, thereby allowing the neurons to 
change rapidly their response to inputs in a dynamic fashion. Finally, neuro-
modulators could alter the ef� cacy and timing of these synapses, which would 
result in dynamic reorganization of neurons responsiveness to stimuli based on 
internal variables.

 Neuromodulators act broadly on neural circuits, and they are typically 
thought to act on slow timescales. The in� uence of neuromodulators can be 
focalized and accelerated by the following hypothesized extracellular mecha-
nism: A region of the brain with higher activity could contain a larger amount 
of glutamate in the extracellular medium, and the clearing of the neuromod-
ulators (e.g., through glial processes) may be altered by the level of gluta-
mate. This may result in rapid changes in in� uence of neuromodulators on 
neural ensembles.
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In this scenario of ef� cient and synchronous networks, activity would prop-
agate rapidly across processing stages, and the relevant parameter would be the 
group of coactive neurons within a gamma cycle or the roughly 20 ms taken 
to activate the postsynaptic neurons. This group of temporarily synchronous 
neurons is referred to here as a  cell assembly. Due to the mechanisms depicted 
above, the cell assembly can change rapidly with stimuli and internal variables. 
In other words, membership in a cell assembly is highly � exible. In a Hop� eld 
network, for example, each gamma cycle may contain a cell assembly that 
primes the formation of another assembly in the next cycle of iteration toward 
convergence. In a  recurrent network with short-term synaptic dynamics, this 
could lead to transitions between attractors and the generation of temporally 
sequential activity of ensembles of neurons.

Experiments show that the assembly of coactive hippocampal neurons, de-
� ned within a period of about 20 ms, can change rapidly. This is partly re-
lated to phase precession. As the rat walks through the environment,  place 
cells � re a series of spikes at different phases of the theta cycle. The group of 
coactive cells within any 20 ms period depends not only on the phase of the 
theta rhythm and position of the animal but also on other variables (e.g., run-
ning speed, head direction). Thus, a multimodal, dynamic, and rapidly evolv-
ing representation emerges.

Two additional mechanisms by which cell assemblies can become dynamic 
are asynchronous background activity and top-down in� uence. These factors 
can raise the level of depolarization of the cell, thereby altering its responsive-
ness to short, ef� cient bursts of synchronous inputs. This is particularly effec-
tive when these inputs target the fast-spiking interneurons, which can then en-
train a subset of pyramidal cells, and could explain the in� uence of top-down 
inputs on the rapid reorganization of neural responses.

In such scenarios, it is conceivable that the relevant parameter for describ-
ing the network dynamics is not the group of synchronously active cells, or 
cell assembly, but the group of synchronously active synapses or a synapse 
assembly through which the information � ows. Neuromodulators and their re-
ceptors, located extra-synaptically, can directly modulate the activity pattern of 
the synapse assembly, which is not restricted to a single cell and which may or 
may not result in the modulation of the cell assembly. Theoretical studies are 
needed to determine how such a dynamic synaptic assembly can also be stable 
and noise tolerant. In addition, experimental studies are needed to determine 
the structure of synaptic assemblies.

These cellular and synaptic assemblies in the oscillating and balanced  E-I 
networks are examples of  dynamic equilibrium, in which a network is kept 
maximally responsive  to changing patterns of inputs, while keeping energy 
expenditures low. Such self-organized systems are often characterized by a 
power-law spectrum of event amplitudes. Supporting evidence may be found 
in the neural systems in terms of the power-law-shaped spectra of the activity 
of ensembles, such as the LFP or EEG. However, these systems occasionally 
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produce very large events, which would be catastrophic for neural systems. 
Perhaps the strong, fast, and reliable feedback within an E-I circuit can help 
prevent such runaway events while keeping the system more responsive, near 
a critical point, through the generation of neural oscillations.

How Does the Brain Dynamically Select Cell 
Assemblies to Make a Decision?

Decisions are likely to occur by coordinated activity patterns in neural ensem-
bles across different regions. These cell assemblies across regions can coordi-
nate or compete in a number of ways to generate a winner assembly that drives 
the decision. First, the long-range excitatory-excitatory connections between 
the E-I assemblies in different regions can synchronize their activities and in-
crease their �ring rates, thereby making a selected group more active than oth-
ers. Second, the excitatory-inhibitory connections between two different E-I 
assemblies could raise the level of inhibition and suppress the activity of the 
inhibited population. Third, the long-range inhibitory-inhibitory connections 
could either decrease or increase the �ring rates of an E-I circuit. It would seem 
that this inhibitory transmission between cell assemblies may result in reduced 
activity of the second assembly. However, it has been shown that in  recurrent 
E-I networks, under some parameter regimes, increased inhibitory inputs re-
sult in increased overall activity due to suppression of inhibition via recurrent 
inhibitory synapses. Thus, inhibitory connection between two cell assemblies 
may serve a dual purpose of (a) synchronizing their gamma rhythmic activity 
and (b) increasing their overall �ring rates, thereby allowing this group of cell 
assemblies to drive the downstream group of neurons toward decision.

In addition to these mean �ring rate-based effects and mechanisms, precise-
ly timed inhibitory inputs could synchronously release distant cell assemblies 
from inhibition, thereby making them coactive in brief windows of time. Here, 
oscillations could facilitate this rapid synchrony and competition by synchro-
nously activating and inactivating large neural ensembles across multiple brain 
areas. Thus, the decision-making process may be a phase-dependent rather 
than a rate-dependent process.

Neuromodulators could play a key role in these processes by altering the 
E-I balance and rhythms, thereby generating state-dependent synchrony of cell 
assemblies that determine the winner ensemble. The above mechanisms ad-
dress direct competition between assemblies. An advantage is energy ef� cien-
cy. However, it is possible that competition between assemblies occurs at the 
level of their ef�cacy in driving a downstream structure, such as the prefrontal 
cortex, resulting in competition between synaptic assemblies, which in turn 
can bias information processing in the upstream network. Such a recurrent pro-
cess of decision making across networks could be slow, but can be speeded up 
through the use of a  phase code, where the top-down and bottom-up in� uences 
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can arrive at different phases of oscillations, thereby determining a winner 
ensemble within an oscillation cycle.

Conclusions

Our discussion emphasizes a few key mechanisms of neural information pro-
cessing. At the heart of this discussion is the ubiquitous neural circuit of recur-
rently connected groups of excitatory and inhibitory neurons. The E-I circuit 
can remain at a dynamic equilibrium, allowing it to respond rapidly to inputs. 
The E-I module can be easily replicated to generate larger circuits, perhaps 
during  evolution, with each component using a similar language. Further, the 
dynamic equilibrium would allow a small number of inputs to alter the state of 
the network and make neurons respond. Thus, the network could have sparse 
activity, thereby making it energy ef� cient. In such sparsely active E-I net-
works, synchronous activity would be transmitted ef� ciently and rapidly.

Under many conditions, this E-I circuit oscillates. Interaction between these 
oscillations and inputs from external stimuli would generate a phase-coded 
representation of input that is rapid, ef� cient, and malleable; one that can facili-
tate learning via mechanisms of spike time-dependent  synaptic plasticity. Such 
 phase codes could bind multiple neural representations for brief periods in a 
� exible fashion and determine the computational interactions between differ-
ent signals. The duration of each syllable in an E-I network phase code, called a 
cell assembly, would be about 20 ms, corresponding to a gamma cycle. Cell as-
semblies across multiple gamma cycles can either converge to a Hop� eld-like 
attractor, in the presence of stationary stimuli, or generate history-dependent 
responses with dynamic stimuli; alternatively, in the absence of stimuli, it can 
spontaneously transition across a sequence of cell assemblies due to short-term 
dynamics. The oscillations of E-I circuit can be synchronized across different 
regions, allowing dynamic coordination of phase codes across brain regions. 
Other processes, such as lower frequency oscillations and neuromodulators, 
can in� uence coordination and competition between the E-I assemblies, gener-
ating a state-dependent winning ensemble or decision. While some tantalizing 
support is available for these mechanisms of the emergence of mind from neu-
rons, much remains to be theoretically understood and experimentally tested.



10

Coordination
What It Is and Why We Need It

Christoph von der Malsburg

Abstract

Trying to apply our everyday concept of coordination to the brain raises a number of 
fundamental questions: What is the nature and meaning of local brain states that are to 
be brought together? On what grounds are they to be coactivated and connected? What 
is the nature of meaningful  structural relationships, and how does the brain learn them? 
What is the role of focal attention? How does the brain assess its current level of coor-
dination? How do brain states address goals? What is the nature of our environment’s 
statistics, and how is it captured by the brain? What mechanisms endow brain dynamics 
with a tendency to fall into coordinated states? Some of these questions seem to be dif-
� cult to address within the current experimental paradigm.

Introduction

What is coordination? There are many domains in which coordination plays a 
central role: from the preparation of a meal or setting of the dinner table to the 
writing of a literary novel or musical composition. The aesthetic feelings con-
jured up by a work of art in our mind are often no more than a re� ection of the 
level of coordination that takes place between our sensations. The establish-
ment and running of a company or the organization of a conference requires 
structural elements to relate to each other in a meaningful way: they must � t 
together to form a whole if the result is to function well. The coordination in-
herent in institutions or manufactured structures re� ects necessarily that which 
is present in their creators’ brains. Thus, any insight that we can glean from 
coordinated artifacts is relevant for understanding coordination in the brain.
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What Is Coordination in the Brain?

Coordination means putting things together that belong together. Each term in 
this sentence raises questions, which I will address in turn. Throughout this es-
say, I will focus more on posing questions than on providing answers. Because 
things in our brain1 are assembled on a slow timescale of learning as well as on 
a fast timescale of thinking, it is important for us to heed both.

What Are the Things That Must Be Put Together?

The brain has a great variety of modalities or subsystems, corresponding to 
internal and external senses, to motor control, to memory, to  emotions, to be-
havioral control, and more. Minsky (1988) spoke of the “Society of Mind.” 
Super� cial modalities are formed by wiring with the sensory, motor, or hu-
moral periphery and are thus de� ned (onto-)genetically. More centrally, there 
is considerable plasticity, at least in the cortical system, as shown by many 
cases of neurological recovery (Weiller and Chollet 1994). Different modali-
ties focus on different re� ections of phenomena and contain patterns that are 
similar, so that they can be mapped and stacked onto each other. This pervasive 
phenomenon of cortical localization requires a natural  measure of similarity 
between neural patterns, the need for which we will encounter repeatedly later.

Each subsystem of the brain is able to create a large variety of alternate ac-
tivity patterns, of which at any given time only one, or a few, can be clearly and 
unambiguously expressed. For much of the time, neural activity in a subsystem 
expresses an ambiguous superposition of different states, which is reduced in 
stages under the in� uence of signal exchange. This reduction must be coordi-
nated, so that patterns which belong together are coactivated. Such reduction 
of uncertainty is, for example, modeled in probabilistic formulations (Pearl 
1988; Bishop 2006).

What Does It Mean to Belong Together?

Neural patterns belong together because they are generated by stimuli that are 
statistically linked in the environment (often, a common cause is responsible), 
or because they successfully interact to attain goals or to exercise and develop 
capabilities playfully. “Belonging together” is thus both de� ned in a passive, 
recording mode and in an active, creative mode. The creative mode is respon-
sible for the brain’s ability to handle new situations and has been grossly ne-
glected in the neuroscienti� c literature.

1 I am adopting the attitude of Spinoza and am viewing brain and mind as two sides of the same 
coin. When using electrode or microscope, we observe the brain. Psychophysics or introspec-
tion, by contrast, lets us view the mind.
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How Does the System Learn What Belongs Together?

The initial motive for patterns to be related is similarity. Different modali-
ties, by contrast, speak different languages and contain neural patterns that are 
not similar. How, then, can the brain distinguish which patterns from different 
modalities belong together? The only means of establishing de novo pattern as-
sociation is simultaneity; that is, signi� cant correlation in time. Unfortunately, 
however, it is not useful to associate all neural patterns in the brain with each 
other merely on the basis of simultaneity, as is implied in  associative  memory 
models (e.g., Hop� eld 1982). To an overwhelming extent, pattern simultaneity 
in the real world is accidental and not of lasting value. If synaptic plasticity 
had the form of indiscriminate stickiness, the brain would soon be cluttered 
with myriad connections. It is thus important to single out associations that 
are signi� cant.

The natural de� nition of pattern signi� cance— recurrence—suggests a 
strategy that has actually been adopted by much of the arti� cial neural network 
literature (Haykin 1994); namely, sifting through the input for those patterns 
that appear repeatedly with statistical signi� cance. Unfortunately, this strategy 
fails for input � elds of any realistic size, because the number of patterns which 
must be tracked is simply too large, and literal repetition of a given pattern is 
too unlikely. The system, therefore, needs to possess a  similarity measure and 
powerful prejudices concerning the nature of signi� cant patterns. Yet, what is 
the nature of these prejudices?

Once different modalities have accumulated a suf� cient mass of pattern as-
sociations between them, they can use general laws of composition to generate 
creatively novel, modality-spanning composite patterns. An important issue 
is the nature of these  laws of composition. A typical (or perhaps the typical) 
law may be that overlapping patterns in one modality must be associated with 
overlapping patterns in another.

The Detection of Signi� cant  Patterns by Focal Attention 

Why is the information content of attention limited? Does this represent an 
imperfection of the brain, or is this even functionally signi� cant?  Focal atten-
tion powerfully (though not exclusively) restricts learning to a small subset 
of active neurons at any one time (for further discussion, see Jiménez 2003). 
Key questions focus on how this restriction is expressed and what effects this 
has on learning. One proposal is based on  gamma  rhythms (Fell et al. 2003) 
and on the ensuing concentration of neural spikes into narrow temporal win-
dows, as a boost to synaptic plasticity. This reduces the input and the memory 
domains to small sectors (as modeled in Jacobs et al. 1991). The restriction 
addresses a fundamental problem of present-day models of learning (i.e., the 
scaling-up to realistically large input and storage domains) by restricting sys-
tem modi� cation to the narrow focus of attention. Accordingly, the reason 
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why informational content of  attention is limited results not from an imperfect 
mechanism but from the necessity to preclude confusion. 

What is the informational basis on which focus of attention is formed? 
Attention is very much at the core of the problem of coordination: it has to 
bring together sets of patterns that belong together. If it only unites patterns 
that have already been associated in the past—in passive mode, so to speak—it 
does not aid the problem of learning. For that, it has to � nd new associations 
in a creative manner.

External events, signaled by temporally isolated sensory signals (which are 
emphasized by the � lter properties of our senses), can bring together speci� c 
patterns that light up simultaneously in different modalities. Patterns can also 
be brought together on the basis of abstract properties with which they are 
tagged. For example, if the senses can be focused on the same point in space, 
for which the colliculus superior seems to be well equipped (at least in the 
mouse; see Dräger and Hubel 1975), patterns aroused from that point can be 
associated. The general  Gestalt laws (Koffka 1935; Crick 1994) can de� ne 
signi� cant patterns as � gures set apart from a background. An object moving 
against a static background can, for example, be made to stand out as the focus 
of attention on the basis of common motion (Spelke 1998). Thus, the Gestalt 
laws formulate abstract properties (common motion, color, stereo depth, spa-
tial grouping, good form, and edge continuity), which help to tag novel pat-
terns as signi� cant.

A statistical de� nition of pattern signi� cance is not suf� cient; a biologi-
cal de� nition is also required. Important classes of patterns or events must be 
genetically de� ned to inform an individual on what is required for success in 
life. Such a de� nition must be laid down in some abstract fashion so that con-
crete occurrences can be recognized and selected. Ethologists have described 
many such  schemata, such as the facial schema with which the human infant 
is born, the de� nition of mother goose for the gosling, or a red dot on the beak 
of the seagull to indicate to the chick the source of food (Toates 1980). Upon 
recognition of the releaser for an innate cue, attention is focused on the recog-
nized stimulus, which is then separated from the ground; an appropriate action 
is induced (e.g., an orienting re� ex or grasping); and an appropriate sector of 
memory is selected for modi� cation by the stimulus. This sequence of events 
may be referred to as  schema-based  learning.

Important questions remain, however, regarding the technical implementa-
tion of these processes.

How Is Coordination Evaluated?

People have a keen sense of the level of  coordination that goes on in their 
brains. Sometimes we feel distracted or confused; we cannot make up our mind 
or feel that something is awry, or not quite right. Other times, we experience 
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the sensation of being sharply focused, highly concentrated, or fully conscious 
of a situation. Then there are those precious moments, when we suddenly feel 
that we have it; everything has fallen into place and we shout Eureka!

To a large extent, aesthetic pleasure is due to the level of coordination gen-
erated in our brain by the object of our attention. It is not conscious insight 
into the structure of the work of art that we experience, but rather some direct 
feeling of the level of coordination in our brain. This  Aha! effect, this falling 
into a state of organization, is what Gestaltists refer to as reorganization of the 
perceptual � eld and  insight (Köhler 1925).

Which structures in our brain are responsible for the evaluation of this mea-
sure of coordination, and what is the nature of this measure? Obviously, it 
cannot be attributed to some superior intellectual entity whose insight into the 
subject matter serves as judge. Rather, it must be some signal that can be “me-
chanically” generated and globally evaluated. The essence of it may be the 
level of nontrivial agreement of independent signals at convergence points, 
evaluated over the whole brain. 

How Is Purpose De�ned, Enforced, and Achieved?

In an active mode, the brain must coordinate patterns to achieve its  purposes. 
Here, the central issue is that purpose (e.g., I am hungry and am looking for 
food) as well as the generation of neural patterns that serve to achieve that 
purpose (opening the fridge, or calling the pizza delivery service) are de� ned 
at very different levels of detail, and generally in different parts of the brain. 
A newborn possesses, presumably in the midbrain, the schematic de� nition 
of a set of  fundamental goals. These form a hierarchy, the honing of which 
keeps us busy over much of the course of our life. Goals are activated either 
spontaneously or in response to some stimulus, like “danger” or “thirst.” Goals 
tend to be mutually exclusive and come equipped with powerful mechanisms 
of enforcement. Complex tasks require the attainment of goals and subgoals in 
hierarchical fashion, and there are profound questions concerning the nature, 
establishment, and implementation of goals in our brain. 

Behavioral patterns usually have a number of functional components, each 
of which has a range of possible role � llers. In the looking-for-food scenario, 
relevant roles include possible foodstuffs, sources of food (e.g., the refrigera-
tor, delivery service), and potential modes of acquisition. In a speci� c situation 
with a concrete goal, the system must select the appropriate role � llers which 
will interact functionally to attain the goal. How is this type of coordination 
achieved through the interaction between a goal schema that contains a set of 
role descriptions, the possible role �llers that have the ability to combine ap-
propriately, and the sensory patterns that describe the situation? In addition, we 
need to know the way in which behavioral  schemata and goal descriptions are 
implemented neurally, the mechanisms by which these schemata are triggered 
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and prioritized, the reward mechanisms by which the achievement of goals is 
evaluated, the mechanisms by which the activity of the brain is biased in the 
direction of goal ful� llment, and the mechanisms by which, over the course 
of our life, goal schemata are elaborated in richer and richer ways in terms of 
detailed sensory and motor patterns. 

How Are the Environment’s Statistics to Be Captured?

The brain receives signals from the environment over many millions of � bers 
and, in turn, in� uences the environment through multiple output � bers. All our 
brain can ever know and learn is contained in the statistics of these activity 
patterns. From all possible combinations of individual neural input or output 
signals—a space of vast volume—only a minute subvolume is ever realized 
in terms of actual signals. Exhaustive recording of global activity patterns is 
not possible, nor would it make sense as no sensorimotor activity pattern ever 
has a chance to recur. Only by extracting signi� cant subpatterns, by ordering 
them in groups of similar patterns, and by developing schemata for their ar-
rangement is it possible to capture the environment’s statistics and cope with 
the ever-changing, novel situations that humans encounter daily. This requires 
a prejudice to de� ne signi� cant patterns for extraction; it demands a general 
similarity measure by which these patterns are to be grouped; and it requires a 
preestablished format for the representation of pattern arrangements.

One is caught, so to speak, between a rock and a hard place. If the preju-
dices are too weak, the system is overwhelmed by variance that cannot be 
captured in a realistic � nite system. If the prejudices are too narrow, the reality 
of the environment may be missed (the  bias-variance dilemma; Geman et al. 
1992). Another indication that the system’s prejudices must be tuned to the 
environment are the  no-free-lunch theorems (Wolpert and Macready 1997), 
according to which any learning or optimization mechanism can be totally viti-
ated by an environment that does not � t its a priori assumptions. In summary, 
the brain needs powerful a priori assumptions, and these must � t the actual 
environment! What, then, are these a priori assumptions?

What Is the Nature of Our Environment’s Statistics?

Of all the questions, this is probably the most crucial, since, as argued, the 
mode of operation of the brain must be tuned to the environment. In fact, the 
brain must coordinate with the environment.

Some important aspects of sensory pattern statistics result from the media 
through which they are transmitted. The visual medium, for example, is the 
optical radiation �eld captured by the eye, and the patterns that appear on our 
retinae are shaped by the laws of re�ection and propagation of light, geometry, 
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and motion. These transformations need to be inverted for the brain to decipher 
the structure of the patterns that are there. The laws of transformation are to 
a large extent independent of the environmental  patterns themselves. The � rst 
sensory stages of the brain can reduce the complexity of the input patterns 
tremendously by inverting these transformations, thus reducing large sets of 
patterns to  invariance classes (Wiskott 2006).

What is the regularity of the world beyond that? What are the repeating pat-
terns? Or, rather, in what general format do they appear? According to Kant’s 
analysis, we come equipped with “categories” (i.e., a priori structures that 
permit us to absorb information). Among these he counted space, time, and 
causality. We take for granted that repeating spatial and  temporal patterns and 
causal sequences of events play an important role in our environment. It is a 
wide-open question, however, as to how whole scenes are to be decomposed 
to � nd repeating patterns, and how the general  rules of composition by which 
our environment generates its con� gurations in ever-new ways are formulat-
ed. Coordination, to relate back to our theme, is the ability to create internal 
scenes that capture the reality of the environment. The brain’s task, then, is 
to extract environmental patterns and their relations, together with a measure 
of likelihood for their relevance, so as to acquire the ability to complement 
partial information in a given scene with additional details familiar from the 
past, to generate a more complete description of the scene. Our challenge is to 
second-guess the general form—the architecture—on the basis of which this 
is possible.

What Is the Nature of Structural Relationships?

The patterns  that we experience never repeat precisely. When recording a nov-
el pattern, it is thus important to be able to de� ne a spectrum of other patterns 
that are similar to it. This implies a  similarity measure, or some de� nition of 
the likelihood that a sensory pattern is to be identi� ed with a stored pattern. If 
properly constructed, the stored structure and the similarity measure can de-
cide to a high statistical signi� cance whether a perceived pattern is an acciden-
tal arrangement of elements, or whether it is the same pattern repeating itself. 

What is this similarity measure? The simplest idea of  pattern  recognition 
is  template matching, where a rigid pattern, the template, is moved over an 
image to � nd an identical � t. The “motion” takes care of the invariance aspect 
if it includes all possible transformations (e.g., translation, scaling, and rota-
tion). Template matching has long since fallen out of favor because identical 
� ts are never found in real images. A � rst step toward solving the problem is to 
dismantle the “template” and endow the resulting pieces with � exible relation-
ships so that distortion can be addressed. Thereafter, pieces of the model must 
be replaced with statistical models of possible variants. A version of this is the 
leading mechanism of  face  recognition, as described, for example, by Wolfrum 
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et al. (2008). Finally, the pieces themselves can then be replaced by composite 
models to create a hierarchical structure.

What has been described here for vision applies analogously to other mo-
dalities. Motor patterns (including speech) form patterns within patterns, each 
being a role � ller, each permitting a range of variants, the whole put together 
� exibly to permit continuous time warping and, of course, further  nesting. 
Hidden Markov models (Rabiner and Juang 1986) capture essential aspects of 
this. I contend that this kind of architecture applies to all modalities of the brain 
individually, and the brain as a whole.

Out of these considerations arises a picture according to which mental 
objects are hierarchical graph structures, with concrete patterns arranged in 
spatial and temporal relationships to each other.  Graphs are, in general, em-
bedded in or linked to more abstract graphs (which, due to their abstractness, 
are called  schemata), whose nodes refer to classes of exchangeable subpat-
terns, and whose links describe permitted relations.  Recognition is the process 
by which abstract graphs are mapped to concrete patterns homeomorphically 
(i.e., with equivalent parts mapping to each other under preservation of rela-
tions). Coordination is the process by which concrete brain states are generated 
under the guidance of abstract descriptions (including formulation of goals) 
and of sensory input. Usually, several abstract schemata conspire to create a 
detailed description.

Important questions include: How is the repertoire of neural behavior tuned 
to the construction of such hierarchical descriptions? How are hierarchical de-
scriptions developed in the brain on the basis of experience? How can this 
architecture be described in concrete mathematical terms?

How Are Neural Patterns Put Together?

The brain is endowed with an architecture that tends to fall into globally or-
dered patterns, structured accordingly to the world in which we live. This abil-
ity can be likened to the process of crystallization, in which constituent atoms 
or molecules create global order out of local interactions, by exerting their 
preferences according to the shape of the local environment. For crystalliza-
tion to be initiated, a seed (or minimal structure) is required such that further 
molecules quickly � nd a niche into which to fall.

In the case of the brain, the constituent elements are neurons, and know-
ing how their behavioral repertoire is structured, so as to favor global order, 
is crucial. Some aspects of this are already emerging. Outgrowing processes 
are guided by chemical or electrical signals so as to favor ordered connectiv-
ity patterns, as exempli� ed by the ontogenesis of retinotopy (Goodhill 2007), 
whereas intrinsic plasticity (Butko and Triesch 2007) regulates the duty cycle 
of cellular activity.
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If the behavioral repertoire of neurons (or of a collection of neural types) 
were known to any degree of precision, it should be possible to simulate on the 
computer the growth of ordered  connectivity and activity states. Thus far, this 
venture has had some level of success, especially in modeling the ontogenesis 
of ordered connectivity structures. However, modeling the generation of neu-
ral states that can be interpreted as mental objects is still out of reach. Thus, 
questions remain regarding the repertoire of neural behaviors, and, possibly 
equally important, the equivalent of seed structures with which the process of 
coordination is initiated.

Concluding Remarks

To coordinate “stuff” in our mind, even while performing routine tasks, we 
regularly have to put things together that have previously never been assem-
bled. These associations are creative acts that are not imposed on us by our 
environment. In recognizing an object, for example, we apply a schematic 
description of this type of object to a concrete image, thereby associating ab-
stract features with concrete instantiations. When we manipulate the object or 
describe it verbally, this enables us to relate directly to the speci�c character of 
the feature instances. Certainly, our brain contains the neural pathways to con-
nect what is to be connected; however, these pathways are embedded, or are 
drowned, in a virtual continuum of others which, at present, are irrelevant but 
are all required and useful when their time comes. Although I intended simply 
to pose questions in this essay, I could not do so without interjecting my con-
viction that the task of our brain, in any given situation, is not just to activate 
a subset of all neurons, but to select a tiny subset from the vast numbers of 
physical connections. Synapses outnumber neurons, and the task of selecting 
connections is larger than that of selecting neurons by a factor of about ten 
thousand. If we ignore this task, we are, in my view, ignoring 99.99% of the 
information in our brain’s state.

If indeed the brain, in its rapid state changes, is mainly concerned with se-
lecting structured connectivity patterns, and if we need to study and understand 
synaptic dynamics in addition to neural dynamics to bridge the chasm between 
mind and brain, then we have a problem. Experimental technology is highly 
developed to study neural dynamics and, to a lesser extent, static or slowly 
changing connectivity. It can even record short-term modi�cation of synaptic 
effects for individual connections, but the imaging of whole, rapidly chang-
ing, connectivity patterns is presently beyond our imagination. When Ludwig 
Boltzmann � rst established statistical mechanics, he was ridiculed by his col-
leagues Ernst Mach, Wilhelm Ostwald, and others for his atomistic ideas, and 
it took three decades until experiments made the reality of atoms and mol-
ecules concrete enough to convince the community. Must the neurosciences 
also wait for decades for the necessary revolution? Dedicating years of effort 
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to experimental exploration is too risky if it is not supported by community 
convictions, but the community will not be convinced without focused efforts. 
Let us hope that this vicious circle can be broken with the help of concrete 
computer models of cognitive functions whose demonstrable success rests on 
outlandish physiological assumptions.
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Neocortical  Rhythms
An Overview

Wolf Singer

Abstract

Information processing systems need to be able to identify and encode relations. Rela-
tions can be de� ned in space and time. Nervous systems exploit both dimensions for the 
handling of relations. Their anatomical layout is characterized by selective convergence 
of connections on target cells, allowing the establishment of relations among signals of 
different origin. In addition, relations can be expressed more dynamically by adjust-
ing the temporal rather than the spatial contiguity of signals. It is proposed that this 
is achieved by rhythmic modulation of neuronal activity and context as well as task-
dependent modulation of oscillation frequencies and phases.

The  Encoding of Relations

Analyses  of neuronal responses in  sensory systems reveal a characteristic se-
quence of processing steps. At subcortical levels, neurons encode local prop-
erties of perceptual objects and barely any relations among these elementary 
features. As one proceeds along the hierarchically arranged processing areas 
of the neocortex, responses become increasingly selective for complex con-
stellations of elementary features. This sensitivity is the result of interactions 
mediated by intracortical tangential connections and iterative recombination of 
feedforward connections from lower- to higher-order neurons. Thus, responses 
of higher-order neurons signal not only the presence of certain sets of compo-
nent features but also  prespeci�ed relations among these features.

This  binding of features by recombination of feedforward connections ( la-
beled-line  coding) needs to be complemented by mechanisms that permit  � ex-
ible encoding of relations to resolve the ambiguities inherent in the responses 
to natural environments. Natural scenes, for example, usually contain a large 
number of different objects, the contours of which may be overlapping, partial-
ly occluded, or superimposed on those of the background. A neuron may thus 
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be stimulated by contours belonging to different objects. To avoid the encoding 
of false relations (conjunctions), these ambiguities need to be resolved before 
signals can be subject to  grouping in the respective convergent pathways. This 
sorting of appropriately groupable responses must occur in a context-depen-
dent way at each level of processing. At low levels, it is indispensable for scene 
segmentation; at high levels, it is required for the disambiguation of simultane-
ously con� gured distributed representations ( assemblies) (Wang 2005).

Experimental data and theoretical considerations suggest that perceptual 
objects are represented not only by individual neurons that respond selective-
ly to single objects but also by distributed assemblies of cells (Singer 1999; 
Tsunoda et al. 2001). First, object-speci� c neurons are rare and seem to ex-
ist only for highly overlearned objects or for objects of particular behavioral 
relevance (Quiroga et al. 2005; Logothetis et al. 1994). Second, novel objects 
cannot be represented by preestablished neurons because the required feedfor-
ward architectures would have to be speci� ed a priori to support formation of 
the appropriate conjunctions. Third, objects that are simultaneously encoded in 
different sensory modalities elicit responses from several different  sensory sys-
tems, and these need to be interrelated to arrive at a comprehensive polymodal 
description of a particular object. Here, the space of possible conjunctions is 
so large that it cannot be covered by applying the “labeled line” strategy alone. 
These considerations suggest that objects which cannot be represented by indi-
vidual  conjunction-sensitive neurons are encoded by assemblies of distributed 
neurons, each of which represents only a particular component of the object. In 
 assembly  coding, however, a relation-de� ning mechanism is required that tags 
responses which are evoked by the components of the same object as related. 
In essence, neurons have to convey two orthogonal messages in parallel: (a) 
they must signal whether the feature or conjunction of features for which they 
stand as a “labeled line” symbol is present, and (b) they must indicate, from 
instance to instance, with which subset of the myriads of simultaneously ac-
tive neurons they are actually forming a coherent assembly. There is consensus 
that the � rst message is conveyed by a  rate code: the higher the discharge 
frequency, the higher the probability that the neuron’s preferred feature is pres-
ent. The second message, so the proposal defended in the chapter, is conveyed 
by precise temporal relations among the discharges of neurons and, thus, by a 
relational  temporal  code.

Synchrony as a Tag of Relatedness

Although some of the Gestalt grouping  occurs preattentively, it is commonly 
held that attentional mechanisms also play an important role in  relation-de� n-
ing grouping operations, both at low levels, where scene segmentation is ac-
complished, and at higher levels, where objects are thought to be represented 
(Treisman 1999). However, the mechanisms underlying these functions are 
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still poorly understood. One proposal states that responses are selected for fur-
ther joint processing by joint increases in saliency, i.e., in discharge rate (Cook 
and Maunsell 2002). Neurons recruited into the same assembly would be dis-
tinguished from all others by their higher discharge frequency. This interpreta-
tion has been challenged by the argument that response amplitude may be an 
ambiguous signature of relatedness for two reasons: (a) because it depends on 
stimulus variables, such as intensity, that are inappropriate grouping cues, and 
(b) because it requires long readout times, which makes it dif� cult to segre-
gate assemblies from one another that are simultaneously con� gured within 
the same neuronal network (Singer 1999). Therefore, it has been proposed that 
neurons should be able to signal independently of their actual discharge rate to 
which of the other simultaneously active neurons their responses are related. 
This latter code should ensure that responses tagged as related are processed 
jointly at subsequent stages, i.e., are routed together into the appropriate chan-
nels and/or are unambiguously recognizable as originating from cells of the 
same assembly.

Following the discovery that neurons in the primary visual cortex can syn-
chronize their spike discharges in a context-dependent way and with a preci-
sion in the millisecond range (Gray and Singer 1989), it was proposed that 
the synchronization of responses could serve as the required tag for related-
ness (Gray et al. 1989) and thus, for  binding them together. Precise temporal 
synchronization of spike discharges is as effective as joint rate increases for 
selectively raising the saliency of neuronal responses (Biederlack et al. 2006). 
The reason is that synchronized input to target neurons has a stronger impact 
than temporally uncoordinated input. For example, simultaneously arriving 
excitatory postsynaptic potentials (EPSPs) summate more effectively than 
temporally dispersed EPSPs; active dendritic conductances amplify fast-rising 
depolarizations of large amplitude (Ariav et al. 2003); the frequency adapta-
tion of synaptic release and postsynaptic receptors attenuates the effects of rate 
increases (Markram and Tsodyks 1996); and the dependence of � ring threshold 
on the rising slope of depolarizations favors responses to synchronized inputs 
(Azouz and Gray 2003). Because synchronization capitalizes on spatial rather 
than temporal summation, it modulates the ef� ciency of individual synaptic 
events and therefore operates with a temporal resolution in the millisecond 
range. Thus, relations can be de� ned within narrow time windows (<10 ms), 
and different relations can be encoded in rapid succession.

The notion that precise  temporal synchrony serves as a tag of relatedness 
agrees well with the temporal sensitivity of correlation-based learning mecha-
nisms. One mechanism, known as  spike timing-dependent plasticity (STDP), 
classi� es discharges as related (unrelated) and causes synapses to strengthen 
(or weaken) as a function of the precise temporal relations among pre- and 
postsynaptic activity patterns. This mechanism operates with a temporal reso-
lution in the range of milliseconds; it also operates with millisecond precision 
(Markram et al. 1997; Zhang et al. 1998; Wespatat et al. 2004). Thus, there is a 
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perfect match between the signatures of relatedness used in signal processing 
and Hebbian learning. This cannot be otherwise because both processes must 
rely on the same relation-de� ning code to avoid learning false conjunctions.

Oscillations as a Timing Mechanism

Precise synchronization of discharges is often associated with an  oscillatory 
patterning of the neuronal responses (Gray and Singer 1989). Because indi-
vidual cells tend to skip cycles, these oscillations are rarely detectable in the 
spike trains of single cells, but they are readily seen in data representing the 
responses of large populations of neurons, as in  multiunit recordings or record-
ings of  local � eld potentials (LFPs). The periodic patterning of these responses 
is the result of oscillations generated within the various pools of inhibitory 
interneurons. These interneurons are coupled through chemical and electrical 
synapses and are capable of sustaining oscillatory activity  patterns (Kopell 
et al. 2000; Whittington et al. 2001; Cardin et al. 2009; Sohal et al. 2009). 
Oscillatory inhibitory inputs to pyramidal cells veto the latter’s discharges 
during the inhibitory troughs and favor discharges at the depolarizing peaks, 
thus causing synchrony in � ring. Surprisingly, these locally synchronized os-
cillatory responses can become phase-locked, with zero delay over large dis-
tances, despite considerable conduction delays in the reciprocal excitatory 
corticocortical connections that mediate long-range synchrony (Engel, König, 
Kreiter et al. 1991).

Several mechanisms have been proposed that are capable of establishing 
zero-phase lag  synchronization despite conduction delays. One mechanism 
relies on the fact that interneurons discharge with spike doublets when the 
networks engage in  beta and  gamma  oscillations (Kopell et al. 2000). Another 
mechanism exploits the special topology of  coupling connections and the non-
linear properties of networks of coupled oscillators (Vicente et al. 2008). The 
precision with which spike timing can be adjusted increases with oscillation 
frequency (Volgushev et al. 1998) and, often, one observes a relation between 
oscillation frequency and the distance over which synchronization is main-
tained. Synchronization among remote groups of neurons, or among large as-
semblies of neurons, tends to occur at oscillations in the theta or beta frequency 
range, whereas the highly precise synchronization of local clusters of cells is 
carried out by gamma oscillations. Often,  oscillations in different frequency 
bands coexist and exhibit complex  phase relations (Roopun, Kramer et al. 
2008). This  concatenation of rhythms offers the attractive option of establish-
ing graded correlations between neuronal assemblies of different size, thereby 
encoding  nested relations. Such encoding is required for the representation of 
both composite perceptual objects and composite movement trajectories. This 
hypothesis, however, awaits further experimental testing.
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The Duration of Synchronized Events

Early studies were based mostly on conventional cross-correlation analysis 
of cell discharges and/or LFPs. This method reliably detects synchronous � r-
ing if it is sustained over prolonged periods, but it fails if synchronous events 
are concentrated within narrow temporal windows. Novel measures have thus 
been developed to allow brief events of coincident � ring to be assessed. One 
of these methods—the  unitary event analysis—uses statistical methods to 
identify single, nonaccidental incidences of coincident � ring (Pipa et al. 2007, 
2008); the other evaluates consistent  phase relations between the discharges 
of individual neurons and LFP oscillations ( spike-� eld  coherence; Fries et al. 
2002). Applying these methods to data obtained from the visual cortex of mon-
keys exploring natural scenes has revealed that episodes of excess synchro-
nized � ring occur shortly after the onset of visual � xation and are restricted 
to epochs as short as a few tens of milliseconds (Maldonado et al. 2008). This 
� nding agrees with the evidence that scene segmentation and object identi� -
cation can be accomplished within less than 200 ms, leaving only 10–20 ms 
per processing stage to accomplish the required grouping operations (Thorpe 
et al. 1996; VanRullen and Thorpe 2001). Because information encoded in 
variations of discharge rates is limited (since cells can generate only a few 
spikes within such short time windows), a substantial amount of information 
is likely encoded in the precise timing relations between individual discharges 
of distributed neurons.

Functions Attributed to Synchronization

Binding

Evidence from studies of the visual system suggests that response  synchro-
nization may be used throughout all processing stages, from the retina to the 
highest cortical areas. Its purpose is to establish relations among distributed 
responses (i.e., to bias grouping of responses for subsequent joint process-
ing) and to tag responses of assembly members as related (Kreiter and Singer 
1996; Neuenschwander and Singer 1996; Castelo-Branco et al. 1998; Castelo-
Branco et al. 2000). In all cases, synchronization probability re�ects some of 
the Gestalt criteria that are used for scene segmentation and perceptual group-
ing. In the retina, ganglion cell responses synchronize with millisecond preci-
sion if evoked by continuous contours (Neuenschwander and Singer 1996). 
This synchronization is associated with high frequency oscillations (up to 90 
Hz) and is based on horizontal interactions within the network of coupled ama-
crine cells. In the visual cortex, synchrony is often associated, especially when 
it is observed over larger distances, with an  oscillatory  pattern of spike dis-
charges in the beta and gamma frequency range (30–60 Hz).
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Synchronization correlates well with elementary Gestalt rules such as con-
tinuity, colinearity, and common fate (Engel, König, and Singer 1991; Engel 
et al. 2001; Castelo-Branco et al. 2000; Samonds et al. 2006). The substrate 
for this context-dependent synchronization is made up of tangential intracor-
tical connections that preferentially link columns encoding features, which, 
according to common Gestalt criteria, tend to be grouped (Löwel and Singer 
1992). In the inferior temporal cortex of the primate brain (the likely site for 
the generation of representations of visual objects), synchronization probabil-
ity appears to re� ect the formation of object-representing assemblies (Tsunoda 
et al. 2001). Neurons responding to the components of faces (e.g., eyes, nose, 
mouth) synchronized their responses when the arrangement of these compo-
nents was such that the animals signaled having recognized a face; however, 
they did not synchronize when the components were scrambled or presented in 
a way the animal deemed incompatible with the appearance of a normal face. 
Interestingly, the distinction between face and nonface could not be derived 
from changes in the discharge rate. These � ndings are compatible with the 
interpretation that discharge rate signals the presence of particular features, 
whereas the correlations among the discharges indicate the relatedness of 
these features.

Attention and Stimulus Selection

Grouping operations  based  on elementary Gestalt rules and the binding of the 
stereotyped feature constellations of highly familiar objects can occur pre-
attentively and are observable in anesthetized preparations. This automatic, 
attention-independent grouping is likely based on binding by convergence in 
�xed feedforward architectures and on the synchronizing effects of the intra-
areal tangential �ber systems (discussed above).

In addition to this evidence for attention-independent grouping by syn-
chrony, more recent results clearly indicate that synchronization is highly sus-
ceptible to top-down, attention-dependent in�uences. They also show that it 
plays an important role in attention and expectancy-dependent response selec-
tion (Fries, Reynolds et al. 2001; Fries et al. 2002). An in-depth discussion of 
the mechanisms involved is provided by Whittington et al. (this volume) and 
Börgers and Kopell (2008).

