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Preface

The first course in soil mechanics typically proves to be challenging for
undergraduate students. This is due to the fact that soils are three-phase partic-
ulate materials, and thus must be treated differently than other engineering
materials that undergraduates are introduced to as part of their curriculum. The
situation is further complicated by the need to account for the presence of pore
fluid, both under hydrostatic and transient conditions, as well as the subject of
shear strength.

One of the biggest difficulties in teaching soil mechanics is the lack of lecture
time in which to present a sufficient number of example problems, with varying
degrees of difficulty, that illustrate the concepts associated with the subject. This
book has been written to address the aforementioned shortcoming. It presents
worked example problems that will facilitate a student’s understanding of topics
presented in lecture. This book is not meant to replace existing soil mechanics
textbooks but to serve as a supplementary resource.

Victor N. Kaliakin
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Chapter 1

Example Problems Involving
Phase Relations for Soils

1.0 GENERAL COMMENTS

Soils are prime examples of complex engineering materials, whereas in
elementary physics, solid, liquid, and gaseous states are distinguished. Soils
are not simple bodies that can be placed in one of these three groups. Soils
are generally composed of solid, liquid, and gas, with the solid part being a
porous medium made up of numerous particles. Soils are thus particulate
materials.

The behavior of soils is largely determined by the relative amounts of the
aforementioned constituents. To quantify these relative amounts requires
knowledge of the “massevolume” or “weightevolume” relations. These re-
lations quantify a soil’s aggregate properties.

1.1 GENERAL DEFINITIONS

The volume of the various constituents of a soil is quantified by following
quantities:

V ¼ total volume of a soil. In some books Vt denotes the total volume.
Vv ¼ volume of the voids (pores).
Vs ¼ volume of the solid phase.
Va ¼ volume of the gas in the voids.
Vw ¼ volume of the liquid in the voids.

Thus, for all soils

V ¼ Vv þ Vs ¼ ðVa þ VwÞ þ Vs (1.1)

The mass of the various constituents of a soil is quantified by following
quantities:

M ¼ total mass of a soil. In some books Mt denotes the total mass.
Ma ¼ mass of the gas in the voids (pores) ¼ 0.
Mw ¼ mass of the liquid in the voids.
Ms ¼ mass of the solid phase.
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The weight of the various constituents of a soil is quantified by following
quantities:

W ¼ total weight of a soil. In some books Wt denotes the total weight.
Wa ¼ weight of the gas in the voids (pores) ¼ 0.
Ww ¼ weight of the liquid in the voids.
Ws ¼ weight of the solid phase.

Thus, for all soils

W ¼ Ww þWs (1.2)

Remark: If Vv ¼ Vw (0Va ¼ 0) and Ww s 0, the soil is said to be saturated;

otherwise it is unsaturated.

Avery convenient, although somewhat idealized, way in which to visualize
the massevolume and weightevolume relations is through the use of phase
diagrams. A phase diagram depicts the three phases of a soil as being segre-
gated. For example, Figure 1.1 shows a phase diagram that relates the volume
and mass of the three phases.

Figure 1.2 shows a similar phase diagram that relates the volume and
weight of the three phases.

FIGURE 1.1 Phase diagram showing the relationship between volume and mass of gas, fluid, and

solid phases in a soil.
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1.2 MASS DENSITIES

The following mass densities are used to quantify the relative amounts of a
soil’s constituents:

l Soil (moist) mass density:

r ¼ M

V
(1.3)

l Solid mass density:

rs ¼
Ms

Vs
(1.4)

l Dry mass density:

rd ¼
Ms

V
(1.5)

l Mass density of water:

rw ¼ Mw

Vw
(1.6)

At 4�C, rw ¼ r0 ¼ 1000 kg/m3 ¼ 1 g/cm3 ¼ 1 Mg/m3 ¼ 1.941 slug/ft3. For
ordinary engineering applications at other temperatures, rw y r0.

FIGURE 1.2 Phase diagram showing the relationship between volume and weight of gas, fluid,

and solid phases in a soil.
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1.3 UNIT WEIGHTS

The following unit weights are used to quantify the relative amounts of a soil’s
constituents:

l Soil (moist) unit weight:

g ¼ W

V
¼ Mg

V
¼ rg (1.7)

l Solid unit weight:

gs ¼
Ws

Vs
¼ Msg

Vs
¼ rsg (1.8)

l Dry unit weight:

gd ¼
Ws

V
¼ Msg

V
¼ rdg (1.9)

l Unit weight of water:

gw ¼ Ww

Vw
(1.10)

At 4�C, gw ¼ g0 ¼ 9810 N/m3 ¼ 9.81 kN/m3 ¼ 62.4 lb/ft3. For ordinary en-
gineering applications at other temperatures, gw z g0. In the equations,
g ¼ 9.81 m/s2 ¼ 32.2 ft/s2 is the gravitational acceleration.

1.4 DEFINITION OF FUNDAMENTAL QUANTITIES

The specific gravity of solids is defined as follows:

Gs ¼ gs

g0

z
gs

gw

¼ Ws

Vsgw

(1.11)

Remark: Gs normalizes the solid unit weight of a material.

The volume of voids is defined by two quantities, namely the porosity n,
and the void ratio e, where,

n ¼
�
Vv

V

�
� 100% (1.12)

and

e ¼ Vv

Vs
(1.13)
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The relative weight and volume of the pore fluid is quantified by the
moisture content (w) and the degree of saturation (S ), where,

w ¼
�
Ww

Ws

�
� 100% (1.14)

and

S ¼
�
Vw

Vv

�
� 100% (1.15)

For a saturated soil, Vw ¼ Vv and S ¼ 100%.

1.5 RELATIONS DERIVED FROM FUNDAMENTAL
QUANTITIES

The basic quantities Gs, n, e, w, and S can be suitably combined to form re-
lations that are particularly useful for particular types of problems. These
relations do not, however, constitute any new definitions of quantities used to
describe the phase relations for soils. Some specific examples of such relations
are given in the following section.

1.5.1 Case 1.1: Relation Between Void Ratio and Porosity

Rewriting the void ratio definition in terms of the volume of voids (Vv)
and then dividing through by the total volume (V ) gives the following
relation:

e ¼ Vv

Vs
¼ Vv

V � Vv
¼ Vv=V

1� ðVv=VÞ ¼
n

1� n
(1.16)

where n is understood to be a decimal number.

1.5.2 Case 1.2: Relation Between Porosity and Void Ratio

Rewriting the porosity definition by expanding the total volume (V ) and
then dividing through by the volume of solids (Vs) gives the following
relation:

n ¼
�
Vv

V

�
� 100% ¼

�
Vv

Vs þ Vv

�
� 100% ¼

�
Vv=Vs

1þ Vv=Vs

�
� 100%

¼
�

e

1þ e

�
� 100%

(1.17)

This result could likewise have been obtained by solving the equation
derived in Case 1.1 for porosity in terms of void ratio.
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1.5.3 Case 1.3: Relation Between Moisture Content, Specific
Gravity of Solids, Void Ratio, and Degree of Saturation

The weight of the solid phase is written in terms of Gs as follows:

Gs ¼ gs

gw

¼ Ws

Vsgw

0Ws ¼ GsVsgw (1.18)

Next, the weight of the pore fluid is written in terms of gw.

gw ¼ Ww

Vw
0Ww ¼ Vwgw (1.19)

Substituting Eqs. (1.18) and (1.19) into the definition of the moisture
content (Eq. 1.14) gives,

w ¼
�
Ww

Ws

�
� 100% ¼

�
Vwgw

GsVsgw

�
� 100% ¼

�
Vw

GsVs

�
� 100% (1.20)

The volume of pore fluid is next written in terms of the degree of satura-
tion; i.e.,

S ¼
�
Vw

Vv

�
� 100%0Vw ¼

�
S

100%

�
Vv ¼

�
S

100%

�
eVs (1.21)

where the definition of the void ratio has been used. Substituting Eq. (1.21)
into Eq. (1.20) gives the desired relation; i.e.,

w ¼ Se

Gs
or Se ¼ Gsw (1.22)

where w and S are understood to be decimal numbers.
The aforementioned expression shows that the moisture content (w) is

thus a function of three quantities, namely e, S, and Gs. The upper bound on w
corresponds to the case of full saturation (i.e., S ¼ 100%), when
w h wsat ¼ e/Gs. The lower bound on w is zero, which corresponds to a
completely dry soil for which S ¼ 0%.

1.5.4 Case 1.4: Relation Between Dry Unit Weight, Specific
Gravity of Solids, and Void Ratio

Beginning with the definition of the dry unit weight given by Eq. (1.9),
substituting for Ws in terms of Gs gives,

gd ¼
Ws

V
¼ GsVsgw

Vs þ Vv
(1.23)

Dividing through the resulting expression byVs gives the desired relation; i.e.,

gd ¼
Gsgw

1þ e
(1.24)
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1.5.5 Case 1.5: Relation Between Moist Unit Weight, Specific
Gravity of Solids, Moisture Content, and Void Ratio

Beginning with the definition of the moist unit weight given by Eq. (1.7), and
representing the weight of the pore fluid in terms of the w and Ws gives

g ¼ W

V
¼ Ws þWw

Vs þ Vv
¼ Wsð1þ wÞ

Vs þ Vv
(1.25)

where w is understood to be a decimal number. Substituting for Ws in terms of
Gs (i.e.,Ws ¼ GsVsgw) and diving through the resulting expression by Vs gives
the desired relation; i.e.,

g ¼ Gsgwð1þ wÞ
1þ e

(1.26)

1.5.6 Case 1.6: Relation Between Moist Unit Weight, Dry Unit
Weight, and Moisture Content

In light of Eq. (1.24), the relation for g derived in of Case 1.5 becomes

g ¼ gdð1þ wÞ or gd ¼
g

ð1þ wÞ (1.27)

where w is understood to be a decimal number.

1.5.7 Case 1.7: Relation Between Moist Unit Weight, Specific
Gravity of Solids, Degree of Saturation, and Void Ratio

Replacing the moisture content in Eq. (1.26) with the relation derived in Case
1.3 (i.e., w ¼ Se/Gs) gives

g ¼ gwðGs þ SeÞ
1þ e

(1.28)

1.5.8 Case 1.8: Unit Weight of Submerged Soil and Its Relation
to Moist Unit Weight

Consider a saturated soil that is submerged in water. According to Archi-
medes’ principle, the buoyancy force acting on a body is equal to the weight of
the fluid displaced by the body.

Since the soil is saturated, S ¼ 100% and Vw ¼ Vv. The buoyant unit weight
is thus

gb ¼
ðWs � VsgwÞ þ ðWw � VvgwÞ

Vs þ Vv
(1.29)
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Writing Ws in terms of Gs and Ww in terms gw gives

gb ¼
ðGsVsgw � VsgwÞ þ ðVvgw � VvgwÞ

Vs þ Vv
¼ gwVsðGs � 1Þ

Vs þ Vv
(1.30)

Dividing through the equation by Vs gives the final expression for the
buoyant unit weight; i.e.,

gb ¼
gwðGs � 1Þ

1þ e
(1.31)

For a saturated soil the expression for moist unit weight given by Eq. (1.28)
reduces to

g ¼ gsat ¼
gwðGs þ eÞ

1þ e
(1.32)

Manipulating this expression gives the relationship between the saturated
and buoyant unit weights; i.e.,

gsat ¼
gwðGs þ eÞ

1þ e
¼ gwðGs � 1Þ

1þ e
þ gwð1þ eÞ

1þ e
¼ gb þ gw (1.33)

or

gb ¼ gsat � gw (1.34)

EXAMPLE PROBLEM 1.1

General Remarks

Knowing the definitions of the basic quantities e, n, w, S, and Gs, it is relatively
straightforward to derive more specific relations than those presented in Cases
1.1e1.8.

Problem Statement

Derive an expression for void ratio (e) in terms of the total weight (W ), total
volume (V), the unit weight of water (gw), the degree of saturation (S), and the
specific gravity of solids (Gs).

Solution

Recall the relation for moist unit weight derived in Case 1.7 (Eq. 1.28); i.e.,

g ¼ W

V
¼ gwðGs þ SeÞ

1þ e
(1.1.1)

Solving for the void ratio leads to the following results:

eþ 1 ¼
�
Vgw

W

�
ðGs þ SeÞ0 e

�
1� V

W
gwS

�
¼ V

W
gwGs � 1 (1.1.2)

8 Soil Mechanics



Multiplying both sides of the equation by W and solving for the void ratio
gives the desired relation

e ¼ VgwGs �W

W � VgwS
(1.1.3)

EXAMPLE PROBLEM 1.2

General Remarks

Knowing the definitions of the basic quantities e, n, w, S, and Gs, it is relatively
straightforward to derive more specific relations than those presented in Cases
1.1e1.8. In this problem alternate expressions for the degree of saturation are
derived.

Problem Statement

a) Derive an expression for the degree of saturation (S ) in terms of the
moisture content (w), the specific gravity of solids (Gs), the moist unit
weight (g), and gw.

b) Derive an expression for S in terms of w, Gs, and porosity (n).

Solution

a) Beginning with the definition of the specific gravity of solids

Gs ¼ Ws

Vsgw

0 Ws ¼ GsVsgw (1.2.1)

From the definition of the moisture content (Eq. 1.14),

w ¼
�
Ww

Ws

�
0 Ww ¼ wWs (1.2.2)

Substituting Eq. (1.2.1) into Eq. (1.2.2) gives

Ww ¼ wðGsVsgwÞ (1.2.3)

From the definition of the unit weight of water,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

(1.2.4)

Substituting Eq. (1.2.3) for Ww into Eq. (1.2.4) gives

Vw ¼ wðGsVsgwÞ
gw

¼ wGsVs (1.2.5)
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From the definition of the moist unit weight,

g ¼ Ww þWs

Vv þ Vs
0 Vv ¼ Ww þWs

g
� Vs (1.2.6)

Substituting Eqs. (1.2.1) and (1.2.3) for Ws and Ww, respectively, gives

Vv ¼ wðGsVsgwÞ þ GsVsgw

g
�Vs ¼ GsVs

gw

g
ð1þ wÞ � Vs (1.2.7)

Finally, recalling the definition of the degree of saturation and
substituting Eqs. (1.2.5) and (1.2.7) gives the desired expression; i.e.,

S ¼
�
Vw

Vv

�
¼ wGsVs

GsVs
gw

g
ð1þ wÞ � Vs

¼ wGs

Gs
gw

g
ð1þ wÞ � 1

or

S ¼ w
gw

g
ð1þ wÞ � 1

Gs

(1.2.8)

b) Returning to the definition of the degree of saturation; i.e., S ¼ Vw /Vv, the
definition of the unit weight of water is used to give

S ¼ Ww=gw

Vv
¼ wWs

gwVv
(1.2.9)

where the definition of the moisture content has been used to rewrite Ww in
terms of Ws. Next the definition of the specific gravity of solids is used to
replace weight of the solid phase, and the resulting expression is divided
through by the total volume V, giving

S ¼ wðGsVsgwÞ
gwVv

¼ wGsðV � VvÞ
Vv

¼ wGsð1� Vv=VÞ
Vv=V

or

S ¼ wGsð1� nÞ
n

(1.2.10)

where w, S, and the porosity (n) are written as decimal numbers.

EXAMPLE PROBLEM 1.3

General Remarks

In this problem an alternate expression for the moist unit weight is derived.

10 Soil Mechanics



Problem Statement

Derive an expression the moist unit weight (g) in terms of the dry unit weight
(gd), the degree of saturation (S), the porosity (n), and gw.

Solution

Beginning with the expression derived in Case 1.6 (Eq. 1.27) and using the
definition of the moisture content and dry unit weight gives

g ¼ gdð1þ wÞ ¼ gd þ gd

�
Ww

Ws

�
¼ gd þ

�
Ws

V

��
gwVw

Ws

�
¼ gd þ

gwVw

V

(1.3.1)

From the definition of the degree of saturation

S ¼ Vw

Vv
0 Vw ¼ SVv (1.3.2)

Substituting Eq. (1.3.2) into Eq. (1.3.1) gives

g ¼ gd þ
gwSVv

V
(1.3.3)

Recalling the definition of the porosity (n ¼ Vv /V) and substituting it into
Eq. (1.3.3) gives the final expression; i.e.,

g ¼ gd þ Sngw (1.3.4)

If the soil is saturated, S ¼ 100%. Eq. (1.3.4) thus reduces to

ghgsat ¼ gd þ ngw (1.3.5)

EXAMPLE PROBLEM 1.4

General Remarks

In this problem an alternate expression for the buoyant unit weight is derived.

Problem Statement

Derive an expression the buoyant unit weight (gb) in terms of the dry unit
weight (gd), the porosity (n), and the unit weight of water (gw).

Solution

The relation between the buoyant and saturated unit weights was derived in
Case 1.8 (Eq. 1.34); i.e.,

gb ¼ gsat � gw (1.4.1)
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Beginning with the basic definition of the saturated unit weight, and using
the definition of the unit weight of water gives

gsat ¼
Ww þWs

V
¼ Ww

V
þ gd ¼

gwVw

V
þ gd (1.4.2)

But for a saturated soil, Vw ¼ Vv. Thus, Eq. (1.4.2) becomes

gsat ¼
gwVv

V
þ gd ¼ ngw þ gd (1.4.3)

Using this expression for the saturated unit weight, Eq. (1.4.1) is written as
follows:

gb ¼ gsat �gw ¼ ðngw þ gdÞ � gw

or

gb ¼ gd þ gwðn� 1Þ (1.4.4)

EXAMPLE PROBLEM 1.5

General Remarks

In this problem an expression for the moisture content associated with a
saturated soil is derived.

Problem Statement

Derive an expression for the moisture content (wsat) associated with a saturated
soil in terms of the saturated unit weight (gsat), the porosity (n), and the unit
weight of water (gw).

Solution

Since the desired expression is to involve the saturated unit weight, begin with
the expression derived in Case 1.8; i.e.,

gsat ¼
gwðGs þ eÞ

1þ e
(1.5.1)

Specializing the relation derived in Case 1.3 for a saturated soil
(S ¼ 100%; w ¼ wsat) gives

Gs ¼ e

wsat
(1.5.2)

Substituting Eq. (1.5.2) for Gs, the saturated unit weight becomes

gsat ¼
gw

�
e

wsat
þ e

�

1þ e
¼ e

1þ e

�
1

wsat
þ 1

�
gw (1.5.3)
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In Case 1.1 the void ratio and porosity were related in the following manner:

e ¼ n

1� n
(1.5.4)

From Eq. (1.5.4) it follows that

1þ e ¼ 1þ n

1� n
¼ ð1� nÞ þ n

1� n
¼ 1

1� n
(1.5.5)

Combining Eqs. (1.5.4) and (1.5.5) gives

e

1þ e
¼

n

1� n
1

1� n

¼ n (1.5.6)

Substituting Eq. (1.5.6) into Eq. (1.5.3) gives

gsat ¼
e

1þ e

�
1

wsat
þ 1

�
gw ¼ n

�
1

wsat
þ 1

�
gw 0

1

wsat
¼

�
gsat

ngw

� 1

�
(1.5.7)

Inverting this result gives the desired expression for wsat

wsat ¼ ngw

gsat � ngw

(1.5.8)

If the relations derived in Cases 1.1, 1.3, and 1.8 are not readily available at
the time that the calculations are performed, the aforementioned result can
always be determined from the fundamental quantities defined in Section 1.4.
For example, begin with the definition of the saturated unit weight

gsat ¼
Ww þWs

Vw þ Vs
¼ Ww þWs

Vv þ Vs
¼ Ww þ GsVsgw

Vv þ Vs
(1.5.9)

where the definition of the specific gravity of solids has been used and Vv ¼ Vw

because the soil is saturated.
From the definition of the moisture content, and noting again that Vv ¼ Vw,

gives

wsat ¼ Ww

Ws
¼ gwVw

GsVsgw

¼ Vv

GsVs
¼ e

Gs
0Gs ¼ e

wsat
(1.5.10)

Substituting Eq. (1.5.10) into Eq. (1.5.9) gives

gsat ¼
Ww þ GsVsgw

Vv þ Vs
¼

gwVv þ
�

e

wsat

�
Vsgw

Vv þ Vs
¼

gw

�
Vv=Vs þ e

wsat

�

Vv=Vs þ 1

¼
gwe

�
1þ 1

wsat

�

1þ e

(1.5.11)

where the definition of the unit weight of water has been used. Since this result
is identical to Eq. (1.5.7), it once again leads to Eq. (1.5.8).
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EXAMPLE PROBLEM 1.6

General Remarks

This example problem illustrates the manner in which the quantities used to
describe the phase relations are computed; it involves both densities and unit
weights.

Problem Statement

A sample of gray silty clay has a mass of 126 kg. Laboratory tests results give
a moist density (r) of 2.05 g/cm3, a specific gravity of solids (Gs) of 2.71, and
a moisture content (w) of 15.7%.

First determine all entries in the phase diagram. Then determine the void
ratio (e), the porosity (n), the degree of saturation (S ), the dry density (rd), the
dry unit weight (gd), and the moist unit weight (g).

Solution

Since the moist density (r ¼ 2.05 g/cm3 ¼ 2050 kg/m3) and the total mass (M )
are known, the total volume is thus

V ¼ M

r
¼ 126:0 kg

2050 kg=m3
¼ 0:0615 m3 (1.6.1)

From the definition of the moisture content (Eq. 1.14),

w ¼
�
Ww

Ws

�
� 100% ¼

�
Mw

Ms

�
� 100%0Mw ¼ wMs (1.6.2)

where w is understood to be a decimal number. The total mass is thus written
as M ¼ Ms þ Mw ¼ (1 þ w)Ms. Solving for the mass of the solids gives

Ms ¼ M

1þ w
¼ 126 kg

ð1þ 0:157Þ ¼ 108:9 kg (1.6.3)

Thus,

Mw ¼ M �Ms ¼ 126� 108:90 ¼ 17:10 kg (1.6.4)

The volumes of the constituents are next computed. From the definition of
the specific gravity of solids,

Vs ¼ Ms

Gsrw
¼ 108:90 kg

ð2:71Þð1000 kg=m3Þ ¼ 0:0402 m3 (1.6.5)

From the definition of the mass density of water,

Vw ¼ Mw

rw
¼ 17:10 kg

ð1000 kg=m3Þ ¼ 0:0171 m3 (1.6.6)

14 Soil Mechanics



The volume of the gaseous phase is then

Va ¼ V � Vs � Vw ¼ 0:0615� 0:0402� 0:0171 ¼ 0:0042 m3 (1.6.7)

Finally, the volume of the voids is computed as follows

Vv ¼ Va þ Vw ¼ 0:0402þ 0:0171 ¼ 0:0213 m3 (1.6.8)

Figure Ex. 1.6 shows the phase diagram associated with this soil.
The void ratio is next computed as follows

e ¼ Vv

Vs
¼ 0:0213

0:0402
¼ 0.530 (1.6.9)

or, alternatively, as

e ¼ V � Vs

Vs
¼ V

Vs
� 1 ¼ 0:0615

0:0402
� 1 ¼ 0.530 (1.6.10)

The porosity follows from

n ¼
�
Vv

V

�
� 100% ¼

�
Va þ Vw

V

�
� 100%

¼
�
0:0042þ 0:0171

0:0615

�
� 100% ¼ 34.6%

(1.6.11)

or, alternatively (recall Case 1.2), from

n ¼
� e

1þ e

�
� 100% ¼

�
0:530

1þ 0:530

�
� 100% ¼ 34.6% (1.6.12)

FIGURE EX. 1.6 Phase diagram showing relationship between volume and mass for the gray

silty clay.
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The degree of saturation is next computed as

S ¼
�
Vw

Vv

�
� 100% ¼

�
0:0171

0:0042þ 0:0171

�
� 100% ¼ 80.3% (1.6.13)

The dry density is thus

rd ¼
Ms

V
¼ 108:90 kg

0:0615 m3
¼ 1772 kg=m3 ¼ 1.772 g=cm3 ¼ 1.772 Mg=m3

(1.6.14)

The dry density can likewise be computed from the moisture content; i.e.,

rd ¼
Gsrw

1þ e
¼ ð2:71Þð1000 kg=m3Þ

1þ 0:530
¼ 1772 kg=m3

¼ 1.772 g=cm3 ¼ 1.772 Mg=m3

(1.6.15)

which verifies the previous result. The dry unit weight is thus

gd ¼ rdg ¼ �
1772 kg=m3�ð9:81 m=sÞ ¼ 17; 383 N=m3 ¼ 17.38 kN=m3

(1.6.16)

Finally, the moist unit weight can be computed directly from the dry
density; i.e.,

g ¼ gdð1þ wÞ ¼ �
17:38 kN=m3�ð1þ 0:157Þ ¼ 20.11 kN=m3 (1.6.17)

The moist unit weight can likewise be computed as follows:

g ¼ rg ¼ �
2050 kg=m3��9:81 m=s2

� ¼ 20; 111 N=m3 ¼ 20.11 kN=m3

(1.6.18)

which verifies the previous result.

Remark: This problem has shown that the values for many of the quantities

that are used to describe the phase relations can be computed in different

ways. Consequently, this fact typically serves as a good check on the results

obtained.

EXAMPLE PROBLEM 1.7

General Remarks

This example problem illustrates the manner in which quantities that are
used to describe the phase relations are computed for a cubical soil
specimen.
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Problem Statement

A cubical sample of San Francisco Bay mud (a soft marine silty clay) has been
prepared for testing in a true triaxial device. The dimensions of the sample are
76 mm by 76 mm by 76 mm. The sample has a moisture content (w) of 68.5%
and a moist density (r) of 1.44 g/cm3. The average specific gravity of solids
(Gs) is 2.55.

Determine (a) the void ratio (e) and degree of saturation (S ), (b) the moist
density (g) and moisture content (w) if the soil becomes saturated at the same
total volume, and (c) the density (r) of the soil if all pore fluid is dried off with
no change in total volume.

Solution

A general solution for the problem is first developed. Beginning with the
definition of the moisture content (Eq. 1.14); i.e.,

w ¼
�
Ww

Ws

�
� 100% ¼

�
Mw

Ms

�
� 100% (1.7.1)

the moist density is written as follows:

r ¼ M

V
¼ Ms þMw

V
¼ Msð1þ wÞ

V
(1.7.2)

Thus,

Ms ¼ rV

1þ w
(1.7.3)

and Mw ¼ wMs, where w is understood to be a decimal number. Since the void
ratio is sought in this problem, the volumes of the respective phases are also
required. As such, recalling the general definition for the specific gravity of
solids, the volume of solids is computed from Ms as follows:

Gs ¼ gs

gw

¼ Ms

Vsrw
0 Vs ¼ Ms

Gsrw
(1.7.4)

Since the volume of the voids is Vv ¼ V � Vs, the void ratio is computed as
follows:

e ¼ Vv

Vs
¼ V � Vs

Vs
(1.7.5)

The volume occupied by the pore fluid is obtained from the mass of the
fluid (here assumed to be water) according to

rw ¼ Mw

Vw
0 Vw ¼ Mw

rw
(1.7.6)
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Finally, if needed, the volume occupied by air is Va ¼ Vv � Vw. Attention is
next focused on the present problem.

a) The total volume of the cubical sample is

V ¼ ð76 mmÞ3ðm=1000 mmÞ3 ¼ 4:390� 10�4 m3 (1.7.7)

The moist density is converted to units of kilograms and meters

r ¼ �
1:44 g=cm3�ðkg=1000 gÞð100 cm=mÞ3 ¼ 1:440� 103 kg=m3 (1.7.8)

The mass of the solid phase is thus

Ms ¼ rV

1þ w
¼ ð1:440� 103 kg=m3Þð4:390� 10�4 m3Þ

1þ 0:685
¼ 3:752� 10�1 kg

(1.7.9)

The mass of the fluid phase is next computed as follows

Mw ¼ wMs ¼ ð0:685Þ�3:752� 10�1 kg
� ¼ 2:570� 10�1 kg (1.7.10)

For completeness, the total mass of the soil sample is found to be

M ¼ Ms þMw ¼ �
3:752� 10�1 kg

�þ �
2:570� 10�1 kg

� ¼ 6:322� 10�1 kg

(1.7.11)

The necessary volumes are next computed

Vs ¼ Ms

Gsrw
¼ ð3:752� 10�1 kgÞ

ð2:55Þð1000 kg=m3Þ ¼ 1:471� 10�4 m3 (1.7.12)

Vw ¼ Mw

rw
¼ 2:570� 10�1 kg

1000 kg=m3
¼ 2:570� 10�4 m3 (1.7.13)

Vv ¼ V �Vs ¼
�
4:390� 10�4 m3

�� �
1:471� 10�4 m3

� ¼ 2:919� 10�4 m3

(1.7.14)

Va ¼ Vv �Vw ¼ �
2:919� 10�4 m3

�� �
2:570� 10�4 m3

� ¼ 3:490� 10�5 m3

(1.7.15)

The void ratio is thus

e ¼ Vv

Vs
¼ 2:919� 10�4 m3

1:471� 10�4 m3
¼ 1.984 (1.7.16)

Finally, the degree of saturation is computed as

S ¼
�
Vw

Vv

�
� 100% ¼

�
2:570� 10�4 m3

2:919� 10�4 m3

�
� 100% ¼ 88.0% (1.7.17)
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The degree of saturation could also have been computed from the
relation developed in Case 1.3; i.e.,

S ¼
�
Gsw

e

�
� 100% ¼

�ð2:55Þð0:685Þ
1:984

	
� 100% ¼ 88.0% (1.7.18)

which confirms the previous result. Figure Ex. 1.7a shows the phase dia-
gram associated with this soil.

b) If the soil becomes saturated at the same total volume, then the volume
occupied by the fluid phase is equal to the volume of the voids
(Figure Ex. 1.7b).

FIGURE EX. 1.7A Phase diagram showing relationship between volume and mass for a sample

of San Francisco Bay mud.

FIGURE EX. 1.7B Phase diagram showing relationship between volume and mass for a saturated

sample of San Francisco Bay mud.
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Thus,

Vw ¼ Vv ¼ 2:919� 10�4 m3 (1.7.19)

The mass of water contained in the voids is thus

Mw ¼ rwVw ¼ �
1000 kg=m3��2:919� 10�4 m3

� ¼ 2:919� 10�1 kg

(1.7.20)

The resulting moisture content is

w ¼
�
Mw

Ms

�
� 100% ¼

�
2:919� 10�1 kg

3:752� 10�1 kg

�
� 100% ¼ 77.8% (1.7.21)

The associated moist density is thus

r ¼ Ms þMw

V
¼ ð3:752� 10�1 kgÞ þ ð2:919� 10�1 kgÞ

4:390� 10�4 m3

¼ 1520 kg=m3 ¼ 1.520 Mg=m3

(1.7.22)

The moist density can likewise be computed from the moisture content;
i.e.,

r ¼ Msð1þ wÞ
V

¼ ð3:752� 10�1 kgÞð1þ 0:778Þ
4:390� 10�4 m3

¼ 1520 kg=m3 ¼ 1.520 Mg=m3

(1.7.23)

which verifies the previous result.
c) If all pore fluid is dried off with no change in total volume, the moist

density will then be equal to the dry density; i.e.,

r ¼ rd ¼
Ms

V
¼ 3:752� 10�1 kg

4:390� 10�4 m3
¼ 854.6 kg=m3 ¼ 0.855 Mg=m3 (1.7.24)

Figure Ex. 1.7c shows the phase diagram associated with this material
state.

EXAMPLE PROBLEM 1.8

General Remarks

This example problem illustrates the manner in which quantities that are used
to describe the phase relations are computed from data that are given in a form
very similar to actual experimental results obtained in a laboratory.

Problem Statement

For an undisturbed soil, the total volume is 5.1 ft3, the moist weight is 601 lb,
the dry weight is 523 lb, and the porosity is 37.5%. Calculate (a) the moisture
content (w), (b) the dry unit weight (gd), (c) the moist unit weight (g), (d) the
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degree of saturation (S), (e) the void ratio (e), and (f) the specific gravity of
solids (Gs).

Solution

a) The weight of the water is simply Ww ¼W � Ws ¼ 601 � 523 ¼ 78.0 lb.
The moisture content is thus

w ¼
�
Ww

Ws

�
� 100% ¼

�
78:0

523

�
� 100% ¼ 14.9% (1.8.1)

b) The dry unit weight is

gd ¼
Ws

V
¼ 523 lb

5:1 ft3
¼ 102.5 lb=ft3 (1.8.2)

c) Similarly, the moist unit weight is

g ¼ W

V
¼ 601 lb

5:1 ft3
¼ 117.8 lb=ft3 (1.8.3)

d) The degree of saturation requires both the volume of water (Vw) and the
volume of voids (Vv). The latter is most simply computed from the porosity
as follows:

n ¼
�
Vv

V

�
� 100% 0 Vv ¼

� n

100%

�
V ¼ ð0:375Þ�5:1 ft3

� ¼ 1:913 ft3

(1.8.4)

FIGURE EX. 1.7C Phase diagram showing relationship between volume and mass for a sample

of San Francisco Bay mud with all pore fluid dried off.
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The volume of water is computed fromWw and the unit weight of water
(gw); i.e.,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

¼ 78 lb

62:4 lb=ft3
¼ 1:250 ft3 (1.8.5)

The volume of the gaseous phase is thus

Va ¼ Vv � Vw ¼ 1:913� 1:250 ¼ 0:663 ft3 (1.8.6)

Finally, the volume of the solid phase is

Vs ¼ V � Vv ¼ 5:1� 1:913 ¼ 3:187 ft3 (1.8.7)

The degree of saturation is thus

S ¼
�
Vw

Vv

�
� 100% ¼

�
1:250 ft3

1:913 ft3

�
� 100% ¼ 65.4% (1.8.8)

e) The void ratio can be computed either from

e ¼ n

1� n
¼ 0:375

1� 0:375
¼ 0.600 (1.8.9)

or from

e ¼ Vv

Vs
¼ 1:913 ft3

ð5:1� 1:913 ft3Þ ¼ 0.600 (1.8.10)

f) Finally, the specific gravity of solids is computed from its definition; i.e.,

Gs ¼ gs

gw

¼ Ws

Vsgw

¼ 523 lb

ð3:187 ft3Þð62:4 lb=ft3Þ ¼ 2.63 (1.8.11)

The specific gravity of solids can likewise be determined from the
relation between e, w, S, and Gs derived in Case 1.3; i.e.,

Gs ¼ Se

w
¼ ð0:654Þð0:600Þ

ð0:149Þ ¼ 2.63 (1.8.12)

Figure Ex. 1.8 shows the phase diagram associated with this soil.

EXAMPLE PROBLEM 1.9

General Remarks

This example problem illustrates the manner in which volume changes are
computed for saturated soils.

Problem Statement

A volume of one million cubic meters of slurry (saturated soil with high water
content) is compressed for a period of 2.5 years. Initially, the slurry has a
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moisture content of 119%. 2.5 years later, the moisture content drops to 52%.
The specific gravity of solids (Gs) for the slurry is 2.72.

Determine the change in volume that has taken place during the 2.5 years
of compression.

Solution

A key fact to note is that during compression, the weight (Ws) and volume of
the solid phase (Vs) and Gs remain unchanged. In addition, the slurry remains
saturated throughout the compression process.

From the general definition of moisture content,

w ¼
�
Ww

Ws

�
� 100% 0 Ww ¼ wWs (1.9.1)

From the definition of the specific gravity of solids,

Gs ¼ Ws

Vsgw

0Ws ¼ GsVsgw (1.9.2)

Combining the two equations gives

Ww ¼ wWs ¼ wGsVsgw (1.9.3)

Substituting the aforementioned result into the definition of the unit weight
of water gives

gw ¼ Ww

Vw
0Vw ¼ Ww

gw

¼ wGsVsgw

gw

¼ wGsVs (1.9.4)

FIGURE EX. 1.8 Phase diagram showing relationship between volume and weight for an un-

disturbed soil.
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The general expression for the total volume of the saturated slurry is

V ¼ Vw þ Vs ¼ wGsVs þ Vs ¼ ðwGs þ 1ÞVs (1.9.5)

Initially, V0 ¼ 1.0 � 106 m3 and w0 ¼ 119%. Thus,

V0 ¼ ðw0Gs þ 1ÞVs 0 Vs ¼ V0

w0Gs þ 1
¼ 1:0� 106 m3

ð1:19Þð2:72Þ þ 1
¼ 236; 027 m3

(1.9.6)

After 2.5 years,

Vf ¼ ðwfGs þ 1ÞVs ¼ ½ð0:52Þð2:72Þ þ 1��236; 027 m3
� ¼ 569; 864 m3

(1.9.7)

The desired change in volume is thus

DV ¼ V0 � Vf ¼ 1; 000; 000� 569; 864 ¼ 430; 136 m3 (1.9.8)

Figure Ex. 1.9 shows the phase diagram associated with this soil.

EXAMPLE PROBLEM 1.10

General Remarks

This example problem deals with a saturated soil below the groundwater table.
It illustrates how to compute the buoyant unit weight.

FIGURE EX. 1.9 Phase diagram showing relationship between volume and weight for a saturated

slurry.
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Problem Statement

A sample of soil was taken from below the groundwater table. The moisture
content was determined to be 52% and the specific gravity of solids (Gs) was
found to be 2.69. Determine (a) the moist unit weight, (b) the dry unit weight,
(c) the buoyant (submerged) unit weight, (d) the void ratio, and (e) the porosity.

Solution

Since the soil sample was taken from below the groundwater table, it is
saturated (i.e., S ¼ 100%). The void ratio is computed from the equation
e ¼ wGs /S (recall Case 1.3 and Eq. (1.22)). Since the soil is saturated, this
reduces to

e ¼ Gsw ¼ ð2:69Þð0:52Þ ¼ 1.399 (1.10.1)

The porosity is computed using Eq. (1.17); i.e.,

n ¼
� e

1þ e

�
� 100% ¼

�
1:399

1þ 1:399

�
� 100% ¼ 58.3% (1.10.2)

a) The moist unit weight is computed from Eq. (1.26); i.e.,

g ¼ Gsgwð1þ wÞ
1þ e

¼ ð2:69Þð9:81 kN=m3Þð1þ 0:52Þ
1þ 1:399

¼ 16.72 kN=m3

(1.10.3)b) The dry unit weight follows directly from Eq. (1.27); i.e.,

gd ¼
g

1þ w
¼ 16:72 kN=m3

1þ 0:52
¼ 11.00 kN=m3 (1.10.4)

c) Finally, the buoyant unit weight is computed from Eq. (1.34); i.e.,

gb ¼ g�gw ¼ ð16:72� 9:81Þ ¼ 6.91 kN=m3 (1.10.5)

where it is noted that for this problem g is the saturated unit weight.

EXAMPLE PROBLEM 1.11

General Remarks

This example problem illustrates the manner in which quantities that are used
to describe the phase relations are computed from data that are given in a form
very similar to actual experimental results obtained in a laboratory.

Problem Statement

A sample of moist soil was found to have the following characteristics:

l Total volume: 0.01456 m3

l Total mass: 25.74 kg
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l Mass after oven drying: 22.10 kg
l Specific gravity of solids: 2.69

Determine (a) the moist density, (b) the moist unit weight, (c) the moisture
content, (d) the void ratio, (e) the porosity, and (f) the degree of saturation of
the moist soil.

Solution

a) The moist density is simply (recall Eq. 1.3)

r ¼ M

V
¼ 25:74 kg

0:01456 m3
¼ 1768 kg=m3 (1.11.1)

b) The moist unit weight follows directly from Eq. (1.7); i.e.,

g ¼ rg ¼ �
1768 kg=m3��9:981 m=s2

� ¼ 17; 343 N=m3 ¼ 17.34 kN=m3

(1.11.2)

c) The moisture content is next computed from the given masses. First,

Mw ¼ M �Ms ¼ 25:74� 22:10 ¼ 3:64 kg (1.11.3)

Thus,

w ¼
�
Mw

Ms

�
� 100% ¼

�
3:64

22:10

�
� 100% ¼ 16.5% (1.11.4)

The determination of the remaining quantities requires the computation
of the volume of solids and voids. The former quantity is computed from
the specific gravity of solids as follows

Gs ¼ Ws

Vsgw

0Vs ¼ Msg

Gsgw

¼ ð22:10 kgÞð9:81 m=s2ÞðkN=1000 NÞ
ð2:69Þð9:81 kN=m3Þ

¼ 8:216� 10�3 m3

(1.11.5)

The volume of the voids is thus

Vv ¼ V �Vs ¼
�
1:456� 10�2

�� �
8:216� 10�3

� ¼ 6:344� 10�3 m3

(1.11.6)

d) The void ratio and porosity are thus

e ¼ Vv

Vs
¼ 6:344� 10�3 m3

8:216� 10�3 m3
¼ 0.772 (1.11.7)

26 Soil Mechanics



e) The porosity can be computed from known volumes according to

n ¼
�
Vv

V

�
� 100% ¼

�
6:344� 10�3 m3

0:01456

�
� 100% ¼ 43.5% (1.11.8)

It can likewise be computed directly from the void ratio (recall Case
1.2); i.e.,

n ¼
� e

1þ e

�
� 100% ¼

�
0:772

1þ 0:772

�
� 100% ¼ 43.5% (1.11.9)

f) The volume of water is determined from the mass of pore fluid and the
density of water

rw ¼ Mw

Vw
0Vw ¼ Mw

rw
¼ 3:64 kg

1000 kg=m3
¼ 3:640� 10�3 m3 (1.11.10)

The degree of saturation is thus

S ¼
�
Vw

Vv

�
� 100% ¼

�
3:640� 10�3 m3

6:340� 10�3 m3

�
� 100% ¼ 57.4% (1.11.11)

As a check, use the relation Se ¼ wGs (recall Case 1.3), which gives

S ¼
�
wGs

e

�
� 100% ¼ ð0:165Þð2:69Þ

0:772
� 100% ¼ 57.4% (1.11.12)

and confirms the previous result.
To complete the determination of quantities appearing in the

phase diagram, the volume of the gaseous phase (air) is computed as
follows:

Va ¼ Vv �Vw ¼ �
6:344� 10�3 m3

�� �
3:640� 10�3 m3

� ¼ 2:704� 10�3 m3

(1.11.13)

Figure Ex. 1.11 shows the phase diagram associated with this soil.

EXAMPLE PROBLEM 1.12

General Remarks

This example problem illustrates the manner in which quantities that are used
to describe the phase relations are computed from data that are given in a form
very similar to experimental readings in the laboratory.
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Problem Statement

The mass of a wet sample of soil and its container is 0.33 kg. The dry mass of
the soil and its container is 0.29 kg. The mass of the container is 0.06 kg, and
its volume is 0.00015 m3. The soil completely fills the container. Finally, the
specific gravity of solids is found to be 2.71. Determine the following
quantities:

(a) The moist unit weight, (b) the dry unit weight, (c) the void ratio,
(d) the moisture content, (e) the degree of saturation, (f) the saturated unit
weight, and (g) the buoyant unit weight. (h) Finally, what is the maximum
dry unit weight to which this soil can be compacted without changing its
moisture content?

Solution

a) The moist unit weight is computed as follows (recall Eq. (1.7)):

g ¼ W

V
¼ ð0:33� 0:06 kgÞð9:81 m=s3Þ

0:00015 m3
¼ 17; 658 N=m3 ¼ 17.66 kN=m3

(1.12.1)

b) The weight of the solid phase is computed from the given information; i.e.,

Ws ¼ ð0:29� 0:06 kgÞ�9:81 m=s2
�ðkN=1000 NÞ ¼ 2:256� 10�3 kN

(1.12.2)

FIGURE EX. 1.11 Phase diagram showing relationship between volume and mass for a soil

tested in the laboratory.
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The dry unit weight is

gd ¼
Ws

V
¼ 2:256� 10�3 kN

0:00015 m3
¼ 15.04 kN=m3 (1.12.3)

c) The volume of the solid phase is computed from the specific gravity of
solids and the weight of the solids; i.e.,

Vs ¼ Ws

Gsgw

¼ 2:256� 10�3 kN

ð2:71Þð9:81 kN=m3Þ ¼ 8:487� 10�5 m3 (1.12.4)

The volume of the voids is thus

Vv ¼ V � Vs ¼
�
1:500� 10�4 � 8:487� 10�5

� ¼ 6:513� 10�5 m3

(1.12.5)

Finally, the void ratio is computed as follows:

e ¼ Vv

Vs
¼ 6:513

8:487
¼ 0.767 (1.12.6)

d) The moisture content can be computed from the given information as
follows:

w ¼
�
Ww

Ws

�
� 100% ¼

�
Mw

Ms

�
� 100% ¼

�
0:33� 0:29

0:29� 0:06

�
� 100% ¼ 17.4%

(1.12.7)

e) The degree of saturation requires the knowledge of the volume of pore
fluid. This is computed from the known weight of the fluid and the unit
weight of water; i.e.,

Ww ¼ ð0:33� 0:29 kgÞ�9:81 m=s2
�ðkN=1000 NÞ ¼ 3:924� 10�4 kN

(1.12.8)

Vw ¼ Ww

gw

¼ 3:924� 10�4 kN

9:81 kN=m3
¼ 4:000� 10�5 m3 (1.12.9)

Thus,

S ¼
�
Vw

Vv

�
¼

�
4:000� 10�5

6:513� 10�5

�
� 100% ¼ 61.4% (1.12.10)

The degree of saturation can likewise be computed from the relation
(recall Case 1.3)

S ¼
�
Gsw

e

�
� 100% ¼

�ð2:71Þð0:1739Þ
0:767

	
� 100% ¼ 61.4% (1.12.11)

which serves a check on the results obtained.
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f) When the soil is saturated,

Vv ¼ Vw ¼ 6:513� 10�5 m3 (1.12.12)

Thus,

Ww ¼ gwVw ¼ �
9:81 kN=m3��6:513� 10�5 m3

� ¼ 6:389� 10�4 kN

(1.12.13)

The saturated unit weight is thus

gsat ¼
Ws þWw

V
¼ ð2:256� 10�3 kNÞ þ ð6:389� 10�4 kNÞ

0:00015 m3
¼ 19.30 kN=m3

(1.12.14)

The saturated unit weight can likewise be computed from the relation
(recall Case 1.6)

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:71þ 0:767Þ

1þ 0:767
¼ 19.30 kN=m3

(1.12.15)

which serves a check on the results obtained.

g) The buoyant unit weight follows directly from the saturated unit weight
according to (recall Case 1.8)

gb ¼ gsat � gw ¼ 19:30� 9:81 ¼ 9.49 kN=m3 (1.12.16)

h) Since the moisture content remains unchanged, and since Ws does not
change (no solids are removed or added to the soil), it follows thatWw must
likewise remain unchanged. As a consequence of these observations, it
follows that Vs and Vw must remain unchanged. Thus, the compaction
alluded to in this part of the problem can only displace the air present in the
voids. The resulting dry density will thus be

gd ¼
Ws

V
¼ Ws

Vs þ Vw
¼ 2:256� 10�3 kN

½ð8:487� 10�5Þ þ ð4:000� 10�5Þ�m3
¼ 18.07 kN=m3

(1.12.17)

The dry density can likewise be computed from the relation (recall
Case 1.6)

gd ¼
g

1þ w
(1.12.18)

where

g ¼ Ws þWw

Vs þ Vw
¼ ½ð2:256� 10�3Þ þ ð3:924� 10�4Þ�kN

½ð8:487� 10�5Þ þ ð4:000� 10�5Þ�m3
¼ 21:21 kN=m3

(1.12.19)
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Thus,

gd ¼
g

1þ w
¼ 21:21 kN=m3

1þ 0:1759
¼ 18.04 kN=m3 (1.12.20)

which serves a check on the results obtained (within round-off error).

EXAMPLE PROBLEM 1.13

General Remarks

In this problem gives insight into the issues associated with the inundation
(flooding) of a soil.

Problem Statement

A dry sand layer with specific gravity of solids (Gs) equal to 2.66 was com-
pacted to a dry unit weight of 16.7 kN/m3. It was subsequently inundated with
water. Determine the moisture content (w) and the moist unit weight (g) of the
inundated sand.

Solution

The initial void ratio is computed from the dry unit weight as follows (recall
Case 1.4):

gd ¼
Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 ¼ ð2:66Þð9:81 kN=m3Þ
16:7 kN=m3

� 1 ¼ 0:563 (1.13.1)

After inundation, the volume and weight of the solid phase remain un-
changed. The moisture content is most easily computed using the relation
derived in Case 1.3; i.e., w ¼ Se/Gs. This, however, requires that assumptions
be made on the degree of saturation (S) and on the value of the void ratio.

With the void ratio known and moisture content known, the moist unit
weight is computed from the expression derived in Case 1.5; i.e.,

g ¼ Gsgwð1þ wÞ
1þ e

(1.13.2)

It is reasonable to assume that the sand has become saturated (S ¼ 100%),
particularly if it has been inundated for a relatively long period of time. If the
void ratio is also assumed to remain unchanged after inundation, the desired
moisture content is thus

w ¼ Se

Gs
¼ ð1:00Þð0:563Þ

2:66
� 100% ¼ 21.2% (1.13.3)
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The moist unit weight is then

g ¼ Gsgwð1þ wÞ
1þ e

¼ ð2:66Þð9:81 kN=m3Þð1þ 0:212Þ
1þ 0:563

¼ 20.2 kN=m3

(1.13.4)

EXAMPLE PROBLEM 1.14

General Remarks

This example problem further illustrates the manner in which variables that are
used to quantify the phase relations are computed.

Problem Statement

The porosity (n) of a poorly graded sand is 37% and its specific gravity of
solids (Gs) is 2.67. Determine the void ratio (e) and the dry unit weight (gd). If
the sand is 30% saturated, determine the moisture content (w) and the moist
unit weight (g). Finally, determine moisture content and the moist unit weight
if the sand is saturated.

Solution

The void ratio is determined from the known porosity as (recall Case 1.1)

e ¼ n

1� n
¼ 0:37

1� 0:37
¼ 0.587 (1.14.1)

Since an explicit volume of the soil is not given, assume that Vs ¼ 1.0 m3.
From the definition of the void ratio, it follows that Vv ¼ e$Vs ¼ e (in units of
m3). The weight of the solid phase is then computed from the definition of the
specific gravity of solids as

Gs ¼ Ws

Vsgw

0 Ws ¼ GsVsgw ¼ Gsð1:0Þgw (1.14.2)

The dry unit weight is thus (recall Case 1.4)

gd ¼
Gsgw

1þ e
¼ ð2:67Þð9:81 kN=m3Þ

1þ 0:587
¼ 16.51 kN=m3 (1.14.3)

In general,

S ¼ Vw

Vv
0 Vw ¼ SVv ¼ Se (1.14.4)
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Relating the weight of the pore fluid to its volume through the unit weight
of water gives the following general expression (recall Case 1.3):

w ¼
�
Ww

Ws

�
� 100% ¼

�
gwVw

Gsgw

�
� 100% ¼

�
Se

Gs

�
� 100% (1.14.5)

The general expression for the moist unit weight is thus (recall Case 1.7)

g ¼ W

V
¼ Ws þWw

1þ e
¼ gwðGs þ SeÞ

1þ e
(1.14.6)

If S ¼ 30%, then

w ¼
�ð0:30Þð0:587Þ

2:67

	
� 100% ¼ 6.60% (1.14.7)

and

g ¼ gwðGs þ SeÞ
1þ e

¼ ð9:81 kN=m3Þ½2:67þ ð0:30Þð0:587Þ�
1þ 0:587

¼ 17.59 kN=m3

(1.14.8)

For a saturated soil, S ¼ 100%, thus

w ¼
�ð1:0Þð0:587Þ

2:67

	
� 100% ¼ 22.0% (1.14.9)

and

g ¼ gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þ½2:67þ ð0:587Þ�

1þ 0:587
¼ 20:13 kN=m3

(1.14.10)

EXAMPLE PROBLEM 1.15

General Remarks

This example problem investigates a soil with a nonhomogeneous solid phase.

Problem Statement

Consider two soils. The solid phase of the first soil is composed of pure quartz
(Gs ¼ 2.66). The solid phase of the second soil is composed of a mixture of
64% quartz, 28% mica (Gs ¼ 2.75), and 8% iron oxide (Gs ¼ 5.40).

How much difference in the unit weights and specific gravities of solids is
there between the two soils? Assume both soils are saturated and have void
ratios of 0.632.
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Solution

l Soil 1:

Since an explicit total volume for the soil has not been specified, assume
Vs ¼ 1.0, implying that Vv ¼ Vw ¼ e ¼ 0.632. Thus,

Ws ¼ GsVsgw ¼ ð2:66Þð1:0Þgw (1.15.1)

Since S ¼ 100%, and recalling that Ww ¼ gw$Vw ¼ 0.632$gw, it follows
that

g ¼
�
Ws þWw

1þ e

�
¼ 2:66gw þ 0:632gw

1þ 0:632
¼ 2:017gw (1.15.2)

If gw ¼ 9.81 kN/m3, then g ¼ 19.8 kN/m3; if gw ¼ 62.4 lb/ft3, then
g ¼ 125.9 lb/ft3.

In summary, for Soil 1: Gs ¼ 2.66 and g ¼ 19.8 kN/m3 ¼ 125.9 lb/ft3.
l Soil 2:

Using the definition of the specific gravity of solids, since the solids are
apportioned by volume, it follows that

Vquartz ¼ 0:64Vs ¼ Ws quartz

Gs quartzgw

(1.15.3)

Thus,

Ws quartz ¼ 0:64ð1:0Þð2:66Þgw (1.15.4)

Similarly,

Ws mica ¼ 0:28ð1:0Þð2:75Þgw (1.15.5)

and

Ws FeO ¼ 0:08ð1:0Þð5:40Þgw (1.15.6)

The total weight of the solids is thus

Ws ¼ ½ð0:64Þð2:66Þ þ ð0:28Þð2:75Þ þ ð0:08Þð5:40Þ�gw ¼ 2:904gw (1.15.7)

The specific gravity of Soil 2 is thus

Gs ¼ Ws

Vsgw

¼ 2:904gw

ð1:0Þgw

¼ 2.90 (1.15.8)

It is important to point out that this value represents a weighted average
of specific gravities of solids for the composite soil, and not the specific
gravity of solids for one of the constituent soils.

34 Soil Mechanics



The associated unit weight is

g ¼
�
Ws þWw

1þ e

�
¼ 2:904gw þ 0:632gw

1þ 0:632
¼ 2:167gw (1.15.9)

If gw ¼ 9.81 kN/m3, then g ¼ 21.3 kN/m3; if gw ¼ 62.4 lb/ft3, then
g ¼ 135.2 lb/ft3.

In summary, for Soil 2: Gs ¼ 2.90 and g ¼ 21.3 kN/m3 ¼ 135.2 lb/ft3.
The difference in unit weight between Soil 1 and Soil 2 is thus

21:3� 19:8 ¼ 1.50 kN=m3 (1.15.10)

or

135:2� 125:9 ¼ 9.30 lb=ft3 (1.15.11)

The difference in specific gravity of solids between Soil 1 and Soil 2 is
thus

2:90� 2:66 ¼ 0.24 (1.15.12)

EXAMPLE PROBLEM 1.16

General Remarks

This example problem also investigates a soil with a nonhomogeneous solid
phase.

Problem Statement

Consider the following two soils:

l Soil 1: solid phase is composed of pure silica (Gs ¼ 2.66).
l Soil 2: solid phase is composed of a mixture of 35% silica, 45% feldspar

(Gs ¼ 2.75), and 20% ferro magnesium (Gs ¼ 3.45). These percentages
refer to volume fractions.

Assume both soils have a moisture content of 22% and a void ratio of
0.787.

a) What is the degree of saturation, the moist unit weight, and the dry unit
weight for Soil 1?

b) What is the specific gravity of solids, the degree of saturation, the moist
unit weight, and the dry unit weight for Soil 2?
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Solution

a) Since the solid phase in Soil 1 is homogeneous, the determination of the
desired quantities is straightforward. The degree of saturation is deter-
mined as follows (recall Case 1.3):

S ¼ Gsw

e
¼ ð2:66Þð0:22Þ

0:787
¼ 0:744 ¼ 74.4% (1.16.1)

The moist unit weight is next computed (recall Case 1.6)

g ¼ gwðGs þ SeÞ
1þ e

¼ ð9:81 kN=m3Þ½2:66þ ð0:744Þð0:787Þ�
1þ 0:787

¼ 17.82 kN=m3

(1.16.2)

Finally, the dry unit weight is computed from the moist unit weight as
follows (recall Case 1.6):

gd ¼
g

1þ w
¼ 17:82 kN=m3

1þ 0:22
¼ 14.60 kN=m3 (1.16.3)

b) The composite nature of the solid phase for Soil 2 complicates the deter-
mination of the specific gravity of solids. From the definition of Gs it
follows that in general,

Gs ¼ Ws

Vsgw

0Vs ¼ Ws

Gsgw

(1.16.4)

For simplicity, assume Vs ¼ 1.0 m3. Thus, from the given volume
fractions,

Vs silica ¼ 0:35Vs ¼ 0:35ð1Þ ¼ Ws silica

ð2:66Þgw

0Ws silica ¼ 0:35ð2:66Þgw

(1.16.5)

Vs feldspar ¼ 0:45Vs ¼ 0:45ð1Þ ¼ Ws feldspar

ð2:75Þgw

0 Ws feldspar ¼ 0:45ð2:75Þgw

(1.16.6)

Vs ferro ¼ 0:20Vs ¼ 0:20ð1Þ ¼ Ws ferro

ð3:45Þgw

0 Ws ferro ¼ 0:20ð3:45Þgw

(1.16.7)

The total weight of the solid phase for Soil 2 is thus

Ws ¼ Ws silica þWs feldspar þWs ferro ¼ ½0:35ð2:66Þ þ 0:45ð2:75Þ
þ 0:20ð3:45Þ�gw

(1.16.8)
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The specific gravity of solids for Soil 2 is thus

Gs ¼ Ws

Vsgw

¼ ½0:35ð2:66Þ þ 0:45ð2:75Þ þ 0:20ð3:45Þ�gw

ð1:0Þgw

¼ 2.86 (1.16.9)

It is important to note that this value represents a weighted average of
specific gravities of solids for the composite soil, and not the specific
gravity of solids for one of the constituent soils. The degree of saturation
and moist and dry unit weights are then computed in the same manner as
for Soil 1; i.e.,

S ¼ Gsw

e
¼ ð2:86Þð0:22Þ

0:787
¼ 0:799 ¼ 79.9% (1.16.10)

g ¼ gwðGs þ SeÞ
1þ e

¼ ð9:81 kN=m3Þ½2:86þ ð0:799Þð0:787Þ�
1þ 0:787

¼ 19.15 kN=m3

(1.16.11)

gd ¼
g

1þ w
¼ 19:15 kN=m3

1þ 0:22
¼ 15.69 kN=m3

EXAMPLE PROBLEM 1.17

General Remarks

This example problem involves the constraint of constant volume.

Problem Statement

A soil has a unit weight of 109 lb/ft3 and a moisture content of 6%. How much
water, in cubic feet, should be added to each cubic yard of soil to raise its
moisture content to 13%? Assume that the void ratio remains constant (i.e., the
added water simply displaces air in the voids.

Solution

Since the weight and volume of the solids remains unchanged, and since the
void ratio is constrained to remain constant, it follows that V ¼ Vv þ Vs

remains constant. Beginning with the expression for the moist unit weight, and
using the definition of the moisture content gives

g ¼ W

V
¼ Ws þWw

V
¼ Wsð1þ wÞ

V
0 Ws ¼ gV

1þ w
(1.17.1)

and

Ww ¼ wWs ¼ wgV

1þ w
(1.17.2)
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Initially, g ¼ 109 lb/ft3, w ¼ 6%, and V ¼ 1 yd3 ¼ 27 ft3. Thus,

Ws ¼ ð109 lb=ft3Þð27 ft3Þ
1þ 0:06

¼ 2776:4 lb (1.17.3)

and

Ww ¼ wWs ¼ ð0:06Þð2776:4Þ ¼ 166:6 lb (1.17.4)

After water is added to the soil, Ws is unchanged, and

Wwnew
¼ wnewWs ¼ ð0:13Þð2776:4 lbÞ ¼ 360:9 lb (1.17.5)

The change in weight of the water is thus

DWw ¼ Wwnew
�Ww ¼ 360:9� 166:6 ¼ 194:3 lb (1.17.6)

Finally, the volume of water to be added to attain a moisture content of
13% is computed as follows:

DVw ¼ DWw

gw

¼ 194:3 lb

62:4 lb=ft3
¼ 3.11 ft3 (1.17.7)

EXAMPLE PROBLEM 1.18

General Remarks

This example problem also involves the constraint of constant volume.

Problem Statement

A soil has a moist unit weight of 128 lb/ft3 and a moisture content of 12%.
What will be the moisture content if the soil dries out to a moist unit weight of
123 lb/ft3 and the void ratio remains unchanged? Assume Gs ¼ 2.68.

Solution

Since an explicit volume of the soil is not given, assume that Vs ¼ 1. From the
definition of the void ratio, it follows that Vv ¼ e$Vs ¼ e. From the definition
of the moist unit weight (also recall Case 1.5)

g ¼ W

V
¼ Ws þWw

Vs þ Vv
¼ Wsð1þ wÞ

Vs þ Vv
¼ Gsgwð1þ wÞ

1þ e
(1.18.1)

where the definition of the specific gravity of solids has been used. Solving for
the void ratio gives

e ¼ Gsgwð1þ wÞ
g

� 1 (1.18.2)
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Denote the initial moisture content and moist unit weight by winit and ginit,
respectively, and the corresponding values after drying out by wfinal and gfinal,
respectively. Since the void ratio remains unchanged during drying, it follows that

Gsgwð1þ winitÞ
ginit

� 1 ¼ Gsgwð1þ wfinalÞ
gfinal

� 1 (1.18.3)

or

ð1þ winitÞ
ginit

¼ ð1þ wfinalÞ
gfinal

(1.18.4)

Solving for the moisture content after drying gives

wfinal ¼
gfinal

ginit

ð1þ winitÞ �1 ¼ ð123 lb=ft3Þ
ð128 lb=ft3Þ ð1þ 0:12Þ � 1 ¼ 0:076 ¼ 7.60%

(1.18.5)

EXAMPLE PROBLEM 1.19

General Remarks

This example problem also involves the constraint of constant volume.

Problem Statement

A sample of clayey soil has a moisture content (w) of 15.6%, a specific gravity
of solids (Gs) of 2.72, and a degree of saturation (S) equal to 72%. If the soil
soaks up water during a rain event and the degree of saturation increases to
92.5%, what is the new moisture content? The change of volume during this
soaking is negligible.

Solution

The key to this problem is the fact that both the volume of the solid phase (Vs)
and the total volume (V) remain constant during soaking. Since Vv þ Vs ¼ V,
it follows that Vv will likewise remain constant. Stated alternately, the void
ratio e ¼ Vv /Vs remains constant.

It is thus desirable to obtain an expression for Vv in terms of the infor-
mation given in the problem. From the definition of the degree of saturation,

S ¼ Vw

Vv
0 Vv ¼ Vw

S
¼ ðWw=gwÞ

S
(1.19.1)

But from the definition of the moisture content, Ww ¼ w$Ws, so

Vv ¼ wWs

gwS
(1.19.2)
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Finally, from the definition of the specific gravity of solids,
Ws ¼ Gs$Vs$gw. Thus, (recall Case 1.3)

Vv ¼ wðGsVsgwÞ
gwS

¼ wGsVs

S
0e ¼ wGs

S
(1.19.3)

Denoting the initial and final states with “i ” and “f ” subscripts, respec-
tively, gives

ei ¼ ef0
wiGs

Si
¼ wfGs

Sf
(1.19.4)

So,

wf ¼ wiSf
Si

¼ ð0:156Þð0:925Þ
0:720

¼ 0:200 ¼ 20.0% (1.19.5)

If additional information is desired about the three soil phases, assume
Vs ¼ 1.0 m3. Thus, Vv ¼ e, which remains constant during soaking. For the
initial state,

Vv ¼ ei ¼ wiGs

Si
¼ ð0:156Þð2:72Þ

0:72
¼ 0:589 m3 (1.19.6)

The initial volume of pore fluid is computed from the degree of saturation
as follows

Si ¼ Vwi

Vv
0Vwi

¼ SiVv ¼ ð0:72Þ�0:589 m3
� ¼ 0:424 m3 (1.19.7)

The initial volume of air in the pores is thus

Vai ¼ Vv � Vwi
¼ 0:589� 0:424 ¼ 0:165 m3 (1.19.8)

The initial weight of the pore fluid is next computed from the unit weight
of water; i.e.,

gw ¼ Wwi

Vwi

0 Wwi
¼ gwVwi

¼ �
9:81 kN=m3��0:424 m3

� ¼ 4:16 kN (1.19.9)

The weight of the solid phase is thus

wi ¼ Wwi

Ws
0 Ws ¼ Wwi

wi
¼ 4:16 kN

0:156
¼ 26:68 kN (1.19.10)

The total initial weight of the soil is thus

Wi ¼ Wwi
þWs ¼ 4:16þ 26:68 ¼ 30:84 kN (1.19.11)

Figure Ex. 1.19a shows the phase diagram associated with the initial state
of this soil.

In a similar manner, the final volume of the pore fluid is

Vwf
¼ Sf Vv ¼ ð0:925Þ�0:589 m3

� ¼ 0:545 m3 (1.19.12)
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The final weight of the pore fluid is

Wwf
¼ gwVwf

¼ �
9:81 kN=m3��0:545 m3

� ¼ 5:35 kN (1.19.13)

The final volume of air in the pores is

Vaf ¼ Vv � Vwf
¼ 0:589� 0:545 ¼ 0:044 m3 (1.19.14)

Finally, the total weight of the soil in its final state is thus

Wf ¼ Wwf
þWs ¼ 5:35þ 26:68 ¼ 32:03 kN (1.19.15)

Figure Ex. 1.19b shows the phase diagram associated with the final state of
this soil.

FIGURE EX. 1.19A Phase diagram showing relationship between volume and weight for the

initial state of a soil.

FIGURE EX. 1.19B Phase diagram showing relationship between volume and weight for the

final state of a soil.
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EXAMPLE PROBLEM 1.20

General Remarks

This example problem involves a highly organic soil.

Problem Statement

A highly organic (peat1) soil has a saturated unit weight of 10.8 kN/m3 and a
specific gravity of solids (Gs) equal to 2.36. Determine the void ratio (e), and
the moisture content (w). Finally determine the unit weight if the soil dries out
without a change in void ratio.

Solution

Beginning with the saturated unit weight,

gsat ¼
W

V
¼ Ww þWs

Vv þ Vs
(1.20.1)

where, due to the fact that the soil is saturated, Vv ¼ Vw. From the definition
of the specific gravity of solids, Ws ¼ Gs$Vs$gw. Similarly, from the definition
of the unit weight of water, Ww ¼ Vw$gw ¼ Vv$gw. Substituting for Ws and
Ww, the saturated unit weight is thus rewritten as

gsat ¼
gwVv þ GsgwVs

Vv þ Vs
(1.20.2)

Dividing through this equation by Vs gives (recall Case 1.7)

gsat ¼
gweþ Gsgw

1þ e
¼ gwðGs þ eÞ

1þ e
(1.20.3)

Solving for the void ratio completes the first part of the problem

e ¼ gwGs � gsat

gsat � gw

¼ ð9:81 kN=m3Þð2:36Þ � 10:8 kN=m3

10:8 kN=m3 � 9:81 kN=m3
¼ 12.48 (1.20.4)

The moisture content is next computed as follows (recall Case 1.3):

w ¼ Ww

Ws
¼ gwVw

GsVsgw

¼ Vw

GsVs
¼ e

Gs
(1.20.5)

Substituting for the known values gives

w ¼
�

e

Gs

�
� 100% ¼

�
12:48

2:36

�
� 100% ¼ 528.7% (1.20.6)

1. Peat is fibrous, partially decomposed organic matter or a soil containing large amounts of fibrous

organic matter. Peats are loose (very high void ratio) and extremely compressible.
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Finally, the dry unit weight of the soil is computed as follows

gd ¼
Ws

V
¼ GsVsgw

Vs þ Vv
¼ Gsgw

1þ e
¼ ð2:36Þð9:81 kN=m3Þ

1þ 12:48
¼ 1.72 kN=m3 (1.20.7)

EXAMPLE PROBLEM 1.21

General Remarks

This example problem involves the saturation of a soil while maintaining its
mass constant.

Problem Statement

Given the total mass (M), volume (V), moisture content (w), and specific gravity
of solids (Gs) for a sample. How much would the volume of the sample need to
be changed to achieve 100% saturation if the total mass remains unchanged?

Solution

Since the sample is to be saturated without changing its mass, it follows that all
gas (air) must be removed from the pores. We must therefore determine Va.
From the definition of the moisture content (recall Eq. (1.14)),

w ¼
�
Ww

Ws

�
0 Ww ¼ wWs (1.21.1)

The total weight of the sample is then written as

W ¼ Mg ¼ Ww þWs ¼ ð1þ wÞWs 0 Ws ¼ Mg

1þ w
(1.21.2)

and

Ww ¼ wMg

1þ w
(1.21.3)

It is next necessary to determine the volume of each constituent

Vs ¼ Ws

Gsgw

¼ Mg

ð1þ wÞðGsgwÞ
(1.21.4)

Vw ¼ Ww

gw

¼ wMg

ð1þ wÞgw

(1.21.5)

The volume of the air is thus

Va ¼ V � Vw � Vs ¼ V � wMg

ð1þ wÞgw

� Mg

ð1þ wÞðGsgwÞ
(1.21.6)

or

Va ¼ V � Mg

ð1þ wÞgw

�
wþ 1

Gs

�
(1.21.7)
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For example, if M ¼ 160 g, V ¼ 80 cm3, w ¼ 20%, and Gs ¼ 2.70, then

Va ¼
�
80 cm3

��
ð0:160 kgÞð9:81 m=s2Þ

�
kN

1000 N

�

ð1þ 0:20Þð9:81 kN=m3Þ

�
�
0:20þ 1

2:70

��
100 cm

m

�3

¼ 3.951 cm3

(1.21.8)

Thus, to saturate the soil sample, its initial volume of 80 cm3 must be
reduced by 3.951 cm3. Figure Ex. 1.21 schematically illustrates the phase
diagrams for the initial and final states of the soil.

EXAMPLE PROBLEM 1.22

General Remarks

Phase relationships are commonly used to quantify the results of laboratory
tests on soils. This example problem illustrates the use of such relationships to
check the degree of saturation in a consolidation test.

Problem Statement

A one-dimensional consolidation test was performed on a clay sample that was
6.4 cm in diameter and 2.54 cm thick. Following the test, questions were
raised if the sample was indeed saturated throughout the test. Recall that in a
one-dimensional consolidation test the only deformation that takes place in the
sample is in the direction of load application; i.e., vertically. The rigid metal
specimen ring prevents all lateral deformation.

FIGURE EX. 1.21 Phase diagrams showing relationship between volume and weight for the

initial and final states of the soil.
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The initial void ratio (e0) of the sample was 3.356, the initial moisture
content (w0) was 105.7%, and the clay was found to have a specific gravity of
solids equal to 2.70. The dry weight of the sample was 0.497 N. At the end of
the test the final void ratio (ef) was 2.638 and the final moisture content (wf)
was 95.1%. Compute (a) the dry unit weight (gd), (b) the moist unit weight
(g), and (c) the degree of saturation (S) of the sample at the end of the test.
Was the sample saturated at the end of the test?

Solution

a) The initial total volume of the soil sample is

V0 ¼ p

4
ð6:4 cmÞ2ð2:54 cmÞ ¼ 81:71 cm3

� m

100 cm

�3

¼ 8:171� 10�5 m3

(1.22.1)

At the end of the test the change in void ratio is

De ¼ e0 � ef ¼ 3:356� 2:638 ¼ 0:718 (1.22.2)

From the definition of the volumetric strain for infinitesimal
kinematics,

DV

V0
¼

�
De

1þ e0

�
0DV ¼

�
De

1þ e0

�
V0 ¼

�
0:718

1þ 3:356

��
8:171� 10�5 m3

�

¼ 1:347� 10�5 m3

(1.22.3)

The final volume of the sample is thus

Vf ¼ V0 �DV ¼ �
8:171� 10�5 m3

�� �
1:347� 10�5 m3

� ¼ 6:824� 10�5 m3

(1.22.4)

Since the weight of the solid phase remains unchanged, the dry unit
weight at the end of the test will thus be

gd ¼
Ws

Vf
¼ ð0:497 NÞð1 kN=1000 NÞ

6:824� 10�5 m3
¼ 7.28 kN=m3 (1.22.5)

The dry unit weight can likewise be computed as follows:

gd ¼
Gsgw

1þ ef
¼ ð2:70Þð9:81 kN=m3Þ

1þ 2:638
¼ 7.28 kN=m3 (1.22.6)

b) In either case, the moist unit weight at the end of the test is next computed
as follows

g ¼ gdð1þ wf Þ ¼
�
7:28 kN=m3�ð1þ 0:951Þ ¼ 14.21 kN=m3 (1.22.7)
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c) The degree of saturation at the end of the test is

Sf ¼ Gswf

ef
¼ ð2:70Þð0:951Þ

2:638
¼ 97.3% (1.22.8)

The sample was thus not fully saturated at the end of the one-
dimensional consolidation test. This could have resulted if the sample
was allowed to partially dry out.

The aforementioned results could also have been obtained in an alter-
nate fashion. Calculating first the degree of saturation (Sf), the moist unit
weight at the end of the test is computed as follows

g ¼ gwðGs þ Sf ef Þ
1þ ef

¼ ð9:81 kN=m3Þ½2:70þ ð0:973Þð2:638Þ�
1þ 2:638

¼ 14.2 kN=m3

(1.22.9)

Finally, the dry density is again computed using the value of the
moisture content at the end of the test; i.e.,

gd ¼
g

1þ wf
¼ 14:21 kN=m3

1þ 0:951
¼ 7.28 kN=m3 (1.22.10)

To further investigate the state of the sample at the end of the
consolidation test, the associated weights and volumes can easily be
computed. For example, since the weight of solids (Ws) is equal to 0.497 N,
the volume of the solid phase is computed from the known value of Gs; i.e.,

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

¼ ð0:497 NÞð1 kN=1000 NÞ
ð2:70Þð9:81 kN=m3Þ ¼ 1:876� 10�5 m3

(1.22.11)

The volume of the voids is thus

Vv ¼ Vf � Vs ¼ 6:824� 10�5 � 1:876� 10�5 ¼ 4:948� 10�5 m3

(1.22.12)

As a check, the void ratio at the end of the test is computed

ef ¼ Vv

Vs
¼ 4:948� 10�5 m3

1:876� 10�5 m3
¼ 2:638 (1.22.13)

and agrees with the given value. The weight of the fluid phase is computed
from the final moisture content as follows:

Ww ¼ wfWs ¼ ð0:951Þ½ð0:497 NÞð1 kN=1000 NÞ� ¼ 4:726� 10�4 kN

(1.22.14)

The volume of the fluid phase is computed from the unit weight of
water; i.e.,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

¼ 4:726� 10�4 kN

9:81 kN=m3
¼ 4:818� 10�5 m2 (1.22.15)
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The volume of the air in the voids is then

Va ¼ Vv � Vw ¼ 4:948� 10�5 � 4:818� 10�5 ¼ 1:300� 10�6 m3

(1.22.16)

As a final check, the degree of saturation is computed

S ¼
�
Vw

Vv

�
� 100% ¼

�
4:818� 10�5 m2

4:948� 10�5 m3

�
� 100% ¼ 97:4% (1.22.17)

which agrees with the previous result.

EXAMPLE PROBLEM 1.23

General Remarks

This example problem illustrates the manner in which two different pore fluids
are handled in determining phase relations for an unsaturated soil.

Problem Statement

A soil in the Gulf Coast region was found to have been contaminated by crude
oil. The voids of this soil consist of 20% (by volume) air, 35% seawater
(specific gravity ¼ 1.025), and 45% crude oil (specific gravity ¼ 0.876). Given
that the specific gravity of solids (Gs) is equal to 2.71 and that the moisture
content (w) is 17%, determine (a) the void ratio (e) and porosity (n), (b) the
moist unit weight, now defined by

g ¼ Woil þWw þWs

V

where Woil is the weight of the crude oil, and Ww is the weight of the seawater,
(c) the dry unit weight, and (d) the degree of saturation, now defined by

S ¼
�
Voil þ Vw

Vv

�
� 100%

where Voil is the volume of the crude oil, and Vw is the volume of the seawater.

Solution

Assuming Vs ¼ 1 implies that Vv ¼ e. Thus,

Va ¼ 0:20Vv ¼ 0:20e; Voil ¼ 0:45Vv ¼ 0:45e; Vw ¼ 0:35Vv ¼ 0:35e

(1.23.1)

a) The unit weight of seawater is

Ww

Vw
¼ 1:025gw (1.23.2)
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From the definition of the moisture content and specific gravity of
solids,

w ¼ Ww

Ws
0 Ww ¼ wWs ¼ wGsVsgw (1.23.3)

where Vs ¼ 1. Substituting for Ww and Vw into the expression for the unit
weight of seawater given in the problem statement and solving for the void
ratio gives

wGsgw

0:35e
¼ 1:025gw 0 e ¼ wGs

ð1:025Þð0:35Þ ¼
ð0:17Þð2:71Þ
ð1:025Þð0:35Þ ¼ 1.284 (1.23.4)

The porosity follows immediately from

n ¼
� e

1þ e

�
� 100% ¼

�
1:284

1þ 1:284

�
� 100% ¼ 56.2% (1.23.5)

b) To compute the moist unit weight, note that the specific gravity for the
oil is

Goil ¼ Woil

Voilgw

(1.23.6)

Thus,

g ¼ Woil þWw þWs

V
¼ GoilVoilgw þ wGsgw þ Gsgw

1þ e

¼ ½GoilVoil þ Gsð1þ wÞ�gw

1þ e

(1.23.7)

Substituting the given values gives the final result; i.e.,

g ¼ ½ð0:876Þð0:45Þð1:284Þ þ ð2:71Þð1þ 0:17Þ�ð9:81 kN=m3Þ
1þ 1:284

¼ 15.79 kN=m3

(1.23.8)

c) The dry unit weight is computed as follows:

gd ¼
Gsgw

1þ e
¼ ð2:71Þð9:81 kN=m3Þ

1þ 1:284
¼ 11.64 kN=m3 (1.23.9)

d) Finally, the degree of saturation is computed as follows

S ¼
�
Voil þ Vw

Vv

�
� 100% ¼ ½ð0:45þ 0:35Þe�

e
� 100% ¼ 80.0% (1.23.10)
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EXAMPLE PROBLEM 1.24

General Remarks

This problem illustrates that the values of most quantities used to describe the
phase relations fall within fairly narrow ranges.

Problem Statement

The soil at a given site has been found to have an average moisture content (w)
of 30% and a degree of saturation (S ) equal to 88%. The specific gravity of
solids (Gs) for the soil is, however, unknown. Assuming a typical range of Gs

values, determine (a) The void ratio (e), (b) the dry unit weight (gd), and
(c) the moist unit weight (g) of the soil.

Solution

a) The void ratio is computed using the expression derived in Case 1.3, i.e.,

e ¼ Gsw

S
(1.24.1)

b) The dry unit weight is next computed using the expression derived in Case
1.4, i.e.,

gd ¼
Gsgw

1þ e
(1.24.2)

c) The dry unit weight is next computed using the expression derived in Case
1.6, i.e.,

g ¼ gdð1þ wÞ (1.24.3)

For soils, the specific gravity of solids typically ranges between 2.65
and 2.75. For example, for Gs ¼ 2.65,

e ¼ Gsw

S
¼ ð2:65Þð0:30Þ

0:88
¼ 0.903 (1.24.4)

gd ¼
Gsgw

1þ e
¼ ð2:65Þð9:81 kN=m3Þ

1þ 0:903
¼ 13.66 kN=m3 (1.24.5)

and

g ¼ gdð1þ wÞ ¼ �
13:66 kN=m3�ð1þ 0:30Þ ¼ 17.76 kN=m3 (1.24.6)

Since the aforementioned calculations are repeated for the various values of
Gs, they are particularly well suited for execution using a spreadsheet.
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Table Ex. 1.23 shows a sample spreadsheet that was set up to compute the void
ratio and the dry and moist unit weights. From this table it is evident that
changes in Gs have a relatively minor effect on the magnitude of the dry and
moist unit weights.

TABLE EX. 1.23 Sample Spreadsheet Used to Compute

Void Ratio and Unit Weights for a Given Value of Specific

Gravity of Solids

Gs e gd (kN/m3) g (kN/m3)

2.65 0.903 13.66 17.76

2.66 0.907 13.68 17.79

2.67 0.910 13.71 17.83

2.68 0.914 13.74 17.86

2.69 0.917 13.77 17.90

2.70 0.920 13.79 17.93

2.71 0.924 13.82 17.96

2.72 0.927 13.85 18.00

2.73 0.931 13.87 18.03

2.74 0.934 13.90 18.07

2.75 0.938 13.92 18.10
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Chapter 2

Example Problems Related
to Soil Identification and
Classification

2.0 GENERAL COMMENTS

One of the foremost aims in soil mechanics has been to find methods for
discriminating between different kinds of soil in a given category. The prop-
erties on which these distinctions are based are known as index properties. The
tests required to determine the index properties are referred to as classification
tests. When discussing soil grain properties it is convenient to divide soil into
cohesionless (gravel, sand, silt) and cohesive (clay) soils.

The nature of any soil can be altered by appropriate manipulation. For
example, vibrations transform a loose sand into a dense one. The behavior of a
soil thus depends not only on the significant properties of the individual
constituents of the soil mass, but also on those properties that are due to the
arrangement of the particles within the mass. It is thus convenient to divide
index properties into two classes:

l Soil aggregate properties. This involves analyzing a soil mass in its intact
state (as much as possible). The stress history is thus taken into consid-
eration. The most significant aggregate property of cohesionless soils is the
relative density, whereas that of cohesive soils is the consistency.

l Soil grain (or individual) properties. The soil characteristics are based on
the size, shape, and distribution of the particles. In clay soils, the miner-
alogical character of the smallest grains is of importance. No consideration
of the stress history is included in the determination of such properties.

2.1 PARTICLE SIZES

Perhaps the most fundamental soil grain property is the size of a particle.
A single linear dimension cannot uniquely define the size of a particle, other
than a cube or a sphere. Thus, particle (grain) size typically refers to the
diameter of a soil grain. The meaning of “particle size” therefore depends on the
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dimension that was recorded and how it was obtained. The sizes of soil particles
vary over a very large range.

Depending on the predominant size of particles within a soil, it is generally
referred to as being a gravel, sand, silt, or clay.

Gravels are unconsolidated rock fragments produced by mechanical
weathering with occasional particles of quartz, feldspar, and other minerals.

Sand particles are produced by mechanical weathering and are made of
mostly quartz and feldspar, though other mineral grains may also be present.

Silts are the microscopic soil fractions that consist of very fine quartz
grains and some flake (plate)-shaped particles that are fragments of micaceous
minerals; they are produced by chemical and physical weathering.

Clays are mostly flake (plate)-shaped microscopic and submicroscopic
particles of mica, clay minerals, and other minerals.

l The clay minerals are products of chemical weathering of feldspars,
ferromagnesians, and micas.

l The clay minerals give the plastic (putty like) property to soils.
l Clays also exhibit cohesiveness; i.e., the ability to stick together. As a

result, such soils are thus referred to as being cohesive; by contrast, soils
consisting of gravels, sands, and silts are referred to as cohesionless.

l The presence of water greatly affects the engineering response of clays.
l The most important clay minerals are kaolinite, illite, and montmorillonite.

Since they are larger in size, gravels and sands are referred to as being
coarse grained. By contrast, silts and clays are referred to as being fine
grained. A conventional dividing line between these two groups is the
approximate smallest particle sizes that are visible to the naked eye, typically
0.060 or 0.075 mm.

Coarse-grained soils are thus nonplastic and noncohesive (or cohesionless).
Among fine-grained soils, silts are generally nonplastic and noncohesive,
while clays are both plastic and cohesive.

To describe soils by their particle size, several organizations have devel-
oped particle size classifications. Since there is no clear-cut division between
the four general soil groups (i.e., gravel, sand, silt, and clay), and since particle
sizes vary widely, several classifications exist, with different points of delin-
eation. Some examples of such classifications are given below.

Remark: The range of particle sizes from 200 to 0.002 mm spans five (5) orders of

magnitude!

Table 2.1 lists the grain size scale proposed by the Swedish chemist and
agricultural scientist Albert Atterberg (1846e1916).

Table 2.2 lists the grain size scale proposed by the US Department of
Agriculture (USDA).

52 Soil Mechanics



Finally, Table 2.3 lists the grain size scale proposed by the Unified Soil
Classification System (USCS).

Remark: Those particles classified as being “clay” on the basis of their size may

not necessarily contain clay minerals.

TABLE 2.1 Grain Size Ranges According to

A. Atterberg

Name of Soil Size Range (mm)

Boulders >200

Cobble (stone) 60e200

Coarse gravel (pebble) 20e60

Medium gravel 6e20

Fine gravel 2e6

Coarse sand 0.6e2

Medium sand 0.2e0.6

Fine sand 0.06e0.2

Coarse silt 0.02e0.06

Medium silt 0.006e0.02

Fine silt 0.002e0.006

Clay <0.002

TABLE 2.2 Grain Size Ranges According to

the US Department of Agriculture

Name of Soil Size Range (mm)

Very coarse sand 1.00e2.00

Coarse sand 0.50e1.00

Medium sand 0.25e0.50

Fine sand 0.10e0.25

Very fine sand 0.05e0.10

Silt 0.002e0.05

Clay <0.002
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Remark: Nonclay soils typically contain quartz, feldspar, or mica particles that are

small enough to be less than 0.002 mm (2 mm) in size.

Remark: It is thus appropriate for particles smaller than 0.002 or 0.005 mm to be

called “clay-size” particles rather than clay.

2.2 DISTRIBUTION OF GRAIN SIZES

In classifying a soil it is important to determine the size range of particles
present in a soil (typically expressed as a percentage of the total dry weight).
Two approaches are generally used to determine the soil particle size distribu-
tion. A sieve analysis is used for particle sizes greater than or equal to 0.075 mm.
For particle sizes smaller than 0.075 mm, a hydrometer analysis is used.

Remark: Both tests significantly disturb soil samples from their in situ state.

2.2.1 Sieve Analysis

A sieve analysis involves the shaking of a soil sample through a set of sieves
that has progressively smaller square openings. The results of a sieve analysis
are plotted on a particle size distribution or gradation curve. In such a curve,
the particle size (in mm) is plotted as the abscissa on a logarithmic scale. The
ordinate on such curves is the percent passing a specific sieve size.

The classification of the particle size distribution of a soil is referred to as
soil gradation. Coarse-grained soils, mainly gravels or sands, are graded as
either well graded or poorly graded.

TABLE 2.3 Grain Size Ranges According to the

Unified Soil Classification System

Name of Soil Size Range (mm)

Boulders >300

Cobbles 75e300

Gravel 4.75e75

Sand 0.075e4.75

Fines (silt and clay) <0.075
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Well-graded soils contain particles having a wide range of sizes. They have
a good representation of all sizes from No. 4 sieve (4.75 mm) to No. 200 sieve
(0.075 mm).

Poorly graded soils do not have a good representation of all sizes of
particles from No. 4 to No. 200 sieve. Poorly graded soils are further divided
into uniformly graded or gap-graded soils.

A uniformly graded soil is a soil that has most of its particles at about the
same size. An example of a uniformly graded soil is one in which only sand of
the No. 20 sieve size (0.850 mm) is present.

A gap-graded soil is a soil that has an excess or deficiency of certain
particle sizes or a soil that has at least one particle size missing. An example of
a gap-graded soil is one in which sand of the No. 10 (2.00 mm) and No. 40
sizes (0.425 mm) are missing, and all the other sizes are present.

2.2.2 Quantities Computed From Gradation Curves

To facilitate the interpretation of gradation curves, let D10, D30, and D60 equal
to the grain diameter (in mm) corresponding to 10%, 30%, and 60%,
respectively, passing by weight (or mass).

The coefficient of uniformity Cu, which is a crude shape parameter, is
calculated using the following equation:

Cu ¼ D60

D10
(2.1)

If Cu ¼ 1.0, the soil contains primarily one grain size. The smaller the Cu,
the more uniform will be the associated gradation.

The coefficient of curvature Cc, which is a shape parameter, is calculated
using the following equation:

Cc ¼ ðD30Þ2
D10D60

(2.2)

Once the coefficient of uniformity and the coefficient of curvature have
been calculated, they must be compared to published gradation criteria. For
example, both Cu and Cc are used in the Unified Soil Classification System
(USCS).1 In particular, for a gravel to be classified as being well graded

Cu > 4 and 1 < Cc < 3 (2.3)

If both of these conditions are not met, the gravel is classified as being
poorly graded. Section 2.5 gives additional details pertaining to the USCS.

If both of these criteria are met, the gravel is classified as well graded. If,
however, both of these criteria are not met, the gravel is classified as being
poorly graded (GP).

1. Section 2.5 discusses the Unified Soil Classification System in greater detail.

Soil Identification and Classification Chapter j 2 55



For a sand to be classified as well graded, the following criteria must be met:

Cu > 6 and 1 < Cc < 3 (2.4)

If both of these criteria are met, the sand is classified as well graded. If both
of these criteria are not met, the sand is classified as being poorly graded.

2.2.3 Importance of Soil Gradation

Soil gradation is very important to geotechnical engineering. It is an indicator
of other engineering properties such as compressibility, shear strength, and
hydraulic conductivity.

In a design, the gradation of the in situ or on site soil often controls the
design and ground water drainage of the site. A poorly graded soil will have
better drainage than a well-graded soil because there are more void spaces in a
poorly graded soil.

When a fill material is being selected for a project such as a highway
embankment or earthen dam, the soil gradation is considered. A well-graded
soil is able to be compacted more than a poorly graded soil. These types of
projects may also have gradation requirements that must be met before the soil
to be used is accepted.

When options for ground remediation techniques are being selected, the
soil gradation is often a controlling factor.

2.2.4 Hydrometer Analysis

A hydrometer analysis attempts to determine the size distribution of
fine-grained soils. It is based on the principle of sedimentation of soil particles
settling in water. Hydrometer analyses are typically performed on particles
passing the No. 200 sieve (0.074 mm). The data from a hydrometer analysis
allow for the determination of the suspension density.

In determining the distribution of particle sizes, a deflocculating agent is
first applied to the soil, which has been mixed with water. On mixing, the
particles are separated out and form a solution. When a soil sample is
dispersed in water, the particles will settle at different velocities, depending on
their size, shape, weight, and on the viscosity of water.

All particles are assumed to be spherical (Figure 2.1).
For a spherical particle of radius r, the upward buoyancy force is equal to

the volume of fluid displaced multiplied by the unit weight of water; i.e.,

Fb ¼ 4

3
pr3gw (2.5)

The downward force is due to the weight of the particle; i.e.,

Fd ¼ 4

3
pr3gs (2.6)

where, as before, gs is the unit weight of the solid phase.
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Stokes found that the net vertical force was related to the velocity of the
particle according to the following relation:

4

3
pr3gs �

4

3
pr3gw ¼ 6phrv (2.7)

where h is the viscosity of water and v is the velocity of the sphere as it settles
in the water. Solving for the velocity and relating this to the particle diameter
D gives

v ¼ 2

9

r2

h
ðgs � gwÞ ¼

2

9

ðD=2Þ2
h

ðgs � gwÞ ¼
ðgs � gwÞD2

18h
(2.8)

Solving for this diameter gives

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18hv

ðgs � gwÞ

s
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18h

ðgs � gwÞ

s ffiffiffi
L

t

r
(2.9)

Since Gs ¼ gs=gw 0 gs ¼ Gsgw, the above expression can also be written as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18h

ðGs � 1Þgw

s ffiffiffi
L

t

r
(2.10)

At a depth L (commonly called the effective length) at time t, all particles
have a diameter smaller than D, that is, all larger particles would have settled

FIGURE 2.1 Schematic illustration of a single particle in suspension.
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beyond the zone of measurement. Hydrometers are thus designed to allow the
amount of soil that is still in suspension to be determined.

In typical calculations associated with a hydrometer analysis, L is
measured in centimeters (cm), the units of h are (g s)/cm2, gw ¼ 1.0 g/cm3, t is
measured in minutes, and it is advantageous to represent D in units of
millimeters. The above expression for D is thus modified so as to account for
the aforementioned units, giving

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18h

ðGs � 1Þgw

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

t

�
min

60 s

�s �
10 mm

cm

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30h

ðGs � 1Þ

s ffiffiffi
L

t

r
(2.11)

The above expression is often written as

D ¼ K

ffiffiffi
L

t

r
(2.12)

where D has units of millimeters, L has units of centimeters, t is expressed in
minutes, and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30h

ðGs � 1Þ

s
(2.13)

Since the viscosity h is a function of temperature, it follows that K will
likewise be a function of temperature.

The standard conditions for hydrometer analyses (ASTM 152-H type
hydrometer) are Gs ¼ 2.65 at 20�C inside a 1000 m[ fluid (usually distilled
water) where no dispersing agent is added. If the hydrometer analysis is
performed under conditions that differ from these calibration conditions,
corrections need to be made. The four commonly made corrections are thus

1. Temperature correction (FT): when the temperature differs from 20�C, the
following correction must be made:2

FT ¼ �4:85þ 0:25T (2.14)

where the test temperature T is between 15 and 28�C.
2. Specific gravity correction (a): when the specific gravity of the solids is not

2.65, the following correction must be made:

a ¼ 1:65Gs

2:65ðGs � 1Þ (2.15)

3. Zero correction (Fz): if a dispersing (or deflocculating) agent is added to
the soiledistilled water suspension, the zero reading from the hydrometer

2. Das, B.M., 2013. Soil Mechanics Laboratory Manual, eighth edition. Oxford University Press,

New York.
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will be changed. Thus, a correction to the deviation of reading from the
zero mark of the hydrometer is required.

4. Meniscus correction (Fm): accounts for the reading error introduced when
readings are taken off the upper level of the meniscus formed, at the stem
of the hydrometer, by the soilewater suspension.

The effective length (L) must be related to the hydrometer reading (R),
which ranges between 0 and 60 g/L. The magnitude of L is often computed
from the following expression:

L ¼ L1 þ 1

2

�
L2 � Vb

Ac

�
(2.16)

where L1 is the distance along the stem of the hydrometer from the top of its
bulb to the mark for a specific hydrometer reading, L2 is the length of the
hydrometer bulb (typically equal to 14 cm), Vb is the volume of the
hydrometer bulb, and Ac is the cross-sectional area of the sedimentation cyl-
inder (typically equal to 27.8 cm2).

Typically, L1 is equal to 10.5 cm for a reading of R ¼ 0, and 2.3 cm for a
value of R ¼ 50. Assuming a linear relationship between L1 and R, it follows
that for any value of R,

L1 ¼ 10:5� ð10:5� 2:3Þ
50

R ¼ 10:5� 0:164R (2.17)

where L1 and R will have the same units, and the hydrometer reading R is
corrected for the meniscus. In this case, the general expression for L becomes

L ¼ 10:5�0:164Rþ 1

2

�
14:0� Vb

Ac

�
(2.18)

where L and R will have units of cm, Ac will have units of cm2, and Vb will
have units of cm3.

2.3 PLASTICITY OF SOIL

As noted in Section 2.1, when mixed with a limited amount of water, clays
exhibit plastic (putty like) behavior characterized by deformation without
complete rebound on removal of load. It is necessary to somehow quantify the
plasticity of predominantly clayey soils; this will tell if a soil contains clay and
if so, how much.

As also noted in Section 2.1, particles classified as being “clay” on the
basis of their size may not necessarily contain clay minerals. Nonclay soils
typically contain quartz, feldspar, or mica particles that are small enough to
be less than 0.002 mm (2 mm) in size. It is thus appropriate for particles
smaller than 0.002 or 0.005 mm to be called “clay-size” particles rather than
clay.
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Unlike gravels and sands that consist exclusively of quartz and feldspar,
clays are composed of silicate members that can have different mineralogy.
The predominant clay minerals are kaolinite, illite, and montmorillonite.

Clay particles are plate-like (flakey); i.e., they have a sheet-like shape.
Table 2.4 lists some typical dimensions for the above clay minerals.

The faces of clay particles are negatively charged, and their edges are
positively charged (Figure 2.2A). As a result, clay particles attract water
molecules (dipoles), creating layers of tightly bound adsorbed water
(Figure 2.2B).

In light of the above discussion, it is evident that gradation alone (e.g.,
sieve analysis) is insufficient to classify fine-grained soils. This is because the
behavior of clays is affected by (1) Mineralogy (it controls the particle surface
characteristics), and (2) Specific surface (i.e., surface area per unit mass of a
dry particle), which determines the particle shapes. Table 2.5 presents some
approximate specific surface values.

TABLE 2.4 Dimensions of Typical Clay Plateletsa

Clay Mineral

Ratio of

Dimensions

Range of Lengths and

Breadths (� 10�10 m)

Range of

Thicknesses

(� 10�10 m)

Kaolinite 10:10:1 1000e2000 100e1000

Illite 20:20:1 1000e5000 50e5000

Montmorillonite 100:100:1 1000e5000 10e50

aHough, B.K.,1957. Basic Soils Engineering. The Ronald Press Company, New York, NY.

FIGURE 2.2 Schematic illustration of a typical clay particle: (A) surface charges, (B) adsorbed

water layer.
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Both mineralogy and specific surface are needed to properly classify clays.
However, the measurement of both of these quantities is not practical for
standard engineering applications. Instead, the nature of clays needs to be
described by determining the degree of plasticity, which is attributed to the
adsorbed water layers that surround a clay particle (Figure 2.2B).

2.4 ATTERBERG LIMITS

The Atterberg limits are a basic measure of the nature or consistency of a fine-
grained soil. These limits correspond to specific values of moisture content
(w). They were created by Albert Atterberg (1910) and later refined by Arthur
Casagrande (1927). The Atterberg limits can be used to distinguish between a
silt and a clay. In addition, and they can distinguish between different types of
silts and clays.

Depending on the moisture content of the soil, it may appear in four states:
solid, semisolid, plastic, and liquid (Figure 2.3). In each state the consistency
and behavior of a soil is different and thus so are its engineering properties.
Thus, the boundary between each state can be defined based on a change in the
soil’s behavior.

2.4.1 Basic Definitions

The Atterberg limits consist of the following key values of moisture content:

l The Liquid Limit (LL) is the moisture content at which a fine-grained soil
no longer flows like a liquid.

l The Plastic Limit (PL) is the moisture content at which a fine-grained soil
can no longer be remolded without cracking.

l The Shrinkage Limit (SL) is the moisture content at which a fine-grained
soil no longer changes volume upon dryingdany loss of moisture is
compensated by the entry of air into the pores.

TABLE 2.5 Approximate Values of Specific

Surface for Common Clay Mineralsa

Soil Particle Specific Surface (m2/g)

Clean sand 0.0002

Kaolinite 10e20

Illite 65e100

Montmorillonite Up to 840

aGrim, R.E., 1959. Physico-chemical properties of soils: clay
minerals. Journal of the Soil Mechanics and Foundations
Division, ASCE 85 (SM2), 1e17.
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Remark: Whereas the LL and PL limits are arbitrary limits, the SL is a definite limit

for a given soil.

Remark: The SL is useful for determining the swelling and shrinkage capacity of

soils. In general, “soils that swell a lot will also shrink a lot.”

Remark: Since the Atterberg limit tests are performed on remolded samples, the

previous stress history of the soil is completely removed.

The Atterberg limits are useful in that they allow for soil behavior to be
inferred. For example, soil having similar LL and plasticity index (PI) will

FIGURE 2.3 Schematic illustration of material states in a soil.
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typically have similar strength/water content relationships. Thus, if such a
relationship is known for one soil, it can be inferred for a soil with similar
Atterberg limits.

2.4.2 Derived Limits

The values of these limits are computed from the Atterberg limits (i.e., from
LL, PL, and SL). There is also a close relationship between the limits and
properties of a soil such as compressibility, permeability, and strength. This is
thought to be very useful because as the determination of Atterberg limits is
relatively simple, it is more difficult to determine compressibility, perme-
ability, and strength. The Atterberg limits are thus not only used to identify the
soil’s classification, but also allow for the use of empirical correlations for
some other important engineering properties.

2.4.2.1 Plasticity Index

The PI is defined as the range of moisture contents over which the soil deforms
plastically. The PI is thus defined to be the difference between the LL and the
PL; i.e.,

PI ¼ LL� PL (2.19)

The PI thus is a measure of the plasticity of a soil. As such, the PI
determines the amount and type of clay present in a soil. In general,

l Soils with a high PI tend to be clay,
l Those with a lower PI tend to be silt, and
l Those with a PI near zero tend to have little or no silt or clay (fines)

present.

2.4.2.2 Liquidity Index

The liquidity index (LI) is used for scaling the natural water content of a soil
sample to the limits. It is defined as follows:

LI ¼ w� PL

LL� PL
¼ w� PL

PI
(2.20)

where w is the natural water content. The LI serves as a measure of soil
strength. In particular,

l If LI < 0, the soil is in a semisolid state characterized by high strength and
brittle response characterized by sudden fracture of the soil.

l If 0 < LI < 1, the soil is in a plastic state characterized by intermediate
strength; it deforms like a plastic material.

l If LI > 1, the soil is in a liquid state characterized by low strength; it
deforms like a viscous fluid.
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Sensitive clays are ones that, when remolded, can be transformed into a
viscous form that will flow like a fluid. For such soils the in situ moisture
content may be greater than the LL, implying that LI > 1.

2.4.2.3 Activity

If a small amount of sand is added to a clay, the LL and PL for the soil will
decrease. The LL and PL are thus functions of not only the type of clay
present, but also the amount of clay present.

Skempton3 observed that the PI of a given soil increased approximately
linearly with the percent of clay-size fraction. He defined the activity of a
clay as

A ¼ PI

percent of clay e size fraction
(2.21)

where the percent of clay-size fraction equals the percent by weight finer than
0.002 mm.

From the activity it is often possible to predict the dominant clay mineral
present in a soil sample, and thus indirectly the specific surface. Table 2.6
gives ranges of activity values associated with the three most common clay
minerals.

l For 0:75 � A � 1:25, the clay is considered to be “normal”.
l For A < 0.75, the clay is considered to be “inactive”.
l For A > 1.25, the clay is considered to be “active”.

Remark: Soils with high activity are very reactive chemically.

Remark: High activity signifies large volume increase in a soil that is wetted

and large shrinkage when it is dried.

Remark: Graphically, the activity is the slope of a straight line drawn on a

figure with PI as the ordinate and percentage of clay-size fraction as the abscissa.

Such lines will not always pass through the origin.

3. Skempton, A.W., 1953. The Colloidal Activity of Clays. In: Proceedings of the Third Inter-

national Conference on Soil Mechanics and Foundation Engineering (I), 57e61.
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2.5 SOIL CLASSIFICATION

To describe soils more effectively based on particle size distributions, plas-
ticity, etc., several soil classifications schemes have been developed. In this
section the Unified Soil Classification System (USCS) is briefly reviewed.
Additional details pertaining to this soil classification system are found in most
soil mechanics textbooks.

The USCS uses the following prefix symbols to describe the various soil
groups:

G ¼ gravel or gravelly soil.
S ¼ sand or sandy soil.
M ¼ inorganic silt.
C ¼ inorganic clay.
O ¼ organic4 silt or clay.
Pt ¼ peat, muck, and other highly organic soils.

The above symbols are combined with the following descriptor symbols:

W ¼ well graded.
P ¼ poorly graded.
L ¼ low plasticity (LL < 50%).
H ¼ high plasticity (LL � 50%).

Thus, SP denotes a poorly graded sand; CL denotes a clayey soil with low
plasticity, etc. Such combinations of symbols constitute the following group
symbols:
l For coarse-grained soils (i.e., those with more than 50% retained on the

No. 200 sieve):
The following symbols are used to classify gravels (“G” prefix):

GW ¼ well-graded gravel.

TABLE 2.6 Typical Values of Liquid Limit, Plastic Limit,

and Activity

Clay Mineral LL PL Activity (A)

Kaolinite 35e100 20e40 0.3e0.5

Illite 60e12 35e60 0.5e1.3

Montmorillonite 100e900 50e100 1.5e7.0

4. Organic matter is matter that comes from a once-living organism; it is capable of decay, or is the

product of decay, or is composed of organic compounds. In a decaying material Ws and Vs may

decrease with time.
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GP ¼ poorly graded gravel.
GM ¼ silty gravel (i.e., nonclay fines).
GC ¼ clayey gravel.

In addition, the description of gravels with 5% to 12% fines requires the
following dual symbols:
GW-GM ¼ well-graded gravel with silt.
GW-GC ¼ well-graded gravel with clay.
GP-GM ¼ poorly graded sand with silt.
GP-GC ¼ poorly graded sand with clay.

The following symbols are used to classify sand (“S” prefix):
SW ¼ well-graded sand.
SP ¼ poorly graded sand.
SM ¼ silty sand (i.e., nonclay fines).
SC ¼ clayey sand.

In addition, the description of sand with 5% to 12% fines requires the
following dual symbols:
SW-SM ¼ well-graded sand with silt.
SW-SC ¼ well-graded sand with clay.
SP-SM ¼ poorly graded sand with silt.
SP-SC ¼ poorly graded sand with clay.

l For fine-grained soils (i.e., those with 50% or more passing No. 200 sieve):
For silts and clays with LL < 50%:

ML ¼ inorganic silt.
CL ¼ inorganic clay.
OL ¼ organic silt and organic clay.

For silts and clays with LL � 50%:
MH ¼ inorganic silt.
CH ¼ inorganic clay.
OH ¼ organic silt and organic clay.

In addition, fines may be classified as CL-ML.

Fine-grained soils (i.e., silts and clays) are classified according to their
Atterberg limits and whether or not they contain organic matter. Figure 2.4
shows the plasticity chart developed by Casagrande5, based on the results of
tests performed on soils from throughout the world.

In Casagrande’s plasticity chart a value of LL ¼ 50% delineates low
plasticity silts and clays from high plasticity ones. In Figure 2.4 this dividing
value is represented by the so-called “B-line”.

5. Casagrande, A., 1948. Classification and Identification of Soils. Transactions, ASCE 113,

901e930.
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The “A-line” in Figure 2.4 is defined by

PI ¼ 0:73ðLL� 20Þ (2.22)

where LL and PI are expressed in percent. It represents the boundary between
inorganic and organic soils.

The “U-line” in Figure 2.4 is defined by

PI ¼ 0:9ðLL� 8Þ (2.23)

where LL and PI are again expressed in percent. It represents the upper limit of
the correlation between PI and LL for any currently known fine-grained soil.

EXAMPLE PROBLEM 2.1

General Remarks

This example problem illustrates the manner in which data from sieve analyses
are manipulated so as to construct a particle-size distribution curve.

Problem Statement

A sieve analysis was performed on a clean gravelly sand. The first three
columns of Table Ex. 2.1A summarize the data from this analysis. Given these
data,

FIGURE 2.4 Classification of fine-grained soils on Casagrande’s plasticity chart.
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a) Plot the particle-size distribution curve, and,

b) Determine the coefficient of uniformity (Cu) and the coefficient of
gradation (Cc).

Solution

a) The fourth column shows how the cumulative mass of soil retained on a
given sieve is computed. In the fifth column is the percent finer than a
given sieve size, which is computed as follows:

%finer ¼
�
Mtotal �Mcumulative

Mtotal

�
� 100% (2.1.1)

where Mcumulative and Mtotal are the cumulative mass of soil retained on
sieve and the total mass, respectively.

Remark: The above calculations are particularly well suited for being performed

using a spreadsheet.

TABLE EX. 2.1A Results of Sieve Analyses Performed on a Clean

Gravelly Sand

Sieve

Number

Sieve

Opening

(mm)

Mass of Soil

Retained (g)

Cumulative Mass

of Soil Retained

on Sieve (g)

Percent

Finer Than

a Given

Sieve Size

4 4.75 0 0 100.0

7 2.80 492 0 þ 492 ¼ 492 77.7

18 1.00 898 492 þ 898 ¼ 1390 37.0

40 0.425 295 1390 þ 295 ¼ 1685 23.7

50 0.355 213 1685 þ 213 ¼ 1898 14.0

80 0.180 130 1898 þ 130 ¼ 2028 8.2

170 0.090 160 2028 þ 160 ¼ 2188 0.9

Pan e 20 2188 þ 20 ¼ 2208 0.0

Total e 2208 e e
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Figure Ex. 2.1 shows the particle size distribution for the clean gravelly
sand.

From Figure Ex. 2.1 the diameters corresponding to 60% finer (D60), 30%
finer (D30), and 10% finer (D10) are found to be approximately 1.90, 0.70, and
0.22 mm, respectively. The coefficient of uniformity is thus

Cu ¼ D60

D10
¼ 1:90

0:22
¼ 8.6 (2.1.2)

Finally, coefficient of gradation is

Cc ¼ ðD30Þ2
D10D60

¼ ð0:70Þ2
ð0:22Þð1:90Þ ¼ 1.17 (2.1.3)

EXAMPLE PROBLEM 2.2

General Remarks

This example problem further illustrates the manner in which particle-size
distribution curves are drawn, and the coefficients that are computed from
them.

FIGURE EX. 2.1 Particle size distribution for a clean gravelly sand.
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Problem Statement

Sieve analyses were performed on two soils. Table Ex. 2.2 summarizes the
results of these analyses. For each soil,

a) Plot the particle-size distribution curve, and,

b) Determine the coefficient of uniformity (Cu) and the coefficient of
gradation (Cc).

Solution

Figure Ex. 2.2A shows the particle size distribution for the glacial till.
From Figure Ex. 2.2A the diameters corresponding to 60% finer (D60),

30% finer (D30), and 10% finer (D10) are found to be 0.300, 0.040, and
0.007 mm, respectively. The coefficient of uniformity is thus

Cu ¼ D60

D10
¼ 0:300

0:007
¼ 42.9 (2.2.1)

Finally, coefficient of gradation is

Cc ¼ ðD30Þ2
D10D60

¼ ð0:040Þ2
ð0:007Þð0:300Þ ¼ 0.76 (2.2.2)

Figure Ex. 2.2B shows the particle size distribution for the inorganic silt.

TABLE EX. 2.2 Results of Sieve Analyses Performed on Two Soils

Glacial Till Inorganic Silt

Particle Size (mm) Percent Finer Particle Size (mm) Percent Finer

0.295 97 0.074 96

0.147 94 0.050 89

0.074 69 0.030 72

0.055 48 0.015 47

0.035 22 0.095 34

0.025 6 0.0045 18

0.015 1 0.0015 8

70 Soil Mechanics



FIGURE EX. 2.2A Particle size distribution for a glacial till.

FIGURE EX. 2.2B Particle size distribution for an inorganic silt.
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From Figure Ex. 2.2B the diameters corresponding to 60% finer (D60), 30%
finer (D30), and 10% finer (D10) are found to be 0.022, 0.008, and 0.002 mm,
respectively. The coefficient of uniformity is thus

Cu ¼ D60

D10
¼ 0:022

0:002
¼ 11.0 (2.2.3)

Finally, coefficient of gradation is

Cc ¼ ðD30Þ2
D10D60

¼ ð0:008Þ2
ð0:002Þð0:022Þ ¼ 1.46 (2.2.4)

EXAMPLE PROBLEM 2.3

General Remarks

This example problem investigates the relationship between the initial sus-
pension density (f0), the specific gravity of solids (Gs) and the initial con-
centration in a hydrometer analysis.

Problem Statement

Since the total weight (W) and total volume (V) of a sample are known, and
since all of the soil is in suspension at the outset of a hydrometer test, the
initial concentration is likewise known. Determine (a) a general relationship
between f0, W, and V, and (b) the initial suspension density for a liter sus-
pension containing 49 g of soil with a specific gravity of solids equal to 2.73.

Solution

a) Since the sample is saturated, its volume and weight are related in the
manner shown in Figure Ex. 2.3.

From the definition of the specific gravity of solids,

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

(2.3.1)

Thus,

Vw ¼ V � Vs ¼ V � Ws

Gsgw

(2.3.2)

From the definition of the unit weight of water,

gw ¼ Ww

Vw
0 Ww ¼ gwVw ¼ gw

�
V � Ws

Gsgw

�
¼ Vgw �Ws

Gs
(2.3.3)
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The initial suspension density is thus

f0 ¼
Ws þWw

V
¼

Ws þ
�
Vgw �Ws

Gs

�
V

¼ Ws

V

�
1� 1

Gs

�
þ gw (2.3.4)

Recalling the definition of the dry unit weight given in Eq. (1.9); i.e.,

gd ¼
Ws

V
(2.3.5)

The initial suspension density can likewise be written as

f0 ¼ gd

�
1� 1

Gs

�
þ gw (2.3.6)

b) The initial suspension density for a liter suspension containing 49 g of soil
with a specific gravity of solids equal to 2.73 is thus

f0 ¼
ð49 gÞ

ð1000 cm3Þ
�
1� 1

2:73

�
þ �

1:0g
�
cm3

� ¼ 1.031g=cm3 (2.3.7)

EXAMPLE PROBLEM 2.4

General Remarks

This example problem illustrates the sample calculations that are performed
for a hydrometer analysis that was run using an ASTM 152-H hydrometer
(Figure Ex. 2.4A).

FIGURE EX. 2.3 Phase relationship associated with a hydrometer test.

Soil Identification and Classification Chapter j 2 73



Problem Statement

Given the soil data shown in Table Ex. 2.4A, the hydrometer calibration
information in Table Ex. 2.4B, and the results of a hydrometer test shown in
Table Ex. 2.4C, draw the grain size distribution curve for the soil.

FIGURE EX. 2.4A Hydrometer in a soil suspension.

TABLE EX. 2.4A Soil Data Associated With a

Hydrometer Analysis

Mass Retained on No. 200 Sieve 0.0 g

Mass in suspension (Ms) 48.0 g

Specific gravity (Gs) 2.70

Meniscus correction (Fm) 0.5 g/L

Dispersing agent correction (Fz) 4.0 g/L

Diameter of sedimentation cylinder 5.95 cm

Hydrometer bulb volume 67 cm3
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Solution

Some preliminary calculations are first performed. The specific gravity
correction is

a ¼ 1:65Gs

2:65ðGs � 1Þ ¼
1:65ð2:70Þ

2:65ð2:70� 1Þ ¼ 0:989 (2.4.1)

The cross-sectional area of the sedimentation cylinder is

Ac ¼ p

4
ð5:95 cmÞ2 ¼ 27:8 cm2 (2.4.2)

The general expression for the effective length is now specialized for the
ASTM 152-H hydrometer, as follows:

L1 ¼ 10:5�
�
10:5� 2:3

50

�
RCL; L2 ¼ 14 cm (2.4.3)

Then,

L ¼ L1 þ 1

2

�
L2 � Vb

Ac

�
¼ 10:5�0:164RCL þ 1

2

�
14:0� 67 cm3

27:8 cm2

�
¼ 16:295� 0:164RCL

(2.4.4)

TABLE EX. 2.4B Hydrometer Test Data

Time (min)

Hydrometer

Reading (g/L)

Temperature

(�C)

1 38 22.0

2 33 22.0

3 30 21.5

4 28 21.5

8 25 21.5

15 23 21.0

30 21 21.0

60 19 21.0

240 15 19.5

900 12 18.5
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TABLE EX. 2.4C Results of Hydrometer Analysis Calculations

Time (min) R (g/L) Temperature (�C) Ft RCP (g/L) % Finer RCL (g/L) L (cm) K D (mm)

1 38 22.0 0.485 34.49 71.05 38.50 9.98 0.01312 0.04145

2 33 22.0 0.485 29.49 60.75 33.50 10.80 0.01312 0.03049

3 30 21.5 0.364 26.36 54.31 30.50 11.29 0.01312 0.02545

4 28 21.5 0.364 24.36 50.19 28.50 11.62 0.01312 0.02236

8 25 21.5 0.364 21.36 44.01 25.50 12.11 0.01312 0.01614

15 23 21.0 0.243 19.24 39.64 23.50 12.44 0.01312 0.01195

30 21 21.0 0.243 17.24 35.52 21.50 12.77 0.01312 0.00856

60 19 21.0 0.243 15.24 31.40 19.50 13.10 0.01312 0.00613

240 15 19.5 �0.121 10.88 22.41 15.50 13.75 0.01312 0.00314

900 12 18.5 �0.364 7.64 15.73 12.50 14.24 0.01312 0.00165

Notes: Meniscus correction (Fm) ¼ 0.5 g/L, Dispersing agent correction (Fz) ¼ 4.0 g/L.
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For the first hydrometer reading, R ¼ 38 g/L at a temperature of 22.0�C.
The temperature correction for this reading is thus

FT ¼ �4:85þ 0:2425T ¼ �4:85þ 0:2425ð22:0Þ ¼ 0:485 (2.4.5)

The corrected hydrometer reading for percent finer is then

RCP ¼ Rþ FT � Fz ¼ 38þ 0:485� 4:0 ¼ 34:49g=L (2.4.6)

The percent finer is next computed as follows:

%finer ¼
�
aRCP

Ms

�
� 100% ¼

�ð0:989Þð34:49g=LÞ
48:0g

�
� 100% ¼ 71.05%

(2.4.7)

The corrected hydrometer reading for determination of effective length is
next computed as follows:

RCL ¼ Rþ Fm ¼ 38þ 0:5 ¼ 38:5 g=L (2.4.8)

The effective length corresponding to RCL is then

L ¼ 16:295�0:164ð38:5g=LÞ ¼ 9:981 cm (2.4.9)

The value of K must next be computed. At 22.0�C the viscosity of water is
equal to 9.754 � 10�6 (g s)/cm2, thus

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30h

ðGs � 1Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30ð9:754� 10�6g s=cm2Þ

ð2:70� 1Þ

s
¼ 1:312� 10�2 (2.4.10)

Finally, the particle diameter is computed as follows:

D ¼ K

ffiffiffi
L

t

r
¼ �

1:312� 10�2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9:981 cm

1:0 min

r
¼ 0.0414 mm (2.4.11)

The percent finer value computed above, and the particle diameter, defines
a point on the grain size distribution curve. Table Ex. 2.4C summarizes the
results computed for all of the hydrometer readings.

Figure Ex. 2.4B shows the particle size distribution curve that was
developed using data from the above hydrometer analysis.

EXAMPLE PROBLEM 2.5

General Remarks

This example problem illustrates how the liquid limit is computed using data
obtained from a Casagrande device.
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Problem Statement

A series of Atterberg limit tests was performed on samples of a grayebrown
silty clay. Table Ex. 2.5A summarizes the results of four liquid limit tests.
Using this data,

a) Draw the flow curve for the soil.

b) Determine the flow index for the soil.
c) Calculate the liquid limit.

d) Calculate the plasticity index for the soil.

In the same series of Atterberg limit tests, the average plastic limit (wPL)
was found to be 38.5%.

FIGURE EX. 2.4B Particle size distribution curve from hydrometer analysis.

TABLE EX. 2.5A Liquid Limit Data Obtained From a Casagrande Device

Trial Number 1 2 3 4

Number of blows 24 37 27 22

Weight of wet sample þ container (g) 22.50 25.94 25.86 25.27

Weight of dry sample þ container (g) 18.89 21.10 21.59 20.96

Weight of container (g) 14.12 14.61 15.82 15.34
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Solution

Consider trial number 1. The weight of the pore fluid is first computed as
follows:

Ww ¼ 22:50� 18:89 ¼ 3:61 g (2.5.1)

The weight of the solid phase is next computed

Ws ¼ 18:89� 14:12 ¼ 4:77 g (2.5.2)

The moisture content for trial number 1 is thus

w ¼
�
3:61 g

4:77 g

�
� 100% ¼ 75:7% (2.5.3)

Similar calculations are performed for the remaining three trials.
Table Ex 2.5B lists the complete results for all four trials.

a) To construct the flow curve, the moisture content is plotted versus the
number of blows (in logarithmic scale). Figure Ex. 2.5 shows the resulting
curve.

b) The flow index for the soil is equal to the absolute value of the slope of the
flow curve. As such, it is equal to 0.146.

c) The liquid limit is then the moisture content corresponding to 25 blows.
In this case,

wLL z 75.5% (2.5.4)

d) The plasticity index (Ip) is the difference between the liquid limit and the
plastic limit. It represents the range of moisture content over which the

TABLE EX. 2.5B Computed Values Obtained Using Liquid Limit Data

Obtained From a Casagrande Device

Trial Number 1 2 3 4

Number of blows 24 37 32 22

Weight of wet sample þ container (g) 22.50 25.94 25.86 25.27

Weight of dry sample þ container (g) 18.89 21.10 21.59 20.96

Weight of container (g) 14.12 14.61 15.82 15.34

Weight of pore fluid (g) 3.61 4.84 4.27 4.31

Weight of solid phase (g) 4.77 6.49 5.77 5.62

Moisture content (%) 75.7 74.6 74.0 76.7
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soil behaves plastically (i.e., it is moldable). The value of Ip is important
in classifying fine-grained soils. For the soil in question, the plasticity
index is

Ip ¼ wLL � wPL ¼ 75:5� 38:5 ¼ 37.0% (2.5.5)

EXAMPLE PROBLEM 2.6

General Remarks

The liquid limit can also be computed using data obtained from a cone
penetrometer.

Problem Statement

Given data obtained as a result of a liquid limit test (Table Ex. 2.6),

a) Draw the flow curve for the soil.

b) Determine the flow index for the soil.
c) Calculate the liquid limit.

d) Calculate the plasticity index for the soil.

In the same series of Atterberg limit tests, the plastic limit (wPL) was found
to be 27.2%.

FIGURE EX. 2.5 Flow curve obtained from a Casagrande device.
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Solution

a) To construct the flow curve, the moisture content is plotted versus the
penetration. Figure Ex. 2.6 shows the resulting curve.

b) The flow index for the soil is equal to the absolute value of the slope of the
flow curve. As such, it is equal to 0.236.

c) The liquid limit is then the moisture content corresponding to 20 mm
penetration. Thus,

wLL z 38.5% (2.6.1)

d) Finally, the plasticity index is

Ip ¼ wLL � wPL ¼ 38:5� 27:2 ¼ 11.3% (2.6.2)

TABLE EX. 2.6 Liquid Limit Data Obtained From a

Cone Penetrometer

Specimen Moisture Content (%) Penetration (mm)

1 37.2 16

2 39.1 27

3 44.3 36

4 46.0 54

5 49.8 69

FIGURE EX. 2.6 Flow curve obtained from a cone penetrometer.
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EXAMPLE PROBLEM 2.7

General Remarks

The shrinkage limit is investigated in this problem. As a saturated soil is
slowly dried, capillary menisci form between the individual soil particles. As a
result, the interparticle (effective) stresses increase, and the soil decreases in
volume. A point is eventually reached where this volume change stops, even
though the degree of saturation is still essentially 100%. The moisture content
at which this occurs is defined as the shrinkage limit (wSL), which, as noted
above, is one of the Atterberg limits.

Figure Ex 2.7 shows the relation between the total weight and total volume
of the soil. In this figure Wi and Vi denote the initial weight and volume of the
saturated soil. The weight and volume associated with the shrinkage limit are
WSL and Vdry, respectively. Finally, Ws and Vs again denote the weight and
volume of the solid phase. The values of Wi, Vi, Ws, and Vdry are easily
measured in the laboratory.

By definition, the shrinkage limit is given by

wSL ¼
�
WSL �Ws

Ws

�
� 100% (2.7.1)

Since the soil is essentially saturated, it follows that

Wi �WSL ¼ gwðVi � VdryÞ 0 WSL ¼ Wi �gwðVi � VdryÞ (2.7.2)

Substituting this result into the previous equation gives the following
expression for wSL:

wSL ¼
�
Wi �gwðVi � VdryÞ �Ws

Ws

	
� 100%

¼
�
Wi �Ws �gwðVi � VdryÞ

Ws

	
� 100% ¼ wi �

�
gwðVi � VdryÞ

Ws

	
� 100%

(2.7.3)

where wi is expressed in percent.

FIGURE EX. 2.7 Relationship between volume and weight associated with the shrinkage limit.
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Problem Statement

To illustrate the use of the above equation, consider the following laboratory
data:

l Weight of wet sample þ container ¼ 40.64 g
l Weight of dry sample þ container ¼ 30.42 g
l Weight of container ¼ 18.36 g
l Initial volume of soil (Vi) ¼ 15.07 cm3

l Volume of soil after drying (Vdry) ¼ 7.12 cm3

Compute the shrinkage limit for the above data.

Solution

The weight of the pore fluid is thus

Ww ¼ 40:64� 30:42 ¼ 10:22 g (2.7.4)

The weight of the solid is

Ws ¼ 30:42� 18:36 ¼ 12:06 g (2.7.5)

The initial moisture content is thus (recall Eq. 1.14)

wi ¼
�
Ww

Ws

�
� 100% ¼

�
10:22 g

12:06 g

�
� 100% ¼ 84:7% (2.7.6)

Using the above values in Eq. (2.7.3), the shrinkage limit is thus

wSL ¼ wi �
�
gwðVi � VdryÞ

Ws

	
� 100%

¼ 84:7%�
�ð1:0g=cm3Þð15:07� 7:12 cm3Þ

12:06 g

	
� 100%

¼ 18.8%

(2.7.7)

Two quantities related to the shrinkage limit are sometimes also computed.
The first quantity is the linear shrinkage ratio

LS ¼ 1�
�
Vdry

Vi

�1
3

(2.7.8)

The second quantity is the shrinkage ratio,

SR ¼ Ws

Vdrygw

(2.7.9)

For the given data, Eqs. (2.7.8) and (2.7.9) give

LS ¼ 1�
�
7:12 cm3

15:07 cm3

�1
3

¼ 0.22 (2.7.10)
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SR ¼ Ws

Vdrygw

¼ 12:06 g

ð7:12 cm3Þð1:0g=cm3Þ ¼ 1.69 (2.7.11)

The next several problems give additional insight into some computations
related to the Atterberg limits.

EXAMPLE PROBLEM 2.8

General Remarks

This example problem illustrates the computation of the shrinkage limit.

Problem Statement

In a test to determine the shrinkage limit of a cohesive soil, after drying, a
sample had a volume of 50 cm3 and a weight of 88.0 g. The specific gravity of
solids was 2.71. Determine the shrinkage limit (wSL).

Solution

Referring to Figure Ex 2.7, from the given information Ws ¼ 88.0 g. From the
definition of the specific gravity of solids,

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

¼ 88:0 g

ð2:71Þð1:0g=cm3Þ ¼ 32:47 cm3 (2.8.1)

Since the soil is assumed to be saturated, the volume of the pore fluid is
thus

Vw ¼ 50:0 cm3 � Vs ¼ 50:0� 32:47 ¼ 17:53 cm3 (2.8.2)

The weight of the pore fluid at the shrinkage limit is thus

Ww ¼ Vwgw ¼ �
17:53 cm3

��
1:0g=cm3

� ¼ 17:53 g (2.8.3)

The shrinkage limit is thus

wSL ¼
�
Ww

Ws

�
� 100% ¼

�
17:53 g

88:0 g

�
� 100% ¼ 21.9% (2.8.4)

EXAMPLE PROBLEM 2.9

General Remarks

This example problem illustrates some of the calculations that are performed
using Atterberg limits.

Problem Statement

The liquid limit (wLL) of a clay soil is 54%, and its plasticity index (IP) is 15%.
(a) What is the plastic limit (wPL) of the soil? (b) In what state of consistency
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is this material at a moisture content of 40%? (c) At the minimum volume
reached during shrinkage, a sample of this soil has a void ratio of 0.87. If
the specific gravity of solids is equal to 2.72, compute the shrinkage limit (wSL).

Solution

a) The plastic limit is computed from the definition of the plasticity index as
follows:

IP ¼ wLL � wPL 0 wPL ¼ wLL � IP ¼ 54� 15 ¼ 39% (2.9.1)

b) Since 40% > 39%, it follows that the soil is still plastic.
c) Since, at the minimum volume reached during shrinkage the soil is

assumed to be saturated, the moisture content associated with the shrinkage
limit is thus

wSL ¼
�

e

Gs

�
� 100% ¼

�
0:87

2:72

�
� 100% ¼ 32.0% (2.9.2)

EXAMPLE PROBLEM 2.10

General Remarks

This example problem illustrates some of the calculations involving the
shrinkage limit.

Problem Statement

A clay soil has a liquid limit of 60% and a shrinkage limit of 25%. If a
specimen of this soil shrinks from an initial volume of 10.0 cm3 at the liquid
limit to a volume of 6.39 cm3 at the shrinkage limit, what is the specific gravity
of solids (Gs)?

Letting wLL and wSL denote the liquid and shrinkage limits, respectively,
the moisture content for both limits is thus

wLL ¼ WwL

Ws
0 WwL

¼ wLLWs (2.10.1)

wSL ¼ WwS

Ws
0 WwS

¼ wSLWs (2.10.2)

Since the soil is assumed to be saturated, the change in the weight of the
fluid phase is given by

DWw ¼ ðWwL
�WwS

Þ ¼ gwðVLL � VdryÞ (2.10.3)

Substituting for the weight of the fluid gives

DWw ¼ ðwLL � wSLÞWs ¼ gwðVLL � VdryÞ 0 Ws ¼ gwðVLL � VdryÞ
wLL � wSL

(2.10.4)
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The next quantity required to compute Gs is the volume of the solid phase
(Vs). The volume of the pore fluid at the shrinkage limit is first computed

VwS
¼ WwS

gw

¼ wSLWs

gw

¼ wSLðVLL � VdryÞ
wLL � wSL

(2.10.5)

Since the soil is saturated,

Vs ¼ Vdry � VwS
¼ Vdry � wSLðVLL � VdryÞ

wLL � wSL
¼ VdrywLL � VLLwSL

wLL � wSL
(2.10.6)

The specific gravity of solids is thus

Gs ¼ Ws

Vsgw

¼ gwðVLL � VdryÞ
ðwLL � wSLÞ

ðwLL � wSLÞ
ðVdrywLL � VLLwSLÞgw

¼ VLL � Vdry

VdrywLL � VLLwSL

(2.10.7)

Substituting for all of the known quantities gives

Gs ¼ ð10:0� 6:38Þcm3

ð6:38 cm3Þð0:60Þ �ð10:0 cm3Þð0:25Þ ¼ 2.73 (2.10.8)

EXAMPLE PROBLEM 2.11

General Remarks

This example problem illustrates the use of quantities derived from the
Atterberg limits.

Problem Statement

A fine-grained soil has a liquid limit (LL) of 110% and a plastic limit (PL) of
56%. The clay content is 68% and the field moisture content of the soil is 60%.

a) Compute the plasticity index (PI), the liquidity index (LI), and the activity
(A).

b) What is the predominant mineral in the soil?
c) What is the soil state in the field?

Solution

a) The PI is

PI ¼ 110� 56 ¼ 54% (2.11.1)
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The LI is

LI ¼ w� PL

PI
¼ 60� 56

54
¼ 0.074 (2.11.2)

The activity is

A ¼ PI

percent of clay e size fraction
¼ 54

68
¼ 0.79 (2.11.3)

b) Based on the activity, the predominant mineral is illite.
c) Since the field moisture content is greater than the PL but is less than the

LL, it follows that the soil is in a plastic state. This is also confirmed by the
fact that the LI falls in the range 0 < LI < 1.

EXAMPLE PROBLEM 2.12

General Remarks

This example problem illustrates some of the calculations involving the
shrinkage limit.

Problem Statement

A saturated sample of clay has a field moisture content (w) of 32% and a
shrinkage limit (SL) of 20%. What is the ratio of the dry volume (Vdry) of the
sample to its original (natural) volume (V) if Gs ¼ 2.67?

Solution

For the field conditions, from the general definition of the moisture content
given in Eq. (1.14),

w ¼ Ww

Ws
0 Ww ¼ wWs (2.12.1)

The total volume of the saturated soil in the field is thus

V ¼ Vw þ Vs ¼ Ww

gw

þ Ws

Gsgw

(2.12.2)

Since the weight of the solid phase remains unchanged in the SL test,
combine the two above equations so as to eliminate Ww, giving

V ¼ Ww

gw

þ Ws

Gsgw

¼ Ws

gw

�
wþ 1

Gs

�
(2.12.3)
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At the SL,

wSL ¼ WwSL

Ws
0 WwSL

¼ wSLWs (2.12.4)

The total volume of the soil at the SL is thus

Vdry ¼ VwSL
þ Vs ¼ WwSL

gw

þ Ws

Gsgw

¼ Ws

gw

�
wSL þ 1

Gs

�
(2.12.5)

The desired ratio of volumes is thus

Vdry

V
¼

Ws

gw

�
wSL þ 1

Gs

�
Ws

gw

�
wþ 1

Gs

� ¼
wSL þ 1

Gs

wþ 1

Gs

(2.12.6)

Substituting the given values of w, wSL, and Gs gives the desired result; i.e.,

Vdry

V
¼

wSL þ 1

Gs

wþ 1

Gs

¼
0:20þ 1

2:67

0:32þ 1

2:67

¼ 0.83 (2.12.7)

Alternate Solution

It is also possible to solve this problem beginning with the following
expression for the dry unit weight (recall Case 1.4 in Chapter 1)

gd ¼
Ws

V
¼ Gsgw

1þ e
0 Ws ¼

�
Gsgw

1þ e

�
V (2.12.8)

For the field conditions,

Ws ¼
�
Gsgw

1þ e

�
V (2.12.9)

At the SL,

Ws ¼
�

Gsgw

1þ eSL

�
Vdry (2.12.10)

Since the weight of the solid phase remains unchanged in the SL test, it
follows that�

Gsgw

1þ e

�
V ¼

�
Gsgw

1þ eSL

�
Vdry 0

Vdry

V
¼ 1þ eSL

1þ e
(2.12.11)
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Recalling Case 1.3 in Chapter 1, for saturated soil (S ¼ 100%), e ¼ wGs.
Thus,

Vdry

V
¼ 1þ eSL

1þ e
¼ 1þ wSLGs

1þ wGs
(2.12.12)

Eq. (2.12.12) is seen to be equivalent to Eq. (2.12.7).

EXAMPLE PROBLEM 2.13

General Remarks

This example problem illustrates how a soil is classified according to the
Unified Soil Classification System (USCS).

Problem Statement

A wet, dark brown soil that exudes an organic odor has 100% passing the
No. 200 sieve. The natural liquid limit (LL) for the soil is 39%, the oven-dried
liquid limit is 25%, and the plastic limit is 28%. Classify this soil according to
the USCS.

Solution

Since 100% of the soil passes the No. 200 sieve, it is fine grained.
Since the LL is less than 50%, the soil will have low plasticity.
The plasticity index (PI) for the soil is PI ¼ 39e28 ¼ 11%.
Figure Ex. 2.13 shows the location of the soil on Casagrande’s plasticity

chart.
The fact that the soil exudes an organic odor is consistent with the location

of the soil on the plasticity chart in Figure Ex. 2.13, and indicates that the soil
is organic.

Since

LLoven�dried

LLnatural
¼ 25

39
¼ 0:64 < 0:75 (2.13.1)

the appropriate USCS group symbol will thus be OL. The associated group
name will be organic clay.

EXAMPLE PROBLEM 2.14

General Remarks

This example problem illustrates how a soil is classified according to the
Unified Soil Classification System (USCS).
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Problem Statement

A sample of gravel with sand has 74% fine to coarse subangular gravel, 24%
coarse angular sand, and 2% fines. The maximum size of particles in the soil is
74 mm. The coefficient of curvature (Cc) is 2.7, and the coefficient of uni-
formity (Cu) is 12.6. Classify this soil according to the USCS.

Solution

Since the particle sizes in the soil do not exceed 75 mm, there are no cobbles
present.

Since less than 5% fines are present, the soil will be a “clean gravel.”
Since Cu > 4 and Cc < 3, the appropriate group symbol will thus be GW.
The associated USCS group name will be a well-graded gravel (with sand).

EXAMPLE PROBLEM 2.15

General Remarks

This example problem illustrates how a soil is classified according to the
Unified Soil Classification System (USCS).

Problem Statement

A sample of soil has 100% passing the No. 4 sieve and 75% passing the No.
200 sieve. The liquid limit (LL) for the soil was found to be 60%, while the
plasticity index (PI) was 24%. Classify this soil according to the USCS.

FIGURE EX. 2.13 Casagrande plasticity chart and location of current soil.
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Solution
Since more than 50% passes the No. 200 sieve, the soil is considered to be
“fine grained”.

The point on the A-line corresponding to LL ¼ 60% is

PIA�line ¼ 0:73ð60� 20Þ ¼ 29:2% (2.15.1)

Since the soil’s PI (24%) is less than 29.2%, it will plot below the A-line. As
such, the appropriate group symbol will thus be MH; i.e., a high plasticity silt.

In addition, since 25% was retained on the No. 200 sieve, and since 0%
was retained on the No. 4 sieve, the soil contains 25% sand.

The associated USCS group name will be elastic silt with sand.

EXAMPLE PROBLEM 2.16

General Remarks

This example problem illustrates how a soil is classified according to the
Unified Soil Classification System (USCS).

Problem Statement

A sample of soil has 60% passing the No. 4 sieve and 42% passing the No. 200
sieve. The liquid limit (LL) for the soil is 28%, and the plasticity index (PI) is
4.5%. Classify this soil according to the USCS.

Solution

Since less than 50% passes the No. 200 sieve, the soil is considered to be
“coarse grained”.

Since 60% > 50% passes the No. 4 sieve, the soil will be a sand.
The point on the A-line corresponding to LL ¼ 28% is

PIA�line ¼ 0:73ð28� 20Þ ¼ 5:8% (2.16.1)

Since the soil’s PI (4.5%) is less than 5.8%, it will plot below the A-line.
Since the percent fines (42%) exceed 12%, the soil will contain clay.

The appropriate group symbol will thus be SM-SC; i.e., a silty, clayey sand.
Since 58% was retained on the No. 200 sieve, the “coarse” fraction is 58%.

In addition, since 60% passed the No. 4 sieve, the gravel fraction ¼ 100e60
¼ 40%. Finally, the sand fraction ¼ 58e40 ¼ 18%.

The associated USCS group name will be silty, clayey sand with gravel.

EXAMPLE PROBLEM 2.17

General Remarks

This example problem illustrates how a soil is classified according to the
Unified Soil Classification System (USCS).
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Problem Statement

A sample of soil has 98% passing the No. 4 sieve and 74% passing the No. 200
sieve. The liquid limit (LL) for the soil is 58%, and the plasticity index (PI) is
30%. Classify this soil according to the USCS.

Solution

Since more than 50% passes the No. 200 sieve, the soil is considered to be
“fine grained.”

The point on the A-line corresponding to LL ¼ 58% is

PIA�line ¼ 0:73ð58� 20Þ ¼ 27:7% (2.17.1)

Since the soil’s PI (30%) exceeds 27.7%, it will plot above the A-line.
The appropriate group symbol will thus be CH; i.e., a high plasticity clay.
Since 100e74 ¼ 26% was retained on the No. 200 sieve, the “coarse”

fraction is 26%. In addition, since 98% passed the No. 4 sieve, the gravel
fraction ¼ 100e98 ¼ 2%. Finally, the sand fraction ¼ 26e2 ¼ 24%.

Since the percent gravel is less than 15%, the associated USCS group name
will be sandy fat clay.
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Chapter 3

Example Problems Related
to Compaction of Soils

3.0 GENERAL COMMENTS

Soil compaction is the densification (reduction in void ratio) of soil through the
expulsion of air from the voids. Compaction is one of the most popular
techniques for improving soils. The soil microfabric is forced into a denser
configuration by the reorientation of particles, and thus the expulsion of air
from the voids, as a result of some form of mechanical effort.

3.1 FUNDAMENTAL DEFINITIONS

Two of the key quantities used in solving problems involving compaction are
the moisture content (w) and the dry unit weight (gd). Recalling the definition
of the specific gravity of solids gives

Gs ¼ Ws

Vsgw

0 Ws ¼ GsVsgw (3.1)

Substituting this expression for Ws into the definition of the dry unit weight
and dividing through the resulting expression by Vs gives (recall Case 1.4 in
Chapter 1)

gd ¼
Ws

V
¼ GsVsgw

Vs þ Vv
¼ Gsgw

1þ e
(3.2)

Recalling the definition of the unit weight of water (gw ¼Ww /Vw), and that
of the moisture content, and substituting Eq. (3.1) gives

w ¼ Ww

Ws
¼ gwVw

GsVsgw

¼ Vw

GsVs
(3.3)

Recalling the definition of the degree of saturation gives

S ¼ Vw

Vv
0 Vw ¼ SVv (3.4)
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Substituting Eq. (3.4) into Eq. (3.3) gives the desired result (also recall
Case 1.3 in Chapter 1)

w ¼ Vw

GsVs
¼ SVv

GsV
¼ Se

Gs
0 e ¼ Gsw

S
(3.5)

Substituting this expression for the void ratio into Eq. (3.2) gives

gd ¼
Gsgw

1þ e
¼ Gsgw

1þ
�
Gsw

S

� ¼ gw

1

Gs
þ w

S

(3.6)

Remark: For a given soil (i.e., Gs), the smaller the void ratio (e), the greater will be

the dry unit weight (gd).

Remark: The maximum dry unit weight (i.e., gdmax
) is just another way of

expressing the minimum void ratio (i.e., emin) or minimum porosity (i.e., nmin).

The dry unit weight associated with saturation represents an upper limit in
that all air has been forced from the voids. Since now S ¼ 1.0, Eq. (3.6)
reduces to the so-called “zero air voids” (ZAV ) dry unit weight, i.e.,

gdZAV ¼ Gsgw

1þ Gsw
¼ gw

1

Gs
þ w

(3.7)

The definition of the dry unit weight of a soil is rewritten as follows (recall
Case 1.4 of Chapter 1):

gd ¼
Ws

V
¼ GsVsgw

Vs þ Vv
¼ Gsgw

1þ e
(3.8)

Solving for the void ratio gives

e ¼ Gsgw

gd

� 1 (3.9)

It follows that for a given soil (i.e., Gs), the void ratio is inversely
proportional to the dry unit weight. Thus, gdmax

corresponds to emin and gdmin

corresponds to emax, i.e.,

gdmin
¼ Gsgw

1þ emax
(3.10)

and
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gdmax
¼ Gsgw

1þ emin
(3.11)

For cohesionless soils, particularly free-draining gravels and sands, it is
useful to use emin and emax to quantify how dense or loose a soil is relative to
the certain laboratory determined index maximum and minimum void ratio
values. This is done by defining the following relative or index density (Dr):

Dr ¼
�

emax � e

emax � emin

�
� 100% (3.12)

The relative density can also be written in terms of the dry unit weight.
Solving Eqs. (3.10) and (3.11) for emin and emax gives

emax ¼ Gsgw

gdmin

� 1 (3.13)

and

emin ¼ Gsgw

gdmax

� 1 (3.14)

Substituting Eqs. (3.13) and (3.14) into Eq. (3.12) gives

Dr ¼

2
66664

�
Gsgw

gdmin

� 1

�
�

�
Gsgw

gd

� 1

�
�
Gsgw

gdmin

� 1

�
�

�
Gsgw

gdmax

� 1

�

3
77775 � 100% ¼

�
gd � gdmin

�
�
gdmax

� gdmin

�
�
gdmax

gd

�

�100% ¼ Id

�
gdmax

gd

�
(3.15)

where

Id ¼
�

gd � gdmin

gdmax
� gdmin

�
� 100% (3.16)

is the so-called “density index”. Since gd ¼ rd g [recall Eq. (1.5)], etc., it
follows that

Dr ¼
�

rd � rdmin

rdmax
� rdmin

��
rdmax

rd

�
� 100% ¼ Id

�
rdmax

rd

�
(3.17)

where the “density index” is now given by

Id ¼
�

rd � rdmin

rdmax
� rdmin

�
� 100% (3.18)

Table 3.1 lists the approximate density classifications commonly associated
with ranges of relative density values.
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Compaction data are typically presented using a so-called compaction
curve. In such a curve, the moisture content is plotted as the abscissa, and the
dry unit weight or dry density is plotted as the ordinate. Fig. 3.1 shows a
hypothetical compaction curve. The maximum dry unit weight and the opti-
mum moisture content are identified in Fig. 3.1.

The peak point of the compaction curve is idntified. The dry density or dry
unit weight at this point is a maximum. The moisture content corresponding to
the peak point is referred to as the optimum moisture content or optimum water
content.

TABLE 3.1 Density Classifications Associated With Relative

Density

Dr (%) Density Classification

<15 Very loose

15e35 Loose

35e65 Medium loose

65e85 Dense

>85 Very dense

FIGURE 3.1 Typical compaction curve.
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A very important compaction end product or performance specification is
the relative compaction (RC), which is defined as follows:

RC ¼
�
rdfield

rdmax

�
� 100% ¼

�
gdfield

gdmax

�
� 100% (3.19)

where rdfield and rdmax
are the field dry density and the laboratory maximum dry

density, respectively. In a similar manner, gdfield and gdmax
are the field dry unit

weight and the laboratory maximum dry unit weight, respectively. Typical
values for RC are 90% or 95% of the laboratory maximum.

EXAMPLE PROBLEM 3.1

General Remarks

This example problem illustrates the manner in which the relative density is
computed.

Problem Statement

For a given sandy soil, the maximum and minimum void ratios were deter-
mined to be 0.80 and 0.25, respectively. The bulk (moist) density (r) of a field
specimen of the soil at a moisture content (w) of 12% was 1.85 Mg/m3.
Assuming Gs ¼ 2.68, determine the relative density (Dr) and degree of
saturation (S) of this specimen.

Solution

From the definition of the relative density, with emin and emax given, it remains
to determine the actual void ratio (e) of the soil. In light of the values given in
the problem, recall that, from Case 1.4 of Chapter 1

r ¼ Gsrwð1þ wÞ
1þ e

(3.1.1)

Solving Eq. (3.1.1) for the void ratio and substituting the given values into
the resulting expression gives

e ¼ Gsrwð1þ wÞ
r

� 1 ¼ ð2:68Þð1:0 Mg=cm3Þð1þ 0:12Þ
1:85 Mg=cm3

� 1 ¼ 0:622

(3.1.2)

The relative density is thus

Dr ¼
�

emax � e

emax � emin

�
� 100% ¼

�
0:80� 0:622

0:80� 0:25

�
� 100% ¼ 32.3% (3.1.3)
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In light of this relative density value, the soil is considered to be “loose”
(Table 3.1).

Finally, the degree of saturation is computed using Case 1.3 of Chapter 1,
i.e.,

S ¼
�
Gsw

e

�
� 100% ¼

�ð2:68Þð0:12Þ
0:622

�
� 100% ¼ 51.7% (3.1.4)

EXAMPLE PROBLEM 3.2

General Remarks

This example problem illustrates the manner in which the maximum and
minimum void ratios, as well as the relative density are computed.

Problem Statement

A certain cohesionless soil has a specific gravity of solids (Gs) of 2.67. A
1000 cm3 container is just filled with a dry sample of this soil in its loosest
possible state. Later, the container is filled at the densest state obtainable. The
total weights for the loosest and densest samples are 1550 and 1720 g,
respectively.

a) Determine the maximum and minimum void ratios.

b) If the dry unit weight of the soil in situ is equal to 103.5 lb/ft3, compute the
relative density (Dr).

Solution

a) In general, the volume of the solid phase is computed from the definition of
Gs, i.e.,

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

(3.2.1)

Since the soil is dry, the voids are filled only with air (consequently
Ww ¼ 0). The void ratio is then computed as follows:

e ¼ Vv

Vs
¼ V � Vs

Vs
(3.2.2)
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In the loosest possible state, Ws ¼ 1550 g. Using Eq. (3.2.1), the
associated volume of the solid phase is thus

Vsloose ¼
Ws

Gsgw

¼ 1550 g

ð2:67Þð1:0 g=cm3Þ ¼ 580:5 cm3 (3.2.3)

Using Eq. (3.2.2), the maximum void ratio is thus

emax ¼ V � Vs

Vs
¼ ð1000� 580:5Þ cm3

580:5 cm3
¼ 0.723 (3.2.4)

In the densest possible state, Ws ¼ 1720 g. Using Eq. (3.2.1), the
associated volume of the solid phase is thus

Vsdense ¼
Ws

Gsgw

¼ 1720 g

ð2:67Þð1:0 g=cm3Þ ¼ 644:2 cm3 (3.2.5)

Using Eq. (3.2.2), the minimum void ratio is thus

emin ¼ V � Vs

Vs
¼ ð1000� 644:4Þ cm3

644:2 cm3
¼ 0.552 (3.2.6)

b) The void ratio in situ is computed from the dry unit weight using the
expression derived in Case 1.4 of Chapter 1, i.e.,

gd ¼
Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 ¼ ð2:67Þð62:4 lb=ft3Þ
103:5 lb=ft3

� 1 ¼ 0:610 (3.2.7)

The relative density is thus

Dr ¼
�

emax � e

emax � emin

�
� 100% ¼

�
0:723� 0:610

0:723� 0:552

�
� 100% ¼ 66.1% (3.2.8)

The soil in situ would thus be considered to be “dense” (Table 3.1).