Various measures have been used to assess the in�uence of selective atten-
tion on neuronal synchrony: correlations among spike discharges,  spike-� eld 
coherence, correlations in  phase locking between oscillatory � eld potentials, 
and, �nally, the amplitude and phase locking of oscillatory responses as seen 
in MEG and EEG recordings. Because the amplitude of these latter signals 
depends not only on the number of active neurons but also on the degree of 
synchronicity of the captured activity, both phase locking and the power of 
oscillations can be taken as measures of synchrony. At all levels of analysis, 
evidence indicates that focusing attention on a particular stimulus or modality 
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increases the synchrony of responses in the gamma and beta frequency range in 
the neuronal networks that are devoted to the processing of the attended stimu-
lus (Roelfsema et al. 1997; Schoffelen et al. 2005). Interestingly, in these and 
many other cases, synchronization of oscillatory activity is not necessarily as-
sociated with major changes in the discharge activity of neurons. This observa-
tion supports the notion that synchronization and rate of discharges can be ad-
justed independently, and that precise synchronization can be used to raise the 
saliency of responses independently of discharge rate (Fries, Neuenschwander 
et al. 2001; Fries et al. 2007). Recent results from multisite recordings in cats 
and monkeys take this proposal one step further and suggest that the (often 
anticipatory) induction of coherent oscillations across distributed cortical ar-
eas and executive structures facilitates selective routing of activity and rapid 
handshaking among the involved processing stages (Womelsdorf et al. 2007). 
However, at present, it is not known which mechanisms coordinate these pre-
paratory phase adjustments of oscillatory activity. 

Association with Consciousness

Probability increases that signals become part of  consciousness when they 
are attended to, either because they are salient and attract attention, or be-
cause they are selected by focused attention. Moreover, contents appearing in 
consciousness are usually interrelated (unity of consciousness). Because syn-
chronization in the gamma range enhances saliency (Biederlack et al. 2006), 
supports selection by attention (Fries, Reynolds et al. 2001), and establishes 
relations (Gray et al. 1989), it is a prime candidate for being a neural correlate 
of consciousness. Evidence from studies on binocular rivalry in cats (Fries et 
al. 1997; Fries et al. 2002) and from masking experiments in human subjects 
(Melloni et al. 2007) indicates that there is indeed a close correlation between 
gamma synchronization and conscious processing. In cat primary visual cor-
tex, responses to the respective perceived stimulus differed from those to the 
suppressed stimulus because the former were more synchronized, not because 
they were more vigorous. In human subjects, conscious processing of stimuli 
has been associated with precise  phase locking of gamma oscillations across 
widely distributed cortical areas, whereas unconsciously processed stimuli 
evoked only local gamma oscillations (Melloni et al. 2007).

Abnormal Synchrony and Mental Disorders

Several clinical conditions (e.g.,  schizophrenia,  autism, and Alzheimer’s dis-
ease)  are associated with cognitive impairments that suggest disturbed coordi-
nation of distributed brain processes. This concept has received support from 
recent EEG and MEG studies (Uhlhaas and Singer 2006; Vierling-Claassen 
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et al. 2008), as well as from in vitro pharmacology (Roopun, Cunningham et 
al. 2008). When challenged with cognitive tasks that require feature binding 
(Uhlhaas, Linden et al. 2006; Uhlhaas and Singer 2010) or storage of visual in-
formation in working memory (Haenschel et al. 2009),  schizophrenic patients 
exhibited several de� cits: reduced synchronization of early evoked responses, 
reduced power of evoked and induced gamma oscillations, and a dramatic loss 
of the ability to synchronize gamma oscillations across distant cortical areas. 
These abnormalities were also seen (albeit in a less pronounced manner) in 
unmedicated, � rst admission patients. Impaired synchronization of oscillatory 
activity in the beta and gamma frequency range was also found in patients with 
 autism (Wilson et al. 2007) and  Alzheimer’s disease (Koenig et al. 2005; Stam 
et al. 2007). 

These � ndings suggest that some of the dissociative symptoms character-
istic of these disorders could result from abnormalities in the precise temporal 
coordination and binding of distributed cortical processes. This insight offers 
researchers the option to use synchronization of oscillatory activity as an endo-
phenotype for further investigations into the  pathophysiology of these severe 
and hitherto incurable brain diseases.

The Stance of a Sceptic

No contemporary neurobiologist would deny the existence and necessity of 
“dynamic coordination” of distributed processes in the brain. Such coordina-
tion requires fast, temporary, and mostly reversible modi�cation of neuronal 
interactions within the � xed or only slowly changing anatomical architecture. 
This implies that effective  connectivity must be modi�able on the �y in a con-
text-, attention-, or task-dependent way. This can be achieved by a host of 
well-established mechanisms, raising the question as to why oscillations, syn-
chrony, and  temporal  codes should matter at all. The gain of connections is 
effectively modi�ed by changes of �ring rate, since this increases or decreases 
the saliency of responses. This suf�ces to select signals for further process-
ing, especially if saliency maps enhance contrast between selected and non-
selected responses. Experiments on attention-dependent rate enhancements 
suggest such a mechanism. To de�ne relations and support selective group-
ing, it is suf�cient to increase jointly the rate of the responses that are to be 
associated with each other. Since coding is sparse, activity is low, and since 
there is topological (spatial) organization, the risk of confusion and grouping 
of unrelated but simultaneously enhanced responses is small. At least it is not 
greater than misinterpreting spurious correlations among simultaneously ac-
tive neurons as meaningful. The �ow and routing of activity can further be 
controlled very effectively by short-lasting and reversible changes in synaptic 
gain, by active dendritic conductances that introduce nonlinearities in the sum-
mation of synaptic inputs, by shunting inhibition which can switch off entire 
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dendritic segments, by modulatory inputs that alter time and length constants, 
and by top-down in� uences which, in principle, can gate all these processes. 
The problem of feeding learning mechanisms with activity that is suf� cient-
ly structured in time can probably be solved by statistics, assuming simply 
that the conditions required for gain increases occur more often, if coupled 
neurons are more active. There have been negative � ndings. Some labs have 
failed to � nd oscillatory activity and response synchronization in brain areas 
where others had observed them, or found no relation between the occurrence 
of synchrony and perceptual functions that should involve dynamic grouping 
of responses. Some of the con� icts between controversial � ndings could be re-
solved. Thus, it is well established that gamma oscillations and the associated 
synchronization of spikes are extremely state and task dependent. In light anes-
thesia they occur only during states of activated EEG (Herculano-Houzel et al. 
1999), whereas in the awake brain they are strongly dependent on attentional 
mechanisms (Fries, Reynolds et al. 2001). Moreover, cell discharges, even if 
synchronized to an oscillatory process, may fail to exhibit an  oscillatory � ring 
 pattern because of irregular cycle skipping. Finally, some of the negative � nd-
ings may have to do with the fact that different cortical areas accomplish dif-
ferent functions. Just as one would obtain negative evidence for a  rate code if 
one searched for face-speci� c responses in area MT rather than IT, one would 
obtain negative evidence for synchrony as tag of  relatedness if one searched 
for higher-order  binding functions in V1. Still, there are negative � ndings that 
require a continuous and critical evaluation of results supporting the temporal 
coding hypothesis.

One could argue that we have come a long way by assessing the rate varia-
tions of individual neurons without coming across explananda that would 
require us to search for something additional. Why then should we look for 
� ne-grained temporal relations between the discharges of distributed neurons, 
since this necessitates technically much more challenging multisite record-
ings? The fact that oscillations, synchrony, and � ne-grained temporal relations 
are observed and interesting functions can be associated with such phenomena 
is not suf� cient to assign a function to them. What is the argument behind 
the view that conventional mechanisms do not suf� ce to account for what we 
observe and need to understand? What evidence exists to show that all these 
temporal dynamics are not just an epiphenomenon of the conventional, purely 
rate-based processes?

Obviously, to address these questions in an ultimate fashion, causal rather 
than correlative evidence is required. Such evidence is equally dif� cult to ob-
tain for conventional rate codes and oscillation-based temporal codes, because 
both are constitutive attributes of neuronal processing. Interfering with rates 
most often entrains changes in oscillations and synchrony. Moreover, ma-
nipulating rates interferes in an often trival way with the cell’s sole signaling 
mechanism. Conversely, blocking oscillations and synchrony often leads to 
changes in discharge rate. However, studies are available that can claim having 
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obtained causal evidence for either rate or temporal codes. Assuming that high 
frequency microstimulation acts by increasing rates rather than by rendering 
discharges more synchronous, the many studies that show relations between 
stimulation frequency and the vigor of perception or motor responses can be 
taken as support of  rate codes (Salzman et al. 1992). Support for a coding role 
of synchrony comes from studies in which synchronization has been reduced 
or abolished without interfering with discharge rate. In frogs, an escape re-
sponse was abolished when the synchronization of retinal ganglian cells was 
prevented (Ishikane et al. 2005), and in locusts the discrimination of odor mix-
tures was impaired when synchrony was abolished among projection cells in 
the olfactory lobes (Stopfer et al. 1997). Finally, optogenetic methods have re-
cently been applied to enhance synchronization in the gamma frequency range, 
and this led to predicted and functionally relevant changes in the performance 
of neuronal networks (Cardin et al. 2009; Sohal et al. 2009).

In conclusion, it appears that there is ample and equally convincing cor-
relative evidence that the brain uses rates as well as temporal relations be-
tween spike trains in parallel to encode complementary information. However, 
if the brain does indeed exploit temporal relations among the � ring sequences 
of large assemblies of neurons, new challenges must be overcome before we 
can decipher these temporal codes.  Multisite recordings will be imperative. 
Moreover, analysis of relations must go beyond pairwise correlations, com-
prise all frequency bands, and consider all  phase relations in case of oscillatory 
activity or relative delays between spike times of non-oscillatory activity. This 
leads to a dramatic expansion of search space, just as exploitation of temporal 
relations for information processing—if the brain applied that strategy—would 
dramatically increase coding space.

Conclusion

Temporal relations among distributed neuronal responses can be assessed only 
with multisite recordings. Because this approach has a relatively short history, 
we are just beginning to understand coding strategies based on the dynamic 
interactions among large numbers of neurons. It may turn out that precise 
synchronization is only one, albeit very important signature of the many po-
tentially signi� cant dynamical states. Precisely timed phase offsets between 
oscillating cell assemblies,  concatenations of different rhythms, and sequences 
of patterns de� ned by speci� c temporal relations are likely to play an equally 
important role (Fries et al. 2007). To analyze these more complex patterns, and 
to examine whether they contain information that can be related to behavior, 
remains one of the great challenges for future systems neuroscience.



12

Stimulus-driven Coordination 
of Cortical  Cell Assemblies 

and Propagation of 
Gestalt Belief in  V1

Yves Frégnac, Pedro V. Carelli, 
Marc Pananceau, and Cyril Monier

Abstract 

This chapter reviews the concept of dynamic coordination in the mammalian primary 
sensory cortex during low-level (non-attention-related)  perception. Among critical is-
sues, it questions the necessity to keep the relational information (the “whole”) sepa-
rable from the information carried initially by each stimulus component (the “parts”). It 
also underlines the need for documenting in higher mammals the possible existence of 
subcortical or cortical supervisors, whose � ring activation or suppression would con-
dition the merging and  segmentation of functional cortical assemblies. Emphasis is 
given to cases where coordination is generated by the sensory drive itself and ampli� ed 
by built-in anisotropies in the network connectivity. The joint comparison of synap-
tic functional imaging (at the intracellular level) and real-time voltage-sensitive dye 
network imaging (at the functional map level) is used to demonstrate the role of intra-
cortical depolarizing waves, broadcasting an elementary form of collective belief. The 
functional features of these slow waves support the hypothesis of a  dynamic  association 
� eld, propagating synaptic modulation in space and time through lateral (and possibly 
feedback) connectivity, which accounts for the emergence of illusory motion percepts 
predicted by the Gestalt theory.

For a Taxonomy of Dynamic Coordination

Coordination of distributed elementary dynamic processes into a coherent 
“whole” is the organizational hallmark of brain cognitive activity.  Dynamic 
coordination is required so that, by using time as an additional coding dimen-
sion, the “whole” can be distinguished from the “static” sum of the parts. 
Failure to do so results in superposition catastrophe (von der Malsburg 1986). 
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Flexibility in coordination ability is necessary so that the functional outcome 
of the ensemble remains adapted to the ever-changing goals which govern re-
lationships between the “self” and the “outer” world.

Historically, dynamic recon� guration of neural activities has been con-
sidered by many explorers of the brain—philosophers, psychologists, and 
physiologists—as a likely substrate for thoughts, dreams, and other mental 
processes, with particular relevance to  perception and  memory recall. Without 
much knowledge of the circuits involved, and inspired by the brilliant concept 
of cell assemblies introduced by Yves Delage (1919) and Donald Hebb (1949; 
reviewed in Frégnac 2002), theoreticians of the brain later imagined the wax-
ing and waning of synchronized oscillations or  syn� re chains as the dynamic 
signature of coordination (Milner 1974; von der Malsburg 1981/1994; Abeles 
1982). As beautifully worded by Delage (1919), the concept of “ parasynchro-
nization” implies that “every modi� cation engraved in the neuron’s vibratory 
mode as a result of its co-action with others leaves a trace that is more or less 
permanent in the vibratory mode resulting from its hereditary structure and 
from the effects of its previous co-actions. Thus its current vibratory mode 
re� ects the entire history of its previous participations in diverse represen-
tations.” It is therefore not surprising that numerous contemporaneous brain 
scientists, under the � agship of Wolf Singer and Christoph von der Malsburg, 
recognize the fugitive emergence of associative percepts in the gamma wave 
signature of V1  local � eld potentials (Fries 2009; Tallon-Baudry, this volume).

In its simplest form,  dynamic coordination is de� ned by the multiple inter-
relations in space and time that can be drawn between elements of any given 
assembly. Its phenomenological expression is signaled by the recon� guration 
of elementary dynamics and their potential phase relations as a function of an 
externally de� ned context or an internally generated goal. Phillips et al. (this 
volume) constrain the issue further by adding: “in general,  coordinating inter-
actions are those that produce coherent and relevant overall  patterns of activity, 
while preserving the essential individual entities and functions of the activities 
coordinated.” This additional constraint implies that the dynamic  binding pro-
cess itself should not interfere with local properties of the interlinked elements 
(which these authors refer to as “meaning” tokens). This hypothesis has its 
own virtue since numerous cognitive operations seem to preserve at the same 
time the representation of the “parts” ( segmentation) and the “whole” (bind-
ing). In sensory perception, this applies to  vision, where fusion and perception 
coexist together, and to a certain extent to audition, but probably less to olfac-
tion. In this latter case, the perception of the “whole” overrides that of each 
component, especially when the subject is given heteromodality priors (e.g., 
the “color” of smell in oenology; Morrot et al. 2001). At a more abstract level, 
such condition is needed in the compositionality framework set by Fodor and 
Pylyshyn (1988), where elementary features have a � xed symbolic value (a 
letter in an alphabet). In the conceptual view defended by Bill Phillips,  com-
positionality operates as a relational grammar which does not interfere with 
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the semantic value of the elements. However, there is no strong reason for re-
ducing dynamic coordination in neural systems to linguistic  compositionality, 
although abstract models of logogenesis have been proposed where the brain 
composes language from the fast reversible binding of  syn� re chains (Doursat 
1991; Bienenstock 1996).

The obvious, critical issue that should be discussed is that coordination or 
“binding” in the brain operates not between � xed entities called “neurons” but 
rather between local dynamic integrative processes, each being speci� c to the 
considered “neuron.” In classical in vitro electrophysiological studies, neurons 
have an identi� cation pro� le that is empirically de� ned at three levels: (a) 
morphological/structural identity, (b) excitability spiking pattern in response 
to intracellularly injected current (a kind of crude input/output curve) which 
characterizes the intrinsic conductance repertoire, and (c) genomic expres-
sion pattern revealed by multiplex PCR of the cytoplasmic content (Toledo-
Rodriguez et al. 2004; Markram 2006; reviewed in Frégnac et al. 2006). In 
sensory cortical networks, the elementary neuronal integrative function is 
also characterized in vivo by a static  receptive � eld organization (equivalent 
to a stimulus/response curve). The discharge � eld organization revealed by 
impulse-like sensory stimulus is largely dominated by the convergence pat-
terns of labeled lines extrinsic to the studied structure (for V1, coming from 
the dorsal lateral geniculate nucleus, LGNd, in the thalamus). The strict ap-
plication of Bill Phillips’ criteria, as present in many of the early pioneering 
experiments by Wolf Singer’s team (e.g., Gray et al. 1989; Kreiter and Singer 
1996), would suggest that the processing realized by each neuron on elemen-
tary parts of the composite stimulus re� ects � xed discharge � eld properties and 
remains unchanged during associative center-surround stimulation protocols. 
The underlying assumption is that the relational information should remain 
separable from the information carried initially by each stimulus component 
taken in isolation. 

To debate this issue further, let us turn from the literature of mammalian 
cortex to that of invertebrate sensorimotor ganglion: the particular case of the 
stomatogastric ganglion of the lobster constitutes a striking example of as-
sembly dynamic recon� guration correlated with changes in behavior where, 
during the coordination, the electrical input/output properties of individual ele-
ments are not preserved. This paucineuronal net is an assembly of giant cells 
with invariant morphology, and their number is limited enough such that the 
total blockade of the afferent connectivity to any given cell can be obtained 
by photo-inactivating all the putative synaptic partners. Early experiments in 
the invertebrate revealed that isolated neurons are, in all cases, conditional 
oscillators, displaying a large variety of intrinsic membrane potential pat-
terns such as bursting, plateau, postinhibitory rebound, and spike-frequency 
adaptation. Further work showed that the repertoire of intrinsic conductances 
dramatically changes in the presence of neuromodulatory signals secreted by 
speci� c broadcasting units in the afferent sensory network (Dickinson and 
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Nagy 1983). These cells play the role of “ orchestra leaders” whose activity 
triggers the widespread diffusion of  neuromodulators. This neuromodulation 
impacts on the intrinsic reactivity of the other cells by changing reversibly the 
expressed repertoire of membrane conductances. Consequently, the individual 
excitability patterns of any given cell will change depending on the context 
(before, during, or after the orchestra leader cell has � red). This � exibility in 
intrinsic properties explains why switching on and off neuromodulation reor-
ganizes the dynamics of the full network in distinct functional central motor 
program generator assemblies, each associated with different motor behaviors, 
such as swallowing, crunching in the gastric bag, expulsion of processed food 
for the considered example (Hooper and Moulins 1989; Dickinson et al. 1990; 
Meyrand et al. 1991) (see Figure 12.1). In this paucineuronal biological net-
work, where all partners are known, the coordinator is identi� ed and the causal 
link between the temporal assembly motifs and the behavioral actions as well 
as their functional signi� cance are clearly de� ned. 

These data, often ignored from the vertebrate neuroscience community, 
support the hypothesis of the existence of “orchestra leader”-like neurons 
which, through the presence or absence of � ring activity, condition and format 
merging and  segmentation across functional assemblies. The existence of giant 
identi� ed coordinators with invariant morphology and widespread projections 
has been con� rmed in other invertebrate species and, in the bee, associated 
with reward; however, evidence in larger central networks, such as the mam-
malian  brain, is still lacking. Nevertheless, there is already ample evidence that 
aminergic and cholinergic subcortical brainstem nuclei release neuromodula-
tor en passant along their long axonal projections that travel through all corti-
cal areas, from the occipital to the frontal lobe, and change the repertoire of 
expressed conductances. Like  central pattern generators, thalamic circuits are 
subject to neuromodulatory in� uences (Steriade 1996). In this case, neuro-
modulators, such as acetylcholine, norepinephrine, or serotonin, affect intrin-
sic currents and switch the circuit from an oscillatory mode to a “relay mode” 
in which oscillations are abolished (McCormick 1992). These neuromodula-
tors are present in activated states, promoting the relay of sensory information 
by the  thalamus, while their diminished levels during slow-wave  sleep unmask 
participation by the thalamus in the genesis of large-scale synchronized  os-
cillations involving the entire thalamocortical system. We conclude from this 
brief review that, to a certain extent, both in invertebrate ganglia and the ver-
tebrate brain, the dogma of separability between intrinsic and extrinsic factors 
in the control of cellular excitability is doomed to fail. Thus, the “whole” can-
not be the sum of the “parts,” and segmentation does not always coexist with 
 perceptual  binding.

Other examples can be considered where the coordinating agent is not part 
of the biological system but rather the product of high-order statistical features 
present in the sensory input stream. Changing the statistical regularities of the 
environment produces a drastic reorganization of ensemble activity patterns 
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and their stimulus-locked reliability in the early visual system of mammals. 
For instance, the presentation of drifting gratings in a V1  receptive � eld (Figure 
12.2) evokes dense but highly unreliable responses across individual trials, 
both at the spiking and subthreshold levels. In contrast, virtual eye-movement 
animation of natural scenes temporally evokes in the same cell precise sparse 
spike responses and stimulus-locked membrane potential dynamics, which are 
highly reproducible from one trial to the next (Frégnac et al. 2005; Marre et 
al. 2005; Baudot et al., submitted). Importantly, the fast components of the 
membrane potential trajectory show a high trial-to-trial reproducibility, even 
when the cell is not � ring, for silent periods extending for several hundred of 
milliseconds prior and after the reliable spiking event (Figure 12.2).

Figure 12.1 Example of  dynamic coordination: Recon� guration of network dynamics 
by internal “ orchestra leaders” in the stomatogastric ganglion of the lobster. The same 
sensorimotor network is functionally reorganized in independent assemblies depend-
ing of the activity state of neuromodulating cells (PS cell) (top row). These assemblies 
are characterized by speci� c excitability patterns expressed by each of the composing 
cells and speci� c phase relationships between them (middle row). The functional role 
of each assembly during the swallowing stomatogastric cycle is depicted (bottom row). 
When PS is silent, the esophageal, gastric, and pyloric networks (top) generate inde-
pendent rhythmic output patterns (middle) involved in regionally speci� c and separate 
behavioral tasks (bottom). When PS is rhythmically active, it drives the opening of the 
esophageal valve (bottom), and by disrupting the preexisting network(s) and recruiting 
only part of the neurons, it constructs a novel assembly (top) that generates a coordi-
nated motor pattern (middle) appropriate for swallowing behavior. When PS is again 
silent post-activity, the esophageal valve closes (bottom) and motor units immediately 
resume their original network activity while units (i.e., gastric and pyloric) controlling 
regions more caudal to the sphincter continue to generate a single pattern before resum-
ing their separate activities (adapted from Meyrand et al. 1991). Note that the same 
cell (color coded) can switch from assembly to the next; this dynamic recon� gurability 
accounts for behavioral changes.
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In this second example, coordination is unrelated to the behavioral outcome 
driven by perception or neuromodulation, since it is observed in the anesthe-
tized and paralyzed preparation (Frégnac et al. 2005) as well as in the attentive-
behaving monkey (Vinje and Gallant 2000). Stimulus-driven recruitment of 
dynamic nonlinearities distributed across the network results in the sparsening 
and reordering of spiking events. This  self-organized process adapts the tem-
poral precision of the sensory code to the statistics of the input (for further de� -
nitions of self-organized coordination, see Engel et al., this volume). The more 
complex or the closer to a natural environment the input is, the higher the tem-
poral precision of stimulus-locked events are and the more deterministic-like 
the network dynamics behave. However, and in contrast with the � rst example, 
this adaptive form of temporal coordination is done in the absence of an inter-
nal executive or supervision units. Multiscale cooperation across the network 
is still needed, and long distance center-surround interactions across the visual 
� eld—which implies long-distance interactions across the retinotopic cortical 
map—suppress or facilitate interneuronal binding. Note also that, as demon-
strated in the � rst example, the full � eld stimulation (i.e., “whole” condition) 
will affect in � ne the functional characteristics of the recorded unit (i.e., the in-
dividual receptive � elds of the V1 cells). The classical discharge � eld de� ned 
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Figure 12.2 Example of dynamic coordination: Coordination by the statistics of the 
sensory drive. Recon� guration of spike timing precision as a function of input statistics 
(adapted from Frégnac et al. 2005). The left and right panels represent evoked sub-
threshold (top) and spiking activity patterns (bottom), evoked in the same V1 cell, re-
spectively, for a drifting grating and a natural scene animation. Trial-by-trial membrane 
potential trajectories are overlaid in black; red indicates mean Vm response. The raster 
dot displays of the spiking activity are built on ten trials. All records are synchronized 
with the stimulus onset, and the visualization window is adjusted to illustrate a time 
period in the movie where evoked spikes are observed. The response of the same cell 
is dense and noisy for the grating, whereas it is sparse and highly reliable from trial-to-
trial for the natural scene.
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with low dimensionality stimuli (Fourier input, sinusoidal luminance grating) 
does not predict, at least in our hands, the subthreshold dynamical responses 
of the same cell stimulated with richer input statistics (temporal modulation 
reproducing eye-movement effects, spatial 1/f� spectrum for natural scenes).

A third class of examples focuses on relational  coding in cortex. Long-
duration single-frequency tones do not evoke tonic changes in the � ring rate 
of single neurons in auditory cortex. At most, transient burst responses are 
detected in A1 cortex, at the onset or offset of the tone. The presence of the 
stimulus, however, is signaled in the same area by a dramatic and tonic eleva-
tion in the correlation between cortical units coding for the sound frequency, 
without any apparent change of � ring rate (deCharms and Merzenich 1996). 
Figure 12.3 illustrates the case where the information that can be stored or re-
called on the basis of coordinated activity is separable from the rate responses 
of single neurons. Furthermore, the cortical domains of shared activation can 
be expanded or contracted through the coordinating action of a  neuromodula-
tor (acetylcholine) or by stimulating the ascending afferent cholinergic cor-
ticofugal projection from the nucleus basalis (Kilgard and Merzenich 1988).

A fourth example of coordination, partially of the same class, can be re-
vealed by stimulus-locked analysis of the covariation of the � ring rates of 
several simultaneously recorded units in premotor cortex of awake animals 
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Figure 12.3 Example of dynamic coordination: Recon� guration of  synchrony during 
 sensory processing (adapted from deCharms and Merzenich 1996). A1 cortical units 
have been simultaneously recorded during a sequence alternating control (silent) and 
stimulation periods with different tones and temporal pro� les. Bottom: PSTHs show 
fast transient responses in the evoked mode for the onset and offset of the tones, but 
no tonic activity. Top: Correlograms show decorrelation between units in the ongoing 
mode and tonic coordination maintained as long as the tone is present.
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submitted to a GO/NO-GO paradigm (Figure 12.4). The computation of the 
time course of the joint activity between units gives access to the dynamics of 
effective connectivity between simultaneously recorded units (Aertsen et al. 
1989). This calculus requires the averaging of joint peristimulus time histo-
grams (PSTHs) over trials corresponding to the same behavioral task (GO vs. 
NO-GO). The remarkable result is that the stimulus-locked time course of the 
effective connectivity is � exible and differs signi� cantly between the two task 
phases (Vaadia et al. 1995). This implies that some task-related coordination 
switches the functional allegiance of the two recorded neurons between two 
different relational assemblies. Again, in this example, the rate mean of each 
unit is unchanged whereas the rate covariation signals information related to 
the behavioral signi� cance of the cognitive task (GO vs. NO-GO).

These examples of dynamic coordination show a diversity of processes 
where the coordinating agent can take several forms: in Figure 12.1 and 12.4 
it is an internal supervisor embedded in the network; in Figure 12.2 and 12.3 
it is the sensory drive or, in Figure 12.4, an external prior. Other examples 
could have been given where the coordinator is generated by the correlations 
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Figure 12.4 Example of dynamic coordination: Recon�guration of effective connec-
tivity during operant conditioning GO/NO-GO paradigm (adapted from Vaadia et al. 
1995). Effective connectivity between simultaneously recorded cortical units is mea-
sured by joint PSTHs and statistical surprise measure matrix. The time pro� le of the 
synchrony level (green) between the two simultaneously recorded units is represented 
as a function of delay from trial onset, respectively, in the GO and NO-GO condition. 
Note that the time course of the effective connectivity between the two same units 
differs between the two conditions, whereas no modulation is observed in the mean 
PSTHs (pink) � at histograms represented along the two unit-related axes.
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imposed by the behavioral task; for instance, by manipulating differentially 
the shared attention between different sensory modalities and the occurrence 
of a reward. During this Ernst Strüngmann Forum, some experts expressed 
the strong expectation that coordination requires an internalized supervisor 
or  executive agent associated with a well-de� ned computation or function, 
whereas others considered that a suf� cient condition might be the genesis of 
a symmetry-breaking of activity within the network, whatever its substrate. 
In this latter condition, the assembly cooperativity de� nes a bias or “prior” 
which can take forms as diverse as a propagating depolarizing wave (Chavane 
et al. 2000; Jancke et al. 2004; Roland 2002; Frégnac et al. 2010), local “up” 
states (Frégnac et al. 2006), synchrony enhancement, or frequency changes in 
the  local � eld potential (LFP) spectrum (Meyrand et al. 1991; Fries 2009). In 
the low-level Gestalt association paradigms reviewed below, such asymmetry-
breaking in cortical activity propagation takes the form of self-generated intra-
V1 wave which may be related to the perceptual outcome. This introductory 
section underlines the importance of de� ning further a taxonomy of coordina-
tion where the underlying mechanisms of each phenomenological form can be 
clearly separated (see also Moser et al. and Engel et al., this volume).

Measuring Network Coordination at a Single Recording Site

One often posits that simultaneous multiple recordings in different sites are re-
quired to track coordination (Wolf Singer, pers. comm.), and this condition be-
comes a necessity when coordination is engaged between processes operating 
simultaneously in several distant cortical areas. However,  single-site record-
ings provide meaningful relational information, as long as the electrophysi-
ological signal itself includes a measure of local network activity, integrated 
across a suf�ciently wide range of space and time constants. LFP studies show 
that one recording site is enough to detect oscillatory synchronized activity. 
For instance, gamma chattering (30–80 Hz) in V1 is present in most LFP re-
cordings during visual stimulation, whereas the probability of detecting it at 
the single-unit extracellular recording level remains very low, at least in the 
anesthetized animal (Frégnac 1991).

Another experimental strategy, reviewed in greater depth here, uses the in-
tracellular membrane �uctuations of a single neuron as a readout probe of the 
correlation structure of the network afferent to the recorded cell (Figure 12.5). 
Intracellular recording of neocortical neurons provides a unique opportunity to 
characterize some statistical signature of the synaptic bombardment to which it 
is submitted. Indeed, the membrane potential (Vm) displays intense noise-like 
�uctuations, which re�ect the cumulative impact arising from the coordinated 
activity of thousands of input neurons. It has an advantage over LFP in that 
the selection of the recorded assembly is not based on the distance relative to 
the recording site (the “visibility radius” of the LFP electrode is estimated to 
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be 250 �m; Nauhaus et al. 2009) but is realized by the target cell itself, which 
anatomically “selects” its input lines. By analyzing these � uctuations, prefer-
ably in  voltage clamp mode, it should be possible to “decode” in a reverse 
way the global afferent activity of the network in which the cell is embedded. 
Despite the inherent dif� culty of space clamping in vivo (Spruston et al. 1993), 
it is likely that the input lines that will be seen are the ones which have an ef-
fective impact at the soma (where the recording is done most often) and hence 
in� uence the spiking process.

For the past 15 years, we have been developing a reverse engineering ap-
proach in current clamp (Bringuier et al. 1997; Bringuier et al. 1999; Frégnac 
and Bringuier 1996; Frégnac et al. 2010) and voltage clamp modes (Monier 
et al. 2003) which allows, in principle, the retrieval of the effective connec-
tion graph in which the cell is embedded at any point in time (Figure 12.5). 
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Figure 12.5  Network dynamics imaging versus synaptic functional imaging. Three 
methods for visualizing network dynamics are compared: (a) Optical functional imag-
ing allows charting of cortical domains of iso-functional preference (color coded) on 
the basis of metabolic or hemodynamic signals. (b) Multiple simultaneous extracellular 
recordings are used to evaluate correlated activity patterns through the blind selection 
of potentially interconnected neurons. (c) The reverse analysis of subthreshold activ-
ity during long duration intracellular recordings of the same single cell can be used to 
retrieve the effective network afferent to the recorded cell (see text).
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The analysis is based on the synaptic rumor recorded in a single cell. Its prin-
ciple is similar to that of echography in the etymological sense (transcrip-
tion of echoes) and is referred to as “ functional synaptic imaging” (Frégnac 
and Bringuier 1996). During sensory activation, the cortex is considered as a 
chamber of echoes produced by the thalamocortical input. The readout of the 
sources is based on the extraction of correlations in space and time of synap-
tic events with speci� c features of the stimulus (e.g., orientation, direction, 
ocular dominance). This method is equivalent to the principle of time reversal 
mirrors in acoustic physics and medicine (Fink 1996). The success of this de-
multiplexing computation relies on the underlying assumption that the input 
sources are separable in space and their synaptic in� uence travels in time with 
similar speed. This condition is rarely met in the general case, but seems to 
be valid for sparse stimulation regimes or during ongoing activity. Functional 
synaptic imaging gives a prediction of the macroscopic activation of the net-
work in space and time, which can be confronted with the direct observation of 
the spatiotemporal cortical dynamics evoked in the super� cial layers of cortex, 
using voltage-sensitive dyes (VSDs) (Frégnac et al. 2010).

A variety of spectral analysis methods can be applied to measure the impact 
of stimulus-driven coordination on the synchrony state of the synaptic bom-
bardment afferent to the recorded cell, which can change over different time-
scales, ranging from phasic (few milliseconds) to steady state (maintained for 
several seconds). Here we wish to underline two methods that have been used 
successfully to demonstrate a dependency of the cortical intracellular “hum” 
with the input statistics.

The � rst method,  time-frequency wavelet analysis, has been applied with 
great success to reveal the stimulus-locked and stimulus-induced (which may 
vary in phase between trials) synchrony and oscillatory structure of assem-
bly spiking patterns (Tallon-Baudry and Bertrand 1999; Tallon-Baudry, this 
volume). It provides an ef� cient means of achieving a trial-by-trial time-fre-
quency analysis of the signal, at any temporal delay following stimulus on-
set, through an array of temporal (Gabor or Fourier) wavelets ranging from 1 
to several hundred Hz (Varela et al. 2001). For intracellularly recorded cells, 
this multiscale � ltering method can also be applied to both its supra- and sub-
threshold activity (Vm) by considering an array (see raster in Figure 12.6a) of 
repeated responses of the same unit for different trials, precisely realigned with 
the stimulus onset. By using signal-noise (SNR) measures (Croner et al. 1993), 
highly reliable stimulus-locked events are revealed by the time-frequency SNR 
matrix of the subthreshold activity. These events are seen as hot peaks (Figure 
12.6a) which straddle from low (wide band) to high (thin band) frequencies. 
In the chosen illustration, they indicate the dense presence, since repeated at 
many discrete times, of synchronous volleys of synaptic inputs despite a sparse 
postsynaptic discharge. This technique shows that the precision of  time  cod-
ing in V1 is dependent on the dimensionality of the stimulus. Reliability is 
poor for low-dimensional stimuli whereas the afferent network shows a highly 
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structured input for natural scene statistics (Frégnac et al. 2005; Marre et al. 
2005; Baudot et al., submitted).

The power spectrum of the membrane potential of any given cell provides 
another valuable tool to extract information on the second order statistics of the 
synaptic input bombardment. A recent study from our lab has demonstrated that 
the  power spectral density of the subthreshold membrane potential (Vm) of vi-
sual cortical neurons can be � tted by a power function 1/f�, at least in the upper 
temporal frequency range between 80–200 Hz (El Boustani et al. 2009). This 
observation holds both during ongoing activity and evoked states, although 
the power law slope changes as a function of input statistics: the fractional 

Figure 12.6  Read-out of synaptic input coordination in a single V1 neuron using 
time-frequency and spectral fractal analysis. (a)  Synaptic input coordination measured 
by wavelet analysis of subthreshold intracellular dynamics. Top panel: trial-by-trial 
membrane potential trajectories are overlaid in black; in red, mean Vm response. Lower 
panel:  time-frequency wavelet analysis of the Vm dynamics and signal-to-noise (SNR) 
power matrix in a V1 Simple cell (Frégnac et al. 2005; Baudot et al., submitted). The 
time axis represents 400 ms of ongoing activity followed by several seconds of con-
tinuous visual activation with a pseudorandom animation (kept identical across trials) 
of natural scenes. The colored SNR peaks straddling between 1–75 Hz signal the reli-
ability of the evoked synaptic bombardment and the presence of highly temporally 
structured input when processing natural scenes. (b) Extracting the contextual network 
correlation state from the spectral properties of the membrane potential of a single cell. 
Left: scaling invariance of the power law for a Lorentzian process and asymptotic linear 
fall-off (slope �) in a log-log coordinate plot. Same analysis applied to the subthreshold 
dynamics of a single V1 cell for various input statistics (DG: drifting grating; GEM: 
grating with eye movements; NI: natural image; DN: dense noise). The fractal slope 
component shows a strong stimulus dependency in the coordination effectiveness of 
the network activity “seen” by the recorded cell (adapted from El Boustani et al. 2009).
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exponent � is given by the fall-off slope of the Vm spectrum in a log-log rep-
resentation and provides a measure proportional to the range of the temporal 
correlations (the larger the longer). The linear asymptotic behavior of the log-
log plot, called power law scaling, is shared by many complex dynamic or self-
organizing processes, both in physics and biology. The origin of their shape 
invariance with frequency rescaling (f � kf) is a matter of debate for multiple 
recordings of LFPs and spiking assemblies (Beggs and Plenz 2003; Plenz and 
Thiagarajan 2007). Until recently, it was thought that the slope component 
was dominated by the intrinsic conductance repertoire of the cells (Bedard and 
Destexhe 2008). In vivo recordings from our lab show that the fractional slope 
component value varies with the complexity of the sensory input statistics (El 
Boustani et al. 2009; see Figure 12.6b) and that the short-range correlations 
present during natural scene viewing are of the same range as those found in 
ongoing activity. These results have been emulated by computational mod-
els, which demonstrate that the fractional exponent is determined by the mean 
level of correlation imposed in the  recurrent network activity. Similar rela-
tionships have also been reproduced in cortical neurons recorded in vitro with 
arti� cial synaptic inputs by controlling in computo the level of correlation in 
real time (using dynamic clamp techniques). From this confrontation between 
theory and electrophysiological recordings, we conclude that the frequency-
scaling exponent of subthreshold Vm dynamics provides a reliable measure to 
monitor changes in the coordination state of neural networks, when they are 
maintained for several seconds or longer. This multiscale analysis could be 
potentially generalized with other types of signals which achieve integration 
of neural activity at more meso- or macroscopic scales.

Reconstruction of Lateral  Propagation 
Waves from  Synaptic Echoes

The combination of intracellular electrophysiology and VSD network imaging 
in the study of  visual cortical processing has given unprecedented access to 
binding and coordinating processes that operate at a subthreshold level, and 
which cannot be detected by solely studying spiking activity. These techniques 
give evidence for propagation along long intracortical distances of depolariz-
ing waves, which may contribute to facilitate synaptic integration anisotropi-
cally in the cortical network. On one hand, VSD imaging reveals the spatio-
temporal signature of information propagation across the target network, and 
re�ects anatomical constraints in the “ divergence” of the connectivity. On the 
other,  intracellular recordings characterize the “ convergence” of the  connectiv-
ity to any given cortical locus. They provide evidence that the receptive � eld 
of visual cortical neurons is not limited to a tubular view but extends over a 
large region of the visual �eld. The mean discharge �eld (MDF) size of V1 
cells de�nes a spiking receptive area that does not extend beyond 1–2 degrees 
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of visual angle for vision around the area centralis in the cat (the equivalent of 
our fovea). In contrast, the synaptic integration � eld, reconstructed from intra-
cellular recordings, corresponds to the region of space from which a local input 
still evokes a signi� cant excitatory or inhibitory response. It captures synaptic 
echoes that originate from the far “silent” surround of the classical discharge 
� eld (Figure 12.7). Schematically, the subthreshold receptive � eld is charac-
terized by a hill of spatial sensitivity (falling off 5–10° away from the MDF 
center) and a basin of latency: synaptic responses elicited by stimuli placed far 
from the center of the discharge � eld show increasing delays (up to several tens 
of milliseconds) with the relative eccentricity (Bringuier et al. 1999).

Functional synaptic imaging offers a link between these two modes of vi-
sualization of apparently distinct connectivities (“ divergence” vs. “ conver-
gence”): although our method is based only on inferences established from 
intracellular records, it allows the reconstruction—� rst in space, then in cor-
tex—of the source location distribution corresponding to the recorded synaptic 
echoes produced by the sensory drive. The hypothesis of a traveling wave is 
made on the assumption of symmetry in exuberant intrinsic  connectivity: since 
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Figure 12.7 Functional synaptic imaging. (a) Schematic representation of the hypoth-
esis of reciprocal horizontal connections between two cortical cells (left, “sender”; right 
“receiver”). This schema allows reconstruction of a propagating wave (circles) from 
the intracellular measure of evoked latencies of synaptic responses in the “receiver” 
cell (right, electrode). �xv is the eccentricity of the distal stimulus (white rectangle, no 
outline) from the central stimulus shown in the discharge � eld center (grey rectangle, 
black outline). �t is the latency between the synaptic response onsets evoked through 
the two pathways. �xc is the intracortical distance between the cortical feedforward im-
pacts produced by the two stimuli, inferred from the know retinocortical magni� cation 
factor (see text for details). (b) Spatiotemporal (left: X–Y; right: X–t) maps of supra-
threshold (spike, upper panels) and subthreshold (voltage, lower panels) activations in 
the same V1 cell. The X–Y maps are presented for two speci� c delays corresponding, 
respectively, to the maximal extents of the discharge � eld (upper) and subthreshold in-
tegration � eld (lower). The pink dotted lines show the average speed of the propagation 
of the reconstructed wave (0.2–0.4 m s–1) (adapted from Frégnac et al. 2010).
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V1 is a highly  recurrent network, we assume that each cell is connected recip-
rocally to any other cell, with identical propagation delays from and to the cell 
(Figure 12.7a). In simpler terms, it should take exactly the same amount of 
time for any given cell to receive a signal from a distant cortical source as to 
send it back to the same cortical locus. This theoretical shortcut allows the in-
ference of propagation  patterns (the cell being seen as a “wave emitter”) solely 
on the basis of the  spatiotemporal maps of stimulus-locked synaptic responses 
recorded in a single cell (the cell being seen as an “echo receiver”). As illustrat-
ed in Figure 12.7b, the slopes (dotted lines) seen in the spatiotemporal pattern 
(X-t) associated with the receptive � eld (X-Y) corresponds to the subthreshold 
latency basin of the recorded cell (Bringuier et al. 1999). This suggests that 
the information received from the  receptive � eld center in the cortex through 
the feedforward afferents is then propagated radially by the horizontal  con-
nectivity to neighboring regions of the visual cortex over a distance that may 
correspond to up to 10 degrees of visual angle. These data led successfully to 
the functional identi� cation and reconstruction of a propagating wave of visual 
activity relayed by the horizontal connectivity.