EXAMPLE PROBLEM 3.3

General Remarks

This example problem illustrates the manner in which ranges in unit weights
are computed from known values of the minimum and maximum void ratio.

Problem Statement

The values of the minimum (emin) and maximum void ratio (emax) for a sample
of pure silica sand were found to be 0.42 and 0.67, respectively. The specific
gravity of solids (Gs) for the sand is 2.69.
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a) What is the corresponding range in dry unit weights? b) What is the
corresponding range in the saturated unit weights? c) If a relative density (Dr)
of 78% is desired, what will be the moisture content associated with full
saturation? d) Finally, compute the density index (Id).

Solution

a) The dry unit weight can be written in terms of Gs and void ratio as follows
(recall Case 1.4 of Chapter 1):

gd ¼
Gsgw

1þ e
(3.3.1)

It follows that

gdmin
¼ Gsgw

1þ emax
(3.3.2)

and

gdmax
¼ Gsgw

1þ emin
(3.3.3)

Substituting all given values into Eqs. (3.3.2) and (3.3.3) leads to the
following range in dry unit weights:

gdmin
¼ Gsgw

1þ emax
¼ ð2:69Þð9:81 kN=m3Þ

1þ 0:67
¼ 15.80 kN=m3 (3.3.4)

and

gdmax
¼ Gsgw

1þ emin
¼ ð2:69Þð9:81 kN=m3Þ

1þ 0:42
¼ 18.58 kN=m3 (3.3.5)

b) The saturated unit weight is next written as derived in Case 1.8 of Chapter 1,
i.e.,

gsat ¼
gwðGs þ eÞ

1þ e
(3.3.6)

Since Gs > 1, it follows that (Gs þ e) > (1 þ e). Thus,

gsatmin
¼ gwðGs þ emaxÞ

1þ emax
(3.3.7)

and

gsatmax
¼ gwðGs þ eminÞ

1þ emin
(3.3.8)
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Substituting all given values into Eqs. (3.3.7) and (3.3.8) leads to the
following range in saturated unit weights:

gsatmin
¼ gwðGs þ emaxÞ

1þ emax
¼ ð9:81 kN=m3Þð2:69þ 0:67Þ

1þ 0:67
¼ 19.74 kN=m3

(3.3.9)

and

gsatmax
¼ gwðGs þ eminÞ

1þ emin
¼ ð9:81 kN=m3Þð2:69þ 0:42Þ

1þ 0:42
¼ 21.49 kN=m3

(3.3.10)

c) The void ratio of the soil is written in terms of the relative density as
follows:

Dr ¼
�

emax � e

emax � emin

�
� 100% 0 e ¼ emax � Dr

ð100%Þ ðemax � eminÞ
(3.3.11)

Since for full saturation e ¼ Gsw 0 w ¼ e/Gs, the desired moisture
content is thus

w ¼

2
64
emax � Dr

ð100%Þ ðemax � eminÞ
Gs

3
75 � 100%

¼
�
0:67�ð0:78Þð0:67� 0:42Þ

2:69

�
� 100% ¼ 17.7%

(3.3.12)

d) The first step in computing the density index is the determination of the
void ratio. This can be done in one of two ways. For example,

e ¼ Gsw ¼ ð2:69Þð0:177Þ ¼ 0:475 (3.3.13)

or

e ¼ emax � Dr

ð100%Þ ðemax � eminÞ ¼ 0:67�ð0:78Þð0:67� 0:42Þ ¼ 0:475

(3.3.14)

In either case, the dry unit weight of the soil is thus

gd ¼
Gsgw

1þ e
¼ ð2:69Þð9:81 kN=m3Þ

1þ 0:475
¼ 17:89 kN=m3 (3.3.15)

Finally, the density index is computed as follows:

Id ¼
�

gd � gdmin

gdmax
� gdmin

�
� 100% ¼

�
17:89� 15:80

18:58� 15:80

�
� 100% ¼ 75.2%

(3.3.16)
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As a check, compute the following product:

Id

�
gdmax

gd

�
¼ ð75:2%Þ

�
18:58 kN=m3

17:89 kN=m3

�
¼ 78:0% (3.3.17)

which is equal to the relative density (Dr) and thus confirms the result.

EXAMPLE PROBLEM 3.4

General Remarks

This example problem applies several of the expressions developed in Chapter 1
to the topic of compaction.

Problem Statement

In a standard Proctor test a sample of silty sand was compacted in a mold
whose volume is 1/30 ft3. The moist weight of the sample was 4.01 lb. When
dried, the soil weighted 3.52 lb. If the specific gravity of solids (Gs) for the soil
is 2.69, compute the following:

a) The void ratio (e), b) the moisture content (w), c) the dry unit weight
(gd), d) the degree of saturation (S), e) the moist unit weight (g), and f) the
saturated unit weight (gsat).

Solution

From the given information,

Ws ¼ 3:52 lb (3.4.1)

Ww ¼ 4:01� 3:52 ¼ 0:49 lb (3.4.2)

The volume of solids is computed from the definition of the specific gravity
of solids, i.e.,

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

¼ 3:52 lb

ð2:69Þð62:4 lb=ft3Þ ¼ 2:097� 10�2 ft3

(3.4.3)

The volume of the pore fluid is computed from the definition of the unit
weight of water, i.e.,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

¼ 0:49 lb

62:4 lb=ft3
¼ 7:853� 10�3 ft3 (3.4.4)

The volume of air contained in the pores (voids) is thus

Va ¼ V � Vw � Vs ¼ 1

30
� �

7:853� 10�3
� � �

2:097� 10�2
�

¼ 4:510 � 10�3 ft3
(3.4.5)
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a) The void ratio is computed as follows:

e ¼ Vv

Vs
¼ V � Vs

Vs
¼

1

30
��

2:097� 10�2
�

2:097� 10�2
¼ 0.590 (3.4.6)

or

e ¼ Vv

Vs
¼ Vw þ Va

Vs
¼ ð7:853� 10�3Þ þ ð4:510� 10�3Þ

2:097� 10�2
¼ 0.590 (3.4.7)

b) The moisture content is next computed:

w ¼
�
Ww

Ws

�
� 100% ¼

�
0:49 lb

3:52 lb

�
� 100% ¼ 13.9% (3.4.8)

c) The dry unit weight is next computed, i.e.,

gd ¼
Ws

V
¼ ð3:52 lbÞ�

1

30
ft3

� ¼ 105.6 lb=ft3 (3.4.9)

d) The degree of saturation is thus

S ¼
�
Vw

Vv

�
� 100% ¼

�
Vw

Va þ Vw

�
� 100%

¼
�

7:853� 10�3

4:510� 10�3 þ 7:853� 10�3

�
� 100% ¼ 63.4%

(3.4.10)

or, using the expression developed in Case 1.3 in Chapter 1,

S ¼
�
Gsw

e

�
� 100% ¼ ð2:69Þð0:139Þ

0:590
� 100% ¼ 63.4% (3.4.11)

e) The moist unit weight is next computed as

g ¼ Ws þWw

V
¼ 4:01 lb�

1

30
ft3

� ¼ 120.3 lb=ft3 (3.4.12)

or, using the expression developed in Case 1.7 of Chapter 1,

g ¼ gwðGs þ SeÞ
1þ e

¼ ð62:4 lb=ft3Þ½2:69 þ ð0:634Þð0:590Þ�
1þ 0:590

¼ 120.3 lb=ft3

(3.4.13)
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f) Finally, the saturated unit weight is computed

g ¼ gwðGs þ eÞ
1þ e

¼ ð62:4 lb=ft3Þð2:69þ 0:590Þ
1þ 0:590

¼ 128.7 lb=ft3 (3.4.14)

Figure Ex. 3.4 shows the phase diagram associated with this soil.

EXAMPLE PROBLEM 3.5

General Remarks

This example problem investigates the calculation of certain quantities asso-
ciated with the process of compaction.

Problem Statement

Laboratory tests on a cohesionless soil show that the minimum and maximum
dry unit weights that can be obtained for this material are 100.5 and 115.2 lb/
ft3, respectively. The specific gravity of solids (Gs) for the soil is 2.69. Field
tests indicate that, in situ, the moist unit weight of the soil is 121.7 lb/ft3 at a
moisture content of 10.7%.

a) Determine the relative density (Dr) in situ. b) The soil is to be compacted
to a dry unit weight that is 97% of the maximum dry density without adding or
removing water. Determine the volume of compacted soil that will be obtained
for each cubic foot of soil in situ. c) What is the degree of saturation in the
compacted soil?

Solution

a) The requisite void ratio values are computed from the general expression
for the dry unit weight derived in Case 1.4 of Chapter 1, i.e.,

gd ¼ Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 (3.5.1)

Thus, applying Eq. (3.5.1) for gd ¼ gdmin
gives

emax ¼ Gsgw

gdmin

� 1 ¼ ð2:69Þð62:4 lb=ft3Þ
100:5 lb=ft3

� 1 ¼ 0:670 (3.5.2)

Similarly, for gd ¼ gdmax
,

emin ¼ Gsgw

gdmax

� 1 ¼ ð2:69Þð62:4 lb=ft3Þ
115:2 lb=ft3

� 1 ¼ 0:457 (3.5.3)

104 Soil Mechanics



Knowing the moist unit weight of the field soil, the void ratio is
computed from the expression derived in Case 1.5 of Chapter 1, i.e.,

g ¼ Gsgwð1þ wÞ
1þ e

0 e ¼ Gsgwð1þ wÞ
g

� 1

¼ ð2:69Þð62:4 lb=ft3Þð1þ 0:107Þ
121:7 lb=ft3

� 1 ¼ 0:527

(3.5.4)

Using the values obtained in Eqs. (3.5.2)e(3.5.4), the relative density
of the field soil is thus

Dr ¼
�

emax � e

emax � emin

�
� 100% ¼

�
0:670� 0:527

0:670� 0:457

�
� 100% ¼ 67.3%

(3.5.5)

The field soil is thus considered to be “dense” (Table 3.1).

b) During the compaction process, the weight (Ws) and volume (Vs) of the
solid phase remain unchanged. The former quantity is computed from the
definition of the dry unit weight, i.e.,

gd ¼
Ws

V
¼ g

1þ w
0 Ws ¼ gV

1þ w
¼ ð62:4 lb=ft3ÞV

1þ 0:107
¼ 109:9V lb (3.5.6)

Since no volume has explicitly been specified in the problem, assume
that V ¼ 1 ft3. Thus, Ws ¼ 109.9(1) ¼ 109.9 lb. The volume of the solid

FIGURE EX. 3.4 Phase diagram showing relationship between volume and weight for the silty

sand.
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phase is then computed from the definition of the specific gravity of solids
as follows:

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

¼ ð109:9 lbÞ
ð2:69Þð62:4 lb=ft3Þ ¼ 0:655 ft3 (3.5.7)

With the volume of the solid phase known, the volume of the voids (Vv)
is computed from the definition of the void ratio as follows:

e ¼ Vv

Vs
0 Vv ¼ eVs ¼ ð0:527Þ�0:655 ft3

� ¼ 0:345 ft3 (3.5.8)

The final quantity that needs to be computed is the volume of the pore
water. The first step in this process is the computation of the weight of the
water from the definition of the moisture content, i.e.,

w ¼ Ww

Ws
0 Ww ¼ wWs ¼ ð0:107Þð109:9 lbÞ ¼ 11:76 lb (3.5.9)

The volume of the pore water is next computed from the definition of
the unit weight of water, i.e.,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

¼ 11:76 lb

62:4 lb=ft3
¼ 0:188 ft3 (3.5.10)

For completeness, the volume of air in the pore space is

Va ¼ V � Vw ¼ 0:345� 0:188 ¼ 0:157 ft3 (3.5.11)

Following compaction,

gdnew ¼ 0:97gdmax
¼ 0:97

�
115:2 lb=ft3

� ¼ 111:7 lb=ft3 ¼ Ws

Vnew
(3.5.12)

Since the weight of the solid phase is unchanged during compaction, it
follows that

Vnew ¼ Ws

gdnew

¼ 109:9 lb

111:7 lb=ft3
¼ 0.984 ft3 (3.5.13)

Since the volume of the solid phase is also unchanged during
compaction, it follows that

Vvnew ¼ Vnew � Vs ¼ 0:984� 0:655 ¼ 0:329 ft3 (3.5.14)

c) Since the volume of water is also unchanged during compaction, it follows
that the degree of saturation after compaction will be

S ¼
�

Vw

Vvnew

�
� 100% ¼

�
0:188

0:329

�
� 100% ¼ 57.1% (3.5.15)
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EXAMPLE PROBLEM 3.6

General Remarks

This example problem investigates the calculation of certain quantities asso-
ciated with the process of compaction.

Problem Statement

The results of a set of standard Proctor compaction tests on a particular soil
give a maximum dry density of 19.6 kN/m3 and an optimum moisture content
of 12.5%. The specific gravity of solids for the soil is 2.68. Determine a) the
degree of saturation and the void ratio at optimum moisture content and b)
what percentage of the voids is occupied by air at this condition.

Solution

a) Recalling Eq. (3.6), i.e.,

gd ¼
Gsgw

1þ
�
Gsw

S

� (3.6.1)

and solving for the degree of saturation gives

S ¼ w Gs

Gsgw

gd

� 1
¼ ð0:125Þð2:68Þ�ð2:68Þð9:91 kN=m3Þ

ð19:6 kN=m3Þ � 1

� ¼ 0:981 ¼ 98.1% (3.6.2)

The void ratio is then computed using Eq. (3.5), i.e.,

e ¼ Gsw

S
¼ ð2:68Þð0:125Þ

0:981
¼ 0.341 (3.6.3)

b) The ratio of the volume of air to the volume of voids can be computed in
one of two ways. The first approach uses the degree of saturation (written
as a decimal rather than a percentage) as follows:

S ¼ Vw

Vv
¼ Vv � Va

Vv
¼ 1�Va

Vv
0

Va

Vv
¼ ð1� SÞ (3.6.4)

In the second approach, Vs ¼ 1 m3 is assumed, implying that Vv ¼ e.
From the definition of the specific gravity of solids,

Ws ¼ GsgwVs ¼ Gsgwð1Þ (3.6.5)
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From the definition of the moisture content,

w ¼ Ww

Ws
0 Ww ¼ wWs ¼ wGsgw (3.6.6)

where w is represented as a decimal number. From the definition of the unit
weight of water,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

¼ wGs (3.6.7)

The volume of air contained in the voids is thus

Va ¼ Vv � Vw ¼ e� wGs (3.6.8)

From Eq. (3.5), wGs ¼ Se. Substituting this result into Eq. (3.6.8) gives

Va ¼ e � Se ¼ ð1 � SÞe ¼ ð1 � SÞVv 0
Va

Vv
¼ ð1 � SÞ (3.6.9)

Thus,

Va

Vv
¼ ð1� SÞ ¼ 1� 0:981 ¼ 0:0190 ¼ 1.90% (3.6.10)

EXAMPLE PROBLEM 3.7

General Remarks

This example problem illustrates the manner in which a compaction curve is
created.

Problem Statement

The first two columns in Table Ex. 3.7a list values of moisture content and
moist unit weight that were determined in the laboratory. The specific gravity
of solids (Gs) for the soil is equal to 2.71. a) Compute the associated dry unit
weight, b) draw a compaction curve for the data, and c) draw the associated
ZAV curve. d) If the contractor is required to obtain 90% RC, what is the range
of admissible moisture content values?

Solution

a) The dry unit weight, which is listed in the third column of Table Ex. 3.7a,
is computed as follows (recall Case 1.6 in Chapter 1):

gd ¼
g

1þ w
(3.7.1)
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b) Plotting the values in the first and third columns of Table Ex. 3.7a gives the
compaction curve shown in Figure Ex. 3.7a.

From this figure the maximum dry unit weight is approximately
16.6 kN/m3. The corresponding optimum moisture content is 20%.

c) In light of the given data, the unit weight associated with the ZAV curve is
computed from Eq. (3.7), i.e.,

gdZAV ¼ gw

1

Gs
þ w

(3.7.2)

TABLE EX. 3.7a Compaction Data

Moisture Content (%)

Moist Unit Weight

(kN/m3)

Dry Unit

Weight (kN/m3)

10 15.24 13.85

13 16.49 14.60

16 18.38 15.84

18 19.32 16.37

20 19.95 16.62

22 19.79 16.22

25 19.01 15.21
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FIGURE EX. 3.7A Compaction curve and zero air voids curve for laboratory data of Table Ex. 3.7.
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For example, when w ¼ 10%,

gdZAV ¼
9:81 kN=m3�
1

2:71

�
þ 0:10

¼ 20:92 kN=m3 (3.7.3)

The unit weight for the other moisture contents is computed in a similar
manner. Table Ex. 3.7b lists the resulting values.

Figure Ex. 3.7a shows the ZAV curve and its proximity to the
compaction curve.

d) Since the contractor is required to obtain 90% RC, the minimal allowable
dry unit weight is thus

gdmin
¼ 0:90gdmax

¼ 0:90
�
16:6 kN=m3� ¼ 14:9 kN=m3 (3.7.4)

From the compaction curve, the range of acceptable moisture contents
is thus approximately 13.8e26.0% (Figure Ex. 3.7b).

EXAMPLE PROBLEM 3.8

General Remarks

This example problem illustrates how information is obtained from a
compaction curve.

Problem Statement

Figure Ex. 3.8a shows the laboratory field compaction curve for a given soil.
Specifications call for the compacted unit weight to be at least 95% of the

TABLE EX. 3.7b Data Used to Draw the Zero Air Voids Curve

Moisture Content (%) Unit Weight for Zero Air Voids Curve (kN/m3)

10 20.92

13 19.66

16 18.54

18 17.87

20 17.24

22 16.66

25 15.85
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standard Proctor maximum and within �2% of the optimum moisture content.
When a sample of the soil was excavated from the field, it had a volume of
57.6 in3. The sample weighed 4.00 lbs wet and 3.36 lbs dry.

Determine a) the field moisture content, b) the compacted dry unit weight,
and c) the RC. d) Does the soil meet specifications? e) If Gs ¼ 2.70, what is the
degree of saturation of the field sample? f) If the field sample was saturated at
constant total volume (i.e., the air in the voids was replaced by water), what
would be the resulting moisture content? g) It is desired to plot the ZAV curve.
For this purpose, compute the ZAV unit weight associated with moisture
contents of 20%, 22%, and 24%.
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FIGURE EX. 3.7B Compaction curve and acceptable range of moisture content values.
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FIGURE EX. 3.8A Results of laboratory standard proctor compaction test.
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Solution

The compaction curve of Figure Ex. 3.8a is redrawn only with the maximum
dry unit weight and optimum moisture content identified.

From Figure Ex. 3.8b it is evident that

l The maximum dry unit weight (gdmax
) is approximately 106.0 lb/ft3.

l The optimum moisture content (wopt) is approximately 18%.

a) From the given information, field the moisture content is

w ¼
�
Ww

Ws

�
� 100% ¼

�
4:00� 3:36

3:36

�
� 100% ¼ 19.05% (3.8.1)

b) The compacted dry unit weight is likewise computed from the given in-
formation, i.e.,

gd ¼
Ws

V
¼

�
3:36 lb

57:6 in3

��
12 in

ft

�3

¼ 100.8 lb=ft3 (3.8.2)

This can also be computed from the moist unit weight (g) and the field
moisture content, i.e.,

g ¼ W

V
¼

�
4:00 lb

57:6 in3

��
12 in

ft

�3

¼ 120:0 lb=ft3 (3.8.3)
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FIGURE EX. 3.8B Results of laboratory standard proctor compaction test with maximum values

identified.
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and then

gd ¼
g

1þ w
¼ ð120:0 lb=ft3Þ

1þ 0:1905
¼ 100.8 lb=ft3 (3.8.4)

c) Since the maximum dry unit weight is approximately 106.0 lb/ft3, the
relative compaction (RC ) is

RC ¼
�

gd

gdmax

�
� 100% ¼

�
100:0 lb=ft3

106:0 lb=ft3

�
� 100% ¼ 95.1% (3.8.5)

d) Since the optimum moisture content (wopt) is approximately 18%, the
acceptable range in moisture content is thus 16.0% � w � 20.0%. The
moisture content of 19.05% falls in this range. In addition, since
RC > 95%, it follows that the soil meets specifications.

e) The determination of the degree of saturation of the field sample requires
knowledge of the void ratio. This is computed as follows:

gd ¼ Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 ¼ ð2:70Þð62:4 lb=ft3Þ
100:8 lb=ft3

� 1 ¼ 0:671

(3.8.6)

The desired degree of saturation is thus

S ¼
�
Gsw

e

�
� 100% ¼

�ð2:70Þð0:1905Þ
0:671

�
� 100% ¼ 76.7% (3.8.7)

This can also be computed from the moist unit weight (g) and the field
moisture content, i.e.,

g ¼ Gsgwð1þ wÞ
1þ e

¼ Gsgwð1þ wÞ
1þ Gsw

S

0 S ¼ Gsw

ð1þ wÞGsgw

g
� 1

� 100%

(3.8.8)

Substituting the given quantities gives

S ¼ ð2:70Þð0:1905Þ
ð1þ 0:1905Þð2:70Þð62:4 lb=ft3Þ

120:0 lb=ft3
� 1

� 100% ¼ 76.6% (3.8.9)

f) To determine the moisture content if the field sample was saturated (i.e.,
S ¼ 1.0) at constant total volume, note that the void ratio remains un-
changed at e ¼ 0.671. Thus, using Eq. (3.5) gives

w ¼
�
Se

Gs

�
� 100% ¼ ð1:0Þð0:671Þ

2:70
� 100% ¼ 24.9% (3.8.10)
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g) To generate data for the ZAV curve, recall that for this special case
S ¼ 100%, giving e ¼ wGs. The first part of Eq. (3.8.2) thus becomes

gdZAV ¼ Gsgw

1þ Gsw
¼ ð2:70Þð62:4 lb=ft3Þ

1þ ð2:70Þw (3.8.11)

where w is understood to be a decimal number. Table Ex. 3.8 summarizes
the values of gdZAV for the specified values of w.

EXAMPLE PROBLEM 3.9

General Remarks

This example problem illustrates the manner in which a compaction curve is
created from actual laboratory data.

Problem Statement

Table Ex. 3.9a lists the results of standard Proctor compaction tests that were
performed on a brown inorganic silty clay of medium plasticity. In all five
tests, the volume of the compaction mold was equal to 1/30 ft3. Table Ex. 3.9b
lists the results of moisture content tests that were performed on the same soil.
In addition, the specific gravity of solids (Gs) for the silty clay was found to be
2.71.

a) Compute the dry densities and moisture content for each of the samples
tested. b) Draw the compaction curve and determine the maximum dry unit
weight and the optimum moisture content. c) Finally, draw the ZAV curve.

Solution

a) Consider the data for sample 1 given in the first two rows in Table Ex. 3.9a.
The weight of the moist soil is thus

W ¼ 3688 � 1978 ¼ 1710 g (3.9.1)

TABLE EX. 3.8 Summary of Zero Air

Voids Calculations

w (%) gdZAV
(lb/ft3)

20.0 109.4

22.0 105.7

24.0 102.2
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Choosing units of pounds and feet, the moist unit weight is thus

g ¼ ð1710 gÞð2:205� 10�3 lb=gÞ�
1

30
ft3

� ¼ 113.1 lb=ft3 (3.9.2)

Performing similar calculations gives the values listed in the last two
rows of Table Ex. 3.9a.

Next consider the data for sample 1 given in the first three rows in
Table Ex. 3.9b. The weight of the pore fluid is computed as follows:

Ww ¼ 83:13� 78:05 ¼ 5.08 g (3.9.3)

The weight of the dry soil is next computed

Ws ¼ 78:05� 34:80 ¼ 43.25 g (3.9.4)

TABLE EX. 3.9a Standard Proctor Compaction Data for Determining Unit

Weight

Sample 1 2 3 4 5

Weight of moist sample þmold
(g)

3688 3801 3913 3897 3865

Weight of mold (g) 1978 1978 2030 2030 2030

Weight of moist sample (g) 1710 1823 1883 1867 1835

Moist unit weight (lb/ft3) 113.1 120.6 124.5 123.5 121.4

Dry unit weight (lb/ft3) 101.2 104.5 105.4 101.9 99.1

TABLE EX. 3.9b Data for Determining Moisture Content

Sample 1 2 3 4 5

Weight of moist sample þ container
(g)

83.13 89.20 96.13 132.01 122.90

Weight of dry sample þ container (g) 78.05 81.95 86.72 115.12 106.77

Weight of container (g) 34.80 34.90 34.80 35.40 35.10

Weight of pore fluid (g) 5.08 7.25 9.41 16.89 16.13

Weight of dry soil (g) 43.25 47.05 51.92 79.72 71.67

Moisture content (%) 11.75 15.41 18.12 21.19 22.51
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The moisture content is thus

w ¼
�
Ww

Ws

�
� 100% ¼

�
5:08 g

43:25 g

�
� 100% ¼ 11.75% (3.9.5)

Performing similar calculations gives the values listed in the last three
rows of Table Ex. 3.9b.

The dry unit weight can now be computed from the moist unit weight
and the moisture content, i.e.,

gd ¼
g

1þ w
¼ 113:1 lb=ft3

1þ 0:1175
¼ 101.2 lb=ft3 (3.9.6)

Performing similar calculations gives the values listed in the final row
of Table Ex. 3.9a.

Remark: Additional information regarding relative amounts of the three phases

can easily be quantified using the equations presented in Chapter 1.

For example, consider sample 1 in Table Ex. 3.9b. From Case 1.4 of
Chapter 1,

gd ¼
Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 ¼ ð2:71Þð62:4 lb=ft3Þ
101:2 lb=ft3

¼ 0.671 (3.9.7)

From Case 1.3 of Chapter 1,

w ¼
�
Se

Gs

�
� 100% 0 S ¼

�
wGs

e

�
� 100%

¼
�ð0:1175Þð2:71Þ

0:671

�
� 100% ¼ 47:5%

(3.9.8)

The volume of the solid phase is computed from the definition of the
specific gravity of solids, i.e.,

Gs ¼ Ws

Vsgw

0 Vs ¼ Ws

Gsgw

¼ ð43:25 gÞ
ð2:71Þð1:0 g=cm3Þ ¼ 15.96 cm3 (3.9.9)

The volume of the voids is thus

e ¼ Vv

Vs
0 Vv ¼ eVs ¼ ð0:671Þ�15:96 cm3

� ¼ 10.71 cm3 (3.9.10)

The volume of the pore fluid is computed from the definition of the unit
weight of water, i.e.,

gw ¼ Ww

Vw
0 Vw ¼ Ww

gw

¼ 5:08 g

1:0 g=cm3
¼ 5.08 cm3 (3.9.11)
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The volume of air occupying the voids is thus

Va ¼ Vv �Vw ¼ ð10:71� 5:08Þ cm3 ¼ 5.63 cm3 (3.9.12)

As a check on the aforesaid results, compute the degree of saturation
(S) in an alternate way than was used earlier. In particular,

S ¼
�
Vw

Vv

�
� 100% ¼

�
5:08 cm3

10:71 cm3

�
� 100% ¼ 47.5% (3.9.13)

which is identical to the value computed earlier using Case 1.3 of Chapter
1. Figure Ex. 3.9a shows the phase diagram associated with sample 1.

b) Plotting the dry unit weight from Table Ex. 3.9a versus the moisture
content from Table Ex. 3.9b gives the compaction curve shown in
Figure Ex. 3.9b.

The maximum dry unit weight is approximately 105.7 lb/ft3 and the
optimum moisture content is about 17.5%.

c) In light of the given data, the unit weight associated with the ZAV curve is
again computed from Eq. (3.7), i.e.,

gdZAV ¼
gw

1

Gs
þ w

(3.9.14)

For example, when w ¼ 12%,

gdZAV ¼
62:4 lb=ft3�
1

2:71

�
þ 0:12

¼ 127:6 kN=m3 (3.9.15)

FIGURE EX. 3.9A Phase diagram showing relationship between volume and mass for soil

sample 1.
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The unit weight for the other moisture contents is computed in a similar
manner. Table Ex. 3.9c lists the resulting values.

Figure Ex. 3.9b shows the ZAV curve and its proximity to the compaction
curve.

EXAMPLE PROBLEM 3.10

General Remarks

In this problem the compaction curves for standard and modified Proctor tests
are compared for a given soil.

FIGURE EX. 3.9B Compaction curve and zero air voids curve for laboratory data of Tables Ex.

3.9a and Ex. 3.9b.

TABLE EX. 3.9c Data Used to Draw the Zero

Air Voids Curve

Moisture Content (%)

Unit Weight for Zero

Air Voids Curve (lb/ft3)

12 127.6

14 122.6

16 118.0

18 113.7

20 110.0

22 105.9

24 102.5
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Problem Statement

Both standard and modified Proctor compaction tests were performed on a
soil. Table Ex. 3.10a summarizes the moisture contents and dry densities. The
former were determined in the laboratory; the latter were computed from moist
unit weights in the manner shown in Example Problem 3.8. The specific
gravity of solids (Gs) for the soil is equal to 2.68.

Given the data in Table Ex. 3.10a, draw the compaction curves for the two
sets of data and the ZAV curve.

Solution

Plotting the values in the first and third columns of Table Ex. 3.10a gives the
compaction curve shown in Figure Ex. 3.10.

In light of the given data, the unit weight associated with the ZAV curve is
again computed from Eq. (3.7)

gdZAV ¼ gw

1

Gs
þ w

(3.10.1)

where Gs ¼ 2.68. Table Ex. 3.10b lists the resulting values.
Figure Ex. 3.10 shows the ZAV curve and its proximity to the compaction

curves.

Remark: The maximum dry unit weight associated with the modified Proctor

method increases by 1.4 kN/m3. The moisture content decreases by 1.5%.

TABLE EX. 3.10a Data for Standard and Modified Proctor Compaction Tests

Standard Proctor Method Modified Proctor Method

Moisture

Content (%)

Dry Unit Weight

(kN/m3)

Moisture

Content (%)

Dry Unit Weight

(kN/m3)

6 16.02 6 16.81

9 16.65 9 17.74

12 16.97 12 18.54

14 17.12 13 18.54

16 16.97 14 18.38

19 16.49 16 17.59

22 15.71 18 16.97
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EXAMPLE PROBLEM 3.11

General Remarks

This example problem illustrates the manner in which the volume of soil
required from a borrow area is computed.

FIGURE EX. 3.10 Compaction curves and zero air voids curve for laboratory data of Table Ex. 3.10.

TABLE EX. 3.10b Data Used to Draw

the Zero Air Voids Curve

Moisture Content (%)

Unit Weight for Zero

Air Voids Curve (kN/m3)

6 22.65

9 21.18

12 19.89

13 19.50

14 19.12

16 18.40

18 17.74

19 17.72

22 16.54
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Problem Statement

Specifications for a road embankment require the soil to be compacted to a
moist unit weight of 19.2 kN/m3 at a moisture content of 17.5%. The soil is to
be obtained from a borrow area where the in situ dry unit weight is 15.9 kN/
m3. The volume of the finished embankment is to be 1520 m3. What volume of
borrow material is required for the road embankment? It is assumed that the
volume of the fill be essentially unchanged when it is transported from the
borrow area to the site of the embankment.

Solution

The specified dry density is first computed from the given information as

gd ¼
g

1þ w
¼ 19:2 kN=m3

1þ 0:175
¼ 16:34 kN=m3 (3.11.1)

Denoting the volume required for the embankment by Vemb, the associated
weight of solids is thus

gd ¼
Ws

Vemb
0 Ws ¼ gd Vemb ¼

�
16:34 kN=m3��1520 m3

� ¼ 24; 837 kN

(3.11.2)

Since the weight of the solid phase remains unchanged, it follows that at
the borrow area,

gd ¼
Ws

Vborrow
0 Vborrow ¼ Ws

gd

¼ 24; 837 kN

15:9 kN=m3
¼ 1562 m3 (3.11.3)

Thus, 1562 m3 of soil must be transported to the embankment site. Once
compacted at the site, this amount of soil will give the required volume for the
finished embankment.

EXAMPLE PROBLEM 3.12

General Remarks

This example problem illustrates the manner in which certain quantities for
soil taken from a borrow area are computed.

Problem Statement

The in situ moisture content of a soil at a borrow area is 16% and its moist unit
weight is 17.3 kN/m3. The specific gravity of solids for the soil is 2.72.

The soil is to be excavated and transported to a construction site for use in a
compacted fill. a) If the specifications call for the soil to be compacted to a dry
unit weight of 18.1 kN/m3 at the same moisture content of 16%, how many
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cubic meters of soil from the excavation are needed to produce 2000 m3 of
compacted fill? b) What is the void ratio and degree of saturation of the
compacted soil? c) If a dump truck can carry 20 tons of soil in a given trip,
how many trips are required to transport the soil to the construction site?

Solution

a) The required weight of the solid phase is computed from the definition of
the dry unit weight. Denoting the volume of the compacted fill by VCF, it
follows that

gd ¼
Ws

VCF
0 Ws ¼ gd VCF ¼ �

18:1 kN=m3��2000 m3
� ¼ 36; 200 kN

(3.12.1)

For the soil at the borrow area,

gd ¼
g

1þ w
¼ 17:3 kN=m3

1þ 0:16
¼ 14:91 kN=m3 (3.12.2)

The required volume of soil from the borrow area is thus

Vborrow ¼ Ws

gd

¼ 36; 200 kN

14:91 kN=m3
¼ 2427.3 m3 (3.12.3)

b) The void ratio of the compacted soil is computed from the dry unit weight
of this soil as follows:

gd ¼ Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 ¼ ð2:72Þð9:81 kN=m3Þ
18:1 kN=m3

� 1 ¼ 0.474

(3.12.4)

With the void ratio known, the degree of saturation is then computed
using Eq. (3.5), i.e.,

S ¼
�
Gsw

e

�
� 100% ¼

�ð2:72Þð0:16Þ
0:474

�
� 100% ¼ 91.8% (3.12.5)

c) The number of trips required to transport the soil to the construction site is
computed by noting that the required moist weight of the solid phase is

g ¼ W

V
0 W ¼ g V ¼ �

17:3 kN=m3��2427:3 m3
� ¼ 41; 992 kN

(3.12.6)

Since a dump truck can carry 20 tons of soil per trip, it follows that

ð41; 992 kNÞ
�
1000 N

kN

��
lb

4:448 N

��
ton

2000 lb

��
trip

20 ton

�
¼ 236 trips

(3.12.7)
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EXAMPLE PROBLEM 3.13

General Remarks

This example presents a somewhat more complicated compaction problem.

Problem Statement

An embankment is to be constructed as part of a roadway improvement
project. The dimensions of the embankment are 8 m wide by 0.70 m com-
pacted thickness by 0.75 mile long.

To create the embankment, soil will be excavated and transported from a
borrow area to the construction site. Construction specifications require the
soil to be compacted to a moisture content (w) of 19.6%, achieving a dry unit
weight (gd) of 17.0 kN/m3. At the borrow area the soil has a specific gravity of
solids (Gs) equal to 2.70, a moisture content of w ¼ 15% and a dry unit weight
of 15 kN/m3. When loaded on dump trucks for transport, the soil loosens and
its dry unit weight drops to 14 kN/m3.

Determine a) the volume of soil to be excavated at the borrow area, b) the
number of trips of trucks between the borrow area and the construction site
assuming that each truck can carry 10 yd3 of loose soil, c) The volume of
water, in cubic meters, to be added at the construction site to achieve the
desired moisture content before compaction, d) The degree of saturation of soil
at the construction site after compaction, and e) the moisture content of the
compacted soil if it is saturated after construction due to rainfall.

Solution

The following notation is used in the solution: stage A refers to the excavation
at the borrow area, stage B refers to transport on trucks, and stage C refers to
the construction phase. The following quantities are thus known for the
respective stages:

For stage A: Gs ¼ 2.70, w ¼ 15%, gd ¼ 15 kN/m3.
For stage B: gd ¼ 14 kN/m3, volume per dump truck ¼ 10 m3.
For stage C: gd ¼ 17 kN/m3, w ¼ 19.6%.

Since it is 8.0 m wide, 0.70 m thick, and 0.75 miles long, the required
volume of the embankment is

V ¼ ð8:0 mÞð0:70 mÞð0:75 mileÞ
�
5280 ft

mile

�� m

3:281 ft

	
¼ 6759 m3 (3.13.1)

Remark: Before continuing with the solution, it is important to note that the

weight of solids (Ws) and specific gravity of solids (Gs) remain unchanged

throughout the aforesaid three stages.
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a) For stage C the dry unit weight is 17.0 kN/m3. Thus,

gdC ¼ Ws

VC
0 Ws ¼ gdCVC (3.13.2)

Since the weight of solids remains unchanged throughout the con-
struction of the embankment, it follows that the volume of soil to be
excavated at the borrow area (VA) is thus

gdCVC ¼ gdAVA 0 VA ¼ gdCVC

gdA

¼ ð17:0 kN=m3Þð6759 m3Þ
15:0 kN=m3

¼ 7660 m3

(3.13.3)

b) To determine the number of trips of trucks between the borrow area and the
construction site requires knowledge of the volume of material (VB) to be
transported. This is computed as follows:

gdCVC ¼ gdBVB 0 VB ¼ gdCVC

gdB

¼ ð17:0 kN=m3Þð6759 m3Þ
14:0 kN=m3

¼ 8207 m3

(3.13.4)

The volume of soil carried by a dump truck in a single trip is

Vtruck ¼
�
10 yd3

��3 ft

yd

�3� m

3:281 ft

	3

¼ 7:644 m3 (3.13.5)

The total number of dump truck trips required is thus

�
8207 m3

��truck trip

7:644 m3

�
¼ 1074 truck trips (3.13.6)

c) To compute the volume of water to be added at the construction site to
achieve the desired moisture content before compaction, note that, from
the definition of the unit weight of water and the moisture content,
gw ¼ Ww/Vw and w ¼ Ww/Ws. Thus,

Vw ¼ Ww

gw

¼ wWs

gw

(3.13.7)

Thus, for stages A and C:

VwA
¼ wA Ws

gw

; VwC
¼ wC Ws

gw

(3.13.8)

The volume of water to be added at the construction site to achieve the
desired moisture content before compaction is thus

DVw ¼ VwC
�VwA

¼ Ws

gw

ðwC � wAÞ ¼
gdCVC

gw

ðwC � wAÞ (3.13.9)
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Substituting for the known quantities gives

DVw ¼ ð17:0 kN=m3Þð6759 m3Þ
ð9:81 kN=m3Þ ð0:196� 0:150Þ ¼ 538.8 m3 (3.13.10)

d) The determination of the degree of saturation of soil at the construction site
after compaction requires knowledge of the void ratio of the compacted
soil at the site. This is computed by recalling the expression for the dry unit
weight given in Case 1.4 of Chapter 1, i.e.,

gd ¼ Gsgw

1þ e
0 eC ¼ Gsgw

gdC

� 1 ¼ ð2:70Þð9:81 kN=m3Þ
17:0 kN=m3

� 1 ¼ 0.558

(3.13.11)

Using Eq. (3.5), the desired degree of saturation is thus

SC ¼
�
Gsw

eC

�
� 100% ¼

�ð2:70Þð0:196Þ
0:558

�
� 100% ¼ 94.8% (3.13.12)

e) If the compacted soil is saturated after construction due to rainfall, it is
assumed that the void ratio remains constant during this process. The
moisture content of the compacted soil is thus,

w ¼
�

e

Gs

�
� 100% ¼

�
0:558

2:70

�
� 100% ¼ 20.7% (3.13.13)

which is quite close to the specified moisture content of 19.6%.

EXAMPLE PROBLEM 3.14

General Remarks

This example illustrates the inclusion of financial considerations into a
compaction problem.

Problem Statement

A proposed embankment fill requires 9000 m3 of compacted soil. The void
ratio of the compacted fill is specified to be 0.72. Five potential borrow pits are
under consideration for use in this project. Table Ex. 3.14a lists the respective
void ratios of the soils and the cost per cubic meter for moving the soil to the
embankment construction site. The specific gravity of solids is assumed to be
the same for the soils found at all of the borrow pits. Make the necessary
calculations so as to select the pit from which the soil should be brought to
minimize costs.
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Solution

The required weight of solids is obtained from the dry density according to

gd ¼ Gsgw

1þ e
¼ Ws

V
0 Ws ¼ GsgwV

1þ e
¼ 9000 Gsgw

1þ 0:720
(3.14.1)

Since the weight of solids must remain unchanged, it follows that for each
of the borrow pits,

Gsgw

1þ e
¼ Ws

V
0 V ¼ Wsð1þ eÞ

Gsgw

¼
�
9000 Gsgw

1:720

� ð1þ eÞ
Gsgw

¼ 9000ð1þ eÞ
1:720

(3.14.2)

where V has units of cubic meters. For example, for borrow pit A,

V ¼ 9000ð1þ 1:15Þ
1:720

¼ 11; 250 m3 (3.14.3)

Once the total volume of soil from a given borrow pit is known, it is
multiplied by the cost of transport to get the total cost. The cost of transporting
soil from borrow pit A to the embankment site is thus

cost ¼ �
11; 250 m3

��
$8:00



m3

� ¼ $90; 000 (3.14.4)

Similar calculations are performed for the other four borrow pits.
Table Ex. 3.14b summarizes the results obtained. Using borrow pit B thus
constitutes the most economical solution.

EXAMPLE PROBLEM 3.15

General Remarks

This example illustrates the effect that uncertainty has on compaction
calculations.

TABLE EX. 3.14a Data for Potential Borrow Pits

Borrow Pit Void Ratio Cost for Transport (per m3)

A 1.15 $8.00

B 0.85 $7.50

C 0.76 $12.50

D 0.92 $9.00

E 1.20 $9.50
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Problem Statement

Specifications require that 750 yd3 of a particular well-graded granular fill be
placed at a relative density (Dr) of 90%. The fill material is to be obtained
from a borrow pit. In situ, the material at the borrow pit has a moisture
content of 13.7% and a moist unit weight of 115.7 lb/ft3. Estimate the vol-
ume of soil (in cubic yards) that must be removed from the borrow pit for the
fill.

Solution

The dry unit weight of the fill at the job site is

gdsite ¼
Gsgw

1þ esite
¼ Ws

Vsite
(3.15.1)

where Vsite ¼ 750 yd3. The required weight of solids is thus

Ws ¼
�

Gsgw

1þ esite

�
Vsite (3.15.2)

The dry unit weight of the material at the borrow pit is

gdborrow ¼ Ws

Vborrow
0 Vborrow ¼ Ws

gdborrow

(3.15.3)

Since the weight of the solid phase remains unchanged from the borrow pit
to the site, Eq. (3.15.2) is substituted into Eq. (3.15.3) to give

Vborrow ¼ 1

gdborrow

�
Gsgw

1þ esite

�
Vsite (3.15.4)

TABLE EX. 3.14b Summary of Results Obtained for Potential Borrow Pits

Borrow Pit Volume Required (m3) Total Cost

A 11,250 $90,000

B 9,680 $72,602

C 9,209 $115,116

D 10,047 $90,419

E 11,512 $109,360
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The dry unit weight of the borrow material is computed from the given
moist unit weight and moisture content

gdborrow ¼
gborrow

1þ wborrow
¼ ð115:7 lb=ft3Þ

1þ 0:137
¼ 101:8 lb=ft3 (3.15.5)

The void ratio at the job site is computed from the definition of the relative
density, i.e.,

Dr ¼ emax � esite
emax � emin

0 esite ¼ emax � ðDrÞðemax � eminÞ (3.15.6)

where Dr is specified to be 0.90.
Some uncertainty exists regarding the values of minimum and maximum

void ratio for the borrow pit material. In general, for cohesionless soils, these
extreme values of void ratio depend on (1) grain size, (2) grain shape, (3)
nature of the grain size distribution curve, and (4) the fines content1.

One grain size distribution curve indicates that the well-graded granular fill
is essentially free of gravel size particles and has relatively little fines. As such,
emin and emax are estimated to be 0.38 and 0.80, respectively. Substituting these
values into Eq. (3.15.6) gives

esite ¼ 0:80�ð0:90Þð0:80� 0:38Þ ¼ 0:422 (3.15.7)

A second grain size distribution curve, however, indicates that the gravel
content is approximately 20%. In this case, emin and emax are estimated to be
0.30 and 0.58, respectively. Substituting these values into Eq. (3.15.6) gives

esite ¼ 0:58�ð0:90Þð0:58� 0:30Þ ¼ 0:328 (3.15.8)

Another uncertainty associated with quantities appearing in Eq. (3.15.4) is
the value of Gs. Tests performed on the borrow pit material indicate that Gs

varies between 2.67 and 2.71.
Eq. (3.15.4) is first evaluated assuming Gs ¼ 2.67. For esite ¼ 0.422,

Vborrow ¼ 1

ð101:8 lb=ft3Þ

�ð2:67Þð62:4 lb=ft3Þ
1þ 0:422

��
750 yd3

� ¼ 863 yd3 (3.15.9)

For esite ¼ 0.328,

Vborrow ¼ 1

ð101:8 lb=ft3Þ

�ð2:67Þð62:4 lb=ft3Þ
1þ 0:328

��
750 yd3

� ¼ 924 yd3

(3.15.10)

1. Perloff, W.H., Baron, W., 1976. Soil Mechanics, Principles and Applications. The Ronald Press

Company, New York, NY.
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Eq. (3.15.4) is first evaluated assuming Gs ¼ 2.71. For esite ¼ 0.422,

Vborrow ¼ 1

ð101:8 lb=ft3Þ

�ð2:71Þð62:4 lb=ft3Þ
1þ 0:422

��
750 yd3

� ¼ 876 yd3

(3.15.11)

For esite ¼ 0.328,

Vborrow ¼ 1

ð101:8 lb=ft3Þ

�ð2:71Þð62:4 lb=ft3Þ
1þ 0:328

��
750 yd3

� ¼ 938 yd3

(3.15.12)

From the aforesaid results, it is evident that changes in the specific gravity
of solids have a relatively minor effect on the computed volumes of borrow pit
material. Changes in the extreme void ratio values, however, have a much
more pronounced affect on the results. As such, if additional laboratory tests
on the borrow pit material are to be performed, they should focus on deter-
mining additional values of emin and emax.
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Chapter 4

Stresses, Strains, and Elastic
Response of Soils

4.0 INTRODUCTORY COMMENTS

Mechanics is defined as the study of the motion of matter and the forces that
cause such motion. Mechanics is based on the concepts of time, space, force,
energy, and matter.

One of the most important facts learned in an undergraduate mechanics
education is that a valid solution to any problem in solid mechanics must satisfy
three sets of equations, namely (1) the equations of equilibrium of body,
surface, and inertia forces and stresses; (2) the equations of compatibility of
strains and displacements; and (3) the constitutive equations for the material.

This chapter reviews key aspects associated with the aforesaid three sets of
equations. The presentation is not meant to be exhaustive.

4.1 GENERAL DEFINITIONS

The following general definitions, included here for completeness, facilitate
understanding of this chapter.

4.1.1 The Continuum Concept

In formulating the aforementioned sets of equations, the material is assumed to
be a continuum. In general, a continuum is defined as an entity that has
continuity; i.e., an unbroken connection or sequence.

The adoption of a continuum concept for geomaterials (i.e., soils and rock)
is complicated by the particulate nature of this class of materials. As noted in
Chapter 1, a porous material is treated as the superimposition of two continua:
the solid matrix continuum (i.e., the solid skeleton) and the pore continuum
(i.e., the voids).1

As noted in Section 1.1, if a two-phase continuum consisting of a coherent
solid matrix (skeleton) with fluid-filled pore space is assumed, the geomaterial

1. Coussy, O., 2004. Poromechanics. John Wiley & Sons, Ltd., Chichester, UK.
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is saturated. If, on the other hand, the pore space is not fully occupied by fluid,
the geomaterial is unsaturated.

4.1.2 Homogeneity

A material is said to be homogeneous if the matter of the body is the same
throughout the body and is continuously distributed over the volume occupied
by the body. This may not be the case with materials exhibiting localized
behavior (e.g., cracks, shear banding, etc.). Although natural geomaterials are
generally heterogeneous, some assumptions concerning homogeneity are
typically required. For example, a soil profile will typically be assumed to
consist of one or more discrete layers; each such layer will then be assumed to
be homogeneous.

4.1.3 Isotropy

An isotropic material has identical mechanical properties in all directions. If
due to some technological process (such as the rolling of metals), natural
growth (such as trees), or natural deposition (such as geomaterials) the
properties of the material are different in different directions, the material is
said to be anisotropic.

4.2 CONCEPT OF STRESS

The subject of internal forces and moments acting in a body is commonly
introduced in a statics course. Obtaining the distribution of internal forces and
their intensity is of primary importance in mechanics of solids. To properly
study this issue, it is necessary to establish the concept of state stress at a
point. In discussing the concept of stress at a point in a body, a material
continuum is assumed.

4.2.1 Definition of Stress at a Point

Consider a general body subjected to several applied (external) forces.
Figure 4.1 shows an internal force increment DF acting on the area
DA ¼ (Dy)(Dz) at a typical interior point O in the body. The normal to this
plane is assumed to point in the positive x-axis direction.

Resolve DF into components along the coordinate axes in the manner
shown in Figure 4.2. According to the approach proposed by Cauchy2, define
the normal stress in the x-direction in the following manner:

sx ¼ lim
DA/0

DFx

DA
(4.1)

2. Named in honor of Augustin Cauchy (1789e1857).
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The designation “normal stress” is used since it denotes the intensity of the
force acting normal (i.e., at right angles) to DA. As shown, sx is a tensile
normal stress. In soil mechanics, compressive normal stresses are typically
taken as being positive.

Two additional stresses are defined on DA; i.e.,

sxy ¼ lim
DA/0

DFy

DA
; sxz ¼ lim

DA/0

DFz

DA
(4.2)

Since these quantities involve forces in the plane being considered, they are
called shear stresses.

Two subscripts must be used to describe shear stresses. The first subscript
refers to the direction of the outward normal vector (in this case x) associated
with DA. The second subscript refers to the direction (in this case y or z) in
which the force component is acting.

Before defining positive and negative stresses in a general manner, it is
necessary to define the positive and negative faces of a infinitesimal cube of
material at a given point (e.g., point O) in a body. A face will be defined as
positive when its outwardly directed normal vector points in the direction of
the positive coordinate axis. A face will be defined as negative when its
outwardly directed normal vector points in the direction of the negative co-
ordinate axis.

By definition, positive shear stresses act in the positive coordinate direction
on a positive face or in the negative coordinate direction on a negative face.

FIGURE 4.1 Internal force increment acting in a body subjected to applied forces.

FIGURE 4.2 Internal force increment resolved into components along coordinate axes.
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4.2.2 Definition of the State of Stress at a Point

To completely describe the state of stress at a point requires the force com-
ponents on three mutually perpendicular planes. Figure 4.3 shows the stress
components associated with a three-dimensional state of stress at a point (the
components acting on the x-y plane are omitted for clarity). In accordance with
the aforementioned sign convention for normal and shear stresses, all of these
components are positive.

The following matrix of components thus defines the general state of
Cauchy stress at a point in a body:

s ¼

2
64
sx sxy sxz
syx sy syz
szx szy sz

3
75 (4.3)

From moment equilibrium, it is found that

sxy ¼ syx; sxz ¼ szx; syz ¼ szy (4.4)

Thus, only six stress components are independent, rendering the stress
matrix given in Eq. (4.3) symmetric.

4.2.3 Mean Stress

For a three-dimensional state of stress, the mean stress is defined as follows:

sm ¼ 1

3
ðsx þ sy þ szÞ (4.5)

FIGURE 4.3 Three-dimensional state of stress at a point.
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4.2.4 State of Plane Stress

If a relatively thin body is loaded by forces applied at the boundary, parallel to the
plane of the plate and distributed uniformly over the thickness (Figure 4.4), the
stress component sz will be negligible (often zero) through the thickness of
the body. The shear stresses sxz ¼ szx and syz ¼ szy will likewise be negligible.
Under these assumptions, it follows from the balance of linear momentum that
under static conditions the body force in the z-direction must be zero.

The state of stress is thus completely determined by the values of sx, sy,
and sxy ¼ syx and is referred to as plane stress. Eq. (4.6) gives the associated
stress matrix.

s ¼
�
sx sxy
sxy sy

�
(4.6)

Figure 4.5 shows the stress components associated with a state of plane
stress. In accordance with the aforementioned sign convention for normal and
shear stresses, all of these components are positive.

Remark: Although sz ¼ 0 under conditions of plane stress, εz will not be zero.

Section 4.4 presents additional details regarding this issue.

4.2.5 Stress Transformations

In general, both normal and shear stresses simultaneously act on a small
element of a body (Figure 4.6A). In many instances, it is necessary to deter-
mine the state of stress acting on an inclined plane through the element
(Figure 4.6B). An infinite number of such planes can be chosen. In all cases
the stresses acting on the inclined plane are equivalent to the original stress

FIGURE 4.4 Schematic illustration of plane stress.
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FIGURE 4.5 Stress components associated with a state of plane stress.
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FIGURE 4.6 Schematic illustration of the (A) original stress state, (B) equivalent transformed

stress state.
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state. This is due to the fact that both the original and transformed stress states
must maintain the equilibrium of the element.

The equations for transforming a given stress state into an equivalent one
acting on any plane through an element in a body are now derived. Rather than
developing such equations for a general three-dimensional stress state, the
simpler case of plane stress will be considered. Figure 4.5 shows the three
nonzero stress components associated with a state of plane stress.

4.2.5.1 Equations for Plane Stress Transformation

Figure 4.7 shows a state of general plane stress and the original (x � y) and
rotated ðx0 � y0Þ axes. The angle q quantifies the rotation with counterclock-
wise angles taken as being positive.

Compressive normal stresses are assumed to be positive; tensile normal
stresses are thus negative. A positive shear stress is defined as acting in a
positive coordinate direction on a face whose outward normal is directed in a
positive coordinate direction, or in a negative coordinate direction on a face
whose outward normal is directed in a negative coordinate direction. For
example, the shear stress on the face PS acts in the positive y-direction; the
outward normal to the face acts parallel to the positive x-direction. The shear
stress acting on face PS is thus positive. Following the same logic, all of the
shear stresses shown in Figures 4.7 and 4.8 are seen to be positive.

The equations for plane stress transformation are developed by analyzing a
small element of a body. Figure 4.8 shows such an element.

FIGURE 4.7 Schematic illustration of plane stress transformation.
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Figure 4.9A shows the wedge that is created by passing a plane bc normal
to the x0-axis through the element shown in Figure 4.8. The plane bc makes an
angle q with the vertical (y) axis. If the area of this inclined plane is dA, then
the areas of the faces ac and ab will be dAcosq and dAsinq, respectively.

Figure 4.9B shows the forces that are obtained by multiplying the stresses
from Figure 4.9A by their corresponding areas. Writing the equations of force
equilibrium in the x0 direction givesX

Fx0 ¼ �sx0dAþ ðsx dA cos qÞ cos q�ðsxy dA cos qÞsin q

�ðsxy dA sin qÞ cos qþ ðsy dA sin qÞsin q ¼ 0
(4.7)

or

sx0 ¼ sx cos
2 qþ sy sin

2 q� 2sxy sin q cos q (4.8)

Substituting the following double angle trigonometric identities

cos2 q ¼ 1

2
ð1þ cos 2qÞ; sin2 q ¼ 1

2
ð1� cos 2qÞ; sin q cos q ¼ 1

2
sin 2q

(4.9)

into Eq. (4.8) gives

sx0 ¼ 1

2
ðsx þ syÞ þ 1

2
ðsx � syÞ cos 2q� sxy sin 2q (4.10)

FIGURE 4.8 Material element used in deriving plane stress transformation equations.
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Next, writing the equations of force equilibrium in the y0 direction givesX
Fy0 ¼sx0y0 dA�ðsx dA cos qÞsin q�ðsxy dA cos qÞcos q

þ ðsxy dA sin qÞsin qþ ðsy dA sin qÞcos q ¼ 0
(4.11)

or

sx0y0 ¼ ðsx � syÞsin q cos q�sxy
�
sin2 q� cos2 q

�
(4.12)

Substituting the trigonometric identities given in Eq. (4.9) into Eq. (4.12)
gives

sx0y0 ¼ 1

2
ðsx � syÞsin 2qþ sxy cos 2q (4.13)

To obtain an equation for the transformed normal stress sy0 , consider the
material wedge shown in Figure 4.10.

FIGURE 4.9 Portion of a material element used in deriving plane stress transformation:

(A) stresses and (B) forces acting on inclined face.

Stresses, Strains, and Elastic Response of Soils Chapter j 4 139



Writing the equations of force equilibrium in the y0 direction givesX
Fy0 ¼ �sy0 dAþ ðsx dA sin qÞsin qþ ðsxy dA sin qÞcos q

þ ðsxy dA cos qÞsin qþ ðsy dA cos qÞcos q ¼ 0
(4.14)

or

sy0 ¼ sx sin
2 qþ sy cos

2 qþ 2sxy sin q cos q (4.15)

Substituting the trigonometric identities given in Eq. (4.9) into Eq. (4.15)
gives

sy0 ¼ 1

2
ðsx þ syÞ �1

2
ðsx � syÞcos 2qþ sxy sin 2q (4.16)

FIGURE 4.10 Portion of a material element used in deriving plane stress transformation:

(A) stresses and (B) forces acting on inclined face.
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The angle q, appearing in Eqs. (4.8)e(4.16), is positive when measured
counterclockwise.

Remark: Adding Eqs. (4.10) and (4.16) gives the relation sx 0 þ sy 0 ¼ sxsy , which

holds for all transformation angles.

4.2.5.2 Determination of Principal Stress

In many cases, the maximum and minimum normal stresses associated with a
given stress state, and the planes on which they act, are of interest. To
determine the orientation of the plane associated with a minimum or a
maximum normal stress, Eq. (4.10) is differentiated with respect to q and the
resulting expression is set equal to zero, giving

dsx0

dq
¼ �1

2
ðsx � syÞð2 sin 2qÞ �sxyð2 cos 2qÞ ¼ 0

Thus,

tan 2qp ¼ �sxy
1

2
ðsx � syÞ

(4.17)

where the subscript on q indicates that this angle defines the maximum or
minimum normal stress. Eq. (4.17) has two roots, since the value of the tangent
of an angle in diametrically opposite quadrants is the same. These roots are
thus 180 degrees apart.

The angles qp1 and qp2 locate the planes on which the maximum and
minimum normal stresses act, respectively. Since 2qp1 and 2qp2 are 180 de-
grees apart, qp1 and qp2 will be 90 degrees apart.

These planes are called the principal planes of stress. The stresses acting
on these planesdthe maximum and minimum normal stressesdare called the
principal stresses.

Remark: For three-dimensional stress states, the three principal stresses (s1, s2,

and s3) are commonly ordered such that s1 � s2 � s3, where s1 is the major

principal stress, s2 is the intermediate principal stress, and s3 is the minor prin-

cipal stress. There are three principal planes that are perpendicular to each other.

Remark: The sum of the normal stresses is invariant, i.e., it is independent of the

coordinate system. Consequently, the mean stress defined in Eq. (4.5) is expanded

to

sm ¼ 1

3
ðsx þ sy þ szÞ ¼ 1

3
ðs1 þ s2 þ s3Þ
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Figure 4.11 schematically illustrates the orientation of the principal stress
directions in s-s space. From the triangles shown in this figure,

sin 2qp1 ¼
�sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s (4.18)

cos 2qp1 ¼
1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s (4.19)

and

sin 2qp2 ¼
sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s ¼ �sin 2qp1 (4.20)

cos 2qp2 ¼
�1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s ¼ �cos 2qp1 (4.21)

FIGURE 4.11 Schematic illustration of principal stress orientation.
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Substituting Eqs. (4.18) and (4.19) into Eq. (4.10) gives the magnitude of
the maximum normal stress, which corresponds to the major principal stress
s1, i.e.,

sx0 ¼ 1

2
ðsx þ syÞ þ 1

2
ðsx � syÞ

2
666664

1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s

3
777775�sxy

2
666664

�sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

3
777775

¼ 1

2
ðsx þ syÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

h s1

(4.22)

Next, substituting Eqs. (4.18) and (4.19) into Eq. (4.16) gives the magni-
tude of the minimum normal stress, which corresponds to the minor principal
stress s2, i.e.,

sy0 ¼ 1

2
ðsx þ syÞ �1

2
ðsx � syÞ

2
666664

1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s

3
777775þ sxy

2
666664

�sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

3
777775

¼ 1

2
ðsx þ syÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

h s2

(4.23)

Finally, substituting Eqs. (4.18) and (4.19) into Eq. (4.13) gives

sx0y0 ¼ 1

2
ðsx � syÞ

2
666664

�sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

3
777775þ sxy

2
666664

1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s

3
777775 ¼ 0

(4.24)

The shear stress is thus zero on the principal planes of stress.3 Figure 4.12
shows the principal stress state for conditions of plane stress.

4.2.5.3 Determination of Maximum In-Plane Shear Stress

The planes on which the shear stress is maximum are next sought. Differentiating
Eq. (4.13) with respect to q and setting the resulting expression equal to zero gives

dsx0y0

dq
¼ 1

2
ðsx � syÞð2 cos 2qÞ þ sxyð�2 sin 2qÞ ¼ 0

3. This result can also be realized by noting that Eq. (4.17) is obtained by setting Eq. (4.13) equal

to zero.
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Thus,

tan 2qs ¼
1

2
ðsx � syÞ

sxy
(4.25)

Eq. (4.25) has two roots, qs1 and qs2. Similar to the roots of Eq. (4.17), 2qs1
and 2qs2 are 180 degrees apart (Figure 4.13). The angles qs1 and qs2 will thus be
90 degrees apart.

From the triangles shown in Figure 4.13,

sin 2qs1 ¼
1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s (4.26)

cos 2qs1 ¼
sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s (4.27)

and

sin 2qs2 ¼
�1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s ¼ �sin 2qs1 (4.28)

FIGURE 4.12 Schematic illustration of principal stress state.
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cos 2qs2 ¼
�sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s ¼ �cos 2qs1 (4.29)

Substituting Eqs. (4.26) and (4.27) into Eq. (4.13) gives the magnitude of
the maximum shear stress, i.e.,

sx0y0 h smax ¼ 1

2
ðsx � syÞ

2
666664

1

2
ðsx � syÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sx � sy

2

�2

þ ðsxyÞ2
s

3
777775

þ sxy

2
66664

sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

3
77775 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

(4.30)

The quantity smax is the maximum in-plane shear stress at a point. The
associated normal stresses are determined by substituting Eqs. (4.26) and
(4.27) into Eqs. (4.10) and (4.16), giving

sx0 ¼ sy0 ¼ 1

2
ðsx þ syÞ (4.31)

FIGURE 4.13 Schematic illustration of maximum shear stress orientation.
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The normal stresses associated with the maximum in-plane shear stress are
thus equal to the average of sx and sy.

4.2.5.4 Mohr’s Circle of Stress for Plane Stress

Let C denote the aforementioned average stress, i.e.,

C ¼ 1

2
ðsx þ syÞ (4.32)

The plane stress transformation Eq. (4.10) is then rewritten as

sx0 �C ¼ 1

2
ðsx � syÞ cos 2q� sxy sin 2q (4.33)

Squaring Eq. (4.33) aswell as the plane stress transformation Eq. (4.13) gives

ðsx0 � CÞ2 ¼ 1

4
ðsx � syÞ2 cos22q�ðsx � syÞsxy sin 2q cos 2qþ ðsxyÞ2 sin22q

(4.34)

ðsx0y0 Þ2 ¼ 1

4
ðsx � syÞ2 sin22qþ ðsx � syÞsxy sin 2q cos 2qþ ðsxyÞ2 cos22q

(4.35)

Adding Eqs. (4.34) and (4.35) gives

ðsx0 � CÞ2 þ ðsx0y0 Þ2 ¼
�
sx � sy

2

�2

þ ðsxyÞ2 (4.36)

The equation of a circle centered at x ¼ a and y ¼ b and having a radius
equal to R is

ðx� aÞ2 þ ðy� bÞ2 ¼ R2 (4.37)

If sx0 is taken as the abscissa and sx0y0 as the ordinate, then Eq. (4.36) is
seen to be the equation of a circle centered at (C,0) and having a radius of

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðsx � syÞ

�2
þ ðsxyÞ2

s
(4.38)

Such a circle is called Mohr’s circle of stress, in honor of the German
engineer4 who first proposed its use to graphically represent the state of stress
at a point. Every point on the circumference of such a circle corresponds to a
specific direction in the plane of a stress element. The circle is constructed in
accordance with the following sign convention:

1. Compressive normal stresses (Figure 4.14) are considered positive and are
plotted to the right of the s-axis.

2. Tensile normal stresses are negative and are plotted to the left of the s-axis.

4. Otto Mohr (1835e1918).

146 Soil Mechanics



3. Shear stresses that produce a positive (counterclockwise) couple
(Figure 4.15) are plotted above the s-axis.

4. Shear stresses that produce a negative (clockwise) couple (Figure 9.3) are
plotted below the s-axis.

5. Counterclockwise rotations q (from one direction in the plane of the stress
element to another or from one point on the circumference of Mohr’s circle
to another) are considered positive.

Given sx, sy, and sxy, Figure 4.16 shows a typical Mohr’s circle.
The center of the circle always lies along the s-axis; it is located at the

point (C,0), where C is given by Eq. (4.32).

FIGURE 4.14 Positive normal stress components associated with two-dimensional stress states.

FIGURE 4.15 Sign convention for shear stress components associated with two-dimensional

stress states.
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The radius of the circle (R) is given by Eq. (4.38). When measured along
the s-axis, sxy ¼ 0 and R ¼ (sx � sy)/2.

In light of the definition of the center (Eq. 4.32) and radius (Eq. 4.38) of a
Mohr’s circle, the major and minor principal stresses given by Eqs. (4.22) and
(4.23), respectively, can be computed as follows (Figure 4.16):

s1 ¼ C þ R; s2 ¼ C � R (4.39)

Finally, the magnitude of the maximum in-plane shear stress is equal to the
radius of the Mohr’s circle, i.e.,

jsmaxj ¼ R (4.40)

The associated normal stresses are equal to C (Figure 4.16).

4.2.5.5 The Pole Method

The equivalent plane stress state acting on any plane can also be determined
using the so-called pole method. The pole is an especially useful point on the
Mohr’s circle of stress. Any straight line drawn through this point will intersect
the circle at a point representing the stress on a plane inclined at the same
orientation as the line.

When the stresses acting on any one plane are known, the location of the
pole is determined by drawing a line parallel to the plane and passing through
the point on the circle corresponding to the stresses on the plane. The inter-
section of this line with the circle is the pole.

FIGURE 4.16 Typical Mohr’s circle for plane stress.
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Figure 4.17 shows a typical Mohr’s circle associated with a state of plane
stress. The points on the circle labeled x and y correspond to the (s,s) stress
states associated with the x and y faces of the material element, respectively.
The points on the circle labeled x0 and y0 correspond to the transformed
(rotated) stress state characterized by the counterclockwise angle q, as deter-
mined using Eqs. (4.10), (4.13), and (4.16).

The locations of the points x0 and y0 can also be determined using the pole
method. Since the plane associated with the face having an outward normal
parallel to the x-axis is vertical, the pole is located by passing a vertical line
through point x as shown in Figure 4.17. The intersection of this line with the
Mohr’s circle is the pole P. A line oriented q degrees in a counterclockwise
direction is next drawn through the pole. The intersection of this line with the
circle is the point x0.

To verify that the location of point x0 obtained using Eqs. (4.10) and (4.13)
will be identical to that obtained using the pole method, extend the line passing
through points P and x until it intersects the horizontal line passing through
points x0 and Q. Denote the angle x0PQ by g; it remains to show that g ¼ q.
From the right triangle PQx0,

tan g ¼ sx � s0x
sx0y0 � sxy

(4.41)

FIGURE 4.17 Determination of pole location using a vertical plane.
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Substituting Eqs. (4.10) and (4.13) for sx0 and sx0y0 , respectively, into
Eq. (4.41) gives

tan g ¼ sx � s0x
sx0y0 � sxy

¼
sx �

�
1

2
ðsx � syÞ þ 1

2
ðsx � syÞcos 2q� sxy sin 2q

�
�
1

2
ðsx � syÞsin 2qþ sxy cos 2q

�
� sxy

¼
1

2
ðsx þ syÞð1� cos 2qÞ þ sxy sin 2q

1

2
ðsx � syÞsin 2qþ sxyðcos 2qþ 1Þ

(4.42)

Using the double-angle trigonometric identities given by Eq. (4.9),
Eq. (4.42) becomes

tan g ¼ ðsx � syÞsin2 qþ 2sxy sin q cos q

ðsx � syÞsin q cos qþ 2sxy cos2 q
¼

	ðsx � syÞsin qþ 2sxy cos q


sin q	ðsx � syÞsin qþ 2sxy cos q


cos q

¼ tan q0 g ¼ q

(4.43)

which thus verifies the validity of using the pole method to determine the
location of the point x0.

The location of the pole can likewise be determined from the point labeled
y on the Mohr’s circle. Since the plane associated with the face having an
outward normal parallel to the y-axis is horizontal, the pole is located by
passing a horizontal line through point y as shown in Figure 4.18. The inter-
section of this line with the Mohr’s circle is the pole P. A line oriented q

degrees in a counterclockwise direction is next drawn through the pole. The
intersection of this line with the circle is the point y0.

4.3 DEFORMATION AND STRAIN

Deformations and strains are kinematic quantities. The subject of kinematics
deals with purely geometrical quantities.

Perhaps the most fundamental kinematic quantity is displacement, which is
defined as the movement of a point from its original or previous location to the
current one.

By contrast, deformation refers to a change in shape, size, or both of the
continuum between some initial (typically undeformed) configuration and a
subsequent (deformed) configuration. More precisely, deformation is character-
ized by the change in the relative position of pairs of points in the body. When
materials are loaded (stressed), they deform. Two types of deformation are
possible, namely (1) dilatational or contractual changes in the geometry that effect
the size (e.g., area or volume) of the body and (2) distortional changes in the
geometry associated with changes in the shape of the body. Figure 4.19 shows
both types of deformation.
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A continuous body is said to be strained when the relative position of
points in the body is altered. Consequently, the study of deformations is
directly related to the analysis of strain in the body. Strain, a normalized
deformation, is the quantity used to measure the intensity of deformation.

Strains may be the result of mechanical loading (e.g., an applied force
causing stress), of a change in temperature, or other physical phenomena (e.g.,
shrinkage, settlement). Strains are dimensionless (e.g., in/in, mm/mm, etc.).

Prior to deriving actual strain measures, it is timely to recall the definition
of a rigid or nondeformable body.5 A rigid body is an ideal body in which the
distance between every pair of its points remains unchanged throughout the
loading history applied to the body. The possible motion in a rigid body
consists of translations and rotations.

FIGURE 4.18 Determination of pole location using a vertical plane.

FIGURE 4.19 Deformation in a body: (A) change in shape, (B) change in size.

5. The equilibrium of rigid bodies is studied in Statics, which is typically the first course in

mechanics taken by undergraduates.

Stresses, Strains, and Elastic Response of Soils Chapter j 4 151



A fundamental requirement of proper strain measures is that they vanish
for any rigid body motion, that is, for a rigid body translation or rotation. If a
strain measure fails to satisfy this requirement, it will predict nonzero strains,
and thus nonzero stresses, for a rigid body motion. This will, however, give
results that violate the physics of deformable bodies.

4.3.1 Normal and Shear Strains

As noted in Section 4.3, two types of deformation are possible; i.e., dilatational
or contractual changes in the geometry that effect the size of a body and
distortional changes in the geometry that change a body’s shape.

Two types of strains are thus defined. Normal strains quantify the change in
size (elongation or contraction) of an arbitrary line segment during deforma-
tion. Figure 4.20 shows a horizontal bar of length L fixed at its left end and
subjected to a uniaxial stress state. The relative elongation of the bar is denoted
by d. Axial strain will thus be ε ¼ d/L.

Shear strains quantify the change in shape (i.e., change in angle that occurs
between two lines that were initially perpendicular). Figure 4.21 shows a
rectangular body subjected to a state of pure shear. The associated shear strain
is equal to the change in initial right angle (in radians). Section 4.3.2 presents
more general definitions of normal and shear strains.

4.3.2 Infinitesimal Strains

If both the displacements and the displacement gradients (rotations) are small
compared to unity, there is very little difference between the initial and
deformed coordinates of a particle in the continuum. The strains are then said
to be infinitesimal. Denoting by u, v, and w the displacement components in the
x, y, and z directions of the coordinate axes, the infinitesimal normal strains are
defined as follows:

εx ¼ vu

vx
; εy ¼ vv

vy
; εz ¼ vw

vz
(4.44)

FIGURE 4.20 Bar subjected to uniaxial stress state and resulting relative elongation.
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The infinitesimal engineering shear strains associated with the x-y, x-z, and
y-z coordinates are

gxy ¼ gyx ¼
vv

vx
þ vu

vy
; gxz ¼ gzx ¼

vw

vx
þ vu

vz
; gyz ¼ gzy ¼

vw

vy
þ vv

vz

(4.45)

In examining Eqs. (4.44) and (4.45), it is evident that the six straine
displacement equations depend on only three displacements (i.e., u, v, and w).
It follows that the equations cannot be independent. Additional independent
equations, which interrelate the strain components, are thus required. The
derivation and application of such equations, known as the equations of
compatibility, are given in standard textbooks on the theory of elasticity.6

Normal strains are positive when a line segment contracts. They are
negative when a line segment elongates. Shear strains are positive if the angle
between two perpendicular reference lines decreases.

4.3.3 Definition of State of Strain at a Point

The state of infinitesimal strain at a point is completely defined by the values
of the normal and shear strains. Written in matrix form, the state of strain at a
point is thus

ε ¼

2
64

εx gxy gxz

gyx εy gyz

gzx gzy εz

3
75 (4.46)

Since gxy ¼ gyx, gxz ¼ gzx, and gyz ¼ gzy, only six of the nine strain
components are independent.

FIGURE 4.21 Rectangular body subjected to state of pure shear.

6. See, for example, Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, third ed.

McGraw-Hill, New York, NY.
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4.3.4 Volumetric Strain

For infinitesimal strains, the volumetric strain associated with a three-
dimensional state of strain is defined as follows:

εvol ¼ εx þ εy þ εz (4.47)

4.3.5 State of Plane Strain

Consider a body that is substantially longer in one coordinate direction as
compared to the other two directions. Take the z-axis parallel to the “long”
direction. The body is assumed to be loaded by forces acting in the planes of
the cross section, that is, normal to the z-axis, and not varying along its length.
The stresses and deformations of all cross sections in the body are only
functions of the x and y coordinates. The deformation is then said to be plane
strain. For such a condition, εz ¼ gxz ¼ gyz z 0. The following strain matrix
thus represents the state of plane strain:

ε ¼
�
εx gxy

gxy εy

�
(4.48)

4.3.6 Strain Transformations

Since the state of stress (Eq. 4.3) and strain (Eq. 4.46) at a point is represented
by a square matrix (or more generally, by a rank-two tensor), the equations for
transforming a given strain state into an equivalent one acting on any plane
through an element in a body are obtained by analogy to the stress trans-
formation equations.

4.3.6.1 Equations for Plane Strain Transformation

The transformation equations for a state of plane strain are obtained by
analogy to the transformation equations for a state of plane stress given by
Eqs. (4.10), (4.16), and (4.13). As such,

εx0 ¼ 1

2
ðεx þ εyÞ þ 1

2
ðεx � εyÞ cos 2q�

gxy

2
sin 2q (4.49)

εy0 ¼ 1

2
ðεx þ εyÞ �1

2
ðεx � εyÞ cos 2qþ

gxy

2
sin 2q (4.50)

1

2
gx0y0 ¼

1

2
ðεx � εyÞ sin 2qþ gxy

2
cos 2q (4.51)

Similar to the case of plane stress transformation, the angle q, appearing in
Eqs. (4.49)e(4.51), is positive when measured counterclockwise.
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4.3.6.2 Determination of Principal Strains

By analogy to Eq. (4.39), the principal strains are given by

ε1 ¼ C þ R; ε2 ¼ C � R (4.52)

where, by analogy to Eqs. (4.32) and (4.38),

C ¼ 1

2
ðεx þ εyÞ (4.53)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðεx � εyÞ

�2
þ
�gxy

2

�2

s
(4.54)

and gxy ¼ 0. The principal strain direction is computed from

tan 2qp ¼
�gxy

εx � εy
(4.55)

4.3.6.3 Determination of Maximum In-Plane Shear Strain

The magnitude of the maximum in-plane shearing strain (gmax) is

gmax ¼ 2R ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðεx � εyÞ

�2
þ
�gxy

2

�2

s
(4.56)

The associated normal strains are the average of εx and εy, i.e.,

εx ¼ εy ¼ εavg ¼ 1

2
ðεx þ εyÞ (4.57)

The orientation of the maximum in-plane shear strain is computed from

tan 2qs ¼ εx � εy

gxy

(4.58)

4.3.6.4 Mohr’s Circle of Stress for Plane Strain

A Mohr’s circle of strain is constructed in the space of ε versus g/2. The steps
to constructing the circle are identical to those listed in Section 4.2.5.4 for the
case of a Mohr’s circle of stress. Eqs. (4.53) and (4.54) give the ε-coordinate of
the center and the radius of the circle, respectively.

4.4 CONSTITUTIVE RELATIONS

As noted in Section 4, a valid solution to any problem in solid mechanics must
satisfy (1) the equations of equilibrium of body, surface, and inertia forces and
stresses; (2) the equations of compatibility of strains and displacements; and
(3) the constitutive equations for the material.
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The equilibrium equations and the equations of compatibility are valid for
all materials, irrespective of their internal constitution. Thus, a unique solution
to a boundary value problem cannot be obtained only with these two sets of
equations. Instead, a unique solution requires additional considerations that
account for the nature of the material. The quantification of material response
is realized through constitutive relations.7

4.4.1 General Form of Constitutive Relations

The general form of a constitutive relation for solids relates stresses to strains.
This section presents the vectorematrix form of the constitutive relations in
both direct and inverse form.

In “direct” form, the constitutive relations are written as follows:

ε ¼ As (4.59)

where ε is the vector of infinitesimal strains, s is the Cauchy stress vector, and
A is a square symmetric matrix of compliance coefficients characterizing the
material.

Written in “inverse” form, the constitutive relations become

s ¼ Cε (4.60)

where s and ε are as previously defined. The square symmetric matrix of
material coefficients C is the inverse of A.

In the most general case of a three-dimensional analysis,A and C are (6*6) in
size.The strain and stress vectors are (6*1) in size andcontain the following entries:

ε ¼ 
εx εy εz gxy gxz gyz

�T
(4.61)

s[ f sx sy sz sxy sxz syz gT (4.62)

In the given expressions the superscript T denotes the operation of matrix
transposition.

4.4.2 Insight Into the Constitutive Matrices

To make better sense of material idealizations based on entries in C, partition this
matrix into the following (3*3) submatrices:

C[

�
C11 C12

C21 C22

�
(4.63)

where, due to symmetry,C12 ¼ C21
T . The following observations are then pertinent:

l Nonzero entries in C11 mean that the normal stresses sx, sy, and sz are
functions of the strains εx, εy, and εz. It follows that C11 will never be the
zero matrix.

7. Constitutive relations are also referred to as “constitutive laws” and “constitutive models.”
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l If C12 s 0, the normal stresses are also functions of the shear strains gxy,
gxz, and gyz. If C12 s 0, then C21 s 0, implying that the shear stresses sxy,
sxz, and syz are functions of εx, εy, and εz.

l Finally, if C22 s 0, the shear stresses are also functions of the shear
strains. It follows that C22 will never be the zero matrix. Analyzing C22

more closely, it is evident that a diagonal form of this submatrix means that
shear stresses are only functions of the corresponding shear strains. Once
nonzero diagonal entries are present in C22, the shear stresses become
functions of two or more shear strains.

Although the aforesaid discussion focused on C, it could have likewise
been presented in terms of A.

4.4.3 General Classes of Material Idealizations

The discussion of constitutive relations is typically organized by the type of
material idealization. The following general classes of such idealizations are
commonly used:

l Linear elasticity
l Nonlinear elasticity
l Linear viscoelasticity
l Nonlinear viscoelasticity
l Elastoplasticity (i.e., time- and rate-independent inelastic response)
l Viscoplasticity (i.e., time- and rate-dependent inelastic response).

As noted in Chapter 1, soils consist of a porous skeleton whose voids are
filled with fluid (typically air and water). Macroscopically, soils exhibit an
anisotropic, inelastic, strain hardening (and softening), and time- and
temperature-dependent behavior. The proper mathematical characterization of
soils thus requires rather sophisticated constitutive relations that account for
some or all of the aforementioned behavioral characteristics.

However, since introductory courses in soil mechanics largely consider
elastic material response, this focus in the remainder of this section is on
elastic constitutive relations.

4.4.4 Elastic Material Idealizations

Elastic materials exhibit the following characteristics:

l The state of stress is a function only of the current state of deformation; it
does not depend on the history of straining or loading.

l Upon removal of the applied loads, the material completely recovers to the
undeformed configuration.

l When loaded, an elastic material stores 100% of the energy due to
deformation (i.e., the strain energy).
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l When unloaded, such a material releases 100% of the stored energy and
returns to its initial state. No permanent deformation is realized.

l The response is rate-independent, i.e., the rate at which the loading is
applied has no effect upon the material response.

In a linear elastic material (Figure 4.22A), stress is proportional to strain.
In general, however, elastic materials are nonlinear. This is particularly true in
the case of geomaterials (soil and rock). The loading and unloading paths for
such materials essentially coincide (Figure 4.22B).

4.4.4.1 Linear Elastic Material Idealizations

The most general linear elastic constitutive relation, which pertains to aniso-
tropic linear elastic materials, is generalized Hooke’s law.8 The general form
of this relation, in direct and inverse form, is given by Eqs. (4.59) and (4.60),
respectively. Since the strain and stress vectors in Eqs. (4.61) and (4.62),
respectively, are (6*1) in size, it follows that the square matrices A and C are
(6*6) in size. Due to the symmetry of the strain and stress matrices (recall Eqs.
4.46 and 4.3), as well as A and C themselves, only 21 of the 36 coefficients of
A and C are independent.

From the point of view of material characterization, the analysis of bodies
made of anisotropic materials is quite complicated, especially in three di-
mensions. This is because of the need to experimentally determine the
aforementioned 21 entries in A or C. Fortunately, many of the important en-
gineering materials possess some internal structure that exhibits certain
symmetries and thus simplifies the composition of A and C.

For example, in the case of materials possessing three planes of elastic
symmetry (i.e., orthotropic materials), the number of independent entries re-
duces to 9. For materials possessing a plane of isotropy (i.e., transversely
isotropic materials), the number of independent entries further reduces to 5.
Although transversely isotropic material idealizations are particularly well

FIGURE 4.22 Uniaxial loading and unloading of an elastic material: (A) linear, (B) nonlinear.

8. Named in honor of Robert Hooke (1635e1703).
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suited to soils because of their method of deposition, the prospect of deter-
mining the values of five material parameters often precludes their use.

Instead, the elastic response of soils is typically assumed to be isotropic
(recall the discussion in Section 4.1.3). This represents the simplest elastic
material for which the elastic behavior is independent of the orientation of the
coordinate axes. For an isotropic elastic material the constitutive relations
simplify in that only two independent constants are required to completely
describe the material behavior, for example, the elastic modulus E and Pois-
son’s ratio9 n. The compliance matrix A then has the following entries:

A ¼ 1

E

2
666666664

1 �n �n 0 0 0

�n 1 �n 0 0 0

�n �n 1 0 0 0

0 0 0 2ð1þ nÞ 0 0

0 0 0 0 2ð1þ nÞ 0

0 0 0 0 0 2ð1þ nÞ

3
777777775

(4.64)

Recalling the direct form of the constitutive relations given by Eq. (4.59)
and the strain and stress vectors given by Eqs. (4.61) and (4.62), respectively,
the constitutive relations for an isotropic linear elastic material are

εx ¼ 1

E

	
sx �nðsy þ szÞ



(4.65)

εy ¼ 1

E

	
sy �nðsx þ szÞ



(4.66)

εz ¼ 1

E

	
sz �nðsx þ syÞ



(4.67)

gxy ¼
2ð1þ nÞ

E
sxy ¼ 1

G
sxy (4.68)

gxz ¼
1

G
sxz (4.69)

gyz ¼
1

G
syz (4.70)

where G is the elastic shear modulus.
In inverse form, the nonzero entries in C are

C11 ¼ C22 ¼ C33 ¼ Eð1� nÞ
ð1þ nÞð1� 2nÞ (4.71)

9. Named in honor of S.D. Poisson (1781e1840).
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C12 ¼ C13 ¼ C23 ¼ En

ð1þ nÞð1� 2nÞ (4.72)

C44 ¼ C55 ¼ C66 ¼ E

2ð1þ nÞ ¼ G (4.73)

where G is as defined previously.

4.5 STRESSES IN SOIL DUE TO SURFACE LOADS

When a load, such as the weight of a structure, is applied to the surface of a
soil mass, the vertical total, and possibly effective, stress within the mass will
increase. Load applied at one point will be transferred vertically and laterally
throughout the mass.

If the load is applied over a large areal extent, the vertical total stress on a
horizontal section at a given depth will be uniformly distributed. Such will not
be the case if the load is applied over a smaller area such as a footing. In these
cases the distribution of vertical total stress is determined using various for-
mulas based on the theory of elasticity. Such formulas are similar in that they
assume the soil to be homogeneous (at least in a given layer), elastic and
isotropic with constant elastic modulus and Poisson’s ratio. In addition, the
load is typically assumed to be applied at the ground surface over a flexible
loading area. The aforementioned formulas differ only in the specific as-
sumptions made to represent the elastic soil mass and the extent of the solution
domain (e.g., infinite versus semiinfinite).

Once the elastic stresses in a soil mass are known, Eq. (4.59) is used to
compute the associated strains. If the strain distribution is integrated over the
depth of the soil mass, it yields the displacement field in the soil. Among the
three displacement components, it is the vertical one that is typically of most
interest in that it is used to quantify settlement of structures. Chapter 8 gives
additional details pertaining to the subject of settlement.

4.6 SUPERPOSITION PRINCIPLE

One of the benefits of using a linear elastic material idealization is that the
superposition principle can be used. This principle states that for all linear
systems, the net response at a given location and time caused by two or more
excitations (e.g., applied loads, applied displacements, etc.) is the sum of the
responses that would have been caused by each excitation individually.

EXAMPLE PROBLEM 4.1

General Remarks

This example problem illustrates the manner in which average normal and
shear strains are computed.
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Problem Statement

The rectangular plate PQRS is deformed into the shape shown by dashed lines
in Figure Ex. 4.1A. Compute (a) the average normal strain along diagonal PR,
(b) the average normal strain along diagonal QS, (c) the average engineering
shear strain (gxy) at corner P, and (d) the average engineering shear strain (gxy)
at corner Q and the average engineering shear strain (gxy) at corner R.

Solution

a) The initial length of diagonal PR is

PR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð300Þ2 þ ð250Þ2

q
¼ 390:512 mm (4.1.1)

The deformed length of diagonal PR0 is

PR0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð300þ 6:5Þ2 þ ð250þ 6:0Þ2

q
¼ 399:347 mm (4.1.2)

Using Eqs. (4.1.1) and (4.1.2), the average normal strain along diagonal
PR is thus

εPR ¼ PR0 � PR

PR
¼ �

�
399:347� 390:512

390:512

�
¼ �2.262310L2 mm=mm

(4.1.3)

The negative sign indicates that the strain is extensional.

FIGURE EX. 4.1A Initial and deformed configurations of a rectangular plate (not to scale).

Stresses, Strains, and Elastic Response of Soils Chapter j 4 161



b) Proceeding in a similar manner, the initial length of diagonal QS is equal to
the length of PR. The deformed length of diagonal Q0S0 is

Q0S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð303� 2:5Þ2 þ ð2:5� 252:0Þ2

q
¼ 390:577 mm (4.1.4)

Using Eqs. (4.1.1) and (4.1.4), the average normal strain along diagonal
QS is thus

εQS ¼ Q0S0 � QS

QS
¼ �

�
390:577� 390:512

390:512

�
¼ �1.656310L4 mm=mm

(4.1.5)

The negative sign indicates that the strain is also extensional.
c) To facilitate the computation of the average engineering shear strain at

corner P, refer to Figure Ex. 4.1B. Recalling that small angle geometry is
assumed, the values of the angles a and b are computed as follows:

tan a ¼ 2:5 mm

ð250þ 2:0Þ mm
0 a ¼ tan�1

�
2:5

252:0

�
¼ 0:010 rad (4.1.6)

tan b ¼ 2:5 mm

ð300þ 3:0Þ mm
0 b ¼ tan�1

�
2:5

303:0

�
¼ 0:008 rad (4.1.7)

The average engineering shear strain at corner P is thus

gxyP ¼ aþ b ¼ 0:010þ 0:008 ¼ 0.018 rad (4.1.8)

The positive shear strain indicates that the initial right angle at point P
has decreased in magnitude.

FIGURE EX. 4.1B Angles used in computing shear strains in the rectangular plate.
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d) The average engineering shear strain at corner Q requires the value of the
angle q (Figure Ex. 4.1B), which is computed as follows:

tan q ¼ ð6:5� 3:0Þmm

ð250þ 6:0� 2:5Þmm
0 q ¼ tan�1

�
3:5

253:5

�
¼ 0:014 rad (4.1.9)

Thus,

gxyQ ¼ qþ b ¼ �ð0:014þ 0:008Þ ¼ �0.022 rad (4.1.10)

The negative shear strain indicates that the initial right angle at point Q
has increased in magnitude due to shearing.

e) In addition to the value of q, the average engineering shear strain at corner
R also requires the value of the angle c (Figure Ex. 4.1B), which is
computed as follows:

tan c ¼ ð6:0� 2:0Þmm

ð300þ 6:5� 2:5Þmm
0 c ¼ tan�1

�
4:0

304:0

�
¼ 0:013 rad (4.1.11)

Thus,

gxyR ¼ qþ c ¼ 0:014þ 0:013 ¼ 0.027 rad (4.1.12)

EXAMPLE PROBLEM 4.2

General Remarks

This example problem illustrates the manner in which normal strains are
computed and then used to compute other kinematic quantities.

Problem Statement

During testing of a sand sample in axisymmetric triaxial compression, the
original diameter of 36 mm was increased by 2.403 � 10�3 mm and the
original length of 76 mm was decreased by 1.810 � 10�2 mm. Compute
(a) the axial normal strain εz, (b) the lateral normal strain (εx ¼ εy), (c) the
volumetric strain εvol, and (d) the Poisson’s ratio n.

Solution

a) Assuming the direction of load application to be parallel to the z-axis, the
axial normal strain is computed as follows:

εz ¼ 1:810� 10�2 mm

76 mm
¼ 2.382310L4 mm=mm (4.2.1)
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b) Similarly, the lateral normal strain is

εx ¼ εy ¼ �2:403� 10�3 mm

36 mm
¼ �6.675310L5 mm=mm (4.2.2)

c) Using the previous results, the infinitesimal volumetric strain is thus

εvol ¼ εx þ εy þ εz ¼ 2
��6:675� 10�5

�þ 2:382� 10�4 ¼ 1.047310L4 mm=mm

(4.2.3)

d) Finally, assuming a linear elastic material idealization for the sand, the
Poisson’s ratio is

n ¼ �εx

εz
¼ �

�� 6:675� 10�5 mm=mm
�

2:382� 10�4 mm=mm
¼ 0.28 (4.2.4)

EXAMPLE PROBLEM 4.3

General Remarks

This example problem illustrates the manner in which uniaxial stress and axial
and lateral strains are related through a linear elastic constitutive relation.

Problem Statement

When testing a concrete cylinder in compression, the original diameter of
150 mm was increased by 0.01016 mm and the original length of 300 mm was
decreased by 0.16510 mm under the action of a compressive axial force of
224 kN. Assuming a linear elastic material idealization for the concrete,
determine (a) the volumetric strain, (b) the Poisson’s ratio (n), and (c) the
modulus of elasticity (Young’s modulus) E.

Solution

a) The axial strain developed in the concrete cylinder as a result of the applied
load is

εaxial ¼ 0:16510 mm

300 mm
¼ 5:503� 10�4 mm=mm (4.3.1)

The lateral strain resulting from the applied load is

εlateral ¼ �0:01016 mm

150 mm
¼ �6:777� 10�5 mm=mm (4.3.2)
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The volumetric strain resulting from the applied load is thus

εvol ¼ εaxial þ 2εlateral ¼
�
5:503� 10�4

�þ 2
��6:777� 10�5

�
[ 4.148310L4 mm=mm

(4.3.3)

b) The Poisson’s ratio for the concrete is computed from Eqs. (4.3.1) and
(4.3.2) as follows:

n ¼ �εlateral

εaxial
¼ �

�� 6:777� 10�5 mm=mm
�

5:503� 10�4 mm=mm
¼ 0.12 (4.3.4)

c) The modulus of elasticity is the slope of the initial (linear) portion of the
stressestrain curve. As such,

E ¼ saxial

εaxial
(4.3.5)

The axial stress is computed as follows:

saxial ¼ Paxial

A
¼ 224 kN

p

4
ð150 mmÞ2

�
�
1000 mm

m

�2

¼ 1:268� 104 kPa (4.3.6)

Substituting Eqs. (4.3.6) and (4.3.1) into Eq. (4.3.5) gives the desired
value of the modulus of elasticity

E ¼ saxial

εaxial
¼ 1:268� 104 kPa

5:503� 10�4 mm=mm
¼ 2.3033107 kPa ¼ 23.0 GPa (4.3.7)

EXAMPLE PROBLEM 4.4

General Remarks

This example problem illustrates the manner in which uniaxial stress and axial
and lateral strains are related through a linear elastic constitutive relation.

Problem Statement

The rectangular specimen shown in Figure Ex. 4.4 is subjected to an axial
tensile force of P ¼ 28.5 kN. As a result of this force, the specimen elongates
0.0562 mm over its length.

The specimen’s response is known to be in the linear elastic range, and
the Poisson’s ratio (n) is equal to 0.34. Compute (a) the elastic modulus (E) for
the material from which the specimen is made, (b) the axial strain (εx), (c) the
transverse normal strains εy and εz, (d) the changes in length in the y and z
directions, and (e) the volumetric strain (εvol).
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Solution

a) Since the response is known to be in the linear elastic range, the uniaxial
stress and strain are related through Hooke’s law, i.e.,

sx ¼ Eεx 0
P

A
¼ E

dx

L
0 E ¼ PL

Adx
(4.4.1)

where dx is the deformation in the x-direction and A is the cross-sectional
area. Substituting all known quantities into Eq. (4.4.1) and recalling that
extensional strains and tensile stresses are negative gives

E ¼ PL

Adx
¼ ð�28:5 kNÞð2:25 mÞ

ð0:120 mÞð0:090 mÞð�0:0562 mmÞðm=1000 mmÞ
¼ 1.0563108 kPa ¼ 105.6 GPa

(4.4.2)

b) The axial strain in the specimen is

εx ¼ dx

L
¼ �0:0562 mm

2:25 m

�
1 m

1000 mm

�
¼ �2.498310L5 mm=mm (4.4.3)

c) The transverse normal strains are computed from the definition of
Poisson’s ratio, i.e.,

n ¼ �εy

εx
¼ �εz

εx
0 εy ¼ εz ¼ �nεx (4.4.4)

2.25 m 120 mm

90 mm

xZ

Y

P

P

FIGURE EX. 4.4 Rectangular specimen subjected to axial load.
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Substituting all known quantities into Eq. (4.4.4) and recalling that
compressive strains are positive gives

εy ¼ εz ¼ �ð0:34Þ�� 2:498� 10�5 mm=mm
� ¼ 8:492� 10�6 mm=mm

(4.4.5)

d) The changes in length in the y and z directions are computed from the
lateral strains as follows:

εy ¼ dy

Ly
0 dy ¼ εyLy ¼

�
8:492� 10�6 mm=mm

�ð90 mmÞ

¼ 7.643310L4 mm

(4.4.6)

εz ¼ dz

Lz
0 dz ¼ εzLz ¼

�
8:492� 10�6 mm=mm

�ð120 mmÞ

¼ 1.019310L3 mm

(4.4.7)

e) Finally, the volumetric strain is

εvol ¼ εx þ εy þ εz ¼
��2:498� 10�5 mm=mm

�þ 2
�
8:492� 10�6 mm=mm

�
¼ �8.000310L6 mm=mm

(4.4.8)

EXAMPLE PROBLEM 4.5

General Remarks

This example problem illustrates the manner in which elastic constants and
strain components are computed for a soil specimen subjected to plane strain
conditions.

Problem Statement

A 200 mm cube of sand is subjected to conditions of plane strain with the
strain increments Dεz ¼ Dgxz ¼ Dgyz ¼ 0. The loading induces the following
stress state: sx ¼ 150 kPa (compressive), sy ¼ 800 kPa (compressive), and
sxy ¼ 0.

The applied stresses result in a 0.70 mm expansion in the x-direction and a
6.5 mm compression in the y-direction. Assuming that the sand exhibits
isotropic, linear elastic response, determine the following:

a) The magnitude of the elastic modulus (E) and Poisson’s ratio (n) for the
sand.

b) The magnitude of the normal stress sz.
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Solution

a) Begin the solution with the linear elastic constitutive relations in direct
form as given by Eqs. (4.65)e(4.7), i.e.,

εx ¼ 1

E

	
sx �nðsy þ szÞ



(4.5.1)

εy ¼ 1

E

	
sy �nðsx þ szÞ



(4.5.2)

εz ¼ 1

E

	
sz �nðsx þ syÞ



(4.5.3)

Since εx, εy, sx, and sy are either given or easily computed from the
information provided, and since εz ¼ 0 because of plane strain conditions,
the three unknowns associated with the problem are E, n, and sz.

Begin by solving Eqs. (4.5.1) and (4.5.2) for E and then equating the
resulting expressions. This leads to the following result:

1

εx

	
sx �nðsy þ szÞ


 ¼ 1

εy

	
sy �nðsx þ szÞ



(4.5.4)

To eliminate sz, note that from Eq. (4.5.3),

εz ¼ 1

E
½sz �nðsx þ syÞ� ¼ 0 0 sz ¼ nðsx þ syÞ (4.5.5)

Substituting this into Eq. (4.5.4) gives a single equation in n, i.e.,

ðsx þ syÞ
�
1

εy
� 1

εx

�
n2 þ

�
sx

εy
� sy

εx

�
nþ

�
sx

εx
� sy

εy

�
¼ 0 (4.5.6)

From the information given in the problem, sx ¼ 150 kPa, sy ¼ 800 kPa,
and

εx ¼ �0:70 mm

200 mm
¼ �3:500� 10�3 mm=mm (4.5.7)

εy ¼ 6:50 mm

200 mm
¼ 3:250� 10�2 mm=mm (4.5.8)

Substituting these values into Eq. (4.5.6) gives�
3:007� 105

�
n2 þ �

2:332� 105
�
nþ ��6:747� 104

� ¼ 0 (4.5.9)

The solution to this quadratic equation is n ¼ �1.000, 0.224. Although
the first root is theoretically possible, the second one is the desired
quantity. Thus,

n ¼ 0.224 (4.5.10)
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To determine the elastic modulus E, subtract Eq. (4.5.2) from Eq.
(4.5.1), giving

εx �εy ¼
�
1þ n

E

�
ðsx � syÞ 0 E ¼ ð1þ nÞ ðsx � syÞ

εx � εy
(4.5.11)

Substituting the known values into Eq. (4.5.11) gives

E ¼ ð1þ 0:224Þ
�

150� 800

ð�3:500� 10�3Þ �ð3:250� 10�2Þ
�
¼ 2.2103104 kPa

(4.5.12)

b) The normal stress in the z-direction is computed from Eq. (4.5.5), i.e.,

sz ¼ nðsx þ syÞ ¼ ð0:224Þð150þ 800Þ ¼ 2.2183102 kPa (4.5.13)

Thus, similar to sx and sy, the normal stress acting in the thickness
direction is compressive.

EXAMPLE PROBLEM 4.6

General Remarks

This example problem investigates quantities associated with confined (one-
dimensional) compression.

Problem Statement

In an isotropic linear elastic material idealization, the constrained modulus
(E1d) is defined as the ratio of the axial stress to the axial strain for confined
(uniaxial) compression such as that realized in an oedometer. Taking the
z-direction as the direction of loading and deformation, it follows that εz s 0
and εx ¼ εy ¼ 0.

a) Express the lateral stresses sx and sy in terms of sz and Poisson’s ratio (n).

b) Derive an expression for the coefficient of earth pressure at rest
(K0 ¼ sx/sz) in terms of n.

c) Derive an expression for E1d in terms of the elastic modulus E and n.

d) Besides changes in volume, uniaxial loading and confined compression
also involve shear strains. As such, determine the volumetric strain
(εvol ¼ εx þ εy þ εz) and maximum shear strain (gmax) developed during
confined compression. Express the results in terms of E, n, and sz.

Stresses, Strains, and Elastic Response of Soils Chapter j 4 169



Solution

a) Specializing the constitutive relations (recall Eqs. 4.59 and 4.64), written in
direct form, for the case of one-dimensional compression gives

εx ¼ 1

E

	
sx �nðsy þ szÞ


 ¼ 0 (4.6.1)

εy ¼ 1

E

	
sy �nðsx þ szÞ


 ¼ 0 (4.6.2)

εz ¼ 1

E

	
sz �nðsx þ syÞ



(4.6.3)

From Eq. (4.6.1),

sx ¼ nðsy þ szÞ (4.6.4)

Substituting this result into Eq. (4.6.2) gives

sy ¼ nðsx þ szÞ ¼ n
	
nsy þ ð1þ nÞsz



(4.6.5)

Solving Eq. (4.6.5) for sy gives

sy ¼
� n

1� n

�
sz (4.6.6)

Substituting this result into Eq. (4.6.1) gives

sx ¼ nðsy þ szÞ ¼
�

n2

1� n

�
sz þ nsz ¼

� n

1� n

�
sz ¼ sy (4.6.7)

Thus,

sx ¼ sy ¼
� n

1� n

�
sz (4.6.8)

The result makes sense, as the lateral stresses would be expected to be
equal under the uniaxial (one-dimensional) conditions imposed in an
oedometer.

b) From Eq. (4.6.7) it follows that

K0 ¼ sx

sz
¼

� n

1� n

�
(4.6.9)

Before leaving this part of the problem, it is timely to note that if K0 is
known in a test, then the aforesaid expression can be inverted and solved
for Poisson’s ratio, giving

n ¼ K0

1þ K0
(4.6.10)

where it is understood that the response is assumed to be elastic.
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c) Noting that sx ¼ sy ¼ nsz /(1 � n), Eq. (4.6.3) is rewritten as

εz ¼ 1

E

	
sz �nðsx þ syÞ


 ¼ 1

E

h
sz �2n

� n

1� n

�
sz

i
¼ 1

E

�
1� n� 2n2

1� n

�
sz ¼ 1

E

�ð1þ nÞð1� 2nÞ
1� n

�
sz

(4.6.11)

Thus,

E1d ¼ sz

εz
¼ ð1� nÞ

ð1þ nÞð1� 2nÞE (4.6.12)

For example, if n ¼ 1
3, then E1d ¼ 3

2E.

d) For confined (uniaxial) compression, εx ¼ εy ¼ 0. The volumetric strain is
thus given by Eq. (4.6.11), i.e.,

εvol ¼ εz ¼ sz

E

�ð1þ nÞð1� 2nÞ
1� n

�
¼ sz

E1d
(4.6.13)

The maximum shear strain in the x-z plane is given by

smax ¼ 1

2
ðsz � sxÞ ¼ 1

2

�
sz � v

1� v
sz

�
¼ 1

2

�
1� 2v

1� v

�
sz (4.6.14)

where Eq. (4.6.7) has been used. The maximum engineering shear strain is
thus

gmax ¼
1

G
smax ¼

�
2ð1þ nÞ

E

�
1

2

�
1� 2n

1� n

�
sz (4.6.15)

or

gmax ¼
sz

E

�ð1þ nÞð1� 2nÞ
1� n

�
¼ sz

E1d
(4.6.16)

Remark: For elastic response during confined (uniaxial) compression, the

maximum engineering shear strain is thus equal to the volumetric strain (which

itself is equal to the axial strain).

EXAMPLE PROBLEM 4.7

General Remarks

This example problem reinforces that an isotropic linear elastic material
idealization is defined by the values of two independent material parameters.
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The possible parameters include the elastic modulus E, Poisson’s ratio n, the
bulk modulus K, the shear modulus G, and the Lame’ parameters10 l and m.
Any one of these parameters can be expressed in terms of two of other
parameters.

Problem Statement

For an isotropic linear elastic material the relation between the Cauchy stress
vector and the infinitesimal strain vector can be written in terms of the elastic
modulus E and Poisson’s ratio n as

sx ¼ E

1þ n

"
εx þ

� n

1� 2n

�
εvol

#
; sy ¼ E

1þ n

"
εy þ

� n

1� 2n

�
εvol

#
;

sz ¼ E

1þ n

"
εz þ

� n

1� 2n

�
εvol

#
sxy ¼ E

2ð1þ nÞ gxy;

sxz ¼ E

2ð1þ nÞ gxz; syz ¼ E

2ð1þ nÞ gyz

where εvol ¼ εx þ εy þ εz. The aforementioned relation between stress and
strain can likewise be written in terms of the Lame’ parameters l and m as

sx ¼ lεvol þ 2mεx; sy ¼ lεvol þ 2mεy; sz ¼ lεvol þ 2mεz

sxy ¼ mgxy; sxz ¼ mgxz; syz ¼ mgyz

a) Using the aforementioned equations, verify that

l ¼ nE

ð1þ nÞð1� 2nÞ; m ¼ G ¼ E

2ð1þ nÞ; K ¼ E

3ð1� 2nÞ ¼
3lþ 2m

3

Then, using the aforementioned relations between material parameters,
express the following:

b) l in terms of K and G.

c) n in terms of l and m, and

d) E in terms of K and G.

10. Named in honor of Gabriel Lame’ (1795e1870).
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Solution

a) Comparing like terms in the following equations:

sx ¼ E

1þ n

�
εx þ

� n

1� 2n

�
εvol

�
; sy ¼ E

1þ n

�
εy þ

� n

1� 2n

�
εvol

�
;

sz ¼ E

1þ n

�
εz þ

� n

1� 2n

�
εvol

�
(4.7.1)

sx ¼ lεvol þ 2mεx; sy ¼ lεvol þ 2mεy; sz ¼ lεvol þ 2mεz (4.7.2)

it follows that

l ¼ E

1þ n

� n

1� 2n

�
¼ En

ð1þ nÞð1� 2nÞ (4.7.3)

Similarly,

E

1þ n
¼ 2m 0 m ¼ E

2ð1þ nÞ (4.7.4)

Comparing the equations for shear stresses, i.e.,

sxy ¼ E

2ð1þ nÞ gxy; sxz ¼ E

2ð1þ nÞ gxz; syz ¼ E

2ð1þ nÞ gyz

sxy ¼ mgxy; sxz ¼ mgxz; syz ¼ mgyz

and recalling that

sxy ¼ Ggxy; sxz ¼ Ggxz; syz ¼ Ggyz

it follows that

m ¼ E

2ð1þ nÞ ¼ G (4.7.5)

For an isotropic linear elastic material, the mean stress is related to the
volumetric strain as follows:

1

3
ðsx þ sy þ szÞ ¼ Kεvol (4.7.6)

Substituting Eq. (4.7.1) for the normal stresses gives

1

3
ðsx þ sy þ szÞ ¼ 1

3

�
E

1þ n

�"
ðεx þ εy þ εzÞ þ 3

� n

1� 2n

�
εvol

#

¼ E

3ð1þ nÞ
�
1þ 3n

1� 2n

�
εvol ¼ E

3ð1þ nÞ
ð1þ nÞ
ð1� 2nÞεvol

¼ E

3ð1� 2nÞεvol
(4.7.7)
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Comparing Eqs. (4.7.6) and (4.7.7), it is evident that

K ¼ E

3ð1� 2nÞ (4.7.8)

Returning to Eq. (4.7.6) and substituting Eq. (4.7.2) for the normal
stresses gives

1

3
ðsx þ sy þ szÞ ¼ 1

3

	ðlεvol þ 2mεxÞ þ ðlεvol þ 2mεyÞ þ ðlεvol þ 2mεzÞ



(4.7.9)

Expanding the equation and collecting like terms gives

1

3
ðsx þ sy þ szÞ ¼ 1

3

	
3lεvol þ 2mðεx þ εy þ εzÞ


 ¼ 1

3
ð3lþ 2mÞεvol (4.7.10)

Comparing Eqs. (4.7.6) and (4.7.10), it is evident that

K ¼ 3lþ 2m

3
(4.7.11)

b) Solving Eq. (4.7.11) for l gives the desired result, i.e.,

l ¼ 3K � 2m

3
¼ K � 2

3
m (4.7.12)

c) Rewriting Eq. (4.7.3) gives

l ¼ En

ð1þ nÞð1� 2nÞ ¼
E

2ð1þ nÞ
2n

ð1� 2nÞ ¼ m
2n

ð1� 2nÞ (4.7.13)

Solving for n gives the desired expression, i.e.,

n ¼ l

2ðlþ mÞ (4.7.14)

d) From Eq. (4.7.8), it follows that

E ¼ 3Kð1� 2nÞ (4.7.15)

Solving Eq. (4.7.5) for Poisson’s ratio gives

G ¼ E

2ð1þ nÞ 0 n ¼ E

2G
� 1 (4.7.16)

Substituting Eq. (4.7.16) into Eq. (4.7.15) gives

E ¼ 3K

"
1�2

�
E

2G
� 1

�#
¼ 3K �6K

�
E

2G
� 1

�
(4.7.17)
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Solving for E gives the desired expression, i.e.,

E ¼ 9KG

3K þ G
(4.7.18)

EXAMPLE PROBLEM 4.8

General Remarks

This example problem investigates a state of uniaxial compression.

Problem Statement

Draw the Mohr’s circle associated with a state of uniaxial compression with
the normal stress applied (a) in the x-direction and (b) in the y-direction.

Solution

a) Figure Ex. 4.8A shows an example of uniaxial compression that is imposed
by normal stresses applied in the x-direction.

The state of plane stress is thus

sx ¼ s�; sy ¼ 0; sxy ¼ 0 (4.8.1)

The points on the circle labeled x and y correspond to the (s,s) stress
states associated with the x and y faces of the material element, respec-
tively. Using Eq. (4.32), the coordinates of the center of the circle are

C ¼
�
s�

2
; 0

�
(4.8.2)

FIGURE EX. 4.8A State of uniaxial compression applied in the x-direction and the associated

Mohr’s circle.
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The radius of the circle is computed from Eq. (4.38), giving

R ¼ s�

2
(4.8.3)

The magnitude of the maximum in-plane shear stress associated with
this state of uniaxial stress is thus j smaxj ¼ R ¼ s*/2 (recall Eq. 4.40).

b) Figure Ex. 4.8B shows an example of uniaxial compression that is now
imposed by normal stresses applied in the y-direction.

The state of plane stress is now

sx ¼ 0; sy ¼ s�; sxy ¼ 0 (4.8.4)

The points on the circle labeled x and y are simply interchanged with
those shown in Figure Ex. 4.8A. The coordinates of the center of the circle
and the magnitude of the radius are again given by Eqs. (4.8.2) and (4.8.3),
respectively. Finally, the magnitude of the maximum in-plane shear stress
is againj smaxj ¼ R ¼ s*/2.

EXAMPLE PROBLEM 4.9

General Remarks

This example problem investigates state of uniaxial extension.

FIGURE EX. 4.8B State of uniaxial compression applied in the y-direction and the associated

Mohr’s circle.
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Problem Statement

Draw the Mohr’s circle associated with a state of uniaxial extension with the
normal stress applied a) in the x-direction and b) in the y-direction.

Solution

a) Figure Ex. 4.9A shows an example of uniaxial extension that is imposed by
normal stresses applied in the x-direction.

The state of plane stress is thus

sx ¼ �s�; sy ¼ 0; sxy ¼ 0 (4.9.1)

The points on the circle labeled x and y correspond to the (s,s) stress
states associated with the x and y faces of the material element, respec-
tively. Using Eq. (4.32), the coordinates of the center of the circle are

C ¼
�
�s�

2
; 0

�
(4.9.2)

The radius of the circle is computed from Eq. (4.38), giving

R ¼ s�

2
(4.9.3)

The magnitude of the maximum in-plane shear stress associated with
this state of uniaxial stress is thus j smaxj ¼ R ¼ s*/2 [recall Eq. 4.40].

FIGURE EX. 4.9A State of uniaxial extension applied in the x-direction and the associated

Mohr’s circle.
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b) Figure Ex. 4.9B shows an example of uniaxial extension that is now
imposed by normal stresses applied in the y-direction.

The state of plane stress is now

sx ¼ 0; sy ¼ �s�; sxy ¼ 0 (4.9.4)

The points on the circle labeled x and y are simply interchanged as
compared to those shown in Figure Ex. 4.9A. The coordinates of the center
of the circle and the magnitude of the radius are again given by Eqs. (4.9.2)
and (4.9.3), respectively. Finally, the maximum in-plane shear stress is
again j smaxj ¼ R ¼ js*j/2.

EXAMPLE PROBLEM 4.10

General Remarks

This example problem investigates a state of hydrostatic compression.

Problem Statement

Draw the Mohr’s circle associated with a state of hydrostatic compression.

FIGURE EX. 4.9B State of uniaxial extension applied in the y-direction and the associated

Mohr’s circle.
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Solution

Figure Ex. 4.10 shows an example of hydrostatic compression applied to a
material element.

The state of plane stress is thus

sx ¼ sy ¼ s�; sxy ¼ 0 (4.10.1)

Using Eq. (4.32), the coordinates of the center of the circle are

C ¼ ðs�; 0Þ (4.10.2)

The radius of the circle, computed using Eq. (4.38), is R ¼ 0. The Mohr’s
circle thus reduces to a point (Figure Ex. 4.10).

EXAMPLE PROBLEM 4.11

General Remarks

This example problem investigates three states of pure shear.

Problem Statement

Draw the Mohr’s circle associated with a state of pure shear with (a) a positive
shear stress applied along the face having an outward normal in the x-direc-
tion, (b) a negative shear stress applied along the face having an outward
normal in the x-direction, and (c) normal stresses of opposite sign applied in
the x and y coordinate directions.

FIGURE EX. 4.10 State of hydrostatic compression and the associated Mohr’s circle.
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Solution

a) Figure Ex. 4.11A shows an example of pure shear that is imposed by a
positive shear stress applied along the face having an outward normal in
the x-direction.

The state of plane stress with respect to the face having an outward
normal in the x-direction is thus

sx ¼ sy ¼ 0; sxy ¼ s� (4.11.1)

The points on the circle labeled x and y correspond to the (s,s) stress
states associated with the x and y faces of the material element, respec-
tively. Using Eq. (4.32), the coordinates of the center of the circle are (0,0).
The radius of the circle is computed from Eq. (4.38), givingR ¼ s*. The
magnitude of the maximum in-plane shear stress associated with this state
of stress is thus j smaxj ¼ R ¼ j s* j.

b) Figure Ex. 4.11B shows an example of pure shear that is imposed by a
negative shear stress applied along the face having an outward normal in
the x-direction.

The state of plane stress with respect to the face having an outward
normal in the x-direction is thus

sx ¼ sy ¼ 0; sxy ¼ �s� (4.11.2)

The points on the circle labeled x and y are simply interchanged as
compared to those shown in Figure Ex. 4.11A. The coordinates of the center

FIGURE EX. 4.11A State of pure shear with a positive shear stress on x-direction face and the

associated Mohr’s circle.
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of the circle are again found to be (0,0) and the radius of the circle is again
R ¼ s*. The magnitude of the maximum in-plane shear stress associated
with this state of pure shear stress is thus again j smaxj ¼ R ¼ j s* j.

c) Figure Ex. 4.11C shows an example of pure shear that is created by normal
stresses applied in the x and y directions that are equal in magnitude but
opposite in sign.

The state of plane stress with respect to the face having an outward
normal in the x-direction is thus

sx ¼ �sy ¼ s�; sxy ¼ 0 (4.11.3)

The points on the circle labeled x and y correspond to the (s,s) stress
states associated with the x and y faces of the material element, respec-
tively. Using Eq. (4.32), the coordinates of the center of the circle are again
found to be (0,0). The radius of the circle is again computed from Eq.
(4.38), giving R ¼ s*. The magnitude of the maximum in-plane shear
stress associated with this state of stress is thus j smaxj ¼ R ¼ j s* j.

EXAMPLE PROBLEM 4.12

General Remarks

This example problem investigates the use of the stress transformation equa-
tions presented in Section 4.2.5.

FIGURE EX. 4.11B State of pure shear with a negative shear stress on x-direction face and the

associated Mohr’s circle.
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Problem Statement

Given a major principal stress of 7600 psi, determine the minor principal stress
such that the shear stress is limited to 3150 psi.

Solution

The maximum in-plane shear stress is given by Eq. (4.40), i.e.,

smax ¼ R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðsx � syÞ

�2
þ ðsxyÞ2

s
(4.12.1)

Recalling that the shear stress associated with a state of principal stress is
zero, Eq. (4.12.1) gives

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ð7600� syÞ

�2
þ ð0:0Þ2

s
¼ 3150 psi (4.12.2)

Solving for the minor principal stress gives the desired result

3150 ¼ 1

2
ð7600� syÞ 0 sy ¼ 7600�2ð3150Þ ¼ 1300 psi (4.12.3)

EXAMPLE PROBLEM 4.13

General Remarks

This example problem illustrates the manner in which major and minor
principal stresses are computed.

FIGURE EX. 4.11C State of pure shear created by normal stresses and the associated Mohr’s circle.
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Problem Statement

Figure Ex. 4.13A shows the state of plane stress at a point in a body. Deter-
mine the principal stresses and the orientation of the planes on which they act.

Solution

In light of the sign convention used in analyzing soil mechanics problems, the
state of stress shown in Figure Ex. 4.13A is thus

sx ¼ 0:0; sy ¼ 80:0 MPa; sxy ¼ 20:0 MPa (4.13.1)

The s-coordinate of the center of the Mohr’s circle of stress associated with
this problem is computed using Eq. (4.32), i.e.,

C ¼ 1

2
ðsx þ syÞ ¼ 1

2
ð0:0þ 80:0Þ ¼ 40:0 MPa (4.13.2)

The radius of the Mohr’s circle is next computed using Eq. (4.38)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðsx � syÞ

�2
þ ðsxyÞ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ð0:0� 80:0Þ

�2
þ ð20:0Þ2

s
¼ 44:72 MPa

(4.13.3)

The major and minor principal stresses are computed using Eq. (4.39), i.e.,

s1 ¼ C þ R ¼ 40:0þ 44:72 ¼ 84.72 MPa (4.13.4)

s2 ¼ C � R ¼ 40:0� 44:72 ¼ L4.72 MPa (4.13.5)

80 Mpa

80 Mpa

20 Mpa

20 Mpa

FIGURE EX. 4.13A State of plane stress considered in this example problem.
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Figure Ex. 4.13B shows the Mohr’s circle associated with this problem.
The points on the circle labeled x and y correspond to the (s,s) stress states
associated with the x and y faces of the material element, respectively. The
points on the circle labeled 1 and 2 correspond to the major and minor prin-
cipal stresses.

The angle between the original y-direction and the principal 1-direction is
computed as follows:

tan 2qp ¼ 20

ð80:0� 40:0Þ ¼ 0:500 2qp ¼ 26:6� 0 qp ¼ 13:3� (4.13.6)

Figure Ex. 4.13B shows the aforesaid double angle. Figure Ex. 4.13C
shows the major and minor principal stresses and the orientation of the prin-
cipal directions relative to the original (x-y) directions.

EXAMPLE PROBLEM 4.14

General Remarks

This example problem computes the maximum in-plane shear stress from the
major and minor principal stresses.

Problem Statement

Given a major principal stress of 400 kPa (compressive) and a minor principal
stress of 100 kPa (compressive), determine the maximum in-plane shear stress
and the orientation of the plane on which it acts.

τ (Mpa)

(0.0, 20.0)x

2

C = 40.0 Mpa

26.6° (Mpa)1

y
(80.0, -20.0)

σ2 = -4.72 Mpa

σ1 = 84.72 Mpa

σ

FIGURE EX. 4.13B Mohr’s circle associated with this example problem (not to scale).
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Solution

Recalling Eq. (4.40), the maximum in-plane shear stress is equal to the radius
of the Mohr’s circle. Using Eq. (4.38) in conjunction with Eq. (4.40) gives

smax ¼ R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðsx � syÞ

�2
þ ðsxyÞ2

s
(4.14.1)

Substituting the given values of sx ¼ s1 ¼ 400.0 kPa, sy ¼ s2 ¼ 100.0 kPa,
and sxy ¼ 0.0 into Eq. (4.12.1) gives

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ð400:0� 100:0Þ

�2
þ ð0:0Þ2

s
¼ 150.0 kPa (4.14.2)

As shown in Figure 4.16, the maximum in-plane shear stress is oriented
2q ¼ 90 degrees from the major principal stress direction. The orientation at
the point in the actual material is thus q ¼ 45 degrees from the major principal
stress direction.

The magnitude of the normal stress acting on the x and y planes associated
with the maximum in-plane shear stress is

sx ¼ sy ¼ 1

2
ð400:0þ 100:0Þ ¼ 250.0 kPa (4.14.3)

which is the normal stress corresponding to the center of the circle.
Figure Ex. 4.14A shows the original orientation and the one associated

with the maximum in-plane shear stress.
Figure Ex. 4.14B shows the Mohr’s circle associated with the problem.

84.72 Mpa

4.72 Mpa

4.72 Mpa

x

y

84.72 Mpa

13.3°

2

1

FIGURE EX. 4.13C State of plane stress acting on principal planes.
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x ´

y

y ´

100 kPa

100 kPa

400 kPa

250 kPa 250 kPa

250 kPa 250 kPa
150 kPa

150 kPa

x

45
o

y

45
o

400 kPa

(A)

(B)

FIGURE EX. 4.14A (A) Original state of plane stress and (B) equivalent maximum in-plane

shear stress.

FIGURE EX. 4.14B Mohr’s circle associated with the problem (not to scale).
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EXAMPLE PROBLEM 4.15

General Remarks

This example problem illustrates the manner in which major and minor
principal stresses are computed.

Problem Statement

Determine the principal stresses and the orientation of the principal axes of
stress for the state of plane stress shown in Figure Ex. 4.15A.

Solution

In light of the sign convention used in analyzing soil mechanics problems, the
state of stress shown in Figure Ex. 4.15A is

sx ¼ 10; 000 psi; sy ¼ �20; 000 psi; sxy ¼ �6000 psi (4.15.1)

The center and radius of the Mohr’s circle are computed using Eqs. (4.32)
and (4.38), respectively, giving

C ¼ 1

2
ð10; 000:0� 20; 000:0Þ ¼ �5000 psi (4.15.2)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðsx � syÞ

�2
þ ðsxyÞ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ð10; 000�ð�20; 000ÞÞ

�2
þ ð�6000Þ2

s
¼ 16; 155 psi

(4.15.3)

20,000 psi

20,000 psi

10,000 psi 10,000 psi

6,000 psi

6,000 psi

FIGURE EX. 4.15A State of plane stress considered in this example problem.
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The major and minor principal stresses are thus

s1 ¼ C þ R ¼ �5000þ 16; 155 ¼ 11; 155 psi (4.15.4)

s2 ¼ C � R ¼ �5000� 16; 155 ¼ L21; 155 psi (4.15.5)

Figure Ex. 4.15B shows the Mohr’s circle associated with the plane stress
state shown in Figure Ex. 4.15A.

The orientation of the principal axes of stress is determined from the ge-
ometry shown in Figure Ex. 4.15B. In particular,

tan 2qp ¼ 6000

10; 000�ð�5000Þ ¼
6

15
0 2qp ¼ 21:8� (4.15.6)

Thus,
qp ¼ 10.9� (4.15.7)

Figure Ex. 4.15C shows the state of principal stress and the associated
orientation.

The solution is next repeated only using the pole method. Figure Ex. 4.15D
shows the Mohr’s circle associated with the problem. Beginning at the point
labeled x, a line parallel to this plane (i.e., vertical) is drawn until it intersects
the circle at the pole P.

The orientation associated with the major principal stress is obtained by
drawing a line from point P through the point on the circle labeled 1. This line
is oriented 10.9�, measured counterclockwise, from the vertical. The minor
principal stress is oriented 90� from the major one (Figure Ex. 4.15C).

FIGURE EX. 4.15B Mohr’s circle associated with this example problem (not to scale).
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EXAMPLE PROBLEM 4.16

General Remarks

This example problem illustrates the manner in which stress components
acting on an inclined plane, as well as the principal stresses and the maximum
in-plane shear stress are computed.

FIGURE EX. 4.15C State of plane stress acting on principal planes.

FIGURE EX. 4.15D Pole method applied to the present example (not to scale).
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Problem Statement

Given the state of plane stress shown in Figure Ex. 4.16A, compute the
following:

a) The stresses acting on an element that is rotated 20� counterclockwise from
the x-y axes as shown in Figure Ex. 4.16B.

b) The major and minor principal stresses and the orientation of the principal
stress directions, and

c) The stresses acting on an element whose faces are aligned with the planes
of maximum shear stress.

FIGURE EX. 4.16A State of plane stress considered in this example problem.

x
20°

yy ´

20°

x ´

20°

y

x

FIGURE EX. 4.16B Orientation of element face for stress transformation.
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Solution

In light of the sign convention used in analyzing soil mechanics problems, the
state of stress shown in Figure Ex. 4.16A is

sx ¼ 6000 kPa; sy ¼ 3600 kPa; sxy ¼ 800 kPa (4.16.1)

a) Using the stress transformation Eqs. (4.10), (4.16), and (4.13) for the
counterclockwise double angle of 2q ¼ 40 degrees gives

sx0 ¼ 1

2
ðsx þ syÞ þ 1

2
ðsx � syÞcos 2q�sxy sin 2q

¼ 1

2
ð6000þ 3600Þ þ 1

2
ð6000� 3600Þcos 40� �ð800Þsin 40�

¼ 5205 kPa

(4.16.2)

sy0 ¼ 1

2
ðsx þ syÞ �1

2
ðsx � syÞcos 2qþ sxy sin 2q

¼ 1

2
ð6000þ 3600Þ �1

2
ð6000� 3600Þcos 40� þ ð800Þsin 40�

¼ 4395 kPa

(4.16.3)

sx0y0 ¼ 1

2
ðsx � syÞsin 2qþ sxy cos 2q

¼ 1

2
ð6000� 3600Þsin 40� þ ð800Þcos 40�

¼ 1384 kPa

(4.16.4)

Figure Ex. 4.16C shows the stresses acting on an element that is rotated
20� counterclockwise from the x-y axes.

b) The center of Mohr’s circle is computed using Eq. (4.32), i.e.,

C ¼ 1

2
ðsx þ syÞ ¼ 1

2
ð6000þ 3600Þ ¼ 4800 kPa (4.16.5)

Next, the radius of Mohr’s circle is computed using Eq. (4.38), i.e.,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ ðsxyÞ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
6000� 3600

2

�2

þ ð800Þ2
s

¼ 1442 kPa

(4.16.6)

Themajor andminor principal stresses are then computed usingEq. (4.39)

s1 ¼ C þ R ¼ 4800þ 1442 ¼ 6242 kPa (4.16.7)

s2 ¼ C � R ¼ 4800� 1442 ¼ 3358 kPa (4.16.8)
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Figure Ex. 4.16D shows the Mohr’s circle associated with this problem.
The points on the circle associated with the original state of plane stress are
denoted by x and y. The points x0 and y0 are associated with the rotated
stress state considered in part (a).

The major principal stress direction, denoted by the symbol “1”, is
located where the circle intersects the s-axis. The clockwise angle between

FIGURE EX. 4.16C State of plane stress on an inclined plane.

FIGURE EX. 4.16D Mohr’s circle associated with this example problem (not to scale).
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the original stress state (point x) and the major principal direction (point 1)
is computed as follows:

tan 2qp1 ¼
800

ð6000� 4800Þ ¼
2

3
0 2qp1 ¼ 33:70� 0 qp1 ¼ 16:85� (4.16.9)

Figure Ex. 4.16E shows the principal stresses acting on a material
element and the orientation of the major principal direction relative to the
positive x-axis.

c) The maximum in-plane shear stress is computed from Eq. (4.40), i.e.,

smax ¼ R ¼ 1442 kPa (4.16.10)

The associated normal stresses are

sx ¼ sy ¼ C ¼ 4800 kPa (4.16.11)

The state of maximum in-plane shear stress is oriented 45� (counter-
clockwise) from the major principal direction (Figure Ex. 4.16D). This
stress state is thus oriented 45e16.85 ¼ 28.15� from the positive x-direc-
tion. Figure Ex. 4.16F shows this orientation, as well as the stresses acting
on an element whose faces are aligned with the planes of maximum shear
stress.

Parts (a)e(c) are next repeated only using the pole method. Figure Ex.
4.16G shows the Mohr’s circle associated with the problem. Beginning at
the point labeled x, a line parallel to this plane (i.e., vertically) is drawn
until it intersects the circle at the pole P.

To determine the stresses on an element that is rotated 20� counter-
clockwise from the x-y axes, a line inclined 20� to the vertical is drawn.
The point labeled x0 denotes its intersection with the circle.

FIGURE EX. 4.16E Principal stresses acting on a material element.
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The orientation associated with the major principal stress is next ob-
tained by drawing a line from point P through the point on the circle
labeled 1. This line is oriented 16.85�, measured clockwise, from the
vertical. The minor principal stress is oriented 90� from the major one
(Figure Ex. 4.16E).

FIGURE EX. 4.16F Stresses acting on an element whose faces are aligned with the planes of

maximum shear stress.

FIGURE EX. 4.16G Pole method applied to the present example (not to scale).
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Finally, the orientation associated with the maximum in-plane shear
stress is obtained by drawing a line from point P through the point on the
circle labeled smax. Since the plane associated with the maximum shear
stress is oriented 45� from the principal stress direction, this line is oriented
45�, measured counterclockwise, from the line through point 1 (recall
Figure Ex. 4.16F). This line is thus oriented 28.15�, measured counter-
clockwise, from the vertical.

EXAMPLE PROBLEM 4.17

General Remarks

This example problem investigates the transformation of stresses using the
equations presented in Section 4.2.5.

Problem Statement

Consider the state of stress shown in Figure Ex. 4.17.
The material will fail at a tensile stress of 12,000 psi acting in any direction.

a) Will the material fail in tension due to the stresses shown in Figure Ex. 4.17?

b) What is the maximum in-plane shear stress associated with the stress state
shown in Figure Ex. 4.17?

Solution

For the stress state shown in Figure Ex. 4.17, sx ¼ �6450 psi, sy ¼ 18,600 psi,
and sxy ¼ �3850 psi.
a) To answer the question posed, compute the principal stresses

C ¼ 1

2
ðsx þ syÞ ¼ 1

2
ð�6450þ 18;600Þ ¼ 6075 psi (4.17.1)

18,600 psi

18,600 psi

6,450 psi 6,450 psi

3,850 psi

3,850 psi

FIGURE EX. 4.17 State of plane stress at a point.
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðsx � syÞ

�2
þ ðsxyÞ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ð�6450� 18;600Þ

�2
þ ð�3850Þ2

s

¼ 13; 103 psi

(4.17.2)

Thus, using Eq. (4.39) gives

s1 ¼ C þ R ¼ 6075þ 13;103 ¼ 19; 178 psi (4.17.3)

s2 ¼ C � R ¼ 6075� 13;103 ¼ �7028 psi (4.17.4)

Since s2 ¼ �7028 psi is the smallest tensile stress, and
since �7028 psi < �12,000 psi, the material will not fail.

b) Recalling Eq. (4.40), the maximum in-plane shear stress is

smax ¼ R ¼ 13;103 psi (4.17.5)

At this point

sx ¼ sy ¼ C ¼ 6075 psi (4.17.6)

EXAMPLE PROBLEM 4.18

General Remarks

This example problem investigates the general relationship between the stress
states on two planes at a point using a Mohr’s circle approach.

Problem Statement

Figure Ex. 4.18 shows the stresses states acting on two planes at a point in a
body. The normal and shear stresses acting on these planes are given subscripts
A and B. Relate the center (C) and radius (R) of the Mohr’s circle, as well as
the angles shown in Figure Ex. 4.18, to the stresses acting on the two planes.

Solution

To relate the given stresses to the center (C) of the Mohr’s circle, use the
general equation for the radius (R), i.e.,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsA � CÞ2 þ ðsAÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC � sBÞ2 þ ðsBÞ2

q
(4.18.1)

Squaring both sides of the equation and solving for C gives

C ¼ ðsAÞ2 � ðsBÞ2 þ ðsAÞ2 � ðsBÞ2
2ðsA � sBÞ (4.18.2)
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Once C is known, R follows from Eq. (4.18.1). The major and minor
principal stresses are then computed using Eq. (4.39), i.e.,

s1 ¼ C þ R; s3 ¼ C � R (4.18.3)

The angles shown in Figure Ex. 4.18 are computed as follows:

tan 2g ¼ sA
sA � C

; tan 2a ¼ sB
C � sB

(4.18.4)

The angle between the two planes is thus

2b ¼ 180� �2a�2g0 b ¼ 90� �ðaþ gÞ (4.18.5)

Next consider the following specific example: the normal and shear
stresses on one plane are 16.0 and 4.0; on the second plane, the normal and
shear stresses are 1.0 and 3.0. Thus, sA ¼ 16.0, sA ¼ 4.0, sB ¼ 1.0, and
sB ¼ 3.0. The s-coordinate of the center of the Mohr’s circle is thus

C ¼ ðsAÞ2 � ðsBÞ2 þ ðsAÞ2 � ðsBÞ2
2ðsA � sBÞ ¼ ð16:0Þ2 � ð1:0Þ2 þ ð4:0Þ2 � ð3:0Þ2

2ð16:0� 1:0Þ ¼ 8:733

(4.18.6)

The radius of the Mohr’s circle is next computed using Eq. (4.18.1), i.e.,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsA � CÞ2 þ ðsAÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16:0� 8:733Þ2 þ ð4:0Þ2

q
¼ 8:295 (4.18.7)

FIGURE EX. 4.18 Normal and shear stresses acting on two planes at a point.
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Substituting Eqs. (4.18.6) and (4.18.7) into Eq. (4.18.3) gives the following
the major and minor principal stresses:

s1 ¼ C þ R ¼ 8:733þ 8:295 ¼ 17:03 (4.18.8)

s3 ¼ C � R ¼ 8:733� 8:295 ¼ 0:44 (4.18.9)

The angles shown in Figure Ex. 4.18 are next computed

tan 2g ¼ sA
sA � C

¼ 4:0

16:0� 8:733
¼ 0:5500 2g ¼ 28:83� 0 g ¼ 14:42

(4.18.10)

tan 2a ¼ sB
C � sB

¼ 3:0

8:733� 1:0
¼ 0:3880 2a ¼ 21:20� 0 a ¼ 10:60�

(4.18.11)

Thus,

b ¼ 90� �ðaþ gÞ ¼ 90� �ð14:42� þ 10:60�Þ ¼ 64:98� (4.18.12)

EXAMPLE PROBLEM 4.19

General Remarks

This example problem illustrates the manner in which the angle associated
with a stress transformation is computed from given stresses in the original and
rotated configurations.

Problem Statement

Given the original state of plane stress shown in Figure Ex. 4.19A and the
equivalent transformed stress state shown in Figure Ex. 4.19B, compute (1) the
magnitude of the counterclockwise angle q and (2) the value of sb.

Solution

a) Since sa is known, Eq. (4.10) is used to solve for q. In particular,

sa ¼ 1

2
ðsx þ syÞ þ 1

2
ðsx � syÞcos 2q� sxy sin 2q

�48:4 ¼ 1

2
ð�100:0� 60:0Þ þ 1

2
ð�100:0þ 60:0Þcos 2q�ð�48:0Þsin 2q

(4.19.1)

198 Soil Mechanics



This leads to the following homogeneous equation in 2q:

48:0 sin 2q� 20:0 cos 2q� 31:60 ¼ 0 (4.19.2)

A trial-and-error solution can be used to find the solution (root) of
Eq. (4.19.2). Alternately, the solution can be obtained using an iterative

FIGURE EX. 4.19B Equivalent state of plane stress on inclined planes.

60.0 Mpa

60.0 Mpa

48.0 Mpa

48.0 Mpa

x

y

100.0 Mpa

100.0 Mpa

FIGURE EX. 4.19A State of plane stress at a point.
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root finding algorithm. For example, using the secant method11 in
conjunction with an error tolerance of 0.0001 gives, after five iterations,

2q ¼ 1:0479 rad ¼ 60:0� 0 q ¼ 30.0� (4.19.3)

This same result is obtained using other root finding approaches such as
the bisection method (in 19 iterations), the Regula-Falsi method (in 8 it-
erations), and the NewtoneRaphson method (in 4 iterations).

b) With q known, the magnitude of sb is computed using Eq. (4.16), i.e.,

sb ¼ 1

2
ðsx þ syÞ �1

2
ðsx � syÞcos 2qþ sxy sin 2q

�48:4 ¼ 1

2
ð�100:0� 60:0Þ �1

2
ð�100:0þ 60:0Þcos 60� þ ð�48:0Þsin 60�

¼ �111.6 MPa

(4.19.4)

Alternate Solution

The angle computed in Eq. (4.19.3) can likewise be determined using Mohr’s
circle and a trigonometry-based solution. The s-coordinate of the center of the
circle is computed using Eq. (4.32), i.e.,

C ¼ 1

2
ðsx þ syÞ ¼ 1

2
ð�100:0� 60:0Þ ¼ �80:0 MPa (4.19.5)

The radius of the circle is next computed using Eq. (4.38), i.e.,

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"�
sx � sy

2

�#2

þ ðsxyÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"��100:0þ 60:0

2

�#2

þ ð�48:0Þ2
vuut

¼ �132:0 MPa

(4.19.6)

Figure Ex. 4.19C shows the Mohr’s circle associated with this problem. An
equation for the unknown angle q is now developed from the trigonometry of
the circle.

That is, the three double angles shown in Figure Ex. 4.19C are related as
follows:

2aþ 2bþ 2q ¼ 180� 0 q ¼ 90� � a� b (4.19.7)

11. Burden, R.L., Faires, J.D., Reynolds, A.C., 1980. Numerical Analysis. PWS Publishing,

Boston, MA.
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From the geometry of the Mohr’s circle,

tan 2a ¼ �48:0

ð�100:0þ 80:0Þ ¼ 2:4000 2a ¼ 67:38� 0 a ¼ 33:69� (4.19.8)

tan 2b ¼ �41:3

ð�80:0þ 48:4Þ ¼ 1:3070 2b ¼ 52:58� 0 b ¼ 26:29� (4.19.9)

Substituting for a and b into Eq. (4.19.7) gives

q ¼ 90� � a� b ¼ 90� � 33:69� � 26:29� ¼ 30.0� (4.19.10)

which is identical to the solution obtained in Eq. (4.19.3).

Remark: The stress transformation equations are quite useful in many instances,

but not all. All stress transformation problems can be solved using relations

developed from the trigonometry of a specific Mohr’s circle. As this example

problem has shown, such a trigonometric-based approach is sometimes preferred.

EXAMPLE PROBLEM 4.20

This example problem illustrates the manner in which strain components
acting on an inclined plane, as well as the principal strains and the maximum
in-plane shear strain are computed.

FIGURE EX. 4.19C Mohr’s circle associated with this example problem (not to scale).
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Problem Statement

An element of a material is subjected to a state of plane strain with the following
components: εx ¼ �220� 10�6, εy ¼ �480� 10�6, and gxy ¼ 180 � 10�6.
Compute the following:

a) The strains acting on an element that is rotated 55� counterclockwise from
the x-y axes.

b) The major and minor principal strains and the orientation of the principal
strain directions, and

c) The strains acting on an element whose faces are aligned with the planes of
maximum shear strain.

Solution

a) Using Eqs. (4.49)e(4.51) for a double angle of 2q ¼ 110 degrees gives the
desired strain components acting on the inclined element:

εx0 ¼ 1

2
ðεx þ εyÞ þ 1

2
ðεx � εyÞcos 2q�

gxy

2
sin 2q

¼ 1

2
½ð�220� 480Þ þ ð�220þ 480Þcos 110� �ð180Þsin 110�� � 10�6

¼ L479.0310L6

(4.20.1)

εy0 ¼ 1

2
ðεx þ εyÞ �1

2
ðεx � εyÞcos 2qþ

gxy

2
sin 2q

¼ 1

2

	ð�220� 480Þ �ð�220þ 480Þcos 110� þ ð180Þsin 110�

� 10�6

¼ L221.0310L6

(4.20.2)

gx0y0 ¼ ðεx � εyÞsin 2qþ gxy cos 2q

¼ ½ð�220þ 480Þsin 110� þ ð180Þcos 110�� � 10�6 ¼ 182:8310L6

(4.20.3)

b) The ε-coordinate of the center of the Mohr’s circle of strain is computed
using Eq. (4.53), i.e.,

C ¼ 1

2
ðεx þ εyÞ ¼ 1

2
ð�220� 480Þ � 10�6 ¼ �350:0� 10�6 mm=mm

(4.20.4)

Using Eq. (4.54), the radius of the Mohr’s circle of strain is next
computed
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
εx � εy

2

�2

þ
�gxy

2

�2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��220þ 480

2

�2

þ
�
180

2

�2
s

� 10�6

¼ 158:1� 10�6 mm=mm

(4.20.5)

The principal strains are then computed using Eq. (4.52), i.e.,

ε1 ¼ C þ R ¼ ð�350:0þ 158:1Þ � 10�6 ¼ L191.9310L6 mm=mm

(4.20.6)

ε2 ¼ C �R ¼ ð�350:0� 158:1Þ � 10�6 ¼ L508.1310L6 mm=mm

(4.20.7)

Figure Ex. 4.20 shows the Mohr’s circle associated with this problem.
The principal direction is next computed as follows:

tan 2qp ¼ 90

350� 220
¼ 0:6920 2qp ¼ 34:70� 0 qp ¼ 17.75� (4.20.8)

c) The strains acting on an element whose faces are aligned with the planes of
maximum shear strain consist of the maximum in-plane shear strain, which
is computed from Eq. (4.56) as

1

2
gmax ¼ R0 gmax ¼ 2R ¼ 2

�
158:1� 10�6

� ¼ 316.3310L6 rad (4.20.9)

Since the ordinate in Mohr’s circle is one half of the engineering shear
strain, it follows that gmax/2 ¼ 158.1 rad is shown in Figure Ex. 4.20.

FIGURE EX. 4.20 Mohr’s circle associated with this example problem (not to scale).
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Chapter 5

Example Problems Involving
In Situ Stresses Under
Hydrostatic Conditions

5.0 GENERAL COMMENTS

The fluid in soils and porous rocks can be present in two forms, namely, as
follows:

l Free water occupying part or all of the voids between the particles, and
l Adsorbed water films surrounding clay particles.

If the voids are completely filled with water, the material is saturated (i.e.,
S ¼ 100%) and the moisture is said to be continuous. If, on the other hand, the
voids are only partially filled with water, the soil is unsaturated. The moisture
is discontinuous and forms “wedges” of water between adjacent particles and
moisture films around them.

Water is an important factor in most geotechnical engineering design and
construction activities. The presence of water strongly affects the engineering
behavior of most soils, especially fine-grained ones (e.g., silts and claysd
recall the discussion of Atterberg limits in Chapter 2).

5.1 SURFACE TENSION

The boundary or interface between air and fluid in the voids is of particular
importance. At liquideair interfaces, the greater attraction of water molecules
to each other (due to cohesion) rather than to molecules in air (due to adhe-
sion) creates an unbalanced molecular attraction of the water. This in turn
gives rise to surface tension, a force that acts parallel to the surface of the
water in all directions1 and causes water to behave as if its surface was covered
with a stretched elastic membrane.

1. Sowers, G.B., Sowers, G.F., 1970. Introductory Soil Mechanics and Foundations. Macmillan

Publishing Co., Inc., New York, NY.
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Surface tension is a contractive tendency of the surface of a liquid that
allows it to resist an external force. Surface tension is evident, for example,
any time an object that is denser than water is able to float or run along the
water surface.

Because of the relatively high attraction of water molecules for each other,
water has a high surface tension compared to that of most other liquids.
Surface tension can be visualized as a tensile force per unit length (Ts) along
the interface between air and water, acting parallel to the water surface.
Surface tension thus has the dimension of force per unit length (FL�1) or of
energy per unit area. The magnitude of this force is approximately
Ts ¼ �72.8 mN/m ¼ �7.426 � 10�2 g/cm at 20�C ¼ �4.988 � 10�3 lb/ft
(recall that in soil mechanics tensile forces and stresses are denoted by a
negative sign).

5.1.1 Surface Tension Phenomena

Surface tension manifests itself in several aspects of soil behavior, namely,

l In a hole dug in the ground, soil is found to be saturated long before the
groundwater table is reached. This results from the capillary rise of water
in the voids, a phenomenon that is discussed in Section 5.2.

l If a sample of saturated clay is dried, it decreases in volume in the process.
Surface tension acting in the soil voids serves to compress the soil
microfabric and decreases the volume of the sample.

l Dry sand cannot be molded into a ball. However, if the sand moistened, it
can be packed and easily shaped. This moist strength is attributed to the
tension in the interparticle moisture films. If the moist sand is immersed in
water, the moisture films disappear and the sand will again lose its ability
to be molded.

5.2 CAPILLARY PHENOMENA IN TUBES

Capillary rise or capillarity is a phenomenon in which liquid spontaneously
rises or falls in a narrow space such as a thin tube or in the voids of a porous
material. Surface tension is an important factor in the phenomenon of capil-
larity. The surface adhesion forces or internal cohesion present at the interface
between a liquid and a solid stretch the liquid and form a curved surface called
a meniscus (Figure 5.1A). The meniscus is the curve in the upper surface of a
liquid close to the surface of the container or another object, caused by surface
tension. It can be either concave or convex, depending on the liquid and the
surface. Adhesion forces between water and a solid form a concave meniscus.
Internal cohesion in mercury, on the other hand, pulls down the liquid to form
a convex meniscus. Menisci are thus a manifestation of capillary action.

The stress associated with menisci is known as the capillary tension. It is
computed for a cylindrical tube of diameter d (Figure 5.1A) by considering the
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force developed by the stretched meniscus. If a is the angle of contact between
the meniscus and the solid material (such as glass), then the total unbalanced
upward force (Fu) developed along the perimeter of the meniscus is

Fu ¼ ðTs cos aÞðpdÞ (5.1)

where a zero air pressure has been assumed. For an interface consisting of
water and air-dried glass, a ¼ 0 degree. For an interface consisting of water
and oven-dried glass, a ¼ 45 degrees.