The principle of computation of the propagation speed from the intracel-
lular recording is straightforward (Figure 12.7a): we compare the synaptic ef-
fects of two elementary stimuli (white bar), one in the core of the minimal 
discharge � eld, the other in the “silent” surround. The distance between the 
primary points of the feedforward impact produced in cortex by the two stimuli 
can be predicted on the basis of their relative retinal eccentricity �xv and the 
value of the retino-cortical magni� cation factor (RCMF). This factor can be 
measured electrophysiologically in cat (Albus 1975), by 2-deoxyglucose meta-
bolic labeling in monkey (Tootell et al. 1982), by intrinsic imaging in mouse 
(Kalatsky and Stryker 2003), and even by fMRI in humans (Warnking et al. 
2002). Thus, beyond a certain scale of spatial integration (larger than the co-
lumnar grain), any distance in visual space, �xv, can be converted to a distance 
in visual cortex, �xc. The spatial range of the subthreshold � eld extent agrees 
with the anatomical description of 4–7 mm horizontal axons running across 
super� cial layers in cat V1 (Mitchison and Crick 1982). Although the RCMF 
factor is dependent on the eccentricity from the fovea in primates and humans, 
this is not the case in cats and ferrets, where 1° of visual angle corresponds 
roughly to 1 mm in cortex within the 10° of the area centralis. Furthermore, 
the electrophysiological recordings give access to the delay �tc between the 
two synaptic echoes obtained through the feedforward and the horizontally 
mediated pathways. By dividing the inferred cortical distance �xc in cortex 
by the recorded delay �tc, an apparent horizontal propagation speed can be 
computed within the cortical map, hence in the plane of the layers of V1. The 
propagation speeds we inferred range from 0.02–2 m s–1, with a peak between 
0.1–0.3 m s–1.

These velocity values have since been con� rmed for other sensory cortical 
structures, such as somatosensory cortex (Moore and Nelson 1998). They are 
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thus ten times slower than X-type thalamic axonal propagation and feedback 
from higher cortical areas (2 m s–1; Nowak and Bullier 1997) and one hundred 
times slower than the fast Y-pathway (8–40 m s–1; Hoffman and Stone 1971). 
They are, in fact, within the order of magnitude of  conduction speeds mea-
sured in vitro and in vivo along nonmyelinated horizontal cortical axon � bers. 
In view of the difference in size that exists between the subthreshold recep-
tive � eld and the discharge � eld, propagation most likely involves long mono-
synaptic horizontal connections, although the contribution of rolling waves 
of postsynaptic activity cannot be entirely excluded. Recent reports based on 
cortical LFPs triggered on LGN spike activity rule out the possibility that di-
vergence of LGN axons may also contribute to the buildup of the observed 
latency shifts as discussed by Nauhaus et al. (2009).

Thus, our intracellular study of synaptic echoes detects the propagation 
signature of an intracortical wave of visual activation traveling along long-
distance horizontal connections. One obvious consequence is that the V1 net-
work should not be considered as an ordered mosaic of independent “tubular” 
analyzers, but rather as a constellation of wide � eld integrators, which simul-
taneously integrate input sources that arise from much larger regions of visual 
space than previously thought. The collective behavior of these integrators is 
coordinated during sensory processing by the anisotropic propagation of stim-
ulus-induced facilitatory waves traveling at slow speed within the super� cial 
cortical layers. Primary visual cortical neurons thus would have the capacity 
to combine information issuing from different points of the visual � eld, in 
a spatiotemporal reference frame centered on the discharge � eld itself. This 
ability imposes precise constraints in time and in space on the ef� cacy of the 
summation process of elementary synaptic responses, and speci� c functional 
predictions linked to the intracortical genesis of coordinating waves will be 
reviewed below.

The macroscopic reconstruction of intra-V1 waves on the basis of micro-
scopic echoes remains, however, an extrapolation made between two scales of 
spatial organization differing by two orders of magnitude (neuron vs. map). 
Brain imaging methods, and more speci� cally VSD techniques, give an un-
precedented view of the state of the cortical network, best detected as a depo-
larizing � eld in the terminal tuft of the dendrites of layer 2/3 pyramidal cells 
(Roland 2002), with a time sensitivity close to that of intracellular recordings. 
Since the pioneering study of cortical spread function by the group of Amiram 
Grinvald (1994), numerous groups have con� rmed the propagation of sponta-
neous and evoked waves across the cortical laminar planes in visual primary 
and secondary cortical areas of rodents and higher mammals: rat, from 0.05–
0.07 m s–1 (Xu et al. 2007); cat, 0.09 m s–1 (Jancke et al. 2004); cat, 0.3 m s–1

(Benucci et al. 2007); monkey: 0.20 m s–1 (Grinvald et al. 1994).
The group of Matteo Carandini measured, in both cat and monkey V1, the 

spatial distribution and the temporal phase of the second harmonic VSD re-
sponse to the contrast reversal of a one-dimensional bar (Benucci et al. 2007). 



Stimulus-driven Coordination of Cortical Cell Assemblies  185

The spatial spread attenuation constant of the cortical response was found to 
correspond quantitatively, in each species studied, to the mean extent of hori-
zontal axons (2–3 mm in monkey, 5–8 mm in cat). The response phase (i.e., 
the temporal delay of the evoked oscillation in each pixel with respect to the 
inducer stimulus) was shown to increase linearly as a function of the lateral 
distance from the feedforward impact zone of the bar. These observations, 
which have since been replicated by LFP studies applied to multielectrode grid 
recordings (Nauhaus et al. 2009), con� rm that the focal stimulus induced a 
traveling wave across cortex, with an apparent speed of propagation estimated 
at around 0.30 m s–1. As shown in Figure 12.8, these VSD studies fully cor-
roborate the predictions we extracted from our intracellular recordings more 
than ten years ago (Bringuier et al. 1999), and most remarkably both methods 
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Figure 12.8  Comparison of spatial and temporal properties of horizontal propaga-
tion, using synaptic functional imaging (left) and network voltage-sensitive dye (VSD) 
imaging (right). See text for details. Synaptic functional imaging is used to infer propa-
gation waves from the readout of synaptic echoes recorded in the same single cell in 
response to sparse localized inputs. VSD imaging monitors the cortical lateral spread of 
a depolarizing wave triggered by a ultrathin phase reversed contrast grating. Left panel: 
horizontal propagation inferred with intracellular synaptic functional imaging (adapted 
from Bringuier et al. 1999). Right panel: horizontal propagation wave monitored in 
the super� cial layers of cat V1 with the with the f2 component of he VSD imaging 
signal (adapted from Benucci et al. 2007). Note the similarities between the spatial hill 
sensitivity pro� les (left column) obtained with intracellular recordings and with VSD 
imaging (top right panel). The same propagation speed (0.1–0.3 m s–1) is measured by 
the two imaging techniques (second column from the left and bottom right panels).
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give the same mean estimate of propagation speed (0.30 m s–1) although they 
are based on different measurement methods and analysis. As nicely worded 
by Nauhaus (2009:72), one may conclude with some con� dence that “the syn-
aptic input to neurons during spontaneous activity can be thought of as the su-
perposition of a myriad of traveling waves originating from individual spikes 
distributed over an extended region of cortex.”

Visualizing Correlates of Gestalt Illusions in V1

The multiscale comparison of these various different imaging techniques (syn-
aptic functional imaging, VSD network imaging) opens up a new �eld of study, 
where it becomes possible to compare real-time imaging in cortical networks 
with membrane dynamic recording in single cells, on the one hand, and psy-
chophysical performance measures, on the other. Almost a century ago, psy-
chologists and philosophers proposed a theory of perceptual grouping, Gestalt 
(Koffka 1935; Köhler 1947), which predicts the emergence of coherent percepts 
of  global shape and motion from the temporal superposition of static presenta-
tions of elementary spatial features. This theory assumes the existence of psy-
chic processes that favor associations in space (according to spatial proximity 
and similarity in contrast polarity) as well as in time (continuity, common fate).

Those predictions inspired a series of psychophysical studies, whose results 
strongly support the following working hypothesis: the temporal characteristics 
of the recruitment of the “horizontal” intracortical connectivity could affect the 
perception of motion. Among various demonstrators, the “Phi” apparent mo-
tion protocol, originally called the “ beta phenomenon” by Wertheimer (1912), 
induces a powerful illusion when the same target is repeatedly �ashed at dif-
ferent moments in time in different positions in the visual � eld ordered along 
an imaginary trajectory (Figure 12.9, left). Although at each moment in time 
the observer sees only a static image, he reports the perception of continuous 
motion of the same object along the trajectory de�ned by the “association” 
path linking the various positions explored in succession. The strength of the 
percept depends on the complexity of the test stimulus (shape and texture), the 
duration of the static presentations, the interstimulus interval, and the spatial 
offset between positions (Anstis et al. 1998). The “line motion” illusion is also 
based on the same induction process of asynchronous static presentations. In 
this latter case, the cue feature is a uniform luminance square, followed by 
a bar of the same luminance, one polar end of which encroaches on the pre-
viously �ashed square. For adequate interstimulus intervals and presentation 
durations, the human subject reports a continuous movement of one border, 
perceived as a smooth morphing of the square into the elongated bar (Hikosàka 
et al. 1993).

If the spatial contextual effect can be easily interpreted in the framework 
of the perceptual “ association �eld” of Field et al. (1993), the temporal 
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determinants and the preferred co-linearity con� guration of these effects sug-
gest a strong dependency on the intra-V1 horizontal connectivity and its prop-
agation speed constraint. VSD imaging correlates of the “line-motion” illu-
sion have been found in area 18 of the anesthetized cat (Jancke et al. 2004). 
Grinvald’s team compared the  spatiotemporal  patterns of the cortical responses 
to a � ashed small square and a long bar alone, and the con� guration of the line-
motion illusion: a square brie� y preceding by a few tens of milliseconds the 
presentation of a light bar (co-linear with the square). In the (last) associative 
condition, the VSD pattern demonstrated the spread of a low-amplitude wave 
in the cortical layer plane, extending far beyond the retinotopic representation 
of the initial “cue.” This spread was most visible along the main orientation 
axis of the bar, with a horizontal propagation speed around 0.10 m s–1. This 
pattern was indistinguishable from the spatiotemporal pattern produced by the 
continuous motion of the same square at a few tens of degrees per second. 
Thus, most remarkably, the anisotropic spread of the cortical activity pattern 
relayed by the horizontal connectivity observed in primary visual areas was 
isomorphic to the percept of the continuous square-bar morphing reported by 
the human observer.
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Figure 12.9  Apparent motion and the hypothesis of the “ dynamic  association � eld.” 
(a) Two forced-choice apparent motion protocol, where the human observer has to re-
port which sequence of oriented elements is seen “faster.” Two con� gurations are com-
pared (collinear and parallel), in which the orientation of each element is respectively 
collinear or orthogonal to the downward motion axis. (b) The “dynamic association 
� eld” hypothesis. Local oriented inputs (Gabor patches) induce a facilitation wave of 
activity traveling along horizontal connections intra-V1. This wave binds in space and 
time proximal  receptive � elds with co-linear preferred orientations, thus creating a con-
tiguous path of temporal integration. The associative strength of the perceptual effect 
is maximal when the asynchronous feedforward sequence produced by joint strokes 
of apparent motion (arrow) travels in phase in the cortical network with the visually 
evoked horizontal propagation.
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Visualizing Propagation of Orientation Belief

An important issue in our understanding of coordination in sensory cortical 
areas during low-level perception is to determine how much of the perceptual 
biases results from structural built-in constraints and how much derives from 
contextual activity or coordination effects de�ned by the stimulus con� gura-
tion itself. For instance, psychophysical studies show that a two-stroke � ashed 
sequence of oriented elements displaced along their orientation axis appears 
to move “faster” to human observers than the same stimulus sequence at an 
angle to the motion axis. This effect peaks at 64°/s in humans and decreases for 
higher and lower speeds (Georges et al. 2002). This speedup is highly sensitive 
to orientation anisotropy, strongly depends on the relative angle between the 
orientation of the moving elements and the motion axis, and is still observed 
for curvilinear trajectories. This suggests that it involves units highly sensitive 
to orientation, a property mainly expressed by neurons in areas V1 and V2. 
Two features of the perceptual effect are closely related to V1 physiology and 
anatomy: (a) the sensitivity of the speedup effect to orientation resembles that 
of the recently uncovered “ association �eld” (Field et al. 1993) presumably in-
volved in  contour integration; (b) the speed at which the speedup is maximum 
is comparable to the speed at which neural activity propagates along long-
range horizontal connections. This structure– perception match may be adapted 
to a speci�c oculomotor exploration strategy since the conversion of the hori-
zontal propagation speed in degrees of visual angle per second in the visual 
�eld (which depends on the species-speci�c cortical magni�cation factor) cor-
responds in most species to the saccadic range of eye movements (50–500°/s).

As stated above, it is generally assumed that orientation binding results 
from anisotropies in the intracortical connectivity, where long-distance hori-
zontal axons in visual cortex have been reported to link columns sharing simi-
lar orientation preference. However, the anatomical evidence in favor of such 
bias is rather scarce in the cat cortex (the strongest evidence for a structure–
function correlation has been obtained in the tupaïa glis and the ferret V1). 
Combinations of optical imaging and intracellular labeling show indeed a di-
versity of potential links established between orientation columns which do 
not obey, at least at the statistical signi�cance level, the rule “like couples to 
like” (Monier et al. 2003). Quantitative reanalysis of published data correlating 
axonal bouton distribution with target orientation preference (relative to that 
of the parent cell) revealed by intrinsic imaging reveals that the tendency for 
horizontal axons to connect iso-orientation loci is not exclusive and intercon-
nection probability is only about 1.5 times greater than chance level. This bias 
has been mostly observed for supralaminar pyramidal neurons. However,  in-
hibitory interneurons and neurons in layer IV or close to pinwheel centers have 
also been reported to connect lateral orientation columns in a cross-oriented or 
unselective way (Karube and Kisvarday, pers. comm.). As a consequence, at a 
more integrated mesoscopic level, the net functional effect cannot be predicted.
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Other processes, such as activity-driven coordination, may amplify a small 
structural bias in a strong perceptual effect, when enough temporal synergy 
and spatial summation are recruited from the start by the sensory drive. A re-
cent collaborative work between our lab and the group of Amiram Grinvald 
attempted to achieve a multiscale analysis of the visually driven horizontal 
network activation, using population and single-cell measures of postsynaptic 
integration. VSD imaging showed that a local-oriented stimulus evoked an 
orientation-selective activity component that remained con� ned to the feed-
forward cortical imprint of the stimulus. Orientation selectivity decreased ex-
ponentially along the horizontal spread (space constant ~1 mm). To dissect 
the  local  connectivity rules, we also made intracellular recordings during 
dense-oriented Gabor noise stimulation to identify the orientation selectivity 
and preference of converging horizontal inputs onto the same target cell. The 
combination of the imaging and electrophysiological results suggests, some-
what surprisingly, that the horizontal connectivity does not obey iso-orienta-
tion rules beyond the hypercolumn scale. In contrast, when increasing spatial 
and temporal summation, both optical imaging and intracellular measurements 
showed the emergence of an iso-orientation selective spread. We conclude that 
stimulus-induced cooperativity is a necessary constraint for the emergence of 
iso-functional Gestalt-like  binding (Chavane et al., submitted).

This last study, combining network VSD imaging and synaptic functional 
imaging, shows two contrasted dynamic behaviors of the same network for 
two distinct levels of coordination driven by the stimulus con� gurations: a sin-
gle local stimulus does not propagate orientation preference through the long-
range horizontal cortical connections whereas stimulation imposing spatial 
summation and temporal coherence facilitates the buildup of orientation pref-
erence propagation. These observations do not forcibly contradict each other. 
On one hand, for the local-oriented stimulus, the divergent connectivity pattern 
may facilitate detection of high-order topological properties (e.g., orientation 
discontinuities, corners, geons). On the other hand, for stimulation protocols 
involving a larger extent of stimulation, summation of multiple-oriented sourc-
es in the far “silent” surround can optimize the emergence of iso-orientation 
preference links. Con� gurations such as oriented annular stimuli may, for in-
stance, recruit iso-oriented sources collinearly organized with the orientation 
preference axis of the target column/cell; similar synergy may be obtained 
when sources, independent of their exact location, share the same motion di-
rection sensitivity as the target grating. Both of these con� gurations, which are 
confounded in annular aperture protocols, correspond to the neural implemen-
tation of the Gestalt’s continuity and common fate principles, but other more 
dynamical principles could also emerge from such network con� guration.

These different experimental observations have led us to formulate the con-
cept of the “dynamic association � eld” (Frégnac et al. 2010), which adds a 
temporal coordination dimension to the static “ association � eld” introduced 
originally by Hess and Field (Field et al. 1993). In its dynamic version, the 
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revised concept assumes that local-oriented inputs (Gabor patches) induce a 
facilitation wave of activity traveling along horizontal connections intra-V1 
(Figure 12.9a). This coordination wave tends to bind proximal receptive � elds 
with co-linear preferred orientations, thus creating a contiguous path of tem-
poral integration. The associative strength of the perceptual effect is maxi-
mal when the asynchronous feedforward sequence produced by joint strokes 
of apparent motion (arrow in Figure 12.9b) travels in phase with the visually 
evoked horizontal intracortical propagation. Several arguments strongly sup-
port the relevance of introducing a time coordination. Intracellular recordings 
show that centripetal apparent motion produced by iso-oriented Gabor stimuli 
(co-aligned with the motion axis and presented from periphery to center) at 
saccadic speed (250°/sec in the cat) is more ef� cient than the simultaneous 
static presentation of the same stimuli (or the reverse centrifugal sequence) at 
evoking subthreshold synaptic responses from the “silent” periphery. Recent 
unpublished intracellular work from our lab shows that sparse apparent mo-
tion two-stroke noise appears as a powerful stimulus condition to trigger the 
coordination of synaptic activity along motion streaks attuned to the orienta-
tion preference of the target cells (Carelli, Pananceau, Monier, and Frégnac, 
in preparation).

Conclusion

The coordination processes that we have reviewed are generated mostly by 
recurrent and lateral intrinsic connections in the same cortical area, with a 
possible contribution of feedback control from higher cortical areas (although 
it may be minored by deep anesthesia). In terms of cognition/perception rel-
evance, these processes are low level and not linked to attention since they are 
observed in humans during forced choice tasks as well as in the anesthetized 
mammal. These various interdisciplinary studies, based on intracellular elec-
trophysiology, network imaging, and psychophysics, all point to the emergence 
of cooperative Gestalt-like interactions, when the stimulus carries a suf� cient 
level of spatial and temporal coherence. Above a given activation threshold 
(yet to be quantitatively de�ned), a cooperative depolarizing or facilitatory 
wave becomes detectable in primary and secondary visual areas. The trigger 
zone can be considered as the initial point in cortical space where the sym-
metry of the compound effect of neural activity creates symmetry-breaking 
(see Engel et al., this volume). This process, which can occur spontaneously 
or be evoked during sparse sensory stimulation regime, initiates a wave that 
travels at low speed in the plane of the super�cial cortical layers (0.10–0.30 
m s–1) and most likely becomes anisotropic for oriented inducer stimuli. The 
physiological features of the spatiotemporal propagation–coordination pattern 
recorded in V1 are highly correlated with the percept reported by the conscious 
human observer (e.g., Georges et al. 2002) and agree with predictions derived 
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from the Gestalt theory. In the two cases of  motion illusion reviewed here 
(apparent motion and line motion), a wave of  perceptual  binding modulates 
the integration of feedforward inputs yet to come: this wave can be seen as 
the propagation of the network belief of the possible presence of a global per-
cept (the “whole”: here, continuous motion of a space-invariant shape) before 
the illusory percept becomes validated by the sequential presentation of the 
“parts” (signaled by direct focal feedforward waves). This neuronal dynamics 
obeys closely the Gestalt prediction that the emergence of the “whole” should 
precede in time the detection of the “parts.”

These cortical processes result, at the perceptual level, in the propagation of 
functional biases binding of contour and motion, which goes beyond the scale 
of the columnar orientation and ocular dominance network. It remains to be de-
termined whether the correlations we report between perception and horizontal 
propagation are the sole result of neural processes intrinsic to V1, or whether 
they re� ect the reverberation in V1 of a collective feedback originating from 
multiple secondary cortical areas, each encoding for a distinct functional rep-
resentation of the visual � eld. It may be indeed envisioned that the primary 
visual cortex plays the role of a generalized echo chamber fed by other corti-
cal areas (visual or not) that participates in the coding of shape and motion in 
space: accordingly, the waves traveling across V1 would signal the emergence 
of perceptual coherence when a synergy is reached between the different corti-
cal analyzers. Synaptic functional imaging provides a new way to explore the 
genesis and propagation of such slow coordination, which may be instrumental 
to low-level cortical-mediated cognition.
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Abstract

This chapter reviews the concept of dynamic coordination, its mechanistic implemen-
tation in brain circuits, and the extent to which dynamic coordination, and speci� c 
manifestations of it, have the power to account for functions performed by interacting 
brain systems. In our discussions, we addressed how on-the-� y changes in coupling 
between neural subpopulations might enable the brain to handle the fast-changing re-
combination of processing elements thought to underlie cognition. Such changes in 
coupling should be apparent, � rst and foremost, in the statistical relationship between 
activity in interconnected brain systems, rather than in the individual � ring patterns of 
each subsystem. Dynamic coordination may manifest itself through a variety of mecha-
nisms, of which oscillation-based synchronization is likely to play an important but 
not exclusive role. Also discussed is how modulation of phase relationships of oscil-
lations in different brain systems, in neocortex and hippocampus of the mammalian 
brain, may change functional coupling, and how such changes may play a role in rout-
ing of signals at cross sections between cortical areas and hippocampal subdivisions. 
Possible mechanisms for oscillation-based synchronization, particularly in the gamma 
frequency range, are explored. It is acknowledged that the brain is likely capable of 
producing zero-phase lag between spatially dispersed cell populations by way of rather 
simple coupling mechanisms, primarily when neuronal groups are coupled symmetri-
cally. Synchronization with remote areas may be most ef� cient with phase differences 
that match the conduction delays. Fast-conducting, long-range projecting interneurons 
are identi� ed as a potential substrate for synchronizing one neural circuit with another. 
A number of research strategies are identi� ed to enhance our understanding of dynamic 
coordination of brain systems and how it might contribute to the implementation of the 
functions of those systems.
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Introduction

In its simplest form,  coordination is de�ned by the multiple interrelations that 
can be drawn between elements of any given assembly, and its phenomeno-
logical expression is signaled by the recon� guration of elementary dynamics. 
The potential relations are viewed as functions of an externally de� ned context 
or an internally self-generated goal. In their introductory chapter, Phillips et al. 
(this volume) further constrain the issue by adding: “In general,  coordinating 
interactions are those that produce coherent and relevant overall  patterns of 
activity, while preserving the essential individual identities and functions of 
the activities coordinated.”

We tried to de�ne the process of  dynamic coordination by contrasting it 
with non-vacillating alterations, ever aware of the fact that virtually all neu-
ronal processes are coordinated in one way or another. Much of the coordina-
tion of activity required for the formation of speci�c response properties, such 
as the receptive �elds of neurons in  sensory systems or the generation of se-
quences necessary for the execution of movements, can be achieved by appro-
priate neuronal architectures that allow for the recombination and sequencing 
of signals in processing cascades based on divergence, selective convergence, 
and feedback. Such architectures allow for highly complex coordination and 
association of signals, even if these originate in separate processing streams, 
provided that there are adequate connections between the various stages of 
these processing cascades. To de�ne relations and support selective grouping, 
it would be suf�cient to increase jointly the rate of the responses that are to 
be associated with each other. Sparse  coding and topographic coding would 
further enhance the salience of rate changes and reduce the risk of  grouping 
unrelated but simultaneously enhanced responses. The fact that a number of 
phenomena can be predicted by �ring rate-based models raises the question 
whether the �ne-grained  temporal structure of neural activity in different brain 
regions has additional explanatory power. Thus, we discussed whether more 
dynamic mechanisms are required to allow the �exibility, robustness, and 
speed at which cognition operates in the performing brain.

Dynamic coordination is required when the results of computations achieved 
in different processing cascades need to be recombined and associated in a 
� exible, nonstereotyped way. A paradigmatic case is  working memory, where 
ever-changing items have to be temporarily associated with each other. It is 
unlikely that �xed neuronal architectures would be suf�cient to anticipate and 
cope with the virtually in�nite number of possible constellations of associable 
contents. For each possible constellation, one would need a devoted set of neu-
rons receiving the appropriately selected converging inputs. Because of this 
limitation, the mechanisms required would need to be capable of establishing 
transitorily, and in a highly �exible way, relations among signals originating 
in different processing cascades. These mechanisms would need to be able to 
select in a dynamic, task- or goal-directed way signals from different, spatially 
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segregated processing streams and assure selective interactions between, and 
further joint processing of, these signals. In our deliberations, we considered 
the possibility that if several such signals are to be coordinated for the � rst 
time, that is, before anything is known about their  relatedness, a possible 
mechanism for such relatedness (presumably due to common cause) might be 
in the form of temporal correlation. This transient coordination may be neces-
sary to establish new linking paths, although its subsequent recruitment might 
not always be required.

Furthermore, we recognized that most behaviors, and relations between dif-
ferent processing streams, are not generated ex novo but are highly predictive 
based on the history of activation and learning of the system. We rarely reach 
for a visual object by allowing an arm to cross the midline; we rarely raise a 
leg and an arm simultaneously unless we are dancing. These relationships can-
not be coded just in the anatomy, but must be implemented in the statistical 
properties of the intrinsic (not task-driven) functional connectivity, which may 
also require mechanisms of temporal correlation. Dynamic coordination thus 
does not arise from noise, but from a patterned baseline landscape that may 
constrain to some extent its � exibility.

The question then arises: How can the presence of  dynamic coordination 
be diagnosed? We agreed that dynamic coordination should be apparent in the 
patterns of interactions between de� ned neuronal populations. For all coordi-
nated processes it should be the case that more information can be retrieved 
by considering the joint activity of neurons belonging to different processing 
cascades than evaluating the activities of the respective neurons in isolation. 
In nondynamically coordinated processes, the relations among the respective 
� ring sequences will be stereotyped across trials, if stimulus conditions remain 
constant. The additional information contained in the relations between the re-
spective � ring patterns can therefore be retrieved in sequential recordings from 
these neurons and with averaging across trials. Such analysis has been applied, 
for example, to the motor cortex and has led to the discovery of population 
codes for movement trajectories (see Georgopoulos et al. 1986; Frégnac et al., 
this volume). However, this approach may be insensitive to more � ne-grained 
temporal relations between the discharges of dynamically grouped neurons. 
These relations can only be determined by simultaneously recording from the 
neurons whose activity is suspected to be coordinated. What one might ob-
serve in these cases is that the individual responses change only little, if at all, 
in terms of average rate, while measures of relations between the responses 
change in a systematic way.

A further constraint is that, in dynamic coordination, the information con-
taining relations must change in a context-, task-, and goal-dependent way. For 
example, temporal structures may depend on whether a trial was successful or 
an error trial, and they may change as a function of stimulus context or shifts 
in attention or goal de� nitions. To understand the functions of dynamic coor-
dination on the basis of extracellular recordings, it is imperative to perform 
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 multisite recordings and to search for real-time correspondences between 
temporal structure and task demands. Such approaches may require analytical 
methods that extract activity patterns in many cells at the same time and take 
their trial-by-trial covariation into account. Note, however, that it is possible 
to infer coordination-related processes from single site recordings by appropri-
ate multiscale analysis of intracellular membrane recordings, which re� ect the 
impact of long-distance feedback and lateral  connectivity (see Frégnac et al. 
2009; also Frégnac et al., this volume).

Experimental evidence for such conditions of dynamic coordination is 
available. In neuronal recordings during  binocular  rivalry, for example, wheth-
er the considered neuron is part of the processing cascade leading to conscious 
experience cannot be predicted from the rates of individual neurons in   V1. 
In contrast, a measure of  synchrony, in this case precise  synchronization of 
periodic activity in the  gamma frequency range, predicts correctly whether 
or not a given pair of neurons participates in the processing cascade which, 
in this very moment, conveys the activity that reaches consciousness and is 
perceived (Fries et al. 1997). In inferotemporal cortex, this information can be 
retrieved from the rates of individual neurons, suggesting that synchronization 
(dynamic coordination) at early processing stages was used to select responses 
for further joint processing by enhancing their saliency, which then facilitated 
transmission of this synchronized activity to higher levels where it then evoked 
increased rate responses.

Examples for highly speci� c inter-regional coordination can also be found 
in human neuroimaging. Functional neuroimaging is particularly suitable to 
reveal large-scale dynamic coordination processes that span the entire brain. 
Several methods are available that allow researchers to investigate how cogni-
tive processes change the interactions between remote brain regions. These 
include psychophysiological interactions (Friston et al. 1997), dynamic causal 
modeling (Friston et al. 2003), and Granger causality mapping (Roebroeck et 
al. 2005). Haynes et al. (2005), for example, have investigated the effects of  at-
tention on the connectivity between representations of attended locations. They 
let subjects attend to two out of four spiral stimuli and report whether they had 
the same or different handedness. Thereafter they measured the functional con-
nectivity between the individual representations of these stimuli in retinotopic 
visual cortex. They found that functional connectivity was increased between 
the retinotopic representations of jointly attended stimuli, both within regions 
(i.e., V1–V1,  V2–V2) and between regions (V1– V2, V2–V1).

A topic of our discussion was whether the de� nition of  dynamic coordi-
nation as structured temporal relationships between neuronal populations ex-
cludes simultaneous changes in the individual populations to be synchronized. 
A strict application of the criteria implied for dynamic coordination by Phillips 
et al. (this volume) would suggest that local processes, such as the discharge 
� elds of V1 neurons, would remain unchanged under associative stimulation 
protocols. The underlying assumption is that the relational information should 
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remain separable from the information carried initially by each stimulus com-
ponent taken in isolation. It was agreed that a strict application of the de� nition 
may not be valid as there are numbers of examples which suggest that changes 
in dynamic coordination give rise to, or are associated with, changes in indi-
vidual subcircuits. Three examples illustrate the diversity of interactions be-
tween coordinated processes and activity in single cells and single populations.

The � rst example was taken from the stomatogastric ganglion of the lob-
ster. This particular sensorimotor network constitutes a striking example of 
assembly dynamic recon� guration correlated with changes in behavior where, 
during the coordination, the electrical input–output properties of individual 
elements are not preserved. Coordination is controlled by “ orchestra leaders” 
(PS cell), whose activity triggers the widespread broadcast of  neuromodula-
tors. This neuromodulation impacts on the intrinsic reactivity of the other cells 
by changing reversibly the expressed repertoire of membrane conductances. 
Consequently, the individual excitability patterns of any given cell will change 
depending on the context (before, during, or after the orchestra leader cell has 
� red). Note that in this paucineuronal biological network where all partners 
are known, the coordinator is identi� ed and the causal link between temporal 
assembly motifs and the behavioral actions, as well as their functional sig-
ni� cance (food swallowing, crunching, and expulsion), are clearly de� ned 
(Meyrand et al. 1991).

In a second example, the coordinating agent was part of the high-order sta-
tistical features present in the sensory input stream. Changing the statistical 
regularities of the environment may produce drastic reorganization of ensem-
ble activity patterns and their stimulus-locked reliability. For instance, it is well 
known that repeated presentation of drifting luminance gratings in  V1 recep-
tive � elds evokes strong but highly unreliable responses, both at the spiking 
and subthreshold levels. In contrast, in the same cells, virtual eye-movement 
animation of natural scenes evokes temporally precise sparse spike responses 
and stimulus-locked membrane potential dynamics which are highly reproduc-
ible from one trial to the next (Frégnac et al. 2005). In this second example, 
coordination is unrelated to the behavioral outcome or neuromodulation since 
it is observed in the anesthetized and paralyzed preparation as well as in the 
attentive-behaving monkey (Vinje and Gallant 2000). This  self-organized pro-
cess adapts the temporal precision of the sensory code to the statistics of the 
input. However, in contrast to the � rst example, this adaptive form of temporal 
coordination is done in the absence of internal executive or supervision units. 
As demonstrated in the � rst example, the full � eld “whole” condition will af-
fect the functional identity of the recorded unit (i.e., the individual receptive 
� elds of the  V1 cells).

These two examples illustrate conditions where properties of the individual 
units of a circuit clearly change in parallel with coordinating processes; how-
ever, the literature also contains illustrations where the information that can 
be stored or recalled on the basis of coordinated activity is separable from the 
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rate responses of single neurons. This can be seen in recordings of responses 
to long-duration single frequency tones from the auditory cortex, where highly 
transient burst responses are detected at the onset or offset of the tone whereas 
the mean activity is unchanged during the tonic phase of the stimulation. The 
presence of the stimulus is here signaled by a dramatic and tonic elevation in 
the correlation between cortical units coding for the sound frequency, without 
any apparent change of � ring rate (deCharms and Merzenich 1996).

It remains a challenge to de� ne a taxonomy of  coordination where the un-
derlying mechanisms of each phenomenological form can be clearly separated. 
Nonetheless, we agreed that dynamic coordination is apparent in a number of 
studies that show changes in the temporal structure of the joint activity of two 
or more neuronal populations that differ in character to those taking place at 
the single-population level.

A Possible Need for Fast-changing Neuronal Architectures

All coordination requires the de� nition of relations. In the nervous system, 
relations are established by the anatomical connections among neurons, the 
anatomical architecture of the networks, and the patterns of inter-regional 
spontaneous activity, the baseline or intrinsic functional architecture of the 
networks. Work in nonhuman and human primates indicates that the anatomi-
cal connectivity matrix has small world properties allowing for the coexis-
tence of local processing and long-range integration (Kotter 2004; Hagmann 
et al. 2008). This small world architecture also gives rise to space-time struc-
tures of coupling and time delays, which in the presence of noise de� nes a 
dynamic framework for the emergence of spontaneous and task-driven cortical 
dynamics at different temporal scales (minutes, seconds, hundreds of milli-
seconds) and could support both long- and short-term changes in functional 
connectivity. To allow for dynamic coordination in behavior (task-dependent 
selection of responses for joint processing, selective association of subsys-
tems to be engaged, etc.), the functional architecture must be modi� able at 
the same rapid pace as cognitive and executive processes can change. This 
requires fast changes in effective coupling among neurons; that is, the gain or 
the ef� ciency of a connection must be modi� able. The brain is likely to have 
a number of mechanisms for achieving such changes in  coupling, operating at 
different timescales.

Coordination by Gain Modulation

Dynamic coupling  can to some extent be accomplished by well-characterized 
gain-modulation mechanisms. Synaptic gain changes can be induced within 
tens of milliseconds, they may be (but do not have to be) associative and can 
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last from a few tens of milliseconds (e.g., during frequency-dependent changes 
in transmitter release) to many decades (e.g., when activity is stored in long-
term memory). Effective  coupling can also be changed by purely activity-de-
pendent gating, such as when dendritic segments are switched off by shunt-
ing inhibition, or when the sequence of activated synapses along a dendrite 
is changed so that excitatory postsynaptic potentials (EPSPs) either summate 
effectively or shunt each other, or when the nonlinear amplifying effect of 
 NMDA receptors is enabled or vetoed by local or global adjustments of mem-
brane potential. The question raised in our discussions was whether such gain-
modulating mechanisms would be suf� cient to account for the speed and � ex-
ibility of cognitive operations. 

Coordination by Synchronization of  Oscillation Patterns

A candidate mechanism for effective change of the coupling among neurons 
involves rhythmic modulation of discharge activity (neuronal oscillations). 
Oscillating networks facilitate the establishment of  synchrony because they 
can capitalize on the effects of entrainment and resonance. Oscillators that are 
tuned to similar frequencies have the tendency to engage in synchronous oscil-
lations if reciprocally coupled. This is the case even if coupling is very weak 
and even if their frequency tuning is broad and the preferred frequencies are 
not identical. 

An oscillatory modulation of membrane potential, such as occurs in oscil-
lating cell assemblies, con�nes spiking to the rising slope of the depolariz-
ing phase. Thus, spikes emitted by networks engaged in synchronous oscil-
lations become synchronized. The temporal precision of this synchronization 
increases with oscillation frequency. In the case of gamma oscillations, output 
spikes can be synchronized with a precision in the range of a few milliseconds. 
Because of the coincidence sensitivity of neurons, this synchronization greatly 
increases the impact that the output of synchronized cell assemblies has on 
subsequent target neurons.

Another virtue of  oscillations is that they allow the exploitation of phase 
(relative timing) for  coding (see discussions on phase precession in the hip-
pocampus in Mehta et al., this volume). In oscillating, synchronized cell popu-
lations, responses to strong excitatory inputs will occur earlier on the rising 
phase of the oscillation than responses to weak inputs. Thus, intensity can be 
encoded in the time of spiking relative to the oscillation phase. This is a con-
venient way of coding since the latency of �rst spikes already contains all 
information about the amplitude of the driving input. Early studies on  retinal 
coding by Kuf�er (1953) showed that relative intensities of visual stimuli can 
readily be assessed from the relative latencies of the �rst spikes of ganglion 
cells. Later studies showed that image reconstruction from �rst spike latencies 
is as good as counting rates over several hundred milliseconds (VanRullen and 
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Thorpe 2001). Thus, readout time for this temporal code is much faster than 
for the  rate code. In the case of the retina, these intensity-dependent differences 
of spike latencies are of course caused by receptor kinetics. In central process-
ing, the same conversion of an amplitude  code into a temporal code can be 
achieved, in principle, by oscillatory modulation of cell assemblies. 

These considerations provide answers to the question: Under which cir-
cumstances are oscillations needed? They are needed or at least highly advan-
tageous if (a) spikes have to be synchronized with high precision to support 
their propagation in sparsely connected networks (see syn� re chains of Abeles 
1991); (b) spike timing has to be adjusted with high precision for the de� nition 
of relations in learning processes such as spike timing-dependent plasticity 
(STDP); or (c) phase is used as coding space, i.e., if timing relations between 
spikes or between spikes and the phase of a population oscillation convey in-
formation about input amplitude or the  relatedness of distributed processes.

There was consensus in our group that several pieces of experimental data 
are consistent with a role for oscillation-based  synchronization in cognitive 
processes. For example, researchers have shown that attention during  visual 
 search correlates with increases in coherence between  local � eld potentials 
(LFPs) from the frontal cortex and the parietal cortex (Buschman and Miller 
2007, 2009). Around the time when monkeys � nd and shift attention to a vi-
sual target, there is an increase in coherence in two different frequency bands: 
an upper frequency band (35–55 Hz) for bottom-up attention (pop-out), and a 
lower frequency band (22–34 Hz) for top-down attention (conjunction search). 
During search for conjunctions, the monkeys shift the location of their atten-
tion every 40 ms. The attention-related shifts in frontal eye � eld spiking activ-
ity were correlated with increased power in the lower frequency band, suggest-
ing that the oscillations act as a “clocking” signal that controls when attention 
is shifted (Fries 2009). The study suggests that serial covert shifts of  attention 
are directed by the frontal eye � eld and that synchronization between cortical 
systems may regulate the timing of cognitive processing. Task-induced chang-
es in synchronization or  coherence have been reported at the level of individual 
regions during  sensory integration (Roelfsema et al. 1997),  selective  attention 
(Fries, Reynolds et al. 2001),  working memory (Pesaran et al. 2002; Howard 
et al. 2003), and motor control (Crone et al. 1998). Between distant cortical 
regions they have been reported during object recognition (Varela et al. 2001), 
working memory (Jones and Wilson 2005), long-term  memory  encoding (Fell 
et al. 2001), visual attention (Gregoriou et al. 2009), and sensorimotor integra-
tion (Roelfsema et al. 1997).

Oscillations and  Dynamic Routing

Oscillations  may in�uence routes of communication within structurally con-
strained brain networks. Consider two groups (A and B) of neurons that provide 
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converging synaptic input to a common target group (C) and compete for in� u-
ence on this target group. If there is rhythmic synchronization among the neu-
rons in group A and among the neurons in group B, but not between A and B, 
then C will most likely synchronize to either A or B, but not to both at the same 
time (Börgers and Kopell 2008). The locking of C to either A or B implements 
a winner-takes-all between the competing inputs of A and B and establishes 
an exclusive communication link between the target C and the more strongly 
synchronized input (Fries 2005; Fries et al. 2008).

The described constellation of two neuronal groups converging onto one 
target group is a fundamental motif in cortex. While this motif renders the 
postsynaptic neurons selective to diagnostic features of the learned input pat-
tern, it also renders them nonselective or invariant to nondiagnostic accidental 
features. This  invariance is an advantage, because it might provide the basis 
for object recognition in the face of changes to irrelevant stimulus aspects; 
however it is also a curse, because a given stimulus will never cover the com-
plete input space of a given neuron, leaving room for competing stimuli. It 
would be bene� cial if the effective input of a given neuron at a given mo-
ment in time were limited to functional subsets corresponding to one actual 
object. This selective ef� cacy of subsets of a neuron’s input might be imple-
mented through the above mentioned exclusive communication link, possibly 
by  synchronization in the  gamma frequency band. For this solution to work, 
two conditions have to be met simultaneously: First, inputs driven by a given 
stimulus need to be rhythmically synchronized to each other, but not to inputs 
driven by other stimuli. This corresponds to the  binding-by-synchronization 
hypothesis (Singer and Gray 1995; von der Malsburg 1981/1994). Second, 
one of the input segments has to be given a competitive advantage over the 
other through an enhancement. This corresponds to the hypothesis of  biased 
competition through enhanced synchronization (Fries 2005). Thus, the way to 
use structural convergence in order to harvest both selectivity and invariance 
seems to lie in the interplay between structural neuronal connectivity and dy-
namic neuronal synchronization.

In proposing a role for oscillatory activity in dynamic coordination of neu-
ronal populations, our group agreed that one should not forget that oscillatory 
activity, which may certainly be considered a signature or a manifestation of 
dynamic coordination, does not necessarily explain the causes or mechanisms 
by which such coordination arises. Consider a simple dynamic routing exam-
ple like the one described above, where information in a low-level sensory 
processing area could be routed toward one of two possible targets in a higher 
area, with the choice of direction being endogenous, i.e., not dictated by the 
stimulus. When information is routed one way (choice A), some neurons may 
oscillate in one manner; when routed the other way (choice B), the same or 
other neurons may oscillate in a different manner. The mere existence of these 
oscillations does not explain how the selection was implemented in spatially 
speci� c synchronization patterns. The result, signature, or manifestation of 
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choosing between A and B, and communicating it to lower areas, may be what 
is expressed in patterns of oscillations in the functionally connected areas, but 
how the decision is made and what mechanisms and pathways are employed to 
communicate it remain pressing questions.