The downward force (Fd) is equal to the weight of the water, which is
computed from the product of the unit weight of water and the volume of the
water that has risen to a capillary height of hc in the tube (Figure 5.2A). Thus,

Fd ¼ gwðhcÞ
�
pd2

4

�
(5.2)

For force equilibrium, Fu ¼ Fd, which leads to the following result:

hc ¼ 4Ts cos a

gwd
(5.3)

For example, in the case of an interface consisting of water in contact with
air-dried glass, the surface tension a ¼ 0, giving,

hc ¼ 4Ts
gwd

0 hcf
1

d
(5.4)

FIGURE 5.1 (A) Schematic illustration of a meniscus and capillary tension. (B) Geometry

associated with the meniscus.
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Furthermore, since Ts ¼ �72.8 mN/m, the magnitude of the capillary rise
as given by Eq. (5.3) is thus

hc ¼
4

�
72:8

mN

m

��
N

1000 mN

��
kN

1000 N

�

ð9:81 kN=m3Þd ¼ 2:968� 10�5

d
z

0:00003

d

(5.5)

where d and hc have units of meters.
If h < hc, the angle a adjusts so as to satisfy the following equation:

cos a ¼ gwdh

4Ts
(5.6)

The capillary stress is obtained by dividing Fu from Eq. (5.1) by the cross-
sectional area (A) of the tube, giving

sc ¼ Fu

A
¼ ðTs cos aÞðpdÞ

pd2

4

¼ 4Ts cos a

d
¼ gwhc (5.7)

The capillary tension can be related to the radius of the meniscus (rm) by
considering the geometry of the meniscus (Figure 5.1B). In particular,
d/2 ¼ rm$cosa. Substituting for d into Eq. (5.7) gives

sc ¼ 2Ts
rm

(5.8)

Thus for water in contact with air, the capillary tension stress is dependent
only on rm and varies inversely with it.

The maximum capillary tension occurs when the meniscus radius is smallest,
which corresponds to the case where the meniscus is tangent to the tube,
implying that a ¼ 0 degrees and thus rm ¼ d/2. The maximum capillary tension
will thus be scmax

¼ 4Ts=d, where it is understood that scmax
will be negative.

FIGURE 5.2 (A) Schematic illustration of capillary tension. (B) Water Hanging on a meniscus.
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5.3 CAPILLARY PHENOMENA IN SOILS

If pore water were subject only to the force of gravity, the soil above the
groundwater table would be perfectly dry. In reality, however, every soil in the
field is completely saturated for a certain distance above the groundwater
table2; above this level, it is only partially saturated. Figure 5.3 shows
the relation between a hypothetical saturated aquifer3, the capillary zone, and
the zone of varying degree of saturation.

If a soil is saturated, the airewater interfaces disappear and the capillary
tension becomes zero. When a saturated soil is exposed to open air, capillary
tension develops as soon as evaporation creates menisci at the surface4. Since
the moisture in a saturated soil is continuous, the water tension stress devel-
oped at the airewater interfaces is felt throughout the mass.

FIGURE 5.3 Schematic illustration of a saturated aquifer, capillary zone, and zone of varying

saturation.

2. The water table or phreatic surface refers to the locus of the levels to which water would rise in

observation wells, i.e., where the water pressure head is equal to the atmospheric pressure

(where gauge pressure ¼ 0). It is commonly visualized as the “surface” of the geomaterials that

are saturated with groundwater in a given vicinity.

3. An aquifer is an underground layer of water-bearing permeable rock or unconsolidated materials

(gravel, sand, or silt) from which groundwater can be extracted using a water well.

4. Capillarity is the reason that soils shrink as they dry out. In particular, capillary menisci pull the

particles together.

In Situ Stresses Under Hydrostatic Conditions Chapter j 5 209



The water obeys the law of hydrostatics; thus, u ¼ gwz, where z is
measured positive downward. The capillary rise of water in a soil above the
groundwater table illustrates the combined effect of capillary tension and
hydrostatic pressure. Referring to Figure 5.2A, at the groundwater elevation
(free surface) the water pressure is zero. Below the free surface the pressure
increases according to the aforesaid expression for u. In the capillary zone
above the free surface, the water pressure decreases linearly, again in accor-
dance with this expression (only with z being negative). Figure 5.4 shows the
distribution of both positive (compressive) and negative (tensile) pore pressure
with depth for a hypothetical soil with capillary rise above the groundwater
table. Above the capillary zone the pore pressure will be a nonlinear function
of the degree of saturation.

In contrast to the capillary phenomena discussed in Section 5.2, the
continuous voids in soils have a variable width and are by no means straight.
Indeed, the interconnected voids in a soil form a collection of irregular but
definite capillary tubes. The maximum capillary tension that can develop will
vary from point to point, depending on the pore diameter and degree of
saturation5. Consequently, the capillary tube analogy is not directly applicable.

The thickness of the capillary zone in a soil thus depends on the size and
shape of the pores. This, in turn, is a function of the particles sizes and shapes,

FIGURE 5.4 Schematic illustration of pore pressure distribution with depth in a soil deposit with

capillary rise above the groundwater table.

5. Sowers, G.B., Sowers, G.F., 1970. Introductory Soil Mechanics and Foundations. Macmillan

Publishing Co., Inc., New York, NY.
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as well as the void ratio. As the particle size decreases, the size of the voids
likewise decreases, and the height of capillary rise in the soil (hc) increases.
Thus, in general,

hcf
1

deff
0 hc ¼ c

deff
(5.9)

where deff is some effective pore size and c is a constant of proportionality.
When hc is expressed in centimeters, c is typically taken to equal 0.3.

Along these same lines, Terzaghi and Peck6 proposed the following
empirical expression:

hc ¼ C

eD10
(5.10)

where hc is in units of centimeters, e is the void ratio, D10 is the effective grain
size (in centimeters) as determined from a sieve analysis (recall Chapter 2),
and C (units of cm2) is an empirical constant that depends on the shape of
particles and on surface impurities. It varies between 0.1 and 0.5 cm2 for loose
and dense sands, respectively.

5.4 IN SITU STRESSES IN SOILS UNDER HYDROSTATIC
CONDITIONS

This section briefly reviews key aspects related to total stress, pore fluid
pressure, and effective stress concept in soils. In all cases, the pore fluid is
assumed to be at rest; i.e., under hydrostatic7 conditions.

5.4.1 Total Stress

Consider the saturated soil deposit without seepage shown in Figure 5.5. The
vertical total stress (sv) is obtained by summing up the densities of the solid
and fluid phase above some point, multiplied by the gravitational acceleration
(g). Mathematically this is written as

sv ¼
Z h

0

rg dz (5.11)

If rg remains constant throughout the soil, then

sv ¼ rgh ¼ gh (5.12)

where rg ¼ g is the moist unit weight of the soil and h is the depth below the
ground surface (the origin of the coordinate system used).

6. Terzaghi, K., Peck, R.B., 1967. Soil Mechanics in Engineering Practice, second ed. John Wiley

and Sons, New York, NY.

7. Hydrostatics or fluid statics is the branch of fluid mechanics that studies incompressible fluids at

rest.
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5.4.2 Pore Fluid Pressure

From fluid mechanics, it is known that under hydrostatic (no seepage) con-
ditions the pore fluid pressure (u) at some depth h is simply

u ¼ rwgh ¼ gwh (5.13)

Remark: The pore fluid pressure is also called the “neutral stress” because it has

no shear stress components.8

5.4.3 Effective (Intergranular) Stress

The effective stress is defined as follows:

s0 ¼ s� u (5.14)

where s and u are again the total stress and pore fluid pressure, respectively.
The vertical effective stress is thus

s0v ¼ sv � u (5.15)

The effective stress is approximately the force per unit area carried by the solid
phase (i.e., the soil skeleton); it controls a soil’s volume change and strength. For
example, increases in s0 lead to a denser state of packing in cohesionless soils.

FIGURE 5.5 Saturated soil deposit under hydrostatic conditions.

8. By definition, a liquid cannot support static shear stresses; it only has normal stress components

that act equally in all directions.
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Thus, the vertical total stress for the soil element shown in Figure 5.5 is

sv ¼ gsath (5.16)

where gsat is the saturated unit weight of the soil. The pore fluid pressure at
this point is

u ¼ rwgh ¼ gwh (5.17)

Finally, the vertical effective stress at this point is thus

s0v ¼ sv � u ¼ gsath� gwh ¼ ðgsat � gwÞh ¼ gbh (5.18)

where gb is the buoyant or submerged unit weight of the soil.

5.5 RELATIONSHIP BETWEEN HORIZONTAL AND
VERTICAL STRESSES

From hydrostatics the pressure in a liquid is the same in all directions. This is
not, however, true for soils, as the state of stress in situ is not necessarily
hydrostatic.

The determination of the magnitude of the horizontal stress is not
as straightforward as the vertical total stress (recall the discussion of
Section 5.1.1). As such, the general relationship between horizontal and ver-
tical total stresses is

sh ¼ Ksv (5.19)

where K is a positive earth pressure coefficient.

Remark: Since the groundwater table can fluctuate, the total stress will change

with such fluctuations. Thus, K is not a constant.

To remove the effect of a variable groundwater table on the determination
of the horizontal stress, it is expedient to work in terms of effective stresses, i.e.,

s0h ¼ K0s
0
v (5.20)

where K0 is the coefficient of lateral earth pressure at rest; it is independent of
the location of the groundwater table. Even if the groundwater table fluctuates,
K0 will remain unchanged so long as the same soil layer is considered and its
density remains unchanged.

The magnitude of K0 is very sensitive to the geologic and engineering
stress history that a soil has been subjected to in the past. In natural soil
deposits,

l K0 ¼ 0.4e0.5 for sedimentary soils.
l K0 may be as large as 3.0 for very heavily preloaded soils.
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EXAMPLE PROBLEM 5.1

General Remarks

This example problem illustrates the manner in which to compute the capillary
rise in a glass tube.

Problem Statement

Compute (a) the capillary tension (in g/cm) in a 0.002 mm diameter oven-
dried glass tube and (b) the height of capillary rise (in feet) in the tube.

Solution

a) The capillary tension is computed from Eq. (5.7), i.e.,

sc ¼ 4Ts cos a

d
(5.1.1)

Since a ¼ 45 degrees for an interface consisting of water and oven-
dried glass tube, Eq. (5.1.1) gives

sc ¼ 4Ts cos a

d
¼

4
�
�7:426� 10�2 g

cm

�
ðcos 45�Þ

ð0:002 mmÞ
� cm

10 mm

� ¼ �1.050� 103g=cm2

(5.1.2)

b) The height of capillary rise in the tube is given by Eq. (5.7), i.e.,

sc ¼ gwhc 0 hc ¼ sc

gw

¼ ð1:050� 103 g=cm3Þ
1:0 g=cm3

¼ 1:050� 103 cm (5.1.3)

Converting to units of feet gives

hc ¼
�
1:050� 103 cm

�� in

2:54 cm

��
ft

12 in

�
¼ 34.5 ft (5.1.4)

EXAMPLE PROBLEM 5.2

General Remarks

This example problem illustrates the manner in which to estimate capillary rise
above the groundwater table in a sandy soil.

Problem Statement

The effective grain size (D10) of a medium sand is 0.15 mm. The void ratio of
the sand in a dense configuration is 0.45; in a loose configuration it is 0.81.
What is the estimated capillary rise for this sand?
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Solution

In the loose configuration, C ¼ 0.1 cm2. Thus,

hc ¼ 0:1 cm2

ð0:81Þ
�
0:15 mm � cm

10 mm

� ¼ 8.2 cm (5.2.1)

In the loose configuration, C ¼ 0.5 cm2. Thus,

hc ¼ 0:5 cm2

ð0:45Þ
�
0:15 mm � cm

10 mm

� ¼ 74 cm (5.2.2)

EXAMPLE PROBLEM 5.3

General Remarks

This example problem relates the effective pore size deff to the effective grain
size D10.

Problem Statement

Compute (a) the maximum capillary tension and (b) the theoretical height of
capillary rise in a soil whose effective grain size (D10) is 0.016 mm if the
effective pore size (deff) is estimated to be (D10)/5.

Solution

a) Recalling that the capillary tension in a glass tube is given by Eq. (5.7), i.e.,

sc ¼ 4Ts cos a

d
(5.3.1)

The maximum value will be realized for a ¼ 0 degree. Replacing d by
deff, the estimated maximum capillary tension in the sand is thus

scmax
¼ 4Ts

deff
¼

4

�
�72:8

mN

m

��
N

1000 mN

�

1

5
ð0:016 mmÞ

� m

1000 mm

� ¼ �9:100� 104 N=m2

¼ �9.100 � 101 kN=m2

(5.3.2)

where deff is some effective pore size.
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b) The capillary rise in a glass tube is given by the second part of Eq. (5.7), i.e.,

sc ¼ 4Ts cos a

d
¼ gwhc 0 hc ¼ sc

gw

(5.3.3)

Themagnitude of the estimatedmaximum capillary rise in the sand is thus

hc ¼ scmax

gw

¼ 9:100� 101 kN=m2

9:81 kN=m3
¼ 9.3 m (5.3.4)

EXAMPLE PROBLEM 5.4

General Remarks

This example problem illustrates how total stress, pore pressure, and effective
stress are computed in the case where the groundwater table lies above the
ground surface.

Problem Statement

Consider a case where the groundwater table is located above the surface of a
saturated soil deposit (Figure Ex. 5.4A). Such conditions are typical of soils in
lakes and in oceans. Determine the variation with depth below the groundwater
table of the total stress, pore fluid pressure, and effective stress.

FIGURE EX. 5.4A Soil deposit with groundwater table above ground surface under hydrostatic

conditions.
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The vertical total stress distribution with depth has two contributions. The
first (gwd) is from the layer of water that is located over the soil layer; the second
(gsat$H ) is due to the saturated unit weight of the soil. Figure Ex. 5.4B shows the
variation of vertical total stress with depth below the groundwater table.

The pore fluid pressure varies with depth in the usual linear fashion, i.e.,
u ¼ gwz. FigureEx. 5.4C shows thevariationwith depth of the pore fluid pressure.

Finally, the vertical effective stress is the difference between the total stress
and the pore pressure. The maximum value is thus

s0v ¼ sv � u ¼ ðgwd þ gsatHÞ �gwðd þ HÞ ¼ ðgsat � gwÞH ¼ gbH (5.4.1)

where gb is the buoyant unit weight9 of the soil. Figure Ex. 5.4D shows the
variation of the effective stress with depth below the groundwater table.

EXAMPLE PROBLEM 5.5

General Remarks

This example problem illustrates how pore pressures, and thus effective stresses,
are computed when capillary rise is present above the groundwater table.

Problem Statement

Given the soil profiles shown in Figures Ex. 5.5A and Ex. 5.5B, compute the
total stress, pore fluid pressure, and effective stress at (a) points A and B in
Figure Ex. 5.5A and (b) points C and D in Figure Ex. 5.5B.

FIGURE EX. 5.4B Schematic illustration of variation with depth of vertical total stress.

9. Recall the discussion of saturated and buoyant (submerged) unit weights given in Chapter 1.
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FIGURE EX. 5.4C Schematic illustration of variation with depth of pore fluid pressure.

FIGURE EX. 5.4D Schematic illustration of variation with depth of vertical effective stress.
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FIGURE EX. 5.5A Soil deposit with capillary zone extending to ground surface.

FIGURE EX. 5.5B Soil deposit with capillary zone not extending to ground surface.
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Solution

a) In the case of the soil deposit shown in Figure Ex. 5.5A, the capillary rise
above the groundwater table extends to the ground surface. In this figure,
g1 and g2 are the saturated unit weights of the upper and lower soil layer,
respectively.
At point A:

The vertical total stress is

sv ¼ g1ðH � hAÞ (5.5.1)

Since point A lies above the groundwater table, the pore fluid pressure
is negative, i.e.,

u ¼ �gwhA (5.5.2)

The vertical effective stress is thus

s0v ¼ sv � u ¼ g1ðH � hAÞ þ gwhA ¼ g1H �ðg1 � gwÞhA ¼ g1H � gb1hA

(5.5.3)

where gb1 is the buoyant unit weight of the upper soil layer.
At point B:

The vertical total stress is

sv ¼ g1H þ g2hB (5.5.4)

Since point B lies below the groundwater table, the pore fluid pressure
is positive, i.e.,

u ¼ gwhB (5.5.5)

The vertical effective stress is thus

s0v ¼ sv � u ¼ g1H þ g2hB �gwhB ¼ g1H þ ðg2 � gwÞhB ¼ g1H � gb2hB

(5.5.6)

where gb2 is the buoyant unit weight of the lower soil layer.

b) In the case of the soil deposit shown in Figure Ex. 5.5B, the capillary rise
above the groundwater table does not extend to the ground surface. In this
figure, g is the moist unit weight of the soil in the zone of varying degree of
saturation, and g1 and g2 are again the saturated unit weights of the upper
and lower soil layer, respectively.

At point C:
The vertical total stress is

sv ¼ gðH � hcapÞ þ g1ðhcap � hCÞ (5.5.7)
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Since point C lies above the groundwater table, the pore fluid pressure
is negative, i.e.,

u ¼ �gwhC (5.5.8)

The vertical effective stress is thus

s0v ¼ sv � u ¼ gðH � hcapÞ þ g1ðhcap � hCÞ þ gwhC

¼ gðH � hcapÞ þ g1hcap �ðg1 � gwÞhC ¼ gðH � hcapÞ þ g1hcap � gb1hC

(5.5.9)

where gb1 is again the buoyant unit weight of the upper soil layer.
At point D:

The vertical total stress is

sv ¼ gðH � hcapÞ þ g1hcap þ g2hD (5.5.10)

Since point D lies below the groundwater table, the pore fluid pressure
is positive, i.e.,

u ¼ gwhD (5.5.11)

The vertical effective stress is thus

s0v ¼ sv � u ¼ gðH � hcapÞ þ g1hcap þ g2hD � gwhD

¼ gðH � hcapÞ þ g1hcap þ ðg2 � gwÞhD ¼ gðH � hcapÞ þ g1hcap þ gb2hD

(5.5.12)

where gb2 is again the buoyant unit weight of the lower soil layer.

EXAMPLE PROBLEM 5.6

General Remarks

This example problem illustrates the manner in which in situ stresses are
computed under hydrostatic conditions in the presence of capillary rise above
the groundwater table.

Problem Statement

A 10 m thick soil deposit overlies a layer of soft rock. The groundwater table is
approximately 5 m above the surface of the rock and the height of capillary rise is
approximately 3.5 m. The soil has an average void ratio (e) of 0.36 and a specific
gravity of solids (Gs) equal to 2.68. No seepage is present at the site. Determine
the variation with depth of the vertical total stress, the pore fluid pressure, and the
vertical effective stress in the deposit at depths of 2.5, 5.0, 7.5, and 10.0 m below
the ground surface assuming (a) capillary rise above the groundwater table as
stated above and (b) no capillary rise.Where not saturated, the soil has a moisture
content (w) of 6% and a degree of saturation (S) equal to 45%.
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Solution

Figure Ex. 5.6A shows the single soil profile and the extent of the capillary
rise.

First, all of the necessary unit weights are determined. For the unsaturated
portion of the soil deposit,

g ¼ gwðGs þ SeÞ
1þ e

¼ ð9:81 kN=m3Þ½2:68þ ð0:45Þð0:36Þ�
1þ 0:36

¼ 20:50 kN=m3

(5.6.1)

Similarly, for the unsaturated portion of the soil deposit,

g ¼ gwðGs þ eÞ
1þ e

¼ ð9:81 kN=m3Þ½2:68þ 0:36�
1þ 0:36

¼ 21:93 kN=m3 (5.6.2)

a) For capillary rise above the groundwater table as shown in Figure Ex.
5.6A, the vertical total stress, pore fluid pressure, and vertical effective
stresses are next computed at the requested depths.
At a depth of 2.5 m:

The vertical total stress is

sv ¼
�
20:50 kN=m3�ð1:5 mÞ þ �

21:93 kN=m3�ð1:0 mÞ ¼ 52.68 kN=m2

(5.6.3)

Soil deposit
5.0 m

Rock layer

5.0 m

Extent of capillary rise

3.5 m

FIGURE EX. 5.6A Profile consisting of a single soil layer.
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The pore fluid pressure is

u ¼ ��9:81 kN=m3�ð1:0 mÞ ¼ �9.81 kN=m2 (5.6.4)

The vertical effective stress is thus

s0v ¼ sv �u ¼ 52:68�ð�9:81Þ ¼ 62.49 kN=m2 (5.6.5)

At a depth of 5.0 m:
The vertical total stress is

sv ¼
�
20:50 kN=m3�ð1:5 mÞ þ �

21:93 kN=m3�ð3:5 mÞ ¼ 107.5 kN=m2

(5.6.6)

The pore fluid pressure is

u ¼ 0.0 (5.6.7)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 107:5� 0 ¼ 107.5 kN=m2 (5.6.8)

At a depth of 7.5 m:
The vertical total stress is

sv ¼
�
20:50 kN=m3�ð1:5 mÞ þ �

21:93 kN=m3�ð6:0 mÞ ¼ 162.3 kN=m2

(5.6.9)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð2:5 mÞ ¼ 24.53 kN=m2 (5.6.10)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 162:3� 24:53 ¼ 137.8 kN=m2 (5.6.11)

At a depth of 10.0 m:
The vertical total stress is

sv ¼
�
20:50 kN=m3�ð1:5 mÞ þ �

21:93 kN=m3�ð8:5 mÞ ¼ 217.2 kN=m2

(5.6.12)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð5:0 mÞ ¼ 49.05 kN=m2 (5.6.13)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 217:2� 49:05 ¼ 168.1 kN=m2 (5.6.14)

Figure Ex. 5.6B shows the variation with depth of the vertical total
stress, pore pressure, and vertical effective stress.
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b) If capillary rise above the groundwater table is ignored, the vertical total
stress, pore fluid pressure, and vertical effective stresses are next computed
at the requested depths. The degree of saturation above the groundwater
table is still 45%.
At a depth of 2.5 m:

The vertical total stress is

sv ¼
�
20:50 kN=m3�ð2:5 mÞ ¼ 51.25 kN=m2 (5.6.15)

The pore fluid pressure is

u ¼ 0.0 (5.6.16)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 51:25� 0 ¼ 51.25 kN=m2 (5.6.17)

At a depth of 5.0 m:
The vertical total stress is

sv ¼
�
20:50 kN=m3�ð5:0 mÞ ¼ 102.5 kN=m2 (5.6.18)

The pore fluid pressure is

u ¼ 0.0 (5.6.19)
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FIGURE EX. 5.6B Variation with depth of vertical total stress, pore fluid pressure, and vertical

effective stress when considering capillary rise.
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The vertical effective stress is thus

s0v ¼ sv � u ¼ 102:5� 0 ¼ 102.5 kN=m2 (5.6.20)

At a depth of 7.5 m:
The vertical total stress is

sv ¼
�
20:50 kN=m3�ð5:0 mÞ þ �

21:93 kN=m3�ð2:5 mÞ ¼ 157.3 kN=m2

(5.6.21)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð2:5 mÞ ¼ 24.53 kN=m2 (5.6.22)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 157:3� 24:53 ¼ 132.8 kN=m2 (5.6.23)

At a depth of 10.0 m:
The vertical total stress is

sv ¼
�
20:50 kN=m3�ð5:0 mÞ þ �

21:93 kN=m3�ð5:0 mÞ ¼ 212.2 kN=m2

(5.6.24)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð5:0 mÞ ¼ 49.05 kN=m2 (5.6.25)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 212:2� 49:05 ¼ 163.1 kN=m2 (5.6.26)

Figure Ex. 5.6C shows the variation with depth of the vertical total
stress, pore fluid pressure, and vertical effective stress.

EXAMPLE PROBLEM 5.7

General Remarks

This example problem illustrates the manner in which in situ stresses are
computed in the presence of capillary rise above the groundwater table.

Problem Statement

Figure Ex. 5.7A shows the soil profile at a specific site. No seepage is present
at the site. The following properties are known for the respective soil layers:

l Sand layer: Gs ¼ 2.70; moisture content of 30%.
l Silt layer: saturated unit weight of 127 lb/ft3.
l Weald clay layer: buoyant unit weight 45 lb/ft3.
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Assume the groundwater table to be 8 ft below the ground surface with
capillary rise in the sand layer that extends to the ground surface. Determine
the vertical total stress, the pore fluid pressure, and the vertical effective stress
at depths of 0, 8, 20, 25, and 45 ft.

Solution

The correct unit weights to use for the respective soil layers are first deter-
mined. It is important to note that in this problem, all of the layers are saturated.

Using the expression developed in Case 1.3 of Chapter 1, for the sand layer

e ¼ Gsw

S
¼ ð2:70Þð0:30Þ

1:0
¼ 0:810 (5.7.1)

Thus, from Case 1.8 of Chapter 1,

gsat sand ¼
ðGs þ eÞgw

1þ e
¼ ð2:70þ 0:810Þð62:4 lb=ft3Þ

1þ 0:810
¼ 121:0 lb=ft3 (5.7.2)

For the silt layer the saturated unit weight is given, i.e.,
gsat silt ¼ 127lb

�
ft3.

Finally, for the Weald clay,

gsat clay ¼ g0 þ gw ¼ 45:0þ 62:4 ¼ 107:4 lb=ft3 (5.7.3)
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FIGURE EX. 5.6C Variation with depth of vertical total stress, pore fluid pressure, and vertical

effective stress when ignoring capillary rise.
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At a depth of 0 ft:
The vertical total stress is

sv ¼ 0.0 (5.7.4)

The pore fluid pressure is

u ¼ ��62:4 lb=ft3
�ð8 ftÞ ¼ �499.2 lb=ft2 (5.7.5)

The vertical effective stress is thus

s0v ¼ 0�ð� 499:2Þ ¼ 499.2 lb=ft2 (5.7.6)

FIGURE EX. 5.7A Soil profile consisting of a sand, silt, and clay layer (not to scale).
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At a depth of 8 ft:
The vertical total stress is

sv ¼
�
121:0 lb=ft3

�ð8 ftÞ ¼ 968.0 lb=ft2 (5.7.7)

The pore fluid pressure is

u ¼ 0.0 (5.7.8)

The vertical effective stress is thus

s0v ¼ 968:0� 0 ¼ 968.0 lb=ft2 (5.7.9)

At a depth of 20 ft:
The vertical total stress is

sv ¼
�
121:0 lb=ft3

�ð20 ftÞ ¼ 2420.0 lb=ft2 (5.7.10)

The pore fluid pressure is

u ¼ �
62:4 lb=ft3

�ð12 ftÞ ¼ 748.8 lb=ft2 (5.7.11)

The vertical effective stress is thus

s0v ¼ 2420:0� 748:8 ¼ 1671.2 lb=ft2 (5.7.12)

At a depth of 25 ft:
The vertical total stress is

sv ¼ 2420.0 lb=ft2 þ �
127:0 lb=ft3

�ð5 ftÞ ¼ 3055.0 lb=ft2 (5.7.13)

The pore fluid pressure is

u ¼ �
62:4 lb=ft3

�ð17 ftÞ ¼ 1060.8 lb=ft2 (5.7.14)

The vertical effective stress is thus

s0v ¼ 3055:0� 1060:8 ¼ 1994.2 lb=ft2 (5.7.15)

At a depth of 45 ft:
The vertical total stress is

sv ¼ 3055.0 lb=ft2 þ �
127:0 lb=ft3

�ð5 ftÞ þ �
107:4 lb=ft3

�ð15 ftÞ
¼ 5301.0 lb=ft2

(5.7.16)

The pore fluid pressure is

u ¼ �
62:4 lb=ft3

�ð12þ 10þ 15 ftÞ ¼ 2308.8 lb=ft2 (5.7.17)

The vertical effective stress is thus

s0v ¼ 5301:0� 2308:8 ¼ 2992.2 lb=ft2 (5.7.18)

Figure Ex. 5.7B shows the variation with depth of the vertical total stress, pore
fluid pressure, and vertical effective stress.
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EXAMPLE PROBLEM 5.8

General Remarks

This example problem illustrates the manner in which in situ stresses are
computed under hydrostatic conditions. The second part of the problem
considers the rapid rise of the groundwater table and its affect on the pore fluid
pressure and effective stress state.

Problem Statement

Borehole data at a site reveals the soil profile shown in Figure Ex. 5.8A. The
groundwater table is found at a depth of 3.6 m. No seepage is present at the
site.

Some details pertaining to the soil profile are given as follows:

l The top 2.0 m consists of very fine, wet sand with silt. Laboratory tests
indicate that for this soil the moisture content (w) is 5%, the degree of
saturation (S) is 40%, and the specific gravity of solids (Gs) equals 2.69.

l The next 3.4 m consists of fine sand. Laboratory tests indicate that for this
soil, Gs ¼ 2.68. Above the groundwater table, w ¼ 8% and S ¼ 78%.
Below the groundwater table, w ¼ 12%.

l The final 15.2 m consists of soft blue clay. Laboratory tests indicate that for
this soil, w ¼ 32% and Gs ¼ 2.71.

-1000.0 0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000

Stress or pore pressure (pounds per square foot)

0.0

10.0

20.0

30.0

40.0

50.0

D
ep

th
 b

el
ow

 g
ro

un
d 

su
rfa

ce
 (f

ee
t)

Vertical total stress
Pore pressure
Vertical effective stress

8.0 ft

0.0 ft

20.0 ft

25.0 ft

45.0 ft

FIGURE EX. 5.7B Variation with depth of vertical total stress, pore fluid pressure, and effective

stress in soil profile consisting of a sand, silt, and clay layer.
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a) Determine the vertical total stress, pore pressure, and vertical effective
stress at depths of 0.0, 2.0, 3.6, 5.4, and 20.6 m. If the coefficient of lateral
earth pressure at rest (K0) is equal to 0.55, determine the lateral effective
stress at the same depths.

b) If the groundwater table were to rise rapidly to the ground surface,
determine the vertical total stress, pore pressure, and vertical effective
stress at depths of 2.0, 5.4, and 20.6 m. Assume that the void ratio in the
sand layers remains unchanged during the rise in groundwater.

Solution

First, all of the necessary unit weights are determined. Since the moisture
content, degree of saturation, and the specific gravity of solids are known for

Fine sand

Soft blue clay

2.0 m

Rock layer

20.6 m

0.0 m
Sand with silt

3.6 m

5.4 m

Depth

2.0 m

1.8 m

1.6 m

15.2 m

w = 5%, S = 0%, G4 = 2.69s

w = 8%, S = 8%, G7 = 2.68s

w = 12%

w = 32%, G = 2.71s

FIGURE EX. 5.8A Soil profile based on borehole data (not to scale).
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each of the soils, it is timely to substitute the relation e ¼ Gsw=S into the
general expression for moist unit weight to give the following relation:

g ¼ gwGsð1þ wÞ
1þ e

¼ gwGsð1þ wÞ
1þ

�
Gsw

S

� (5.8.1)

For the very fine wet sand with silt, w ¼ 5%, S ¼ 40%, and Gs ¼ 2.69. The
moist unit weight is thus

g ¼ ð9:81 kN=m3Þð2:69Þð1þ 0:05Þ
1þ

	ð2:69Þð0:05Þ
0:40


 ¼ 20:74 kN=m3 (5.8.2)

For the fine sand above the groundwater table, w ¼ 8%, S ¼ 78%, and
Gs ¼ 2.68. The moist unit weight is thus

g ¼ ð9:81 kN=m3Þð2:68Þð1þ 0:08Þ
1þ

	ð2:68Þð0:08Þ
0:78


 ¼ 22:27 kN=m3 (5.8.3)

For the fine sand below the groundwater table, w ¼ 12%, S ¼ 100%, and
Gs ¼ 2.68. The moist unit weight of the fine sand is thus

g ¼ ð9:81 kN=m3Þð2:68Þð1þ 0:12Þ
1þ

	ð2:68Þð0:12Þ
1:00


 ¼ 22:28 kN=m3 (5.8.4)

Finally, for the soft blue clay, w ¼ 32%, S ¼ 100%, and Gs ¼ 2.71. The
moist unit weight of this soil is thus

g ¼ ð9:81 kN=m3Þð2:71Þð1þ 0:32Þ
1þ

	ð2:71Þð0:32Þ
1:00


 ¼ 18:79 kN=m3 (5.8.5)

a) The vertical total stress, pore fluid pressure, and vertical and horizontal
(lateral) effective stresses are next computed at the requested depths.
At a depth of 0.0 m:

sv ¼ 0.0 u ¼ 0.0; s0v ¼ s0h ¼ 0.0 (5.8.6)

At a depth of 2.0 m:
The vertical total stress is

sv ¼
�
20:74 kN=m3�ð2:0 mÞ ¼ 41.48 kN=m2 (5.8.7)
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Since the soil is not saturated, capillary rise in the very fine wet sand
with silt is ignored. The pore fluid pressure is thus

u ¼ 0.0 (5.8.8)

The vertical effective stress is thus equal to the vertical total stress, i.e.,

s0v ¼ sv � u ¼ 41.48 kN=m2 (5.8.9)

The horizontal (lateral) effective stress is thus

s0h ¼ K0s
0
v ¼ 0:55

�
41:48 kN=m2� ¼ 22.81 kN=m2 (5.8.10)

At a depth of 3.6 m:
The vertical total stress is

sv ¼ 41:48 kN=m2 þ �
22:27 kN=m3�ð1:6 mÞ ¼ 77.11 kN=m2 (5.8.11)

Since the soil is not saturated, capillary rise in the fine sand is ignored.
The pore fluid pressure is thus

u ¼ 0.0 (5.8.12)

The vertical effective stress is thus again equal to the vertical total
stress, i.e.,

s0v ¼ sv � u ¼ 77.11 kN=m2 (5.8.13)

The horizontal (lateral) effective stress is thus

s0h ¼ K0s
0
v ¼ 0:55

�
77:11 kN=m2� ¼ 42.41 kN=m2 (5.8.14)

At a depth of 5.4 m:
The vertical total stress is

sv ¼ 77:11 kN=m2 þ �
22:28 kN=m3�ð1:8 mÞ ¼ 117.2 kN=m2 (5.8.15)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð1:8 mÞ ¼ 17.66 kN=m2 (5.8.16)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 117:2� 17:66 ¼ 99.54 kN=m2 (5.8.17)

Finally, the horizontal (lateral) effective stress is

s0h ¼ K0s
0
v ¼ 0:55

�
99:54 kN=m2� ¼ 54.75 kN=m2 (5.8.18)

At a depth of 20.6 m:
The vertical total stress is

sv ¼ 117:2 kN=m2 þ �
18:79 kN=m3�ð15:2 mÞ ¼ 402.8 kN=m2 (5.8.19)
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The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð1:8þ 15:2 mÞ ¼ 166.8 kN=m2 (5.8.20)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 402:8� 166:8 ¼ 236.0 kN=m2 (5.8.21)

Finally, the horizontal (lateral) effective stress is

s0h ¼ K0s
0
v ¼ 0:55

�
236:0 kN=m2� ¼ 129.8 kN=m2 (5.8.22)

Figure Ex. 5.8B shows the variation with depth of the vertical total
stress, pore fluid pressure, and vertical and horizontal effective stress.

b) If the groundwater table rises rapidly to the ground surface, the very fine,
wet sand with silt, as well as the fine sand will be saturated. For both soils,
the rapid rise in groundwater is assumed to take place without change
in the void ratio. The initial void ratio in the wet sand with silt layer
before the rise in groundwater table is

e ¼ Gsw

S
¼ ð2:69Þð0:05Þ

0:40
¼ 0:336 (5.8.23)
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FIGURE EX. 5.8B Variation with depth of vertical total stress, pore fluid pressure, and vertical

and horizontal effective stress.

In Situ Stresses Under Hydrostatic Conditions Chapter j 5 233



Since this void ratio is assumed to be unchanged, the saturated unit
weight in the wet sand with silt layer is thus

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:69þ 0:336Þ

1þ 0:336
¼ 22:22 kN=m3 (5.8.24)

For the entire fine sand layer,

gsat ¼
ð9:81 kN=m3Þð2:68Þð1þ 0:12Þ

1þ ð2:68Þð0:12Þ ¼ 22:28 kN=m3 (5.8.25)

At a depth of 0.0 m:

sv ¼ 0.0; u ¼ 0.0; s0v ¼ s0h ¼ 0.0 (5.8.26)

At a depth of 2.0 m:
The vertical total stress is

sv ¼
�
22:22 kN=m3�ð2:0 mÞ ¼ 44.44 kN=m2 (5.8.27)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð2:0 mÞ ¼ 19.62 kN=m2 (5.8.28)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 44:44� 19:62 ¼ 24.82 kN=m2 (5.8.29)

Finally, the horizontal (lateral) effective stress is

s0h ¼ K0s
0
v ¼ 0:55

�
24:82 kN=m2� ¼ 13.65 kN=m2 (5.8.30)

At a depth of 3.6 m:
The vertical total stress is

sv ¼ 44:44 kN=m2 þ �
22:28 kN=m3�ð1:6 mÞ ¼ 80.09 kN=m2 (5.8.31)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð3:6 mÞ ¼ 35.32 kN=m2 (5.8.32)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 80:09� 35:32 ¼ 44.77 kN=m2 (5.8.33)

The horizontal (lateral) effective stress is thus

s0h ¼ K0s
0
v ¼ 0:55

�
44:77 kN=m2� ¼ 24.63 kN=m2 (5.8.34)

At a depth of 5.4 m:
The vertical total stress is

sv ¼ 80:09 kN=m2 þ �
22:28 kN=m3�ð1:8 mÞ ¼ 120.2 kN=m2 (5.8.35)
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The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð5:4 mÞ ¼ 52.97 kN=m2 (5.8.36)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 120:2� 52:97 ¼ 67.23 kN=m2 (5.8.37)

The horizontal (lateral) effective stress is thus

s0h ¼ K0s
0
v ¼ 0:55

�
67:23 kN=m2� ¼ 37.00 kN=m2 (5.8.38)

At a depth of 20.6 m:
The vertical total stress is

sv ¼ 120:2 kN=m2 þ �
18:80 kN=m3�ð15:2 mÞ ¼ 406.0 kN=m2 (5.8.39)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð20:6 mÞ ¼ 202.1 kN=m2 (5.8.40)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 406:0� 202:1 ¼ 203.9 kN=m2 (5.8.41)

The horizontal (lateral) effective stress is thus

s0h ¼ K0s
0
v ¼ 0:55

�
203:9 kN=m2� ¼ 112.1 kN=m2 (5.8.42)

Figure Ex. 5.8C shows the variation with depth of the vertical total stress, pore
fluid pressure, and vertical and horizontal effective stress.

EXAMPLE PROBLEM 5.9

General Remarks

This example problem illustrates the manner in which in situ stresses are
computed under hydrostatic conditions. The second part of the problem con-
siders a lowering of the groundwater table (e.g., by the process of dewatering)
and its effect on the pore fluid pressure and effective stress state.

Problem Statement

Figure Ex. 5.9A shows a soil profile consisting of a 3 m thick gravel fill, an
8 m thick layer of sand, a 10 m thick layer of soft silty clay, and an 8 m thick
stiff clay layer. The 2 m portion of the sand layer above the ground water layer
is saturated by capillary rise, while the gravel fill is unaffected by the capil-
larity. No seepage is present at the site. The following properties are known for
the respective soil layers:

l Gravel fill: Gs ¼ 2.75, w ¼ 12.5%, S ¼ 67%, gd ¼ 17.8 kN/m3, K0 ¼ 1.20.
l Sand layer: Gs ¼ 2.69, w ¼ 16.0%, K0 ¼ 0.470.

In Situ Stresses Under Hydrostatic Conditions Chapter j 5 235



l Soft silty clay: Gs ¼ 2.65, w ¼ 65.0%, K0 ¼ 0.658.
l Stiff clay layer: Gs ¼ 2.68, w ¼ 20.0%, K0 ¼ 1.00.

where K0 is the coefficient of lateral earth pressure at rest.

a) Determine the vertical total stress (sv), pore pressure (u), vertical effective
stress (s0v), and horizontal effective stress (s0h) at depths of 1.5, 4, 8, 16, and
25 m.

b) If the groundwater table is next lowered by 6 m, what is the vertical total
stress, the pore pressure, vertical effective stress, and horizontal effective
stress at a depth of 16 m? Assume that the sand layer remains saturated.

Solution

The correct unit weights to use for the respective soil layers are first deter-
mined. For the gravel fill:

g ¼ gdð1þ wÞ ¼ �
17:8 kN=m3�ð1þ 0:125Þ ¼ 20:03 kN=m3 (5.9.1)
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FIGURE EX. 5.8C Variation with depth of vertical total stress, pore fluid pressure, and vertical

and horizontal effective stress.
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For the sand layer:

gsat ¼
gwGsð1þ wÞ
1þ Gsw

¼ ð9:81 kN=m3Þð2:69Þð1þ 0:16Þ
1þ ð2:69Þð0:16Þ ¼ 21:40 kN=m3

(5.9.2)

For the soft silty clay layer:

gsat ¼
gwGsð1þ wÞ
1þ Gsw

¼ ð9:81 kN=m3Þð2:65Þð1þ 0:65Þ
1þ ð2:65Þð0:65Þ ¼ 15:76 kN=m3

(5.9.3)

Sand

Soft silty clay

3.0 m

Bedrock

29.0 m

0.0 m

Gravel fill

5.0 m

11.0 m

Depth

21.0 m

Stiff clay

FIGURE EX. 5.9A Soil profile consisting of gravel fill, and sand, silty clay, and stiff clay layers.
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For the stiff clay layer:

gsat ¼
gwGsð1þ wÞ
1þ Gsw

¼ ð9:81 kN=m3Þð2:68Þð1þ 0:20Þ
1þ ð2:68Þð0:20Þ ¼ 20:54 kN=m3

(5.9.4)

a) The hydrostatic stresses are determined for the initial location of the
groundwater table as shown in Figure Ex. 5.4A.
At a depth of 1.5 m:

The vertical total stress is

sv ¼
�
20:03 kN=m3�ð1:5 mÞ ¼ 30.04 kN=m2 (5.9.5)

The pore fluid pressure is

u ¼ 0.0 (5.9.6)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 30.04 kN=m2 (5.9.7)

The horizontal effective stress is thus

s0h ¼ K0s
0
v ¼ ð1:20Þ�30:04 kN=m2� ¼ 36.05 kN=m2 (5.9.8)

At a depth of 4.0 m:
The vertical total stress is

sv ¼
�
20:03 kN=m3�ð3:0 mÞ þ �

21:40 kN=m3�ð1:0 mÞ ¼ 81.49 kN=m2

(5.9.9)

The pore fluid pressure is

u ¼ ��9:81 kN=m3�ð1:0 mÞ ¼ �9.81 kN=m2 (5.9.10)

The vertical effective stress is thus

s0v ¼ 81:49�ð�9:81Þ ¼ 91.30 kN=m2 (5.9.11)

The horizontal effective stress is thus

s0h ¼ K0s
0
v ¼ ð0:470Þ�91:30 kN=m2� ¼ 42.91 kN=m2 (5.9.12)

At a depth of 8.0 m:
The vertical total stress is

sv ¼
�
20:03 kN=m3�ð3:0 mÞ þ �

21:40 kN=m3�ð5:0 mÞ ¼ 167.1 kN=m2

(5.9.13)
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The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð3:0 mÞ ¼ 29.43 kN=m2 (5.9.14)

The vertical effective stress is thus

s0v ¼ 167:1� 29:43 ¼ 137.7 kN=m2 (5.9.15)

The horizontal effective stress is thus

s0h ¼ K0s
0
v ¼ ð0:470Þ�137:7 kN=m2� ¼ 64.70 kN=m2 (5.9.16)

At a depth of 16.0 m:
The vertical total stress is

sv ¼
�
20:03 kN=m3�ð3:0 mÞ þ �

21:40 kN=m3�ð8:0 mÞ
þ �

15:76 kN=m3�ð5:0 mÞ ¼ 310.1 kN=m2
(5.9.17)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð11:0 mÞ ¼ 107.9 kN=m2 (5.9.18)

The vertical effective stress is thus

s0v ¼ 310:1� 107:9 ¼ 202.2 kN=m2 (5.9.19)

The horizontal effective stress is thus

s0h ¼ K0s
0
v ¼ ð0:658Þ�202:2 kN=m2� ¼ 133.0 kN=m2 (5.9.20)

At a depth of 25.0 m:
The vertical total stress is

sv ¼
�
20:03 kN=m3�ð3:0 mÞ þ �

21:40 kN=m3�ð8:0 mÞ
þ �

15:76 kN=m3�ð10:0 mÞ þ �
20:54 kN=m3�ð4:0 mÞ ¼ 471.1 kN=m2

(5.9.21)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð20:0 mÞ ¼ 196.2 kN=m2 (5.9.22)

The vertical effective stress is thus

s0v ¼ 471:1� 196:2 ¼ 274.9 kN=m2 (5.9.23)

The horizontal effective stress is thus

s0h ¼ K0s
0
v ¼ ð1:0Þ�274:9 kN=m2� ¼ 274.9 kN=m2 (5.9.24)

Figure Ex. 5.9B shows the variation with depth of the vertical total
stress, pore fluid pressure, and vertical effective stress.
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b) The hydrostatic stresses are next determined for the case where the
groundwater table is lowered by 6 m.
At a depth of 16.0 m:

The vertical total stress is unchanged, i.e.,

sv ¼
�
20:03 kN=m3�ð3:0 mÞ þ �

21:40 kN=m3�ð8:0 mÞ
þ �

15:76 kN=m3�ð5:0 mÞ ¼ 310.1 kN=m2
(5.9.25)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð5:0 mÞ ¼ 49.05 kN=m2 (5.9.26)

The vertical effective stress is thus

s0v ¼ 310:1� 49:05 ¼ 261.1 kN=m2 (5.9.27)

Finally, the horizontal effective stress is thus

s0h ¼ K0s
0
v ¼ ð0:658Þ�261:1 kN=m2� ¼ 171.8kN=m2 (5.9.28)

EXAMPLE PROBLEM 5.10

General Remarks

This example problem illustrates how information is obtained from in situ
stresses computed under hydrostatic conditions.
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FIGURE EX. 5.9B Variation with depth of vertical total stress, pore fluid pressure, and vertical

and horizontal effective stress when ignoring capillary rise.
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Problem Statement

At a given site the soil stratum consists of a thick clay layer. The groundwater
table is located 1.5 m below the ground surface. Above the groundwater table
the degree of saturation (S) is 92.5%. If the specific gravity of solids (Gs) is
equal to 2.71 and the void ratio in the clay is 1.21, determine (a) at which
depth (d) below the ground surface the vertical effective stress will be equal to
120 kPa and (b) the vertical effective stress at this depth immediately after the
groundwater table is lowered by 2.0 m.

Solution

a) Above the groundwater table, the moist unit weight is computed using the
expression determined in Case 1.7 of Chapter 1, i.e.,

g ¼ gwðGs þ SeÞ
1þ e

¼ ð9:81 kN=m3Þ½2:71þ ð0:925Þð1:21Þ�
1þ 1:21

¼ 17:0 kN=m3

(5.10.1)

Below the groundwater table, the moist unit weight is computed using
the expression determined in Case 1.8 of Chapter 1, i.e.,

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þ½2:71þ 1:21�

1þ 1:21
¼ 17:4 kN=m3 (5.10.2)

At a depth (d) below the ground surface the vertical total stress is

sv ¼ gð1:5 mÞ þ gsatðd � 1:5 mÞ (5.10.3)

The pore pressure at the same depth is

u ¼ gwðd � 1:5 mÞ (5.10.4)

Finally, the vertical effective stress at a depth (d) below the ground
surface is

s0v ¼ sv � u ¼ gð1:5 mÞ þ ðgsat � gwÞðd � 1:5 mÞ (5.10.5)

Solving Eq. (5.10.5) for d gives

d ¼ s0v � gð1:5 mÞ
ðgsat � gwÞ

þ 1:5 m (5.10.6)

Substituting all known values into Eq. (5.10.6) gives the desired result

d ¼ ð120 kPaÞ �ð17:0 kN=m3Þð1:5 mÞ
ð17:4� 9:81Þ kN=m3

þ 1:5 m ¼ 14.0 m (5.10.7)
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b) Since the vertical effective stress is computed immediately following the
lowering of the groundwater table, the unit weights of the partially and
fully saturated portions of the clay layer remain unchanged. The vertical
total stress at a depth d ¼ 14.0 m below the ground surface is

sv ¼ gð1:5 mÞ þ gsatð14:0� 1:5 mÞ
¼ �

17:0 kN=m3�ð1:5 mÞ þ �
17:4 kN=m3�ð14:0� 1:5 mÞ ¼ 243:0 kPa

(5.10.8)

The pore pressure at the same depth is now

u ¼ gwð14:0� 1:5� 2:0 mÞ ¼ �
9:81 kN=m3�ð10:5 mÞ ¼ 103:0 kPa

(5.10.9)

The vertical effective stress at a depth d ¼ 14.0 m below the ground
surface is thus

s0v ¼ sv � u ¼ 243:0� 103:0 ¼ 140.0 kPa (5.10.10)

242 Soil Mechanics



Chapter 6

Example Problems Involving
One-Dimensional Fluid Flow in
Soils

6.0 GENERAL COMMENTS

In soil mechanics there are three general problem types that require a clear
understanding of fluid flow through the soil, namely those seeking to deter-
mine the following:

1. The rate at which fluid flows through a soil (e.g., leakage through an earth
dam),

2. The rate of settlement due to consolidation (i.e., the expulsion of excess
pore fluid from the pores), and

3. The strength of slopes, embankments, etc.

The flow of fluid through a soil can be either steady state or transient. In
the case of steady-state flow,

l Pore fluid pressures remain constant.
l The rate of flow through the soil is a constant.
l The effective stresses remain constant.
l The soil does not deform.

In the case of transient flow of fluid through a soil,

l Pore fluid pressures and thus effective stresses vary with time.
l The soil deforms.
l There exists a complex interrelationship between pore fluid pressure, flow,

and deformation.
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6.1 CONSERVATION OF MASS

If the mass of a system remains unchanged, then

dm

dt
¼ d

dt

Z
V

rdV ¼ 0 (6.1)

where m is the mass of the system, r is the density of the material, V is the
volume of the system, and t is time.

For incompressible flow the density of the fluid remains constant. The law
of conservation of mass then reduces to the equation of continuity of flow, i.e.,

dm

dt
¼ r

d

dt

Z
V

dV ¼ r
dV

dt
¼ 0 0

dV

dt
¼ 0 (6.2)

Consider two sections along the saturated aquifer shown in Figure 6.1.
Define the following quantities:

A1 ¼ cross-sectional area perpendicular to the direction of flow at Section 1
[units of L2].
A2 ¼ cross-sectional area perpendicular to the direction of flow at Section 2
[units of L2].
v1 ¼ velocity of flow at Section 1 [units of Lt�1].
v2 ¼ velocity of flow at Section 2 [units of Lt�1].
Q ¼ rate of discharge [units of L3t�1].

To satisfy the equation of continuity of flow it follows that

dV

dt
¼ 0 0 Q ¼ v1A1 ¼ v2A2 (6.3)

Direction of flow

Section 1

Section 2v

v

1

2
A

A

1

1

2

FIGURE 6.1 Schematic illustration of flow through a saturated aquifer.
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6.2 BERNOULLI’S ENERGY EQUATION

Applying Bernoulli’s1 principle to an incompressible, steady flow of a fluid
gives Bernoulli’s energy equation for incompressible flow. In particular, at
some point along a streamline,

p

rw
þ gzþ v2

2
¼ C (6.4)

where C is a constant and p ¼ pressure at a point [units of FL�2]; rw ¼ density
of the fluid [units of FL�4t]; g ¼ gravitational acceleration [units of Lt�2];
z ¼ elevation of the point above a datum [units of L]; v ¼ velocity of flow at
the point [units of Lt�1].

This expression represents the steady-flow energy equation in terms of
energy per unit of mass of fluid [units of L2t�2]. The term p/rw is the pressure
energy per unit mass. The term gz is the potential energy per unit mass.2

Finally, the term v2/2 is the kinetic energy per unit mass.3 Thus, in words, “the
energy per unit mass is conserved along a streamline.”

Diving Bernoulli’s energy equation for incompressible flow by g gives

p

gw

þ zþ v2

2g
¼ C� (6.5)

where C* ¼ C/g is a constant and rwg ¼ gw. The equation is now expressed in
terms of energy per unit weight [units of L]. The respective terms in the
equation are defined as follows:

l The term p/gw is the pressure or piezometric head.
l The term z represents the elevation head.
l The term v2/2g is the velocity head.

Remark: In most soils the voids (pores) are so small that the flow is laminar (i.e.,

nonturbulent).

Remark: Since the velocity of flow is typically small in soils and rocks, the velocity

head is typically negligible.

1. Daniel Bernoulli (1700e1782).

2. The potential energy is equal to mgz.

3. The kinetic energy is equal to mv2/2.
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Bernoulli’s equation thus reduces to

p

gw

þ z ¼ C� (6.6)

where C* is a constant total head.
Inserting imaginary standpipes into a soil (Figure 6.2) is a convenient

method of visualizing the total head.
For some point A located in the saturated soil, the total head (h) is simply

the sum of the elevation head (zA) of the standpipe with respect to the selected
datum and the pressure head pA/gw. The latter represents the elevation that the
pore fluid raises in the tube.

To gain additional insight into the pressure head, note that the pore fluid
pressure at point A, at a depth d below the groundwater table, is

uA ¼ rwgd ¼ gwd (6.7)

But d is also the pressure head at point A, i.e., d ¼ pA/gw. Thus,

uA ¼ gwd ¼ gw

�
pA
gw

�
¼ pA (6.8)

indicating that pA is exactly equal to the pore pressure at point A.

FIGURE 6.2 Schematic illustration of a standpipe placed in a saturated aquifer.
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Remark: When fluid flows through soils and rock, energy, or head is lost through

friction, much as in flow through pipes and in open channels.

6.3 HEAD LOSS

For flow to occur between two points a and b, a loss in head must occur be-
tween these points. Let ha and hb be the total heads at points a and b,
respectively; thus,

ha ¼ pa
gw

þ za; hb ¼ pb
gw

þ zb (6.9)

If Dh ¼ ha � hb s 0, fluid flow will take place between points a and b. In
particular,

l If Dh > 0 (i.e., ha > hb), the flow will be from point a to point b.
l If Dh < 0 (i.e., ha < hb), the flow will be from point b to point a.

6.4 HYDRAULIC GRADIENT

Writing the head loss in nondimensional form gives

Dh

L
hi (6.10)

where i is the hydraulic gradient, and L is the distance between points a and b,
measured along the direction of flow.

To better understand the proper definition of L, consider the one-
dimensional flow between points 1 and 2 shown in Figure 6.3. Since
h1 > h2, the fluid will flow from point 1 to point 2. The distance between
points 1 and 2 (L) is measured along the flow tube (as opposed to using the
horizontal distance between these two points).

6.5 SEEPAGE VELOCITY

In general, all voids (pores) in soils are assumed to be connected to neigh-
boring voids. The voids of soils are small in diameter and irregular. As fluid
flows through a soil, it follows a tortuous path. Any flow calculated using the
theory of pipe flow will thus be in error!

Rather than computing specific velocities through particular voids, it is
more realistic to instead compute an average or superficial velocity through a
given area of soil. Consider the one-dimensional flow through the saturated
soil sample shown in Figure 6.4. The cross-sectional area of the tube con-
taining the sample is A.
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Let va and vd be the approach and discharge velocities [units of Lt�1],
respectively, and Q be the discharge [units of L3t�1]. From the continuity of
flow,

Q ¼ vaA ¼ vdA (6.11)

2
z

datum

z
1

L

flow

sample

Piezometric
head at 2

Piezometric
head at 1

Head loss, h

FIGURE 6.3 One-dimensional inclined flow example.

L

h

Cross-sectional area (A)

soilv va d

a

a

FIGURE 6.4 One-dimensional flow example.
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or

va ¼ vd ¼ Q

A
hv (6.12)

where v is the average or superficial velocity. It is this velocity that would be
macroscopically measured.

Next consider section aea through the soil sample, taken at right angles to
the direction of flow. Figure 6.5 shows the actual soil at section aea, as well as
the associated phase diagram. Assume a unit thickness of the sample in the
direction of flow (i.e., into the page).

Denote the actual or seepage4 velocity of flow through the voids by vs.
From the continuity of flow,

Q ¼ vaA ¼ vdA ¼ vA ¼ vsAv (6.13)

where Av is the area of the voids (Figure 6.5). Thus,

vA ¼ vðAv þ AsÞ ¼ vsAv 0 vs ¼
�
Av þ As

Av

�
v (6.14)

Multiplying numerator and denominator by the length along the flow path
(L) gives

vs ¼
�
Av þ As

Av

�
v

�
L

L

�
¼
�
V

Vv

�
v ¼ v

n
(6.15)

where n is the porosity. Since n < 1, it follows that the seepage velocity (vs)
will always be greater than the superficial velocity (v).

=

Actual soil Phase diagram

Av

As

Voids

Solids

FIGURE 6.5 Schematic illustra-

tion of section aea.

4. Seepage is defined as the slow escape of fluid through a porous material.
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6.6 DARCY’S LAW

The French waterworks engineer Henri Darcy5 conducted vertical column flow
experiments (Figure 6.6) on homogeneous sand filters in connection with the
foundation of the city of Dijon, France.

Darcy concluded that the rate of flow Q (volume per unit time) was

l proportional to the constant cross-sectional area A of the sand filter;
l proportional to the difference in total head (h1 � h2), where h1 and h2 are

the total heads at points 1 and 2, respectively;
l inversely proportional to the length L of the sand filter.

When combined, the aforesaid observations give the famous Darcy formula
(or Darcy’s law), i.e.,

Q ¼ kA

�
h1 � h2

L

�
(6.16)

sand

A

h1

h
2

2
z

z
1

screen

screen

Q

L

datum

Pressure head at 1

Pressure
head at 2Sand

Q

Cross-sectional
area, A

FIGURE 6.6 Schematic illustration of Darcy’s experiment.

5. Henry Darcy (1803e1858).
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where the coefficient of proportionality k is commonly referred to as the perme-
ability orhydraulic conductivity (units ofLt�1). The quantity (h1 � h2)/L is seen to
be the hydraulic gradient i. Thus, Darcy’s formula is typically written as

Q ¼ kiA (6.17)

Darcy’s formula is thus a phenomenologically derived constitutive law that
relates the rate of flow (per unit area) to the hydraulic gradient. It is analogous
to Fick’s law in diffusion theory, Fourier’s law in heat conduction, and Ohm’s
law in the field of electrical circuits.

The rather simplified configuration shown in Figure 6.6 likewise holds for
the more general inclined case shown in Figure 6.7.

Remark: The coefficient of permeability (k) expresses the ease with which fluid

passes through a soil.

Remark: When a soil is said to have a certain coefficient of permeability, this

value assumes the pore fluid to be water, typically at 20�C.

Darcy’s law is also written as

Q ¼ k

h
gw iA (6.18)

z
1

L

Soil sample

2
z

datum

Cross-sectional area (A)

Q

Pressure head
at point 1

Pressure head
at point 2

FIGURE 6.7 Schematic illustration of seepage through an inclined sand filter.
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where k is the intrinsic permeability [units of L2] and h is the dynamic vis-
cosity of water [units of ML�1t�1]. To relate the intrinsic permeability to k,
equate Eqs. (6.17) and (6.18), giving

kiA ¼ k

h
gw iA 0 k ¼ k

h
gw or

k

gw

¼ k

h
(6.19)

The permeability of a soil depends on the characteristics of the pore fluid,
as well as the solid phase. The following factors thus affect the permeability:

For the fluid phase,

l the fluid density (gw);
l the magnitude of the dynamic viscosity (h), which depends on temperature.

For the solid phase,

l the particle size distribution in the microfabric;
l the shape of particles (or pores);
l the tortuosity (i.e., the degree of “crookedness” of the pore space);
l the specific surface (i.e., the magnitude of the surface area/unit mass);
l the porosity or void ratio;
l the degree of saturation.

Table 6.1 lists some typical values for the coefficient of permeability. It is
evident that the values of k differ significantly (e.g., by six orders of magnitude
in going from gravels to clays).

6.7 EXPERIMENTAL DETERMINATION OF PERMEABILITY

Values for the coefficient of permeability are typically determined from the
following:

1. relatively simple laboratory tests;
2. field pumping tests;
3. empirical correlations.

TABLE 6.1 Typical Permeability Values for

Common Soil Types

Soil Type k (m/s)

Gravel >10�2

Sand 10�2 to 10�5

Silt 10�5 to 10�8

Clay <10�8
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Additional details pertaining to field pumping tests6 and empirical corre-
lations7 are given elsewhere. Attention is instead turned to the constant-head
and falling-head permeability tests.

6.7.1 Constant-Head Permeability Test

The constant-head method is typically used on relatively permeable soils such
as gravels and clean sands.8 In this test water is allowed to flow through the
soil under a steady-state head condition, with the quantity (volume) of water
flowing through the soil specimen being measured over a period of time.
Figure 6.8 gives a schematic illustration of the constant-head permeability test.

By knowing the quantity Q of water measured (units of L3), length L of
specimen, the cross-sectional area A of the specimen, the time t required for
the quantity of water Q to be discharged, and the head Dh, from Darcy’s law it
follows that

Q ¼ k

�
Dh

L

�
A (6.20)

The permeability is then calculated from

k ¼ QL

AtDh
¼ Q

Ait
(6.21)

where i is the hydraulic gradient as defined in Eq. (6.10).

screen

L

h
cross-sectional

area, A
screen

sample

FIGURE 6.8 Schematic illustration of a

constant-head permeability test.

6. Lambe, T.W., Whitman, R.V., 1979. Soil Mechanics, SI Version. John Wiley and Sons, New

York, NY.

7. Das, B.M., 2010. Principles of Geotechnical Engineering, seventh ed. Cengage Learning,

Stamford, CT.

8. Kezdi, A., 1974. Handbook of Soil Mechanics. Elsevier, Amsterdam, The Netherlands.
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6.7.2 Falling-Head Permeability Test

The falling-head test is quite similar to the constant-head test in its initial
configuration. The soil sample is first saturated under a specific head condi-
tion. However, unlike the case of the constant-head test, the water is then
allowed to flow through the soil without maintaining a constant pressure head.
This gives the falling-head test the advantage of being used for both fine-
grained and coarse-grained soils. Figure 6.9 gives a schematic illustration of
the falling-head permeability test.

During a given increment of time dt the incremental change in volume of
fluid flowing through the sample is

dV ¼ �a dh (6.22)

where a is the cross-sectional area of the standpipe and dh represents an
increment in hydraulic head. From Darcy’s law

dV ¼ k

�
h

L

�
A dt (6.23)

Equating the two aforesaid expressions for dV gives

�a dh ¼ k

�
h

L

�
A dt 0 � dh

h
¼ k

L

A

a
dt (6.24)

Integrating this equation gives

�ln h ¼ k

L

A

a
t þ C (6.25)

where C is a constant. Noting that at t ¼ 0, h ¼ h0 (Figure 6.9) it follows that
C ¼ �ln h0.

screen

L

h 0
cross-sectional

area, A

h

dhcross-sectional
area, a

screen

sample

FIGURE 6.9 Schematic illustration of a falling-head permeability test.
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Eq. (6.25) thus becomes

ln

�
h0
h

�
¼ k

L

A

a
t (6.26)

The permeability is then calculated from

k ¼
�
aL

At

�
ln

�
h0
h

�
¼ 2:303

�
aL

At

�
log10

�
h0
h

�
(6.27)

The determination of values for the coefficient of permeability is also
illustrated in several example problems appearing later in this chapter.

6.8 HYDROSTATIC CONDITIONS COMPARED TO
UPWARD AND DOWNWARD SEEPAGE

Having discussed elevation, pressure, and total heads, it is timely to look at
three specific cases associated with one-dimensional flow through a saturated
soil.

6.8.1 No Seepage (Hydrostatic Conditions)

Consider the saturated soil sample shown in Figure 6.10.

At point a:
The elevation head, za ¼ e þ H
The pressure head, pa/gw ¼ d
The total head, ha ¼ (e þ H) þ d.

FIGURE 6.10 Saturated soil sample without seepage.
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At point b:
The elevation head, zb ¼ e
The pressure head, pb/gw ¼ H þ d
The total head, hb ¼ e þ (H þ d).
Since ha ¼ hb, there is no head loss along the sample (i.e., Dh ¼ 0) and

thus no flow. To verify this finding, consider point c.
The elevation head, zc ¼ e þ f
The pressure head, pc/gw ¼ (H � f) þ d
The total head, hc ¼ (e þ f) þ [(H � f) þ d] ¼ e þ H þ d.
Thus, hc ¼ ha ¼ hb, which further confirms the hydrostatic conditions.

To relate these results to the problems presented in Chapter 5, compute the
pore pressures at points a, b, and c.
At point a:

pa
gw

¼ d 0 pa ¼ gwd (6.28)

At point b:

pb
gw

¼ H þ d 0 pb ¼ gwðH þ dÞ (6.29)

At point c:

pc
gw

¼ ðH � f Þ þ d 0 pa ¼ gw

�ðH � f Þ þ d
�

(6.30)

The aforesaid results are precisely the pore pressures associated with
hydrostatic conditions. Next, compute the vertical total and effective stress
at points b and c.
At point b:

The vertical total stress is

sv ¼ gwd þ gsatH (6.31)

The vertical effective stress is

s0v ¼ sv �pb ¼ ðgwd þ gsatHÞ �gwðH þ dÞ ¼ ðgsat � gwÞH ¼ gbH (6.32)

where gb is the buoyant unit weight.
At point c:

The vertical total stress is

sv ¼ gwd þ gsatðH � f Þ (6.33)

The vertical effective stress is

s0v ¼ sv �pc ¼ gwd þ gsatðH � f Þ �gw

h
ðH � f Þ þ d

i
¼ ðgsat � gwÞðH � f Þ

¼ gbðH � f Þ
(6.34)
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The aforesaid results are consistent with those presented in Chapter 5
for hydrostatic conditions.

6.8.2 Downward Seepage

Next consider the saturated soil sample shown in Figure 6.11.

At point a:
The elevation head, za ¼ e þ H
The pressure head, pa/gw ¼ d
The total head, ha ¼ (e þ H) þ d.

At point b:
The elevation head, zb ¼ e
The pressure head, pb/gw ¼ H þ d � Dh
The total head, hb ¼ e þ (H þ d � Dh).

At point c:
The elevation head, zc ¼ e þ f
The pressure head, pc/gw ¼ (H � f þ d) � Dh(H � f)/H
The total head, hc ¼ e þ f þ pc/gw.

Next, compute the vertical total and effective stress at points b and c.

At point b:
The vertical total stress is unchanged from the case with no seepage

(Figure 6.8), i.e.,

sv ¼ gwd þ gsatH (6.35)

FIGURE 6.11 Saturated soil sample with downward seepage.
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The vertical effective stress is

s0v ¼ sv �pb ¼ ðgwd þ gsatHÞ �gwðH þ d � DhÞ
¼ ðgsat � gwÞH þ gwDh ¼ gbH þ gwDh

(6.36)

Thus, for the case of downward seepage, the effective stress at the
bottom of the sample is increased by the amount gwDh.
At point c:

The vertical total stress is again unchanged from the case with no
seepage, i.e.,

sv ¼ gwd þ gsatðH � f Þ (6.37)

The vertical effective stress is

s0v ¼ gwd þ gsatðH � f Þ �gw

�
H � f þ d � DhðH � f Þ

H

�
¼ ðgsat � gwÞðH � f Þ þ gw

�
DhðH � f Þ

H

�
¼ gbðH � f Þ þ gw i ðH � f Þ

(6.38)

where i is the hydraulic gradient. To make sense of the aforesaid expression
for vertical effective stress, let f ¼ H/2. Then,

s0v ¼ gb

H

2
þ gw

Dh

2
(6.39)

If f ¼ 0, the aforesaid expression reduces to that determined earlier for
point b. If f ¼ H, the effective stress is zero, which is correct for point a.

6.8.3 Upward Seepage

Finally, consider the saturated soil sample shown in Figure 6.12.

At point a:
The elevation head, za ¼ e þ H
The pressure head, pa/gw ¼ d
The total head, ha ¼ (e þ H) þ d.

At point b:
The elevation head, zb ¼ e
The pressure head, pb/gw ¼ H þ d þ Dh
The total head, hb ¼ e þ (H þ d þ Dh).

At point c:
The elevation head, zc ¼ e þ f
The pressure head, pc/gw ¼ (H � f þ d) þ Dh(H � f)/H
The total head, hc ¼ e þ f þ pc/gw.
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Next, compute the vertical total and effective stress at points b and c.

At point b:
The vertical total stress is unchanged from the case with no seepage

(Figure 6.8), i.e.,

sv ¼ gwd þ gsatH (6.40)

The vertical effective stress is

s0v ¼ sv �pb ¼ ðgwd þ gsatHÞ �gwðH þ d þ DhÞ
¼ ðgsat � gwÞH � gwDh ¼ gbH � gwDh

(6.41)

Thus, for the case of upward seepage, the effective stress at the bottom
of the sample is decreased by the amount gwDh.

At point c:
The vertical total stress is again unchanged from the case with no

seepage, i.e.,

sv ¼ gwd þ gsatðH � f Þ (6.42)

The vertical effective stress is

s0v ¼ gwd þ gsatðH � f Þ �gw

�
H � f þ d þ DhðH � f Þ

H

�
¼ ðgsat � gwÞðH � f Þ �gw

�
DhðH � f Þ

H

�
¼ gbðH � f Þ �gw i ðH � f Þ

(6.43)

where i is again the hydraulic gradient.

FIGURE 6.12 Saturated soil sample with upward seepage.
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To make sense of the aforesaid expression for vertical effective stress,
let f ¼ H/2. Then,

s0v ¼ gb

H

2
� gw

Dh

2
(6.44)

If f ¼ 0, Eq. (6.44) reduces to that determined earlier for point b. If
f ¼ H, the effective stress is zero, which is correct for point a.

6.9 SEEPAGE FORCES

Figure 6.13 shows the water pressures acting on the saturated soil sample with
upward seepage (recall Figure 6.12). The water pressure acting at point a is
equal to the product of the pressure head at this point and the unit weight of
water, i.e., gwd. Similarly, the water pressure acting at the bottom of the
sample (point b) is equal to gw(H þ d þ Dh). Figure 6.13A shows both of
these pressures; since they act at the sample boundaries, they are sometimes
referred to as the boundary water pressures.9

Figure 6.13B shows the water pressures that would exist under hydrostatic
conditions, i.e., if there was no flow. The pressure acting at point a is again
gwd. At point b it is equal to gw(H þ d). These values are sometimes referred
to as the buoyancy water pressures.

The difference between the boundary water pressures and the hydrostatic
pressures is equal to the seepage pressure gwDh that is shown in Figure 6.13C.

FIGURE 6.13 Water pressure acting on soil sample with upward seepage. (A) Boundary water

pressures, (B) hydrostatic water pressures, and (C) pressure associated with upward seepage.

9. Lambe, T.W., Whitman, R.V., 1979. Soil Mechanics, SI Version. John Wiley and Sons, New

York, NY.
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The upwardly flowing pore fluid exerts the seepage pressure; it is uniformly
and completely dissipated in the course of upward flow through the soil.

To obtain the seepage force, the seepage stress must be multiplied by the
cross-sectional area (A) of the sample, giving

Fseepage ¼ gwDhA (6.45)

A convenient way in which to express the seepage force is the force per
unit of volume;

j ¼ Fseepage

V
¼ DhAgw

AH
¼ igw (6.46)

where i ¼ Dh/L is again the hydraulic gradient.

6.10 CRITICAL HYDRAULIC GRADIENT FOR UPWARD
SEEPAGE

If a cohesionless soil is subjected to a pore fluid flow condition that results in
zero (or near zero) effective stress, the strength of the soil goes to zero. This is
often referred to as a “quick” condition.10 Under such conditions, the seepage
forces overcome the gravitational forces and the pore pressure equals the total
stress. The excess pore pressure then forces the overlying soil mass to rise and
heave. In cohesionless soils, the soil bubbles in a “boil”; since the soil has no
strength, it often washes out.

There are two common situations in which the pore pressure equals the
total stress, namely as follows:

1. In the case of upward seepage (Figure 6.12), where the seepage force
equals the submerged weight of the soil.

2. When a sudden loading is applied to a loose saturated soil; this causes a
volume decrease in the soil and results in the effective stress being
transferred to the pore pressure.

The hydraulic gradient associated with a “quick” condition near an unre-
stricted soil surface is called the critical gradient (ic). For the case of upward
seepage, the vertical effective stress at the bottom of the sample (i.e., at point b
in Figure 6.12) is

s0v ¼ gbH � gwDh (6.47)

where gb is the buoyant unit weight. Setting s0v ¼ 0 gives Dh ¼ gb/gwH. The
critical hydraulic gradient is thus

10. Since cohesive soils can have shear strength even at zero effective stress, they do not neces-

sarily exhibit “quick” conditions.
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ic ¼ Dh

H
¼ gb

gw

(6.48)

Since gb ¼ gsat � gw,

ic ¼ gsat � gw

gw

¼ gsat

gw

� 1 (6.49)

From Case 1.8 in Chapter 1,

gsat ¼
gwðGs þ eÞ

1þ e
(6.50)

Thus,

ic ¼ Gs þ e

1þ e
� 1 ¼ Gs � 1

1þ e
(6.51)

6.11 ONE-DIMENSIONAL SEEPAGE THROUGH
ANISOTROPIC SOIL STRATA

Due to their mode of deposition, natural soils are often nonhomogeneous.
Consequently, they possess a permeability anisotropy, i.e., they have different
permeabilities in different coordinate directions.

6.11.1 Equivalent Horizontal Permeability

Figure 6.14 shows a hypothetical nonhomogeneous soil stratum of thickness H
that consists of n layers. The direction of flow is assumed to be parallel to the
global x-axis, i.e., in the horizontal direction.

k
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H
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H
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k nH
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of flow
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z

FIGURE 6.14 Schematic illustration of nonhomogeneous layered soil stratum: flow in horizontal

direction.
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The head loss along each layer will be the same, i.e.,

i1 ¼ i2 ¼ / ¼ inhi (6.52)

Let Qx be the total discharge in the horizontal direction. From the conti-
nuity of flow equation,

Qx ¼
Xn
j¼1

Qxj ¼
Xn
j¼1

kxjijAj (6.53)

where kxj is the permeability in the horizontal (x) direction for layer j, and Aj is
the cross-sectional area of the layer j. Assuming a unit width into the page
gives Aj ¼ (1)Hj.

Thus,

Qx ¼ ekxiH ¼
Xn
j¼1

kxjijHj (6.54)

where ekx is the equivalent horizontal permeability. Since the head loss along
each layer is the same,

ekx ¼ 1

H

Xn
j¼1

kxjHj ¼
Pn

j¼1 kxjHjPn
j¼1 Hj

(6.55)

6.11.2 Equivalent Vertical Permeability

Next assume the direction of flow to parallel to the global z-axis, i.e., in the
vertical direction (Figure 6.15).

From the continuity of flow equation, the discharge across each layer must
be the same, i.e.,

Qz ¼ Qz1 ¼ Qz2 ¼ / ¼ Qzn (6.56)

Since the cross-sectional area for flow is the same for all the layers, the
aforesaid expression is rewritten as follows:

vzA ¼ vz1A ¼ vz2A ¼ / ¼ vznA 0 vz ¼ vz1 ¼ vz2 ¼ / ¼ vzn (6.57)

Using Darcy’s law,

vz ¼ ekzi ¼ ekz1i1 ¼ ekz2i2 ¼ / ¼ ekznin (6.58)

where ekz is the equivalent vertical permeability and i ¼ Dh/H is the total
hydraulic gradient. The total head loss (Dh) across the stratum in the vertical
(z) direction will be the sum of the losses for each layer, i.e.,

Dh1 þ Dh2 þ/þ Dhn ¼ Dh (6.59)
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Thus,

vz ¼ ekzi ¼ ekz�Dh
H

�
¼
ekz
H

Xn
j¼1

Dhj 0 ekz ¼ vzHPn
j¼1 Dhj

(6.60)

But

vzj ¼ kzjij ¼ kzj

�
Dhj
Hj

�
0 Dhj ¼

vzjHj

kzj
(6.61)

Since vz ¼ vz1, it follows that

ekz ¼ vzH Pn
j¼1 Dhj

! ¼ vzH Pn
j¼1

vzjHj

kzj

1A ¼ H Pn
j¼1

Hj

kzj

1A (6.62)

or

ekz ¼ Pn
j¼1 Hj Pn
j¼1

Hj

kzj

1A (6.63)
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FIGURE 6.15 Schematic illustration of nonhomogeneous layered soil stratum: flow in vertical

direction.
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EXAMPLE PROBLEM 6.1

General Remarks

This example problem illustrates themanner inwhich the elevation head, pressure
head, and total head are determined for the case of one-dimensional steady-state
flow. In this problem the flow is directed toward decreasing elevation head.

Problem Statement

The soil shown in Figure Ex. 6.1A is supported on a porous stone and disk.
Determine the elevation head, pressure head, and total head at points a, b, and c.

Solution

At point a:
Elevation head, za ¼ 0.60 þ 0.80 þ 1.60 ¼ 3.00 m
Pressure head, pa/gw ¼ 1.20 m
Total head, ha ¼ 3.00 þ 1.20 ¼ 4.20 m.

At point c:
Elevation head, zc ¼ 0.60 m
Pressure head, pc/gw ¼ L0.60 m
Total head, hc ¼ 0.60 þ (�0.60) ¼ 0.0 m.

At point b:
Elevation head, zb ¼ 0.60 þ 0.80 ¼ 1.40 m.

FIGURE EX. 6.1A Hypothetical apparatus for one-dimensional vertical flow (not to scale).
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The total head is computed from the total heads at points a and c. Since
the soil is homogeneous, the variation in total head along the soil is linear.
As such, the total head at point b is thus

ha � hb
ha � hc

¼ 1:60 m

1:60 mþ 0:80 m
0 hb ¼ ha �

�
1:60 m

2:40 m

�
ðha � hcÞ (6.1.1)

Substituting the known total heads gives

hb ¼ 4:20 m�
�
2

3

�
ð4:20� 0Þ ¼ 1.40 m (6.1.2)

The pressure head is thus equal to the difference between the total and
elevation head, i.e.,

Pressure head, pb/gw ¼ hb � zb ¼ 1.40 � 1.40 ¼ 0.0 m.
The total head loss (Dh) across the sample is thus ha � hc ¼

4.20 � 0.0 ¼ 4.20 m, which is consistent with Figure Ex. 6.1A.
Figure Ex. 6.1B graphically represents the variation of the elevation,

pressure, and total heads with elevation above the datum.

Alternate Solution

To illustrate that the location of the datum is indeed arbitrary, the solution is
repeated with the datum placed at point a.
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FIGURE EX. 6.1B Variation of elevation, pressure, and total head with elevation.
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At point a:
Elevation head, za ¼ 0.00 m
Pressure head, pa/gw ¼ 1.20 m
Total head, ha ¼ 0.00 þ 1.20 ¼ 1.20 m.

At point c:
Elevation head, zc ¼ �1.60 � 0.80 ¼ �2.40 m
Pressure head, pc/gw ¼ �0.60 m
Total head, hc ¼ �2.40 þ (�0.60) ¼ �3.00 m.

At point b:
Elevation head, zb ¼ �1.60 m
The total head is again computed by linearly interpolating between the

total heads at points a and c, i.e.,

hb ¼ ha �
�
1:60 m

2:40 m

�
ðha � hcÞ ¼ 1:20 m�

�
1:60 m

2:40 m

�
ð1:20�ð�3:00ÞÞ

¼ �1.60 m

(6.1.3)

Thus, the pressure head, pb/gw ¼ hb � zb ¼ �1.60 � (�1.60) ¼ 0.0 m.
Thus, changing the location of the datum affects the elevation and total

heads. The pressure head, however, is unaffected.
The total head loss (Dh) across the sample is thus ha � hc ¼

1.20 � (3.00) ¼ 4.20 m, which agrees with the earlier result.

EXAMPLE PROBLEM 6.2

General Remarks

This example problem illustrates themanner inwhich the elevation head, pressure
head, and total head are determined for the case of one-dimensional steady-state
flow. In this problem the flow is directed toward increasing elevation head.

Problem Statement

The soil shown in Figure Ex. 6.2A is supported on a porous stone and disk.
Determine the elevation head, pressure head, and total head at points a, b, and c.

Solution

At point a:
Elevation head, za ¼ 0.60 þ 0.80 þ 1.60 ¼ 3.00 m
Pressure head, pa/gw ¼ 1.20 m
Total head, ha ¼ 3.00 þ 1.20 ¼ 4.20 m.

At point c:
Elevation head, zc ¼ 0.60 m
Pressure head, pc/gw ¼ 0.80 þ 1.60 þ 1.20 þ 0.80 ¼ 4.40 m
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Total head, hc ¼ 0.60 þ 4.40 ¼ 5.00 m.
At point b:

Elevation head, zb ¼ 0.60 þ 0.80 ¼ 1.40 m.
The total head is computed from the total heads at points a and c. Since

the soil is homogeneous, the variation in total head along the soil is linear.
As such, the total head at point b is thus

hc � hb
hc � ha

¼ 0:80 m

1:60 mþ 0:80 m
0 hb ¼ hc �

�
0:80 m

2:40 m

�
ðhc � haÞ (6.2.1)

Substituting the known total heads gives

hb ¼ 5:00 m�
�
1

3

�
ð5:00� 4:20Þ ¼ 6.40 m (6.2.2)

The pressure head is thus equal to the difference between the total
and & elevation head, i.e., pressure head, pb/gw ¼ hb � zb ¼
6.40 � 1.40 ¼ 5.00 m.

The total head loss (Dh) across the sample is thus hc � ha ¼
5.00 � 4.20 ¼ 0.80 m, which is consistent with Figure Ex. 6.2A.

Figure Ex. 6.2B graphically represents the variation of the elevation,
pressure, and total heads with elevation above the datum.

FIGURE EX. 6.2A Hypothetical apparatus for one-dimensional vertical flow (not to scale).
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EXAMPLE PROBLEM 6.3

General Remarks

This example problem illustrates the manner in which the average or super-
ficial velocity and seepage velocity are computed for the case of one-
dimensional steady-state flow at constant elevation head. The case of a
nonhomogeneous soil sample is also addressed.

Problem Statement

Aclean sand having a permeability of 0.055 cm/s and a void ratio of 0.62 is placed
in a horizontal flow apparatus such as that shown in Figure Ex. 6.3A. Compute a)
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FIGURE EX. 6.2B Variation of elevation, pressure, and total head with elevation.
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FIGURE EX. 6.3A Hypothetical horizontal flow apparatus with a single soil.

Example Problems Involving One-Dimensional Fluid Flow Chapter j 6 269



the superficial velocity (v), b) the seepage velocity (vs) when the change in head
(Dh) equals 100 cm, and c) the discharge Q. The cross-sectional area of the hor-
izontal pipe is 100 cm2 and the length (L) of the soil sample is 0.50 m.

Solution

a) The hydraulic gradient for the problem is

i ¼ Dh

L
¼ 100 cm

0:50 m

� m

100 cm

	
¼ 2.0 (6.3.1)

The superficial velocity is then

v ¼ ki ¼ ð0:055 cm=sÞð2:0Þ ¼ 0.11 cm=s (6.3.2)

b) The seepage velocity is next computed with the porosity (n) replaced by
the void ratio (e), i.e.,

vs ¼ v

n
¼
�
1þ e

e

�
v ¼

�
1þ 0:62

0:62

�
ð0:11 cm=sÞ ¼ 0.29 cm=s (6.3.3)

c) Finally, the discharge is

Q ¼ vA ¼ ð0:11 cm=sÞ
100 cm2
� ¼ 11.0 cm3=s (6.3.4)

Next assume that the sample consists of two different soils, arranged in
series in the manner shown in Figure Ex. 6.3B. The permeability co-
efficients for soils 1 and 2 are denoted by k1 and k2, respectively.

The head loss Dh and thus the hydraulic gradient i are assumed to be
unchanged from the values used earlier. From Darcy’s law,

v1 ¼ k1i1 ¼ k1

�
Dh1
L1

�
; v2 ¼ k2i2 ¼ k2

�
Dh2
L2

�
(6.3.5)

FIGURE EX. 6.3B Two soils arranged in series with the horizontal flow apparatus.
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The discharge through the two materials is then

Q1 ¼ k1i1A1 ¼ k1

�
Dh1
L1

�
A1; Q2 ¼ k2i2A2 ¼ k2

�
Dh2
L2

�
A2 (6.3.6)

From the continuity of flow equation, Q1 ¼ Q2. In addition, since
A1 ¼ A2 ¼ A, it follows that

k1

�
Dh1
L1

�
¼ k2

�
Dh2
L2

�
(6.3.7)

In addition, the head losses across the two soils must add up to the total
head loss, i.e.,

Dh1 þ Dh2 ¼ Dh (6.3.8)

Substituting for Dh1 ¼ Dh � Dh2 into the continuity of flow equation and
solving for Dh2 gives

Dh2 ¼
�

k1L2
k1L2 þ k2L1

�
Dh (6.3.9)

Then,

Dh1 ¼ Dh�Dh2 ¼
�
1� k1L2

k1L2 þ k2L1

�
Dh ¼

�
k2L1

k1L2 þ k2L

�
Dh (6.3.10)

The discharge in each of the two soils is thus

Q1 ¼ k1

�
Dh1
L1

�
A1 ¼ k1

�
1

L1

��
k2L1

k1L2 þ k2L1

�
DhA ¼

�
k1k2

k1L2 þ k2L1

�
DhA

(6.3.11)

Similarly,

Q2 ¼ k2

�
Dh2
L2

�
A2 ¼ k2

�
1

L2

��
k1L2

k1L2 þ k2L1

�
DhA ¼

�
k1k2

k1L2 þ k2L1

�
DhA ¼ Q1

(6.3.12)

which verifies that the continuity of flow equation has indeed been satisfied.

EXAMPLE PROBLEM 6.4

General Remarks

This example problem illustrates the manner in which the superficial velocity
is determined for the case of one-dimensional steady-state flow in an inclined
aquifer.
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Problem Statement

Consider the saturated, confined aquifer shown in Figure Ex. 6.4. The aquifer
has a permeability of 0.022 cm/s. The total head loss across the aquifer is
4.2 m. If H ¼ 3.5 m, L ¼ 75.0 m, and the aquifer makes an angle
b ¼ 12.0 degrees with respect to the horizontal. Determine the flow rate (at
right angles to the cross section) in m3/h per meter (into the page).

Solution

Using Darcy’s law in conjunction with the continuity of flow, the flow rate is
written as follows:Q ¼ kiA. The determinationof the hydraulic gradient is slightly
complicated by the fact that the aquifer is inclined. In particular, the length in the
(inclined) direction of flow is equal to L/cos b. The hydraulic gradient is thus

i ¼ Dh

ðL=cos bÞ ¼
Dh

L
cos b (6.4.1)

The cross-sectional area for flow through the aquifer (for a unit thickness
directed into the page) is

A ¼ H cos bð1Þ (6.4.2)

The discharge is thus

Q ¼ kiA ¼ k

�
Dh

L
cos b

�
ðH cos bÞ ¼ k

�
Dh

L

�
H cos2 b (6.4.3)

FIGURE EX. 6.4 Schematic Illustration of an inclined aquifer.
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Substituting the given values of k ¼ 0.022 cm/s ¼ 2.20 � 10�4 m/s,
Dh ¼ 4.2 m, along with L ¼ 75 m, H ¼ 3.5 m, and b ¼ 12 degrees gives

Q ¼ 
2:20� 10�4 m=s
��4:2 m

75 m

�
ð3:5 mÞðcos 12�Þ2 ¼ 4:126� 10�5 m3=s=m

(6.4.4)

Converting to the desired gives

Q ¼ 
4:126� 10�5 m3=s=m
��60 s

min

��
60 min

h

�
¼ 0.149 m3=h=m (6.4.5)

EXAMPLE PROBLEM 6.5

General Remarks

This example problem illustrates the manner in which the elevation head,
pressure head, and total head are determined for the case of one-dimensional
steady-state flow.

Problem Statement

Consider the soil profile shown in Figure Ex. 6.5. Each soil layer is homogeneous.
The groundwater table is at the ground surface. Piezometers a, b, and c are

FIGURE EX. 6.5 Soil profile with three piezometers (not to scaledall distances in units of

meters).
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installed at interfaces between layers as shown in Figure Ex. 6.5. The measured
elevation of fluid in each piezometer, relative to its tip, is also shown.All distances
are units of meters. The datum is located at the elevation of point c.

The saturated unit weight for the upper sand layer, the soft clay, and the
stiff clay are 20.5, 16.8, and 18.5 kN/m3, respectively.

a) First determine the elevation head, pressure head, and total head at points
a, b, and c.

b) Next determine the vertical total stress, pore fluid pressure, and vertical
effective stress at points a, b, and c.

c) Next determine the ratio between the coefficient of permeability for the
soft clay and the stiff clay, i.e., ksoft/kstiff.

d) Finally, assume that the location of the groundwater table drops to the
elevation of point a. Assume that all the unit weights remain unchanged
and neglect capillary rise in the upper sand layer. The height of water in
piezometer a drops to zero, and that in piezometer c remains at 18 m. The
reading of piezometer b is deemed unreliable. Determine the vertical total
stress, pore fluid pressure, and vertical effective stress at points a, b, and c
for the new location of the groundwater table.

Solution

a) At point a:
Elevation head, za ¼ 3.0 þ 5.0 ¼ 8.0 m
Pressure head, pa/gw ¼ 5.0 m
Total head, ha ¼ 8.0 þ 5.0 ¼ 13.0 m.

At point b:
Elevation head, zb ¼ 3.0 m
Pressure head, pb/gw ¼ 12.0 m
Total head, hb ¼ 3.0 þ 12.0 ¼ 15.0 m.

At point c:
Elevation head, zc ¼ 0.0 m
Pressure head, pc/gw ¼ 18.0 m
Total head, hc ¼ 0.0 þ 18.0 ¼ 18.0 m.

b) At point a:
The vertical total stress is

sva ¼


20:5 kN=m3�ð5:0 mÞ ¼ 102.5 kPa (6.5.1)

The pore fluid pressure is

pa
gw

¼ 5:0 m0 pa ¼


9:81 kN=m3�ð5:0 mÞ ¼ 49.1 kPa (6.5.2)
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The vertical effective stress is

s0va ¼ sva � pa ¼ 102:5� 49:1 ¼ 53.4 kPa (6.5.3)

At point b:
The vertical total stress is

svb ¼ 102:5 kPaþ 
16:8 kN=m3�ð5:0 mÞ ¼ 186.5 kPa (6.5.4)

The pore fluid pressure is

pb
gw

¼ 12:0 m0 pb ¼


9:81 kN=m3�ð12:0 mÞ ¼ 117.7 kPa (6.5.5)

The vertical effective stress is

s0vb ¼ svb � pb ¼ 186:5 � 117:7 ¼ 68.8 kPa (6.5.6)

At point c:
The vertical total stress is

svc ¼ 186:5 kPaþ 
18:5 kN=m3�ð3:0 mÞ ¼ 242.0 kPa (6.5.7)

The pore fluid pressure is

pc
gw

¼ 18:0 m0 pc ¼


9:81 kN=m3�ð18:0 mÞ ¼ 176.6 kPa (6.5.8)

The vertical effective stress is

s0vc ¼ svc � pc ¼ 242:0� 176:6 ¼ 65.4 kPa (6.5.9)

c) The elevation of pore fluid in the piezometers indicates an upward flow.
From the continuity of flow equation, Qsoft ¼ Qstiff, where

Qsoft ¼ ksoftisoftAsoft (6.5.10)

Qstiff ¼ kstiff istiff Astiff (6.5.11)

with Asoft ¼ Astiff. Thus,

ksoftisoft ¼ kstiff istiff 0
ksoft
kstiff

¼ istiff
isoft

(6.5.12)

Computing the necessary hydraulic gradients gives the desired result

ksoft
kstiff

¼ istiff
isoft

¼
ð18:0 m� 15:0 mÞ

3:0 m
ð15:0 m� 13:0 mÞ

5:0 m

¼ 5

2
(6.5.13)
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d) At point a:
Elevation head, za ¼ 3.0 þ 5.0 ¼ 8.0 m
Pressure head, pa/gw ¼ 0.0 m
Total head, ha ¼ 8.0 þ 0.0 ¼ 8.0 m.

At point b:
Elevation head, zb ¼ 3.0 m.
Since the reading of piezometer b was deemed unreliable, it is not
possible to directly determine the pressure head. As such, for now,
pb/gw ¼ ?
Total head, hb ¼ 3.0 þ pb/gw.

At point c:
Elevation head, zc ¼ 0.0 m
Pressure head, pc/gw ¼ 18.0 m
Total head, hc ¼ 0.0 þ 18.0 ¼ 18.0 m.
Since the permeability of the two clay layers is unchanged, the pressure

head at point b is computed using the results of part c. Since the flow is still
upward, hc > hb > ha. The hydraulic gradients associated with the soft and
stiff clay layers are thus

isoft ¼ hb � ha
5:0 m

¼

�
3:0þ pb

gw

�
� 8:0

5:0
¼

pb
gw

� 5:0

5:0
(6.5.14)

istiff ¼ hc � hb
3:0 m

¼
18:0�

�
3:0þ pb

gw

�
3:0

¼
15:0� pb

gw

3:0
(6.5.15)

Substituting these hydraulic gradients into Eq. (6.5.13) gives

istiff
isoft

¼ 5

2
¼

�
15:0� pb

gw

��
3:0�

pb
gw

� 5:0

��
5:0

0

15:0� pb
gw

pb
gw

� 5:0
¼ 3

2
(6.5.16)

Solving for the pressure at b head gives

pb
gw

¼ 9:0 m (6.5.17)

The total head at point b is thus

hb ¼ zb þ pb
gw

¼ 3:0þ 9:0 ¼ 12.0 m (6.5.18)

The vertical total and effective stresses and the pore pressure are next
computed. Since the unit weights have not changed, the total stresses are
unchanged from part b.
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At point a:
The vertical total stress is

sva ¼ 102.5 kPa (6.5.19)

The pore fluid pressure is
pa
gw

¼ 0:0 m0 pa ¼ 0.0 kPa (6.5.20)

The vertical effective stress is

s0va ¼ sva � pa ¼ 102:5� 0:0 ¼ 102.5 kPa (6.5.21)

At point b:
The vertical total stress is

svb ¼ 186.5 kPa (6.5.22)

The pore fluid pressure is

pb
gw

¼ 9:0 m0 pb ¼


9:81 kN=m3�ð9:0 mÞ ¼ 88.3 kPa (6.5.23)

The vertical effective stress is

s0vb ¼ svb � pb ¼ 186:5� 88:3 ¼ 98.2 kPa (6.5.24)

At point c:
The vertical total stress is

svc ¼ 242.0 kPa (6.5.25)

The pore fluid pressure is

pc
gw

¼ 18:0 m0 pc ¼


9:81 kN=m3�ð18:0 mÞ ¼ 176.6 kPa (6.5.26)

The vertical effective stress is

s0vc ¼ svc � pc ¼ 242:0� 176:6 ¼ 65.4 kPa (6.5.27)

EXAMPLE PROBLEM 6.6

General Remarks

This example problem illustrates the manner in which the elevation head,
pressure head, and total head are determined for the case of one-dimensional
steady-state flow.

Problem Statement

a) Determine the pressure, elevation, and total head at points AeE for the
apparatus shown in Figure Ex. 6.6. b) If the coefficient of permeability for the
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soil is estimated to be k ¼ 0.05 cm/s, what is the average or discharge (Darcy)
velocity of flow through the soil (the soil is located between points B and D)?

Solution

a) Noting the assumed datum, the elevation head at a given point is first
determined. Then, recalling that the pressure head is the height that the
fluid will rise in a tube placed at the point in question, the pressure head at
a given point is determined. Finally, the total head is the sum of the
elevation head and pressure head. Following this solution strategy gives the
following results:
At point A:

Elevation head ¼ 1.5 þ 5.0 þ 2.0 ¼ 8.5 cm
Pressure head ¼ 5.0 þ 5.0 ¼ 10.0 cm
Total head ¼ 8.5 þ 10.0 ¼ 18.5 cm.

At point B:
Elevation head ¼ 1.5 þ 5.0 ¼ 6.5 cm
Pressure head ¼ 2.0 þ 5.0 þ 5.0 ¼ 12.0 cm
Total head ¼ 6.5 þ 12.0 ¼ 18.5 cm.

At point D:
Elevation head ¼ 1.5 cm
Pressure head ¼ 5.0 þ 2.0 þ 5.0 þ 5.0 � 5.0 ¼ 12.0 cm
Total head ¼ 1.5 þ 12.0 ¼ 13.5 cm.

FIGURE EX. 6.6 Schematic illustration of flow apparatus.
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At point C:
Elevation head ¼ 1.5 þ 2.5 ¼ 4.0 cm
Total head ¼ (18.5 þ 13.5)/2 ¼ 16.0 cm
Pressure head ¼ 16.0 � 4.0 ¼ 12.0 cm.

At point E:
Elevation head ¼ 0.0 cm
Pressure head ¼ 12.0 þ 1.5 ¼ 13.5 cm
Total head ¼ 0.0 þ 13.5 ¼ 13.5 cm.
Notes:

l Since point C is equidistant between points B and D, the total head at point
C is computed as the average of the total heads at B and D.

l The pressure head at point C is then computed as the difference between
the total head and elevation head at this point.

b) To determine the superficial velocity of flow through the soil requires the
hydraulic gradient. To this end, the inclination of the apparatus shown in
Figure Ex. 6.6, quantified by the angle a, is first computed

a ¼ tan�1

�
1

2

�
¼ 26:6 degrees (6.6.1)

The length of the flow is thus

L ¼ 5 cm

sin a
(6.6.2)

The hydraulic gradient is thus

i ¼ Dh

L
¼ 5 cm

5 cm=sin a
sin a ¼ 0:447 (6.6.3)

Finally, the superficial velocity of flow through the soil is simply

v ¼ ki ¼ ð0:05 cm=sÞð0:447Þ ¼ 2.236310�2 cm=s (6.6.4)

EXAMPLE PROBLEM 6.7

General Remarks

This example problem illustrates the manner in which the elevation head,
pressure head, and total head are determined for the case of one-dimensional
steady-state flow. In addition, it shows how the average or superficial and
seepage velocities are computed.

Problem Statement

A fully saturated soil sample is maintained between points a and b in the
inclined tube shown in Figure Ex. 6.7A. In the vicinity of the soil sample, the
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tube has a uniform cross-sectional area (A). Given that L1 ¼ 2L2, please do the
following:

a) Determine the elevation head (z), pressure head, total head (h) (in centi-
meters), and pore pressure (in kPa) at points a, b, and c.

b) The soil sample has permeability of 0.001 cm/s, a specific gravity of solids
(Gs) of 2.68, and a moisture content (w) of 42%. Determine the discharge
(Darcy) velocity v and the seepage velocity vs (both in units of cm/s).

c) The soil between points a and c now has a permeability kac; the soil be-
tween points c and b now has a permeability kcb, where kac ¼ mkcb, with
ms 0. If m s 1, the total head loss over the full length of the soil sample
will no longer be linear. Recalling that the fluid is incompressible and that
the discharge Q must thus remain unchanged from a to b, determine
the head loss Dhac and Dhcb across each of the two soils. Express the
answers in terms of m and the total head loss (Dh) across the entire soil
sample (ab).

FIGURE EX. 6.7A One-dimensional flow example involving an inclined tube.
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Solution

a) The datum is located as shown in Figure Ex. 6.7A.
At point a:

Elevation head, za ¼ 1.5 þ 2.5 ¼ 4.0 cm
Pressure head, pa/gw ¼ 4.0 þ 4.5 þ 2.5 ¼ 11.0 cm
Total head, ha ¼ 4.0 þ 11.0 ¼ 15.0 cm.
The pore pressure at this point is thus

pa ¼ gwð11:0 cmÞ
� m

100 cm

	
¼ 
9:81 kN=m3�ð11:0 mÞ

� m

100 cm

	
¼ 1.079 kPa

(6.7.1)

At point b:
Elevation head, zb ¼ 1.5 þ 2.5 þ 4.0 ¼ 8.0 cm
Pressure head, pb/gw ¼ 4.5 cm
Total head, hb ¼ 8.0 þ 4.5 ¼ 12.5 cm.
The pore pressure at this point is thus

pb ¼ gwð4:5 cmÞ
� m

100 cm

	
¼ 
9:81 kN=m3�ð4:5 mÞ

� m

100 cm

	
¼ 0.441 kPa

(6.7.2)

At point c:
Figure Ex. 6.7B shows the geometry of the inclined tube between

points a and b. Since the vertical distance between these two points is
4.0 cm, and since the tube is inclined two vertical on three horizontal, it
follows that e ¼ 6.0 cm. Since L1 ¼ 2L2, the vertical distance to point c

FIGURE EX. 6.7B Geometry associated with a portion of the inclined tube.

Example Problems Involving One-Dimensional Fluid Flow Chapter j 6 281



from the datum is d ¼ 2(4.0 cm)/3 ¼ 8/3 cm. The elevation head at point c
is thus

zc ¼ 4:0þ 8

3
¼ 20

3
cm (6.7.3)

Since the soil is homogeneous, the total head will vary linearly from
point a to point b. Using the values of ha and hb determined earlier, the total
head at point c is thus

hc ¼ ha �2

3
ðha � hbÞ ¼ 15:0�2

3
ð15:0� 12:5Þ ¼ 40

3
[ 13.33 cm (6.7.4)

The pressure head is next computed

pc
gw

¼ hc � zc ¼ 40

3
� 20

3
¼ 20

3
cm (6.7.5)

The pore pressure at this point is thus

pc ¼ gw

�
20

3
cm

�� m

100 cm

	
¼ 
9:81 kN=m3��20

3
cm

�� m

100 cm

	
¼ 0.65 kPa

(6.7.6)

b) The head loss across the soil sample is Dh ¼ ha � hb ¼
15.0 � 12.5 ¼ 2.5 cm. To determine the hydraulic gradient, the length
(L ¼ L1 þ L2) along the direction of flow must be determined. This length
is computed using the Pythagorean theorem applied to the right triangle
shown in Figure Ex. 6.7B, i.e.,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4:0 cmÞ2 þ ð6:0 cmÞ2

q
¼ 7:211 cm (6.7.7)

The hydraulic gradient is thus

i ¼ Dh

L
¼ 2:5 cm

7:211 cm
¼ 0:347 (6.7.8)

The discharge velocity is next computed using Darcy’s law

v ¼ ki ¼ ð0:001 cm=sÞð0:347Þ ¼ 3.467 3 10L4 cm=s (6.7.9)

Since the soil is saturated and Gs ¼ 2.68 and w ¼ 42%, the void ratio in
the sample is computed using Case 1.3 of Chapter 1, i.e.,

e ¼ wGs ¼ ð0:42Þð2:68Þ ¼ 1:126 (6.7.10)

The porosity is thus

n ¼ e

1þ e
¼ 1:126

1þ 1:126
¼ 0:530 (6.7.11)
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The seepage velocity is then

vs ¼ v

n
¼ 3:467� 10�4 cm=s

0:530
¼ 6.541310L4 cm=s (6.7.12)

c) For an incompressible fluid, the continuity of flow equation gives

Qac ¼ vacA ¼ Qcb ¼ vcbA 0 vac ¼ vcb (6.7.13)

From Darcy’s law

kaciac ¼ kcbicb 0 kac

�
Dhac
L1

�
¼ kcb

�
Dhcb
L2

�
(6.7.14)

where Dhac þ Dhcb ¼ Dh. Substituting for Dhac into the aforesaid
expression gives

kac

�
Dh� Dhcb

L1

�
¼ kcb

�
Dhcb
L2

�
0 Dhcb ¼ kacL2Dh

kacL2 þ kcbL1
(6.7.15)

But kac ¼ mkcb, so

Dhcb ¼ ðm kcbÞL2Dh
ðm kcbÞL2 þ kcbL1

¼
�

mL2
mL2 þ L1

�
Dh (6.7.16)

Next, since L1 ¼ 2L2, the aforesaid expression becomes

Dhcb ¼
�

mL2
mL2 þ 2L2

�
Dh ¼

� m

mþ 2

	
Dh (6.7.17)

Finally,

Dhac ¼ Dh�Dhcb ¼
�
1�
� m

mþ 2

	�
Dh ¼

�
2

mþ 2

�
Dh (6.7.18)

As a check, let m ¼ 1, which implies a homogeneous material with a
constant permeability. Then,

Dhac ¼
�

2

1þ 2

�
Dh ¼ 2

3
Dh (6.7.19)

Dhcb ¼
�

1

1þ 2

�
Dh ¼ 1

3
Dh (6.7.20)

which is consistent with the fact that for a homogeneous soil the head loss
varies linearly.
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EXAMPLE PROBLEM 6.8

General Remarks

This example problem investigates the effect of a sand seam on the flow of
pore fluid in a soil profile.

Problem Statement

Consider the soil profile shown in Figure Ex. 6.8. The moist unit weight of the
top sand layer is 20.0 kN/m3. Capillary rise is present above the groundwater
table. The saturated unit weight of clay 1 and clay 2 is 17.8 and 18.5 kN/m3,
respectively. Between these two clay layers is a sand seam of negligible
thickness. The tip of piezometer 1 is within this sand seam. The tip of
piezometer 2 is at the bottom of the clay 2 layer.

Determine the vertical total stress, the pore fluid pressure, and the vertical
effective stress at points A, B, C, D, E, and F.

Solution

The datum is placed a distance 12.0 m below the ground surface. Based on the
height of fluid in the two piezometers, it is evident that upward seepage is
taking place in clay 1, while in clay 2 the seepage is downward.

Sand

Ground surface

Clay 1

Sand seam

Clay 2

3.0 m

5.0 m

4.0 m

Sand

A

B

C

D

E

F

2.5 m

2.0 m

9.
5

m

7.
5

m

P
ie

zo
m

et
er

1

P
ie

zo
m

et
er

2

FIGURE EX. 6.8 One-dimensional flow example involving a sand seam (not to scale).
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At point A:
The vertical total stress is

svA ¼ 0.0 kPa (6.8.1)

The pore fluid pressure is

pA ¼ �gwð3:0 mÞ ¼ �
9:81 kN=m3�ð3:0 mÞ ¼ L29.43 kPa (6.8.2)

The vertical effective stress is thus

s0vA ¼ svA �pA ¼ 0:0�ð�29:43 kPaÞ ¼ 29.4 kPa (6.8.3)

At point B:
The elevation head, zB ¼ 9.0 m
The pressure head, pB/gw ¼ 0.0 m
The total head, hB ¼ 9.0 þ 0.0 ¼ 9.0 m.
The vertical total stress is

svB ¼


20:0 kN=m3�ð3:0 mÞ ¼ 60.0 kPa (6.8.4)

The pore fluid pressure is

pB ¼ 0.0 kPa (6.8.5)

The vertical effective stress is thus

s0vB ¼ svB � pB ¼ 60:0 � 0:0 ¼ 60.0 kPa (6.8.6)

At point D:
The elevation head, zD ¼ 4.0 m
The pressure head, pD/gw ¼ 7.5 m
The total head, hD ¼ 4.0 þ 7.5 ¼ 11.5 m.
The vertical total stress is

svD ¼ 60:0þ 
17:8 kN=m3�ð5:0 mÞ ¼ 149.0 kPa (6.8.7)

The pore fluid pressure is

pB ¼ gwð7:5 mÞ ¼ 
9:81 kN=m3�ð7:5 mÞ ¼ 73.6 kPa (6.8.8)

The vertical effective stress is thus

s0vD ¼ svD � pD ¼ 149:0� 73:6 ¼ 75.4 kPa (6.8.9)

As a check, note that in the absence of upward seepage, the hydrostatic
pore pressure at point D would be gw(5.0 m) ¼ 49.1 kPa; the vertical
effective stress would thus be equal to 149.0 � 49.1 ¼ 99.9 kPa. Recalling
the discussion of Section 6.8.3, in the presence of upward seepage, the
hydrostatic effective stress is reduced by the amount gwDh ¼ (9.81 kN/m3)
(11.5 � 9.0 m) ¼ 24.5 kPa. Thus, 99.9 � 24.5 ¼ 75.4 kPa, which is iden-
tical to the aforesaid value for s0vD.
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At point C:
The elevation head, zC ¼ 4.0 þ 2.5 ¼ 6.5 m.
Since the material is homogeneous, the total head at point C is linearly

interpolated from hB and hD, i.e.,

hC ¼ hD �1

2
ðhB � hDÞ ¼ 1

2
ðhB þ hDÞ ¼ 1

2
ð11:5þ 9:0Þ ¼ 10:25 m (6.8.10)

The pressure head is thus pC/gw ¼ hC � zC ¼ 10.25 � 6.5 ¼ 3.75 m.
The vertical total stress is

svC ¼ 60:0þ 
17:8 kN=m3�ð2:5 mÞ ¼ 104.5 kPa (6.8.11)

The pressure head is

pC ¼ gwð3:75 mÞ ¼ 
9:81 kN=m3�ð3:75 mÞ ¼ 36.8 kPa (6.8.12)

The vertical effective stress is thus

s0vC ¼ svC � pC ¼ 104:5� 36:8 ¼ 67.7 kPa (6.8.13)

At point F:
The elevation head, zF ¼ 0.0 m
The pressure head, pF/gw ¼ 9.5 m
The total head, hF ¼ 0.0 þ 9.5 ¼ 9.5 m.
The vertical total stress is

svF ¼ 149:0þ 
18:5 kN=m3�ð4:0 mÞ ¼ 223.0 kPa (6.8.14)

The pore fluid pressure is

pF ¼ gwð9:5 mÞ ¼ 
9:81 kN=m3�ð9:5 mÞ ¼ 93.2 kPa (6.8.15)

The vertical effective stress is thus

s0vF ¼ svF � pF ¼ 223:0 � 93:2 ¼ 129.8 kPa (6.8.16)

At point E:
The elevation head, zE ¼ 2.0 m.
Since the material is homogeneous, the total head at point E is linearly

interpolated from hD and hF, i.e.,

hE ¼ hD �1

2
ðhD � hFÞ ¼ 1

2
ðhD þ hFÞ ¼ 1

2
ð11:5þ 9:5Þ ¼ 10:50 m (6.8.17)

The pressure head is thus pE/gw ¼ hE � zE ¼ 10.50 � 2.0 ¼ 8.5 m.
The vertical total stress is

svE ¼ 149:0þ 
18:5 kN=m3�ð2:0 mÞ ¼ 186.0 kPa (6.8.18)
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The pressure head is

pE ¼ gwð8:5 mÞ ¼ 
9:81 m=s2
�ð8:5 mÞ ¼ 83.4 kPa (6.8.19)

The vertical effective stress is thus

s0vE ¼ svE � pE ¼ 186:0� 83:4 ¼ 102.6 kPa (6.8.20)

EXAMPLE PROBLEM 6.9

General Remarks

This example problem illustrates the manner in which the value of the coef-
ficient of permeability is determined from a constant-head permeability test.

Problem Statement

Consider the simple water filter system shown in Figure Ex. 6.9. It consists of
two soil filters, connected in series. Each filter traps different size contami-
nants and thus contains soil: the upper filter traps coarse particles; the lower

FIGURE EX. 6.9 Hypothetical two-level soil filter11.

11. Leshchinsky, D., 2010. Personal communication.
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one traps finer ones. The cross-sectional area of each filter is 1.2 m2. The
length of the upper filter (L1) is 1.0 m; the length of the lower filter (L2) is
2.0 m. The permeability of the upper filter (k1) is 0.40 m/h; the permeability of
the lower filter (k2) is 0.18 m/h. Determine the following:

a) The total head at points A, B, C, and D.

b) The water pressure at points A, B, C, and D.
c) The discharge through each filter (i.e., Q1 and Q2) in units of m3/h.
d) Is there potential for soil “heave” (boiling)? If so, where will this heave

occur?

Solution

a) Begin the solution by determining the elevation head, pressure head, and
then the total head at the four points in question.
At point A:

The elevation head, zA ¼ 6.0 m
The pressure head, pA/gw ¼ 2.0 m
The total head, hA ¼ 6.0 þ 2.0 ¼ 8.0 m.

At point D:
The elevation head, zed ¼ 2.0 m
The pressure head, pad/gw ¼ �2.0 m
The total head, hD ¼ 2.0 þ (�2.0) ¼ 0.0 m.

At point B:
The elevation head, zB ¼ 5.0 m
The pressure head, pub/gw ¼ ?

At point C:
The elevation head, zC ¼ 4.0 m
The pressure head, pC/gw ¼ ?
The determination of the pressure head at points B and C first of all

requires consideration of continuity of flow. In particular, since the two
filters are arranged “in series,” the discharge through both is the same, i.e.,
Q1 ¼ Q2. Using Darcy’s law,

k1i1A1 ¼ k2i2A2 (6.9.1)

where A1 ¼ A2. Thus,

k1i1 ¼ k2i2 0 k1

�
Dh1
L1

�
¼ k2

�
Dh2
L2

�
(6.9.2)

The head loss across each of the filters is determined from Figure Ex. 6.9,
giving

k1

�
hA � hB

L1

�
¼ k2

�
hC � hD

L2

�
(6.9.3)
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Since no soil is present between points B and C, there is no head loss
between these two points, i.e., hB ¼ hC. Thus,

k1

�
hA � hB

L1

�
¼ k2

�
hB � hD

L2

�
(6.9.4)

Solving for hB gives

hB ¼ k1hA
L1

1�
k2
L2

þ k1
L1

� (6.9.5)

Substituting all known quantities gives

hB ¼ ð0:40 m=hÞð8:0 mÞ
1:0 m

1

ð0:18 m=hÞ
2:0 m

þ ð0:40 m=hÞ
1:0 m

¼ 6.531 m ¼ hC

(6.9.6)

b) The water pressure at points AeD requires the pressure head.
At point A:

The pressure head is pA/gw ¼ 2.0 m, thus

pA ¼ gwð2:0 mÞ ¼ 
9:81 kN=m3�ð2:0 mÞ ¼ 19.62 kPa (6.9.7)

At point B:
The pressure head is

pB
gw

¼ hB � zB ¼ 6:531� 5:0 ¼ 1:531 m (6.9.8)

Thus,

pB ¼ gwð1:531 mÞ ¼ 
9:81 kN=m3�ð1:531 mÞ ¼ 15.02 kPa (6.9.9)

At point C:
The pressure head is

pC
gw

¼ hC � zC ¼ 6:531� 4:0 ¼ 2:531 m (6.9.10)

Thus

pC ¼ gwð2:531 mÞ ¼ 
9:81 kN=m3�ð2:531 mÞ ¼ 24.83 kPa (6.9.11)
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At point D:
The pressure head is pad/gw ¼ �2.0 m, thus

pD ¼ gwð�2:0 mÞ ¼ 
9:81 kN=m3�ð�2:0 mÞ ¼ �19.62 kPa (6.9.12)

c) The hydraulic gradients across filters 1 and 2 are

i1 ¼ hA � hB
L1

¼ 8:0� 6:531

1:0
¼ 1:469 (6.9.13)

i2 ¼ hC � hD
L1

¼ 6:531� 0:0

2:0
¼ 3:266 (6.9.14)

The discharge through the two filters is thus

Q1 ¼ k1i1A1 ¼ ð0:40 m=hÞð1:469Þ
1:2 m2
� ¼ 0.705 m3=h (6.9.15)

Q2 ¼ k2i2A2 ¼ ð0:18 m=hÞð3:266Þ
1:2 m2
� ¼ 0.705 m3=h (6.9.16)

which confirms the requirement that Q1 ¼ Q2.

d) Finally, since the seepage is directed downward, there is no potential for
heave (“boiling”).

EXAMPLE PROBLEM 6.10

General Remarks

This example problem illustrates the manner in which the value of the coef-
ficient of permeability is determined from a constant-head permeability test.

Problem Statement

In a constant-head permeability test, a sample of soil 14 cm long and 6 cm in
diameter discharged 1.65 � 10�3 m3 of water in 12 min. The head difference
in two piezometers located at 1 and 12 cm, respectively, from the bottom of the
sample is 2.4 cm. Determine the coefficient of permeability of the soil. What is
the soil type tested?

Solution

Since the total discharge volume is Q ¼ 1.65 � 10�3 m3, it follows that
Q ¼ vAt, where A is the cross-sectional area of the sample and t is the time
over which q was measured. Finally, the velocity v is given by Darcy’s law to
be v ¼ ki. Thus, using Eq. (6.21)

Q ¼ vAt ¼ ðkiÞt 0 k ¼ Q

Ait
(6.10.1)
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The hydraulic gradient across the sample is computed as follows:

i ¼ Dh

L
¼ 2:4 cm

ð12� 1Þ cm ¼ 0:218 (6.10.2)

Substituting all known quantities into Eq. (6.10.1) gives

k ¼ Q

Ait
¼ 1:65� 10�3 m3hp

4
ð0:060 mÞ2

i
ð0:218Þ

�
12 min�

60 s

min

� ¼ 3.718310L3 m=s

(6.10.3)

Based on this value, it is likely that the soil is a “dirty” sand, i.e., a sand
containing a relatively small percentage of fines.

EXAMPLE PROBLEM 6.11

General Remarks

This example problem illustrates the manner in which the value of the coef-
ficient of permeability is determined from a falling-head permeability test
performed on a sand.

Problem Statement

A falling-head permeability test was performed on a sample of uniform clean
sand. The standpipe consisted of a graduated burette, and it was observed that
1 min was required for the water level to fall from the 0 cm3 to the 51 cm3

mark on the burette. The initial head was 92 cm and the final head was 43 cm.
The sample was 25 cm long and had a diameter of 4.0 cm. Determine the
coefficient of permeability for the sand.

Solution

As shown in Section 6.7.1, the coefficient of permeability is computed from
Eq. (6.27), i.e.,

k ¼
�

aL

A Dt

�
ln

�
h1
h2

�
(6.11.1)

Since the area of the standpipe remains constant, the change in volume of
the standpipe in time Dt will be

DV ¼ ADt 0 A ¼ DV

Dt
¼ 50 cm2

ð92� 43Þ cm ¼ 1:02 cm2 (6.11.2)
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The cross-sectional area of the standpipe is

A ¼ p

4
ð4:0 cmÞ2 ¼ 4p cm2 (6.11.3)

The elapsed time between readings is 60 s. Thus, Dt ¼ 60 � 0 ¼ 60 s,
h1 ¼ 92 cm, and h2 ¼ 43 cm. Thus,

k ¼
�

aL

ADt

�
ln

�
h1
h2

�
¼ ð1:02 cm2Þð25 cmÞ

ð4p cm2Þð60 sÞ ln

�
92 cm

43 cm

�
¼ 2.572310L2 cm=s

(6.11.4)

EXAMPLE PROBLEM 6.12

General Remarks

This example problem illustrates the manner in which the value of the coef-
ficient of permeability is determined from a falling-head permeability test
performed on a clayey soil.

Problem Statement

A falling-head permeability test was carried out on a clay soil of diameter 10 cm
and length 15 cm. In 1 h the head in the standpipe of diameter 5 mm dropped
from 68.5 to 50.7 cm. Compute the coefficient of permeability for this clay.

Solution

As noted in the previous example, the coefficient of permeability is computed
using Eq. (6.27), i.e.,

k ¼
�

aL

ADt

�
ln

�
h1
h2

�
(6.12.1)

The cross-sectional area of the standpipe is

a ¼ p

4

�
5:0 mm� cm

10 mm

	2
¼ 0:196 cm2 (6.12.2)

The cross-sectional area of the clay sample is

A ¼ p

4
ð10:0 cmÞ2 ¼ 78:54 cm2 (6.12.3)

Since the length of the sample is 15 cm, and since the elapsed time for the
test is 1 h, it follows that

k ¼
�

aL

ADt

�
ln

�
h1
h2

�
¼ ð0:196 cm2Þð15 cmÞ

ð78:54 cm2Þð1 hÞ ln

�
68:5 cm

50:7 cm

�
¼ 1.128310L2 cm=h

(6.12.4)
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Changing to more commonly used units gives

k ¼ 
1:128� 10�2 cm=h
�� h

60 min

��
min

60 s

�
¼ 3.134310L6 cm=s (6.12.5)

EXAMPLE PROBLEM 6.13

General Remarks

This example problem illustrates the manner in which the average or super-
ficial velocity and seepage velocity are computed for the case of one-
dimensional steady-state flow.

Problem Statement

A permeability test was performed on a compacted sample of sandy gravel.
The sample was 150 mm long and the diameter of the mold was 150 mm. In
83 s the discharge under a constant head of 40 cm was 392 cm3. The sample
had a dry mass of 5300 g and its specific gravity of solids (Gs) was 2.68.
Calculate a) the coefficient of permeability, b) the superficial velocity (v), and
c) the seepage velocity (vs) during the test.

Solution

a) The hydraulic gradient for the problem is given by Eq. (6.10), i.e.,

i ¼ Dh

L
¼ 40 cm

150 mm

�
10 mm

cm

�
¼ 8

3
(6.13.1)

The discharge is related to the permeability through Darcy’s law,
i.e., q ¼ kiA. The cross-sectional area perpendicular to the direction of
flow is

A ¼
�p
4

	
d2 ¼

�p
4

	
ð150 mmÞ2

� cm

10 mm

	2
¼ 176:7 cm2 (6.13.2)

In addition, from its definition, the discharge is related to the volume of
flow (V) and time (t) through the relation q ¼ V/t. Thus,

kiA ¼ V

t
0 k ¼ V

t

1

iA
¼ ð392 cm3Þ

ð83 sÞ
1�

8

3

�
ð176:7 cm2Þ

¼ 0.010 cm=s

(6.13.3)
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b) The superficial velocity is computed from the discharge according to

Q ¼ vA 0 v ¼ 1

A
Q ¼ 1

176:7 cm2

�
392 cm3

83 s

�
¼ 0.027 cm=s (6.13.4)

c) The determination of the seepage velocity requires the porosity (n). Recall the
following expression for the dry unit weight (recall Case 1.4 in Chapter 1)

gd ¼
Ws

V
¼ Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 (6.13.5)

The weight of the solid phase is computed from the dry mass, i.e.,

Ws ¼ Ms g ¼ ð5300 gÞ
�

kg

1000 g

�

9:81 m=s2

� ¼ 51:99 N (6.13.6)

The total volume of the saturated soil is

V ¼ p

4
d2 L ¼ AL ¼ 
176:7 cm2

�� m

100 cm

	2
ð0:150 mÞ ¼ 2:651� 10�3 m3

(6.13.7)

Thus,

gd ¼
Ws

V
¼ 51:99 N

2:651� 10�3 m3

�
kN

1000 N

�
¼ 19:62 kN=m3 (6.13.8)

Substituting this value for gd into the aforesaid expression for void ratio
gives

e ¼ Gsgw

gd

� 1 ¼ ð2:68Þð9:81 kN=m3Þ
ð19:62 kN=m3Þ � 1 ¼ 0:340 (6.13.9)

The porosity is thus

n ¼ e

1þ e
¼ 0:340

1þ 0:340
¼ 0:254 (6.13.10)

The seepage velocity is thus

vs ¼ v

n
¼ 0:027 cm=s

0:254
¼ 0.106 cm=s (6.13.11)

EXAMPLE PROBLEM 6.14

General Remarks

This example problem illustrates the manner in which the critical hydraulic
gradient is computed.
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Problem Statement

A soil has a porosity (n) of 0.40 and a specific gravity of solids (Gs) of 2.70.
Determine the critical hydraulic gradient (ic).

Solution

From Case 1.8 in Chapter 1, the saturated unit weight for a soil is given by

gsat ¼
gwðGs þ eÞ

1þ e
(6.14.1)

Using Case 1.1 of Chapter 1, the void ratio (e) is related to the porosity
(n), i.e.,

e ¼ n

1� n
¼ 0:40

1� 0:40
¼ 0:667 (6.14.2)

Thus,

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:70þ 0:667Þ

1þ 0:667
¼ 19:82 kN=m3 (6.14.3)

Also from Case 1.8 in Chapter 1,

gb ¼ gsat � gw (6.14.4)

Thus, for this soil

gb ¼ gsat � gw ¼ 19:82� 9:81 ¼ 10:01 kN=m3 (6.14.5)

The critical gradient is thus

ic ¼ gb

gw

¼ 10:01 kN=m3

9:81 kN=m3
¼ 1.02 (6.14.6)

Alternately, as developed in Section 6.10, the critical gradient can be
determined more directly as

ic ¼ Gs � 1

1þ e
¼ 2:70� 1

1þ 0:667
¼ 1.02 (6.14.7)

EXAMPLE PROBLEM 6.15

General Remarks

This example problem investigates the variation in critical hydraulic gradient
between the loose and dense configurations of a soil.
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Problem Statement

The specific gravity of solids (Gs) of a sand is 2.66. The porosity (n) of the soil
in its loosest and densest state is 45% and 37%, respectively. Determine the
critical hydraulic gradient (ic) for these two states.

Solution

As noted in the previous problem, the saturated unit weight for a soil is
given by

gsat ¼
gwðGs þ eÞ

1þ e
(6.15.1)

In addition, the void ratio (e) is related to the porosity by (recall Case 1.1 of
Chapter 1)

e ¼ n

1� n
(6.15.2)

The critical gradient is then

ic ¼ gb

gw

¼ gsat � gw

gw

¼ gsat

gw

� 1 ¼ Gs þ e

1þ e
� 1 (6.15.3)

For the loosest state:

emax ¼ 0:45

1� 0:45
¼ 0:818 (6.15.4)

ic ¼ 2:66þ 0:818

1þ 0:818
� 1 ¼ 0.91 (6.15.5)

For the densest state:

emin ¼ 0:37

1� 0:37
¼ 0:587 (6.15.6)

ic ¼ 2:66þ 0:587

1þ 0:587
� 1 ¼ 1.05 (6.15.7)
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EXAMPLE PROBLEM 6.16

General Remarks

This example problem illustrates the manner in which the critical hydraulic
gradient is computed for soil stratum in which a layer in under artesian
pressure.

Problem Statement

A deposit of clay lies between two layers of sand as shown in Figure Ex. 6.16.
The lower sand layer is under artesian pressure. The moist unit weight of the
sand above the groundwater table is 105 lb/ft3; below the groundwater table its
saturated unit weight is 120 lb/ft3. The saturated unit weight of the clay layer is
110 lb/ft3.

Determine a) the vertical total stress, the pore pressure and vertical
effective stress at the bottom of the clay layer and b) The height d above the
ground surface of the water in the piezometer that would cause “boiling”
(heave) of the upper sand layer.

Soft clay

Rock layer

Sand

d

10.0 ft Sand

10.0 ft

5.0 ft

5.0 ft

10.0 ft

Ground surface

FIGURE EX. 6.16 Soil stratum with sand layer under artesian pressure.
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Solution

Since the permeability of the clay will be much lower than for the sand layers,
it is assumed to be impermeable in this problem.

a) At the bottom of the clay layer, the vertical total stress is

sv ¼


105 lb=ft3

�ð5 ftÞ þ 
120 lb=ft3
�ð5 ftÞ þ 
110 lb=ft3

�ð10 ftÞ
¼ 2225.0 lb=ft2

(6.16.1)

The pore pressure at the bottom of the clay layer is

u ¼ gwð10þ 5þ 5þ 10 ftÞ ¼ 
62:4 lb=ft3
�ð30 ftÞ ¼ 1872.0 lb=ft2 (6.16.2)

Finally, the vertical effective stress is

s0v ¼ 2225:0� 1872:0 ¼ 353 lb=ft2 (6.16.3)

b) To cause boiling, the effective stress at the bottom of the clay layer must go
to zero. The total stress at the bottom of the clay layer is unchanged from
part a. The pore pressure at the bottom of the clay layer is now

u ¼ gwð10þ 5þ 5þ d ftÞ ¼ 
62:4 lb=ft3
�ð20þ d ftÞ (6.16.4)

The vertical effective stress is

s0v ¼ 2225:0�
62:4 lb=ft3
�ð20þ d ftÞ (6.16.5)

Setting the vertical effective stress equal to zero gives

2225:0 ¼ ð62:4Þð20þ d ftÞ0 d ¼ 2225:0

62:4
� 20 ¼ 15.7 ft (6.16.6)

EXAMPLE PROBLEM 6.17

General Remarks

This example problem illustrates the manner in which the critical hydraulic
gradient is computed so as to determine the maximum permissible upward
gradient in the design of a dam.

Problem Statement

The foundation soil beneath a dam has a porosity (n) of 42% and a specific
gravity of solids (Gs) equal to 2.71. To ensure safety against piping at the toe
of the dam, the design specifications state that the upward gradient must not
exceed 25% of the critical gradient. Determine the maximum permissible
upward gradient.
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Solution

Since the foundation soil is saturated, its unit weight is determined using the
result of Case 1.8 in Chapter 1, i.e.,

gsat ¼
gwðGs þ eÞ

1þ e
(6.17.1)

The void ratio is computed form the porosity using the result of Case 1.1 in
Chapter 1; i.e.,

e ¼ n

1� n
¼ 0:42

1� 0:42
¼ 0:724 (6.17.2)

The saturated unit weight of the foundation soil is thus

gsat ¼
ð9:81 kN=m3Þð2:71þ 0:724Þ

1þ 0:724
¼ 19:54 kN=m3 (6.17.3)

The buoyant unit weight is thus

gb ¼ gsat �gw ¼ ð19:54� 9:81Þ ¼ 9:73 kN=m3 (6.17.4)

The critical hydraulic gradient is next computed, i.e.,

ic ¼ gb

gw

¼ 9:73 kN=m3

9:81 kN=m3
¼ 0:99 (6.17.5)

The maximum permissible upward gradient is thus 0.25ic ¼ 0.25(0.99) ¼
0.249.

EXAMPLE PROBLEM 6.18

General Remarks

This example problem illustrates the manner in which “quick” conditions can
occur in an excavation.

Problem Statement

A large excavation was made in a stratum of stiff clay with specific gravity of
solids (Gs) equal to 2.64, an average void ratio (e) of 0.745, and an average
degree of saturation (S) of 86%. When the depth of the excavation (d) reached
8.0 m (Figure Ex. 6.18), it failed, as a mixture of sand and clay boiled up and
rushed into the excavation. Subsequent exploratory borings indicated that a
layer of sand underlay the clay, with its top surface at a depth (H) of 12.5 m
below the ground surface as shown in Figure Ex. 6.18. To what height h (in
meters) would water have risen above the sand layer into the piezometer
before the excavation was started?
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Solution

The moist unit weight of the clay layer must first be determined. Using the
expression developed in Case 1.7 of Chapter 1,

g ¼ gwðGs þ SeÞ
1þ e

¼
ð9:81 kN=m3Þ

h
2:64þ ð0:86Þð0:745Þ

i
1þ 0:745

¼ 18:44 kN=m3

(6.18.1)

The effective stress at the clay/sand interface at the time of excavation is

s0v ¼ gðH � dÞ � gwh z 0 (6.18.2)

The height to which water would rise above the sand layer into the
piezometer before the excavation was started is thus

h ¼ gðH � dÞ
gw

¼ ð18:44 kN=m3Þð12:5 m� 8 mÞ
9:81 kN=m3

¼ 8.46 m (6.18.3)

EXAMPLE PROBLEM 6.19

General Remarks

This example problem illustrates the effect that lowering the groundwater table
has on an excavation.

Stiff clay

Rock layer

d

Sand

H
h

Ground surface

excavation

FIGURE EX. 6.18 Site with excavation of a stiff clay layer.
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Problem Statement

Figure Ex. 6.19 shows a soil profile consisting if a clay layer underlain by layer
of dense sand. Above the clay layer is a layer of sand. For the portion of the
upper sand layer above the groundwater table, the moisture content (w) is 18%,
the degree of saturation (S) is 80%, and the specific gravity of solids (Gs) is
2.68. Below the groundwater table the moisture content is 20%. For the clay
layer the moisture content is 40% and the specific gravity of solids is 2.70.

a) Determine the effective stress at the clay/dense sand interface prior to
excavation.

b) Repeat part a immediately after the excavation is complete.
c) Finally, assuming that following the excavation the water remains at the

elevation of the groundwater table, determine by how much the water level
can be lowered without causing the effective stress at the clay/dense sand
interface to go to zero.

Solution

The first step in the solution is to determine the appropriate unit weights for the
soil layers. The general expression for the moist unit weight of a soil is (recall
Case 1.7 in Chapter 1)

g ¼ gwðGs þ SeÞ
1þ e

(6.19.1)

Clay

Sand

Dense sand

8.0 m

3.0 m

2.0 m

Ground surface

3.5 m

Excavation
d

FIGURE EX. 6.19 Site with excavation of a clay layer.
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Since the void ratio is not given explicitly, it must be computed using the
expression developed in Case 1.3 of Chapter 1, i.e., e ¼ Gsw/S.

For the portion of the sand layer above the groundwater table,

e ¼ Gsw

S
¼ ð2:68Þð0:18Þ

0:80
¼ 0:603 (6.19.2)

and

g ¼ gwðGs þ SeÞ
1þ e

¼
ð9:81 kN=m3Þ

h
2:68þ ð0:80Þð0:603Þ

i
1þ 0:603

¼ 19:35 kN=m3

(6.19.3)

For the portion of the sand layer below the groundwater table,

e ¼ Gsw

S
¼ ð2:68Þð0:20Þ

1:0
¼ 0:536 (6.19.4)

and

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þ½2:68þ 0:536�

1þ 0:536
¼ 20:54 kN=m3 (6.19.5)

For the clay layer,

e ¼ Gsw

S
¼ ð2:70Þð0:40Þ

1:0
¼ 1:080 (6.19.6)

and

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þ½2:70þ 1:080�

1þ 1:080
¼ 17:83 kN=m3 (6.19.7)

a) Prior to the excavation, the vertical total stress at the clay/dense sand
interface is

sv ¼


19:35 kN=m3�ð2:0 mÞ þ 
20:54 kN=m3�ð3:0 mÞ

þ 
17:83 kN=m3�ð8:0 mÞ ¼ 243:0 kPa
(6.19.8)

The pore pressure at this point is

u ¼ gwð11:0 mÞ ¼ 
9:81 kN=m3�ð11:0 mÞ ¼ 107:9 kPa (6.19.9)

The vertical effective stress is thus

s0v ¼ 243:0� 107:9 ¼ 135.1 kPa (6.19.10)
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b) Immediately following excavation, the water level in the excavation is
assumed to remain at the elevation of the groundwater table. The vertical
total stress at the clay/dense sand interface is now

sv ¼


9:81 kN=m3�ð6:0 mÞ þ 
17:83 kN=m3�ð5:0 mÞ ¼ 148:0 kPa

(6.19.11)

The pore pressure at this point remains

u ¼ gwð11:0 mÞ ¼ 
9:81 kN=m3�ð11:0 mÞ ¼ 107:9 kPa (6.19.12)

The vertical effective stress is thus

s0v ¼ 148:0� 107:9 ¼ 40.1 kPa (6.19.13)

c) Assuming that very soon after the excavation the water level is lowered by
an amount d. The vertical total stress at the clay/dense sand interface will
become

sv ¼


9:81 kN=m3�ð6:0 m� dÞ þ 
17:83 kN=m3�ð5:0 mÞ (6.19.14)

Due to the relatively low permeability of the clay, the pore pressure at
this point remains

u ¼ gwð11:0 mÞ ¼ 
9:81 kN=m3�ð11:0 mÞ ¼ 107:9 kPa (6.19.15)

The vertical effective stress is now

s0v ¼ ð9:81Þð6:0� dÞ þ 89:15�107:9 ¼ ð9:81Þð6:0� dÞ � 18:75 kPa

(6.19.16)

Setting the vertical effective stress equal to zero and solving for
d gives

d ¼ 6:0� 18:75

9:81
¼ 4.1 m (6.19.17)

Obviously, in an actual excavation a suitable factor of safety would be
applied to this value, thus reducing the amount by which the water level
can be lowered.

EXAMPLE PROBLEM 6.20

General Remarks

This example problem illustrates the manner in which the superficial velocity
is determined for the case of one-dimensional steady-state flow in a nonho-
mogeneous aquifer.
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Problem Statement

Consider the 150 m length (L) of a nonhomogeneous, saturated aquifer shown
in Figure Ex. 6.20. Piezometers positioned at either end of this length of the
aquifer indicate that the total head loss across this portion of the aquifer is
equal to 12.0 m.

The permeability of the clay layer (k1) is 2.0 � 10�7 m/s. The permeability
of the silty clay layer (k3) is 4.0 � 10�6 m/s. The three layers have the
following thicknesses: H1 ¼ 3.50 m, H2 ¼ 2.25 m, and H3 ¼ 4.25 m. Although
the permeability of the silty sand layer (k2) is unknown, the total discharge (Q)
from this length of aquifer was found to be 0.083 m3/h per meter thickness
(into the page).

a) Determine the permeability k2 (in m/s) for the silty sand, and
b) Given that Gs ¼ 2.68 and gsat ¼ 18.3 kN/m3 for layer 1, compute the

seepage velocity (vs) for this layer (in m/s).

Solution

a) Let Q1, Q2, and Q3 be the discharge in clay, silty, sand and silty clay layers,
respectively. From the continuity of flow,

Q ¼ 0:083 m3=h ¼ Q1 þ Q2 þ Q3 (6.20.1)

From Darcy’s law and noting that the hydraulic gradient is the same
across each layer (i.e., i1 ¼ i2 ¼ i3 ¼ i),

Q1 ¼ k1iA1 ¼


2:0� 10�7 m=s

�� 12 m

150 m

�
ð3:50 mÞð1 mÞ

¼ 5:600� 10�8 m3=s

(6.20.2)

impervious layer

direction of
flow

impervious layer

silty clay

silty sand

clay

L

k

k

k

1

2

3

H1

H
2

H
3

FIGURE EX. 6.20 Schematic Illustration of a nonhomogeneous aquifer.
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Converting to the desired gives

Q1 ¼


5:60� 10�8 m3=s

��60 s

min

��
60 min

h

�
¼ 2:016� 10�4 m3=h (6.20.3)

Similarly,

Q3 ¼ k3iA3 ¼


4:0� 10�7 m=s

�� 12 m

150 m

�
ð4:25 mÞð1 mÞ

¼ 1:360� 10�6 m3=s

(6.20.4)

Converting this result to the desired units gives Q3 ¼ 4.896 � 10�3 m3/s.
Finally, from the continuity of flow equation,

Q2 ¼ Q�Q1 þ Q3 ¼ 0:083�
2:016� 10�4 m3=h
��
4:896� 10�3 m3=s

�
¼ 7:790� 10�2m3=h

(6.20.5)
But from Darcy’s law, Q2 ¼ k2iA2. Solving for k2 gives

k2
Q2

iA2
¼ ð7:790� 10�2m3=hÞ�

12 m

150 m

�
ð2:25 mÞð1:0 mÞ

�
h

60 min

��
min

60 s

�
¼ 1:20 3 10�4 m=s

(6.20.6)
To check the aforesaid results, compute the equivalent horizontal

permeability using the equation developed in Section 6.11.1.

ekx ¼Pn
j¼1 kxjHjPn
j¼1 Hj

(6.20.7)

Specializing this equation for the present case of n ¼ 3 gives

ekx ¼



2:0� 10�7 m=s

�ð3:50 mÞ þ 
1:2� 10�4 m=s
�ð2:25 mÞ

þ
4:0� 10�6 m=s
�ð4:25 mÞ

3:50 mþ 2:25 mþ 4:25 m

¼ 2:877� 10�5 m=s (6.20.8)

Thus, assuming a unit thickness into the page,

Q ¼ ekxiA ¼ 
2:877� 10�5 m=s
�� 12 m

150 m

�
ð10:0 mÞð1Þ

�
3600 s

h

�
¼ 0:083 m3=h

(6.20.9)

which verifies that the result for k2 is indeed correct.

b) The seepage velocity requires knowledge of the porosity. Beginning with
the expression for the saturated unit weight (recall Case 1.8 in Chapter 1)

g ¼ gsat ¼
gwðGs þ eÞ

1þ e
(6.20.10)
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and solving for the void ratio gives

e ¼ Gs gw � gsat

gsat � gw

(6.20.11)

Substituting the given values ofGs ¼ 2.68, gsat ¼ 18.3 kN/m3 for layer 1,
along with gw gives

e ¼ ð2:68Þð9:81 kN=m3Þ �ð18:3 kN=m3Þ
ð18:3� 9:81ÞkN=m3

¼ 0:941 (6.20.12)

The porosity is then computed from the void ratio using the relation
developed in Case 1.2 of Chapter 1, i.e.,

n ¼ 0:941

1þ 0:941
¼ 0:485 (6.20.13)

The superficial (Darcy) velocity for layer 1 is

v1 ¼ k1i ¼


2:0� 10�7 m=s

�� 12 m

150 m

�
¼ 1:60� 10�8 m3=s (6.20.14)

The seepage velocity for layer 1 is thus

vs1 ¼
v1
n
¼ 1:60� 10�8 m=s

0:485
¼ 3.30310L8 m=s (6.20.15)

which is consistent for a clay.

EXAMPLE PROBLEM 6.21

General Remarks

This example problem illustrates the manner in which equivalent permeability
values are computed for a soil deposit.

Problem Statement

Figure Ex. 6.21 shows the soil profile for a soft seabed clay located in the
Canadian Beaufort Sea.

Available field data indicate that the permeability for the clay is anisotropic
and varies with depth. In particular,

For layer 1: kx1 ¼ 3.2 � 10�7 cm/s; kz1 ¼ 1.1 � 10�7 cm/s
For layer 2: kx2 ¼ 1.7 � 10�7 cm/s; kz2 ¼ 3.4 � 10�8 cm/s
For layer 3: kx3 ¼ 1.4 � 10�7 cm/s; kz3 ¼ 4.4 � 10�8 cm/s

Compute the equivalent permeability for flow parallel and perpendicular to
the clay layers.
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Solution

The thicknesses of the individual layers are

H1 ¼ 6:0 m; H2 ¼ 2:0 m; H3 ¼ 10:0 m

The equivalent permeability parallel to the soil layer is computed as fol-
lows (recall the discussion of Section 6.11.1):

ekx ¼ 1

H

Xn
j¼1

kxjHj

¼ 1

18:0 m

h

3:2� 10�7 cm=s

�ð6:0 mÞ þ 
1:7� 10�7 cm=s
�ð2:0 mÞ

þ 
1:4� 10�7 cm=s
�ð10:0 mÞ

i
¼ 2:03 3 10L7 cm=s

(6.21.1)
The equivalent permeability perpendicular to the soil layer is computed as

follows (recall the discussion of Section 6.11.2):

ekz ¼ Pn
j¼1 Hj Pn
j¼1

Hj

kzj

1A ¼ 18:0 m

6:0 m

1:1� 10�7 cm=s
þ 2:0 m

3:4� 10�8 cm=s
þ 10:0 m

4:4� 10�8 cm=s

¼ 5:28 3 10L8 cm=s

(6.21.2)

Layer 2

6.0 m

Dense sand

18.0 m

0.0 m

Depth below seabed

8.0 m

Layer 3

Layer 1

x

z

FIGURE EX. 6.21 Profile of a seabed clay stratum (not to scale).
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EXAMPLE PROBLEM 6.22

General Remarks

This example problem illustrates the use of Darcy’s law and the continuity of
flow to better understand the one-dimensional flow through two soils that are
connected in series.

Problem Statement

Figure Ex. 6.22 shows two saturated soil samples that are connected in series in
a tube with three vertical standpipes. Soil samples 1 and 2 can have different
coefficients of permeability (k1 and k2), lengths (L1 and L2), and cross-sectional
areas (A1 and A2). Suitable screens are provided to maintain the samples intact.

a) First develop the general equations that are associated with flow through
the two soil samples.

b) Next consider the case where the same soil is used for both samples in the
device. For h1 ¼ 60.0 cm, h3 ¼ 6.0 cm, L1 ¼ 45 cm, L2 ¼ 55 cm,
A1 ¼ 28 cm2, and A2 ¼ 32 cm2, determine the value of h2.

c) Finally, consider the case where two different soils are tested. If the
discharge is equal to 0.20 cm3/s, and h1 ¼ 75 cm, h2 ¼ 38 cm, and
h3 ¼ 10 cm, compute the permeability of soils 1 and 2.

Solution

a) Let Dh1 be the head loss across soil 1. Referring to Figure Ex. 6.22,

Dh1 ¼ h1 � h2 (6.22.1)

The hydraulic gradient for soil 1 is thus

i1 ¼ Dh1
L1

¼ h1 � h2
L1

(6.22.2)

L

h

cross-sectional
area A

Soil 1 Soil 2
datum

1 L2

1 h2
h3

cross-sectional
area A2

1

FIGURE EX. 6.22 Hypothetical device with two saturated soil samples connected in series.
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The discharge through soil 1 is computed then using Darcy’s law,
giving

Q1 ¼ k1i1A1 ¼ k1A1

�
h1 � h2

L1

�
(6.22.3)

Next, let Dh2 be the head loss across soil 2. Referring to Figure 6.22,

Dh2 ¼ h2 � h3 (6.22.4)

The hydraulic gradient for soil 2 is thus

i2 ¼ Dh2
L2

¼ h2 � h3
L2

(6.22.5)

The discharge through soil 2 is computed then using Darcy’s law,
giving

Q2 ¼ k2i2A2 ¼ k2A2

�
h2 � h3

L2

�
(6.22.6)

Due to continuity of flow, Q1 ¼ Q2. Equating Eqs. (6.22.3) and (6.22.6)
gives

k1A1

�
h1 � h2

L1

�
¼ k2A2

�
h2 � h3

L2

�
(6.22.7)

b) If the same soil is used for both samples in the device, k1 ¼ k2 and Eq.
(6.22.7) reduces to

A1

�
h1 � h2

L1

�
¼ A2

�
h2 � h3

L2

�
(6.22.8)

Typically, h1 and h3 are known. Eq. (6.22.8) is then solved for h2, giving

�
A1

L1

�
h1 þ

�
A2

L2

�
h3 ¼

�
A1

L1
þ A2

L2

�
h2 0 h2 ¼

�
A1

L1

�
h1 þ

�
A2

L2

�
h3

A1

L1
þ A2

L2

or

h2 ¼ A1L2h1 þ A2L1h3
A1L2 þ A2L1

(6.22.9)

As a check on the aforesaid result, let L1 ¼ L2 ¼ L and A1 ¼ A2 ¼ A.
Eq. (6.22.9) then reduces to

h2 ¼ ALðh1 þ h3Þ
2AL

¼ h1 þ h3
2

(6.22.10)

which is the expected average of h1 and h3.
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Substituting h1 ¼ 60.0 cm, h3 ¼ 6.0 cm, L1 ¼ 45 cm, L2 ¼ 55 cm,
A1 ¼ 28 cm2, and A2 ¼ 32 cm2 into Eq. (6.22.9) gives

h2 ¼ ð28:0 cm2Þð55:0 cmÞð60:0 cmÞ þ ð32:0 cm2Þð45:0 cmÞð6:0 cmÞ
ð28:0 cm2Þð55:0 cmÞ þ ð32:0 cm2Þð45:0 cmÞ

¼ 33.9 cm

(6.22.11)

which differs slightly from the average (33.0 cm) of h1 and h3.
c) Returning to Eq. (6.22.3), solving for k1 and using the pertinent values

from part b gives

k1 ¼ q1
A1

�
L1

h1 � h2

�
¼ ð0:20 cm3=sÞ

ð28:0 cm2Þ

�
45:0 cm

75:0� 38:0 cm

�
¼ 8.69310L3 cm=s

(6.22.12)

In a similar fashion, from Eq. (6.22.6)

k2 ¼ q2
A2

�
L2

h2 � h3

�
¼ ð0:20 cm3=sÞ

ð32:0 cm2Þ
�

55:0 cm

38:0� 10:0 cm

�
¼ 1.23310L2 cm=s

(6.22.13)

EXAMPLE PROBLEM 6.23

General Remarks

This example problem illustrates the use of Darcy’s law and the continuity of
flow to better understand the one-dimensional flow through a flow channel that
changes in cross-sectional area.

Problem Statement

Figure Ex. 6.23 shows a case in which water is seeping from a reservoir into an
open trench a distance (L1 þ L2) away from the reservoir through a stratum of
fine sand having a coefficient of permeability of k. The stratum is overlain and
underlain by impervious material. The sand stratum’s thickness at the reservoir
(a) differs from that at the open trench (b). The total head loss from the
reservoir to the open trench is denoted by Dh.