Oscillations and Phase Relationships

Coupling between cell populations is heavily dependent  on the phase relation-
ship of the cells in the groups to be linked. By adjusting phase angles,  coupling 
can be modi�ed over the whole range from ineffective to maximal. Controlled 
changes in �ring phases can also be used for dynamic routing if sender and 
receiver are oscillating at a similar frequency and phases are adjusted. Because 
oscillations can occur over a wide frequency range, many routes can be speci-
�ed at the same time without interference. Finally, because coupling in oscil-
latory networks depends on phase and because we observe the coexistence of 
oscillations in different frequency bands (theta, beta, gamma), many different 
and graded adjustments of couplings can be structured, providing opportuni-
ties for establishing dynamically graded and  nested relations, which could be 
advantageous for the  encoding of  compositionality.

Consistent with a role for oscillations in routing of information, experimen-
tal data suggest that the phase of the ongoing oscillation can establish preferen-
tial windows for information processing. Inputs that arrive in the “good phase” 
of the ongoing oscillation will be processed preferentially, whereas those ar-
riving at the “bad phase” will be suppressed. For a long time it has been known 
that the ability to perceive weak signals �uctuates slowly over several seconds 
( streaking effect). A recent study showed that infra-slow (0.01–0.1 Hz) � uctua-
tions of ongoing brain activity correlate with this behavioral dynamics. In this 
study (Monto et al. 2008), the probability of detecting a tactile target at thresh-
old was 55% more likely in the rising phase of the �uctuation, and strongly 
correlated with the power amplitude of higher frequency (1–40 Hz) EEG � uc-
tuations. Support for the same hypothesis comes from two more recent studies 
showing a relationship between visual detection and phase in the theta–alpha 
range (Busch et al. 2009; Mathewson et al. 2009).

Finally, we discussed the potential impact of precise phase relationships on 
learning mechanisms. This seems important because processing architectures 
have to be adjusted to the requirements of mechanisms establishing durable 
relations (e.g., in  associative  learning); that is, they have to transform the (se-
mantic) relations de�ned during processing into permanent changes in cou-
pling that represent these relations. If any of the mechanisms of associative 
synaptic plasticity known to date (LTP, LTD,  STDP) have anything to do with 
learning, it would seem that processing architectures need to be capable of de-
�ning relations in the temporal domain and that they will have to do so by ad-
justing the timing of individual spikes with a precision of a few milliseconds. 
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In STDP, for example, it matters whether an EPSP arrives just a few milli-
seconds before or after a spike to increase or decrease the ef� cacy of a con-
nection. It would seem, therefore, that in signal processing and in dynamical 
coordination, relations should be speci� ed with a similar temporal resolution 
and precision. Synchronization and phase adjustments in the gamma frequency 
range could provide the time frame for the precise adjustment of spike timing 
required for STDP. One should note, however, that the evidence for  STDP in 
vivo is relatively scarce and that it is easier to demonstrate the negative (de-
pression) than the positive (potentiation) parts of the STDP curve in the adult 
cortex (Jacob et al. 2007).

A Wider Repertoire of Coordination Mechanisms

Oscillations cannot be the sole mechanism of dynamic coordination. The neu-
roscience literature contains a number of examples of dynamic coordination 
where brain circuits communicate using precise temporal codes not expressed 
as lasting synchronization in  oscillatory  patterns in the LFP. The diversity of 
mechanisms can be illustrated by patterns of hippocampal–neocortical interac-
tions in  slow-wave sleep. Slow-wave associated transitions in excitability from 
low �ring rate (putative down-state) to high �ring rate (putative up-state) ex-
hibit a systematic timing relationship in which the  neocortex leads the  hippo-
campus. During the elevated � ring rate period that follows that transition, the 
hippocampus expresses a series of sharp wave-ripple burst events that replay 
sequential spatial memory information in which the timing relationship is re-
versed, with the hippocampus thought to be leading the neocortex. The dialog 
that may be re�ected in shifting timing relationships may re�ect the dynamic 
coordination of oscillatory modes during memory processing.

The possibility of a wider repertoire of mechanisms was further illustrated 
by discussion of the mechanisms for rapid  object  recognition in the visual cor-
tex. A given scene may be analyzed in terms of complex arrays of relations by 
focal  attention visiting here and there, and even if the relations thus identi� ed 
are indeed represented in terms of correlated oscillations, a more permanent 
trace of these relations must be left behind to be available at later visits by focal 
attention. If, for instance, there is a number of objects and a number of persons 
present in a scene, then sequential  focal attention may discover which object 
belongs to which person, one by one, as a result of some inference; when com-
ing back to one of the persons or objects, this result should be available im-
mediately without the necessity of going through the process of inference from 
scratch. In addition, there is the necessity of maintaining ongoing relations 
or links between different neuronal ensembles over longer timescales. Many 
patterns of behavior are predictable, although not necessarily across individu-
als, repeated over and over with little variation, while at the same time novel 
behaviors can be stabilized with learning.



204 E. I. Moser et al. 

What could the mechanism of such short- and longer-term storage of rela-
tions be? It was proposed that in addition to the elementary symbols repre-
sented by neurons (or groups of neurons), there might be a large network of 
dynamic links. These links correspond to permanent neural connections, which 
can, however, be modi� ed (e.g., made ineffective) temporarily. In this view 
the brain’s representations would not have the form of vectors of activity, or 
neural signals, as in classical conceptualizations, but they would have the form 
of dynamical graphs. There are various mechanisms by which the ef� ciency of 
connections can be rapidly modi� ed. There is  synaptic plasticity on a continu-
ous range of timescales, starting from a few milliseconds, and the effective 
connectivity (Aertsen et al. 1989) of a network can be changed by a variety of 
presynaptic and postsynaptic in� uences.

Recent work in human brain imaging shows that spontaneous activity, as 
measured by � uctuations of the blood oxygenation level dependent ( BOLD) 
signal, is not random but organized in speci� c  spatiotemporal  patterns (Deco 
and Corbetta 2010; Fox and Raichle 2007) that resemble functional networks 
recruited during active behavior. These correlations occur at a very slow tem-
poral scale (<0.1 Hz), which correspond to � uctuations of slow cortical poten-
tial (0.1–4 Hz) and band limited power � uctuations of the  gamma band (He et 
al. 2007). These patterns of spatiotemporal correlation at rest re� ect not only 
the underlying anatomy, but are gated by their recruitment during tasks. The 
leading hypothesis, supported by studies showing changes with learning and 
lesions, is that these patterns of spontaneous activity code for relations in the 
cortex that are related to the history of network activation and learning. They 
may represent  attractor states that constrain and potentially bias the recruit-
ment of brain networks during active behavior.

If these views are correct, then neuroscience is currently ignoring a large 
part of the representational machinery of the brain—very large indeed, as there 
are many more connections than there are neurons in the brain.

If coordination is expressed largely by dynamic connections, then what is 
the importance of signal correlations? We agreed that signal correlations are 
likely to be indispensable when a set of neurons are to be coordinated for the 
� rst time; that is, when the downstream circuits have not yet encoded this 
 relatedness in their link structure. In this way, neural oscillations could play 
a vanguard role, appearing only early in some learning task, disappearing as 
soon as the coordination pattern is encoded in some connectivity structure.

Computer  modeling work will be particularly useful in shaping our thoughts 
about neural operations if the model can be related in a convincing way to neu-
ral operations, instead of just using the brute force of high-speed computers, 
and if the performance of the model can be proven superior in public bench-
mark tests. Such tests are available for  face  recognition (e.g., FRVT 2002; 
Messer et al. 2004; Phillips et al. 2005). The consistently winning systems 
were all correspondence-based; that is, they are based on representations of 
faces in terms of two-dimensional arrays of local features (mostly of Gabor 
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type, i.e., modeled after  receptive � eld types found in primary visual cortex) 
and on � nding correspondences between local feature sets in model and im-
age. As a large number of such correspondences are to be found for a given 
match, temporal  coding is bound to be rather time-consuming. A model of cor-
respondence-� nding by  temporal coding (Wiskott and von der Malsburg 1996) 
would, if implemented with realistic neurons, have needed more than 10 s to 
recognize a face, two orders of magnitude slower than human performance. If, 
however, connectivity patterns were installed that allowed for the fast dynamic 
installation of topographic � ber maps with the help of control units (introduced 
by Olshausen et al. 1993), high-performance  face  recognition by correspon-
dence-� nding within physiological times of 100 ms was feasible (Wolfrum et 
al. 2008). In a related study (Bergmann and von der Malsburg, submitted), it is 
shown that the necessary control unit circuitry can be developed on the basis 
of  synaptic plasticity controlled by synchrony coding.

Correspondence-based  object  recognition models have explicit representa-
tion of shape. It was argued, however, that pure feedforward models (such as 
Serre et al. 2007; Poggio and Edelman 1990), which do not make use of dy-
namic coordination, are also able to represent shape. The  Chorus of Prototypes 
algorithm (Duvdevani-Bar and Edelman 1999) and the  Chorus of Fragments 
model (Edelman and Intrator 2003) may represent shape if endowed with a 
mechanism for relating together the responses of the ensemble of neurons 
that represent, in a distributed yet low-dimensional manner, the current input. 
 Temporal  binding by  synchrony may be just such a mechanism (as was pro-
posed in Hummel and Biederman 1992).

The Mechanisms for Synchronization between Neural Populations

Although there was consensus that the brain has a wide repertoire of mecha-
nisms for achieving dynamic coordination, we chose to discuss in more detail 
coordination by  synchronization of oscillatory activity across neuronal popula-
tions. This form of coordination has support in the experimental literature, as 
suggested above, and there is now a considerable literature exploring mecha-
nisms of  synchronization at the level of  cellular assemblies.

We began the discussion by reviewing models for synchronization be-
tween cell populations. Several models have been proposed as mechanisms 
for achieving  zero-phase lag between same-frequency oscillatory activity in 
different populations, which by de�nition might be seen as the ultimate ex-
pression of  synchronization. Evidence indicates that zero-phase lag synchro-
nization is ubiquitous and can occur over surprisingly large distances, such as 
between the hemispheres (Engel, König, Kreiter et al. 1991), despite the rather 
considerable conduction delays of pathways connecting the synchronized as-
semblies. At �rst it may seem that such synchronization between widely dis-
persed populations could be achieved only by common input from a central 
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oscillator that slaves the respective synchronized assemblies. However, since 
callosotomy abolishes interhemispheric synchrony, it may instead rely on in-
teractions between the synchronized assemblies. Several models for such in-
teractions were considered.

One class of models relies on spike doublets of inhibitory interneurons 
(Traub et al. 1996; Ermentrout and Kopell 1998). When neurons synchronize 
locally in the  gamma band, there is a characteristic interaction between excit-
atory and inhibitory neurons: excitatory neurons spike � rst and trigger inhibi-
tory neuron spiking with short delays. The ensuing inhibition shuts down the 
local network until inhibition fades and the cycle starts again with the � ring 
of excitatory neurons. Long-range synchronization between two such gamma 
oscillatory groups can occur when excitatory neurons of group A excite in-
terneurons of group B, even if this entails a conduction delay of a few mil-
liseconds between A and B. Essentially, the excitatory input from A to B trig-
gers a second inhibitory spike in B and thereby prolongs the inhibition inside 
B by the conduction delay. The two interneuron spikes in rapid succession 
gave this model the name “ spike doublet mechanism.” One prediction of this 
model is that local gamma band synchronizations decrease in frequency when 
coupled across long distances and the frequency decrease is proportional to the 
conduction delay.

Synchronization across long distances might also be supported by other 
con� gurations of reciprocal interaction between the subcircuits. Evidence is 
now available which shows that zero-phase synchrony can be established de-
spite conduction delays in the coupling connections both from experiments 
with coupled lasers (Fischer et al. 2006) and modeling of networks with spik-
ing neurons (Vicente et al. 2008). As long as at least three reciprocally coupled 
systems are allowed to interact (triangular con� gurations), zero-phase syn-
chrony is easily established and very robust against scatter in conduction times 
of coupling connections.

A useful mathematical perspective on the phenomenon of zero-phase 
synchronization comes from the study of coupled map lattices and globally 
coupled maps. These are systems of coupled nonlinear dynamical systems, 
whose long-term (ergodic) behavior can show some universal properties un-
der some simplifying assumptions (Tsuda 2001). One of these assumptions is 
that the system is globally and symmetrically coupled with a single coupling 
strength. Under these constraints, it can be shown that the states of every cou-
pled dynamical system come eventually to occupy a synchronization manifold. 
Crucially, because of the symmetry constraints on the dynamic equations, the 
set of all solutions must obey the same symmetry. Zero-phase synchronization 
represents a symmetrical solution. Due to spontaneous symmetry breaking, 
however, individual solutions might violate symmetry (i.e., exhibit nonzero-
phase synchronization). A simple example is a ball sitting on top of a hill in 
a completely symmetric state. However, as this state is unstable, the slightest 
perturbation will cause the ball to roll downhill. This movement will not occur 
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symmetrically in all directions but in each case in some particular direction. 
Each single solution (i.e., rolling in a speci� c direction) breaks the symmetry 
of the initial problem. Only the set of all solutions and the probability for the 
ball to roll in a speci� c direction is symmetric. This has been used in a model 
investigating oscillatory interactions in primary visual cortex (Schillen and 
König 1991). Here a speci� c type of excitatory tangential connection avoids 
the trivial solution of global synchronization. With the additional assumption 
of ergodicity (i.e., the system that evolves over a long timescale and visits 
all regions of state space), individual solutions have to obey symmetry con-
straints. For systems with more than two coupled oscillators, this reduced the 
solution for the entire system to global synchrony with zero-lag quasi periodic 
or chaotic oscillations. At low but nonnegligible coupling strength, the syn-
chronization manifold is “riddled” with unstable points that “eject” the trajec-
tory away from the synchronization manifold to produce intermittent bursts of 
localized activity (Breakspear et al. 2009).

The main message from these theoretical treatments is that there is nothing 
mysterious about zero-phase lag synchronization among three or more popula-
tions. Indeed, under the constraints of the model, it is impossible to get any 
synchronization other than zero lag. To get consistent (nonzero) phase cou-
pling, one has to break the symmetry, in terms of the intrinsic parameters of 
the system or its coupling parameters. This basic phenomenon has been illus-
trated using neuronally plausible simulations by Chawla et al. (2001), where 
it proved dif� cult to break the symmetry provided by three or more neuronal 
systems that are interconnected in a roughly symmetrical fashion.

Although zero-phase synchronization could serve as a useful guide for un-
derstanding the mechanisms underlying long-range synchronization between 
neural circuits, it was argued that the current models for producing zero-phase 
lag have relied on unrealistic architectures and that the physiological proper-
ties of the model neurons do not match those of the performing brain (e.g., 
neurons do not regularly � re in doublets during gamma oscillations). It was 
proposed that zero-phase lags may not even be desirable for synchronization 
when information is communicated over long distances. It may often be ad-
vantageous to introduce systematic phase shifts to coordinate convergence of 
distributed information from different sources or to enforce timing relation-
ships that would establish speci� c patterns of  dynamic routing. The actual 
phase lags between oscillating populations in two regions may vary across 
task conditions and network states. One example for modulating the ef� ciency 
of interareal coupling by systematic phase shifts between oscillatory activity is 
cortico-tectal communication (Brecht et al. 1998). It was also recognized that 
regulation of spike timing through systematic  phase locking can be used to 
 encode temporal relationships (such as spatial behavioral sequence encoding 
through theta phase precession).

An example of time-shifted synchronization across brain areas was recently 
reported in a study of  frontal eye � eld (FEF)–  V4 interactions in an attention 



208 E. I. Moser et al. 

task (Gregoriou et al. 2009). There is considerable evidence that FEF plays an 
important role in the top-down control of attention in visual cortex, including 
V4. In the Gregoriou et al. study, spikes and LFPs were recorded simultane-
ously from FEF and  V4, in monkeys trained in a  covert attention task. One 
stimulus always appeared inside the shared receptive � eld and two others ap-
peared outside; the monkey was cued to attend to a different stimulus on each 
trial.  Spike-� eld  coherence in the gamma band increased with  attention in  V4 
and  FEF. The effect was particularly strong when cells in the two areas had 
overlapping  receptive � elds. However, there was almost a 180° phase lag in 
synchrony in the  gamma frequency band between FEF and V4, corresponding 
to a time delay of about 10 ms. The same 10 ms time shift was found in other 
frequency bands of the V4–FEF synchronous activity, suggesting that there is 
a constant 10 ms time shift between the time while cells spike in one area and 
cells are maximally depolarized in the other. It was suggested that this time 
shift may be accounted for by conduction and synaptic delays between the two 
areas. If so, then spikes from one area would actually arrive in the connected 
area at a time when the receiving cells were most prepared (depolarized) to 
receive them, which is consistent with the strong effects of FEF activity on the 
top-down attentional modulation of V4 responses. The study illustrates the po-
tential role of time-shifted  synchrony between areas as a common mechanism 
for functional interactions between cortical areas and raises the possibility that 
zero-lag synchronization may be implemented primarily in local circuits.

To add to the complexity, a neuronal population may have different phase 
lags to different subsets of a population with which it interacts. The recent 
description of traveling theta frequency waves in the hippocampus (Lubenov 
and Siapas 2009) suggests that neurons in regions that communicate with the 
hippocampus may be synchronized with a subset of the hippocampal popula-
tion across a wide range of the  oscillatory cycle, but the identity of the neurons 
with which synchronization occurs may change with phase. These phase lags 
may in� uence the wider patterns of coherence between the hippocampus and 
other structures, such as the striatum, for which phase angle changes with task 
and with learning (Tort et al. 2008; DeCoteau et al. 2007).

There was general consensus that the mechanisms enabling synchronous 
� ring across widespread brain regions are poorly understood, especially for 
the higher frequency (e.g., gamma), and that alternative solutions should be 
considered. One possibility considered involves long-range axonal collater-
als. Synchronization between two oscillating populations might be achieved 
if the collaterals of gamma-modulated  pyramidal cells in one location phase 
reset the  basket neurons in the other location. A fundamental problem with this 
model is the limited axonal  conduction velocities of pyramidal cells. An alter-
native fast-conducting conduit between distant sites may instead be provided 
by axon collaterals of so-called “long-range” interneurons. The anatomical 
“short cuts” provided by the long-range interneurons may offer the interarea 
fast transmission that is required to phase-synchronize  gamma oscillations 
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between distant cortical regions. Such far-projecting fast-conducting interneu-
rons have been described in the  hippocampus (Sik et al. 1994). The axons of 
this interneuron family innervate multiple regions of the hippocampus and can 
project to multiple external regions, including medial septum, subiculum, pre-
subiculum, entorhinal cortex, induseum griseum, and possibly other cortical 
regions. Similarly, GABAergic interneurons in the medial septum project to 
the hippocampus, preferentially to GABAergic interneurons (Freund and Antal 
1988), hippocampal GABAergic neurons provide long-range projection back 
to the septum (Gulyás et al. 2003), the basal forebrain has GABAergic neurons 
that project widely across the cortex (Sarter and Bruno 2002), and long-range 
GABAergic interneurons are known to connect remote areas in the ipsilateral 
and contralateral cortex (Buhl and Singer 1989; Gonchar et al. 1995; Kimura 
and Baughman 1997; Tomioka et al. 2005). A common property of many of 
the long-range interneurons is that their axon caliber is nearly twice as large 
as that of parallel conduits from pyramidal cells connecting the same regions 
and the diameter of the surrounding myelin is three times thicker (Jinno et al. 
2007). The estimated volume of the total axon arbor of a long-range interneu-
ron is several times larger than the volume occupied by the axon tree of pyra-
midal cells, suggesting that only few such neurons may be needed to establish 
coherence between regions. There was consensus in the group about the need 
for further investigation of the potential role of long-range fast-transmitting 
inhibitory interneurons in fast inter-area cortical synchronization.

We also discussed the potential role of ascending neuromodulatory systems 
in synchronization of activity across brain regions. The broad terminal � elds 
of axonal projections from monoaminergic and cholinergic cell groups gener-
ally speak against a role in controlling dynamic changes in speci� c subsets of 
interacting cell clusters, as does the slowness of many receptors for such trans-
mitters (e.g., dopamine) and the long time that it takes to clear the transmitter 
from the synaptic cleft. These facts do not, however, exclude a key permis-
sive function for ascending neuromodulatory systems in providing necessary 
conditions for inducing oscillatory activity. The discharge patterns of cholin-
ergic as well as monoaminergic cell groups change radically during transi-
tions between brain states (e.g., when subjects switch between awake states 
and sleep), and such changes are temporally correlated with massive changes 
in the oscillatory properties of cortical networks. Observations suggest that, 
although terminal � elds are broad, subtypes of intermingled interneurons are 
innervated by different neuromodulatory systems (e.g., 5-HT axons terminate 
on CCK-expressing interneurons but not parvalbumin-expressing cells, where-
as cholinergic projections primarily terminate on  basket cells). The speci� c-
ity of the neuromodulatory innervation, as well as the speci� c combinations 
of receptor subtypes expressed by different classes of interneurons, and the 
ability of  neuromodulators to change the time constants of  GABA receptor 
potentials are likely to have signi� cant impact on the generation of oscillations 
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and synchrony across brain regions, although the exact mechanisms remain to 
be determined.

In our discussions, we brie� y straddled the issue as to whether areas in the 
neocortex only exchange information once they have � nished their respec-
tive computations and then transmit the result ( discontinuous communication) 
or whether they permanently interact ( continuous processing) until they con-
verge to a collective result. We felt that the latter scenario is more realistic, 
although some ERP studies seem to suggest that information is transmitted in 
discrete packages.

Steps into the Future

Computational Models 

How might neuroscientists improve their understanding of the brain’s mecha-
nisms for dynamic coordination? Our discussion of models and experiments 
will be presented sequentially, although the consensus is that advances require 
an integrated approach.

Models will play a critical role in interpreting the many disparate empiri-
cal � ndings regarding coordination in neural systems. Cortical models for dy-
namic coordination across brain systems can be roughly categorized according 
to whether they are focused on the role of large population in� uences on single 
neuron properties versus models centered on the nature of interactions across 
two or more speci� c cortical structures or layers.

There are numerous examples of models that examine the effects of atten-
tional feedback or task demands on single neuron properties. The feedback in 
these models comes from unspeci� ed sources, and in most cases the models 
only consider the effects of feedback on average � ring rates. In the � eld of 
 attention, for example,  biased competition (Desimone and Duncan 1995; now 
described as normalization models, Reynolds and Heeger 2009),  feature-sim-
ilarity gain (Maunsell and Treue 2006), and response gain models all attempt 
to explain how attentional feedback cause the enhancement of responses to 
attended targets and the suppression of responses to unattended distracters. 
Normalization models explain and predict the large majority of attentional ef-
fects that have been reported on single neuron properties.

In contrast to these attentional models, based on average � ring rates, some 
models also address the role of spike timing and synchrony in neural popula-
tions. It is claimed that only spiking neuron models that incorporate gamma 
synchrony can explain the effects of attention on competing stimuli within the 
same  receptive � eld (Börgers et al. 2008), although direct tests of competing 
models on these data are missing. In the future, it will be critical to make dif-
ferential predictions from models based on static � ring rates versus synchrony 
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and population dynamics, which can then be tested empirically in neurophysi-
ological studies.

Fewer quantitative models take on the daunting task of modeling the in-
teractions among two or more cortical areas. Efforts are ongoing to collect 
data on a large number of individuals (upward of 2,000 healthy subjects) to 
characterize the anatomical, functional, and electrophysiological neuromatrix 
of the human brain ( The Human Connectome Project). The goal of this project 
is to provide the neuroscience community with a public data set, which will 
hopefully describe for the � rst time the entire array of cortical areas, as well 
as their anatomical and functional links. This will allow quantitative math-
ematical modeling of their properties and exploration of the range of dynamics 
and interactions that are possible within these networks both in healthy and 
damaged brains. Presently, more limited systems models are being considered. 
In  attention, Hamker (2005) proposed a model that incorporates interactions 
among a large number of visual areas and the “attentional control” system 
that provides feedback. Quantitative models of  object  recognition typically 
incorporate the receptive � eld properties of neurons located along the ventral 
stream. Examples of these types of models are ones developed by Poggio, 
Edelman and colleagues (Serre et al. 2007; Edelman and Duvdevani-Bar 1997; 
Duvdevani-Bar and Edelman 1999). These models are strictly feedforward, 
based on � ndings that inferotemporal neurons show object-selective responses 
at times so short that they seem to preclude multiple recursive cycling up and 
down the visual pathways. When trained on a large database of images, these 
models are able to achieve recognition performance of human observers who 
classify images based on very brief stimulus presentation times. For more 
complex, cluttered scenes that require more recognition time, the latest version 
of the Poggio model incorporates attentional feedback (Chikkerur et al. 2009). 
By contrast, the  face  recognition model of von der Malsburg incorporates feed-
back to visual cortex from neurons holding stored representations of faces (see 
above). This feedback model achieves a high level of performance on pub-
lished databases of faces. However, it was argued that in all of these system 
models, only average � ring rates are considered and the timescale of the feed-
back is still relatively slow. A critical goal for the future is to � nd out whether 
the proven success of object classi� cation and face recognition models are only 
� rst steps and that models based on binding mechanisms can be expanded into 
a broad range of functional models for dynamically coordinated perception.

It was agreed that an essential element for evaluating models is their perfor-
mance on large, publically available image databases. Although some databases 
exist, there is a need for more realistic conditions in the databases, including 
the recognition of objects at different scales and embedded in complex scenes. 
Furthermore, beyond simple recognition, there is a need for models that can 
answer at least basic questions about the objects, such as shape, size, and loca-
tion. The development of such models will help in understanding how and why 
synchronous interactions may be important for  perception and  memory.
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Experiments

We considered a number of experimental approaches to the testing of the 
role of  dynamic coordination in cognitive performance. Because oscillations 
and synchronization are currently the best-explored mechanistic paradigms, 
our discussion focused on possible ways to test whether such phenomena 
are necessary and suf� cient for the cognitive functions performed by those 
brain regions where synchrony is observed. There was consensus that such 
experiments must monitor activity from two or more cell populations at the 
same time; as discussed in the introductory section, changes in the joint ac-
tivity of two or more cell ensembles can be seen as a de� ning criterion for 
dynamic coordination.

We agreed that much of the current evidence linking  synchronization of 
 oscillatory  patterns to coordination functions is correlation-based—a concern 
that is shared with most other � elds of study in systems neuroscience—and 
that results thus, in principle, might be explained by other models, including 
those based solely on rate changes. However, the literature does contain some 
interventional studies which at least partly address the question of whether 
synchronization between cell populations is necessary for behavioral functions 
relying on the synchronized assemblies. In a study with  multisite recordings 
from the frog retina, for example, activity was recorded from cells that respond 
to changes in shadows on the retina. Interventions that disrupted the synchrony 
of � ring across the recording electrodes disrupted escape behavior elicited by 
shadow stimuli under conditions that did not change the average rates of the 
cells (Ishikane et al. 2005). Other experiments, performed in the hippocampus 
of the rat, have shown that using cannabinoids or other approaches to disrupt 
temporal order in hippocampal place cells, in a manner that does not change 
the average � ring rates of the neurons, is suf� cient to disrupt navigational per-
formance in a spatial memory task (e.g., Robbe et al. 2006). In awake-behav-
ing monkeys and healthy human subjects, some experiments have modi� ed 
activity in visual cortex during stimulus detection by stimulating putative at-
tention control regions in frontal cortex (Ruff et al. 2006; Ekstrom et al. 2008). 
Interference with frontal or parietal regions by TMS has been shown to alter, 
in behaviorally signi� cant ways, anticipatory  alpha  rhythms in occipital visual 
cortex (Capotosto et al. 2009). The invention of optogenetic tools for selec-
tive stimulation or silencing of genetically de� ned cell populations is likely 
to result in a number of experiments along these lines within the next few 
years. It is clear that synchrony can be interrupted experimentally, and those 
data that exist so far suggest that such interventions may disrupt the functions 
performed by the affected cell populations.

Although interventional approaches represent the gold standard for stud-
ies of causal relations between coordination and brain function, we agreed 
that the caveats of such studies should not be forgotten. Interventions such as 
stimulation or inhibition of target cell populations may have additional effects 
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on top of the intended ones; for example, disrupting  synchronization between 
brain areas may also affect the proximal activity of each subpopulation, such 
as � ring rates or precise local phase relationships. We also spent some time 
discussing strategies for gaining insight about coordination mechanisms under 
circumstances where physiological variables cannot be manipulated directly. 
One possible approach exploits the fact that human subjects often confuse the 
color and shape of different objects.  Such “illusory conjunctions” can be used 
as a diagnostic tool to investigate which neural mechanism breaks down during 
binding errors. To investigate the role of response synchronization in feature 
binding, one could ask patients with intracranial electrodes to report on the 
color and shape of multiple objects in the visual � eld under conditions that 
lead to occasional misbindings (e.g., when stimuli are presented very brie� y). 
One would need to record from cells that encode two distinct properties of two 
different objects in the visual � eld (e.g., one could choose color and motion 
as features and then record from color-sensitive cells in V4 and from motion-
sensitive cells in MT). If synchronization is indeed the neural mechanism for 
feature binding, one would expect that the action potentials of cells belonging 
to the same object are synchronized when perception is successful, and that 
synchronization re� ects illusory conjunctions when they occur. The same re-
cordings could be used as well to test a different model, where the positional 
information encoded in V4 and MT signals maps corresponding features to-
gether. In this case, the positional information might be disrupted or shifted 
in either of these populations, thus providing a potential alternative account 
for the misassignment of features and spatial positions. If intrinsic dynamic 
connectivity turns out to be an important mechanism to code relations, espe-
cially for behaviors that are predictable or well-learned, then new investiga-
tions should be directed toward manipulating the ongoing intrinsic  connec-
tivity, either through behavioral paradigms or interventions like stimulation 
or disruption, and then correlate these changes to behavioral performance or 
task-driven activity.

We concluded that a variety of experimental approaches and systems are 
available to explore the function of oscillation-based synchronization and other 
possible mechanisms of dynamic coordination between neuronal populations. 
A common factor of all experiments that aim to test these functions should be 
the recording of activity from two or more brain regions at the same time; this 
is the only way to study changes in inter-regional  temporal structure that may 
or may not be accompanied by activity changes in each of the areas locally. A 
number of brain systems, each with their unique advantages, should be used 
to extract the mechanisms of coordination. The study of temporal structure in 
large dispersed neuronal populations is likely to require an arsenal of new ana-
lytical and statistical techniques. Finally, there is a strong need for interaction 
between computational models and experimental testing; models should make 
clear predictions about activity changes in realistic neuronal architectures, and 
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experimental strategies should be developed to test speci� c predictions from 
the models.
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“Hot Spots” and 
Dynamic Coordination 
in Gestalt Perception

Ilona Kovács

Abstract

How is light that  is transduced by retinal receptors and interpreted by neurons converted 
into visual information? To answer this question, vision science typically employs two 
types of scientists: those interested in local receptors and neurons that analyze very 
small pieces of the retinal image, and those interested in global visual information (sur-
faces, objects, scenes, and events that are meaningful to people). While both types may 
function well within their own areas of research, “translating” the results between the 
areas is a problem. Two explicit issues are discussed where strictly local processing 
stops short: (a) the problem of accumulating local errors and (b) the trade-off between 
spatial and temporal resolution in pictorial representations. To illustrate the � rst issue, 
which is architectural, an old and wonderful architectural mystery, the enigma of the 
 Florence Dome, is used. An example from the history of photography illustrates the 
second issue, which is representational. Both problems have an important aspect in 
common: the solutions are both based on global geometry. Both classic examples will 
be accompanied by visual phenomena demonstrating the relevance of  symmetry-based 
representations in the dynamic coordination of visual perception.

In What Way Is a Gestalt More Than Its Elementary Features?

If a line forms a closed, or almost closed, � gure, we see no longer merely a line 
on a homogeneous background, but a surface � gure bounded by the line. This 
fact is so familiar that unfortunately it has, to my knowledge, never been made a 
subject of special investigation. And yet, it is a very startling fact, once we strip 
it of its familiarity. — Koffka (1935:150)

Gestalt, shape, prägnanz constitute the core mysteries of perception. Gestalt 
theorists considered the formation of perceptual pattern a dynamic process, 
best demonstrated by the various ambiguous �gures with which they have 
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entertained the world. Edgar Rubin’s popular face-vase reversal image demon-
strates that even boundary ownership is � exible, and the percept can quickly 
reorganize although the physical stimulus is constant. The compelling multi-
stability of ambiguous images is induced by carefully balanced stimuli, where 
the two interpretations are equally “salient.” One of the simplest multistable 
stimuli is shown in Figure 14.1. The two superimposed gratings are equilumi-
nant and “orthogonal,” both in terms of orientation and color. By simply star-
ing at this stimulus, one observes  monocular  rivalry, and the two gratings start 
to alternate spontaneously.

The exciting instability of the perceptual system elicited by such images 
is not only among the most popular topics within the modern quest for neural 
correlates of conscious percepts (Crick and Koch 1995; Kovács et al. 1996; 
Leopold and Logothetis 1996), it also clearly demonstrates that our usual sense 
of perceptual stability is an illusion, and that the brain has many different ways 
to assemble new “realities” from competing pieces of concurrent external and 
internal events. Each competing interpretation entails a certain segmentation 
of the image into � gure and ground.

The Unsolved Problem of Segmentation

Among  the many unsolved issues of vision, the issue of segmentation may 
be one of the toughest. Although it does not sound very dif� cult to parse an 

Figure 14.1 By staring at the image, spontaneous alternation between the two grat-
ings is observed and monocular rivalry is stimulated.
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image into different regions that correspond to objects and ground, machine 
or computer vision systems still cannot match the capabilities of the human 
visual system, not to mention categorization and image comprehension, which 
are strongly linked to segmentation. Human segmentation of visual images 
might depend on acquired knowledge and proceed interactively with  object 
recognition (e.g., Ullman 2007). However, the explicit manner in which these 
higher-level knowledge systems communicate with low-level feature extrac-
tors has not yet been clari� ed.

There is obviously some higher-order structure, globally organized by the 
brain. However, there is continuous input from the environment, analyzed by 
low-level, local feature extractors of some sort. Just how do these computa-
tionally very different levels of processing (i.e., global organization vs. local 
analysis) meet and interact to provide us with our visual world?

According to the “standard” view of  visual processing, visual information is 
� rst transmitted from the retina through several parallel pathways to the brain 
in a compressed version, emphasizing edge information at a number of spatial 
scales. A crucial second step is carried out by cortical area 17 (  V1, or  primary 
visual cortex), which is assumed to extract a set of local features based on 
the retinal input. Although the standard view then proceeds to progressively 
more complex representations, let us focus on the second step and the corti-
cal “mosaic” generated by the primary visual cortex. It has been known for 
over forty years that the  receptive � elds of the primary visual cortex are com-
posed of elongated antagonistic zones (Hubel and Wiesel 1959). The shape 
and layout of these receptive � elds furnish the cells with selectivity for ori-
ented line segments, and receptive � eld size determines the spatial scale of 
orientation information.

The primary visual cortex thus provides a neural description of oriented 
edge primitives and their locations at a number of spatial scales. This can be 
viewed as an enormous puzzle containing millions of pieces to be put together 
into � gure and ground. A possible candidate for assembling local information 
already within the primary visual cortex is the plexus of long-range horizontal 
connections (e.g., Gilbert 1992). These connections are thought to establish 
connections between neighboring processing units, thereby aiding the seg-
mentation process. The mechanism by which local interactions combine and 
boundaries of a visual object form is, however, unknown (Figure 14.2). Can all 
of this be based on local interactions?

The Problem of Accumulating Local Errors: The Puzzle of the Dome

To illustrate  the problem of relying on local operators, consider an example 
from the history of architecture. Construction of the Florence Cathedral start-
ed in 1296, and its magni�cent dome was completed in 1436. Driven by the 
urge to surpass Pisa and Siena in the size and decoration of the cathedral, the 
Florentine cupola is still the largest masonry dome in the world. Unfortunately, 
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only sparse information exists on how this wonderful three-dimensional shape 
was constructed from bricks and mortar. The dome was built using approxi-
mately 4 million specially designed bricks, collectively weighing about 37,000 
tons. Filippo Brunelleschi’s masonry techniques made a great contribution 
to architecture (King 2000), and his work is probably the best example of 
Renaissance engineering. However, he was also very secretive and never re-
vealed his methods in detail. Although the dome is probably the most studied 
building on the planet, it is still uncertain how it was built. It is not known ex-
actly, for example, what instruction was given to the, assumedly, eight groups 
of bricklayers as they raised the cupola’s eight sides. How were they to know 
the exact positioning of each brick? Walls are easy to construct vertically, al-
though some quasi-global reference (e.g., a masons’ level or a plumb line) is 
needed from time to time. However, when the wall is curved, there are three 
dimensions to control: (a) the longitudinal curvature of the dome, (b) the cir-
cumferential curvature, and (c) the course by course, precise, and nonuniform 
change of the inward tilt of the bricks. A simple plumb line, even if it is com-
bined with a level, cannot obviously control these three dimensions.

 Brunelleschi was a great geometer, and the plan of the dome was prob-
ably perfect. He even took care of designing the shapes of the bricks for each 
new course himself. However, even with the best planning, and greatest care, 
bricklayers make slight errors, and if they only use local references (e.g., the 
previous course of bricks, or the ribs of the dome), these small errors will ac-
cumulate. Even an error of a hundredth of a degree in any of the three dimen-
sions would result in a catastrophe in the case of 4 million bricks. In fact, such 

1.

2.

1.

2.

Figure 14.2 The problem of visual segmentation. The  primary visual cortex provides 
a neural description of oriented edge primitives and their locations at a number of spa-
tial scales. The natural image shown in the left panel activates a very large number of 
cortical � lters; however, those that receive input according to their selectivities will be 
more active. The next panel shows the most activated � lters for each location within 
the image. Neural interactions within the primary visual cortex are assumed to connect 
the most active � lters in an orientation selective, facilitatory manner (e.g., similar-to-
similar orientations). However, when viewed locally within the inset, it seems that these 
connections might be ambiguous. Which one is the better connection? Number 1 is a 
good choice, as the central object will be well segmented. Number 2 would be a bad 
choice, as it connects the boundaries of two independent objects. Is there some global 
reference guiding these local decisions?



“Hot Spots” and Dynamic Coordination in Gestalt Perception 219

a catastrophe was observed in Siena after a massive addition to the existing 
cathedral and dome was undertaken in 1339. Although Sienese ambition was 
at least as great as Florentine ambition, Brunelleschi’s ingenuity only served 
Florence. Just how did  Brunelleschi manage to control the  global shape of the 
dome and achieve this unprecedented and still unequaled construction?

With respect to the global shape of the dome, it may have seemed a good 
idea to use some central reference during the construction. However, wooden 
centering or scaffolding, which could have served to support as well as guide 
the overall arches, was not employed. How was the shape of the dome pre-
served without any scaffolds to guide it? How does the complicated pattern 
of bricks � ll the spaces between the corners of the dome? Imagine that eight 
bricklayer groups are working on the wall, and other than along the circumfer-
ence of the wall, they cannot compare notes. If there is no central pole of any 
kind (and there was certainly none because the dome is over 80 meters high) 
to use as a reference, and the masons cannot communicate with each other di-
rectly, how are the eight sides going to meet at the top? Perhaps there was some 
central reference after all, and it was removed after the dome was completed.

Massimo Ricci, a contemporary Italian architect, spent almost as much time 
trying to � gure out the secret of the dome as Brunelleschi did building it. It 
took Ricci � fteen perplexing years to come up with an idea that might explain 
the riddle posed by the dome’s construction. According to Ricci, the real secret 
of Santa Maria del Fiore lies in its extremely simple, although, in this  context, 
surprising shape: a � ower (Figure 14.3). The eight petals of the � ower grew 
out of a circle, centered within the octagonal base, with a diameter three-� fths 
of the octagon diameter (the dome is based on a quinto-acuto, four-� fths mea-
sure). The � ower was probably made of metal, and long ropes were attached to 
it, traversing the internal space of the dome. The shape of the petal controlled 
the circumferential curvature (the second dimension); the length of the ropes 
attached to the petals controlled the longitudinal curvature (the � rst dimen-
sion); and the tilt angle of the ropes controlled the inward tilt of the bricks 
(the third dimension). Each rope, connecting a certain location of the wall to 
the petal across the base of the dome, was adjusted to cross the central axis 
of the cupola. This was achieved by “centering” ropes between the corners of 
the cupola and the vertices of the � ower. When a bricklayer wanted to align 
a new brick, he would move his rope to the new position, and his apprentice 
would shift the other end of the rope along the petal until the rope crossed the 
central axis again in a straight line. Perhaps the procedure was not repeated for 
each individual brick, but whenever it was done, the brick adjusted in this way 
would fall into place in accordance to the global reference point, and earlier 
local errors would not accumulate. This sounds like the solution indeed!

Even if historical evidence for the � ower theory is missing, Ricci’s scale 
model of the dome attests to its feasibility. The idea is simple: when only local 
operators are given, use axis-based global reference to achieve a global shape 
and avoid the accumulation of local errors. According to Ricci, this is the only 
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way of constructing such a shape. This might appear too ambitious; however, 
the usefulness of symmetry axes in avoiding the accumulation of local errors 
is very clearly illustrated with this example.

What Are the “Strings”? The Puzzle of “Closure”1

To challenge the  local � lters and local interactions of the  primary visual cor-
tex, and to investigate the type of integration that might be carried out at this 
“early” cortical level, Kovács and Julesz (1993) designed a psychophysical 
paradigm. The stimulus used in this paradigm consisted of a closed chain of 
co-linearly aligned Gabor signals (contour) and a background of randomly 
oriented and positioned Gabor signals (noise) (Figure 14.4).  Gabor signals 
roughly model the  receptive � eld properties of orientation selective simple 
cells in the primary visual cortex. Therefore, they are appropriate stimuli for 
the examination of these small spatial � lters and their interactions. Notice that 

1 Closure is an old Gestaltist term used, e.g., by Kurt Koffka (1935:150) in Principles of Gestalt 
Psychology. According to Koffka, the term refers to the superiority of closed  contours over 
open ones.

Figure 14.3 The � ower theory based on  Massimo Ricci Theory (used with kind per-
mission from Luciana Burdi). The � ower-shaped “skeleton” and many ropes between 
the � ower and the wall serve to adjust the spatial position of the bricks according to the 
requirements of longitudinal, circumferential, and inward tilts. It is the  symmetry axis 
of the shape that is employed as a global reference; however, the axis does not have to 
be there. It is determined with the help of ropes.
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the contours cannot be detected by purely local � lters or by neurons with large 
receptive � eld sizes corresponding to the size of the contour. The long-range 
orientation correlations along the path of the contour can only be found by the 
integration of local orientation measurements. The noise forces the observer to 
do these local measurements at the scale of the individual Gabor signals and 
to rely solely on long-range interactions between local � lters while connecting 
the signals perceptually.

Since the “contour in noise” stimulus was designed to isolate long-range 
interactions that subserve spatial integration of orientation information in the 
primary visual cortex, all we expected was that human observers would be able 
to detect the contours even if noise density is greater than contour density (in 
other words, when noise elements are closer to each other than contour ele-
ments). This, indeed, was observed, but there was another surprising observa-
tion: closed contours in these images were much easier to see than open ones 
(Kovács and Julesz 1993; Mathes and Fahle 2007). We called this a “closure 
superiority” effect. As described in Kovács and Julesz (1993), closure superi-
ority can be measured at perceptual thresholds. Threshold effects are dif� cult 

Figure 14.4 The  closure superiority effect. The top two panels both have a contour 
embedded in noise. The solutions are presented in the bottom panels. Most observers 
� nd the closed contour in the upper left panel very easy to see, while it is dif� cult to 
trace the open contour even in the presence of the solution. (Because of individual vari-
ability in noise-tolerance, certain individuals might need different noise levels for the 
closure effect to appear.)
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to illustrate; however, Figure 14.4 is an attempt to show the results of the ex-
periments in an instant demonstration. According to the results, in spite of the 
locally equivalent parameters (same elements and same spacing parameters), 
closed  contours are perceived differently: they seem to get a kick during the 
process of  segmentation.

If local features are detected by local � lters, and their interactions are also 
local (between neighbors), what causes the elements of a closed contour to 
jump out, while the same types of elements along an open one blend in with 
noise? Closure is a  global shape property (similar to the shape of the dome). 
Local � lters and local interactions—even if they form long chains—cannot 
deal with global shape properties. Local errors will accumulate along the 
chains of local interactions, and the result will be uncertain. Top-down instruc-
tions that arrive from higher levels of the cortical hierarchy may also not help. 
The higher-level “hypotheses” about the shape will meet unsegmented local 
orientation signals (contour + noise) and, in such a dense � eld of elements, 
any global suggestion can take shape, and the result will be uncertain again. 
Are there more than just local interactions during segmentation in the  primary 
visual cortex? Does some kind of global reference serve segmentation much 
the same way as the Brunelleschi–Ricci � ower served the construction of the 
Florence Cathedral dome? If there is such a reference system, what are the 
“strings” (taking the analogy further) in the brain that connect the � ower and 
the bricks?

How Does Neural Activity Signal Gestalts?

The answer to this question might be found in computational models (e.g., 
Li 2005; Mundhenk and Itti 2005) or in the careful investigation of cortical 
microcircuits (e.g., Angelucci et al. 2002). It seems to be clear that long-range 
lateral interactions between neighboring neurons in the primary visual cortex 
are relevant in co-linearity-based contour grouping; however, these might be 
insuf� cient to account for integration beyond that of neighboring neurons (e.g., 
Lof� er 2008). The closure superiority effect might share the underlying neu-
ral mechanisms with perceptual phenomena such as surface perception, sur-
face interpolation, or “� lling-in” (an excellent review is provided by Komatsu 
2006). This Forum has provided a platform to explore these issues: in particu-
lar, whether the binding problem as de� ned by von der Malsburg (1981/1994), 
temporal correlations in the activity  patterns of neurons (e.g., Engel et al. 1992; 
Phillips and Singer 1997), or a � exible assembly of spatial patterns of coordi-
nation (Haken et al. 1990; Kelso 1995) might explain global effects, such as 
closure superiority. I suggest that it might be essential to consider  representa-
tional constraints before pointing out actual neural mechanisms. I will de� ne 
and illustrate one of these constraints in the next section.
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The Problem of Space–Time Resolution: Representing Living Things

Parsing  an image into � gure and ground is still far removed from the goal(s) 
vision may have evolved to accomplish. In addition to the role vision plays 
in guiding locomotion across space, perceiving the complex movements of 
living things is also essential. Although our visual environment is dominated 
by arti� cial objects, the human visual system appears to be � ne-tuned to ex-
tract effortlessly socially relevant information from the movements of another 
person—a task that is essential for interpersonal interactions. Considering the 
nonrigid movements of the body, this requires an ef� cient and coupled coding 
of visual shape and motion information.

To illustrate the representational constraints on coding for  biological  move-
ment information, let us turn to another historical example, this time from 
photography. A French medical doctor, Etienne-Jules  Marey (1830–1904), at-
tempted to capture time and to make all movements of the human body visible 
and measurable. He invented several devices to track circulation, respiration, 
and muscle function. In his studies on locomotion, his goal was to generate 
a description of complex human motion and depict the relationships, both in 
time and space, between various body parts (e.g., during a walk) using a single 
representation, within a single image. Marey realized that the two-dimensional 
graphs, which he used earlier to record the changes of a single parameter in 
either time or space, would not be useful in this case. While thinking about 
the appropriate space–time representation, he realized that photography might 
be an appropriate tool to capture and characterize human movement in time. 
Marey invented a camera with a � xed photographic plate and a rotating, slot-
ted-disk shutter, which allowed him to overlay multiple exposures on the same 
plate and to reduce blur that would result when trying to take a shot of a mov-
ing subject. However, even with the � xed-plate camera, the problem of spatial 
blur was not completely solved. In fact, there was a trade-off between acuity 
in time and in space. If Marey increased the number of exposures (number of 
slots in the shutter), there were more pictures, and the resulting temporal reso-
lution was better. However, due to contour overlap, spatial resolution was poor, 
and the images were blurred. Conversely, spatial resolution could be improved 
by decreasing the number of slots, but only at the expense of temporal resolu-
tion. Marey explicitly recognized the trade-off between spatial and temporal 
resolution (cited in Braun 1995:83):

In this method of photographic analysis the two elements of movement, time 
and space, cannot both be estimated in a perfect manner. Knowledge of positions 
the body occupies in space presumes that complete and distinct images are pos-
sessed; yet to have such images, a relatively long temporal interval must be had 
between two successive photographs. But if it is the notion of time one desires to 
bring to perfection, the only way of doing so is to augment greatly the frequency 
of images, and this forces each of them to be reduced to lines.
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 Chronophotography provided the � nal solution for capturing time. To prepare 
for his chronophotographs,  Marey dressed his subject in a black costume and 
marked the joints with shiny buttons connected by metal bands (Figure 14.5a). 
The subject moved around in the dark, such that only the movements of the 
buttons and wires were recorded in the picture. By selecting what he consid-
ered the most informative points and lines, he was able to read the succes-
sive postures of the body in his plates and follow the important trajectories 
of motion (Figure 14.5b). The relevance of this solution for human vision 
was later con� rmed by Gunnar Johansson’s work on the  perception of bio-
logical motion in the  point-light walker displays (Johansson 1973), and by the 
motion-capture method employed in psychology (Troje 2002) and in modern 
animation techniques.

The Role of Symmetry in Optimizing Space–Time Resolution

I began discussion  of the closure superiority effect by referring to Kurt Koffka, 
who emphasized the relevance of surface regions enclosed by closed contours. 
The conclusions of the “dome” and the “closure” stories might be according to 
the taste of Gestalt psychologists. Indeed, the wonderful shape of the dome is 
not simply a collection of arches, but rather a three-dimensional volume; the 
closed line is not simply a collection of line segments, but rather a two dimen-
sional surface. Ricci’s � ower theory suggests how the Gestalt of the dome can 

(a) (b)

Figure 14.5 Geometric chronophotography by Marey. (a) The subject, dressed in 
black and photographed against a dark background, has been recorded jumping from a 
chair. (b) The chronophotograph of a jump is analyzed with graphics. The original glass 
plates (from 1883) are held by the College de France Archives.
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be assembled from millions of bricks using an ingeniously simple line of refer-
ence. This line of reference is the main symmetry axis of the dome.

Marey’s space–time diagrams are wonderful examples of the representa-
tional issues inherent in capturing the movement of complex bodies. In ad-
dition to their beauty,  the chronophotographs demonstrate the pertinence of 
symmetry axes. The question arises whether the brain, when processing simi-
larly complex information, uses similar representational solutions. Do sym-
metry axes play a crucial role in vision? In a series of experiments (Kovács 
and Julesz 1994), this question was posed with respect to the representation 
of simple shapes within the primary visual cortex. How is an extended, closed 
circle represented in the activity pattern of orientation-tuned neurons that have 
small  receptive � elds?

Simultaneous activity of a large number of interacting neural elements can 
be revealed by tracking the activity of several units simultaneously in search 
of their higher-order correlations, such as in electrophysiological cross correla-
tion and multiunit studies. An alternative way is to estimate how the activity 
of one unit is affected in the context of the activity of other units. The lat-
ter approach was used in a psychophysical  reverse mapping technique, where 
the activity of one unit is measured as a function of the changing  context. 
Psychophysically measured local  contrast sensitivity re� ects the local activity 
of neurons, and the context of the interaction pattern can be manipulated by 
changing the overall stimulus design. Closed  contours (illustrated in Figure 
14.4) were employed as context, and single  Gabor signals were used to obtain 
local contrast sensitivity of human observers (Kovács and Julesz 1994). The 
position of the local signals varied within the closed contours, and by measur-
ing sensitivity for many locations within these contours, a map of contrast 
sensitivity was obtained for each investigated shape: circle, ellipse, cardioid, 
and triangle (detailed in Kovács et al. 1996, 1998).

To be able to see if any sensitivity change within these contours is related 
to the symmetry axes of the shape, we used a medial-axis type transformation 
(Blum 1967; Siddiqi and Pizer 2007). The D� function, as shown in Figure 14.6, 
is based on an equidistance metric, where the D� value of each internal point 
represents the degree to which this point can be considered as the center of the 
local boundary segment around it. The transformation provides a nonuniform 
skeleton of the shape, with one or more peak values. The peaks are very impor-
tant, and are equidistant from the longest segments of the boundary. In other 
words, these are the most informative points, and long contour segments can 
be traded for them. We used the maxima of the D� function, which we called 
the medial-point representation, to predict potential sensitivity changes within 
the simple shapes mentioned above. If there is any change related to symmetry 
axes in local contrast sensitivity, it should be around these maxima!

To our great surprise, the D� function was a wonderful predictor of psy-
chophysical performance. The prediction worked for simple shapes, circles, 
and ellipses as well as for shapes with curved and branching symmetry axes 



226 I. Kovács 

(Kovács et al. 1998). The contrast sensitivity changes were extremely speci� c, 
not simply some inside-speci� c enhancements. The maxima of the sensitivity 
changes corresponded to the maxima of the D� function. Neural correlates of 
these results have also been found in the modulation pro� les of single-cell 
activity in the primary visual cortex (Lee et al. 1998; Lee 2003), although 
further con� rmation of these would be useful. The psychophysical and neuro-
physiological data indicate that in addition to being sensitive to  global shape 
properties (e.g., closure, and � gure–ground relationships), the primary visual 
cortex is sensitive to speci� c shape properties and can host a medial-point type 
representation. The most provocative possibility is that this early cortical area 
provides a sparse skeletal code of shape!

Notice the similarities between the chronophotographs (Figure 14.5) and 
the medial-point representation (Figures 14.6, 14.7). Both provide a very small 
number of local points that can replace an “in� nite” number of points com-
posing a shape. The compactness does not preclude the representation from 
re� ecting global shape properties. Such a sparse shape-coding would be a very 
desirable tool of communication between low- and high-level cortical visual 
areas, such as between the primary visual cortex and the inferotemporal area. 
Using only a handful of “hot-spots” to send information of  segmentation in 
a bottom-up manner, and to send knowledge-based expectations top-down, 

Figure 14.7 D� for sequential frames of the movements of an animal. The maxima 
of the function are good candidates as primitives for biological motion computations.

Figure 14.6 The D� function: D� is de� ned for each internal point by the percentage of 
the boundary points that are equidistant from the internal point within a tolerance of �.
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might provide the brain with a channel that works better than any current arti-
� cial image-compressing tool.

The physical world seems to operate along basic laws that exhibit known 
symmetries (e.g., translation in space, rotation through a � xed angle, etc.). 
The near-symmetries and broken symmetries might be even more interesting 
for physicists. A powerful example of a broken symmetry involves the phase 
change of water with decreasing temperature. As temperature goes down to 0°, 
liquid begins to solidify. Interestingly, at the same time, rotational symmetry 
disappears from the structure that H2O molecules line up into. This might, in 
fact, be generalized to phase transitions in the domain of visual shape, and 
breaking those simple symmetries might be more interesting than the sym-
metries themselves.

Are the above-mentioned contrast sensitivity maps purely epiphenomenal, 
or are they proof of intelligent image compression in the visual cortex? If the 
latter, how is this implemented precisely by the cortex? Perhaps (not neces-
sarily oscillatory) synchronous � ring of orientation-tuned neurons mediates 
the compression and provides “hot-spots” in the neural representation of the 
segmented visual input. In what neural language would these “hot-spots” 
then be transmitted to more abstract levels of processing to meet with lin-
guistic representations and semantic memory? In addition, how would the 
enriched information advance thereafter through the feedback pathways to 
enhance segmentation?
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Coordination in 
Sensory Integration
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Abstract

Effective perception requires the integration of many noisy and ambiguous sensory sig-
nals across different modalities (e.g., vision, audition) into stable percepts. This chapter 
discusses some of the core questions related to  sensory integration: Why does the brain 
integrate sensory signals, and how does it do so? How does it learn this ability? How 
does it know when to integrate signals and when to treat them separately? How dy-
namic is the process of sensory integration?

Introduction

Merriam-Webster de� nes coordination as “the harmonious functioning of 
parts for effective results” and as such it is omnipresent in brain and behavior. 
During  perception, the brain has to make sense of sensory signals from a num-
ber of different modalities (e.g., vision, audition, olfaction, touch, propriocep-
tion). These signals need to be processed and integrated to compute an (usually 
correct) interpretation of the environment. How this happens is a fundamental 
problem. In this chapter we raise a number of central questions regarding how 
sensory integration pays special attention to dynamic coordination in the brain. 
A more detailed review of sensory integration is provided elsewhere (Rothkopf 
et al. 2010).

Why Integrate?

Perception is a dif�cult computational problem. The state of the world must 
be inferred from noisy and ambiguous sensory signals. To reach a solution, the 
brain must rely on making use of all available sources of information—from 
the different sensory modalities mentioned above (Stein and Meredith 1993), 
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to different so-called cues within one modality. There are, for example, many 
so-called  depth cues in visual perception that are thought to contribute to the 
perception of an object’s distance from the observer (Landy et al. 1995). Next 
to the integration of various sources of evidence, perception utilizes, to a large 
extent, previously acquired knowledge about the world. Such prior informa-
tion will be particularly important when the sensory data are very ambiguous 
(Weiss et al. 2002) and may be either innate or the result of learning, and thus 
subject to constant adaptation.

The bene� t of combining several sources of information is twofold. First, 
our estimates of the state of the world will become more accurate as we in-
tegrate several noisy sources of information. To date, most work on sensory 
integration has focused on this aspect, and has been demonstrated amply in 
humans and various animal species. Second, we may be able to respond more 
quickly; that is, processing time is reduced when stimuli are presented in more 
than one modality. Both aspects are of obvious relevance for an organism’s 
survival and well-being and can be closely related. Thus, when several sources 
of noisy evidence are available, under certain assumptions we can obtain the 
same amount of information from these sources if we observe a single source 
for a long time or several of them for a correspondingly shorter time.

How to Integrate?

A natural starting point for determining how the brain might integrate sensory 
information from different cues or modalities is to ask: What is the optimal 
solution to the problem? Such questions can be answered in the popular frame-
work of  Bayesian inference (Pearl 1988), for which many reviews are available 
(Kersten et al. 2004; Kersten and Yuille 2003; Yuille and Kersten 2006). In 
this framework one can construct so-called “ideal observers” that use all the 
available sensory information in an optimal fashion according to the laws of 
probability and statistics. After the ideal observer has been constructed and its 
behavior has been analyzed, it can be compared to that of human subjects or 
animals. In many (simple) situations, human behavior has been well-modeled 
by an appropriate ideal observer model, and this is usually taken as evidence 
that the brain performs Bayesian inference.

Unfortunately, however, solving the Bayesian inference problem and con-
structing appropriate ideal observer models can be a very dif�cult task. In the 
most general setting, Bayesian inference belongs to a class of computational 
problems that requires an exponentially increasing amount of processing as 
the problem size gets bigger (e.g., the more sensory variables are involved). In 
these situations, it may be infeasible to construct the ideal observer, and thus 
approximations have to be made. As a consequence, it is impossible to judge 
whether human behavior is optimal. However, since the brain will also have 
to use approximations to solve the Bayesian inference problem, it is important 
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to ask what kinds of approximations it is using. In principle, this question can 
be answered within the  Bayesian inference framework but we do not know of 
speci� c examples where this has been demonstrated.

Finally, viewing  cue integration (and more generally perception) as Bayesian 
inference happens entirely on a computational level. It is still unclear how the 
neural implementation of Bayesian inference (or approximations of it) would 
look at the level of groups of neurons exchanging action potentials. This con-
stitutes one of the most important and pressing questions in the � eld of compu-
tational neuroscience (Deneve 2005; Ma et al. 2006). A promising view is put 
forward by Phillips, von der Malsburg, and Singer (this volume), who argue that 
dynamic coordination is relevant to Bayesian inference because the distinction 
between driving and modulatory interactions is implied by the way in which 
posterior probabilities are computed from current data and prior probabilities.

How Does the Brain Learn How to Integrate?

The concept of Bayesian inference provides a powerful framework for studying 
sensory integration, but it does not address how the brain acquires the necessary 
probabilistic models: How does it decide what sensory variables to represent? How 
does it learn their statistical relationships? In the machine learning and statistics 
communities, progress has been in understanding how such models and their pa-
rameters can be learned, but optimal Bayesian learners are even harder to construct 
than ideal observers, and human learning can deviate strongly from the ideal case.

Experimental evidence regarding the acquisition of sensory integration 
abilities stems from developmental studies with children and learning experi-
ments with adults. Interestingly, recent experiments with children suggest that 
it may take many years before children exhibit appropriate sensory integration 
abilities consistent with ideal observer models (Gori et al. 2008; Nardini et al. 
2008; Neil et al. 2006). Initially, they may not be integrating different modali-
ties at all (Gori et al. 2008).

In adult learning experiments, a relatively simple case is the one where the set 
of different cues is � xed and only their relative weighting changes. In  visual cue 
integration, for example, Ernst et al. (2000) and Atkins et al. (2001) showed that 
when two con� icting visual cues are paired with a haptic cue, subjects will, over 
the course of a few days, learn to increase the weight of the visual cue that is consis-
tent with the haptic cue and decrease the weight of the inconsistent cue. Thus, it ap-
pears that the haptic cue serves as a reference model for adjusting the visual cues.

When to Integrate?

Another fundamental issue concerns the timing of signals from different 
modalities or cues: when should they be combined or when should they be 
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considered separately (Koerding et al. 2007)? An interesting problem in this 
context is that of audiovisual source localization. Imagine your task is to esti-
mate the location of one or two target objects that are presented simultaneously 
in the auditory and/or visual domain through brief light � ashes and sounds. 
When one auditory and one visual signal are received, but they seem to be 
very far apart, then it is prudent to assume that they did not originate from the 
same object and thus should not be integrated into a single percept. In contrast, 
if the two sources are suf� ciently close, we assume that there is only a single 
object giving rise to both the auditory and the visual signal. In this case, it 
may be better to integrate the position estimates to arrive at a single, more 
precise estimate.

In Bayesian terms, the brain considers two different models to explain ob-
served sensory signals. The � rst posits that there are two distinct objects: one 
producing the visual signal; the other producing the auditory signal. The second 
model posits that there is only one object giving rise to both the visual and audi-
tory stimulus. How, then, might the brain make the appropriate determination? 
One obvious strategy is to evaluate both models and choose the one judged most 
probable, a technique called  model selection. A plausible alternative is to evalu-
ate both models and average their interpretations; different weights are given 
to both models in the averaging process, depending on how likely they appear. 
This technique is called model averaging. Recent research has started to address 
which strategy human subjects use (Shams and Beierholm 2009). However, 
thus far, evidence has been mixed. People appear to behave differently in differ-
ent tasks, and large individual differences between subjects have been observed.

How does the brain learn when to integrate signals from different modali-
ties and when to treat them separately? Recently, Weisswange et al. (2009) 
demonstrated that this ability could be acquired through generic  reinforcement 
 learning mechanisms (Sutton and Barto 1998). In their model, an agent needs 
to make orienting movements toward objects and is rewarded for localizing 
them precisely. In the situation where a visual and an auditory input are close 
together, the model will integrate them into a single position estimate. When 
they are far apart, the model will orient toward either the visual or the auditory 
stimulus without trying to integrate them. Although this model cannot prove 
that the brain acquires the ability to select the appropriate model in a similar 
way, it shows that the underlying reinforcement learning mechanism is suf-
� cient to produce this behavior.

How Dynamic Is Cue Integration?

Whether or not different pieces of sensory information are integrated depends 
on the current situation (e.g., stimuli,  context, behavioral goals). For a decision 
to be reached, different modalities and cues need to be dynamically coordinated.
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Though the need to determine dynamically what aspects of the current sen-
sory input should be integrated and what should be segregated has been well 
studied within submodalities such as motion perception (Braddick 1993), very 
little work has addressed to date this issue in relation to multicue or multimod-
al integration. Instead, most work has assumed a � xed situation, with a � xed 
set of sensory cues, and with � xed reliabilities that are known to the subject. 
In situations where different cues are in con� ict with each other, subjects are 
known to suppress and/or recalibrate discordant cues � exibly (Murphy 1996). 
How exactly this occurs is an issue that has received little attention.

One exception can be found in research on self-organized cue integration. 
In many real-world situations, the usefulness of different sensory cues or mo-
dalities for a certain task will change over time. Cues may sometimes be con-
� icting or may require recalibration. Unfortunately, it is usually not clear a 
priori which cues are to be trusted and which ones should be suppressed or 
recalibrated. Triesch and von der Malsburg (2001) proposed the idea of  demo-
cratic cue integration. In democratic integration, several cues are merged into 
an estimate of the state of the world, and the result is fed back to all individual 
cues to drive quick adaptations. Cues that con� ict with the agreed-upon result 
are suppressed and/or recalibrated. The system is simply driven to maintain 
agreement among the different cues.

While initial work on democratic integration explored the bene� ts of such a 
scheme in the context of a computer vision problem of tracking people in video 
sequences, more recent work has studied the topic psychophysically. Triesch 
et al. (2002) showed that human subjects who track objects among distractors 
quickly reweight different cues (e.g., size, color, and shape of the tracked ob-
ject), depending on the reliability of the cues. This reweighting occurs within 
one second. The neural basis of this � exible reweighting of different informa-
tion sources remains a promising topic for future studies.

Conclusion

The integration of different sensory modalities and cues poses a central prob-
lem in perception. Although the Bayesian framework has proved very useful in 
understanding subjects’ behavior on a range of tasks, more research is needed 
to understand the neural implementation of Bayesian inference processes and 
the approximations that the brain may be using. Furthermore, the learning 
mechanisms that set up the system to perform in a near-optimal fashion require 
investigation. Since much of this learning takes place in the context of goal-
directed actions, the concept of reinforcement learning can be used to frame 
enquiry into these issues.
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Neural Coordination and 
Human Cognition

Catherine Tallon-Baudry

Abstract

Understanding how thoughts can arise from a hundred billion or so interconnected neu-
rons is the ultimate but still unreached goal of human cognitive neuroscience. The huge 
advances in human brain imaging over the last twenty years have led to a parcellation 
of the brain into a multitude of functional regions, yet understanding how activity is 
coordinated in the activated network remains a great challenge. This chapter summa-
rizes the different modes of neural coordination that have been considered in the human 
literature, both theoretically and experimentally. It underlines the distinction between 
well-learned behavior, which can take advantage of prespeci� ed neural routes, and dy-
namic neural coordination in � exibly de� ned neural ensembles, which can generate 
new percepts and/or creative behaviors. Discussion is devoted to the role that brain 
rhythms play in human cognition, with the underlying assumption that  brain rhythms 
are a signature of dynamic coordination. A hypothetical but comprehensive schema is 
delineated to explain why different frequency bands coexist and interact.

Modes of Coordination

Coordination has distinct meanings. It can refer to the way information is 
transmitted from one region to the other. For instance, during attentional ori-
enting, do the frontal areas drive the parietal regions, or is it the other way 
round (Buschman and Miller 2007; Grent-’t-Jong and Woldorff 2007; Bressler 
et al. 2008; Green and McDonald 2008)? Coordination may also refer to the 
way something new is created by the interaction process itself, in agreement 
with the aphorism “the whole is larger than the sum of its parts.”

Information Flow and Its Limits

Characterizing the  information � ow between brain regions has been a very 
active � eld over the last � fty years. Roughly, two main streams can be 
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distinguished. The historically older one is the attempt to organize the ever-
increasing number of functional maps of the visual system (Van Essen 1979; 
Hadjikhani et al. 1998) into a global coherent model (Felleman and Van Essen 
1991; Young 1992). This approach is fraught with a number of problems, in 
particular the choice of the criterion used to place one area on top of the other. 
Using the pattern of feedforward, feedback, and lateral connections gener-
ates too many plausible solutions (Hilgetag et al. 1996), whereas using the 
sequence of response latency yields a quite different organization of the visual 
system (Schmolesky et al. 1998).

The other stream is more recent and has been developed more speci� cally in 
humans, probably because the noninvasive imaging techniques used in humans 
(fMRI as well as EEG or MEG) sample the whole brain. Models based on such 
methods often lead to a rather sequential description of brain regions “light-
ing up” one after the other. This “boxology” approach has a strong descriptive 
power and � ts well with the models derived from experimental psychology.

Pushing either of these two approaches to its limits raises some dif� cult 
issues. The diagrams of brain organization that summarize how information 
� ows from one area to the other are oriented. They usually begin with a sen-
sory input and go through a number of processing stages, which, depending 
on the authors, end up in supramodal regions or the hippocampal formation 
(the convergence zones of Damasio 1989), or in the fronto-parietal network 
as in  global workspace theories (Baars 1997; Dehaene et al. 1998). Pushing 
this line of reasoning to its extreme reveals a number of similarities between 
 convergence zones and  grandmother cells. Indeed, most the objections raised 
against grandmother cells can be transposed to the description level of conver-
gence zones (Singer and Gray 1995). In other words, the general principles of 
population coding may be relevant no matter whether the code unit is a cell 
or a functional module. In particular, both convergence zones and grandmoth-
er cells integrate across many inputs and, as a result, are faced with similar 
combinatorial problems. While integration by convergence may take place in 
dedicated neural circuits for well-learned stimuli (Li et al. 2004), more � exible 
mechanisms would be needed for new objects and situations. 

A particularly crucial issue concerns the endpoint of any process: recogniz-
ing an object, a situation, or a mental state for what it is. In other words, when 
is the readout from the preceding stage suf� cient to reach a decision? How 
does the system know it has reached a state that corresponds to a solution? If 
one considers a simple stimulus-response association, the process ends with 
the production of the motor response. However, in the case of mental states 
that do not end up with a movement, the answer is much less clear. Daniel 
Dennett is one of the most famous opponents of what he called the “Cartesian 
Theater” hypothesis (Dennett 1991). In this view, the mind, or the ultimate 
convergence zone, sits in front of a theater where percepts and thoughts are 
displayed. The  Cartesian Theater hypothesis thus posits the existence of a 
“person inside” who acts as the ultimate witness (or convergence zone) of 
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everything that occurs in the conscious mind. Is there, however, another person 
inside the homonculus, since the sentence, “I am aware that I am aware that I 
am late delivering my paper,” makes sense? Any model of the brain that uses 
convergence as an intrinsic mechanism confronts, at some point, the “person 
inside” or homonculus issue. Some posit that activity in the  prefrontal cortex 
is a necessary condition for awareness (Gaillard et al. 2009; cf. Goldberg et 
al. 2006). Others consider that the neural correlates of perceptual awareness 
are found in sensory cortices and do not necessarily require a frontal involve-
ment (e.g., Lamme and Roelfsema 2000; Ress and Heeger 2003; Kouider et 
al. 2007; Wyart and Tallon-Baudry 2009). Recent models such as  global work-
space theories (Baars 1997; Dehaene et al. 1998) try to circumvent the dif� cult 
issue of the homonculus by mapping awareness onto a combination of sensory 
modules communicating with a large parieto-frontal network. 

Emergence

 Emergence is a central concept in complex systems analysis and can be rough-
ly summarized as “the whole is larger than the sum of its parts.” The idea is 
that some new information or knowledge is created at the system level, through 
simple interactions between lower-level components. As a result, some proper-
ties that do not exist in any constitutive elements of the system can emerge at 
the population level. Emergence is typically observed in � ocking or herding 
behavior. A well-known example of such behavior can be found in the � eld 
of arti� cial intelligence (Reynolds 1987): “boids” are moving objects follow-
ing simple local rules (avoiding bumping into their closest neighbors, mov-
ing roughly in the same direction and with the same speed as their closest 
neighbors, staying close to other boids). These three simple local rules are 
suf� cient to produce a group behavior similar to that of a � ock of birds, in-
cluding the V-shaped � ight of ducks. Coherent behavior can thus emerge from 
local rules, without a need for either an explicit global schema or for a group 
leader. Let us also consider what happens at the end of a theater performance: 
clapping usually begins in a loud and disorganized manner, but after several 
curtain calls applause becomes rhythmic. A temporal structure spontaneously 
emerges, simply because people tend to listen to each other. This property—
emergence of a global coherent behavior without the need of conductor—is 
particularly interesting when related to the search for the neural correlates of 
awareness because of the commonly admitted view that there is not a single 
anatomical module responsible for  awareness (Crick and Koch 1990; Engel 
and Singer 2001; Alkire et al. 2008). In this view, the adequate description 
level of some cognitive processes would be the whole brain or a substantial 
part of it (Lashley 1931; Haxby et al. 2001), rather than a functional module, 
and new cognitive knowledge would be created by between-area interactions, 
in addition to speci� c local computations.
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Emergence versus  Information Transfer?

There are some fundamental differences between the concepts of  emergence 
and of information � ow. Let us consider that Mary was in A at t and in B at 
t + 1. If Mary is a commercial traveler and has to meet a client in B, then know-
ing that Mary arrived on time in B is suf� cient. However, if Mary is a ballet 
dancer, this description does not help: what matters is whether the other danc-
ers also moved from A to B or not; in other words, it is the dynamics of the 
global picture that are relevant. In practice, one or the other strategy may be 
preferentially used depending on the task to perform. One of the crucial factors 
is probably the amount of learning and degree of automaticity required, versus 
novelty and � exibility: a key idea about emergence (or dynamic coordination) 
is its � exibility, its ability at signaling new relationships.

Feedforward, Feedback, and Recurrent Processing

Emergence and information, as de� ned here, are concepts rather than experi-
mentally tractable neural mechanisms. How do they relate to the classical 
typology of neural coordination ( feedforward, feedback, and  recurrent pro-
cessing)? The initial wave of feedforward activity has been mainly associ-
ated with fast and automatic analysis of the visual scene (Thorpe et al. 1996; 
Hochstein and Ahissar 2002) and may re� ect unconscious processing (Lamme 
and Roelfsema 2000). Both feedback (Bullier 2001) and recurrent processing 
(Lamme and Roelfsema 2000) have been related to more sustained levels ac-
tivity and could be involved in conscious processes. As a � rst approximation, 
one could consider that fast feedforward processing is fully automated and, 
therefore, would not re� ect dynamic coordination but rather information � ow-
ing along a fully prespeci� ed neural route. Conversely, recurrent processing 
would be more � exible and a signature of emergence. However, there is again 
another level of approximation, since assessing whether a neural process oc-
curs in a feedforward or feedback manner is always dif� cult and almost impos-
sible with the noninvasive tools used with humans.

In the human literature, feedforward processing is often linked to the rapid 
cascade of early-evoked potentials that is essentially maintained during anes-
thesia (Alkire et al. 2008). In opposition to the idea that this initial volley of 
activity is rather automatic, there is growing evidence that top-down expec-
tancies can meet the feedforward stream at very early latencies, before 100 
ms (Chaumon et al. 2008; Kelly et al. 2008; Poghosyan and Ioannides 2008; 
Dambacher et al. 2009). Feedback and recurrent processing are usually as-
sociated with longer latencies and with more sustained states. The frequency 
content of the signal is most often used to describe such sustained states, but 
late slow waves which can show up in event-related potentials (ERPs), such as 
the contingent negative variation or the P300, can also be interesting indexes.
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If we accept the simplifying assumption that early ERPs re� ect mainly feed-
forward processing and that  oscillations re� ect mainly dynamic coordination, 
a crucial issue is how the two interact. This is only beginning to be addressed 
experimentally. For instance, several groups showed that the amplitude of the 
response evoked by the stimulus depends on the phase and/or amplitude of 
ongoing alpha (Jansen and Brandt 1991; Becker et al. 2008) or gamma rhythms 
(Fries, Neuenschwander et al. 2001). The mechanisms responsible for these 
interactions could be a general phase resetting of ongoing oscillations by stim-
ulus onset (Makeig et al. 2002), a controversial proposal (Shah et al. 2004; 
Mazaheri and Jensen 2006; Risner et al. 2009), or an asymmetry in ongoing 
alpha oscillations (Nikulin et al. 2007; Mazaheri and Jensen 2008). Last but 
not least, it seems that the nature and strength of the interaction could depend 
on the resting state frequency characteristics of each subject (Koch et al. 2008).

Distinct Roles for Different Frequency Bands

In this section, discussion is devoted to  brain rhythms, with the underly-
ing assumption that brain rhythms are one of the signatures of dynamic co-
ordination. More precisely, I will focus on how brain rhythms are related to 
cognitive processing.

Mapping Cognitive Functions onto Frequency Bands

Historically, each  frequency band has been associated preferentially to a given 
type of cognitive or physiological process.  Delta waves were associated with 
sleep,  theta activity with memory, and  alpha rhythms with vigilance � uctua-
tions, whereas the  beta and  gamma ranges were associated initially with active 
awake stages and more recently to feature binding, attention, and memory. It is 
beyond the scope of this chapter to review all of the literature on all frequency 
bands (for recent reviews, see Jensen et al. 2007; Klimesch et al. 2007; Palva 
and Palva 2007; Schroeder and Lakatos 2009; Tallon-Baudry 2009), but a few 
examples are suf� cient to demonstrate the absence of a strict correspondence 
between a frequency band and a cognitive process.

There is a large and converging body of evidence that grouping features 
into a coherent percept is accompanied by changes in the gamma range (re-
viewed by Jensen et al. 2007; Tallon-Baudry 2009). However, the formation 
of coherent percepts can also be accompanied by modulations of oscillatory 
 synchrony in the alpha range (Mima et al. 2001; Freunberger et al. 2008). The 
alerting, orienting, and executive attentional networks engaged in many at-
tentional tasks affect oscillatory synchrony in different frequency ranges, from 
theta to gamma frequencies (Thut et al. 2006; Fan et al. 2007; Siegel et al. 
2008).  Episodic  memory   encoding and retrieval typically affects both theta 
and gamma oscillatory synchrony (Sederberg et al. 2003; Osipova et al. 2006), 
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but some also report modi� cations in the alpha band (Klimesch, Doppelmayr, 
Schimke et al. 1997; Klimesch et al. 1999; Sauseng et al. 2002). Visual short-
term memory retention is associated with sustained gamma and beta oscil-
lations that originate from distinct areas (Tallon-Baudry et al. 1998, 2001; 
Tallon-Baudry 2004), but also with modulations in the alpha range (Jensen 
et al. 2002; Jokisch and Jensen 2007; Grimault et al. 2009). The historical as-
sociations between a frequency band and a cognitive process should therefore 
be reconsidered: cognitive functions do not map directly onto frequency bands. 

It is also important to underline a fact that sounds trivial: the functional role 
of oscillatory synchrony in distinct frequency bands may simply depend on the 
functional specialization of the area that generates these oscillations (Tallon-
Baudry et al. 2005), much as the functional signi� cance of ERPs depends on 
the areas that generate them. This might seem like a statement of the obvious, 
but this simple statement had surprisingly disappeared from human literature 
on brain rhythms. For instance, local gamma oscillations are observed in a 
wide range of areas in human intracranial recordings, from visual (Lachaux 
et al. 2000, 2005; Tallon-Baudry et al. 2005), to frontal (Howard et al. 2003; 
Mainy et al. 2007), and medial temporal lobe structures (Tanji et al. 2005; 
Sederberg et al. 2007). It would indeed seem quite unlikely that those gamma 
oscillations should all re� ect the same cognitive function, given the variety 
of their anatomical location. Intracranial data in humans remain scarce, but 
fortunately increasingly more MEG/EEG studies include a source reconstruc-
tion approach that provides quite a precise localization of increase and de-
crease of oscillatory synchrony (Grimault et al. 2009; Hillebrand et al. 2005; 
Hoogenboom et al. 2006; Medendorp et al. 2007; Siegel et al. 2008; Gross et 
al. 2004; Wyart and Tallon-Baudry 2009).

Subdivisions within Frequency Ranges

Another source of complexity stems from the existence of functional subdivi-
sions within a given frequency range. It has long been known, for instance, 
that the upper and lower alpha ranges could display distinct functional vari-
ations (Klimesch, Doppelmayr, Pachinger et al. 1997; Petsche et al. 1997). 
More recently, we showed that distinct cognitive processes can elicit gamma 
oscillations in different locations: grouping and selective attention simulta-
neously affect gamma-band oscillations, but in distinct subfrequency bands 
and at distinct locations (Vidal et al. 2006). Similarly, learning and conscious 
perception are associated with oscillations in the gamma range, but in differ-
ent subbands and in distinct areas (Chaumon et al. 2008). Finally, varying at-
tention and  awareness simultaneously revealed that distinct frequency bands 
within the gamma range varied separately with visual awareness and spatial 
attention (Wyart and Tallon-Baudry 2009). It has also been suggested that the 
detailed frequency content of gamma-band oscillations could encode speci� c 
physical features, such as spatial frequency (Hadjipapas et al. 2007) or sound 
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lateralization (Kaiser et al. 2009). There is no doubt that gamma-band oscil-
lations are in� uenced by stimulus low-level features in sensory regions (Hall 
et al. 2005; Adjamian et al. 2008), but whether this still holds true for higher-
level areas remains an open issue. In any case, oscillatory synchrony in a given 
frequency band should not be considered as a single phenomenon, functionally 
and anatomically homogenous (Tallon-Baudry 2009).

What Are the Relevant Criteria of Frequency-band Selection?

The absence of a direct correspondence between a frequency range and a 
cognitive function raises a fundamental issue: what determines the prefer-
ential use of a given frequency? There appears to be a large � exibility: the 
same fronto-parietal network (Buschman and Miller 2007) or the same visual 
(Wyart and Tallon-Baudry 2009), olfactory (Cenier et al. 2009), or audio-vi-
sual (Chandrasekaran and Ghazanfar 2009) region can engage into oscillatory 
synchrony at distinct frequencies, involved in distinct cognitive functions. This 
�exibility may be subtended by distinct local networks and cellular types: in 
vitro experiments reveal that there are distinct frequencies (20–30 Hz vs. 30–
70 Hz) in the infra- and supra-granular layers, respectively (Cunningham et al. 
2004; Roopun et al. 2006). It is tempting to suggest that each frequency band 
corresponds to a speci�c microcircuitry; for instance, gamma-band oscillations 
would critically depend on GABAA interneurons in upper layers. This basic 
cellular equipment, present in each and every cortical area but in varying pro-
portions, would de�ne natural frequency domains corresponding to the typical 
frequency ranges, from  theta to alpha and gamma. In a given cognitive task, 
the use of a frequency band would depend on two sets of factors.

The �rst group of factors relates to the task’s physiological requirements. 
It was initially suggested that frequency depends on the network’s size and 
geometry (Kopell et al. 2000; von Stein and Sarnthein 2000): because conduc-
tion delays increase in large network,  synchronization takes place at lower 
frequencies (Buzsáki and Draguhn 2004). Another potentially important factor 
is the time constant of the biological mechanisms involved (Koch et al. 1996) 
and the  coding precision required (Desbordes et al. 2008). If, for instance, 
time-dependent synaptic plasticity is required, then a precision of 10–20 ms 
is necessary (Bi and Rubin 2005; Markram et al. 1997) and the whole net-
work might shift to the gamma frequency range. Finally, the metabolic costs of 
establishing sustained oscillations may vary between frequency bands. It has 
been suggested, in particular, that there may be a stronger relationship between 
the  BOLD response and gamma-band activity (Mukamel et al. 2005; Niessing 
et al. 2005), although the relationship at rest may be more complex (Mantini 
et al. 2007; Nir et al. 2008). The preferential use of a frequency band might 
therefore also be in�uenced by metabolic demands.

A second group of factors can be found in cognitive constraints. First, the 
time constant of the task is likely to in�uence the pace of the system: if there 
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are only 500 ms to complete a  visual  search, for instance, frequencies below 
5–10 Hz are unlikely to be relevant, whereas if there is no time constraint to 
perform a task, then one might shift to lower frequencies. Similarly, if there 
is any regularity in the  temporal structure of the task, subjects are likely to 
form windows of temporal expectancies (Tallon-Baudry 2004; Praamstra and 
Pope 2007; Schroeder and Lakatos 2009). Second, oscillations could be used 
to de� ne chunks of processing, in which data will be grouped and isolated from 
those of the preceding and following period. Sensory or cognitive chunks can 
potentially be created at many timescales; for instance, arbitrary associations 
can be learned through a wide range of time intervals (Balsam and Gallistel 
2009). Examples of  chunking can be found in vision and olfaction and have 
been related to beta-range oscillations (Uchida et al. 2006; VanRullen et al. 
2006). Along the same line of reasoning, it would be tempting, although pre-
mature, to relate very slow (< 0.3 Hz) oscillations (Monto et al. 2008; Nir et 
al. 2008) to the “psychological present,” the few seconds during which succes-
sive events form a perceptual unity and can be apprehended without voluntary 
recall. Third, another interesting potential constraint is the number of cogni-
tive processes to be multiplexed. Searching for someone in a crowd typically 
involves retrieval of information about the person from long-term memory, 
attentional suppression of nonmatching faces, and bottom-up feature-binding 
processes. One possibility to coordinate these three cognitive processes would 
be to use distinct frequencies, as detailed in the next section. In this view, the 
frequency tuning of each process is likely to depend on the total number of 
processes required by a task.