Develop the general expressions required to determine a) the head loss
across each portion of the stratum and b) the discharge in each of the portions
of the stratum. Assume the reservoir and trench sides to be vertical and assume
the change in section of the sand stratum to be abrupt.
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Solution

Denote the total head loss across the first portion of the pervious sand stratum
by Dha; across the second portion of the stratum the total head loss is Dhb. It
follows that

Dha þ Dhb ¼ Dh (6.23.1)

The hydraulic gradient (recall Eq. 6.10) across the first portion of the sand
stratum is

ia ¼ Dha
L1

(6.23.2)

The discharge through the first portion of the stratum is then given by
Darcy’s law, i.e.,

Qa ¼ kiaAa ¼ k

�
Dha
L1

�
ðaÞð1Þ (6.23.3)

where a unit thickness into the page has been assumed. Similarly, the hydraulic
gradient across the second portion of the sand stratum is

ib ¼ Dhb
L2

(6.23.4)

Impervious layer

a

Open
trench

Sand

bSand

Impervious

L L

h

1 2

Reservoir

FIGURE EX. 6.23 Hypothetical seepage from reservoir through a confined stratum.
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The discharge through the first portion of the stratum is then given by
Darcy’s law, i.e.,

Qb ¼ kibAb ¼ k

�
Dhb
L2

�
ðbÞð1Þ (6.23.5)

For continuity of flow, Qa ¼ Qb. Equating Eqs. (6.23.3) and (6.23.5) gives�
Dha
L1

�
ðaÞ ¼

�
Dhb
L2

�
ðbÞ (6.23.6)

From Eq. (6.23.1), Dhb ¼ Dh � Dha. Substituting this relation into Eq.
(6.23.6) and solving for Dha gives

Dha ¼
�

bL1
aL2 þ bL1

�
Dh (6.23.7)

Then,

Dhb ¼ Dh�Dha ¼
�

aL2
aL2 þ bL1

�
Dh (6.23.8)

As a check of the aforesaid expressions, substitute Eq. (6.23.7) into Eq.
(6.23.3), giving

Qa ¼ k

�
Dha
L1

�
ðaÞ ¼ ak

L1

�
bL1

aL2 þ bL1

�
Dh ¼ k

�
ab

aL2 þ bL1

�
Dh (6.23.9)

Next, substitute Eq. (6.23.8) into Eq. (6.23.5), giving

Qb ¼ k

�
Dhb
L2

�
ðbÞ ¼ bk

L2

�
aL2

aL2 þ bL1

�
Dh ¼ k

�
ab

aL2 þ bL1

�
Dh (6.23.10)

which verifies that indeed Qa ¼ Qb. As an additional check, assume that a ¼ b,
i.e., the cross-sectional area for seepage is the same throughout the confined
sand stratum. Eqs. (6.23.7) and (6.23.8) then reduce to

Dha ¼
�

L1
L2 þ L1

�
Dh (6.23.11)

and

Dhb ¼
�

L2
L2 þ L1

�
Dh (6.23.12)

which are consistent with a linear variation of total head that would be
expected for a homogeneous, prismatic confined stratum.
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Finally, assume the following specific values:Dh ¼ 7.0 m, k ¼ 5 � 10�4 m/s,
L1 ¼ 200 m, L2 ¼ 150 m, a ¼ 6.5 m, and b ¼ 3.3 m. Substituting these values
into Eqs. (6.23.7) and (6.23.8) gives

Dha ¼
"

ð3:3 mÞð200 mÞ
ð6:5 mÞð150 mÞ þ ð3:3 mÞð200 mÞ

#
ð7:0 mÞ ¼ 2.83 m (6.23.13)

Then,

Dhb ¼
"

ð6:5 mÞð150 mÞ
ð6:5 mÞð150 mÞ þ ð3:3 mÞð200 mÞ

#
ð7:0 mÞ ¼ 4.17 m (6.23.14)

Substituting the results obtained in Eq. (6.23.13) into Eq. (6.23.9) then
gives

Qa ¼


5:0� 10�4 m=s

��2:83 m

200 m

�
ð6:5 mÞ ¼ 4:592� 10�5 m3=s=m ¼ Qb

(6.23.15)

Converting this result into more commonly used units gives

Qa ¼ Qb ¼


4:592� 10�5 m3=s=m

��60 s

min

��
60 min

h

�
¼ 0.165 m3=hr=m

(6.23.16)
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Chapter 7

Example Problems Involving
Two-Dimensional Fluid Flow
in Soils

7.0 GENERAL COMMENTS

For practical applications, the case of one-dimensional flow in soils must be
extended to two- and three dimensions. This chapter considers the two-
dimensional steady-state seepage1 in saturated soils.

As noted in Chapter 6, in the case of steady-state flow,

l Pore fluid pressures remain constant.
l The rate of flow through the soil is a constant.
l The effective stresses remain constant.
l The soil does not deform.

The energy possessed by a particle of fluid exists in three forms, namely

1. Pressure energy; i.e., owing to the pressure at a point.
2. Potential energy; i.e., owing to the height of the point above some datum.
3. Kinetic energy; i.e., owing to the particle’s velocity.

The aforementioned energy is typically expressed as head (units of L).
Since the velocity of flow is typically small in soils and rocks (recall that the
flow is laminar), the kinetic energy is thus negligible. The total head (h) is thus
the sum of the elevation head (with respect to some datum) and the pressure
head; i.e.,

h ¼ zþ p

gw

(7.1)

where z is the elevation head, p is the pressure at the point, and gw is the unit
weight of water.

If, at two different points within a continuous soil mass there are different
amounts of energy (head), there will be movement (flow) of fluid from the

1. Seepage is defined as the slow escape of fluid through a porous material.
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point of higher energy to the point of lower energy. When fluid flows through
soils and rock, energy (head) is lost through friction between the fluid and the
solid particles.

The topic of two- and three-dimensional flow through soils can be either
confined or unconfined. In confined flow, the seepage is confined between two
impermeable surfaces. Figure 7.1 shows an example of confined flow under a
sheet pile wall.2 Both the wall and the bottom boundary are impermeable.
Unconfined flow problems typically have a free surface at atmospheric pres-
sure but no impermeable layer in close proximity. Two examples of unconfined
flow are earth dams and flow toward wells.

7.1 BASIC ASSUMPTIONS

The present discussion is restricted to two-dimensional steady state, confined
seepage. It is based on the following assumptions:

l The soil is saturated.
l Darcy’s law is valid.
l Each soil layer is homogeneous and typically isotropic.
l Capillary effects are negligible.

sheet pile wall

impermeable layer

a

b

soil layer #1

soil layer #2

d

FIGURE 7.1 Schematic illustration of a sheet pile wall.

2. Some uses of sheet pile walls are (1) to retain a building excavation, (2) to form a wall around a

marine terminal, and (3) to serve as an anchored bulkhead for a ship dock, etc.

316 Soil Mechanics



l Both the solid phase (soil skeleton) and the pore fluid are incompressible.
l The volume of the pore fluid remains the same during seepage. This

implies no deformation (straining) and volume changes in the soil.

7.2 GOVERNING EQUATION

The two-dimensional seepage of an incompressible fluid in a nondeforming
soil is governed by the flowing equation (an elliptic partial differential
equation):

v

vx

�
kx

vh

vx

�
þ v

vz

�
kz

vh

vz

�
¼ 0 (7.2)

where h is the total head, and kx and kz are permeability coefficients in the
x- and z-directions, respectively.

Darcy’s law then gives the average or superficial velocity in the x- and
z-directions according to

vx ¼ �kx
vh

vx
; vz ¼ �kz

vh

vz
(7.3)

If kx and kz are constant, then the governing equation reduces to

kx
v2h

vx2
þ kz

v2h

vz2
¼ 0 (7.4)

Finally, if kx ¼ kz (i.e., permeability isotropy), then the governing equation
further reduces to Laplace’s equation for two-dimensional homogeneous,
isotropic, steady seepage; i.e.,

v2h

vx2
þ v2h

vz2
¼ 0 (7.5)

This equation must then be solved for the total head h ¼ f(x,z).

7.3 BOUNDARY CONDITIONS

The solution of Laplace’s equation requires the definition of suitable boundary
conditions. Two kinds of boundary conditions apply to the problem of steady
seepage, namely, the following:

l impermeable boundaries (i.e., ones where the velocity normal to the
boundary is zero),

l boundaries with known total head (h).

7.4 SOLUTION OF THE GOVERNING EQUATION

The exact solution of Laplace’s equation is typically difficult to realize. The
equation must thus be solved approximately. Approximations are commonly
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obtained using either computer solutions such as the finite difference or finite
element method or using hand-drawn flow nets. The topic of computer solu-
tions is discussed elsewhere.3 Instead, the focus herein is on approximate
solution obtained using flow nets.

7.5 FLOW NETS

Flow nets consist of two sets of lines, namely, the following:

l Flow lines; i.e., paths taken by the moving particles of fluid.
l Equipotential lines; i.e., traces of equal total head.

Since pore fluid flows from higher energy levels to lower energy levels
along paths of maximum energy gradient (for example, water flows downhill
from higher elevations to lower ones, following the steepest path), the flow
lines intersect the equipotential lines at right angles.

Remark: Pore fluid tends to flow along the shortest path from one point to another;

when flow changes direction, it only makes smooth curves.

Listed here are some key points related to flow lines.

l The area between two flow lines is called a flow channel.
l The discharge in a flow channel is constant.
l Flow cannot occur across flow lines.
l Impermeable boundaries are flow lines.
l The velocity of flow is directed normal to the equipotential lines.

Listed here are some key points related to equipotential lines.

l Since these lines indicate points of equal total head, they represent con-
tours of equal energy.

l An equipotential line cannot intersect another equipotential line.
l The groundwater table is an equipotential line.
l The difference in total head between two equipotential lines is called the

equipotential drop.

Some important points related to the drawing of flow nets are listed.

l The upstream and downstream surfaces are equipotential lines (see
Figure 7.2).

l The flow lines intersect these equipotential lines at right angles.

3. See, for example, Kaliakin, V.N., 2001. Approximate Solution Techniques, Numerical Modeling

and Finite Element Methods. Marcel Dekker, Inc., New York, NY.
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l The boundary of an impervious layer or surface is a flow line (see
Figure 7.2).

l Equipotential lines intersect the flow lines at right angles.
l A flow line cannot intersect another flow line.
l An equipotential line cannot intersect another equipotential line.

7.6 RATE OF FLOW THROUGH FLOW NETS

To compute the discharge from a flow net, assume the simplest case of
permeability isotropy; i.e., kx ¼ kz ¼ k.

Let Nf equal the total number of flow channels, and let Nd equal the total
number of equipotential drops in a flow net.

Consider the portion of a flow net shown in Figure 7.3. The quantity of flow
through a typical flow channel is computed using Darcy’s law; i.e.,

Dq ¼ k

�
h1 � h2

L1

�
¼ k

�
h2 � h3

L2

�
¼ L (7.6)

If the flow net is drawn such that L1 z L2, etc., then

h1 � h2 z h2 � h3 z L ¼ Dh

Nd
(7.7)

where Dh is the total head loss between the upstream and downstream sides. It
follows that the head loss between any pair of equipotential lines is thus Dh/Nd.

FIGURE 7.2 Schematic illustration of a sheet pile wall showing flow and equipotential lines
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The amount of discharge through each flow channel is Dq ¼ q/Nf. Let a
equal the width of a flow channel, and b equal the distance between equipo-
tential lines. The hydraulic gradient between equipotential lines is thus

i ¼ Dh=Nd

b
(7.8)

The discharge through each flow channel is thus

Dq ¼ kiA ¼ k

�
Dh

bNd

�
að1Þ ¼ k

�
Dh

Nd

��
a

b

�
(7.9)

The total discharge for the flow net is thus

q ¼ DqNf ¼ kDh
�a
b

��Nf

Nd

�
(7.10)

FIGURE 7.3 Portion of a hypothetical flow net.
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Remark: The ratio (a/b) is fixed by the Nf /Nd; it is thus the same throughout the

flow net.

Remark: If Nf and Nd are selected so that az b, the equation for total discharge

(for unit dimension perpendicular to the flow net) is

q ¼ kDh

�
Nf

Nd

�

EXAMPLE PROBLEM 7.1

General Remarks

This example problem investigates the topic of flow nets as applied to case of
one-dimensional flow.

Problem Statement

Figure Ex. 7.1A shows a hypothetical one-dimensional flow experiment.
Construct a flow net for the experiment and verify that the total discharge is
identical to that predicted by Darcy’s law.

Solution

Figure Ex. 7.1B (A) shows a set of equipotential lines associated with the flow
experiment. Figure Ex. 7.1B (B) shows a set of flow lines for the same
experiment. Finally, Figure Ex. 7.1C shows the flow net that is created by
combining the aforementioned equipotential and flow lines.

The coefficient of permeability (k) for the soil sample is equal to 0.05 cm/s.
The head loss (Dh) across the soil sample is equal to 0.60 m. The hydraulic
gradient is thus

i ¼ Dh

L
¼ 0:6 m

3:0 m
¼ 0:20 (7.1.1)

Using Darcy’s law, the total discharge is

q ¼ kiA ¼ ð0:05 cm=sÞð0:20Þð1:2 mÞ2
 

m

100 cm

!
¼ 1.440310L4 m3

�
s

(7.1.2)
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Next compute the increment in discharge flowing through a volume Db by
DL (Figure Ex. 7.1B) by t (directed into the plane of the paper). Again using
Darcy’s law, gives

Dq ¼ kDiDA ¼ k

�
1

DL

Dh

Nd

�
ðDbtÞ (7.1.3)

where Nd is the total number of potential drops.
The total discharge is then

q ¼ ðDqÞðNf Þ ¼ kDh

�
Nf

Nd

��
Db

DL

�
t (7.1.4)

where Nf /Nd is the “shape factor” for the flow net, and t ¼ 1.20 m.

FIGURE EX. 7.1A Hypothetical one-dimensional flow experiment.
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A square flow net is chosen (Figure Ex. 7.1C) with

Db ¼ 1:2 m

4
¼ 0:30 m; DL ¼ ð3:6 m� 0:6 mÞ

10
¼ 0:30 m (7.1.5)

Substituting for all known values gives

q ¼ ð0:05 cm=sÞð0:60 mÞ
�
4

10

�
ð1:20 mÞ

�
m

100 cm

�
¼ 1.440310L4 m3

�
s

(7.1.6)

which agrees with the value computed using Darcy’s law.
If the total discharge per unit length into the page is desired, then

q

t
¼ 1:440� 10�4 m3=s

1:20 m
¼ 1:200� 10�4 m3=s=m (7.1.7)

FIGURE EX. 7.1B (A) Equipotential lines and (B) Flow lines for one-dimensional flow

experiment.
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EXAMPLE PROBLEM 7.2

General Remarks

This example illustrates the manner in which key quantities are computed
from a simple flow net for two-dimensional seepage around a sheet pile.

Problem Statement

Given the flow net shown in Figure Ex. 7.2, assume the hydraulic conductivity
is 10�4 cm/s. The sheet pile is 13 m long (into the paper). The thickness of the
soil layer is 10 m and the sheet pile is driven halfway through the soil. A total
head difference of 6 m of water separates both sides of the sheet pile.

Determine the following:

a) What is the total head (in meters) at Point a?

b) If the total head (in meters) at Point b is 15 m, what is the total head at
Point c?

FIGURE EX. 7.1C Flow net for hypothetical one-dimensional flow experiment.
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c) What is the pressure on the sheet pile at Point e?

d) What is the total head (in meters) at Point d?
e) Compute the amount of flow under the sheet pile for its full length in units

of cubic meters per day.

Solution

Note that the number of flow channels (Nf) is equal to 3, and the number of
equipotential drops (Nd) is equal to 6. Assume that the decrease in total head
(Dh) in between each pair of equipotential lines is approximately the same.

a) The elevation head at Point a is 10.0 m. The pressure head at this point is
6.0 m. The total head at Point a is thus 10.0 þ 6.0 ¼ 16.0 m.

b) Since Points b and c lie along an equipotential line, it follows that the total
head at Point c is equal to that at Point b. Thus hc [ 15 m.

c) The total head at Point e is

he ¼ ha �
�
3

6

�
Dh ¼ 16 m�

�
3

6

�
ð6 mÞ ¼ 13 m (7.2.1)

The elevation head at Point e is ze ¼ 5 m. The pressure head is thus

pe
gw

¼ 13 m� 5 m ¼ 8 m (7.2.2)

The water pressure is thus

pe ¼ gwð8 mÞ ¼ �9:81 kN=m3�ð8 mÞ ¼ 78.5 kPa (7.2.3)

FIGURE EX. 7.2 Symmetrical flow net with sheet pile driven halfway into an aquifer.
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d) The total head at Point d is

hd ¼ ha �
�
5

6

�
Dh ¼ 16 m�

�
5

6

�
ð6 mÞ ¼ 11 m (7.2.4)

e) The discharge under the sheet pile for its full length is

q ¼ kDh

�
Nf

Nd

�
ðwall lengthÞ ¼ ð10�4 cm=sÞð6 mÞ

�
3

6

��
m

100 cm

�
ð13 mÞ

¼ 3:90� 10�5 m3=s

(7.2.5)

Converting to the desired units gives

q ¼ �3:90� 10�5 m3=s
��60 s

min

��
60 min

h

��
24 h

d

�
¼ 3.37 m3=d (7.2.6)

EXAMPLE PROBLEM 7.3

General Remarks

This example illustrates the manner in which key quantities are computed
from a somewhat more complex flow net for two-dimensional seepage around
a concrete structure.

Problem Statement

The concrete structure shown in Figure Ex. 7.3A is built on sandy soil and is
used to retain water. A flow net has been constructed for this structure. The
coefficient of permeability for the soil is 1.2 � 10�2 cm/s.

a) Compute the water uplift pressure at Points A, B, C, D, E, and F.

b) Compute the factor of safety against “boiling” of the sand.
c) Compute the total discharge per unit of length along the wall (into the

paper)

Solution

The datum is located at the elevation of the base of the concrete retaining
structure as shown in Figure Ex. 7.3A. Figure Ex. 7.3B shows the boundary
conditions associated with the two-dimensional seepage problem. These
include two flow lines (the impervious boundary and the concrete retaining
structure) and two equipotential lines (the ground surface on either side of the
concrete retaining structure).
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a) The number of channels in the flow net (Nf) is equal to 3. The total head
loss (Dh) between the head water and tail water is 12.8 m. The number of
head drops (Nd) is approximately 14. The head drop between two adjacent
equipotential lines is thus

DhL ¼ 12:8 m

14
¼ 0:914 m (7.3.1)

The total head at the head water (hhw) is 18.8 m.
At Point A:
The elevation head is zA ¼ 0.0.

FIGURE EX. 7.3B Boundary conditions associated with two-dimensional seepage around

concrete retaining structure.

FIGURE EX. 7.3A Concrete retaining structure with flow net4 (all lengths in meters).

4. Leshchinsky, D., 2010. Personal communication.
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The number of head drops is N z 5.5. The total head is thus

hA ¼ hhw �ðNÞðDhLÞ ¼ 18:8�ð5:5Þð0:914 mÞ ¼ 13:77 m (7.3.2)

The pressure head is

pA
gw

¼ hA � zA ¼ 13:77 m� 0:0 ¼ 13:77 m (7.3.3)

The water pressure is thus

pA ¼ �9:81 kN=m3�ð13:77 mÞ ¼ 135.1kPa (7.3.4)

At Point B:
The elevation head is zB ¼ 0.0.
The number of head drops is N z 6.0. The total head is thus

hB ¼ hhw �ðNÞðDhLÞ ¼ 18:8�ð6:0Þð0:914 mÞ ¼ 13:32 m (7.3.5)

The pressure head is

pB
gw

¼ hB � zB ¼ 13:32 m� 0:0 ¼ 13:32 m (7.3.6)

The water pressure is thus

pB ¼ �9:81 kN=m3�ð13:32 mÞ ¼ 130.6 kPa (7.3.7)

At Point C:
The elevation head is zC ¼ 0.0.
The number of head drops is N z 7.0. The total head is thus

hC ¼ hhw �ðNÞðDhLÞ ¼ 18:8�ð7:0Þð0:914 mÞ ¼ 12:40 m (7.3.8)

The pressure head is

pC
gw

¼ hC � zC ¼ 12:40 m� 0:0 ¼ 12:40 m (7.3.9)

The water pressure is thus

pC ¼ �9:81 kN=m3�ð12:40 mÞ ¼ 121.7 kPa (7.3.10)

At Point D:
The elevation head is zD ¼ 0.0.
The number of head drops is N z 8.0. The total head is thus

hD ¼ hhw �ðNÞðDhLÞ ¼ 18:8�ð8:0Þð0:914 mÞ ¼ 11:49 m (7.3.11)

The pressure head is

pD
gw

¼ hD � zD ¼ 11:49 m� 0:0 ¼ 11:49 m (7.3.12)

The water pressure is thus

pD ¼ �9:81 kN=m3�ð11:49 mÞ ¼ 112.7 kPa (7.3.13)
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At Point E:
The elevation head is zE ¼ 0.0.
The number of head drops is N z 9.0. The total head is thus

hE ¼ hhw �ðNÞðDhLÞ ¼ 18:8�ð9:0Þð0:914 mÞ ¼ 10:57 m (7.3.14)

The pressure head is

pE
gw

¼ hE � zE ¼ 10:57 m� 0:0 ¼ 10:57 m (7.3.15)

The water pressure is thus

pE ¼ �9:81 kN=m3�ð10:57 mÞ ¼ 103.7 kPa (7.3.16)

At Point F:
The elevation head is zF ¼ 0.0.
The number of head drops is N z 9.6. The total head is thus

hF ¼ hhw �ðNÞðDhLÞ ¼ 18:8�ð9:6Þð0:914 mÞ ¼ 10:03 m (7.3.17)

The pressure head is

pF
gw

¼ hF � zF ¼ 10:03 m� 0:0 ¼ 10:03 m (7.3.18)

The water pressure is thus

pF ¼ �9:81 kN=m3�ð10:03 mÞ ¼ 98.4 kPa (7.3.19)

b) The maximum upward hydraulic gradient will occur next to the wall
between the 14th equipotential line and the ground surface. In particular,
the

iexit ¼ DhL
Dl

¼ 0:914 m

4:2 m
¼ 0:218 (7.3.20)

The factor of safety is thus

FS ¼ ic
iexit

¼ 1:0

0:218
¼ 4.6 (7.3.21)

c) The total discharge per unit of length along the wall is computed as
follows:

q ¼ kDh

�
Nf

Nd

�
¼ �1:2� 10�2 cm=s

�� m

100 cm

�
ð12:8 mÞ

�
3

14

�
¼ 3.291310�4 m3=s=m

(7.3.22)

In more commonly used units,

q ¼ �3:291� 10�4 m3=s=m
��60 s

min

��
60 min

h

��
24 h

d

�
¼ 28.4 m3=d=m

(7.3.23)
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Chapter 8

Example Problems Related
to Compressibility and
Settlement of Soils

8.0 GENERAL COMMENTS

The subsequent sections briefly review some key aspects related to
compressibility and settlement of soils. When designing foundations, the
geotechnical engineer seeks to answer two primary questions related to set-
tlement; i.e., (1) how much settlement will occur and (2) how long will it take
for this settlement to occur? The former question is answered in this chapter;
problems related to the second question are investigated in Chapter 9.

8.1 DEFORMATION

As defined in basic Section 4.3, deformation is the change in any dimension of
a body. When materials are loaded (stressed), they deform or strain. Defor-
mation consists of changes in shape (i.e., distortion, quantified by changes in
angle) and changes in size (e.g., changes in area or volume). Figure 8.1 shows
both types of deformation.

FIGURE 8.1 Deformation: (A) change in shape, (B) change in size.
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Deformations can occur immediately on loading (i.e., instantaneously) or
over time (i.e., in a time-dependent manner). Due to their relatively low
permeability, time-dependent deformations are particularly important for
cohesive soils (i.e., clays, silty clays, etc.). The deformation of soils is typi-
cally quantified by measuring its compressibility.

8.2 COMPRESSIBILITY OF SOILS

When soil is loaded, it compresses because of changes in volume due to
(a) deformation of the soil grains (i.e., the solid phase), (b) compression of
the gas and fluid in the pores (voids), and (c) expulsion of gas and fluid from
the pores.

At typical engineering load levels, the deformation of individual soil grains
is negligible. In addition, the pore fluid is typically assumed to be
incompressible.

In light of the aformentioned remarks, the volume of a saturated soil can
thus only change as fluid is squeezed from (or drawn into) the pores (voids).
As fluid flows from the innermost pores to the boundaries of a soil mass, it is
assumed to be governed by Darcy’s law. The flow requires a hydraulic
gradient. If the gradient changes with time, the flow is transient; otherwise it is
steady. In the former case, the pore fluid pressure, and thus the effective stress
change with time. In summary, the variation with time of volume in a soil is
governed by complex interactions between the following quantities:

l Total stress
l Pore fluid pressure
l Effective stress
l Seepage
l Compressibility of the soil

Closely related to the compressibility of soil is the subject of settlement.

8.3 SETTLEMENT

When a soil deposit is loaded by surface (foundation) stresses, it deforms. The
total vertical displacement at the foundation level resulting from the load is
called settlement. Excessive settlement may cause structural damage, espe-
cially if it occurs rapidly.

Load-induced settlement is attributed to two sources; namely the
distortion of change in shape of the soil immediately beneath the load, and
the change in void ratio (and thus volume) of the soil. The former is termed
distortion or contact settlement; the latter is referred to as compression
settlement.
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In general, the total settlement (st) of a loaded soil has three components; i.e.,

st ¼ se þ sc þ ss (8.1)

where se is the immediate settlement, sc is the primary consolidation settle-
ment, and ss is the secondary consolidation settlement. Each of these three
components is now briefly described.

8.3.1 Immediate Settlement

In Section 4.5 the distribution of stresses within a soil mass resulting from
loads applied to the boundary (surface) of the soil mass was briefly discussed.
As the soil is loaded, it will, in general, develop distortional and volumetric
strains. Associated with such strains are displacements of the soil mass; the
most practically important displacement component is typically the vertical
one. The vertical displacement at the level of the foundation is the settlement.

As noted in Section 8.3, in soils the pore fluid and solid phase are typically
assumed to be incompressible. As such, volume changes in a loaded soil can
only occur if fluid is able to drain from the pores. Since the permeability of
cohesive soils is relatively low, it follows that in such soils the immediate
settlement will take place with negligible volume change. As such, this
settlement will be purely distortional.

In computing immediate settlements, the soil is commonly assumed to be a
homogeneous, isotropic linear elastic material. The elastic strains computed
using the formulas mentioned in Section 4.5 are then integrated through the
depth to get displacements of the soil mass.

Although the topic of immediate elastic settlements is often covered (albeit
perhaps briefly) in an introductory course on soil mechanics, it is not discussed
further herein. Instead, it is felt that a detailed treatment of this subject belongs
in a course of foundation design.

8.3.2 Primary Consolidation Settlement

This time-dependent component of the total settlement results from the change
in volume in saturated soils as fluid is forced from the voids. To better un-
derstand the primary consolidation1 settlement, consider a saturated soil mass
that is subjected to an increase in total stress.

1. As mentioned in Chapter 3, soil compaction is an instantaneous process in which the soil is

densified (i.e., its void ratio is reduced) through the expulsion of air from the voids. By contrast,

consolidation is a long-term (time-dependent) process in which fluid is expelled from the voids

of a (typically) saturated soil. The time rate of consolidation is thus greatly affected by a soil’s

permeability.
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l Initially, since it is assumed to be incompressible, the pore fluid carries the
entire increment in applied load (total stress). That is, the excess pore
pressure is equal to the increase in total stress.

l With time, as fluid is expelled from the pores, the soil grains support more
and more of the applied load. The excess pore pressure decreases and
the effective stress increases. Equilibrium is always maintained, so that the
sum of the excess pore pressure and the effective stress is equal to
the .increment in total stress.

l The rate at which pressure dissipates depends on the rate at which fluid
flows from the pores (voids). This, in turn, is a function of the permeability
of the soil.

l As time approaches infinity, the excess pore pressure goes to zero, the pore
pressure returns to hydrostatic conditions, and the soil skeleton fully
supports the additional load.

When saturated cohesionless soils (e.g., gravels, sands, and silts) are
loaded, the excess pore pressure dissipates quickly due to the high permeability
of such soils. When saturated clays are loaded, the dissipation of excess pore
pressure is delayed by the relatively low permeability of the soil. Section 8.7
provides additional details pertaining to the computation of primary consoli-
dation settlement.

8.3.3 Secondary Consolidation Settlement

This component of the total settlement occurs at constant effective stress, with
no change in pore fluid pressure; it is thus time dependent. In cohesionless
soils secondary consolidation settlement is attributed to local particle crushing
but is generally negligible. In cohesive soils this component of settlement is
due to the presence of, and interaction between adsorbed water layers in clays.
In both cases, secondary compression settlement induces changes in volume.
Since the topic of secondary consolidation settlement is not extensively
covered in an introductory course on soil mechanics, it is not discussed further
herein.

Before additional details regarding settlement can be presented, it is
necessary to discuss how the compressibility of soils is quantified.

8.4 QUANTIFYING SOIL COMPRESSIBILITY

As noted in Section 4.4, the solution of problems in engineering mechanics
requires a mathematical description of a material’s behavior. This is realized
through the constitutive relations. In the simplest tests performed on a material
(e.g., uniaxial extension of a metal, uniaxial compression of concrete, etc.), the
material is typically quantified through the value of the elastic modulus (E ),
which represents the slope of the initial straight-line (linear elastic) portion of
the stressestrain curve.
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The quantification of soil compressibility is complicated by the particulate
nature of the material. In particular, unlike metals, concrete, etc., a soil test
specimen must somehow be confined so as to allow a test to be performed on
the material.

Perhaps the simplest test apparatus that can be used to assess the
compressibility of soil is the one-dimensional or oedometer consolidation test
(Figure 8.2).

In the oedometer test the soil specimen is saturated, and care is taken not to
let it dry out (recall Example Problem 1.16). Specimens typically have a
diameter to thickness ratio of at least 3:1. No lateral displacement is permitted
due to the presence of a rigid specimen ring that encircles the specimen.
Drainage is provided through porous stones located on the top and bottom of
the specimen. Load is applied to the specimen through a lever arm. Each
loading increment is usually maintained for 24 h. Each subsequent load
increment is typically doubled. A dial gauge measures compression.

Referring to Figure 8.2, and noting that only principal stresses are acting, it
follows that

s0zs0; s0x ¼ s0y ¼ K0s
0
z (8.2)

where K0 is the coefficient of earth pressure at rest (recall the discussion of
Section 5.5). Since no lateral displacement is permitted due to the presence of
a rigid specimen ring, and since only principal strains are nonzero, it follows
that

εx ¼ εy ¼ gxy ¼ gxz ¼ gyz ¼ 0; εzs0 (8.3)

where εx, εy, and εz are infinitesimal normal strains, and gxy, gxz, and gyz are
engineering shear strains.

FIGURE 8.2 Schematic illustration of a soil specimen in an oedometer test.
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The increment in volumetric strain is then

Dεvol ¼ DV

V
¼ Dεx þ Dεy þ Dεz ¼ Dεz (8.4)

Example Problem 4.6 provides additional insight into the relationship
between stress and strain associated with conditions of one-dimensional
compression.

To relate Dεvol to the change in void ratio, note that for a saturated soil,
V ¼ Vv þ Vs (Figure 8.3).

Since the solid phase is assumed to be incompressible, the increment in
volume change is equal to the increment in void ratio; i.e., DV ¼ DVv. Thus,

Dεvol ¼ DV

V
¼ DVv

Vs þ Vv
¼ DVv=Vs

1þ Vv=Vs
¼ De

1þ e0
(8.5)

where e0 is the initial void ratio.
The results of oedometer tests are typically represented either as plots of

void ratio versus s0zhs0v or as void ratio versus the logarithm of s0zhs0v.
Figure 8.4 shows the latter plot. It is important to note that the relationship
between effective stress and void ratio is independent of time.

As shown in Figure 8.4, the loading portion of the response (points a-b-c)
typically exhibits a change in slope. Removal of the load results in a swelling
or rebound of the soil (points c-d). This portion of the response is attributed to
elastic “rebound” of the particles (both bulky and platy ones), during which
fluid will be drawn into the specimen. Finally, the points d-e-f denote the
reloading phase of the response.

FIGURE 8.3 Phase diagram associated with a saturated soil.
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To facilitate the quantification of the compressibility of a soil, the straight-
line assumptions shown in Figure 8.5 are made.

The compression index (Cc) is defined as the negative of the slope of the
virgin consolidation curve. The swell (rebound) index (Cr) is defined as the
negative of the slope of the swell/recompression curve.2

In light of the assumed linear relationship between void ratio (e) and the
logarithm of vertical effective stress (s0z h s0v), it follows that for the void
ratios e1 and e2, and associated vertical effective stress values s0v1 and s0v2 , the
slope between these two points on the virgin compression line (Figure 8.6) is

�Cc ¼ e1 � e2
log s0v1 � log s0v2

(8.6)

The change in void ratio is thus

De ¼ e1 �e2 ¼ �Cc

�
log s0v1 � log s0v2

�
¼ Cc log

 
s0v2
s0v1

!
(8.7)

FIGURE 8.4 Plot of void ratio versus logarithm of s0zhs0v.

2. Both Cc and Cr are positive quantities, whereas the slopes of the virgin compression and swell/

recompression lines are negative.
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FIGURE 8.5 Definition of compression and swell/recompression indices.

FIGURE 8.6 Calculation of slope of virgin compression line.
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8.5 PRECONSOLIDATION PRESSURE

The maximum past vertical effective stress that a soil has been subjected to is
called the preconsolidation pressure (s0p). If the current vertical effective stress
(s0v) is equal to or greater than s0p, the soil is said to be normally consolidated.
Figure 8.7 shows the location of the preconsolidation pressure in a consoli-
dation curve.

If a soil is allowed to swell to a lower vertical effective stress (s0v), the soil
is said to be overconsolidated. The degree of overconsolidation is quantified
through the overconsolidation ratio (OCR), which is defined as follows:

OCR ¼ s0p
s0v

(8.8)

Thus, OCR ¼ 1.0 for normally consolidated soils, OCR > 1.0 for over-
consolidated soils, and OCR < 1.0 for underconsolidated soils (i.e., ones that
have not yet fully consolidated).

Consider the hypothetical soil deposit shown in Figure 8.8. The moist unit
weight of the upper layer is denoted by g1, and g2 denotes the saturated unit
weight of the lower layer.

FIGURE 8.7 Schematic illustration of the preconsolidation pressure.
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At the point located a distance h below the top of the lower layer, the
vertical total stress is

sv ¼ Hg1 þ hg2 (8.9)

The pore pressure at the same point is u ¼ hgw. The vertical effective stress
at the same point is thus

s0v ¼ sv � u ¼ ðHg1 þ hg2Þ � hgw ¼ Hg1 þ hðg2 � gwÞ (8.10)

l If s0v ¼ s0p, the soil is normally consolidated (i.e., OCR ¼ 1.0).
l If s0v ¼ s0p, the soil is overconsolidated (i.e., OCR > 1.0).
l If s0v ¼ s0p, the soil is underconsolidated (i.e., OCR < 1.0).

8.6 COEFFICIENT OF COMPRESSIBILITY

The coefficient of compressibility (av) is defined as the instantaneous slope of
the void ratio (e) versus vertical effective stress (s0v) curve (units of F�1L2).
That is,

av ¼ � de

ds0v
(8.11)

Remark: Since the slope of the e versus s0v curve will be at different points along

the curve, av will be a function of s0v .

In general, for the two points (s0v1 ; e1) and (s0v2 ; e2) shown in Figure 8.9,

av ¼ � De

Ds0v
¼ � ðe1 � e2Þ�

s0v1 � s0v2
� ¼ e2 � e1

s0v2 � s0v1
(8.12)

FIGURE 8.8 Hypothetical soil deposit used to explain overconsolidation.
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8.7 ULTIMATE PRIMARY CONSOLIDATION SETTLEMENT

As discussed in Section 8.3, since the solid phase is assumed to be incom-
pressible, the increment in volume change is equal to the increment in void
ratio; i.e., DV ¼ DVv. The volumetric strain is thus

Dεvol ¼ DV

V
¼ De

1þ e0
(8.13)

Let h0 equal the initial thickness of a specimen in the oedometer and let A0

equal its original cross-sectional area. Due to the presence of a rigid specimen
ring that encircles the specimen, under one-dimensional consolidation the
cross-sectional area does not change with loading. Thus,

DV

V
¼ De

1þ e0
¼ ðDhÞðA0Þ

ðh0ÞðA0Þ ¼ Dh

h0
0 Dh ¼

�
De

1þ e0

�
h0 (8.14)

Assume that for the same material, the volumetric strain in the laboratory is
equal to that in the field. Thus, for a field deposit of saturated soil with initial
thickness H0, the average primary consolidation settlement will be

sc ¼ DH ¼
�

De

1þ e0

�
H0 ¼ εvolH0 (8.15)

where De and e0 are measured in the laboratory.

FIGURE 8.9 Definition of the coefficient of compressibility.
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The ultimate primary consolidation settlement for each soil layer is
computed using the average initial vertical total stress, the average vertical
total stress increment, and a vertical stressevoid ratio curve for the specific
soil layer as obtained from a laboratory consolidation test. The settlement for
all the compressible layers is then added to obtain the total value for the point
being analyzed.

The average vertical total and effective stress in each layer are the same as
the initial vertical stresses at the middle of the layer because stress increases in
direct proportion to the depth (recall the development presented in Chapter 5).

The average increase in vertical total and effective stress is not, however,
the same as the stress at the middle of the layer because the relation between
stress increase and depth is not linear. If the soil layer is rather thin and is
located relatively deep in the soil deposit, it is sufficient to use the stress at the
middle of the layer as the average. If the layer is thicker than a footing width
and if its depth is less than twice the width, it should be divided into thinner
sublayers and the average vertical stress computed for each sublayer.3

8.8 COEFFICIENT OF VOLUME COMPRESSIBILITY,
MODIFIED COMPRESSION, AND SWELL INDICES

Since Dεv ¼ De/(1 þ e0), for uniaxial conditions, it is also possible to plot the
volumetric strain εvol versus s

0
v or versus log

�
s0v
�
.

l For plots of εvol versus s
0
v (see Figure 8.10),

The slope of the resulting curve at some point is

mv ¼ � dεvol
ds0v

(8.16)

where mv is the coefficient of volume compressibility (units of F�1L2).
Recalling the definition of the coefficient of compressibility; i.e.,

av ¼ � De

Ds0v
(8.17)

it follows that

Dεvol ¼ De

1þ e0
¼ �av

�
Ds0v

�
1þ e0

¼ �mv

�
Ds0v

�
(8.18)

Thus,

mv ¼ av
1þ e0

(8.19)

3. Sowers, G.B., Sowers, G.F., 1970. Introductory Soil Mechanics and Foundations. Macmillan

Publishing Co., Inc., New York, NY.
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l For plots of εvol versus log
�
s0v
�
(see Figure 8.11),

The slope of the virgin consolidation portion of the resulting curve is

Ccε ¼
Dεvol

log

 
s0v2
s0v1

! (8.20)

The quantity Cc
ε
is called the modified compression index.

Recalling the definition of the compression index; i.e.,

Cc ¼ � De

log

 
s0v2
s0v1

! ¼ �Dεvolð1þ e0Þ

log

 
s0v2
s0v1

! ¼ ð1þ e0ÞCcε (8.21)

it follows that

Ccε ¼ �
�

De

1þ e0

�
1

log

 
s0v2
s0v1

! ¼ Cc

ð1þ e0Þ (8.22)

FIGURE 8.10 Definition of the coefficient of volume compressibility.
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In a similar manner, the slope of the swell/recompression portion of the
εvol versus log

�
s0v
�
plot (Figure 8.11) is called the modified swell index Cr

ε
.

By analogy to the modified compression index, Cr
ε
is defined as follows:

Crε ¼
Cr

ð1þ e0Þ (8.23)

EXAMPLE PROBLEM 8.1

General Remarks

This example problem gives insight into the preconsolidation stress and the
overconsolidation ratio.

Problem Statement

A sample of San Francisco Bay Mud (a marine silty clay) has an initial void
ratio (e0) of 1.42, an associated vertical effective stress (s0v0) of 24.5 kPa, and
an overconsolidation ratio (OCR) of 8.0. (a) Determine the preconsolidation
stress (s0p), and (b) If the recompression index Cr ¼ 0.10 determine the void
ratio associated with s0p.

FIGURE 8.11 Definition of the modified compression and swell indices.
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Solution

Figure Ex. 8.1 schematically shows the relationship between void ratio and
vertical effective stress for this problem.

a) Recalling the definition of the overconsolidation ratio from Eq. (8.8); i.e.,

OCR ¼ s0p
s0v0

(8.1.1)

the preconsolidation stress is thus

s0p ¼ ðOCRÞ
�
s0v0
�
¼ ð8:0Þð24:5 kPaÞ ¼ 196.0 kPa (8.1.2)

b) From the slope of the swell line in Figure Ex. 8.1,

e0 � ep ¼ �Cr

�
log s0v0 � log s0p

�
¼ Cr log

 
s0p
s0v0

!
¼ Cr logðOCRÞ (8.1.3)

The void ratio associated with s0p is thus,

ep ¼ e0 �Cr logðOCRÞ ¼ 1:42�ð0:10Þlogð8:0Þ ¼ 1.33 (8.1.4)

FIGURE EX. 8.1 Plot of void ratio versus logarithm of vertical effective stress.
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EXAMPLE PROBLEM 8.2

General Remarks

This example problem illustrates the manner in which the change in void ratio,
and thus the average ultimate primary consolidation settlement, is computed
from the relative density.

Problem Statement

A well-graded sand with a minimum void ratio of 0.35 and a maximum void
ratio of 0.70 has a relative density (Dr) of 39%. The specific gravity of solids
(Gs) for the sand is 2.69. Determine how much a 5-m thick stratum of the sand
will settle if it is densified to a relative density of 70%.

Solution

The initial void ratio (e0) of the sand is first determined. The definition of
relative density is given by Eq. (3.12);

Dr ¼
�

emax � e

emax � emin

�
� 100% (8.2.1)

Solving for e ¼ e0 gives

e0 ¼ emax �ðDrÞðemax � eminÞ ¼ 0:70�ð0:39Þð0:70� 0:35Þ ¼ 0:564 (8.2.2)

In a similar manner, the void ratio (e) at a relative density of 70% is next
computed; i.e.,

e ¼ emax �ðDrÞðemax � eminÞ ¼ 0:70�ð0:70Þð0:70� 0:35Þ ¼ 0:455 (8.2.3)

The average ultimate settlement of the 5-m thick stratum of the sand is thus

DH ¼
�

De

1þ e0

�
H0 ¼

�
0:564� 0:455

1þ 0:564

�
ð5 mÞ ¼ 0.347 m ¼ 34.7 cm

(8.2.4)

EXAMPLE PROBLEM 8.3

General Remarks

This example problem presents calculations associated with volume change
determination using an oedometer test.

Problem Statement

A saturated sample of a silty sand 2.54 cm thick and 10.0 cm in diameter is
tested in an oedometer. After loading, the sample is compressed to a thickness
of 2.05 cm. The initial void ratio (e0) in the sample was found to be 1.420. The
specific gravity of solids (Gs) for the silty sand is 2.70.
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Determine (a) the initial saturated unit weight (gsat), (b) the initial moisture
content (w0), (c) the void ratio (e1) following compression, (d) the saturated
unit weight following compression, and (e) the change in moisture content due
to compression.

Solution

a) From Case 1.7 of Chapter 1,

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:70þ 1:420Þ

1þ 1:420
¼ 16.70 kN=m3 (8.3.1)

b) Recalling Case 1.3 of Chapter 1, it follows that for S ¼ 100%, the initial
moisture content is thus

w ¼
�
Se

Gs

�
� 100% 0 w0 ¼

�ð1:00Þð1:420Þ
2:70

	
� 100% ¼ 52.6% (8.3.2)

c) The determination of the void ratio after compression requires knowledge
of the volume change in the sample. Initially,

e0 ¼ Vv

Vs
0Vv ¼ e0Vs ¼ 1:420Vs (8.3.3)

Due to the fact that the sample is circular in cross-section,

V0 ¼ p

4
d2H0 ¼ p

4
ð10:0 cmÞ2ð2:54 cmÞ ¼ 199:5 cm3 (8.3.4)

All compression in the sample is assumed to be produced by a
reduction of void ratio due to the expulsion of pore fluid. In addition, since
the rigid confining ring in the oedometer prevents changes in the diameter,
the change in total volume is thus

DV ¼ p

4
d2ðH0 � HÞ ¼ p

4
ð10:0 cmÞ2ð2:54� 2:05 cmÞ ¼ 38:49 cm3 (8.3.5)

where H is the thickness of the sample after compression. Recalling that

DV ¼
�

De

1þ e0

�
V0 (8.3.6)

the change in void ratio is thus

De ¼
�
DV

V0

�
ð1þ e0Þ ¼

�
38:49 cm3

199:5 cm3

�
ð1þ 1:420Þ ¼ 0:467 (8.3.7)
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Since, in general, De ¼ e0 � e1, the void ratio following compression is
thus

e1 ¼ e0 � De ¼ 1:420� 0:467 ¼ 0.953 (8.3.8)

d) After compression,

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:70þ 0:953Þ

1þ 0:953
¼ 18.35 kN=m3 (8.3.9)

e) Finally, moisture content after compression is

w1 ¼
�
Se

Gs

�
� 100% ¼

�ð1:00Þð0:953Þ
2:70

	
� 100% ¼ 35:3% (8.3.10)

The change in moisture content caused by compression is thus

Dw ¼ w0 � w1 ¼ 52:6� 35:3 ¼ 17.3% (8.3.11)

EXAMPLE PROBLEM 8.4

General Remarks

This example problem illustrates how compression curves are constructed and
interpreted.

Problem Statement

The data given in Table Ex. 8.4 were obtained from a consolidation test on a
sample of clay taken from a 14.5 m thick deposit.

The average existing overburden pressure on the clay layer is 320 kPa. It is
proposed to construct a building at this site that will increase the average
vertical total stress on the clay layer to 560 kPa.

a) Plot the above data on a semilogarithmic graph. Estimate the compression
and swell/recompression indices.

b) Estimate the preconsolidation stress.
c) Compute the average ultimate primary consolidation settlement that the

clay will undergo under the load of the proposed building.

Solution

a) Figure Ex. 8.4A shows the semilogarithmic graph of the void ratio versus
the logarithm of the vertical effective stress.
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Figure Ex. 8.4B shows the straight-line approximations for the virgin
compression and swell/recompression portions of the plot. Using data
points along the former portion of the curve,

Cc ¼ � ð0:878� 0:691Þ
logð313:6Þ �logð1254Þ ¼ 0.311 (8.4.1)

TABLE EX. 8.4 Effective Stress and Void Ratio Data for a Clay

Consolidation Stress (kPa) Void Ratio

1.960Eþ01 9.530E-01

3.920Eþ01 9.480E-01

7.840Eþ01 9.380E-01

1.568Eþ02 9.200E-01

3.136Eþ02 8.780E-01

6.272Eþ02 7.890E-01

1.254Eþ03 6.910E-01

3.136Eþ02 7.190E-01

7.840Eþ01 7.540E-01

1.960Eþ01 7.910E-01

10 100 1000
Logarithm of vertical effective stress (kPa)
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FIGURE EX. 8.4A Consolidation curve for data given in Table Ex. 8.4.
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In a similar manner, using data points along the swell/recompression
portions of the plot gives

Cr ¼ � ð0:791� 0:691Þ
logð19:6Þ �logð1254Þ ¼ 0.055 (8.4.2)

The ratio Cr/Cc ¼ 0.055/0.311 ¼ 0.18 falls within the expected range4

of 0.10e0.20.

b) The preconsolidation stress is estimated to be approximately 206 kPa
(Figure Ex. 8.4C). If necessary, this value can be refined by using Casa-
grande’s construction.5

c) Due to the proposed building, the average effective stress in the clay layer
will, at ultimate conditions, increase to 560 kPa. The computation of the
average ultimate primary consolidation settlement requires the associated
change in void ratio. This information is obtained from the consolidation
curve in the manner shown in Figure Ex. 8.4D.
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Logarithm of vertical effective stress (kPa)
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Cc

Cr

-1

-1

FIGURE EX. 8.4B Straight-line approximations for compression and swell/recompression por-

tions of the consolidation curve.

4. Holtz, R.D., Kovacs, W.D., Sheahan, T.C., 2011. An Introduction to Geotechnical Engineering.

Pearson Education, Inc., Upper Saddle River, NJ.

5. Casagrande, A., 1936. Determination of the Pre-Consolidation Load and Its Practical Signifi-

cance, Discussion D-34. In: Proceedings of the First International Conference on Soil

Mechanics and Foundation Engineering. Cambridge, MA, III, pp. 60e64.
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In particular, the change in void ratio is approximately equal to

e ¼ 0:878� 0:802 ¼ 0:076 (8.4.3)

The average ultimate primary consolidation settlement is thus

sc ¼
�

De

1þ e0

�
H0 ¼

�
0:076

1þ 0:878

�
ð14:5 mÞ ¼ 0.59 m (8.4.4)
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FIGURE EX. 8.4C Estimate of the preconsolidation pressure.
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FIGURE EX. 8.4D Estimates of the void ratios from known effective stress values.
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EXAMPLE PROBLEM 8.5

General Remarks

This example problem illustrates how consolidation curves are constructed for
use in problems involving critical state soil mechanics.6 In critical state soil
mechanics, consolidation curves are represented as plots of void ratio (e) as the
ordinate versus the natural logarithm of the mean normal effective stress as the
abscissa. The latter is defined as (also recall the discussion of mean stress
given in Section 4.2.3)

p0 ¼ s01 þ s02 þ s03
3

(8.5.1)

where s01, s
0
2, and s03 are principal effective stresses. In oedometer (K0) tests

s02 ¼ s03. In isotropic compression tests, s01 ¼ s02 ¼ s03.
The slope of the virgin compression line in e� ln p0 space is denoted by l.

The slope of the swell/recompression curve in the same space is denoted by k.
The critical state indices l and k are related to compression and swell indices
Cc and Cr in the following manner:

l ¼ Cc

2:303
; k ¼ Cr

2:303
(8.5.2)

Problem Statement

Using the effective stress versus void ratio data given in Tables Ex. 8.5AeC,
create a separate void ratio (ordinate) versus ln p0(abscissa) plot for each of the
following soils. From these plots determine values for the compression
parameter l and the swell/recompression parameter k for each of the above
soils.

Solution

Figure Ex. 8.5A shows the consolidation curve for Bay Mud. From the
straight-line fits of the virgin compression and swell/recompression lines, l
and k are found to be 0.239 and 0.049, respectively.

Figure Ex. 8.5B shows the consolidation curve for Edgar Plastic Kaolin.
From the straight-line fits of the virgin compression and swell/recompression
lines, l and k are found to be 0.098 and 0.014, respectively.

Finally, Figure Ex. 8.5C shows the consolidation curve for Kaolin. From
the straight-line fits of the virgin compression and swell/recompression lines, l
and k are found to be 0.330 and 0.061, respectively.

6. Schofield, A.N., Wroth, C.P., 1968. Critical State Soil Mechanics. McGraw-Hill Book Co., Inc.,

London, UK.
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TABLE EX. 8.5A Effective Stress and Void Ratio Data for Bay

Mud, as Reported by Kavazanjianaa

Effective Isotropic Consolidation Stress (kg/cm2) Void Ratio

3.034E-01 1.950Eþ00

5.024E-01 1.813Eþ00

5.022E-01 1.789Eþ00

9.924E-01 1.567Eþ00

2.262Eþ00 1.297Eþ00

2.042Eþ00 1.302Eþ00

1.001Eþ00 1.326Eþ00

5.047E-01 1.363Eþ00

2.493E-01 1.407Eþ00

aKavazanjian Jr., E., 1978. A Generalized Approach to the Prediction of the
Stress-Strain-Time Behavior of Soft Clay (Dissertation submitted in partial
satisfaction of the requirements for the degree of Doctor of Philosophy).
University of California, Berkeley, California.

TABLE EX. 8.5B Mean Normal Effective Stress and Void Ratio

Data for Edgar Plastic Kaolin, as Reported by Ladea

p0 (kPa) Void Ratio

98.00 1.1750

147.00 1.1460

196.00 1.1140

245.00 1.0920

294.00 1.0740

343.00 1.0580

392.00 1.0400

294.00 1.0430

196.00 1.0470

98.00 1.0600

196.00 1.0510

294.00 1.0470

aLade, P.V., 1990. Single-hardening model with application to NC clay. Journal
of Geotechnical Engineering, ASCE 116 (3), 394e414.
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TABLE EX. 8.5C Mean Normal Effective Stress and Void Ratio

Data for Kaolin, as Reported by Parry and Nadarajaha

Consolidation Stress (kPa) Void Ratio

245.539 1.3099

279.494 1.3046

347.803 1.2907

414.514 1.2762

486.019 1.2675

551.132 1.2634

487.617 1.3203

414.914 1.3760

314.647 1.4375

248.336 1.5484

183.222 1.6319

aParry, R.H.G., Nadarajah, V., 1973. A volumetric yield locus for lightly over-
consolidated clay. Geotechnique 23 (3), 450e453.

FIGURE EX. 8.5A Plot of void ratio versus natural logarithm of mean normal effective stress for

Bay Mud.
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EXAMPLE PROBLEM 8.6

General Remarks

This example problem illustrates how to compute the preconsolidation pres-
sure, as well as the average ultimate primary consolidation settlement.

FIGURE EX. 8.5C Plot of void ratio versus natural logarithm of mean normal effective stress for

Kaolin.

FIGURE EX. 8.5B Plot of void ratio versus natural logarithm of mean normal effective stress for

Edgar Plastic Kaolin.
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Problem Statement

The soil profile at a site for a proposed parking garage is shown in
Figure Ex. 8.6. It consists of a 10.6 m think layer of fine sand that is un-
derlain by a 2.40 m thick layer of overconsolidated Chicago clay. Below the
clay is a deposit of coarse sand. The groundwater table was observed at a
depth of 3.5 m below the ground surface. Assume the soil above the
groundwater table to be saturated. In this problem the effect of capillarity is
ignored.

The specific gravity of solids (Gs) for the fine sand is 2.70 and its average
void ratio (e) is 0.780. For the Chicago clay layer, Gs ¼ 2.68 and the moisture
content is 45.8%. The results from a one-dimensional (oedometer) consoli-
dation test on a sample of the same clay from the middle of the layer give a
compression index (Cc) of 0.265, a recompression index (Cr) of 0.050, and an
overconsolidation ratio (OCR) of 2.5.

The parking garage will impose a vertical stress increase of 150 kPa
in the middle of the clay layer. Assume the unit weight of water to be
9.81 kN/m3.

a) First determine the average initial void ratio in the clay layer.

b) Next determine the vertical effective stress at the center of the clay layer
before applying the garage load.

c) Then determine the preconsolidation pressure s0p.
d) Finally, using the information from parts (b) and (c), determine the average

ultimate primary consolidation settlement (sc) in millimeters.

Fine sand layer

applied building load

Clay layer 2.4 m

Impermeable layer

10.6 m

3.5 m

FIGURE EX. 8.6 Schematic illustration of soil profile at the site of a proposed parking garage.
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Solution

a) The initial void ratio in the Chicago clay layer is obtained using the
equation developed in Case 1.3 of Chapter 1; i.e.,

e ¼ Gsw ¼ ð2:68Þð0:458Þ ¼ 1.227 (8.6.1)

b) Determination of the vertical effective stress at the middle of the clay layer
first requires the saturated unit weights for the fine sand and Chicago clay
layers. For the fine sand layer

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:70þ 0:78Þ

1þ 0:78
¼ 19:18 kN=m3 (8.6.2)

Similarly, for the clay layer,

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:68þ 1:227Þ

1þ 1:227
¼ 17:21 kN=m3 (8.6.3)

The vertical total stress at the center of the clay layer is thus

sv0 ¼
�
19:18 kN=m3�ð10:6 mÞ þ �17:21 kN=m3�ð1:2 mÞ ¼ 223:96 kPa

(8.6.4)

The initial pore pressure at the same point is

u0 ¼
�
9:81 kN=m3�½ð10:6� 3:50 mÞ þ 1:2 m� ¼ 81:42 kPa (8.6.5)

The vertical effective stress at the center of the clay layer is thus

s0v0 ¼ sv0 � u0 ¼ 223:96� 81:42 ¼ 142.5 kPa (8.6.6)

c) The preconsolidation pressure stress is determined from the definition of
the overconsolidation ratio; i.e.,

OCR ¼ s0p
s0v0

0 s0p ¼ ðOCRÞs0v0 ¼ ð2:50Þð142:5 kPaÞ ¼ 356.3 kPa (8.6.7)

d) To determine the average ultimate primary consolidation settlement, note
that after the load from the parking garage is applied, the effective stress at
the center of the clay layer will be

s0v ¼ s0v0 þ Dsv0 ¼ 142:5þ 150 ¼ 292:5 kPa (8.6.8)
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Since s0v < s0p, the clay layer is overconsolidated. The average ultimate
primary consolidation settlement is thus computed as follows:

schDH ¼
�

De

1þ e0

�
H0 (8.6.9)

where

De ¼ Cr log

 
s0v0 þ Ds0v

s0v0

!
¼ ð0:050Þlog

�
292:5 kPa

142:5 kPa

�
¼ 0:016 (8.6.10)

Thus,

sc ¼
�

0:016

1þ 1:227

�
ð2:40 mÞ

�
1000 mm

m

�
¼ 16.8 mm (8.6.11)

Remark: Another way of quantifying that the clay layer is overconsolidated is

through its overconsolidation ratio after the load from the parking garage is

applied; i.e.,

OCR ¼ s0p
s0v

¼ 356:3 kPa

292:5 kPa
¼ 1:22 > 1:00

EXAMPLE PROBLEM 8.7

General Remarks

This example problem illustrates how to compute the preconsolidation pres-
sure, as well as the average ultimate primary consolidation settlement.

Problem Statement

The construction plan for a particular site calls for the loading of a 15.5 m
thick soft clay layer by a 4 m thick layer of fill material consisting of sand and
gravel. The groundwater table is located at the surface of the clay layer.

The moist unit weight of the sand/gravel layer is 19.5 kN/m3. At the center
of the soft clay layer the moisture content (w) is 0.548 and the specific gravity
of solids (Gs) is 2.69. From a consolidation test on this soil, the pre-
consolidation pressure was found to be 102.0 kPa. Finally, the compression
index (Cc) and swell index (Cr) were found to be equal to 0.301 and 0.060,
respectively.

(a) Calculate the average ultimate primary consolidation settlement that
will occur after placement of the sand/gravel layer. (b) How much will the clay
layer rebound (heave) when the sand/gravel layer is removed?

358 Soil Mechanics



Assume that the sand/gravel layer is placed relatively quickly and that the
deformations are one dimensional. Neglect capillary rise above the ground-
water level in this layer.

Solution

Before placement of the fill, the initial void ratio or the soft clay layer is
obtained using the equation developed in Case 1.3 of Chapter 1; i.e.,

e ¼ Gsw ¼ ð2:70Þð0:548Þ ¼ 1:480 (8.7.1)

The saturated unit weight is thus

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:69þ 1:480Þ

1þ 1:480
¼ 16:50 kN=m3 (8.7.2)

At the center of the clay layer, the vertical total stress is

sv0 ¼
�
16:50 kN=m3��15:5 m

2

�
¼ 128:9 kPa (8.7.3)

The initial pore pressure at the same point is

u0 ¼
�
9:81 kN=m3��15:5 m

2

�
¼ 76:0 kPa (8.7.4)

The vertical effective stress at the center of the clay layer is thus

s0v0 ¼ sv0 � u0 ¼ 128:9� 76:0 ¼ 52:9 kPa (8.7.5)

Since s0v0 is less than the preconsolidation pressure s0p, it follows that the
soft clay layer is overconsolidated. The associated overconsolidation ratio is

OCR ¼ s0p
s0v0

¼ 102:0 kPa

52:9 kPa
¼ 1:93 (8.7.6)

a) The increment in total stress attributed to the sand/gravel fill is

Dsv ¼
�
19:5 kN=m3�ð4 mÞ ¼ 78:0 kPa (8.7.7)

At ultimate conditions all excess pore fluid pressure has dissipated and
Ds0v ¼ Dsv. As such, the new effective stress state is thus

s0v ¼ s0v0 þ Ds0v ¼ 52:9þ 78:0 ¼ 130:9 kPa (8.7.8)

Since s0v > s0p, the average primary consolidation settlement must be
computed in two parts. In particular, the first portion of the response takes
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place along the swell/recompression line between s0v0 ¼ 52:9 kPa and
s0p ¼ 102:0 kPa (Figure Ex. 8.7A). The associated change in void ratio is

De1 ¼ �Crðlog 52:9� log 102:0Þ ¼ ð0:060Þlog
�
102:0

52:9

�
¼ 0:017 (8.7.9)

The second portion of the response takes place along the virgin
compression line between s0p ¼ 102:0 kPa and s0v ¼ s0v0 þ Ds0v ¼ 130:9 kPa
(Figure Ex. 8.7A). The associated change in void ratio is

De2 ¼ �Crðlog 102:0� log 130:9Þ ¼ ð0:301Þlog
�
130:9

102:0

�
¼ 0:033 (8.7.10)

The total average ultimate primary consolidation settlement is thus

schDH ¼
�

De1
1þ e0

�
H0 þ

�
De2

1þ e0

�
H0 ¼

�
De1 þ De2
1þ e0

�
H0

¼
�
0:017þ 0:033

1þ 1:480

�
ð15:5 mÞ ¼ 0:311 m

(8.7.11)

b) The heave associated with the removal of the sand/gravel fill takes place
along the swell/recompression line that begins from s0v ¼ 130:9 kPa and
ends at the point s0v0 ¼ 52:9 kPa (Figure Ex. 8.7B). Thus,

FIGURE EX. 8.7A Consolidation curve associated with application of the fill (not to scale).
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sswell ¼ Cr log

�
s0v
s0v0

�
¼ ð0:060Þlog

�
130:9

52:9

�
¼ 0:024 m (8.7.12)

The residual settlement is thus

sresidual ¼ sc � sswell ¼ 0:311� 0:024 ¼ 0.287 m (8.7.13)

EXAMPLE PROBLEM 8.8

General Remarks

This example problem illustrates the manner in which the average ultimate
primary consolidation settlement is computed.

Problem Statement

Given the soil deposit shown in Figure Ex. 8.8, the groundwater table is
located at a depth d ¼ 1 m below the initial ground surface. A 6 m thick clay
layer underlies the 4 m thick sand layer.

The moist sand above the groundwater table has a unit weight (g) equal to
19.5 kN/m3. Below the groundwater table the sand has a saturated unit weight
(gsat) of 20.0 kN/m3. The results of laboratory tests on a sample of the clay
from the middle of the layer give a specific gravity of solids (Gs) equal to 2.65,
a natural moisture content (w) of 60%, and a liquid limit (LL) of 75%. Estimate
the average ultimate primary consolidation settlement (sc) of the clay if the

FIGURE EX. 8.7B Consolidation curve associated with removal of the fill (not to scale).
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ground level is raised by the addition of a 2 m thick fill of sand with a moist
unit weight (g) of 19.0 kN/m3.

Solution

Since the clay is saturated, the initial void ratio is simply

e0 ¼ Gsw ¼ ð2:65Þð0:60Þ ¼ 1:590 (8.8.1)

The saturated unit weight of the clay layer is next computed as

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:65þ 1:590Þ

1þ 1:590
¼ 16:06 kN=m3 (8.8.2)

Prior to addition of the fill, the vertical total stress at the middle of the clay
layer is thus

sv0 ¼
�
19:5 kN=m3�ð1 mÞ þ �20:0 kN=m3�ð3 mÞ þ �16:06 kN=m3�ð3 mÞ

¼ 127:7 kN=m2

(8.8.3)

The initial pore fluid pressure at this location is

u0 ¼
�
9:81 kN=m3�ð3þ 3 mÞ ¼ 58:9 kN=m2 (8.8.4)

The vertical effective stress at the middle of the clay layer is thus

s0v0 ¼ 127:7� 58:9 ¼ 68:8 kN=m2 (8.8.5)

FIGURE EX. 8.8 Schematic illustration of soil deposit subjected to loading generated by raising

the ground level.
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At “ultimate” conditions the increment in effective stress is equal to the
increment in total stress attributed to placement of the fill. Thus,

Ds0v ¼
�
19:0 kN=m3�ð2 mÞ ¼ 38:0 kN=m2 (8.8.6)

The change in void ratio associated with this stress increment will be
computed as follows:

De ¼ Cc log

 
s0v0 þ Ds0v

s0v0

!
(8.8.7)

Lacking any additional information concerning the relationship between
changes in void ratio and those in effective stress, the compression index is
estimated using the empirical expression for soft clays that was proposed by
Terzaghi and Peck7; i.e.,

Cc ¼ 0:009ðLL� 10Þ ¼ 0:009ð75� 10Þ ¼ 0:585 (8.8.8)

Thus,

De ¼ ð0:585Þlog
�
68:8þ 38:0

68:8

�
¼ 0:112 (8.8.9)

Finally, the average ultimate primary consolidation settlement is computed
as follows:

sc ¼
�

De

1þ e0

�
H0 ¼

�
0:112

1þ 1:590

�
ð6 mÞ ¼ 0:259 m ¼ 259 mm (8.8.10)

EXAMPLE PROBLEM 8.9

General Remarks

This example problem illustrates the manner in which the average ultimate
primary consolidation settlement is computed.

Problem Statement

A large embankment is to be built on the 5 m thick layer of normally
consolidated clay that is overlain by a 2-m thick layer of sandy soil in the
manner shown in Figure Ex. 8.9. The groundwater table is located at the
surface of the clay layer, and capillary rise in the sandy soil is negligible.

7. Terzaghi, K., Peck, R.B., 1967. Soil Mechanics in Engineering Practice, second ed. John Wiley

and Sons, New York, NY.
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The unit weight of the sandy soil is 18.5 kN/m3. The clay has a specific
gravity of solids (Gs) equal to 2.68 and a moisture content (w) of 50.2%. The
results from a one-dimensional (oedometer) consolidation test on a sample of
the same clay from the middle of the layer give an average value of 0.245 for
the compression index (Cc).

If the final (ultimate) effective stress at the middle of the layer after the
application of the embankment loading is 120 kN/m2, what is the average
ultimate primary consolidation settlement of the clay layer resulting from this
loading?

Solution

Since the clay later is saturated, the initial void ratio is computed using the
expression developed in Case 1.3 of Chapter 1; i.e.,

e0 ¼ Gsw ¼ ð2:68Þð0:502Þ ¼ 1:345 (8.9.1)

The saturated unit weight of the clay layer is thus

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð9:81 kN=m3Þð2:68þ 1:345Þ

1þ 1:345
¼ 16:84 kN=m3 (8.9.2)

Prior to construction of the large embankment, the vertical total stress at
the middle of the clay layer is

sv ¼
�
18:5 kN=m3�ð2 mÞ þ �16:84 kN=m3�ð2:5 mÞ ¼ 79:10 kN=m2 (8.9.3)

Sandy soil

applied embankment load

Clay layer

Impermeable layer

2 m

5 m

FIGURE EX. 8.9 Soil profile subjected to embankment loading.
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The initial pore fluid pressure at this location is

u ¼ �9:81 kN=m3�ð2:5 mÞ ¼ 24:53 kN=m2 (8.9.4)

The vertical effective stress at the middle of the clay layer is thus

s0v ¼ 79:10� 24:53 ¼ 54:57 kN=m2 (8.9.5)

The change in void ratio at the middle of the clay layer is next computed
using the given value of the compression index. In particular,

De ¼ �Cc

�
log s00 � log s01

� ¼ �0:245ðlog 54:57� log 120:0Þ

¼ 0:245 log

�
120:0

54:57

�
¼ 0:084

(8.9.6)

The average ultimate primary consolidation settlement is thus

sc ¼
�

De

1þ e0

�
H0 ¼

�
0:084

1þ 1:345

�
ð5 mÞ ¼ 0:179 m ¼ 179 mm (8.9.7)

EXAMPLE PROBLEM 8.10

General Remarks

Since the duration of consolidation tests is generally quite long, several
empirical expressions have been proposed to estimate the compression index
Cc from other quantities typically measured when testing soil. In this way,
lengthy consolidation tests are avoided when determining Cc. This example
problem investigates the effect that the choice of such an empirical expression
has on the average ultimate primary consolidation settlement.

Problem Statement

The soil profile at a site for a proposed office building consists of a layer of
fine sand 10.6 m thick above a layer of soft, normally consolidated 2.2 m thick
clay layer in the manner shown in Figure Ex. 8.10. Underlying the clay is a
layer of stiff coarse sand. The groundwater table was observed to be at a depth
of 3.2 m below ground level. The soil above the ground water table is assumed
to be saturated.

Laboratory tests indicate that the void ratio (e) for the sand is equal to
0.758 and that the specific gravity of solids (Gs) is 2.67. The moisture content
(w) of the clay layer is 43%, its liquid limit (LL) is 45%, and Gs is 2.70.

Using three different empirical expressions for the compression index
(Cc), determine the effect of these expressions on the maximum allowable
vertical effective stress increase that the building can impose on the middle
of the clay layer so that the primary consolidation settlement (sc) does not
exceed 90 mm.
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Solution

The unit weights of the sand and clay layers are first computed. For the fine
sand layer,

gsat ¼
gwðGs þ eÞ

1þ e
¼ �9:81 kN=m3��2:67þ 0:758

1þ 0:758

�
¼ 19:13 kN=m3

(8.10.1)

For the saturated clay layer, the initial void ratio is

e0 ¼ Gsw ¼ ð2:70Þð0:43Þ ¼ 1:161 (8.10.2)

The saturated unit weights is thus

gsat ¼
gwðGs þ eÞ

1þ e
¼ �9:81 kN=m3��2:70þ 1:161

1þ 1:161

�
¼ 17:53 kN=m3

(8.10.3)

The effective vertical stress at the mid-depth of the clay layer is next
computed. The total vertical stress at this depth is

sv ¼
�
19:13 kN=m3�ð10:6 mÞ þ �17:53 kN=m3�ð1:1 mÞ ¼ 222:1 kN=m2

(8.10.4)

The water fluid pressure is

u ¼ �9:81 kN=m3�ð7:4þ 1:1 mÞ ¼ 83:39 kN=m2 (8.10.5)

Fine sand layer

applied surface load

Clay layer 2.2 m

Coarse sand

10.6 m

3.2 m

FIGURE EX. 8.10 Schematic illustration of soil profile at site of future office building.
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The effective vertical stress at this depth is thus

s0v ¼ 222:1� 83:39 ¼ 138:7 kN=m2 (8.10.6)

In general, the primary consolidation settlement is given by

sc ¼
�

H0

1þ e0

�
Cc log

�
s0v þ Ds0v

s0v

�
(8.10.7)

Thus,

log

�
s0v þ Ds0v

s0v

�
¼ sc

�
1þ e0
CcH0

�
(8.10.8)

s0v þ Ds0v
s0v

¼ 10

�
sc

�
1þe0
CcH0

�	
(8.10.9)

Ds0v ¼ s0v

8>>><
>>>:
10

�
sc

�
1þe0
CcH0

�	
� 1

9>>>=
>>>;

(8.10.10)

Substituting all known values gives the following general expression for
the allowable increment in effective vertical stress:

Ds0v ¼
�
138:7 kN=m2�

8>>><
>>>:
10

�
ð0:090 mÞ

�
1þ1:161
Ccð2:2 mÞ

�	
� 1

9>>>=
>>>;

(8.10.11)

l Using the empirical expression proposed by Terzaghi and Peck (1967)8, the
compression index is

Cc ¼ 0:009ð45� 10Þ ¼ 0:315 (8.10.12)

Thus,

Ds0v ¼
�
138:7 kN=m2�

8>><
>>:10

�
ð0:090 mÞ

�
1þ1:161

ð0:315Þð2:2 mÞ

�	
� 1

9>>=
>>; ¼ 126.0 kN=m2

(8.10.13)

8. Terzaghi, K., Peck, R.B., 1967. Soil Mechanics in Engineering Practice, second ed. John Wiley

and Sons, New York, NY.
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l If the empirical expression proposed by Azzouz et al. (1976)9 is used
instead, the compression index is

Cc ¼ 0:40ðe0 � 0:25Þ ¼ 0:40ð1:161� 0:25Þ ¼ 0:364 (8.10.14)

Thus,

Ds0v ¼
�
138:7 kN=m2�

8>>><
>>>:
10

�
ð0:090 mÞ

�
1þ1:161

ð0:364Þð2:2 mÞ

�	
� 1

9>>>=
>>>;

¼ 103.9 kN=m2

(8.10.15)

l Finally, using the empirical expression proposed by Nadaraj and Srinivasa
(1985)10, the compression index is

Cc ¼ 0:00234ðLLÞðGsÞ ¼ 0:00234ð45Þð2:67Þ ¼ 0:281 (8.10.16)

Thus,

Ds0v ¼
�
138:7 kN=m2�

8>>><
>>>:
10

�
ð0:090 mÞ

�
1þ1:161

ð0:281Þð2:2 mÞ

�	
� 1

9>>>=
>>>;

¼ 147.4 kN=m2

(8.10.17)

The empirical expression for Cc proposed by Azzouz et al. (1976) thus
gives the most conservative results.

EXAMPLE PROBLEM 8.11

General Remarks

This problem illustrates the proper way to compute the average primary
consolidation settlement for normally consolidated and overconsolidated
samples.

Problem Statement

Given the soil deposit shown in Figure Ex. 8.11A. The groundwater table is
located at a depth of 2 m below the ground surface. The layer of saturated sand
has a thickness equal to 4 m. Finally, the thickness of the clay layer is equal
to 8 m.

9. Azzouz, A.S., Krizek, R.J., Corotis, R.B., 1976. Regression analysis of soil compressibility.

Soils and Foundations 16 (2), 19e29.

10. Nagaraj, T.S., Srinivasa Murthy, B.R., 1985. A critical reappraisal of compression index.

Geotechnique 36 (1), 27e32.
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The moist sand above the groundwater table has a moisture content (w) of
29% and a dry unit weight (gd) equal to 16.0 kN/m3. Below the groundwater
table the sand has a saturated unit weight of 20.0 kN/m3. Laboratory test re-
sults on a sample of the clay from the middle of the layer indicate a specific
gravity of solids (Gs) equal to 2.71, a natural moisture content (w) of 29.5%, a
compression index (Cc) equal to 0.270, a recompression index (Cr) equal to
0.045, and a saturated unit weight (gsat) of 19.2 kN/m3.

A uniformly distributed (over a large area) total stress increment (Ds) of
100 kPa is applied at the ground surface (e.g., by a building foundation).
Estimate the average ultimate primary consolidation settlement (sc) of the
clay if:

a) the clay is normally consolidated,
b) the clay is overconsolidated with the preconsolidation stress equal to

230 kPa, and,
c) the clay is overconsolidated with the preconsolidation stress equal to

190 kPa.