Integrating between Frequencies

Multiplexing, Integration/Segregation 

Analyzing a situation and reacting in an appropriate manner requires the co-
ordination of a number of cognitive processes. As shown above, searching for 
someone in a crowd, for example, involves a sensory analysis of the visual 
scene, the recall of a face  template from memory, and the attentional scanning 
of all the  faces potentially matching that template. All these cognitive process-
es have to be integrated into the general search task, but because they re� ect 
distinct operations they should nevertheless remain segregated. The neural cor-
relates of these distinct cognitive processes are likely to show up in different 
frequency bands, and one way to coordinate them without fusing them is to 
coordinate activity between  frequency bands. Coordination of one frequency 
band with another would be an elegant solution to multiplex information while 
keeping a reasonable trade-off between integration and segregation. Besides, 
because the number of simultaneous frequencies as well as the number of mul-
tiplexing patterns is limited, the number of concurrent processes is naturally 
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restricted to a � nite number, in line with the idea that simultaneous tasks might 
tap into shared and limited resources. 

Different Types of Coupling Can Be Considered

Coupling between frequency and/or areas can appear in many different ways. 
The � rst candidate that was considered was between-area phase coupling in 
the same frequency band (Lachaux et al. 1999; Varela et al. 2001). In this view, 
two or more distant areas oscillate in the same frequency range with relatively 
constant phase relationships, and there is indeed experimental evidence that 
such phase coupling between distant sites can occur and play a cognitive role 
(see, e.g., Tallon-Baudry 2004; Tallon-Baudry et al. 2001; Uhlhaas, Linden et 
al. 2006; Melloni et al. 2007; Doesburg et al. 2008). Between-area coupling 
can also appear as amplitude covariation of the signal at the same frequency 
(Bruns and Eckhorn 2004). Both phase- and amplitude-coupling can also oc-
cur between frequency bands, recorded at the same site or at different sites 
(Bullock et al. 1997; Palva et al. 2005; Meltzer et al. 2008). Finally, a mixed 
version of phase- and amplitude-coupling occurs when high frequency oscil-
lations occur preferentially during peaks (or troughs) of a lower frequency 
rhythm. Such coupling patterns have been observed, for example, in rat ento-
rhinal (Chrobak and Buzsáki 1998a) and neocortex (Sirota et al. 2008), as well 
as in cat visual cortex (Grenier et al. 2001). So-called nested oscillations at-
tracted a great deal of interest because of an in� uential model of memory stor-
age that would account for the limits of human memory capacity by an inter-
play between  theta and  gamma   oscillations (Lisman and Idiart 1995), and there 
is growing evidence in humans for such theta/gamma relationships (Canolty et 
al. 2006; Sauseng et al. 2008).

Conclusions and Prospects

A picture emerges in which activity in the brain can be coordinated at multiple 
spatial and temporal scales using different frequency bands. This overall pic-
ture is much more complex than the initial attempts at matching a cognitive 
process with a type of neural coordination, but much more � exible and deemed 
to have a bright future. Indeed, it suggests that cross frequency coupling could 
be used to integrate as well as segregate information over behavioral time and 
cognitive space, a feature that is necessary to obtain a high level of � exibility. 
In addition, because the biologically constrained circuits that generate oscil-
lations in different frequency bands are limited in numbers, the numbers of 
different frequencies, and therefore the number of cross frequency coupling 
schemata, is limited. This inbuilt constraint of the brain would be re� ected in 
the well-known cognitive capacity limitations.
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Failures of Dynamic 
Coordination in Disease 

States and Their Implications 
for Normal Brain Function

Steven M. Silverstein

Abstract

Dynamic coordination may become compromised  due to several nonindependent fac-
tors, including a reduced ability to generate  oscillations and  synchrony, neurotransmit-
ter and receptor excesses and reductions, anatomical and cellular changes that impair 
connectivity at local and global scales, and changes in gene expression that stem from 
primary genetic or environmental causes. This chapter presents a review of disorders in 
which dynamic coordination failures have been identi� ed. It compares and contrasts the 
forms and severity levels of the impairments in each disorder and links these to biologi-
cal causes, as far as is currently known. Questions are posed regarding the implications 
of data on coordination failures for increasing our understanding of normal coordina-
tion and the possibility of its enhancement.

Overview and Issues

Dynamic coordination refers to the ongoing combination and recombination of 
neural signals to form higher-level, adaptive patterns of activity that retain the 
identity of the original signals yet are nonlinear due to feedback and recurrent 
processing. This can be contrasted with  driving (or  feedforward) input, which 
refers to the signals whose timing, salience, and relative contributions to emer-
gent patterns of activation are modulated by coordinating processes. Dynamic 
coordination of neural activity allows for rapid and effective adaptation to 
changing conditions. However, the nearly in� nite combination of potential 
networks that can be formed by local and long-range connectivity and the com-
plex timing requirements—both within and across frequency bands—that are 
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needed to support them result in a complex system in which even small errors 
can have signi� cant, large-scale consequences. In this chapter, I address the 
nature of these errors and their consequences.

Because dynamic coordination at the neural level—via  synchronization of 
� ring activity or other proposed mechanisms—is thought to support a range of 
cognitive functions—including visual  perception,  working memory,  language, 
and  self-representation—it is reasonable to ask whether reduced coordination is 
the mechanism underlying the dysfunctions in these processes found in certain 
neurological and psychiatric conditions. If this were to be the case, informa-
tion  on dynamic coordination could provide a unifying framework for under-
standing the core pathology underlying speci� c disease states. This knowledge 
could also foster cross-disorder comparisons, thereby clarifying genetic and 
neurodevelopmental contributions common to multiple diseases. By increas-
ing our understanding of how disordered coordination leads to abnormal men-
tal activity, we may be able to shed light on how normal coordination supports 
effective mental functioning and how coordination can be enhanced.

I begin by reviewing the evidence for failures of dynamic coordination in 
several illnesses:  amblyopia,  schizophrenia,  Williams syndrome,  autism,  epi-
lepsy, and  Alzheimer’s disease. Here the focus is on paradigmatic examples of 
coordination failures as demonstrated in studies of visual  perceptual organiza-
tion. Behavioral, functional magnetic resonance imaging (fMRI), and electro-
physiological data are presented to clarify the similarities and differences in 
the severity, valence, and scope of coordination failures in these disorders. 
Discussion in the next section is more speculative, focusing on evidence for 
other forms of cognitive impairment in these and other disorders and address-
ing the question of whether these phenomena can also be seen as evidence of 
reduced coordination capacity. Thereafter, I address the issue of whether co-
ordination failures are due primarily to reductions in a coordinating function, 
versus an increase in the strength of  driving input, or a  local attentional bias, 
or whether evidence for all of these exist. Following this discussion, I address 
neurotransmitter systems and their interactions, as well as neuronal and genetic 
abnormalities that may be involved in coordination changes. The � nal section 
poses questions regarding what abnormal dynamic coordination and its effects 
can teach us about normal brain and cognitive functioning.

Paradigmatic Evidence for Impaired Dynamic 
Coordination in Brain Diseases

Perceptual organization in vision is a paradigmatic example of dynamic co-
ordination in that features are grouped together into an emergent holistic rep-
resentation based upon their relationships to each other, while the signal for 
each individual feature remains intact. This process can be seen clearly in the 
case of  contour integration (Figure 17.1), which has been studied extensively 
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in healthy and clinical populations. In a typical contour integration task, the 
conditions under which integration can occur, and the mechanisms responsible 
for it, are determined by employing stimuli with a continuous path of Gabor 
signals embedded in noise.  Gabor signals closely model the receptive � eld 
properties of orientation-selective simple cells in  primary visual cortex (V1) 
and are therefore ideal for the examination of these small spatial � lters and 
their integration and interactions. Embedded contours cannot be detected by 
purely local � lters or by the known types of orientation-tuned neurons with 
large receptive � elds. The long-range orientation correlations along the path 
of the contour can only be found by the integration of local orientation mea-
surements, and this can be seen as a classic example of dynamic coordination 
(Figure 17.1). Therefore, evidence of contour integration impairment associ-
ated with a brain disorder would be prima facie evidence of abnormal dynamic 
coordination in that condition. In the following subsections, this evidence is 
reviewed. Evidence for dynamic coordination failures using other measures of 
perceptual organization will also be noted.

D = 1.4 D = 0.85

Figure 17.1 Examples of Gabor-de� ned contours with different D values (left: D = 
1.4, right: D = 0.85). D is the ratio of the average distance between adjacent background 
elements to the average distance between adjacent contour elements; this is equivalent 
to the actual signal-to-noise ratio. In the bottom panels, Gabor elements were replaced 
by disks. Without orientation cues, the contour remains invisible at D < 1. This is the 
range where perceptual organization depends on long-range, horizontal, excitatory in-
teractions between feature detectors based on relationships present in the input (in this 
case, correlations between orientations of adjacent contour elements) and represents a 
paradigmatic example of dynamic coordination. At D > 1 the contour can be perceived 
simply via density cues. Figure designed by Ilona Kovács; reprinted from Silverstein et 
al. (2000), with permission from Elsevier.



248 S. M. Silverstein 

Amblyopia

 Amblyopia is a condition characterized by abnormal binocular input due to 
problems with a single eye, leading to suppression of input from that eye. This 
can occur because of muscle weakness in one eye (e.g., “lazy eye”; strabismic 
amblyopia), or to one eye having signi� cantly greater refractive error than the 
other (anisometropic amblyopia). Amblyopia has been associated with reduced 
contour-integration performance (Kovács et al. 2000), especially when con-
tours must be linked within background noise and when there is positional un-
certainty. These impairments have been found in both strabismic and anisome-
tropic amblyopia, although less consistently in the latter condition. Findings of 
amblyopia-related reduced contour integration have been replicated in animal 
studies (Kiorpes 2006). The � ndings cannot be attributed to reduced contrast 
sensitivity or other low-level visual factors. In humans, contour-integration 
performance varies as a function of the degree to which binocular input was 
restored in childhood via treatment (Kovács et al. 2000).

Because all studies to date of contour integration in amblyopia have solely 
used behavioral measures, there is a relative lack of direct physiological evi-
dence on biological mechanisms involved in the impairment. Research in cats 
indicates that visual processing of high frequency gratings by the amblyopic 
eye is associated with signi� cantly reduced neural synchrony compared to that 
observed in the fellow eye, suggesting that altered  synchrony and its associated 
excitatory and inhibitory mechanisms may be involved in human amblyopia 
(Roelfsema et al. 1994). A recent structural MRI study found reduced gray 
matter in visual processing areas (Mendola et al. 2005), suggesting a link be-
tween abnormal contour integration and gray matter loss. Interestingly, of all 
the disorders reviewed in this section, amblyopia has the most limited form of 
dynamic coordination failure (limited only to vision), and has been associated 
with only gray matter reduction. In contrast, other disorders have more wide-
spread coordination failures, and this greater degree of impairment has often 
been associated with both  gray and white matter reductions (see below). This 
supports the hypothesis that  white matter tracts are critical for inter-regional 
coordination, whereas they are less critical for intra-regional coordination, of 
which contour integration may be an example.

Williams Syndrome

 Williams syndrome is a genetic and neurodevelopmental disorder character-
ized by cardiac anomalies, overdeveloped expressive language skills, normal 
to superior memory abilities, a strong desire to talk but often poor social un-
derstanding, and poor motor and visuospatial skills. Many, but not all, stud-
ies demonstrate that perceptual organization, including contour integration, is 
impaired in Williams syndrome (Martens et al. 2008). Some of the discrepan-
cies may be accounted for by evidence that grouping by some features (e.g., 
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luminance, closure, alignment) is intact, whereas  grouping by others (e.g., 
shape, orientation, proximity) is impaired (Farran 2005). A recent fMRI study 
indicated reduced activation in visual and parietal cortices in Williams syn-
drome patients during a processing of global forms made up of local features 
(Mobbs et al. 2007). Evidence of reduced functional connectivity between 
cortical regions during object processing has also been found (Martens et al. 
2008). Evidence of both  gray and  white matter reduction has been found in 
Williams syndrome. To a large extent, these � ndings parallel those found in 
schizophrenia (see below), although the clinical features of the syndromes 
are very different. This is an important consideration as attempts are made to 
determine the role of coordination failures in the overall  pathophysiology of 
each disorder.

Schizophrenia

In contrast to amblyopia,  schizophrenia is a condition in which dynamic coor-
dination appears to be impaired throughout the cortex, as evidenced by mul-
tiple cognitive impairments. All studies of contour integration in schizophrenia 
indicate impaired performance. Performance is also signi� cantly, and inverse-
ly, correlated with scores on the  Ebbinghaus illusion task (see Figure 17.2), 
in which schizophrenia patients are more accurate in size judgments second-
ary to reduced effects of contextual integration (Uhlhaas, Phillips et al. 2006). 
A recent fMRI study indicated that impaired contour integration was associ-
ated with reduced activation in   V2–  V4 in schizophrenia patients, areas where 

Figure 17.2 Examples of the Ebbinghaus illusion. The two inner circles are the same 
diameter. When the inner circle is surrounded by smaller circles, most observers per-
ceive it as larger than its actual size. In contrast, when surrounded by larger circles, 
most observers perceive it as smaller than its actual size. People with schizophrenia 
have been found to be less susceptible to this illusion. In most laboratory tasks incor-
porating this phenomenon, the size of the inner circle is compared to a no-surround 
circle, or two circles with surrounds (one larger, one smaller) are shown and the subject 
is required to determine which inner circle is larger/smaller. By manipulating the actual 
sizes of the inner circles, the sizes of the outer circles, and/or the distance between in-
ner and outer circles, a parametric determination of context sensitivity can be obtained.
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integration of features into wholes occurs (Silverstein et al. 2009). These data 
are consistent with � ndings from human (nonclinical) and monkey fMRI stud-
ies that identi� ed cortical regions involved in contour integration (e.g., Kourtzi 
et al. 2003).

Studies of perceptual organization using paradigms other than contour in-
tegration also consistently indicate that integration of noncontiguous elements 
is impaired in schizophrenia (for a review, see Uhlhaas and Silverstein 2005). 
In contrast, processing of textons, continuous contour, and features such as 
symmetry are intact. This suggests that in schizophrenia, coordination via  pre-
speci� ed feature hierarchies is not affected, whereas dynamic coordination 
is impaired. As further evidence of this, studies that speci� cally studied top-
down effects on  grouping indicate that performance is especially poor under 
these conditions.

A consistent problem in schizophrenia research is the generalized de� cit, 
or the tendency of patients to perform poorly on nearly every measure, for 
reasons that may have nothing to do with the process purportedly being mea-
sured (e.g., sedation from medications, poor motivation) (Silverstein 2008). 
However, in ten of the studies of perceptual organization in schizophrenia, the 
reduced ability to integrate information and the subsequent reduced in� uence 
of visual context led to superior performance, compared to controls, in terms 
of either making decisions about individual features or reduced susceptibility 
to illusions. Therefore, evidence for impairments in  visual integration has been 
convincingly demonstrated independent of a generalized de� cit. These impair-
ments also cannot be accounted for by medication, as they have been demon-
strated in nonmedicated patients, and task performance is not correlated with 
medication dose in medicated patients. This extensive experimental literature 
is consistent with earlier clinical descriptions and � rst-hand subjective patient 
accounts of fragmented face, object, and scene  perception in schizophrenia 
(see Carr and Wale 1986).

Electrophysiological studies of perceptual organization in schizophrenia 
have identi� ed reduced P100 amplitude when patients viewed fragmented pic-
tures (e.g., Foxe et al. 2001). A recent study found reduced N150 amplitude to 
global fragmented targets in a global-local task in schizophrenia (Johnson et al. 
2005), and the source of that waveform has been localized to   V3/V3a within 
the lateral occipital complex, an area in which feature integration occurs (Di 
Russo et al. 2001). Especially relevant to the issue of dynamic coordination 
are studies of synchronized neural activity during performance of perceptual 
organization tasks. In nonpatients,  synchronization of oscillatory activity has 
been identi� ed within the  gamma (re� ecting binding of activity at shorter cor-
tical distances, often within-region) and  beta (re� ecting longer-distances, often 
between regions) bands (von Stein et al. 1999). Uhlhaas, Phillips et al. (2006) 
demonstrated smaller increases in beta-band  synchrony among patients view-
ing degraded facial images, evidence consistent with earlier data on smaller 
increases in gamma-band  synchrony during processing of illusory contours 
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(Spencer et al. 2004). Further evidence for abnormal dynamic coordination in 
schizophrenia comes from � ndings of reduced stimulus-locked power within 
the  beta and  gamma bands, reduced evoked stimulus-locked oscillatory ac-
tivity within the gamma band, and reduced non-stimulus-locked  oscillations 
within the gamma band during visual or auditory processing tasks (Uhlhaas, 
Haenschel et al. 2008; Uhlhaas and Singer 2006). Abnormal oscillatory activ-
ity is present at least as early as the � rst illness episode (Symond et al. 2005).

In contrast with � ndings of reduced synchrony in � rst episode patients, be-
havioral evidence for perceptual organization dysfunction has not been found 
among either high risk or � rst episode patients (Silverstein et al. 2006; Parnas 
et al. 2001), except in one study, in which it was only found among subjects 
with increased symptoms (Uhlhaas et al. 2004). In contrast, perceptual orga-
nization dysfunction has been consistently identi� ed in older patients with a 
chronic disease course. This parallels diffusion tensor imaging data, which 
indicate smaller  white matter changes at � rst episode compared to patients 
with chronic illness (Friedman et al. 2008), supporting a link between white 
matter integrity (and corticocortical connectivity) and dynamic coordination. 
Taken together, these data suggest both a core illness-related impairment and 
a progressive process. Further evidence for this is that perceptual organiza-
tion impairments in schizophrenia are most reliably found in individuals with 
histories of poor premorbid social functioning (Knight and Silverstein 1998), 
suggesting that the impairment is associated with a core illness subtype with 
neurodevelopmental disturbances: the subgroup of patients with histories of 
good functioning before the initial psychotic episode generally demonstrate 
normal perceptual organization. Even among the poor premorbid functioning 
subgroup, however, the severity of the impairment correlates with degree of 
symptomatology, especially disorganized thinking.

Autism

 Autism is a neurodevelopmental disorder characterized by severe cognitive 
and social functioning de� cits. Studies have demonstrated that autism is as-
sociated with reduced context sensitivity and an increased ability to recognize 
or make decisions about individual elements embedded within visual displays 
(Happe and Frith 2006). Studies speci� cally investigating integration of spa-
tially separated stimuli reveal con� icting � ndings; some show reduced integra-
tion whereas others show normal integration (e.g., Del Viva et al. 2006). As 
with schizophrenia, it appears as if a determinant of integration impairment in 
autism is illness severity. De� cits in autism are most reliably found in persons 
with comorbid mental retardation, a frequent aspect of the disorder. People 
with autism with normal IQs and people with autism spectrum disorders are 
more likely to demonstrate normal perceptual organization of both static and 
moving displays. As reviewed by Uhlhaas and Singer (2006), converging evi-
dence from EEG and fMRI studies indicates reduced functional connectivity 
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and smaller increases in  gamma-band  synchrony compared to controls during 
cognitive tasks. The biological bases of these abnormalities are less clear, but 
it has been proposed that autism may be characterized by excess excitation 
and unstable cortical networks.  White matter abnormalities have also been 
identi� ed in autism, although these have not been speci� cally linked to task 
performance.

The apparent similarities between schizophrenia and  autism suggest that 
each should have signi� cant comorbidity of features from the other disorder. 
Indeed, this has been found (Rapoport et al. 2009; Sprong et al. 2008), raising 
the possibility that genetic and neurobiological studies exploring the boundar-
ies and overlap between these conditions may help identify the core pathology 
caused by coordination failures.

Alzheimer’s Disease

In contrast to amblyopia, in which coordination failures are caused by abnor-
mal sensory input, and schizophrenia, in which they are caused by an inter-
action between neurodevelopmental abnormalities and progressive illness ef-
fects, in  Alzheimer’s disease, dynamic coordination failures are due to late life 
neurodegeneration. At least six studies to date (reviewed in Uhlhaas, Pantel et 
al. 2008) have documented impaired perceptual organization in Alzheimer’s 
disease. Patients with white matter atrophy demonstrated the poorest contour 
integration ability.

Parkinson’s Disease

 Parkinson’s disease involves massive loss of dopaminergic neurons in the sub-
stantia nigra, leading to akinesia, tremor, and cognitive de� cits. Unlike other 
disorders reviewed here, Parkinson’s disease is characterized by increases in 
relative synchrony. This evidence is largely physiological and has thus far been 
seen only in the motor domain. It is not yet known whether Parkinson’s dis-
ease is characterized by nonmotor manifestations of impaired coordination. 
Uhlhaas and Singer (2006) reviewed evidence that increased beta-band syn-
chronization in cortical motor areas is related to akinesia in Parkinson’s dis-
ease. There is also evidence for abnormal oscillatory activity that is coherent 
with the frequency of limb tremor, and data showing that tremor is associated 
with abnormal synchronization of motor neurons. Parkinson’s disease offers 
an interesting contrast to amblyopia. Both involve focal abnormalities of syn-
chronized activity: the former is characterized by increased patterned motor 
activity, the latter by a reduced ability to generate patterned visual representa-
tions. The focal activity in Parkinson’s disease can also be viewed as an analog 
to the focal activity in schizophrenia (see next section) and  epilepsy (discussed 
below). In all cases, there is heightened self-organized activity that is relatively 
impermeable to mental or environmental in� uences.



Failures of Dynamic Coordination in Disease States 253

Epilepsy

Epilepsy is a heterogeneous category that includes conditions involving re-
stricted seizure activity as well as seizures involving the spread of activity 
throughout the cortex. Because it is not possible to conduct behavioral test-
ing during seizure activity, the evidence on dynamic coordination in epilepsy 
comes solely from physiological recording. Evidence for both increased and 
decreased synchronization of activity has been found. A synthesis of the evi-
dence (Uhlhaas and Singer 2006) suggests that synchronization between dis-
tant cortical regions is reduced, whereas it is increased in the epileptic focus 
(i.e., the site of seizure origin). Moreover, reduction in synchrony may play a 
causal role in seizure formation by allowing for the formation of the epileptic 
focus, whose self-sustaining activity is relatively unin� uenced by other corti-
cal activity. In general, the setting of reduced synchrony—along with isolated 
areas of increased synchrony—that is hypothesized to characterize seizure 
proneness has also been suggested to exist in schizophrenia (see next section). 
Interestingly, there is an increased risk of schizophrenia in people with epilep-
sy, and NMDA receptor antagonists (used to model schizophrenia; see below) 
lead to EEG changes similar to those seen in some forms of  epilepsy (Lisman 
et al. 2008).

Putative Evidence for Impaired Dynamic 
Coordination in Brain Diseases

Phillips and Singer (1997) hypothesized that the cortical algorithm and cortical 
circuitry involved in dynamic coordination are implemented throughout the 
cortex and are operative for multiple cognitive functions, including percep-
tual organization,  attention,  working memory,  long-term memory,  language, 
and  consciousness. Implementation of this algorithm modulates the timing 
and strength of  driving input and creates the higher-order representations that 
emerge from it, based on contextual relationships that can be established in both 
the input itself and information about past experience with similar stimuli. The 
neural circuitry necessary to produce the  contextual � elds supporting dynamic 
coordination is thought to rely heavily on  NMDA receptor (excitatory, pyrami-
dal cell) and GABAergic (inhibitory, interneuron) activity. A similar proposal, 
in terms of an isomorphism in neural network activity underlying multiple 
forms of cognition, was advanced by Fuster (2003). Evidence in support of the 
Phillips and Singer (1997) and Fuster (2003) theories includes similar modu-
latory circuitry in all areas of the cortex, the role of interneurons and neural 
networks in generating synchronized  oscillations, and the role of gamma-, 
 beta-, and  theta-band   synchrony in implementing all of the cognitive functions 
hypothesized to be based on this circuitry. Models based on principles of per-
ceptual organization have also been applied to binding of social information in 
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social cognition (e.g.,  theory of mind; Blakemore and Decety 2001) as well as 
to segregation of information in observed behavior and relationships between 
unit size and attributions for behaviors (Baldwin et al. 2001). These functions, 
however, have not yet been linked to biological processes.

Regarding brain diseases, support for the above models would come from 
evidence of impairment in nonperceptual cognitive functions, as well as evi-
dence that these impairments involve reduced coordination and abnormal 
synchronization. The latter is critical, because while there is much evidence 
for cognitive de� cits in  attention,  memory, and  language in psychiatric and 
neurologic disorders, this evidence has typically not been understood in terms 
of integrative and coordinating processes. A summary of the evidence, which 
suggests that disorders with multiple cognitive de� cits can be understood with-
in the framework of widespread dynamic coordination failure, is presented 
below. To date, this has largely come from studies of schizophrenia.

Amblyopia

As noted above, in  amblyopia, de� cits in dynamic coordination appear to be 
limited to visual processing, secondary to impaired input early in development.

Williams Syndrome

The hypothesis of multiple examples of dynamic coordination failure in 
 Williams syndrome has not yet been investigated. Evidence of � ne motor-
sequencing dif� culties, attentional problems (especially at younger ages), and 
impaired social inference are areas worthy of further study. It is also possible 
that the speci� c genetic factors involved in Williams syndrome produce a rela-
tively circumscribed de� cit in the area of visuospatial processing that is unre-
lated to other illness features.

Schizophrenia

Three sources of evidence support the hypothesis of widespread dynamic co-
ordination failure: (a) behavioral studies indicating reduced binding in non-
perceptual cognitive impairments, (b) involvement of abnormal oscillatory 
or synchronized activity in these impairments, and (c) signi� cant correlations 
between indices of these impairments. Regarding the � rst, a recent study indi-
cated that reduced perceptual organization was associated with attentional dis-
engagement (i.e., reduced ability to maintain attentional focus within groups 
of stimuli) in an attention task (van Assche and Giersch 2009). Another recent 
study (Lefèbvre et al. 2009) indicated reduced binding of features during  en-
coding of both spatial and temporal information in a working memory task, 
suggesting that the binding impairment is not limited to spatial information. 
These data are consistent with poor performance on tasks of coherent motion 
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detection (Tschacher et al. 2008), which involve both spatial and temporal 
processing. It has also been shown that schizophrenia is characterized by re-
duced context-based binding of cues in episodic memory (Waters et al. 2004) 
and reduced relational memory organization (Titone et al. 2004). Regarding 
the second point, Uhlhaas, Haenschel et al. (2008) reviewed evidence for ab-
normal oscillatory activity and synchrony during a range of cognitive tasks 
in schizophrenia.

Evidence from several studies indicates that impairments on multiple indi-
ces of reduced dynamic coordination are related in schizophrenia. For exam-
ple, severity of impairment on tests of perceptual organization is signi� cantly 
correlated with the level of thought disorganization (Knight and Silverstein 
1998; Uhlhaas and Silverstein 2005). Test scores are also signi� cantly corre-
lated with scores on  theory of mind tasks, supporting views of similar integra-
tive mechanisms underlying both  perception and aspects of social cognition 
involving inferential or propositional  reasoning (Uhlhaas, Linden et al. 2006). 
These data support the hypotheses of Carr and Wale (1986) and Phillips and 
Silverstein (2003) that schizophrenia is characterized by multiple variants of 
the same basic dysfunction, leading to widespread failures in binding related 
information together into coherent representations to support effective thought 
and behavior. This impairment is present in pre-attentive and post-attentive as 
well as spatial and temporal processing. It has also been observed in functions 
as high level as autobiographical memory, the disturbance of which has been 
attributed to a reduced binding of  self-representations with observed actions 
during encoding of episodic memories (Danion et al. 1999).

Overall, evidence from studies of schizophrenia suggests failures of per-
ceptual organization and associated widespread reductions in oscillatory and 
synchronized neural activity. However, there are also suggestions of excessive 
synchronization. For example, Hoffman and McGlashan (2001) suggested that 
symptoms such as delusional ideas or  hallucinations might re� ect “parasitic 
foci.” This refers to self-perpetuating  attractor states, which, although re� ect-
ing abnormally strong connectivity themselves, are thought to be formed with-
in a context of reduced connectivity (i.e., functional fragmentation) in which 
nonreality-based combinations of representations are more likely to occur. This 
hypothesis is consistent with evidence of abnormal neural coactivation sec-
ondary to  white matter abnormalities in patients with auditory hallucinations 
(Hubl et al. 2004). On a more global scale, there is evidence that the smaller 
post-stimulus increases in  gamma-band  synchrony in schizophrenia re� ect an 
abnormally high baseline level of synchrony, against which only small relative 
increases are possible (Flynn et al. 2008). This could, as does the hypothesis of 
reduced coordination, also account for the reduced ability of emergent feature 
properties (e.g., gestalts) to take precedence in conscious  awareness over back-
ground information. Such data are consistent with recent � ndings of network 
hyperactivity in patients who experience an exaggerated self-awareness dur-
ing conditions when self-awareness is normally suppressed, and � ndings that 
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this hyper-connectivity is present even at rest (Whit� eld-Gabrieli et al. 2009). 
The latter may be the neural signature of the symptom of “hyper-re� exivity” 
discussed by Sass and Parnas (2003). To resolve the competing positions of 
hyper- and hypo-connectivity, it was suggested that for relatively in� exible 
networks, such as parasitic foci (and associated stable symptoms such as de-
lusional ideas and hallucinations), to form, there must be a reduction in func-
tional connectivity in surrounding areas (similar to that proposed for seizures, 
see below), whereas symptoms such as rapid shifts in perspective, and disorga-
nized thinking and speech, are characterized by states of transient, hyper-plas-
tic connectivity (Guterman 2007). An important unresolved issue here is the 
extent to which heterogeneity in coordination abnormalities in schizophrenia 
is related to heterogeneity in autonomic  arousal abnormalities, which are also 
observed in schizophrenia.

Much research in schizophrenia has implicated dysfunction of the  prefron-
tal cortex (PFC), and has noted the control functions of this region in domains 
such as temporal context processing,  working memory, relational encoding in 
 memory, and action planning. Recent evidence (Barbalat et al. 2009) suggests, 
however, that information is hierarchically organized in the PFC in part based 
on the temporal framing of action and events, that activity in the caudal lateral 
PFC varies as a function of episodic and contextual signals, and that activ-
ity is reduced in this region in schizophrenia. Therefore, rather than viewing 
the PFC as a monolithic control center that is responsible for imposing order 
on the output of operations from other cortical areas, it, as do other regions, 
may operate via dynamic coordination, with, in this case, the coordinating al-
gorithm generating the typical “gestalts” of the PFC (e.g., action plans, an-
ticipated behavior–consequence links, and temporal context). To what extent 
then can the evidence for PFC abnormalities in schizophrenia be accounted for 
by coordination failures within this region? Conversely, to what extent does 
the evidence that the  frontal cortex is involved in  grouping of distant, but not 
closely separated, visual elements (Ciaramelli et al. 2007) and that in schizo-
phrenia, perceptual organization de� cits are most pronounced when top-down 
feedback is required for effective performance, implicate a speci� c role for 
the PFC in dynamic coordination in this and other illnesses with coordination 
failures, and also in healthy individuals?

Autism

Uhlhaas  and Singer (2006) review evidence that in autism, a reduced ability 
to group stimuli is found in auditory processing, linguistic context processing, 
and social cognition, in addition to vision. To date, there have been few studies 
of physiological processes associated with impairment on these tasks, but one 
study (Grice et al. 2001) found reduced gamma-band synchrony during a face 
perception task.
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Alzheimer’s Disease

Despite behavioral evidence  for reduced perceptual organization and profound 
memory de� cits, and resting physiological evidence for reduced neural syn-
chrony, there has been only one task-related study, and this indicated reduced 
synchrony during a cognitive (working memory) task. Uhlhaas and Singer 
(2006) concluded that in addition to loss of neurons, phenomena found in this 
disease also re� ect impairments in the coordination of distributed neural activ-
ity, which could be due to  gray and  white matter reduction.

Other Conditions

Studies in other conditions (e.g.,  epilepsy,  Parkinson’s disease) could clarify 
the extent to which multiple impairments re� ect reduced dynamic coordina-
tion, but have yet to be done. Interestingly, recent � ndings of reduced syn-
chrony in response to steady state auditory stimulation in  multiple sclerosis 
(Arrondo et al. 2009), a disorder characterized by  white matter degeneration, 
support the hypothesis that these tracts are involved in dynamic coordination, 
and therefore that abnormalities therein could produce a range of coordination 
failures in disorders with this feature.

Issues that Arise

Can Life Experience Cause Reduced Dynamic Coordination?

Evidence concerning the disorders reviewed above suggests that abnormal 
dynamic coordination can occur in the context of abnormal sensory input 
(e.g.,  amblyopia), neurodevelopment (e.g.,  Williams syndrome,  autism), neu-
rodevelopmental abnormalities interacting with stress and neurotransmitter/
receptor changes (e.g., schizophrenia), degenerative processes (Alzheimer’s 
disease, Parkinson’s disease), or developmental, injury-related, or idiopathic 
causes (epilepsy). It remains to be determined whether, and to what extent, 
these different etiologies produce qualitatively different forms of coordination 
abnormalities. Another relatively unexplored issue is whether dynamic coordi-
nation failures can occur due primarily to neurobiological changes caused by 
abnormal life experience.

As an example of this, it has been hypothesized that auditory hallucina-
tions in  posttraumatic stress disorder and schizophrenia may consist of sensory 
components of memories of traumatic incidents (e.g., sexual abuse) that are 
decontextualized from the majority of the episodic memory trace and its as-
sociated affect (Read et al. 2005). This is similar to the model for dissociative 
symptoms postulated long ago by Breuer and  Freud (1895), in which the affect 
associated with the  traumatic experience is split off from ideation related to 
the experience. This is also similar to the ideas of  Janet (1889), who proposed 
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two core phenomena in mental functioning: one that preserves and recreates 
the past, and one that involves integration (van der Hart and Friedman 1989). 
The latter “reunites more or less numerous given phenomena into a new phe-
nomenon different from its elements. At every moment of life, this activity 
effectuates new combinations which are necessary to maintain the organism 
in equilibrium with the changes of the surroundings” (Janet 1889, cited in 
van der Hart and Friedman 1989:5)—a view similar to Phillips and Singer’s 
(1997) concept of dynamic coordination. In Janet’s view, in schizophrenia and 
other mental disorders involving cognitive fragmentation there is reduced in-
tegration, such that components (e.g., memory traces) are unmodulated and 
appear magni� ed relative to ongoing events in the person’s life.

Evidence in support of a link between trauma and reduced coordination of 
mental activity comes from a class of mental disorders known as  dissociative 
disorders, which are characterized by losses of conscious  awareness of aspects 
of experience. This can involve identity (psychogenic fugue states), aspects 
of remembered experience (psychogenic amnesia), or aspects of self (e.g., 
dissociative identity—multiple personality—disorder). Dissociative identity 
disorder is commonly associated with histories of childhood physical and/or 
sexual abuse, and psychogenic fugue and psychogenic amnesia are often asso-
ciated with intolerable stress in adulthood. While no studies have yet examined 
dynamic coordination in these disorders, clari� cation of the extent to which 
dissociation involves reduced coordination is provided by studies of  hypno-
sis, in which dissociation of  consciousness (e.g., the non-experience of pain), 
and phenomena such as hallucinations can be temporarily induced, especially 
in highly hypnotizable subjects (Silverstein 1993). Preliminary evidence from 
hypnosis research indeed suggests that splitting apart of normally integrated 
representations does involve reduced coordination. For example, Fingelkurts 
et al. (2007), in a case study, demonstrated reduced functional connectivity, 
across multiple frequency bands, after hypnotic induction compared to base-
line. The authors concluded that, in highly hypnotizable subjects, cognitive 
modules and subsystems may be temporarily incapable of communicating with 
each other. In a controlled study, Croft et al. (2002) found that prior to hypno-
sis, gamma synchrony predicted pain ratings for both high- and low-hypnotiz-
able subjects. However, during hypnosis, while this relationship was again ob-
served for low-hypnotizable subjects, it was eliminated for high-hypnotizable 
subjects. These data suggested that hypnosis involves a functional  disconnec-
tion between the  frontal cortex and other areas, and thus that the symptoms of 
dissociative disorders may re� ect functional and/or anatomical disconnections.

Interestingly, increasing evidence suggests that people with schizophrenia 
have high rates of childhood trauma, and one study has found links between 
trauma history in schizophrenia, more severe illness, and more impaired con-
tour integration (Schenkel et al. 2005). Trauma is rarely examined as a cor-
relate of cognitive or biological functioning. However, it could be a common 
factor in dissociation and impaired dynamic coordination across a range of 
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mental disorders that develop after childhood. Relatedly, factors such as being 
bullied in childhood, racial discrimination, and chronic social defeat have also 
been linked to the later development of psychosis, all raising the possibility 
that chronic profound stress alters dynamic coordination (the biological basis 
of this possibility will be discussed below).

Is Reduced Dynamic Coordination Involved in 
Emotion-processing Abnormalities?

To date, nearly all research on dynamic coordination in mental disorders has 
focused on cognitive phenomena (e.g., perceptual organization, working mem-
ory, hallucinations). However, a hallmark of several of the disorders consid-
ered is altered  emotion processing and expression. To what extent is altered 
dynamic coordination involved in these abnormalities, and/or in the apparent 
decoupling between ideation and emotional experience that can be found in 
these disorders?

Intriguing evidence comes from studies of  alexithymia, a personality trait 
characterized by a reduced ability to identify and verbally label emotional ex-
periences. A recent study (Matsumoto et al. 2006) found that whereas in healthy 
controls gamma-band power and phase synchronization were increased when 
processing emotionally negative stimuli, individuals with alexithymia did not 
demonstrate either increase. This suggests that people with alexithymia may 
be characterized by a reduction in communication between brain regions and a 
related reduction in the integration of mnemonic and/or emotional information 
during processing of emotional stimuli. These data also support the hypothesis 
that altered gamma-band synchronization is involved in the splitting of ide-
ation and affect that has been hypothesized to occur in people with histories of 
trauma, as noted above.

In contrast to alexithymia, a disorder that is characterized by excessive 
emotional activity (and often a history of childhood trauma) is  borderline per-
sonality disorder (BPD). BPD is characterized by emotional dysregulation, 
including anger outbursts and intense sadness, feelings of loneliness and emp-
tiness, transient psychotic symptoms, and an unstable sense of identity (and 
unstable relationships). In a recent study (Williams et al. 2006), during a tone 
discrimination task, patients with BPD demonstrated a delay in the generation 
of gamma synchrony over posterior cortical sites and a reduction in gamma 
synchrony over right hemisphere sites. Moreover, the delay in posterior syn-
chrony was associated with ideational distortions involving self and others, 
and reduced right hemisphere synchrony was associated with behavioral im-
pulsivity. Williams et al. (2006) suggest that the data indicate reduced func-
tional connectivity between posterior and frontal networks, and that this is a 
mechanism in the abnormal evaluation of stimulus signi� cance and dyscoordi-
nated emotional responses seen in BPD.
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Taken together, the preliminary data from studies of  alexithymia and 
BPD—conditions at the extremes of emotional experience—suggest that there 
is an optimal degree of  synchronization necessary for adaptive integration of 
emotional and cognitive experience. Abnormalities in networks involved in 
emotion–cognition integration can lead either to reduced emotional experi-
ence and expression or to unmodulated expression. This perspective on co-
ordination and  emotions can be seen as analogous to the difference between, 
for example,  amblyopia (reduced coordination) and  Parkinson’s disease 
(increased coordination).

The research presented in the last two subsections suggests that manifesta-
tions of dynamic coordination failures may extend beyond the cognitive and 
motor phenomena that have been studied thus far. Speci� cally, it is suggested 
that dysregulated emotional experience and behavior may also be manifes-
tations of impaired dynamic coordination. Neuroscience research techniques 
have only begun to be applied to these important aspects of brain disease. 
Nonetheless, theories have appeared in which (a) mood regulation; (b) coor-
dination of feelings, thoughts, and behavior; and (c) balance between thought 
and instinctual drives are seen as three core dimensions of brain function, with 
all of these rooted in synchronized  oscillations. In this view, a range of mental 
disorders (e.g., mood disorders, schizophrenia, obsessive-compulsive disorder, 
phobias,  BPD) re� ects brain region-speci� c variation in the neurodevelopment 
of the capacity for coordinated activity (Pediaditakis 2006).

Similarly, the extent to which the apparent splitting between mental con-
tents, and/or between mental and emotional content following traumatic or 
other chronically stressful life experiences, involves reduced dynamic coordi-
nation requires further study. Preliminary evidence from a number of psychi-
atric conditions suggests that a history of trauma may lead to selective areas of 
reduced coordination, and that this can account for commonality of symptoms 
across a variety of disorders including  dissociative, borderline personality, 
and psychotic disorders—most of which were once grouped together as either 
“hysteria” or “schizophrenia” where similarities in the core integrative psychic 
dysfunction were suggested long ago (e.g.,  Jung 1907). Questions arising are 
whether corrective emotional experiences (e.g., dynamic psychotherapy, cog-
nitive behavior therapy, healing relationships) can reduce or eliminate mani-
festations of altered dynamic coordination, and if so, whether this is a mecha-
nism by which psychotherapy is effective.

Overall, the research reviewed above suggests that dynamic coordination 
abnormalities can manifest in multiple ways, causing a variety of pathological 
phenomena depending on their scope (i.e., extent and loci of distribution in the 
cortex), valence (excessive or reduced), and severity. An unresolved issue is 
the extent to which differences on these three dimensions can parsimoniously 
account for the clinical presentations in each condition. What is needed, there-
fore, are (a) additional biomarkers of cognitive coordination that are separable 
from generalized performance dif� culties and symptom severity, and (b) more 
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sophisticated models that explain and clarify the mechanisms whereby differ-
ences in scope, valence, and severity of coordination failures speci� cally ac-
count for individual symptoms and syndromes, and their differences.

Is Apparent Dynamic Coordination Failure Caused by Too 
Little Integration or Too Much Feature Processing?

The data cited in the � rst section provide consistent evidence for reduced per-
formance on tests of  perceptual organization in speci� c brain diseases. This 
literature generally assumes that this re� ects reduced integrative or modulatory 
ability (except where noted, e.g.,  Parkinson’s disease) in the presence of normal 
intensity of driving input. However, it is also possible that these � ndings re� ect 
(a) excessive feature processing even in the face of normal integrative func-
tions or (b) an attentional bias toward local stimuli in the presence of normal 
global processing. Studies of perceptual organization typically have not been 
able to distinguish between these explanations; however, some evidence sug-
gests that this issue is worth exploring. For example, studies of global and local 
processing with compound stimuli have demonstrated that adopting a focus on 
one level or the other (i.e., an  attentional bias) can change which level appears 
to take precedence, raising the possibility that an illness-related attentional bias 
could produce what looks like a dynamic coordination failure. In  Williams 
syndrome and  autism, there is evidence of attentional bias toward local pro-
cessing (Porter and Coltheart 2006), although not in all studies. This contrasts 
with the excessive global bias found in Down’s syndrome, and thus it is pos-
sible that illness-related and illness-speci� c attentional biases exist, in addition 
to, or rather than, the hypothesized illness related integration de� cit. In schizo-
phrenia, a long history of � ndings of sensory gating disturbance and subjec-
tive reports of increased subjective intensity of sensory stimuli are consistent 
with the hypothesis of excessive feature processing. Further, in autism, there is 
some evidence for excessive processing of the meaning of words (Uhlhaas and 
Singer 2006). Questions that arise from these considerations include:

• Are the � ndings of increased baseline  synchrony (Flynn et al. 2008) 
and hyperactivity in cortical networks (Whit� eld-Gabrieli et al. 2009) 
in schizophrenia compatible with excessive levels of driving input?

• Can explanations involving excessive  driving input or local attentional 
bias account for reduced organization in other cognitive functions (e.g., 
 memory,  language, social cognition) in schizophrenia, autism, and 
Williams syndrome?

• To what extent do attentional biases to local or global levels re� ect 
coordination impairments (see Engel et al., this volume)?

• Is it possible to have both excessive processing of features and reduced 
integration? This is consistent with the conclusions of an fMRI study 
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demonstrating excessive left-right frontal connectivity and reduced 
anterior-posterior connectivity in schizophrenia (Foucher et al. 2005).

• Can the problem of apparent similarities in dynamic coordination fail-
ures in disorders with different clinical presentations be, at least in part, 
resolved by attributing the de� cits to different causes (e.g., integration 
de� cit, excessive feature processing,  attentional bias)?

• Alternatively, to what extent are the differences in coordination failures 
and/or clinical presentations in the different disorders a function of vari-
ation in the spatial distances (and corresponding differences in frequen-
cy bands) over which coordination can and cannot be implemented?

Neurobiological Candidate Mechanisms for 
Abnormal Dynamic Coordination

Biological explanations for impaired dynamic coordination have generally fo-
cused on three levels of analysis: (a) coordination within and between brain 
systems (e.g., electrophysiology), (b) anatomy (e.g., gray and white mat-
ter reductions and other cellular abnormalities), and (c) neurotransmitters. 
Representative evidence for the � rst of these was presented above. Anatomical 
� ndings related to impaired dynamic coordination include:

•  gray matter reductions in  amblyopia, schizophrenia, and possibly in 
autism;

•  white matter reductions in schizophrenia,  Alzheimer’s disease, 
Williams syndrome, and possibly in autism;

• increased neuronal cell packing density in visual cortical regions (con-
sistent with reduced connectivity and decreased synaptic signalling) in 
schizophrenia (Selemon 2001); and

• decreased dendritic � eld size in schizophrenia.

Hypotheses and data regarding neurotransmitter-related abnormalities in dy-
namic coordination failures have generally focused on:

•  NMDA-receptor hypofunction as a basis for impaired excitatory bind-
ing of relevant features (Phillips and Silverstein 2003), as well as for 
changes in GABA-related inhibitory function (Roopun, Cunningham  
et al. 2008);

• abnormal regulation of NMDA receptor-dependent synaptic plasticity 
by neurotransmitters such as dopamine, acetylcholine, and serotonin 
(Stephan et al. 2009);

• a primary impairment in GABAergic (inhibitory) activity including re-
duced generation of oscillations via inhibitory interneurons (Gonzalez-
Burgos and Lewis 2008);
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• alterations in acetylcholine receptors, which must be active for corti-
cal networks to engage in synchronized, high frequency oscillations 
(Uhlhaas, Haenschel et al. 2008); and

• excessive activity at cannabinoid receptors, which leads to both dimin-
ished oscillatory activity and impaired sensory gating (Hajós et al. 2008).

Genetic factors related to neurotransmitters and neuroplasticity may also play 
a role in illness-related dynamic coordination failures (Lisman et al. 2008). 
There is little research on this speci� c issue to date, although evidence is accu-
mulating regarding genetic contributions to (a) neurotransmitter function and 
expression of different types within the same class of (e.g., NMDA) receptor, 
(b) neurotransmitter abnormalities in schizophrenia, and (c) the development 
of autism,  Williams syndrome,  epilepsy, and other relevant disorders. For ex-
ample, decreased expression of genes related to synaptic function has been 
found in schizophrenia (Mirnics et al. 2001). Recently, an increase in NOS1AP 
has been found in postmortem samples in schizophrenia, and this has been 
hypothesized to lead to decreased signaling at  NMDA receptors and reduced 
dendritic � eld size (Brzustowicz 2008). A question suggested by these � ndings 
is whether—if disorders differ in their type of dynamic coordination failure—
these differences can be accounted for by differences in neuroanatomical, neu-
rotransmitter, or genetic factors.

A rarely addressed issue concerns the extent to which the biological ba-
sis of dynamic coordination can be affected by factors such as reduced so-
cial interaction, poor  diet, lack of exercise, poor maternal care, or physical or 
sexual abuse. For example, it was recently proposed that reduced  gray matter 
in schizophrenia may be secondary to reduced cardiovascular functioning and 
related reduction in neuronal growth, which in turn may be related to lack 
of physical activity and related reduction in brain-derived neurotrophic fac-
tor (BDNF) expression, overweight status and poor diet (Ward 2009). Diet 
has been demonstrated to affect gene expression related to brain plasticity 
(McGowan et al. 2008). It has also been demonstrated that, in rats, poor ma-
ternal care is associated with reduced NMDA receptor levels, reduced BDNF 
expression, and impaired spatial learning (Liu et al. 2000). Moreover, in hu-
mans, child abuse alters expression of genes that control stress responsiveness 
later in life; this can lead to the sequence of chronically increased cortisol, hy-
pothalamus–pituitary–adrenal axis dysregulation, and hippocampal cell death, 
thereby reducing the hippocampus’s ability to integrate contextual features 
during recall of episodic memories (McGowan et al. 2009). As noted above, 
this phenomenon has been suggested to be a cause of auditory  hallucinations. 
All of these � ndings are relevant for models of reduced dynamic coordination 
in disorders associated with trauma and/or unhealthy lifestyles (e.g., schizo-
phrenia,  BPD,  dissociative disorders, as reviewed above).
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Questions Regarding Normal Brain Functioning

To what extent can data on dynamic coordination abnormalities inform our un-
derstanding of normality? For example, to what extent can � ndings of changes 
in disorders with genetic contributions allow us eventually to understand the 
genetic factors associated with normal coordinating processes? How would 
this add signi� cantly to our understanding of coordinating functions beyond 
what is known about neurotransmitters and neuroanatomy? Also, to what 
extent can increases or decreases in coordination result from self-generated 
changes in mood or thought? The extent of downward causation from mental 
activity has yet to be explored.

Phillips and Singer (1997) suggest a distinction between  prespeci� ed fea-
ture hierarchies and dynamic coordination. This is supported by evidence from 
schizophrenia, in which grouping based on principles consistent with the for-
mer is intact, whereas performance de� cits appear on tasks involving the latter. 
Does this suggest that these two processes are separable? Relatedly, do the 
relationships between neuronal loss, abnormal synchrony, and binding distur-
bances, as well as the correlations between indices of dynamic coordination 
failure in disorders such as schizophrenia, support Phillips and Singer’s (1997) 
hypothesis that “the cortical algorithm everywhere is the same?” Do such data 
provide discon� rmatory evidence for Rolls’ (2006) hypothesis that  synchroni-
zation is most relevant for binding in feature hierarchy networks in early corti-
cal areas (e.g.,   V2–  V4) whereas information representation in higher areas is 
conveyed nearly completely by spike rates?

Data from schizophrenia and  epilepsy suggest that reduced  synchrony is 
the mechanism by which  attractor states form that are relatively isolated from 
other cortical functioning. The data overall agree with Uhlhaas and Singer’s 
(2006) contention that a trade-off between correlated and decorrelated activity 
is critical for normal brain function. Is it possible to quantify this trade-off and, 
if so (e.g., via neurofeedback), to enhance performance at various job functions 
or in life in general?

Phillips et al. (this volume) suggest that in addition to dynamic grouping 
and  contextual disambiguation, concepts such as  dynamic embedding,  dynam-
ic linking, and  dynamic routing are relevant to understanding cognition. For 
example, they suggest that thoughts about thoughts (i.e., metacognition) may 
require dynamically embedded groupings. This suggests that disorders such as 
schizophrenia and autism, both characterized by disturbances in  metacognition 
and  theory of mind, may involve failures in dynamic embedding. In addition, 
data on autobiographical memory support a form of dynamic embedding in-
volving grouping by causation, temporal proximity, and similarity in content 
(Brown and Schop� ocher 1998). Can the concept of dynamic embedding guide 
the development of techniques to improve metacognition, social cognition, and 
memory function in both healthy and ill persons?
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A potential criticism of the construct of dynamic coordination is that if it 
can explain nearly all aspects of normal and abnormal mental functioning, 
then it is too broad and simply too general a term for what the brain does. 
What are the implications of the data from illness states for determining how 
the construct of dynamic coordination adds to or con� icts with views such as 
Hebb’s (1949) seminal theory of  cell assemblies, Hemsley’s (2005) theory of 
the role of the  hippocampus in integrating sensory input with memory traces, 
and Andreasen’s (2008) view that cerebellar activity is a primary determinant 
of cognitive coordination? Engel et al. (this volume) have made a � rst pass at 
clarifying which aspects of cognition do, and do not, involve cognitive coor-
dination. In addition, they highlight the theoretical perspectives on cognitive 
coordination that can help differentiate it from other theories.

Do the differences in type and severity of dynamic coordination changes 
across disorders have implications for understanding individual differences? 
For example, can the tendency to bind normally uncorrelated representations, 
as found to an extreme in schizophrenia, be the basis for creativity? Is con-
text sensitivity, which is reduced to an extreme degree in schizophrenia and 
autism—two conditions with social functioning de� cits—the basis for social 
skill in the “neurotypical” population?

The questions posed here are but a sample of those that could be generated 
from a reading of the data laid out in this chapter. We may be far from an an-
swer to these and other questions at present, but the relative ease with which 
they can be generated suggests that understanding failures of dynamic coordi-
nation has the potential to increase our understanding of normal brain function, 
and possibly to lead to the development of techniques to improve the cognitive 
and emotional functioning of healthy people as well.
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Abstract

What is coordination and how is it achieved? This chapter begins with a discussion of 
the concept and key features of dynamic coordination. Next, its relation to cognitive 
functions and learning processes are explored, as is the role of neural oscillations in 
different frequency bands for dynamic coordination. Thereafter, modulation of coordi-
nation at the systems level is reviewed, and the relation of the mechanisms discussed to 
neuropsychiatric disorders is pursued. The purpose of this chapter is not to delineate all 
properties of coordination or all of its different manifestations. Instead, our intent is to 
portray the multifaceted problem that stands before us.

Introduction

It is a truism that we know coordination when we see it. At the same time, co-
ordination may be subject to precise measurement and observation. How well 
we can measure and observe depends on how accessible coordination is and at 
which level we choose to observe it.

We say that someone like Tiger Woods is coordinated because his golf swing 
(a) is dynamic, evolving over time in a well-de�ned sequence directed toward 
achieving a goal; (b) involves the orchestration of many different sensory, mo-
tor, and cognitive processes at many different levels; (c) involves a reduction 
in dimensionality (i.e., despite the enormous number of degrees of freedom, 
coordination is coherent and low dimensional); (d) adapts to the perceived 
environmental conditions as well as the sensed state of the body; (e) is a � ex-
ible, creative process that involves decision making and planning; (f) is stable 
(i.e., resistant to perturbations over the timescale of the behavior); (g) involves 
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learning and is subject to modi� cation by a number of factors, such as level of 
attention, stress, or others. 

The problem of coordination involves understanding how component parts 
and processes relate in an orderly fashion to produce a recognizable function. 
Coordination may thus be de� ned as a functional ordering among interacting 
components in space and time. Coming in many guises, coordination repre-
sents one of the most striking features of living organisms. Some of the basic 
phenomena that seem to be of particular relevance to understanding dynamic 
coordination in the brain and cognition are:

• Patterned states of coordination remain stable in time despite 
perturbations.

• Component parts and processes (dis)engage in a � exible fashion de-
pending on functional demands and/or changes in environmental 
conditions.

• Multiple coordination states may exist rendering living things mul-
tifunctional, effectively satisfying the same (or different) sets of 
circumstances.

• Switching from partially to fully coordinated states and vice versa is 
commonplace.

• Selection of coordination  patterns is tailored to suit the current needs 
of the organism.

• Coordination patterns adapt to changing internal and external 
contingencies.

• Depending on a balance between competitive and cooperative process-
es, learning may take the form of abrupt transitions from one coordi-
nated pattern to another.

• The system may remain in the current pattern of coordination even 
when conditions change, thus exhibiting memory.

We begin by reviewing the concept and key features of dynamic coordination.

How Can Dynamic Coordination Underlying Behavior and 
Cognitive Processing Be Conceptually and Formally Speci� ed?

Dynamic Coordination as a Result of Self-organization

A key concept for understanding dynamic coordination in complex systems 
is  self-organization. Self-organization refers to the spontaneous formation of 
patterns and pattern change in systems that are open to exchanges of informa-
tion with the environment and whose elements adapt to the very patterns of 
behavior they create. Inevitably, when interacting elements form a coupled 
system with the environment, coordinated patterns of behavior arise. Naturally 
occurring environmental conditions or intrinsic, endogenous factors may take 
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the form of control parameters in a dynamical system. For example, candidate 
control parameters in neural circuits include  neuromodulators and synaptic 
drive. A circuit may be capable of operating in distinctly different stable modes 
and switching between them depending on the level of synaptic drive and the 
degree of neuromodulation (e.g., Briggman and Kristan 2008).

When a control parameter crosses a critical value, instability occurs and 
leads to the formation of new (or different)  patterns. In self-organizing dynam-
ical systems, such as � uids, lasers, and chemical reactions, the enormous com-
pression of degrees of freedom near critical points arises because events occur 
on different timescales: the faster individual elements in the system become 
“enslaved” to the slower, “emergent” collective variables which now consti-
tute the relevant information for the system’s dynamic behavior. Collective 
variables are relational quantities, spanning or enfolding different domains that 
re� ect the  coupling among component parts and processes.

Alternatively, and perhaps more in line with how nervous systems are coor-
dinated, one may conceive of a hierarchy of timescales for various processes 
involved in coordination. On a given level of the hierarchy, dynamic coordi-
nation may be subject to constraints (e.g., of the task) that act as boundary 
conditions on lower-level processes. At the next level down are component 
processes and events that typically operate on faster timescales. Thus a com-
plete description of coordination on a chosen level of description would seem 
to require identi� cation of (a) the boundary conditions and control parameters 
that establish the context for particular coordination phenomena to occur, (b) 
the relevant collective variables and their dynamics, and (c) the component 
level and its dynamics including the nonlinear coupling between components.

Self-organized pattern formation in the brain—a subject of much active 
investigation in the neurosciences—expresses itself in various forms, includ-
ing brain  oscillations (e.g., Basar et al. 2000; Buzsáki 2006),  transient phase 
 synchrony among neural populations (e.g., Singer and Gray 1995; Varela et 
al. 2001; Engel et al. 2001; Bressler and Kelso 2001), multistability, abrupt 
phase transitions (“switches”) in cortical activity patterns, and so forth. Long 
ago Katchalsky et al. (1974:58) noted: “The possibility of waves, oscillation, 
macrostates emerging out of cooperative processes, sudden transitions, pre-
patterning, etc., seems made to order to assist in the understanding of inte-
grative processes…particularly in advancing questions of higher order func-
tions that remain unexplained in terms of contemporary neurophysiology.” 
Here we will discuss numerous studies that explicitly address such manifesta-
tions of dynamic coordination in the brain and relate these to cognitive and 
behavioral functions.

Dimensionality Reduction

The key feature of coordination is that a very large number of heterogeneous 
elements characterized by mutual interaction “live” in a subspace or manifold 
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whose dynamics are low dimensional. Near instability, the individual elements 
must order themselves in new or different ways to accommodate current con-
ditions. The patterns that emerge may be de� ned as  attractor states of the col-
lective variable dynamics; that is, the collective variable may converge in time 
to a certain limit set or attractor solution. Mathematically, systems composed 
of many interacting elements are described in terms of a (large) number of 
time-dependent states that trace out a trajectory in a high-dimensional state-
space (so that the current state is represented by a point in state-space). The 
long-term evolution of many systems can then be characterized in terms of 
those parts of state-space to which all trajectories are attracted (the attractor 
manifold). Crucially, in instances of dynamic coordination, this manifold usu-
ally has a low dimension and supports wandering (itinerant) trajectories; this 
means that the states are not � xed but revisit a subset of states in a � exible but 
reproducible way (e.g., metastability and bistable perception).

The fact that the manifold is low dimensional is key for understanding how 
order can be synthesized from multiple interacting systems, like neurons or 
macro columns, and may explain the emergence of percepts with a unitary na-
ture. The mathematical analysis of coupled systems suggests that these mani-
folds enforce synchronization of the coupled systems (in fact they are referred 
to as  synchronization manifolds). This is the key to understanding the central 
role of  oscillations and  synchrony in  binding the dynamics of distributed popu-
lations in the brain. Furthermore, it speaks to synchronization as a pragmatic 
measure that can be used to infer the presence of dynamic coordination.

Importantly, the reduction in  dimensionality associated with dynamic coor-
dination implies the creation of new knowledge. Let us consider the example 
of an image that contains a large number of Gabor patches. A full description 
of the image would require, for each  Gabor patch, its location and orientation. 
However, if those Gabor patches can be integrated in a contour, then the image 
is fully described by the contour itself: this corresponds to a reduction of the 
number of state variables necessary to describe the image or, in other words, 
to the fact that additional knowledge has been created by coordinating the ele-
ments into a whole: the contour. This idea of creation of new knowledge is also 
captured by the axiom “the whole is different from the sum of its parts” and 
thus dynamic coordination can be viewed as those processes which foster the 
 emergence of the whole from the parts.

The Theory of Coherent Infomax

The concept of dynamic coordination can be speci�ed in informational theo-
retical terms within the theory of  Coherent Infomax (Kay et al. 1998; Phillips 
et al., this volume). In short,  contextual modulation affects the transmission 
of the information that it modulates, while, in contrast to the signal that it 
modulates, transmitting little or no conditional mutual information about it-
self. Alternatively, another way to see what is meant by the phrase “dynamic 
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coordination” is to think of it as a cover term for at least three fundamen-
tal neurocomputational functions:  multiplicative gain modulation,  dynamic 
 grouping or “ binding,” and  dynamic routing (cf. Phillips et al., this volume). 
All three functions can be viewed as involving interactions that affect neural 
activity but without changing the information transmitted by the cells produc-
ing that activity. Tiesinga et al. (2008:106) state that “multiplicative gain mod-
ulation is important because it increases or decreases the overall strength of 
the neuron’s response while preserving the stimulus preference of the neuron.” 
Multiplicative gain modulation has been closely related to attention, coordi-
nate transformations, the perceptual constancies, and other cases of  contextual 
modulation, which shows the breadth of its range of potential application.

Our discussions, however, also re� ected somewhat different views on the 
degree to which  coordinating interactions can change the local “meaning” or 
representational contents. The Coherent Infomax Theory suggests that co-
ordinating interactions are essentially modulatory in nature and, thus, have 
only weak effects on the information carried by neural responses, which are 
considered to result mainly from bottom-up inputs into the respective circuit. 
However, there may also be cases of coordination where the coordinating in-
teractions are actually constitutive for the meaning (or functional role) of the 
local neural signals. Recording of a single neuron supplies a high amount of 
mutual information on the activities of other neurons. Therefore, the informa-
tion on the activity pattern of one neuron cannot be inferred from the stimulus 
as such, but only through additional knowledge regarding the activity pattern 
of other neurons. The interaction of the neurons constitutes a free variable that 
is not directly affected by the stimulus. Hence, in information theoretic terms, 
the activity pattern is not determined completely by the evidence (stimulus); 
the prior (here the conditional probability given that other neurons � re in a 
speci� c pattern) has to be taken into account.

Put in neural terms, this latter view implies that the activity of individual 
neurons, taken on their own, does not carry completely invariant information; 
it is the context of the neural population (the assembly) that actually determines 
functional impact and “meaning” for the individual neural responses. Obvious 
examples can be found at the level of  perceptual  grouping, where it is known 
that perception of a complex object is mediated by coordination of massive 
neural populations; in this case, representational contents are established only 
at the population level, and coordinating interactions (e.g., synchronization of 
the respective neural signals) are a necessary condition for generating “mean-
ing” and transmitting information on the “whole” rather than on its “parts.”

 Dynamic Pattern Theory

An alternative theoretical approach that also describes the phenomena associ-
ated with dynamic coordination is known as Dynamic Pattern Theory. This 
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approach has been formally de� ned and studied by Kelso (1995) and others, 
drawing on Haken’s work on synergetics. Important insights into principles 
of coordination have come from studies of motor coordination, such as that 
within and between hands, arms, and legs. The mathematical formulations of 
 synergetics and Dynamic Pattern Theory have been more extensively devel-
oped than that of Coherent Infomax, but the two approaches seem to have 
much in common. A number of general conclusions have emerged from studies 
of motor coordination that are very similar to what has been proposed as apply-
ing to “dynamic coordination”:

1. Dynamic coordination in sensorimotor control is highly distributed. 
Swinnen (2002:350), reviewing work on bimanual coordination con-
cludes: “Although the prevailing viewpoint has been to assign biman-
ual coordination to a single brain locus, more recent evidence points to 
a distributed network that governs the processes of neural synchroniza-
tion and desynchronization that underlie the rich variety of coordinated 
functions.”

2.  Population  coding is common. Most movements are not driven by a 
single cell but by the combined activity of a population of cells. This 
has been well illustrated by Georgopoulos (1995), who has shown that 
the precise direction of movements is more closely related to the activ-
ity of cell populations than to that of single cells.

3. The precise timing of neural signals is crucial. In-phase or counter-
phase synchronizations between rhythmically contracted homologous 
muscle groups are particularly common (e.g., in walking, running, and 
swimming), but other phase relationships can be learned, and con-
straints on this learning are the subject of much research.

4. The system falls easily into certain preferred patterns of activity 
(Kelso 1995). Modes of coordination in the motor system are  patterns 
of movement that are easily performed and resistant to perturbation. 
They are usually well rehearsed and highly automated. They can be 
thought of as attractors in an energy landscape and are analogous to 
the idea of attractors in population codes for concepts and memories. 
An advantage of applying the notion of attractors to the motor system 
is that the process of attraction can be made concretely visible. This 
can be done, for example, by making clockwise circling motions with 
both hands, but with one leading the other by a small proportion of the 
cycle frequency. As cycle frequency increases there will be a tendency 
for the two movements to become in phase such that the homologous 
muscle groups are activated synchronously. As this is a highly stable 
movement pattern, it attracts similar but unfamiliar movement patterns 
toward it, thus making the idea of an attractor visible. Speci� c patterns 
of interaction occur between command streams at various stages of 
planning and execution. These can be either mutually interfering or 
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mutually supportive. This is the basic premise of the “neural crosstalk” 
approach developed by Swinnen (2002) and others. Well-coordinated 
actions are therefore those in which mutual support is maximized and 
mutual interference is minimized.

Understanding Dynamic Coordination

Several key concepts mentioned in the introduction will reemerge through-
out the remainder of this chapter. These include  dimension reduction (i.e., 
the notion that dynamic coordination reduces a high number of dimensions 
or degrees of freedom to a low-dimensional space or manifold); the notion 
of infomax and the importance of maintaining a high mutual information 
between the sensorium and its internal representation; and the functional role 
of  dynamic coordination, which can be de� ned in terms of optimization for 
both perception and action. It is helpful to see these three constructs as inti-
mately related facets of the same basic process: Put simply, we suppose that the 
purpose of the brain is to represent the world in a parsimonious and accurate 
fashion. This entails a mapping from sensory input to an internal representa-
tion, so that the representation provides a parsimonious account or explanation 
of  sensory input. This parsimony corresponds to dimension reduction; namely, 
a collapse of a high-dimensional input space into a low-dimensional represen-
tation. The accuracy of this representation means that the sensory inputs can 
be predicted with minimal error and suggests that dynamic coordination opti-
mizes prediction error. The fact that sensory inputs can be predicted implies a 
high degree of mutual information between those inputs and their representa-
tion. This is the essence of infomax. Coherent infomax addresses the fact that a 
better representation can be constructed by selectively preserving information 
that is predictably related across local processors that operate upon different 
parts of the input data. By so doing it might be possible to discover distal 
causes in the proximal data. We will return to the theme of optimized mappings 
between high-dimensional input spaces and low-dimensional representations 
later, when we consider the relationship between cognitive processes and dy-
namic coordination.

Is Dynamic Coordination the Basis of Speci� c Cognitive Functions 
or Is It a General Optimizer of Cognitive Functioning?

Cases of Dynamic Coordination

Dynamic coordination was originally conceived as a process that was medi-
ated by synchronous interactions among neurons or neuronal populations dur-
ing perceptual synthesis. It emphasized the  contextual disambiguation of cause 
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and content during the processing of sensory information in neuronal circuits, 
both local and distributed, and the mergence of unitary representations of the 
external causes of sensations. Its ubiquitous role in neuronal and biological 
processes has led to a more inclusive use of the concept to cover the coordina-
tion of distributed dynamics, not just among sensory neurons but in the coor-
dination of behavior and, more generally, the  coupling of dynamical systems 
from the electrophysiology level to ethology.

It is useful to seek examples of the various forms of dynamic coordina-
tion at different levels of analysis from local circuits to behavior. Examples of 
 contextual  gain modulation at the level of single cells, or local groups of cells, 
include much evidence for the modulatory effects of attention and concurrent 
stimulus inputs from beyond the classical receptive � eld, as reviewed, for ex-
ample, by Reynolds and Desimone (1999).

Examples at the level of cognition and behavior include endless demon-
strations of contextual disambiguation, both within and between modalities. 
Rigorous examples from perception range from the effects of task irrelevant 
collinear or non-collinear surrounds on contrast detection, as studied in hu-
mans by Polat and Sagi (1994) and in awake-behaving monkeys by Kapadia et 
al. (1995), to effects on speech, face and scene perception. Many other exam-
ples are given by Edelman (2008a) and include paintings by Magritte designed 
to increase our awareness of the way in which context modulates interpretation 
of the local data.

Examples of  dynamic  grouping at the behavioral level include the  contour 
integration task (reviewed by Kovács and Julesz 1993; Field et al. 1993; Hess 
et al. 2003). This task is designed so that explanations in terms of prespeci� ed 
feature detectors are unlikely. It has also been used to test dynamic group-
ing in awake-behaving monkeys by Kreiter and Singer (1996) as well as in 
experiments combining behavioral and physiological measures (e.g., Müller 
et al. 1997).

Taking the example of  visual perception, there is an obvious need for back-
and-forth interaction among several levels of processing. Let us consider the 
perception of moving bodies: the nonrigid movements of the different body 
parts require an ef� cient and coupled coding of visual shape and motion in-
formation. For the ef� cient transfer of this coupled information, a representa-
tion (or code) is needed that optimizes space-time resolution (e.g., preserving 
a suf� cient amount of spatial information in the presence of good temporal 
resolution). The  point-light displays used by Johansson (1973) and the motion 
capture techniques more recently employed in studies of  biological motion 
perception (Troje 2002) exemplify the effectiveness of  dimensionality reduc-
tion that bring about “meaning” in the course of dynamic coordination. 



Coordination in Behavior and Cognition 275

Cognitive Processes and Coordination

One of the challenges encountered in our discussions of the relation between 
coordination and cognition was that the concept of “ dynamic coordination” 
seems to relate to an enormous variety of neural and cognitive functions. In the 
extreme, “dynamic coordination” could even become a synonym for “cogni-
tion.” One way to address the problem of over-inclusiveness is to assume a 
heuristic rather than formal approach. This can be accomplished by conceptu-
alizing the framework along two axes (Figure 18.1): the number of elements 
to be coordinated during the process and the degree of � exibility associated 
with the process under study. For clarity, only a few neural and cognitive pro-
cesses are shown in this diagram, highlighting typical examples used during 
our discussions.

In Figure 18.1, the horizontal axis (“number of coordinated elements”) rep-
resents intuitions about the extent to which a task is complex, as de� ned by 
the combination of the number of elements required. As we shall see below, 
this dimension seems to covary with the extent to which synchronous oscilla-
tory activity is evoked, the number of neurons or neural modules involved, as 
well as the extent to which intra- or inter-regional feedback is required. The 
vertical axis (“� exibility”) refers to the number of choices in the given task 
and represents intuitions about the extent to which a task involves selecting an 
interpretation (from an ambiguous input) or action (when performing a task) 
from an increasingly broad range of options. In addition, this dimension maps 
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Figure 18.1 Two dimensions of  dynamic coordination. The horizontal axis represents 
the number of coordinated elements; the vertical axis depicts “� exibility.” Gray shading 
indicates degree of dynamic coordination.
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the extent to which a task is more novel or requires more control. Accordingly, 
a high degree of dynamic coordination would be associated with both coordi-
nation of large numbers of elements and high � exibility, as indicated by the 
gray shading of the � gure background. The key question is whether the same 
parameter ranges are typically required for cognitive processes. In our discus-
sions, consideration of numerous examples suggests that this may generally be 
the case, although exceptions seem possible.

Clearly, the relation between both dimensions is not symmetric. Relevant 
examples suggest that increasing the demands on � exibility (e.g., by allow-
ing for selection between a wide range of choices) imposes a necessity for 
coordinating increasingly large numbers of elements in the system. Suitable 
examples include, at an intermediate level of both parameters, multistable per-
ception or, at a very high level in both axes, the process of cognitive control. 
We note, however, that the converse is not true; coordination of large numbers 
of elements can take place without large � exibility on the task. For example, 
skilled performance in an overlearned motor task may represent a high level 
of coordination even when the � exibility is highly constrained. Thus, a pro-
� cient piano player touching a speci� c key at a speci� c time with a speci� c 
force clearly requires a high level of coordination even when no other outputs 
are under consideration. Importantly, for the current purposes, dynamic co-
ordination is less evident, or absent, in a number of familiar functions (e.g., 
simple perceptions, re� exes, and prepotent responses). These processes share 
the property of being capable of being accomplished with � rst order statistics.

Silverstein (this volume) has detailed the nature of perceptual organization 
and how it places demands on dynamic coordination. The example of atten-
tional gain control is also illustrative in this instance. One well-studied aspect 
of this process is the selection of one of a number of sensory stimuli for further 
processing from an array of different sensory stimuli. Here, the selection of 
one object in a visual scene for detailed processing by higher visual cortical 
areas requires the harmonious coordination of a number of lower and higher 
visual-processing areas. Such a selection process can be seen as a special case 
of the more general notion of dynamically coordinating the � ow of informa-
tion through the brain. Consider the example of driving a car while engaging 
in a conversation. Visual information about the location of the car, with respect 
to the road and the current traf� c situation, is processed and ultimately routed 
to the muscles controlling our hands on the steering wheel and our feet on the 
accelerator or brake pedal. At the same time, acoustic information associated 
with the words of our conversation partner will be processed and ultimate-
ly routed to our own vocal apparatus as we respond. However, this pattern 
of  information � ow can be quickly and � exibly altered if, for example, our 
conversation partner asks us to stop the car—an acoustic stimulus prompting 
us to step on the brake.

Dynamic coordination, by de� nition, is required when the output of a given 
level of processors cannot be speci� ed in advance on the basis of the input. 
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That is, multiple outputs are possible, and the output is determined in part by 
contextual factors. In this way, dynamic coordination can be seen as a basis 
of any process that requires such coordination; as noted above, this includes a 
wide range of perceptual and cognitive functions. What differentiates cogni-
tive functions is, of course, the nature of the representations that must be cre-
ated and transformed: visual vs. auditory input, codes for muscle movement, 
memory representations, sensorimotor integration, semantic information, etc. 
Moreover, the nature of the coordinating process appears to depend on a num-
ber of factors, including the speed at which coordination is needed (which can 
affect whether the primary coordinating mechanism is an initial neural spike 
vs. a slower or faster rhythm) and the number of processes that must be car-
ried out simultaneously. In the latter case, multiple frequency bands will be 
“opened” and oscillatory activity in each will subserve a different process, 
although these may interact (Tallon-Baudry, this volume).

Dynamic Coordination as Optimization

It may be useful to understand some essential characteristics of dynamic co-
ordination in terms of  optimization. This rests on reducing the function of the 
brain to the optimization of speci�c quantities and thinking about what this 
entails for neuronal dynamics.

For nearly every aspect of brain function, from elementary perceptual cat-
egorization to optimal decision making under uncertainty, one can frame the 
problem (objective) faced by the brain in terms of an objective function. For 
perception, this objective function is the evidence for an internal (generative) 
model of how its sensory inputs were caused. Under some simplifying assump-
tions, this reduces to the amount of prediction error—the mismatch between 
sensory inputs and the predicted inputs under an optimized model.  Perception, 
therefore, reduces to the suppression or explanation of (bottom-up) prediction 
error by (top-down) predictions; this is known as  predictive  coding and is a 
special case of more general Bayesian formulations in terms of  free energy 
(Friston and Stephan 2007).

In action and motor control, several objective functions have been pro-
posed, most in the service of �nessing forward models of motor control. 
Recent formulations suggest that the same sort of prediction error minimized 
by predictive coding is minimized in optimal motor control (i.e., sensory pre-
diction errors on proprioceptive channels re�ect the mismatch between sensed 
and anticipated, or desired, consequences of movement). In procedural and 
reinforcement  learning, the role of (reward) prediction error is again central to 
many formulations, such as temporal difference models and simpler versions 
in psychology (e.g., the Rescorla-Wagner model). In game theory and optimal 
decision theory, the objective function comprises expected loss under uncer-
tainty or (in behavioral economics) its complement: expected utility or value. 
In fact, the value or expected reward can be linked to the surprise or amount of 
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prediction error minimized by action and perception. The basic idea here is that 
we can think of brain function as optimizing something (usually minimizing 
prediction error). So what does this entail for the optimization process?

Biophysical optimization schemes generally use some type of stochastic 
 search (e.g., natural selection) or gradient descent. Gradient descent is inher-
ently a dynamic process, most often formulated in terms of differential or dif-
ference equations. This means that any optimization in the brain (that uses 
gradient decent) must be a dynamic process (if it involves distributed neuronal 
states) and must involve dynamic coordination. The signature of gradient de-
scent is that the dynamics move current states of the brain towards an attractor 
that represents the (� xed-point) optimal solution; where the objective function 
is brought to an extreme. For example, in perception, this would be the maxi-
mum a posteriori estimate of the causes of sensory input, at which point the 
prediction error is usually minimized. This means that dynamic coordination 
must attract brain states to an invariant set (the desired or optimal solution). 
Happily, this is the hallmark of dynamic coordination: the organization of the 
degrees of freedom in large numbers of distributed neuronal systems, so that 
they are contained in a low-dimensional space.

Can we be more precise about the sorts of dynamic coordination this might 
evoke? To do so, we need to consider dynamic coordination at different scales. 
A fair amount of evidence suggests that the reciprocal message passing be-
tween different levels or cortical areas in visual cortex is a key determinant of 
coordinated dynamics and, counterintuitively, may be faster than local lateral 
interactions within an area. This recursive and self-organized message pass-
ing is mandated by biological formulations of ( predictive  coding) perceptual 
inference and calls on dynamic coordination at a timescale of tens to hundred 
of milliseconds over a spatial scale of millimeters to centimeters. Most impor-
tantly, it must be self-limiting because its function is to suppress or explain 
away prediction errors (cf. the self-limiting transients observed electrophysi-
ologically). This means there must be some variant of a feedback loop that 
ensures convergence to the optimal state. Thus, we might expect (functionally) 
suppressive effects of top-down extrinsic (between area) connections.

Synchrony and Dynamic Coordination

How does  the preceding discussion relate to synchronous interactions between 
neurons or neuronal populations? A large number of studies carried out over 
the past two decades suggests that temporal correlations in neural activity play 
a key role for dynamic coordination in various sensory modalities (von der 
Malsburg and Schneider 1986; Singer and Gray 1995; Singer 1999; Tallon-
Baudry and Bertrand 1999; Engel et al. 1992, 2001; Herrmann, Munk et al. 
2004; Fries 2005). As shown by numerous studies in both animals and humans, 



Coordination in Behavior and Cognition 279

synchronized oscillatory activity, in particular at gamma-band frequencies 
(> 30 Hz), is related to a large variety of cognitive and sensorimotor functions.

Fast  synchronization may play many essential roles. They all rely on a key 
mechanistic aspect of fast (e.g.,  gamma)  synchronization that enhances the ef-
fective  coupling between neurons—synchronous gain—in a � exible and con-
text-dependent fashion. The majority of the available studies were conducted 
in the visual modality, relating gamma-band coherence of neural assemblies 
to processes such as feature integration over short and long distances (Engel, 
König, and Singer 1991; Engel, König, Kreiter et al. 1991; Tallon-Baudry et 
al. 1996), surface segregation (Gray et al. 1989; Castelo-Branco et al. 2000), 
perceptual  stimulus selection (Fries et al. 1997; Siegel et al. 2007), and  atten-
tion (Müller et al. 2000; Fries, Reynolds et al. 2001; Siegel et al. 2008).

Beyond the visual modality, gamma-band synchrony has also been ob-
served in the auditory (Brosch et al. 2002; Debener et al. 2003), somatosensory 
(Bauer et al. 2006), and olfactory (Wehr and Laurent 1996) systems. Moreover, 
gamma-band synchrony has been implicated in processes such as sensorimotor 
integration (Roelfsema et al. 1997; Womelsdorf et al. 2006), movement prepa-
ration (Sanes and Donoghue 1993; Farmer 1998), and memory formation (Fell 
et al. 2001; Csicsvari et al. 2003; Gruber and Müller 2005; Herrmann, Lenz 
et al. 2004). Collectively, these data provide strong support for the hypothesis 
that synchronization of neural signals is a key mechanism for integrating and 
selecting information in distributed networks (Singer and Gray 1995; Singer 
1999; Engel et al. 2001). What they suggest is that  coherence of neural signals 
allows for the establishment of highly speci� c patterns of effective neuronal 
coupling, thus enabling � exible and  context-dependent binding, the selection 
of relevant information, and the ef� cient routing of signals through processing 
pathways (Salinas and Sejnowski 2001a; Fries 2005; Womelsdorf et al. 2007).

Consideration of numerous examples for processes requiring dynamic coor-
dination shows that these are generally associated with task- or context-speci� c 
changes in oscillatory activity and/or coherence. Supportive evidence for this 
includes studies on  Gestalt perception, attention, long-term  memory  encoding 
and retrieval,  working memory, choice and cognitive sequencing, multimodal 
integration,  language comprehension, and even  awareness. Table 18.1 presents 
an overview of key examples for such studies. As the table shows, oscillatory 
processes covary with cognitive functions in multiple frequency bands (dis-
cussed further below).

In summary, dynamic coordination at a timescale of tens to hundreds of 
milliseconds may be essential for optimization of distributed representations 
in the brain. The dynamic nature of this optimization is shaped by the un-
derlying  connectivity, which is subject to plasticity on a slower timescale. 
Emerging from anatomical connectivity, patterns of synchronous interactions 
may be coordinated dynamically on a faster timescale. Processes occurring at 
these two timescales can mutually constrain each other through mechanisms 
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of time-dependent plasticity and experience-dependent consolidation of archi-
tectures selected by synchronization of the sort indexed by gamma oscillations.

Is Dynamic Coordination Learned and Does 
Dynamic Coordination Modify Learning?

Relation between Dynamic Coordination and Learning

Dynamic coordination and  learning are likely to have a profound in� uence on 
each other, but understanding this relationship is far from trivial. On one hand, 
dynamic coordination may be the result of learning processes and/or subject to 
developmental change. On the other, dynamic coordination may shape learn-
ing by selecting �exibly created relationships between internal representations 
that should be laid down in synaptic weight patterns.

Essentially all behaviors or complex competencies associated with dynamic 
coordination discussed above improve during ontogenetic development. This 
could mean that the competencies and neural structures being coordinated are 
improving, but it also suggests that coordination may be improving through 
learning. What may be the underlying mechanisms?

Learning processes are associated with a range of synaptic (and other) plas-
ticity mechanisms. Dynamic coordination may also be realized through a num-
ber of mechanisms among which the  synchronization of neuronal responses 
and  oscillations in the  gamma frequency band are prominent candidates. The 
question then is: How do the known plasticity mechanisms shape the (puta-
tive) mechanisms for coordination? For example, are there learning processes 
that will tend to improve neuronal synchronization? Or should the ability to 
synchronize be viewed instead as a generic circuit property, which learning 
processes may exploit for, say, the  dynamic routing of information? To what 
extent do learning mechanisms shape dynamic coordination in a task-depen-
dent manner that is in�uenced by reward signals to improve behavioral per-
formance? Do learning processes ultimately transfer dynamically coordinated 
states into ef�cient but in�exible special purpose circuits?

Importantly, dynamic coordination may also affect learning. In particular, 
it may select from a multitude of possible association patterns those that are 
meaningful and should be remembered. As a speci�c example, consider the 
situation where dynamic coordination takes the form of synchronizing the � r-
ing of a population of neurons at the level of a few milliseconds. Interestingly, 
work on  spike-timing-dependent plasticity (STDP) shows that whether a syn-
apse between two neurons is strengthened or weakened can depend on the mil-
lisecond-scale precise timing of their action potentials (Markram et al. 1997). 
If the presynaptic neuron �res shortly before the postsynaptic neuron, the con-
nection is strengthened. If, however, the presynaptic neuron �res shortly after 
the postsynaptic neuron, the synapse is depressed. Thus, dynamic coordination 
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processes that control the spike timing of groups of neurons (e.g., by synchro-
nizing them) will have a huge impact on what synapses are strengthened or 
weakened. Dynamic coordination processes, together with the action of neuro-
modulators, may in fact be controlling the expression of plasticity.

Neural Synchrony during Human Ontogeny

The development and maturation of cortical networks critically depends on 
neuronal activity, whereby  synchronized oscillatory activity plays an impor-
tant role in the stabilization and pruning of connections. In  STDP, pre- and 
postsynaptic spiking within a critical window of tens of milliseconds has pro-
found functional implications (Markram et al. 1997). Stimulation at the depo-
larizing peak of the  theta cycle in the hippocampus favors long-term poten-
tiation (LTP), whereas stimulation in the trough causes depotentiation (LTD) 
(Huerta and Lisman 1993). The same relationship holds for oscillations in the 
beta and gamma frequency range (Wespatat et al. 2004).

Furthermore, synchronization of oscillatory activity is an important index 
of the maturity and ef�ciency of cortical networks. Neural oscillations are 
energy-ef�cient mechanisms for the coordination of distributed neural activ-
ity that are dependent upon anatomical and physiological parameters (Buzsáki 
and Draguhn 2004) which undergo signi�cant changes during development. 
Thus,  synchronization of oscillatory activity in the beta and gamma frequency 
range is dependent upon corticocortical connections that reciprocally link cells 
situated in the same cortical area, across different areas or even across the 
two hemispheres (Engel, König, and Singer 1991; Engel, König, Kreiter et al. 
1991). Furthermore, GABAergic interneurons play a pivotal role in establish-
ing neural synchrony in local circuits as indicated by research that shows that a 
single GABAergic neuron may be suf�cient to synchronize the �ring of a large 
population of pyramidal neurons (Cobb et al. 1995) and the duration of the 
inhibitory postsynaptic potential (IPSP) can determine the dominant frequency 
of oscillations within a network (Wang and Buzsáki 1996). As brain matura-
tion involves changes in both GABAergic neurotransmission (Hashimoto et al. 
2009; Doischer et al. 2008) and the myelination of long axonal tracts (Ashtari 
et al. 2007; Perrin et al. 2009), changes can be expected in the frequency and 
amplitude of oscillations as well as in the precision with which rhythmic activi-
ty can be synchronized over longer distances at different developmental stages.

During development of resting state activity, there is a reduction in the am-
plitude of slow-wave ( delta, theta, alpha activity)  rhythms, while fast (beta- 
and gamma-band) rhythms increase during childhood and adolescence. This 
is accompanied by increases in the coherence of oscillatory activity (for a re-
view, see Niedermeyer and Silva 2005). Development of task-related activ-
ity in the gamma band coincides with the emergence of cognitive functions 
during early childhood (Csibra et al. 2000), suggesting that the maturation of 
high frequency activity could be related to cognitive development. Following 
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infancy, continued development of neural synchrony is observed whereby os-
cillations shift to higher frequencies and synchronization becomes more pre-
cise. Speci� cally, this is not complete until early adulthood; neural synchrony 
continues to mature throughout the adolescent period, which represents a criti-
cal phase of brain maturation (Uhlhaas et al. 2009).

Coordination in Perceptual and Motor Development

The human development of perceptual organization as measured behaviorally 
(Kovács 2000) seems to follow a similar maturational course, as suggested 
above, with respect to neural synchrony, continuing into adolescence and early 
adulthood. Perceptual integration can be taken as an example. Sensitivity to 
 contour closure—a  Gestalt property, de� nitely requiring dynamic perceptual 
organization—has been shown to be a measurable skill in adult human observ-
ers, enhancing the segmentation of noisy images (Kovács and Julesz 1993). 
Closure sensitivity is missing in three-month-old human infants (Gerhardtstein 
et al. 2004), and the underlying ability to integrate spatial information across 
the visual � eld develops until the end of adolescence in humans (Kovács et 
al. 1999). The normal course of development in  perceptual organization is af-
fected by the nature of input to the visual system. Abnormal visual input in, for 
example,  amblyopia leads to a severe de� cit in perceptual organization related 
to the amblyopic eye (Kovács et al. 2000). The contour integration stimuli used 
in the amblyopic study have been designed mainly to involve primary visual 
cortex processing, and a neuropsychological study con�rmed the suf� ciency 
of the primary visual cortex in this task (Giersch et al. 2000). It has been shown 
in the cat that amblyopia is associated with altered intracortical processing in 
V1 (Schmidt et al. 2004), and reduced synchronization of population responses 
has been suggested as a neurophysiological correlate of strabismic amblyopia 
(König et al. 1993; Roelfsema et al. 1994). It remains to be seen, however, 
whether synchronization in   V1 underlies both intact contour integration in hu-
mans and de� cient processing in human amblyopes.

Is reduced perceptual performance in children—either in terms of precision 
or timing—due to less ef� cient or slower synchrony, or to the fact that basic 
visual skills can become overlearned and automated over the course of devel-
opment, leading to more ef� cient/faster processing? Alternatively, can all dy-
namically coordinated activities be trained to an “automatic” level? Wonderful 
examples in both perceptual (e.g., Karni and Sagi 1993) and motor learning 
(Karni et al. 1998) demonstrate that performance is improved over time, both 
in terms of precision and in terms of the time taken in individual trials. In both 
cases, there seems to be an initial phase of learning that involves the activity 
of a number of cortical areas; later on, plastic changes will be speci� c to the 
primary sensory or motor cortices. It might be argued that dynamic coordina-
tion is only involved in the � rst phase of learning, while during the second 
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stage a more in� exible structure carries out the task. Perceptual and motor 
learning might be excellent grounds for testing the idea of reduced dynamic 
coordination following practice as both seem to show a very high level of 
speci� city in terms of learning. This speci� city is graded, however, and the 
amount of transfer varies across tasks. Transfer properties of different skill 
learning cases might tell us about the involved cortical structures and the � ex-
ibility of coordination.

Another important aspect of basic skill learning in the perceptual and mo-
tor domains is that learning is sleep-dependent. It seems that sleep actively 
contributes to performance improvements in procedural learning (Stickgold et 
al. 2000; Walker et al. 2002, 2003). In addition, it contributes to learning in the 
 contour integration task—a task designed to rely heavily on dynamic integra-
tion (Gervan and Kovács 2010).

Learning and Dynamic Coordination

One  of the roles of dynamic coordination is to encode new relationships. 
However, if those relationships turn out to be stable ones, encountered repeat-
edly, then it is probably worth creating a neural route dedicated to those items 
that are bound by stable links. This new route would result from the modi� ca-
tion of synaptic ef� ciency in repeated jointly activated assemblies. It seems 
reasonable to assume that this new route is fast and recruits a smaller number 
of neurons. Thus it does not necessarily require � exible, dynamic coordination 
any longer: the new route would correspond to a prespeci� ed  spatiotemporal 
 pattern of neural activity.

Recent data in humans are compatible with this schema. Subjects performed 
a typical  visual  search task in which they had to detect a target at different loca-
tions and report its orientation. Two types of images were interspersed: in pre-
dictive images, the layout of the distractors predicted accurately the location 
of the target, while in nonpredictive images, the target could appear anywhere. 
Subjects learned these regularities: after � ve or six presentations, they were 
faster at reporting the orientation of the target in predictive images than in 
nonpredictive ones. During the learning phase, before any behavioral advan-
tage to predictive images occurred, oscillations in the low-gamma range ap-
peared speci� cally in response to predictive images, suggesting that the brain 
was detecting the stability of the relationship between distractors and target 
(Chaumon, Hasboun et al. 2009). As soon as those relations were learned and 
the behavioral advantage to predictive images appeared, those low frequency 
gamma oscillations stopped. Predictive images were processed now in a very 
different way, with evoked responses speci� c to predictive images in the tem-
poral lobe and orbitofrontal cortex occurring before 100 ms (Chaumon et al. 
2008; Chaumon, Schwartz et al. 2009). The result of learning thus seems to 
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be a modi� cation of the early volley of  feedforward processing in response to 
predictive images.

What Is the Role of Different Frequency 
Bands for Dynamic Coordination?

Oscillations in Different Frequency Bands

Ongoing intrinsic and event-related  oscillations are usually categorized into 
� ve  frequency bands:  delta (0.5–3.5 Hz),  theta (4–7 Hz),  alpha (8–12 Hz), 
 beta (13–30 Hz), and  gamma (> 30 Hz). A large body of evidence suggests 
that oscillatory activity in these frequency bands is linked to a broad variety 
of perceptual, sensorimotor, and cognitive operations (Engel et al. 1992, 2001; 
Singer and Gray 1995; Basar et al. 2000; Klimesch et al. 2006; Palva and 
Palva 2007; see also Table 18.1). Oscillatory activity in the delta band has 
been related to motivational processes, the brain reward system, and is the 
predominant frequency during deep sleep phases (Basar et al. 2000; Knyazev 
2007). Activity in the theta band has been linked to working memory func-
tions, emotional  arousal, and fear conditioning (Knyazev 2007; Jensen and 
Lisman 2005). The prominent alpha-band responses, discovered in the human 
EEG by Hans Berger in the late 1920s, have been suggested to re� ect corti-
cal operations during the awake-resting state in the absence of sensory inputs. 
More recent theories have proposed that alpha-band oscillations may also re-
late to disengagement of task-irrelevant brain areas (Klimesch et al. 2006), as 
well as  working memory function and short-term memory retention (Palva 
and Palva 2007). Neuronal responses in the beta band have been frequently 
linked to sensorimotor processing (e.g., Roelfsema et al. 1997; Brovelli et al. 
2004) as well as many other functions including working memory and   multi-
sensory integration (see Table 18.1). As discussed above, the putative func-
tions of synchronization in the gamma band seem to be particularly diverse, 
ranging from feature integration,  stimulus selection,  attention, and  awareness 
to sensorimotor integration, movement preparation, and memory formation. 
This striking diversity indicates that it may be dif� cult to associate cognitive 
functions or even classes of functions in any unique and direct way with oscil-
latory dynamic coupling in speci� c frequency bands. The examples discussed 
below yield a rather complex picture. While they provide clear cases of task- or 
context-related modulation of frequencies or even switching between different 
frequency ranges, they do not yet suggest generalizable conclusions.

Currently, another unresolved issue concerns the interaction of multiple fre-
quency bands. Phase synchrony and phase modulation of oscillations across 
different frequency bands has recently been suggested to play a key role for the 
organization of networks engaged in speech processing (Schroeder et al. 2008) 
and  memory  encoding (Palva and Palva 2007; Jensen and Lisman 2005). This 
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clearly adds to the complexity of the picture already presented by the � ndings 
on individual frequency bands. The possibility of multifrequency coupling has 
also been addressed in the framework of  Dynamical Systems Theory (Kelso 
1995). As mentioned earlier, the effective degrees of freedom of complex, dy-
namical systems are often reduced to the space of coupled nonlinear oscillators 
where a rich variety of behaviors is possible. In particular, a system’s ability 
to generate multifrequency behavior is governed by the differential stability of 
mode-lockings as seen through so-called “Arnold Tongues” (named after the 
Russian mathematician Vladamir Arnold). In this dynamic scenario, pattern 
complexity is related to a hierarchy of frequency ratios.

Role of Different  Frequency Bands in  Sensory Processing

Recording  in primary visual cortex of alert cats, Siegel and König (2003) dem-
onstrated that neuronal activity, as characterized by the local � eld potential, 
is optimally orientation-tuned when the gamma band in the frequency range 
between 40–100 Hz is considered. Synchronization in a lower frequency band 
with different properties suggested distinct functional roles of low and high 
frequency  synchronization. Subsequently, it has been shown that natural vi-
sual stimuli induce robust responses in the gamma frequency band (Kayser 
et al. 2003). A second frequency band, located at the classical alpha and low 
beta bands (8–23 Hz), showed reliable tuning to stimulus features (Kayser and 
König 2004). In marked contrast, tight locking to temporal properties of the 
stimulus was found in the remaining frequency bands. This locking is inde-
pendent of the spatial structure of the stimulus. Together these four frequency 
bands cover the whole frequency range investigated. These studies demon-
strate that the entire frequency range of the  local �eld potential can be assigned 
a role in visual processing, but presumably these roles differ profoundly.

Another study investigated interareal interactions during processing of 
expected and novel stimuli in the cat visual system (von Stein et al. 2000). 
Processing of expected stimuli was characterized by high alpha-band activ-
ity, and phase relationships and laminar distribution suggested an in� uence of 
higher onto lower areas. In contrast, new and surprising stimuli induced high 
gamma-band activity. These data could be accounted for in a detailed simula-
tion assigning gamma activity to an iterative bottom-up directed processing 
mode and alpha activity to a top-down directed processing mode. These data 
offer a new perspective to the classical view that alpha activity is an idling 
rhythm (i.e., expressing properties of the visual system at rest), whereas gam-
ma activity is thought to be involved in  Gestalt perception and  � gure–ground 
segmentation (see above). The alpha rhythm might be better described as re-
�ecting visual processing guided by expectations, whereas gamma activity 
may arise as new stimulus con�gurations are freshly interpreted in light of 
previous experience.
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Recent evidence suggests that   multisensory integration may also relate to 
neuronal interactions in different frequency bands. Schall et al. (2009) inves-
tigated  audiovisual  binding by presenting continuously changing, temporally 
congruent and incongruent stimuli. Spectrotemporal analysis of EEG signals 
revealed locking to visual stimulus dynamics in both a broad alpha band and 
the lower beta band. This matches results on the role of different frequency 
bands during processing of natural visual stimuli observed in alert cats (Kayser 
and König 2004). 

Role of Different Frequency Bands in Attention and Awareness

Some evidence  for different roles  of frequency bands comes from recent ob-
servations that different forms of visual attention result in increased  coher-
ence in different frequency bands (Buschman and Miller 2007, 2009). When 
monkeys shifted attention in a bottom-up fashion to a salient “pop-out” stimu-
lus, there was a greater increase in coherence between the frontal and parietal 
cortices in an upper frequency band (35–55 Hz). By contrast, when attention 
was shifted in a top-down fashion (to a target that matched one held in short-
term memory), there was a greater increase in a lower frequency band (22–34 
Hz). Higher frequency oscillations may result from super�cial pyramidal cells, 
which form feedforward connections. They show stronger gamma frequencies 
than the deep pyramidal cells that originate feedback connections. This also 
�ts well with more recent observations that lower frequency coherence may 
play a role in controlling the timing of the shifts of attention in the top-down 
attention condition. Buschman and Miller (2009) found that monkeys shifted 
the location of their attention every 40 ms as they searched for the visual target. 
This was re�ected in  frontal eye �elds (FEF) spiking activity and was cor-
related with the lower frequency band oscillations, suggesting that the lower 
frequency  oscillations can provide a “clocking” signal that helps coordinate 
when different brain areas contribute to a shift of attention.

Indeed, one role for oscillations may be to coordinate complex, multistep 
computations. An oscillating wave of inhibition would allow computations to 
be temporally constrained and information to be released in a “packet” at a 
time when a downstream area is ready to receive it. This would cause a “dis-
cretizing” of events and explain psychophysical observations of a periodic al-
lotment of attention (VanRullen et al. 2007). Attention appears to be allocated 
in discrete chunks of time and not as a continuous function that smoothly shifts 
from location to location.

This predicts that oscillation frequencies would vary with the nature of the 
computation. Highly localized computations may be able to oscillate at higher 
frequencies while more complex, integrative, or inherently slower computations 
may result in slower oscillations. For example, consider covert versus overt at-
tention. A purely covert  search task without eye movements (as in Buschman 
and Miller 2007, 2009) allows faster shifts of attention and thus locking to 
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relatively higher (beta) frequency oscillations. By contrast, in overt attention 
there is a slower time constant because of the increased “overhead” of moving 
the eyes with each attentional shift. Under these conditions, there are stronger 
theta  oscillations that are time-locked to the eye movements (Desimone, pers. 
comm.). Computations that have even less temporal overhead and that occur 
within more local networks might lock to even higher frequencies. For ex-
ample, gamma-band oscillations have been associated with  working memory, 
surface segregation, perceptual  stimulus selection, and focused attention not 
requiring serial shifts of attention (see above). Computations might use the 
closest inherent “eigenfrequency” or resonance of the cortical network given 
the constraints of the computation and the demands of the task at hand.  

Evidence from human studies suggests that different subranges in the gam-
ma frequency band can relate to distinct cognitive functions (Tallon-Baudry, 
this volume). In one experiment (Wyart and Tallon-Baudry 2008, 2009), sub-
jects were cued to attend to the left or right hemi� eld, and were then presented 
with a faint oriented grating, either on the attended or unattended side. At each 
trial, subjects were asked whether they had experienced the stimulus  con-
sciously. Each stimulus can therefore be classi� ed as (a) attended or unattend-
ed and (b) consciously perceived or not. These two cognitive functions were 
expressed separately in distinct subfrequency ranges within the gamma range. 
Gamma-band oscillations related to awareness originated in lateral occipital 
cortex and were centered around 60 Hz. They were not in� uenced by spatial 
attention. Attention-related gamma oscillations were observed at more parietal 
locations and around 80 Hz, without any in� uence of whether the subject had 
consciously perceived the stimulus or not. This could suggest that whenever 
two distinct cognitive processes have to remain segregated, gamma-band os-
cillations appear in a narrower frequency band, dedicated to that process, leav-
ing other “slots” available for other concomitant processes to be implemented.

Role of Different Frequency Bands in Motor Circuits

Neurophysiological evidence on the complementary role of oscillations in 
different frequency bands also comes from recordings in human subcortical 
structures that are carried out during stereotactic operations for the treatment of 
movement disorders, such as  Parkinson’s disease (Brown and Marsden 1998; 
Brown 2003; Engel et al. 2005). This surgical approach opens up the possibil-
ity of recording both unit and � eld potential signals from the target structures 
and testing the presence of oscillatory activity and its coherence with EEG 
and EMG signals during motor tasks in the patients. In a series of studies, 
Brown and coworkers investigated task- and dopamine-dependent changes of 
neural coherence between cortex and basal ganglia structures (Brown et al. 
2001; Marsden et al. 2001; Cassidy et al. 2002). They investigated shifts in the 
frequency range of coherence when the patient was under different states of 
medication or in different behavioral states. Measurements without medication 
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showed that in the akinetic “OFF” state, coherence between the basal ganglia 
and cortex is dominated by tremor frequencies and frequencies in the beta 
band. Interestingly, treatment with the dopamine precursor levo-dopa reduced 
low frequency activity and resulted in a new coherence peak at 70 Hz in the 
gamma band (Brown et al. 2001). Importantly, electrical stimulation at those 
sites where beta-band coherence was highest with the EEG and the contralat-
eral EMG yielded the best amelioration of Parkinsonian symptoms (Marsden 
et al. 2001). In another study, the functional signi� cance of high frequency 
activity was investigated by testing the modulation of coherence before and 
during voluntary movement. In the OFF state, beta activity was suppressed 
during movement preparation and execution, whereas in the ON state (i.e., 
after levo-dopa treatment), gamma coherence was enhanced in relation to the 
movement (Cassidy et al. 2002). These � ndings are compatible with a model 
in which interactions between the basal ganglia, thalamus, and cortex in dif-
ferent frequency bands modulate basal ganglia functions in a task- and state-
dependent way (Brown 2003; Brown and Marsden 1998). Slow oscillations 
at tremor frequencies or in the beta band, resulting from dopamine depletion, 
seem to disrupt normal motor function. By contrast, gamma-band rhythms 
seem to be important for the organization of normal voluntary movement, as 
indicated by the emergence of these fast oscillations in the ON state, and by 
the prokinetic effects of deep brain stimulation at these frequencies or higher 
harmonics (Limousin et al. 1995).

Which Processes Modulate Dynamic 
Coordination at the Systems Level?

The importance of the emergence of  dynamic coordination as a concept in 
cognitive neuroscience is that, among other things, it provides a balance to 
strictly localizationalist views of cognitive function. Based on data, computa-
tional models, the sociohistorical context of this intellectual development, and 
the position of this construct within the matrix of ideas in neuroscience, the 
focus of much research in this area has been on within-region coordination, 
with an emphasis on self-organization based on processing within regions. 
When discussed within the broader �eld of brain function, we can ask whether 
large-scale coordination operates according to similar mechanisms as more 
local or intra-regional coordination. Another important, but relatively unex-
plored issue, is to what extent the speed and strength of dynamic coordination 
is affected by more global modulatory in�uences in the brain. As noted above, 
data on development and learning indicate that there is plasticity in dynamic 
coordination. In addition, the well-known effects of  psychopathology (e.g., 
schizophrenia; see Silverstein, this volume) and NMDA antagonists (e.g., ket-
amine, phencyclidine; Phillips and Silverstein 2003) on dynamic coordination 
indicate that these processes can operate within a wide range of ef� ciency. 
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However, relatively little attention has been paid to factors such as  emotion, 
 arousal, or   fatigue.

There is both positive and negative evidence regarding the effects of emo-
tion on  coordination. For example, it has been demonstrated that the emotional 
content of pictures had little effect on early event-related potentials re� ecting 
perceptual organization (Bradley et al. 2007). A more complex picture was 
revealed in a study by Colzato et al. (2007) in which the affective valence of 
pictures did not affect binding of visual features, but strongly affected binding 
of visual and response codes. Because it has been shown that sensory encoding 
in the visual cortex can be facilitated by affective cue-driven “natural  selec-
tive  attention” (Schupp et al. 2003), this suggests that affect modulates signals 
at a level beyond intra-sensory coordination, although it affects higher-level 
sensorimotor coordination. To date little is known about the effects of arousal 
or fatigue on dynamic coordination. However, the well-known effects of these 
factors on cognition, in general (e.g., Yerkes–Dodson law), suggest that it is 
worth exploring whether arousal effects occur at the level of  coordinating in-
teractions, and whether any such effects overlap completely with those of at-
tention and occur at later stages.

We turn now to two closely related questions of particular interest: Are 
certain brain regions of particular importance for modulating dynamic co-
ordination? To what extent is dynamic coordination constrained by top-
down in� uences?

Prefrontal Cortex Modulates Dynamic Coordination

The ability  to conceptualize and describe dynamic coordination in terms of 
formal models, in combination with the known similarity of local circuitry 
throughout the cortex (Phillips and Singer 1997), suggests that coordinating 
processes can occur within any brain region and, for coordination within a sin-
gle sensory domain, no guidance from outside that region is necessary. The ex-
tent to which this is true needs further exploration. For example, while contour 
integration is typically seen as involving interactions only between neurons 
within the visual cortex, a recent study indicated that patients with  traumatic 
brain injury to the  frontal cortex were de�cient in binding sparsely arranged, 
but still orientation-correlated,  Gabor patches (Ciaramelli et al. 2007). This is 
consistent with evidence from a recent study of schizophrenia, in which re-
duced  contour integration was associated with less frontal activity compared to 
healthy controls (Silverstein et al. 2009). In the latter case, while the largest and 
most consistent differences between groups were in visual cortex areas known 
to involve integration and to subserve  perceptual  grouping (e.g.,   V2,   V3,   V4), 
data on differences in frontal activation suggest that a larger network may be 
involved in normal dynamic coordination in vision than previously believed.

Given that the frontal lobe, and especially the prefrontal cortex (PFC), has 
been traditionally construed as a “ central executive,” it is important to clarify 
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the extent to which activity in this region affects coordination in other areas, 
the conditions under which it occurs, and the speci� c types of coordination 
that it affects and provides. As we hope is evident in this chapter, dynamic co-
ordination occurs throughout the brain at many levels of processing. Dynamic 
coordination is also required at a higher, meta level. Complex, goal-directed 
behavior would be impossible without brain systems and mechanisms that co-
ordinate other systems to organize their processing and keep them on task and 
directed toward goals. Without it, thought and action would be determined 
solely by whatever sensory inputs happen to be most salient and the well-
learned or re� exive responses associated with them. This ability is called cog-
nitive control. It no doubt involves neural circuitry that extends over much of 
the brain, but it is commonly held that the PFC is particularly important.

The PFC occupies a far greater proportion of the human cerebral cortex than 
in other animals, suggesting that it might contribute to distinctively human 
cognitive capacities. Humans and monkeys with PFC damage seem to lack 
cognitive control: they become “stimulus-bound,” their behavior dominated 
by re� exive reactions to the environment. Miller and Cohen (2001) proposed a 
guided activation model in which this cognitive control stems from the PFC’s 
active maintenance of  patterns of activity that represent goals and the means 
to achieve them (i.e., rules). This is thought to provide bias signals to other 
brain structures whose net effect is to guide the � ow of activity along neural 
pathways that establish the proper mappings between inputs, internal states, 
and outputs needed to perform a given task, dynamically coordinating cortical 
processing to meet the demands of the task at hand. 

Much of the evidence for this is, at the moment, indirect. One line holds 
that the PFC has complex multimodal properties that encode the type of in-
formation needed for goal direction: after training, many of its neurons re� ect 
task rules (Miller 2000; Miller and Cohen 2001). Another line maintains that 
the PFC is anatomically well suited to coordinate cortical processing. It is in-
terconnected with virtually the entire cerebral cortex, with the exception of 
primary sensory and motor areas. It is also interconnected with other major 
brain systems, including the basal ganglia, hippocampus, and anterior cingu-
late. Thus, it is well situated to integrate information about the external world 
and the animal’s internal state and to send back signals that modulate process-
ing in widespread brain areas.

More direct evidence for a role of the PFC in top-down modulation of pos-
terior cortex has been mounting. Naya et al. (1996) showed that the PFC is 
needed for the recall of visual information in the inferior temporal cortex. By 
cutting the corpus callosum and the anterior commissure in two stages, they 
showed that activity in the inferior temporal cortex (re� ecting the recall of 
an object from long-term memory) depended on top-down signals from the 
PFC. Moore and colleagues showed that microstimulation of the  FEF causes 
attention-like modulations of neural responses in the visual cortex (Moore 
and Armstrong 2003). They electrically stimulated sites within the FEF and 
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measured its effect on the activity of neurons in area V4. V4 neuron respons-
es to a visual stimulus were enhanced after brief stimulation of retinotopi-
cally corresponding sites within the FEF below that needed to evoke saccades. 
Further, stimulation of noncorresponding FEF representations suppressed V4 
responses. Buschman and Miller (2007) also found direct evidence that top-
down attention signals arise from the  frontal cortex and act on the posterior 
cortex. When monkeys shifted attention in a bottom-up fashion (to a salient, 
pop-out, stimulus), neurons in the parietal cortex re� ected the shift of attention 
to the target before neurons in the PFC and  FEF. By contrast, when attention 
was shifted in a top-down fashion (to a target that matched one held in short-
term memory), the opposite was true: neurons in the frontal cortex showed a 
shorter latency to re� ect the attention shift than those in the parietal cortex. 
This suggested that top-down and bottom-up attention signals arise from fron-
tal and sensory cortex, respectively. Taken together, these considerations sug-
gest that PFC is one of the dominant sources of modulatory signals that have an 
impact on dynamic coordination within and across other brain regions.

In addition to the frontal cortex, it has also been proposed that the cerebel-
lum exerts a strong in� uence on cognitive coordination and that coordination 
impairments such as those occurring in schizophrenia can be attributed to cere-
bellar abnormalities (e.g., Andreasen and Pierson 2008). To date, however, data 
linking cerebellar function to a primary role in coordination of cognitive activ-
ity at the cortical level are lacking. However, it is still possible that the cerebel-
lum contributes timing signals which serve a general coordinating function.

Top-down Processing and Neural  Coherence

Most of the models considering the functional importance of top-down mecha-
nisms make use of the anatomical notion of top-down processing: they assume 
that predictions or hypotheses about the features of environmental stimuli are 
expressed by signals travelling along feedback connections from “higher” to 
“lower” areas in a processing hierarchy. One of the earliest examples of such 
a model is the Adaptive Resonance Theory (Grossberg 1980). The theory as-
sumes complementarity between ascending and descending pathways among 
sensory areas, the former allowing adaptive �ltering of the input signals and 
the latter carrying predictive signals ( templates of expected patterns that need 
to be matched by the current input). Related models that also postulate a key 
role of feedback in�uences in  pattern  recognition have been suggested by 
Mumford (1992) and Ullman (1995). These models also suggest that the com-
parison of sensory input with existing knowledge is essential for perception. 
Current top-down models of attentional selection and cognitive control (Frith 
and Dolan 1997; Fuster 1989; Miller 2000) assume that top-down in� uences 
originate in prefrontal and parietal cortical areas. As discussed above, a cru-
cial idea is that assemblies of neurons that represent action goals in the PFC 
provide modulatory “bias signals” (Miller 2000) to sensorimotor circuits that 
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have to carry out response selection. Thus, prefrontal signals are assumed to 
exert top-down control over the routing of  information � ow through speci� c 
sensorimotor loops.

A different idea of how top-down in� uences might be implemented neu-
rally may lead to what could be called a dynamicist view (Engel et al. 2001). 
This view is motivated by the evidence that synchrony can be intrinsically 
generated (not imposed on the system by external stimuli) and modulated by 
intrinsic signals that re� ect experience, contextual in� uences, and action goals 
(reviewed by Singer 1999; Engel et al. 2001). In this  context, the search for 
the mechanisms of top-down control becomes equivalent to the investigation 
of the in� uence of ongoing patterns of activity on the processing of sensory 
signals and, in particular, on their selection and grouping through oscillatory 
patterning and synchronization. In contrast to the top-down models discussed 
above, the patterns relevant to the dynamic selection of input signals would 
be generated not only by assemblies in association cortices that carry more 
abstract, invariant representations, but as the result of continuous large-scale 
interactions between higher- and lower-order cortical areas. The patterns of 
coherent activity emanating from such large-scale interactions could bias the 
synchronization of input signals, leading to a selective enhancement of tem-
poral correlations in subsets of the activated populations. This would result in 
enhanced saliency and a competitive advantage for the selected populations 
of neurons.

Evidence for top-down control by changes in the dynamics of intrinsically 
active networks has been obtained in a recent study of spatial attention shifts 
in humans (Siegel et al. 2008). In this study, MEG was combined in a spatial-
ly cued motion discrimination task with source-reconstruction techniques to 
characterize attentional effects on neuronal synchronization across key stages 
of the human dorsal visual pathway. The results demonstrate that visuospatial 
attention modulates oscillatory synchronization between visual, parietal cor-
tex, and PFC in a spatially selective fashion. In particular, analysis of phase 
coherence in source space showed that during attentive processing of a visual 
stimulus, gamma-band coherence increases between regions corresponding to 
FEF, intraparietal sulcus, and middle temporal region. This suggests that at-
tentional selection is mediated by frequency-speci� c synchronization between 
prefrontal, parietal, and visual cortex and that the intrinsic dynamics of fron-
toparietal networks is important for controlling attentional shifts (Engel et al. 
2001; Corbetta and Shulman 2002). An interesting � nding in this context is 
that this selection network did not involve prefrontal, but premotor regions, 
supporting what has been called the “premotor theory of attention” (Rizzolatti 
et al. 1987). Recently, similar observations have been made in studies on large-
scale interactions accompanying shifts of attention in the monkey brain, show-
ing that attention is associated with enhanced coherence between FEF and vi-
sual cortical areas (Gregoriou et al. 2009).
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How Is Dynamic Coordination Related to Brain Disorders?

Disturbance of Dynamic Coordination in Schizophrenia

Research  into psychiatric disorders may not only lead to insights into the 
mechanisms underlying abnormal mental functioning but may also be an ideal 
testing ground for examining the validity of current theories of healthy brain 
functioning. Schizophrenia is of particular relevance for testing the concept of 
dynamic coordination, and much of our discussion on the pathophysiological 
alteration of coordination mechanisms centered on this clinical condition.

From its earliest beginnings, the pathophysiology of schizophrenia has been 
described as a disorder involving a de� cit in the integration and coordination 
of neural activity that leads to dysfunctions in cognition. Symptoms can in-
volve false perceptual inference (e.g., hallucinations; failure to integrate subtle 
or distracting cues during  perceptual  grouping), false conceptual inference and 
 contextual disambiguation (e.g., delusions and passivity phenomena), and a 
secondary failure of learning (psychomotor poverty). Bleuler (1911) chose 
the word “schizophrenia” to highlight the fragmentation of mental functions. 
Indeed, current theories of schizophrenia (Friston 1999; Phillips and Silverstein 
2003) converge on the notion that core aspects of the pathophysiology are 
due to de� cits in the coordination of distributed neural processes that involve 
multiple cortical areas. This perspective, which considers schizophrenia as a 
functional dysconnection syndrome, contrasts earlier views which emphasized 
a regionally speci� c pathophysiological process as the underlying cause for the 
signs and symptoms of schizophrenia. This view, which considers the symp-
toms experienced by the patient as a product of ensuing dysfunctional dynamic 
coordination, places abnormal synaptic function at the heart of the etiology. It 
emphasizes the primary role of  synaptic plasticity and, in particular, its modu-
lation by neuronal dynamics and neurotransmitter systems.

Support for the notion that dynamic coordination may be central to the 
pathophysiology of schizophrenia stems from the cognitive de� cits central to 
the condition. These involve functions that are paradigmatic examples of dy-
namic coordination, such as working memory, attention, and perceptual organi-
zation (for a review, see Phillips and Silverstein 2003). In addition, if dynamic 
coordination is impaired in schizophrenia, one of the physiological manifesta-
tions should be impaired  synchronous oscillatory activity. Evidence suggests 
that this is so. A substantial body of EEG/MEG studies support the hypothesis 
that cognitive de� cits are related to impaired  neural synchrony. Examination 
of auditory and visual steady-state responses to repetitive stimulation in pa-
tients with schizophrenia has revealed a speci� c reduction in the power of the 
stimulus-locked response in the beta and gamma frequency range, but not in 
the lower frequencies (Krishnan et al. 2005; Kwon et al. 1999). Reductions in 
evoked oscillatory activity have been reported for tasks involving visual bind-
ing (Spencer et al. 2003, 2004), for backward masking (Wynn et al. 2005), in 
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auditory oddball paradigms (Gallinat et al. 2004), and during TMS-evoked ac-
tivity over frontal regions (Ferrarelli et al. 2008). These results suggest selec-
tive de� ciencies in the ability of cortical networks or cortico-thalamo-cortical 
loops to engage in precisely synchronized high frequency oscillations.

In addition to analyses of spectral power, several studies have also exam-
ined phase synchrony between distributed neuronal populations while patients 
performed cognitive tasks (Slewa-Younan et al. 2004; Spencer et al. 2003; 
Uhlhaas, Linden et al. 2006). Overall, these studies conclude that patients with 
schizophrenia are characterized by reduced  phase locking of oscillations in the 
beta- and lower gamma-band range; this underscores that, in addition to abnor-
malities in local circuits, large-scale integration of neural activity is impaired. 
It is currently unclear, however, to what extent impairments in local circuits 
contribute to long-range synchronization impairments or whether these repre-
sent two independent phenomena.

Signi� cant correlations, found in multiple studies across different laborato-
ries, between reduced  perceptual organization and reduced conceptual organi-
zation (i.e., the presence of formal thought disorder) (Uhlhaas and Silverstein 
2005), and covariation of changes in both with treatment (Uhlhaas, Linden 
et al. 2006) provide evidence that different forms of dynamic coordination 
may be supported by a single mechanism. Correlations between cognitive dys-
functions and alterations in neural  synchrony are furthermore suggested by 
relationships between the positive symptoms of schizophrenia and changes 
in the amplitude of beta- and gamma-band oscillations. Thus, patients with 
auditory hallucinations show an increase in oscillatory activity in temporal 
regions compared to patients without hallucinations (Lee et al. 2006; Spencer 
et al. 2008).

Further evidence for the role of  neural synchrony in the pathophysiology 
of schizophrenia is the coincidence of symptom expression during the transi-
tion from adolescence to adulthood and developmental changes in power and 
 synchronization of oscillations in the   theta,  beta, and   gamma frequency range 
during normal brain development. Recently, Uhlhaas et al. (2009) showed that 
these parameters undergo profound changes during late adolescence, re� ecting 
an increase in the temporal precision of cortical networks. This suggests the 
possibility that abnormal brain development in schizophrenia during the late 
adolescent period is unable to support precise temporal coding, which then 
leads to the decompensation of the network and the accompanying emergence 
of psychotic symptoms. 

Impaired dynamic coordination in schizophrenia is consistent with de� cits 
at the anatomical and physiological level in schizophrenia. One prominent 
candidate mechanism for the changes in neural synchrony is a dysfunction in 
GABAergic interneurons (for a review, see Lewis et al. 2005). For example, 
there is consistent evidence for reduced GABA synthesis in the parvalbumin-
containing subpopulation of inhibitory GABA neurons in schizophrenia, which 
are critically involved in the generation of cortical and hippocampal oscillatory 
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activity. Furthermore, impairments in long-range synchronization in schizo-
phrenia can be related to changes in white matter volume and organization, as 
long distance synchronization of oscillatory responses is mediated by recipro-
cal corticocortical connections (Löwel and Singer 1992; König et al. 1993). 
This possibility is supported by in vivo anatomical examinations with diffusion 
tensor imaging that have revealed white matter anomalies throughout cortical 
and subcortical structures (for a review, see Kubicki et al. 2007).

These data suggest that dynamic coordination is a useful construct to un-
derstand the pathophysiology of schizophrenia. Yet, several questions remain 
open that are crucial for progress in this � eld of research. One intriguing phe-
nomenon is the fact that cognitive and physiological dysfunctions are pres-
ent throughout the cortex in schizophrenia. This raises the problem of which 
mechanisms can account for such a distributed impairment. One possible im-
plication of this � nding could be that core de� cits in schizophrenia arise out 
of the altered global dynamics, which then lead to widespread impairments in 
local circuits. Accordingly, one strategy is to identify global coordination dy-
namics failures in schizophrenia. Furthermore, alterations in neural synchrony 
have been identi� ed in several brain disorders and thus raise the question of 
diagnostic speci� city. One possible assumption is that different syndromes are 
related to distinct but overlapping pathologies in the coordination of distrib-
uted neuronal activity patterns that are revealed by the systematic investigation 
of the temporal and spatial organization of neural synchrony across different 
frequency bands. This is undoubtedly a challenging task, but such a research 
program would ultimately result in better diagnostic tools for early diagnosis 
and intervention.

What Can Be Learned from This with Respect 
to Normal Brain Function?

Schizophrenia can be seen as a paradigmatic example of impaired dynamic 
coordination (Silverstein and Schenkel 1997; Phillips and Silverstein 2003) 
because there are several impairments which prima facie indicate reduced or-
ganization of elements into coherent wholes (e.g., in visual and auditory  per-
ception,  working memory,  selective  attention,  language,  theory of mind, and 
binding of self-representation with action representation during ongoing be-
havior). Moreover, unlike much classic neuropsychological research, evidence 
of reduced dynamic coordination in schizophrenia is sometimes revealed by 
superior task performance (e.g., in terms of faster processing of single ele-
ments due to reduced contextual sensitivity), and these � ndings cannot be ac-
counted for by medication effects.

To the extent that schizophrenia is seen as a model of relatively context-de-
�cient cortical computation, the functions that are preserved in schizophrenia 
inform us about those functions that possibly do not require a high degree of 
dynamic coordination. Such functions include:
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• understanding the meaning of individual words (as opposed to the re-
duced contextual constraint of words on later words in sentences),

• basic  color  perception (as opposed to color constancy or assimilation 
which rely on contextual cues),

• visual acuity,
• overlearned social behaviors (as opposed to being able to function in 

novel social contexts),
• basic motor functions,
•  procedural  memory, and
• understanding of basic cause-effect relationships (outside of inter-

pretation of phenomena and events that affect self-esteem or sense of 
vulnerability).

Also, data on schizophrenia demonstrate the importance not only of  NMDA 
receptor function for dynamic coordination, but also of GABA-mediated in-
hibitory interneuron function. However, schizophrenia is not the only disorder 
where impairments in dynamic coordination are evident. A comparison across 
disorders could assist our understanding of both the causes of dynamic coordi-
nation impairments and the bases of normal dynamic coordination (Silverstein, 
this volume).

Comparing schizophrenia with other developmental disorders, are there 
types of coordination impairments that generalize across disorders? For ex-
ample, reductions in visual perceptual organization and  theory of mind have 
been noted in developmental ( autism spectrum) disorders (e.g., Silverstein and 
Palumbo 1995), and there is genetic and symptom overlap between schizo-
phrenia and these disorders (Silverstein, this volume). Another interesting case 
is provided by  Williams syndrome, a genetic condition in which a relatively 
consistent neurobehavioral phenotype is produced by a small deletion on chro-
mosome 7 (e.g., Bellugi et al. 2000). One of the intriguing aspects of this syn-
drome is a characteristic abnormality of neural connectivity in a single cortical 
area, the  primary visual cortex (Reiss et al. 2000; Galaburda and Bellugi 2000). 
Presumably due to these structural abnormalities in the primary visual cortex, 
patients with Williams syndrome present with a speci� c disruption of visual 
spatial integration (Kovács 2004). The example of Williams syndrome is par-
ticularly interesting because a well-de� ned structural abnormality is behind a 
perceptual de� cit that is usually attributed to dynamic coordination. Strabismic 
 amblyopia represents another interesting developmental abnormality, where a 
clear relation between structural changes in the cortical network, impairments 
of dynamic coordination, and disturbed perceptual and behavioral function has 
been established. As shown in studies in cat visual cortex, the impaired feature 
integration observed in amblyopic animals can be related to diminished intra- 
and interareal synchrony (König et al. 1993; Roelfsema et al. 1994; Schmidt 
et al. 2004).
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These studies provide evidence for a common mechanism underlying con-
textual modulation in multiple functions, and evidence that neurodevelopmen-
tal changes can produce speci� c and profound changes in more than one of 
these domains. Identi� able neurobiological factors, such as the extent of white 
matter reduction, the number of cortical regions affected by suppression of 
sensory input during development, and the developmental onset of coordina-
tion failures, can account for variance in the cognitive and clinical manifesta-
tions in different disease states (Silverstein, this volume). The links established 
by those studies between behavioral evidence for impaired dynamic coordina-
tion (e.g., visual binding) and abnormal oscillatory activity (e.g., in gamma and 
beta bands) strongly support the notion that there is functional signi� cance of 
coordinated neural activity, that multiple forms of cognitive functioning rely 
on dynamic coordination, and that coherence of neural oscillations in multiple 
frequency bands may indeed constitute one of the key mechanisms underlying 
dynamic coordination in the nervous system.
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