Solution

The moist unit weight of the sand above the groundwater table is computed
from the dry unit weight and the moisture content as follows:

g ¼ gdð1þ wÞ ¼ �16:0 kN=m3�ð1þ 0:29Þ ¼ 20:64 kN=m3 (8.11.1)

FIGURE EX. 8.11A Schematic illustration of soil profile at site of future office building

(not to scale).
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Prior to addition of the applied total stress, the vertical total stress at the
middle of the clay layer is thus

sv0 ¼
�
20:64 kN=m3�ð2 mÞ þ �20:0 kN=m3�ð4 mÞ þ �19:2 kN=m3�ð4 mÞ

¼ 198:1 kN=m2

(8.11.2)

The initial pore fluid pressure at this location is

u0 ¼
�
9:81 kN=m3�ð4þ 4 mÞ ¼ 78:5 kN=m2 (8.11.3)

The vertical effective stress at the middle of the clay layer is thus

s0v0 ¼ 198:1� 78:5 ¼ 119:6 kN=m2 (8.11.4)

Since the clay is saturated, the initial void ratio is computed as follows:

e0 ¼ Gsw ¼ ð2:71Þð0:295Þ ¼ 0:800 (8.11.5)

Before proceeding with the solution, it is important to note that initially the
excess pore fluid pressure is equal to the applied total stress increment (Ds).
However, at the ultimate condition where sc is computed, all excess pore
pressure has dissipated, so the increment in effective stress is equal to Ds.

a) When the clay is normally consolidated (i.e., OCR ¼ 1.0), the effective
stress state remains on the virgin compression line, and the current vertical
effective stress is the preconsolidation stress (Figure Ex. 8.11B). The
average ultimate primary consolidation settlement is computed as follows:

sc ¼
�

De

1þ e0

�
H0 (8.11.6)

where

De ¼ �Cc

h
log
�
s0v0
�
�log

�
s0v0 þ Ds0v

�i
¼ Cc log

 
s0v0 þ Ds0v

s0v0

!

¼ ð0:270Þlog
�
119:6þ 100

119:6

�
¼ 0:071

(8.11.7)

Thus,

sc ¼
�

De

1þ e0

�
H0 ¼

�
0:071

1þ 0:800

�
ð8 mÞ ¼ 0.317 m (8.11.8)
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b) Next consider the case when the clay is overconsolidated with the pre-
consolidation stress equal to 230 kN/m2. Since

s0v0 þ Ds0v ¼ 119:6þ 100:0 ¼ 219:6 < 230 kN=m2 (8.11.9)

the effective stress state remains on the swell/recompression curve
(Figure Ex. 8.11C). It follows that

De ¼ Cr log

 
s0v0 þ Ds0v

s0v0

!
¼ ð0:045Þlog

�
119:6þ 100

119:6

�
¼ 0:012 (8.11.10)

Thus,

sc ¼
�

De

1þ e0

�
H0 ¼

�
0:012

1þ 0:800

�
ð8 mÞ ¼ 0.053 m (8.11.11)

c) Finally, consider the case when the clay is overconsolidated with the
preconsolidation stress equal to 190 kN/m2. Since

s0v0 þ Ds0v ¼ 119:6þ 100:0 ¼ 219:6 > 190 kN=m2 (8.11.12)

the first portion of the vertical effective stress (119:6 � s0v � 190 kN=m2)
state will lie on the swell/recompression curve, and the second portion
(190 � s0v � 219:6 kN=m2) will lie on the virgin compression curve. From
Figure Ex. 8.11D,

FIGURE EX. 8.11B Consolidation curve for Case (a) (normally consolidated soil) (not to scale).
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FIGURE EX. 8.11C Consolidation curve for Case (b) (overconsolidated soil) (not to scale).

FIGURE EX. 8.11D Consolidation curve for Case (c) (overconsolidated soil) (not to scale).
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De1 ¼ Cr log

�
190:0

119:6

�
¼ ð0:045Þlog

�
190:0

119:6

�
¼ 0:009 (8.11.13)

and

De2 ¼ Cc log

�
219:6

190:0

�
¼ ð0:270Þlog

�
219:6

190:0

�
¼ 0:017 (8.11.14)

Thus,

sc ¼
�
De1 þ De2
1þ e0

�
H0 ¼

�
0:009þ 0:017

1þ 0:800

�
ð8:0 mÞ ¼ 0.116 m (8.11.15)

EXAMPLE PROBLEM 8.12

General Remarks

This example problem provides insight into the coefficient of volume
compressibility for isotropic, linear elastic material idealizations.

Problem Statement

Consider an isotropic, linear elastic material idealization. Derive expressions
for the coefficient of volume compressibility (mv) associated with (a) one-,
(b) two-, and (c) three-dimensional states of deformation.

Solution

For purposes of this example problem, the definition of mv given in Eq. (8.16)
is rewritten in incremental form as

mv ¼ Dεvol
Ds0v

(8.12.1)

a) One-dimensional deformation:
Taking the z-direction as the direction of loading and deformation, it fol-
lows that εz s 0 and εx ¼ εy ¼ 0. Specializing the constitutive relations
(recall Eqs. 4.59 and 4.63), written in direct form, for the case of one-
dimensional compression gives

εx ¼ 1

E
½sx � nðsy þ szÞ� ¼ 0 (8.12.2)

εy ¼ 1

E
½sy � nðsx þ szÞ� ¼ 0 (8.12.3)
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εz ¼ 1

E
½sz �nðsx þ syÞ� (8.12.4)

From Eq. (8.12.2),

sx ¼ nðsy þ szÞ (8.12.5)

Substituting this result into Eq. (8.12.3) gives

sy ¼ nðsx þ szÞ ¼ n½nsy þ ð1þ nÞsz� (8.12.6)

Solving for sy gives

sy ¼
� n

1� n

�
sz (8.12.7)

Substituting this result into Eq. (8.12.2) gives

sx ¼ nðsy þ szÞ ¼
�

n2

1� n

�
sz þ nsz ¼

� n

1� n

�
sz ¼ sy (8.12.8)

The volumetric strain associated with one-dimensional compression is

εvol ¼ εx þ εy þ εz ¼ εz ¼ 1

E
½sz �nðsx þ syÞ� (8.12.9)

Substituting Eq. (8.12.8) for sx and sy into Eq. (8.12.9) gives

εvol ¼ 1

E
½sz �nðsx þ syÞ� ¼ 1

E

h
sz �2n

� n

1� n

�
sz

i
(8.12.10)

Writing Eq. (8.12.10) in incremental form, and noting that Ds0vhDsz,
Eq. (8.12.1) becomes

mv ¼ Dεvol
Ds0v

¼
1

E

�
1�
�

2n2

1� n

�	
sz

sz
¼ 1

E

�ð1DnÞð1L2nÞ
ð1LnÞ

	
(8.12.11)

which is the desired expression.

b) Two-dimensional deformation:
Assuming conditions of plane strain and taking the z-direction as the
thickness direction, it follows that εz ¼ 0 and εx s 0, εy s 0. From
Eq. (8.12.4)

εz ¼ 1

E
½sz �nðsx þ syÞ� ¼ 0 0 sz ¼ nðsx þ syÞ (8.12.12)

The volumetric strain associated with two-dimensional compression is

εvol ¼ εx þ εy þ εz ¼ εx þ εy ¼ 1

E
½sx �nðsy þ szÞ� þ 1

E
½sy �nðsx þ szÞ�

¼ ð1� nÞ
E

ðsx þ syÞ � 2n

E
sz

(8.12.13)
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Substituting Eq. (8.12.12) into Eq. (8.12.13) and combining like terms
gives

εvol ¼1

E
½sx �nðsy þ szÞ� þ 1

E
½sy �nðsx þ szÞ�

¼ 1

E
ð1þ nÞð1� 2nÞðsx þ syÞ

(8.12.14)

For two-dimensional deformation Ds0v is replaced by

1

2
ðDsx þ DsyÞ

Writing Eq. (8.12.14) in incremental form, Eq. (8.12.1) becomes

mv ¼
1

E
ð1þ nÞð1� 2nÞðDsx þ DsyÞ

1

2
ðDsx þ DsyÞ

¼ 2ð1þ nÞð1� 2nÞ
E

(8.12.15)

which is the desired expression.
c) Three-dimensional deformation:

The volumetric strain associated with three-dimensional compression is

εvol ¼ εx þ εy þ εz ¼ 1

E
½sx � nðsy þ szÞ� þ 1

E
½sy � nðsx þ szÞ�

þ 1

E
½sz � nðsx þ syÞ� ¼ ð1� 2nÞ

E
ðsx þ sy þ szÞ

(8.12.16)

For three-dimensional deformation Ds0v is replaced by the mean stress
(recall Eq. 4.5); i.e.,

1

3
ðDsx þ Dsy þ DszÞ

Writing Eq. (8.12.16) in incremental form, Eq. (8.12.1) becomes

mv ¼
ð1� 2nÞ

E
ðDsx þ Dsy þ DszÞ

1

3
ðDsx þ Dsy þ DszÞ

¼ 3ð1L2nÞ
E

(8.12.17)

which is the desired expression.

EXAMPLE PROBLEM 8.13

General Remarks

This example problem illustrates the fact the ultimate primary consolidation
settlement can also be computed using the coefficient of volume
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compressibility (mv). It is important to note, however, that unlike Cc, which is
a constant, mv varies with stress level.

Problem Statement

A proposed multistory department store is expected to increase the vertical
stress at the middle of a 2.5-m-thick clay layer by 120 kPa. If
mv ¼ 3.8 � 10�4 m2/kN, compute the ultimate primary consolidation settle-
ment of the clay layer.

Solution

Eq. (8.13) gives the following relation between the increment in volumetric
strain and the increment in void ratio:

Dεvol ¼ DV

V
¼ De

1þ e0
(8.13.1)

As in the previous example problem, the definition of mv given in
Eq. (8.16) is rewritten in incremental form as

mv ¼ Dεvol
Ds0v

(8.13.2)

Combining Eqs. (8.13.2) and (8.13.1) gives

Dεvol ¼ mvDs
0
v ¼

De

1þ e0
(8.13.3)

For a field deposit of saturated soil with initial thickness H0, the average
primary consolidation settlement is given by Eq. (8.15); i.e.,

sc ¼
�

De

1þ e0

�
H0 (8.13.4)

Substituting Eq. (8.13.3) into Eq. (8.13.4) gives

sc ¼
�
mvDs

0
v

�
H0 (8.13.5)

Substituting the given values into Eq. (8.13.5) gives

sc ¼
�
3:8� 10�4 m2=kN

��
120 kN=m2�ð2:5 mÞ ¼ 0.114 m ¼ 114 mm

(8.13.6)
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Chapter 9

Example Problems Related
to Time Rate of Consolidation

9.0 GENERAL COMMENTS

When designing foundations, the geotechnical engineer seeks to answer two
primary questions: How much settlement will occur, and how long will it take
for this settlement to occur? The former question is investigated in Chapter 8,
while this chapter investigates problems related to the second question.

9.1 FUNDAMENTAL DEFINITIONS

As mentioned in Chapter 3, soil compaction is an instantaneous process in
which the soil is densified (i.e., its void ratio is reduced) through the expulsion
of air from the voids. By contrast, consolidation is a long-term (time-
dependent) process in which fluid is expelled from the voids of a (typically)
saturated soil.

Remark: The time rate of consolidation is greatly affected by a soil’s permeability.

9.2 TERZAGHI’S ONE-DIMENSIONAL CONSOLIDATION
THEORY

The birth of soil mechanics as a modern engineering discipline occurred in the
1920s. One of the cornerstones of this discipline was the theory proposed by
the Austrian engineer Karl Terzaghi for the consolidation of saturated fine-
grained soils under applied loads1. Terzaghi had been studying the phenom-
enon of reduction in void space of soils underlying foundations. He correctly
perceived that the time-dependent settlement from consolidation of these soils
was due to the time-dependent expulsion of fluid from the soil skeleton

1. Terzaghi, K., 1925. Erdbaumechanik auf Bodenphysikalischer Grundlage. Franz Deuticke,

Vienna.

Soil Mechanics. http://dx.doi.org/10.1016/B978-0-12-804491-9.00009-4
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(a porous medium) as the voids decreased in size. The rate at which these
movements took place was dictated by the permeability of the soil. Thus in
response to an applied load, the soil skeleton was idealized to act like a large
sponge.

Terzaghi’s consolidation theory was based on the following assumptions:

l The consolidating layer is horizontal, of infinite extent laterally and of
constant thickness.

l Throughout the consolidating layer the soil is homogeneous and is
completely saturated (i.e., it is a two-phase materialdno air is present in
the pores).

l Due to the above homogeneity, the constitutive relations and permeability
do not vary spatially or with time.

l Compared to the soil mass as a whole, the compressibility of the soil
grains and of the pore fluid is negligible (i.e., several orders of magnitude
lower). This implies that the deformation of the soil mass is due entirely
to changes in volume that result due to the forcing out of free fluid from
the pores.

l Deformation occurs only in the direction of load application; i.e., the soil is
restrained against lateral deformation.

l The load is applied in only one direction and remains constant for all time.
Thus, since the total stress is given, if the pore pressure is computed, the
effective stress will be determined from the difference between the total
stress and pore pressure.

l The time rate of consolidation depends only on the low permeability
of the soil; viscoelastic properties of the soil skeleton are not
considered.

l During consolidation the pore fluid flows only in the direction of load
application; the free surface boundary offers no resistance to the flow of
pore fluid from the soil.

l Darcy’s law (recall the discussion of Section 6.6) describes the flow of pore
fluid; i.e., the flow is proportional to the gradient of pore pressure. The
coefficient of permeability is assumed to remain constant (recall the third
assumption above).

l The strains in the soil skeleton are controlled by the effective stresses, with
a linear constitutive relation.

l Strain, displacement, velocity, and stress increments are assumed to be
small. As a result, the change in thickness of the consolidating layer is
negligible.

l Inertia terms are neglected; i.e., a static analysis is assumed.

According to Terzaghi’s consolidation theory, the response to an increment
in load is realized in the following manner:

l Initially, since it is assumed to be incompressible, the pore fluid carries the
entire increment in applied load (total stress). That is, the excess pore
pressure is equal to the increase in total stress.
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l With time, as fluid is expelled from the pores, the soil grains support more
and more of the applied load. The excess pore pressure decreases and
the effective stress increases. Equilibrium is always maintained, so that the
sum of the excess pore pressure and the effective stress is equal to
the increment in total stress.

l The rate at which pressure dissipates depends on the rate at which fluid
flows from the pores (voids). This, in turn, is a function of the permeability
of the soil.

l As time approaches infinity, the excess pore pressure goes to zero, the pore
pressure returns to hydrostatic conditions, and the soil skeleton fully
supports the additional load.

Remark: When saturated cohesionless soils (e.g., gravels, sands, and silts) are

loaded, the excess pore pressure dissipates quickly due to the high permeability of

the soil.

Remark: When saturated clays are loaded, the dissipation of excess pore pressure

is delayed by the relatively low permeability of the soil.

9.2.1 Governing Differential Equation

Terzaghi’s one-dimensional consolidation theory is governed by the following
parabolic partial differential equation (a one-dimensional transient diffusion
equation):

vu

vt
¼ cv

v2u

vz2
(9.1)

where u ¼ the excess pore pressure, t ¼ time, and cv ¼ the coefficient of
consolidation, which is defined as follows:

cv ¼ kð1þ e0Þ
gwav

¼ k

gw

1

mv
(9.2)

where k is the Darcy permeability (units of Lt�1), e0 is the initial void ratio, gw

is the unit weight of water (units of FL�3) and, as defined as in Chapter 8, av is
the coefficient of compressibility (units of F�1L2) and mv is the coefficient of
volume compressibility (units of L2F�1); i.e.,

av ¼ � de

ds0v
; mv ¼ �dεvol

ds0v
(9.3)

The solution of Terzaghi’s equation requires the specification of boundary
conditions and an initial condition. To facilitate the problem statement, let Hdr

equal to the length of the maximum drainage path.
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For the case of uniform initial excess pore pressure with a single drainage
boundary, it follows that Hdr ¼ H (Figure 9.1).

The boundary conditions associated with the problem, which are valid for
all t, are as follows:

l Zero excess pore pressure: u(0,t) ¼ 0
l Zero flow across the boundary: vu

vt ðH; tÞ ¼ 0

The initial condition is u(z,0) ¼ Dsz h sv, for all z (0 � z � H) at t ¼ 0.
For the case of uniform initial excess pore pressure with a double drainage,

it follows that Hdr ¼ H/2 (Figure 9.2).

FIGURE 9.1 Schematic illustration of a single consolidating layer with single drainage.

FIGURE 9.2 Schematic illustration of a single consolidating layer with double drainage.
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The boundary conditions associated with the problem, which are valid for
all t, are as follows:

l Zero excess pore pressure: u(0,t) ¼ 0
l Zero excess pore pressure: u(H,t) ¼ 0

The initial condition is again u(z,0) ¼ Dsz h sv, for all z (0 � z � H) at
t ¼ 0.

9.2.2 Separation of Variables Solution

The exact solution of the equation governing Terzaghi’s one-dimensional
theory can rather easily be obtained by using the method of separation of
variables2. The result is

uðz; tÞ ¼
XN
n¼0

2Dsz
Mn

exp
n
� ðMnÞ2Tv

o
sin

�
Mnz

Hdr

�
(9.4)

where

Mn ¼
�
nþ 1

2

�
p; n ¼ 0; 1; 2;. (9.5)

and Hdr is as previously defined. Finally, the nondimensional “time factor” is
given by

Tv ¼ cvt

ðHdrÞ2
(9.6)

9.2.3 Local Degree of Consolidation

The local degree of consolidation (or “consolidation ratio”) is defined as
follows:

Uzðz; tÞ ¼
�
uðz; 0Þ �uðz; tÞ

uðz; 0Þ
�
� 100% ¼

�
1� uðz; tÞ

uðz; 0Þ
�
� 100% (9.7)

Substituting for u(z,t) and noting that u(z,0) ¼ Dsz, the local degree of
consolidation can also be written as

Uzðz; tÞ ¼ 1�
XN
n¼0

2

Mn
exp

n
� ðMnÞ2Tv

o
sin

�
Mnz

Hdr

�
(9.8)

2. Approximate solutions of the governing equation can be obtained using the finite difference and

finite element methods.
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From the definition of the local degree of consolidation, it is evident that

l at t ¼ 0, u(z,0) ¼ u(z,t) 0 Uz(z,0) ¼ 0%
l as t /N, u(z,t) / 0 0 Uz(z,N)/ 100%

The variation of Uz(z,t) with depth (z) and time is often represented
graphically as plots of Uz(z,t) versus normalized depth (z/Hdr) for different
values of Tv.

9.2.4 Average Degree of Consolidation

The average degree of consolidation is defined by the following integral
expression:

Uz ¼ 1

Hdr

Z Hdr

0

Uzðz; tÞdz (9.9)

or

Uz ¼ 1�
XN
n¼0

2

ðMnÞ2
exp

n
� ðMnÞ2Tv

o
(9.10)

where Mn and Tv are as previously defined. The average degree of consoli-
dation is commonly reported as a percent. Figure 9.3 graphically shows the
relation between Tv and Uz.

FIGURE 9.3 Variation of average degree of consolidation with time factor.
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Before leaving the discussion of Uz, it is timely to note the following
approximations for the time factor3:

For Uz < 60%:

Tv ¼ p

4

�
Uz%

100

�2

(9.11)

For Uz � 60%:

Tv ¼ 1:781�0:933 log10
�
100� Uz%

�
(9.12)

Table 9.1 quantifies the accuracy of using Eq. (9.11) to approximate Tv. The
first column of this table contains a given value of Uz. The second column
gives the approximate value of Tv obtained using Eq. (9.11). The third column
lists the value of Uz obtained using Eq. (9.10), with five terms, for the value of
Tv given in second column. The final column in Table 9.1 lists the percentage
relative error between the results obtained using Eqs. (9.10) and (9.11). It is

TABLE 9.1 Comparison of Results Obtained Using Eqs. (9.11) and (9.10)

Uz Tv Using Eq. (9.11)

Uz From Eq. (9.10)

(Five-Term-Solution) Relative Error (%)

5.0 0.002 5.89 15.11

10.0 0.008 10.18 1.77

15.0 0.018 15.14 0.92

20.0 0.031 19.87 0.65

25.0 0.049 24.98 0.08

30.0 0.071 30.07 0.23

35.0 0.096 34.96 0.11

40.0 0.126 40.05 0.12

45.0 0.159 44.98 0.04

50.0 0.196 49.91 0.18

55.0 0.238 54.90 0.18

56.0 0.246 55.79 0.38

57.0 0.255 56.76 0.42

58.0 0.264 57.72 0.49

59.0 0.273 58.65 0.60

3. Taylor, D.W., 1948. Fundamentals of Soil Mechanics. Wiley, New York, NY.
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evident that, except for low values of Uz, approximation obtained using Eq.
(9.11) is quite accurate.

Table 9.2 quantifies the accuracy of using Eq. (9.12) to approximate
Tv. It is evident that approximation obtained using Eq. (9.12) is quite
accurate.

EXAMPLE PROBLEM 9.1

General Remarks

This example problem illustrates the manner in which laboratory results are
related to field consolidation.

Problem Statement

The time to reach 40% consolidation of a two-way drained laboratory oed-
ometer specimen 25.4 mm thick is 220 s. Determine the time required for 65%
average degree of consolidation of a 10-m thick layer of the same soil. This
layer is subjected to the same loading conditions as the oedometer sample and
is underlain by an impermeable rocky surface.

Solution

Since Uz ¼ 40% < 60%, for 40% consolidation the dimensionless “time
factor” is computed as follows:

Tv40 ¼
p

4

�
Uz%

100

�2

¼ p

4

�
40

100

�2

¼ 0:126 (9.1.1)

TABLE 9.2 Comparison of Results Obtained Using Eqs. (9.12) and (9.10)

Uz Tv Using Eq. (9.12)

Uz From Eq. (9.10)

(Five-Term-Solution) Relative Error (%)

60.0 0.286 59.96 0.07

65.0 0.340 64.96 0.06

70.0 0.403 70.01 0.01

75.0 0.477 75.02 0.03

80.0 0.567 79.99 0.01

85.0 0.684 85.01 0.01

90.0 0.848 90.00 0.00

95.0 1.129 95.00 0.00
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The coefficient of consolidation is next computed from the definition of the
time factor. Noting that in the laboratory oedometer Hdr ¼ (25.4/2) ¼
12.7 mm, it follows that

Tv40 ¼
cv t40

ðHdrÞ2
0 cv ¼ Tv40ðHdrÞ2

t40
¼

ð0:126Þ
��

25:4 mm

2

�� m

1000 mm

	�2
220 s

¼ 9:213310�8 m2


s

(9.1.2)

Converting this to the more commonly used units of meters per year gives

cv ¼
�
9:213� 10�8 m

2

s

��
60 s

min

��
60 min

h

��
24 h

d

��
365 d

yr

�
¼ 2:905 m2



yr

Since the same soil is found in the 10-m thick layer, for an average
consolidation of Uz ¼ 65%ð> 60%Þ, the time factor is approximated by

Tv ¼ 1:781�0:933 log10
�
100� Uz%

�
¼ 1:781�0:933 log10ð100� 65%Þ
¼ 0:340

(9.1.3)

The time required for 65% average degree of consolidation is next
computed from the definition of the time factor (recall Eq. 9.1.1). Noting that
for the actual soil deposit Hdr ¼ 10.0 m, it follows that

Tv65 ¼
cv t65

ðHdrÞ2
0 t65 ¼ Tv65ðHdrÞ2

cv
¼ ð0:340Þð10 mÞ2

2:905 m2=yr
¼ 11.7 yr

Remark: Since it is not feasible to perform a consolidation test on the actual

soil deposit, the material from the field is tested in an oedometer. The link to

the behavior of the soil in the field is then realized through the material

parameter cv, which is assumed to hold for both the oedometer test and the

soil deposit.

EXAMPLE PROBLEM 9.2

General Remarks

This example problem also illustrates the manner in which laboratory results
are related to field consolidation.
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Problem Statement

The time required for a clay layer to achieve 98% consolidation is 10 years.
What time would be required to achieve the same percent consolidation if the
layer were twice as thick, four times more permeable, and three times more
compressible?

Solution

From the definition of the time factor,

Tv98 ¼
cv t98

ðHdrÞ2
0 t98 ¼ Tv98ðHdrÞ2

cv
¼ Tv98ðHdrÞ2

�gwmv

k

	
¼ 10 years (9.2.1)

The time required to achieve 98% consolidation for the modified soil
layer is

t�98 ¼ Tv98ð2HdrÞ2
�
3mv

4k

�
gw ¼ 3Tv98ðHdrÞ2

�gwmv

k

	
¼ 3t98 (9.2.2)

Thus,

t�98 ¼ 3ð10 yearsÞ ¼ 30 years

EXAMPLE PROBLEM 9.3

General Remarks

This example problem illustrates the manner in which ultimate primary
consolidation settlements are computed when laboratory results are related to
field consolidation.

Problem Statement

A proposed building will increase the average total stress on a 20 ft thick clay
stratum from 1.50 to 1.70 tons4 per square foot. Field investigations indicate
that an impermeable rock layer underlies this stratum.

An undisturbed sample of the clay was tested in an oedometer. When the
total stress applied to the sample was increased from 1.50 to 1.70 tons per
square foot, the following readings were taken:

l At time t ¼ 0, the height of the sample was equal to 1 in.
l At t ¼ 20 min, the height of the sample decreased to 0.935 in.

4. Recall that 1 ton ¼ 2000 lbs.
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The final height of the sample, at equilibrium under the 1.70 tons per
square foot loading, was equal to 0.870 in. Determine (a) the ultimate set-
tlement of the proposed building, and (b) the time required for one-half of this
settlement to occur.

Solution

a) Recalling the general remarks made in Chapter 8, the ultimate settlement
of the proposed building is computed based on the following equations:�

DH

H

�
lab

¼
�

De

1þ e0

�
lab

;

�
DH

H

�
field

¼
�

De

1þ e0

�
field

(9.3.1)

Since the clay sample is assumed to be undisturbed, De and e0 are the
same for both the laboratory sample and the field deposit. Thus,�

DH

H

�
lab

¼
�
DH

H

�
field

0 DHfield ¼
�
DH

H

�
lab

Hfield (9.3.2)

Substituting the laboratory data and recalling that the clay stratum is
only drained at its upper boundary gives

DHfield ¼
�
DH

H

�
lab

Hfield ¼
�
1:000 in.� 0:870 in.

1:000 in.

�
ð20 ftÞ ¼ 2.60 ft (9.3.3)

b) From the definition of the time factor,

Tv50 ¼
"
cvt50

ðHdrÞ2
#
lab

¼
"
cvt50

ðHdrÞ2
#
field

(9.3.4)

Since the material tested in the oedometer is identical to that found in
the field, it follows that cv is the same for both the laboratory sample and
the field deposit. Thus,"

t50

ðHdrÞ2
#
lab

¼
"

t50

ðHdrÞ2
#
field

(9.3.5)

Conveniently, the height of the sample at t ¼ 20 min (0.935 in.) is equal to
one-half of the final height. Thus, noting that an oedometer permits drainage
at both boundaries (implying that Hdr ¼ 1.000/2 ¼ 0.500 in.), the time
required for one-half of the ultimate settlement to occur in the field is thus

t50field ¼
"

t50

ðHdrÞ2
#
lab

ðHdrÞ2field ¼
"

20:0 min

ð0:500 in.Þ2
#
ð20:0 ftÞ2

�
12 in.

ft

�2

¼ 4.6083106 min

(9.3.6)
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Converting to more useful units of days gives the final result:

�
4:608� 106 min

�� 1 h

60 min

��
1 d

24 h

��
1 yr

365 d

�
¼ 8.8 years

EXAMPLE PROBLEM 9.4

General Remarks

This example problem illustrates the manner in which the coefficient of
consolidation is computed from the results of a conventional oedometer test.

Problem Statement

In performing a conventional oedometer test on a 2.54-cm thick sample of San
Francisco Bay mud, the time for 80% average consolidation was found to be
48 min. Compute the coefficient of consolidation (cv).

Solution

Once again recalling the definition of the time factor, the coefficient of
consolidation is computed as follows:

Tv80 ¼
cvt80

ðHdrÞ2
0 cv ¼ Tv80ðHdrÞ2

t80
(9.4.1)

Since Uz ¼ 80% > 60%;

Tv80 ¼ 1:781�0:933 logð100� 80%Þ ¼ 0:567 (9.4.2)

Thus, since t80 ¼ 48 min, and since the oedometer is doubly drained,

cv ¼
ð0:567Þ

�
2:54 cm

2

�2

48 min
¼ 1.846310�2 cm2=min (9.4.3)

Since it is more common to represent cv in units of cm2/s and m2/yr, the
above value is converted accordingly; i.e.,

cv ¼
�
1:846� 10�2 cm2



min

��min

60 s

�
¼ 3.076310�4 cm2=s

and

cv ¼
�
1:846� 10�2 cm2



min

�� m

100 cm

	2
�
60 min

h

��
24 h

d

��
365 d

yr

�
¼ 9.701310�1 m2=yr
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EXAMPLE PROBLEM 9.5

General Remarks

This example problem presents calculations that are made for a known ulti-
mate primary consolidation settlement.

Problem Statement

A normally consolidated clay layer is 6.0 m thick and is drained along one
boundary. Following the application of an applied load, the ultimate primary
consolidation settlement was found to be 182 mm.

a) What is the average degree of consolidation for the clay layer when the
settlement is 55 mm?

b) If the average coefficient of consolidation (cv) for the clay is
20 � 10�4 cm2/s, how many days will it take for 50% of the settlement to
occur?

c) How long will it take for 50% of the settlement to occur if the clay layer
drains at both the top and bottom boundaries?

Solution

a) When the settlement is equal to 55 mm, the average degree of consolida-
tion is simply

Uz ¼
�
55 mm

182 mm

�
� 100% ¼ 30.2%

b) Since Uz ¼ 50% < 60%;

Tv50 ¼
p

4

�
50

100

�2

¼ p

16
¼ 0:196 (9.5.1)

From the definition of the time factor, the desired time is computed as
follows:

Tv50 ¼
cv t50

ðHdrÞ2
0 t50 ¼ Tv50ðHdrÞ2

cv
(9.5.2)

Substituting all known values into Eq. (9.5.2) gives

t50 ¼ Tv50ðHdrÞ2
cv

¼

�p

16

	
ð6:0 mÞ2

ð20:0� 10�4 cm2=sÞ
� m

100 cm

	2
¼ 3:534� 107 s (9.5.3)
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Converting to the desired units gives

t50 ¼
�
3:534� 107 s

��min

60 s

��
h

60 min

��
d

24 h

�
¼ 409 d

c) For the case of double drainage, Hdr ¼ 6.0/2 ¼ 3.0 m. Since the only term
in Eq. (9.5.2) that changes is the value of Hdr, it follows that the time to
reach 50% settlement will be reduced by a factor of four. In particular,

t50 ¼ Tv50ðHdrÞ2
cv

¼

�p

16

	�6:0 m

2

�2

ð20:0� 10�4 cm2=sÞ
� m

100 cm

	2
¼ 8:836� 106 s ¼ 102 d

(9.5.4)

EXAMPLE PROBLEM 9.6

General Remarks

This example problem illustrates the manner in which both ultimate primary
consolidation settlement and excess pore pressure dissipation are computed.
As such, it ties together the discussion of settlement presented in Chapter 8
with the topic of primary consolidation.

Problem Statement

Consider the soil profile shown in Figure Ex. 9.6. The uniform stress increase
in the clay layer, due to a surcharge of large areal extent, is 28 kPa.

The moist unit weight of the sand layer is 21.8 kN/m3. For the clay layer,
the saturated unit weight is 18.5 kN/m3.

impermeable layer

8.0 mHigh plasticity clay

applied surface load due to surcharge

Poorly graded sand 6.0 m 

4.0 m

Ground surface

P

FIGURE EX. 9.6 Soil profile under consideration (not to scale).
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Consolidation tests performed on samples extracted from the center of the
clay layer indicate that the effective preconsolidation stress is 180 kPa. In
addition, the initial void ratio is e0 ¼ 1.21, Cc ¼ 0.420, Cr ¼ 0.085, and
cv ¼ 0.0015 m2/d.

a) Determine the vertical total stress, pore pressure, and vertical effective
stress at point P for the following stages of consolidation: (1) before
application of the surcharge load, (2) immediately after application of the
surcharge load, and (3) after completion of primary consolidation.

b) Compute the ultimate primary consolidation settlement.
c) Compute the primary consolidation settlement 360 days after application

of the surcharge load.

Solution

a) The vertical total stress, pore pressure, and vertical effective stress at point
P are computed below.

1) Before application of the surcharge load:
The vertical total stress at point P is

sv ¼
�
21:8 kN=m3�ð6:0 mÞ þ �

18:5 kN=m3�ð4:0 mÞ ¼ 204.8 kN=m2

(9.6.1)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð4:0 mÞ ¼ 39.24 kN=m2 (9.6.2)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 204:8� 39:24 ¼ 165.6 kN=m2 (9.6.3)

2) Immediately after application of the surcharge load:
Due to the relatively low permeability of the clay, the entire sur-

charge load (i.e., increase in vertical total stress) is taken by the pore
pressure. The vertical total stress at point P is this

sv ¼ 204:8þ 28:0 ¼ 232.8 kN=m2 (9.6.4)

The pore fluid pressure is

u ¼ 39:24þ 28:0 ¼ 67.24 kN=m2 (9.6.5)
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The vertical effective stress is thus unchanged from that computed
for the above case. Thus,

s0v ¼ sv � u ¼ 232:8� 67:24 ¼ 165.6 kN=m2 (9.6.6)

3) After completion of primary consolidation:
The vertical total stress at point P is unchanged from part (2)

above; i.e.,

sv ¼ 232.8 kN=m2 (9.6.7)

The pore fluid pressure returns to the hydrostatic value; i.e.,

u ¼ 39.24 kN=m2 (9.6.8)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 232:8� 39:24 ¼ 193.6 kN=m2 (9.6.9)

b) Since the initial vertical effective stress of 165.6 kN/m2 is less than the
preconsolidation stress of s0p ¼ 180 kPa, at point P the clay is initially
overconsolidated; the overconsolidation ratio is equal to 180/165.6 ¼ 1.09.
Recalling the discussion of ultimate primary consolidation settlement
given in Chapter 8, the first part of the settlement response involves the
swell/recompression line. The increment in vertical effective stress for this
part of the response is

Ds0v1 ¼ 180:0� 165:5 ¼ 14:4 kPa (9.6.10)

The associated reduction in void ratio is thus

De1 ¼ Cr

�
log s0p � log 165:6

	
¼ Cr log

�
180:0

165:6

�

¼ ð0:085Þlog
�
180:0

165:6

�
¼ 0:003

(9.6.11)

The second part of the settlement response involves the virgin compres-
sion line. The increment in vertical effective stress for this part of the
response is

Ds0v2 ¼ 28:0� 14:4 ¼ 13:6 kPa (9.6.12)

The associated reduction in void ratio is thus

De2 ¼ Cc log

�
s0v þ Ds0v

s0v

�
¼ ð0:420Þlog

�
180:0þ 13:6

180:0

�
¼ 0:013 (9.6.13)
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The total reduction in void ratio is thus

De ¼ De1 þ De2 ¼ 0:003þ 0:013 ¼ 0:016 (9.6.14)

The ultimate primary consolidation settlement is thus

DH ¼
�

De

1þ e0

�
H0 ¼

�
0:016

1þ 1:21

�
ð8:0 mÞ ¼ 0.058 m (9.6.15)

c) Computation of the primary consolidation settlement 360 days after
application of the surcharge load requires knowledge of the local degree of
consolidation at point P. The first step in this process is the computation of
the time factor; i.e.,

Tv ¼ cv t

ðHdrÞ2
¼ ð0:0015 m2=dÞð365 dÞ

ð4:0 mÞ2 ¼ 0:034 (9.6.16)

At a depth of 4.0 m in the clay, z/Hdr ¼ 4.0/8.0 ¼ 0.50. From either a
figure of z/Hdr versus Uz, or from a series solution, for Tv ¼ 0.034,
Uz ¼ 0.208 ¼ 20.8%. The associated settlement is thus

sc ¼ ð0:208Þð0:058 mÞ ¼ 0.012 m (9.6.17)

EXAMPLE PROBLEM 9.7

General Remarks

This example problem illustrates the manner in which laboratory results are
related to field consolidation.

Problem Statement

A laboratory test was performed on a 25.4 mm thick, doubly drained oed-
ometer sample of Boston blue clay. Based on the readings taken in the test, the
time (t50) for 50% consolidation was 8.75 min. The laboratory sample was
taken from a saturated layer of Boston blue clay that was 18 m thick. The layer
was subjected to a loading that was very similar to that imposed in the lab-
oratory test.

a) Determine the coefficient of consolidation (cv).

b) Assuming single drainage, how long will it take until the 18 m thick clay
layer consolidates 60%?

c) Compute the ratio of the excess pore pressure 15 years after application of
the load (i.e., u(z,15)) to the initial excess pore pressure (i.e., u(z,0)) at a
depth (z) of 9 m.
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d) If the following void ratioeeffective stress data was obtained from the
aforementioned oedometer test,

e1 ¼ 1:24; s0v ¼ 200 kPa

e2 ¼ 1:09; s0v ¼ 400 kPa

determine the average coefficient of permeability (k) for the Boston
blue clay.

e) Subsequent field explorations appear to indicate that the 18 m thick clay
layer may actually be doubly drained. How long (in years) will it take until
this layer consolidates 60%?

Solution

a) For the laboratory sample the average degree of consolidation (Uz) is 50%.
The associated dimensionless time factor (Tv) is thus computed from the
following approximation:

Tv50 ¼
p

4

�
Uz

100

�2

¼ p

4

�
50

100

�2

¼ 0:196 (9.7.1)

The coefficient of consolidation is then computed from the definition of
the time factor; i.e.,

Tv ¼ cv t

ðHdrÞ2
0 cv ¼ Tv50ðHdrÞ2

t50
¼ ð0:196Þð12:7 mmÞ2

8:75 min
¼ 3:613 mm2



min

(9.7.2)

Converting this to the more commonly used units of meters per year
gives

cv ¼
�
3:613

mm2

min

�� m

1000 mm

	2
�
60 min

h

��
24 h

d

��
365 d

yr

�
¼ 1.90 m2=yr

b) For the 18 m thick soil deposit, Uz ¼ 60%. The associated time factor is
thus computed from the approximation

Tv60 ¼ 1:781�0:933 logð100� 60%Þ ¼ 0:286 (9.7.3)

From the definition of the dimensionless time factor (recall Eq. 9.7.2)
and noting that the clay layer is drained only along one boundary (i.e.,
Hdr ¼ H ¼ 18.0 m), it follows that

t60 ¼ Tv60ðHdrÞ2
cv

¼ ð0:286Þð18:0 mÞ2
1:90 m=yr

¼ 48.8 yr (9.7.4)
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c) After 15 years,

Tv15 ¼
cv t15

ðHdrÞ2
¼ ð1:90 m2=yrÞð15 yrÞ

ð18:0 mÞ2 ¼ 0:088 (9.7.5)

From a plot of the local degree of consolidation (Uz) versus normalized
depth (z/Hdr), for Tv ¼ 0.088 and z/Hdr ¼ 0.50, interpolation gives an Uz

value approximately equal to 0.22. Since

Uzð9 m; 15 yrÞ ¼ 1� uð9 m; 15 yrÞ
uð9 m; 0Þ (9.7.6)

it follows that

uð9 m; 15 yrÞ
uð9 m; 0Þ ¼ 1� 0:22 ¼ 0.78 (9.7.7)

d) The average coefficient of permeability is determined by recalling the
definition of the coefficient of consolidation; i.e.,

cv ¼ kð1þ e0Þ
avgw

0 k ¼ cvavgw

1þ e0
(9.7.8)

The coefficient of compressibility value to be used in Eq. (9.7.8) is
estimated from the given void ratiodeffective stress data; i.e.,

av ¼ � De

Ds0v
¼ � ð1:24� 1:09Þ

ð200� 400ÞkPa ¼ 7:50� 10�4 m2=kN (9.7.9)

Thus,

k ¼ cvavgw

1þ e0
¼ ð1:90 m2=yrÞð7:50� 10�4 m2=kNÞð9:81 kN=m2Þ

1þ 1:24

¼ 6:241� 10�3 m=yr

(9.7.10)

Converting this to the more commonly used units of centimeters per
second gives

k ¼
�
6:241� 10�3m

yr

��
100 cm

m

�� yr

365 d

	� 1 d

24 h

��
1 h

60 min

��
1 min

60 s

�
¼ 1.979310�8 cm=s

e) For a doubly drained layer, Hdr ¼ H/2 ¼ 9 m. In addition, for Uz ¼ 60%,
Tv60 is again equal to 0.286 (it is independent of the drainage path). Thus,

t60 ¼ Tv60ðHdrÞ2
cv

¼ ð0:286Þð9:0 mÞ2
1:90 m=yr

¼ 12.2 yr (9.7.11)
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EXAMPLE PROBLEM 9.8

General Remarks

This example problem illustrates the manner in which both ultimate primary
consolidation settlement and excess pore pressure dissipation are computed.
As such, it ties together the discussion of settlement presented in Chapter 8
with the topic of primary consolidation.

Problem Statement

Consider the soil profile shown in Figure Ex. 9.8. The uniform stress increase
in the clay layer, due to a surcharge of large areal extent, is 25 kPa.

The moist unit weight of the sand layer above and below the groundwater
table is 18.0 kN/m3. For the clay layer, the saturated unit weight is 20.5 kN/m3.

Consolidation tests performed on samples extracted from the center of the
clay layer (point P) indicate that the initial void ratio is e0 ¼ 1.40, Cc ¼ 0.38,
and Cr ¼ 0.08. A piezometer reading, taken 380 days after load application,
was a height of d ¼ 4.7 m.

Compute the following quantities:

a) The ultimate primary consolidation settlement assuming that the
preconsolidation pressure is equal to 60 kPa.

b) The ultimate primary consolidation settlement assuming that the
preconsolidation pressure is equal to 90 kPa.

c) The coefficient of consolidation (cv).
d) The primary consolidation settlement 380 days after load application

assuming that the preconsolidation pressure is equal to 60 kPa.
e) The height of the water (d ) in the piezometer 1000 days after load

application.

Soft clay

Impervious rock layer

Sand
d

4.0 m

1.5 m

1.5 m

Ground surface

2.0 m

P

applied surface load due to surcharge

FIGURE EX. 9.8 Soil profile under consideration (not to scale).
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Solution

To answer parts (a) and (b) of this problem, the effective stress at point P
must be computed prior to load application. The vertical total stress at
point P is

sv ¼
�
18:0 kN=m3�ð3:0 mÞ þ �

20:5 kN=m3�ð2:0 mÞ ¼ 95:0 kPa (9.8.1)

The pore fluid pressure corresponds to hydrostatic conditions at point P.
Thus,

u ¼ �
9:81 kN=m3�ð1:5þ 2:0 mÞ ¼ 34:4 kPa (9.8.2)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 95:0� 34:3 ¼ 60:7 kPa (9.8.3)

a) Since the initial vertical effective stress at point P is greater than the
preconsolidation pressure of 60 kPa, the clay is normally consolidated.
Using the approach presented in Chapter 8, the reduction in void ratio
associated with the applied surcharge loading of 25 kPa is

De ¼ Cc log

�
s0v þ Ds0v

s0v

�
¼ ð0:38Þlog

�
60:7þ 25:0

60:7

�
¼ 0:057 (9.8.4)

The ultimate primary consolidation settlement is thus

DH ¼
�

De

1þ e0

�
H0 ¼

�
0:057

1þ 1:40

�
ð4:0 mÞ ¼ 0.095 m (9.8.5)

b) When the preconsolidation pressure is equal to 90 kPa, prior to application
of the surcharge load, the vertical effective stress will be less than this
value. Consequently, clay will be overconsolidated.

The sum of the initial effective stress at point P and the increment of
effective stress is

s0v þ Ds0v ¼ 60:7þ 25:0 ¼ 85:7 kPa (9.8.6)

Since this value is also less than 90 kPa, it follows that the clay re-
mains overconsolidated throughout the primary consolidation settlement.
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The reduction in void ratio associated with the applied surcharge loading
of 25 kPa is thus

De ¼ Cs log

�
s0v þ Ds0v

s0v

�
¼ ð0:08Þlog

�
60:7þ 25:0

60:7

�
¼ 0:012 (9.8.7)

The ultimate primary consolidation settlement is thus

DH ¼
�

De

1þ e0

�
H0 ¼

�
0:012

1þ 1:40

�
ð4:0 mÞ ¼ 0.020 m (9.8.8)

c) As noted earlier, the hydrostatic pore pressure at point P is 34.4 kPa. This
corresponds to a height of water (dhydro) in the piezometer of 3.5 m. Since
d is equal to 4.7 m 380 days after application of the surcharge load, it
follows that the height associated with the excess pore pressure is

dexcess ¼ d380 � dhydro ¼ 4:7� 3:5 ¼ 1:2 m (9.8.9)

The excess pore pressure 380 days after load application is thus

uexcess ¼ ð1:2 mÞ�9:81 kN=m3� ¼ 11:8 kPa (9.8.10)

Recalling the expression for the local degree of consolidation; i.e.,

Uzðz; tÞ ¼ u0 � uexcess
u0

¼ 25:0� 11:8

25:0
¼ 0:529 (9.8.11)

For single drainage, Hdr ¼ 4.0 m; thus z/Hdr ¼ 2.0 m/4.0 m ¼ 0.50.
From a plot of Uz versus normalized depth (z/Hdr), for Uz ¼ 0.529 and
z/Hdr ¼ 0.50, interpolation gives a time factor Tv value approximately
equal to 0.263. This result can likewise be obtained from the series solution
for Uz (recall Eq. 9.8). The coefficient of consolidation is then computed
from the definition of the time factor; i.e.,

Tv ¼ cv t

ðHdrÞ2
0 cv ¼ TvðHdrÞ2

t
¼ ð0:263Þð4:0 mÞ2

380 d
¼ 0.011 m2=d (9.8.12)

d) Since the preconsolidation pressure is equal to 60 kPa, the clay will be
normally consolidated. Recalling that 380 days after load application the
local degree of consolidation is 0.529, the primary consolidation settlement
at this time will be

scð380 dÞ ¼ ð0:529Þð0:095 mÞ ¼ 0.050 m (9.8.13)

where the result of Eq. (9.8.5) has been used.
e) To determine the height of the water in the piezometer 1000 days after load

application, compute the associated time factor; i.e.,

Tv ¼ cv t

ðHdrÞ2
¼ ð0:011 m2=dÞð1000 dÞ

ð4:0 mÞ2 ¼ 0:688 (9.8.14)
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From a plot of Uz versus normalized depth (z/Hdr), or from the series
solution for Uz (recall Eq. 9.8), a value of Uz equal to 0.835 is obtained for
Tv ¼ 0.688 and z/Hdr ¼ 0.50. Recalling Eq. (9.8.11),

Uzðz; tÞ ¼ u0 � uexcess
u0

0 uexcess ¼ u0ð1� UzÞ
¼ ð25:0 kPaÞð1� 0:835Þ ¼ 4:13 kPa

(9.8.15)

Recalling Eq. (9.8.10), the height of water in the piezometer associated
with the excess pore pressure is thus

dexcess ¼ uexcess
gw

¼ 4:13 kPa

9:81 kN=m3
¼ 0:42 m (9.8.16)

Since the height of water in the piezometer associated with hydrostatic
is 3.5 m, it follows that the total height 1000 days after load application
will be

d1000 d ¼ dhydro þ dexcess ¼ 3:50þ 0:42 ¼ 3.92 m (9.8.17)

EXAMPLE PROBLEM 9.9

General Remarks

This example problem illustrates the manner in which field data are used to
solve consolidation problems.

Problem Statement

A 32 ft layer of clay at a site is underlain by an impermeable layer and is
overlain by a 20 ft thick layer of pervious sand, gravel, and nonplastic silt. The
groundwater table is located at the surface of the clay layer.

At some time in the past a 12-ft thick fill was placed above the sande
gravelesilt layer. The moist unit weight of the fill is found to be 133.5 lb/ft3.

The owner of the site desires to construct some light industrial buildings on
the fill. It is thus necessary to ascertain if the clay is fully consolidated under
the weight of the fill. To help in answering this question, a piezometer was
installed 9 ft below the top of the clay layer as shown in Figure Ex. 9.9. The
water in the piezometer tube rose to an elevation 6.7 ft above the groundwater
table. The fact that excess pore fluid pressure is measured in the clay layer
indicates that it has not fully consolidated.

Based on the results of several consolidation tests on samples from the
same clay layer, average coefficient of consolidation (cv) was found to be
4 � 10�3 cm2/s.

a) Determine the percentage degree of consolidation associated with the
current conditions within the clay layer.
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b) If the time factor Tv is equal to 0.30 for the calculated degree of consol-
idation, determine the age of the fill; i.e., how long it has been present at
the site?

Solution

a) Expressed as a percentage, the average degree of consolidation (Uz) is

Uz ¼
�
1� Du

Ds

�
� 100% (9.9.1)

where Ds is the increase in total stress, and u is the pore fluid pressure. For
the given conditions,

Uz ¼ Ds� u

Ds
¼

�
1� ð6:7 ftÞð62:4 lb=ft3Þ

ð133:7 lb=ft3Þð12:0 ftÞ

�
� 100% ¼ 73.9% (9.9.2)

impermeable layer

H=32 ft
Consolidating clay layer

Ground surface

Sand, gravel and silt

Fill 12 ft

20 ft

9.0 ft

6.7 ft

FIGURE EX. 9.9 Schematic illustration of the consolidating clay layer, the sand, gravel and silt

soil, and the fill (not to scale).
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b) If the time factor Tv is equal to 0.30 for the calculated degree of consol-
idation, the age of the fill is determined from the definition of the time
factor; i.e.,

Tv30 ¼
cv t30

ðHdrÞ2
0 t30 ¼ Tv30ðHdrÞ2

cv
¼

ð0:30Þ
h
ð32 ftÞð30:5 cm=ftÞ

i2
ð4:0� 10�3 cm=sÞ ¼ 7.1443107 s

(9.9.3)

Converting to the more convenient units of days gives

t30 ¼
�
7:144� 107 s

��min

60 s

��
1 h

60 min

��
d

24 h

�
¼ 827 d

EXAMPLE PROBLEM 9.10

General Remarks

This example problem investigates the spatial and temporal variation in excess
pore fluid pressure that is predicted by Terzaghi’s consolidation theory. In
particular, the problem illustrates the manner in which, at a given time, excess
pore pressures are computed at different depths.

Problem Statement

Consider the soil deposit shown in Figure Ex. 9.10A. The construction of a
large embankment results in a uniform vertical total stress increase of 100 kPa.

The 3-m thick layer of coarse sand has a saturated unit weight of 20.0 kN/m3.
The 8-m think layer of soft silty clay has a saturated unit weight of 14.0 kN/m3

and a coefficient of consolidation equal to 20 m2/year.

impermeable layer

H = 8.0 mConsolidating soft silty clay layer

Coarse sand 3.0 m

Embankment load

Ground surface

FIGURE EX. 9.10A Soft clay layer with single drainage subjected to embankment load (not to

scale).
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Compute the following quantities:

a) The excess pore pressure that would be measured at depths of 2, 4, 6, and
8 m in the soft silty clay layer 3 months, 6 months, and 1 year after the
embankment load was applied; and,

b) The average degree of consolidation of the clay layer 3, 6, and 9 months
following loading. Assume that the embankment was constructed relatively
quickly.

Solution

a) After 3 months, the time factor will be

Tv ¼ cv t

ðHdrÞ2
¼

�
20

m2

yr

�
ð3 mosÞ

� yr

12 mos

	
ð8:0 mÞ2 ¼ 0:078 (9.10.1)

Although a plot of the local degree of consolidation (Uz) versus
normalized depth (z/Hdr) in the clay layer can be used to estimate suitable
values of Uz for the given Tv ¼ 0.078, the relatively low magnitude of the
latter may lead to somewhat inaccurate results. Consequently, it is ad-
vantageous to use the series solution for excess pore pressure Du(z,t) and
for the local degree of consolidation Uz; i.e., recalling Eqs. (9.4) and (9.8),

Duðz; tÞ ¼
XN
n¼0

2Dsz
Mn

exp
h
� ðMnÞ2Tv

i
sin

�
Mnz

Hdr

�
(9.10.2)

Uzðz; tÞ ¼ 1�
XN
n¼0

2

Mn
exp

h
� ðMnÞ2Tv

i
sin

�
Mnz

Hdr

�
(9.10.3)

where Mn ¼ p
�
nþ 1

2

	
.

For example, in the case of z ¼ 2.0 m, z/Hdr ¼ 0.25. Using three terms
in the series solution for Tv ¼ 0.078 gives Du ¼ 47.32 kPa and Uz ¼ 0.527.
The change in vertical effective stress at a depth of 2.0 m and time of
3 months is thus

Ds0z ¼ Dsz �Duð2:0 m; 3 mosÞ ¼ 100:0� 47:32 ¼ 52:68 kPa (9.10.4)

Table Ex. 9.10A summarizes the results obtained for the other three
depths under consideration in this problem.

For t ¼ 6 months.

Tv ¼ cv t

ðHdrÞ2
¼

�
20

m2

yr

�
ð6 mosÞ

� yr

12 mos

	
ð8:0 mÞ2 ¼ 0:156 (9.10.5)
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Again using three terms in the series solution for this value of Tv gives
the results shown in Table Ex. 9.10B.

Finally, for t ¼ 1 year,

Tv ¼ cv t

ðHdrÞ2
¼

�
20

m2

yr

�
ð1 yrÞ

ð8:0 mÞ2 ¼ 0:313 (9.10.6)

Again using three terms in the series solution for this value of Tv gives
the results shown in Table Ex. 9.10C.

b) The series solution for the average degree of consolidation is given by Eq.
(9.10); i.e.,

Uz ¼ 1�
XN
n¼0

2

Mn
exp

h
� ðMnÞ2Tv

i
(9.10.7)

where, as before, Mn ¼ p

�
nþ 1

2

�
.

TABLE EX. 9.10A Change in Vertical Effective Stress and Excess Pore

Pressure at Various Depths 3 Months After Load Application

z (m) z/Hdr Uz Ds0
v (kPa) Du (kPa)

2.0 0.25 0.527 52.68 47.32

4.0 0.50 0.206 20.57 79.43

6.0 0.75 0.059 5.91 94.09

8.0 1.00 0.023 2.27 97.73

TABLE EX. 9.10B Change in Vertical Effective Stress and Excess

Pore Pressure at Various Depths 6 Months After Load Application

z (m) z/Hdr Uz Ds0
v (kPa) Du (kPa)

2.0 0.25 0.656 65.61 34.39

4.0 0.50 0.378 37.79 62.21

6.0 0.75 0.205 20.46 79.54

8.0 1.00 0.147 14.68 85.32
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For t ¼ 3 months, as computed in part a), Tv ¼ 0.078. Using three terms
in the series solution for this value of Tv gives Uz ¼ 31.5%.

For t ¼ 6 months, Tv ¼ 0.156. Using three terms in the series solution
for this value of Tv gives Uz ¼ 44.6%.

Finally, for t ¼ 1 year, Tv ¼ 0.323. Using three terms in the series so-
lution for this value of Tv gives Uz ¼ 62.6%.

To better understand the relation between the increments in excess pore
pressure and vertical total and effective stresses computed in part a), using the
approach described in Chapter 5, compute the effective stress variation with
depth below the ground surface before construction of the embankment.
At a depth of 3.0 m:

The vertical total stress is

sv ¼
�
20:0 kN=m3�ð3:0 mÞ ¼ 60.0 kPa (9.10.8)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð3:0 mÞ ¼ 29.5 kPa (9.10.9)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 60:0� 29:4 ¼ 30.6 kPa (9.10.10)

At a depth of 5.0 m (i.e., 2.0 m below the surface of the clay layer):
The vertical total stress is

sv ¼ 60:0 kPaþ �
14:0 kN=m3�ð2:0 mÞ ¼ 88.0 kPa (9.10.11)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð5:0 mÞ ¼ 49.1 kPa (9.10.12)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 88:0� 49:1 ¼ 38.9 kPa (9.10.13)

TABLE EX. 9.10C Change in Vertical Effective Stress and Excess Pore

Pressure at Various Depths 1 Year After Load Application

z (m) z/Hdr Uz Ds0
v (kPa) Du (kPa)

2.0 0.25 0.775 77.45 22.55

4.0 0.50 0.584 58.38 41.62

6.0 0.75 0.457 45.68 54.32

8.0 1.00 0.412 41.22 58.78
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At a depth of 7.0 m (i.e., 4 m below the surface of the clay layer):
The vertical total stress is

sv ¼ 88:0 kPaþ �
14:0 kN=m3�ð2:0 mÞ ¼ 116.0 kPa (9.10.14)

The pore fluid pressure is

u ¼ �
9.81 kN=m3�ð7:0 mÞ ¼ 68.7 kPa (9.10.15)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 116:0� 68:7 ¼ 47.3 kPa (9.10.16)

At a depth of 9 m (i.e., 6 m below the surface of the clay layer):
The vertical total stress is

sv ¼ 116:0 kPaþ �
14:0 kN=m3�ð2:0 mÞ ¼ 144.0 kPa (9.10.17)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð9:0 mÞ ¼ 88.3 kPa (9.10.18)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 144:0� 88:3 ¼ 55.7 kPa (9.10.19)

At a depth of 11 m (i.e., 8 m below the surface of the clay layer):
The vertical total stress is

sv ¼ 144:0 kPaþ �
14:0 kN=m3�ð2:0 mÞ ¼ 172.0 kPa (9.10.20)

The pore fluid pressure is

u ¼ �
9:81 kN=m3�ð11:0 mÞ ¼ 107.9 kPa (9.10.21)

The vertical effective stress is thus

s0v ¼ sv � u ¼ 172:0� 107:9 ¼ 64.1 kPa (9.10.22)

Figure Ex. 9.10B shows the variation with depth of the vertical total
stress, pore pressure, and vertical effective stress before construction of
embankment.

Assuming that the embankment is constructed relatively quickly, at
t ¼ 0, the vertical total stress throughout the soil deposit increases by
100 kPa (Figure Ex. 9.10C). Due to the relatively low permeability of the
clay layer, the pore pressure also uniformly increases by the increment
Du ¼ 100 kPa.

At t ¼ 3 months, 6 months, and 1 year, the vertical total stress throughout
the soil deposit remains unchanged. The excess pore pressure (Du) decreases
to the values listed in Tables Ex. 9.10AeC, respectively. Figure Ex. 9.10D
shows the change in excess pore pressure with depth and time. As t/N,
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FIGURE EX. 9.10B Variation with depth of vertical total stress, pore fluid pressure, and vertical

effective stress before construction of embankment.

FIGURE EX. 9.10C Variation with depth of vertical total stress before and immediately after

construction of embankment.
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FIGURE EX. 9.10D Variation with depth and time of increment in excess pore pressure.

FIGURE EX. 9.10E Variation with depth and time of vertical effective stress.
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the excess pore pressure in the clay layer goes to zero. Since the permeability
of the coarse sand layer would be much higher than for the clay, the excess
pore pressure in the former goes to zero very quickly.

As the excess pore pressure decreases, the vertical effective stress in-
creases by the increments Ds0v listed in Tables Ex. 9.10AeC. Figure Ex.
9.10E shows the increase in vertical effective stress with depth and time.
As t /N, Du / 0 and the vertical effective stress distribution
approaches the vertical total stress distribution (Figure Ex. 9.10E).

EXAMPLE PROBLEM 9.11

General Remarks

This example problem investigates the amount and rate of primary consoli-
dation settlement that occurs when the groundwater table is lowered by a
certain amount.

Problem Statement

A 60 ft thick clay layer has double drainage and is normally consolidated
under its present overburden. From test results performed on samples from the
same depth, the void ratio (e0) was found to be 1.120, the coefficient of
compressibility (av) and consolidation (cv) were estimated to be 3.25 �
10�5 ft2/lb and 7.50 � 10�6 ft2/s, respectively.

If the groundwater table in the soil layer overlying the clay is to be lowered
by 5 ft,

a) determine the average primary consolidation settlement of the clay layer;
and

b) the time that will elapse for 50% and 90% of this settlement to occur.

Solution

A 5 ft drop in the groundwater table will result in a change in the pore pressure
at the mid-depth of the clay layer of

Du ¼ ��62:4 lb=ft3
�ð5 ftÞ ¼ �312:0 lb=ft2 (9.11.1)

Assuming that the lowering of the groundwater table does not change the
moisture content of the soil above the groundwater table, it follows that
the total stress will remain unchanged. Consequently, the associated change in
the vertical effective stress will thus be

Ds0v ¼ Dsv �Du ¼ 0���312:0 lb=ft2
� ¼ 312:0 lb=ft2 (9.11.2)
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a) From the definition of the coefficient of compressibility,

av ¼ De

Ds0v
0 De ¼ avDs

0
v (9.11.3)

where it is understood that the void ratio is decreasing. The average ultimate
primary consolidation settlement of the ground surface is thus

sc ¼
�

De

1þ e0

�
H0 ¼

�
avDs

0
v

1þ e0

�
H0

¼
�
3:25� 10�5 ft2=lb

�ð312:0 lb=ft2Þ
1þ 1:120

ð60 ftÞ
¼ 0.287 ft ¼ 3.44 in.

(9.11.4)

b) From the general definition of the time factor,

Tv ¼ cv t

ðHdrÞ2
0 t ¼ TvðHdrÞ2

cv
(9.11.5)

For 50% consolidation,

Tv50 ¼
p

4

�
50

100

�2

¼ 0:196 (9.11.6)

Thus, since the clay later has double drainage,

t50 ¼ Tv50ðHdrÞ2
cv

¼
ð0:196Þ

�
60 ft

2

�2

7:50� 10�6 ft2=s
¼ 2.3523107 s (9.11.7)

Converting to the more convenient units of years gives

t50 ¼
�
2:352� 107 s

��min

60 s

��
1 h

60 min

��
d

24 h

�� yr

365 d

	
¼ 0.75 yr

The associated settlement will thus be

s50 ¼ ð0:50Þsc ¼ ð0:50Þð0:287 ftÞ ¼ 0:144 ft ¼ 1:72 in. (9.11.8)

For 90% consolidation,

Tv90 ¼ 1:781�0:933 log10ð100� 90Þ ¼ 0:848 (9.11.9)
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Thus,

t90 ¼ Tv90ðHdrÞ2
cv

¼
ð0:848Þ

�
60 ft

2

�2

7:50� 10�6 ft2=s
¼ 1.0183108 s ¼ 3.23 yr (9.11.10)

The associated settlement will thus be

s90 ¼ ð0:90Þsc ¼ ð0:90Þð0:287 ftÞ ¼ 0:258 ft ¼ 3:10 in. (9.11.11)

EXAMPLE PROBLEM 9.12

General Remarks

This problem represents a rather “standard” example related to the time rate of
consolidation of fine-grained soils. It includes the determination of the ulti-
mate primary consolidation settlement (see also example problems presented
in Chapter 8), the excess pore pressure after a given period of time, and the
time required to reach a specific fraction of the ultimate settlement.

Problem Statement

A load increment of 1200 lb/ft2 is applied to a 10 ft thick layer of clay that
is underlain by an impermeable layer of rock in the manner shown in
Figure Ex. 9.12.

The following properties were determined from laboratory tests on the
clay: Gs ¼ 2.69, w ¼ 35%, cv ¼ 30 ft2/yr, and k ¼ 0.12 ft/yr.

a) Calculate the ultimate primary consolidation settlement of the clay layer.
b) What is the approximate excess pore pressure at a depth of 5 ft 2 years

after the start of consolidation?
c) How long will it take to reach 90% of the ultimate settlement?

impermeable layer

H=10 ft
consolidating clay layer

no drainage

free draining

applied surface load = 1,200 psf

FIGURE EX. 9.12 Profile consisting of a single consolidating soil layer.
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Solution

a) The determination of the ultimate primary consolidation settlement re-
quires knowledge of the initial void ratio and the change in void ratio
caused by the load increment. The void initial ratio is computed from the
given information. In particular, since the clay layer is saturated (a basic
assumption of Terzaghi’s consolidation theory)

e0 ¼ Gsw ¼ ð2:69Þð0:35Þ ¼ 0:942 (9.12.1)

The change in void ratio is also computed from the given information.
In particular, since cv and k were provided, and since the initial void ratio
was computed earlier, the coefficient of compressibility is computed as
follows:

cv ¼ kð1þ e0Þ
avgw

0 av ¼ kð1þ e0Þ
cvgw

¼ ð0:12 ft=yrÞð1þ 0:942Þ
ð30 ft2=yrÞð62:4 lb=ft3Þ

¼ 1:245� 10�4 ft2=lb

(9.12.2)

Since av ¼ �De/Ds0, it follows that

De ¼ �av Ds0 ¼ ��1:245� 10�4 ft2=lb
��
1200 lb=ft2

� ¼ �0:149 (9.12.3)

The ultimate primary consolidation settlement is thus

DH ¼
�

De

1þ e0

�
H ¼

�
0:149

1þ 0:942

�
ð10 ftÞ ¼ 0.767 ft (9.12.4)

b) From Figure Ex. 8.7 it is evident that H ¼ Hdr ¼ 10 ft. The dimensionless
time factor associated with 2 years is thus

Tv ¼ cv t

ðHdrÞ2
¼ ð0:12 ft=yrÞð2 yrÞ

ð10 ftÞ2 ¼ 0:60 (9.12.5)

From a plot of consolidation ratio (Uz) versus normalized depth (z/Hdr),
for Tv ¼ 0.60 and z/Hdr ¼ 0.50, Uz ¼ 0.80. Since

Uzðz; tÞ ¼ 1� uðz; tÞ
uðz; 0Þ (9.12.6)

it follows that

uð5 ft; 2 yrÞ ¼ ð1� UzÞuð5 ft; 0Þ ¼ ð1� 0:80Þuð5 ft; 0Þ ¼ 0:20uð5 ft; 0Þ
(9.12.7)
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The initial excess pore pressure at a depth of 5 ft (i.e., at the mid-depth
of the clay layer) is

uð5 ft; 0Þ ¼ gwð5 ftÞ ¼ �
62:4 lb=ft3

�ð5 ftÞ ¼ 312:0 lb=ft2 (9.12.8)

Thus, the excess pore pressure at a depth of 5 ft after 2 years is

uð5 ft; 2 yrÞ ¼ ð0:20Þ�312:0 lb=ft2
� ¼ 62.4 lb=ft2 (9.12.9)

c) The time factor associated with an average degree of consolidation (Uz) of
90% is computed from the approximation for Uz > 60%; i.e.,

Tv90 ¼ 1:781�0:933 logð100� 90%Þ ¼ 0:848 (9.12.10)

From the definition of the time factor,

Tv90 ¼
cvt90

ðHdrÞ2
0t90 ¼ Tv90ðHdrÞ2

cv
¼ ð0:848Þð10 ftÞ2

ð0:12 ft=yrÞ ¼ 2.8 yr (9.12.11)

EXAMPLE PROBLEM 9.13

General Remarks

This example problem illustrates the manner in which excess pore pressure
and effective stresses are computed during primary consolidation.

Problem Statement

A 22 m thick normally consolidated clay layer is located below a granular fill
of large areal extent that is 3.5 m thick. The moist unit weight of the fill is
17.8 kN/m3. The fill was placed on the clay layer many years ago. Conse-
quently the clay is assumed to have finished settling in response to the fill.
A dense, though permeable, sandy gravel is found below the clay layer. The
groundwater table is located at the top of the clay layer, and the submerged
(buoyant) unit weight of this layer is 9.31 kN/m3. The capillary rise in the
granular fill is thought to be negligible.

Recently, due to construction activities, the fill had a load of 150 kPa
applied to it over a large areal extent.

a) Determine the vertical total stress, pore pressure, and vertical effective
stress at a depth of 16 m below the ground surface before application of the
load.

b) Consolidation tests performed on 2.54 cm thick doubly drained samples of
the clay indicate that t50 ¼ 10.6 min for a load increment close to that of
the actual-loaded clay layer. Determine the coefficient of consolidation (cv)
in units of square meters per year.
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c) Compute the excess pore pressure, total pore pressure, and effective stress
at a depth of 16 m below the ground surface t ¼ 10 years after application
of the load.

d) If the clay layer were singly drained, from the top only, at what time (in
years) would a value of Tv ¼ 0.20 be reached at a depth of 16 m below the
ground surface? What is the effective stress in the clay layer at this depth at
this time?

Solution

a) The saturated unit weight of the clay layer is computed using the results of
Case 1.8 of Chapter 1; i.e.,

gb ¼ gsat � gw 0 gsat ¼ gb þ gw ¼ 9:31þ 9:81 ¼ 19:12 kN=m3 (9.13.1)

Before the load is applied, the vertical total stress at a depth of 16 m
below the ground surface is thus

sv ¼
�
17:8 kN=m3�ð3:5 mÞ þ �

19:12 kN=m3�ð16:0� 3:5 mÞ ¼ 301.3 kPa

(9.13.2)

The excess pore pressure at the same point is

u ¼ �
9:81 kN=m3�ð16:0� 3:5 mÞ ¼ 122.6 kPa (9.13.3)

Finally, before the load is applied, the vertical effective stress at a depth
of 16 m below the ground surface is thus

s0v ¼ 301:3� 112:6 ¼ 178.7 kPa (9.13.4)

b) From the laboratory results,

T50 ¼ cv t50

ðHdrÞ2
0 cv ¼ T50ðHdrÞ2

t50
(9.13.5)

Since U < 60%,

Tv ¼ p

4

�
Uz%

100

�2

¼ p

4

�
50

100

�2

¼ p

16
¼ 0:196 (9.13.6)
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Substituting Eq. (9.13.6) into Eq. (9.13.5) gives

cv ¼

�p

16

	�2:54 cm

2
� m

100 cm

�2

10:5 min
¼ 3:016� 10�6 m=min (9.13.7)

Converting to the desired units gives

cv ¼
�
3:016� 10�6 m=min

��60 min

h

��
24 h

d

��
365 d

yr

�
¼ 1.59 m2=yr

c) For the actual site,

Tv ¼ cv t

ðHdrÞ2
¼ ð1:59 m2=yrÞð10 yrÞ

ð11:0 mÞ2 ¼ 0:131 (9.13.8)

At a depth of 16e3.5 ¼ 12.5 m in the clay, z/Hdr ¼ 12.5/11.0 ¼ 1.136.
From either a figure of z/Hdr versus Uz, or from a series solution,
Uz ¼ 0.118. Noting that the initial excess pore pressure is equal to the
applied fill load; i.e., u0 ¼ 150.0 kPa, the excess pore pressure after
10 years is thus

Uzð12:5 m; 10 yrÞ ¼ 1� uð12:5 m; 10 yrÞ
u0

0uð12:5 m; 10 yrÞ ¼ u0ð1� UzÞ ¼ ð150:0 kPaÞð1� 0:118Þ ¼ 132.3 kPa

(9.13.9)

Recalling Eq. (9.13.3), the total pore pressure is thus

u ¼ 122:6þ 132:3 ¼ 254:9 kPa (9.13.10)

Recalling Eq. (9.13.2) and including the applied fill load, the vertical
total stress at a depth of 16 m below the ground surface is

sv ¼ 301:3þ 150:0 ¼ 451:3 kPa (9.13.11)

The vertical effective stress at a depth of 16 m below the ground surface
is thus

s0v ¼ 451:3� 254:9 ¼ 196.4 kPa (9.13.12)

d) For single drainage, Hdr ¼ 22.0 m. Thus, for Tv ¼ 0.20,

Tv ¼ cv t

ðHdrÞ2
0 t ¼ TvðHdrÞ2

cv
¼ ð0:20Þð22:0 mÞ2

1:59 m2=yr
¼ 60.9 yr (9.13.13)

At a depth of 16e3.5 ¼ 12.5 m in the clay, z/Hdr ¼ 12.5 m/22.0 m
¼ 0.568. From either a figure of z/Hdr versus Uz, or from a series solution,
Uz ¼ 0.393. Noting that the initial excess pore pressure is equal to the
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applied fill load; i.e., u0 ¼ 150.0 kPa, the excess pore pressure after
10 years is thus

uðz; tÞ ¼ u0ð1� UzÞ ¼ ð150:0 kPaÞð1� 0:393Þ ¼ 91:1 kPa (9.13.14)

The total pore pressure is again the sum of the hydrostatic and excess
pore pressures; i.e.,

u ¼ 122:6þ 91:1 ¼ 213:7 kPa (9.13.15)

The vertical effective stress at a depth of 16 m below the ground surface
is thus

s0v ¼ 451:3� 213:7 ¼ 237.6 kPa (9.13.16)

EXAMPLE PROBLEM 9.14

General Remarks

This example problem illustrates the manner in which excess pore pressure
and primary consolidation settlements are computed in the presence of a sand
seam that forms a free-draining boundary in a clay layer.

Problem Statement

Consider the soil profile shown in Figure Ex. 9.14A. The clay layer has an
average initial void ratio (e0) of 1.20 and a coefficient of consolidation (cv) of
7.0 � 10�4 cm2/s. A surcharge load of large areal extent uniformly increases
the stress within the clay layer by 75 kPa. As a result of the surcharge loading,
the void ratio decreases by 0.126 at the end of primary consolidation.

a) Compute the ultimate primary consolidation settlement of the clay layer.
b) Compute the primary consolidation settlement 3 years after application of

the surcharge load.
c) Compute the excess pore fluid pressure at the middle and bottom of the

clay layer 4 years after application of the surcharge load.
d) Subsequent field investigations indicate the presence of a thin sand seam

located 2 m above the bottom of the clay layer (Figure Ex. 9.14B). This
seam serves as a free-draining boundary. Compute the total settlement of
the two clay sublayers 3 years after application of the surcharge load.

Solution

a) Based on the given information, the ultimate primary consolidation set-
tlement of the clay layer is computed as follows:

DH ¼
�

De

1þ e0

�
H0 ¼

�
0:126

1þ 1:20

�
ð8:0 mÞ ¼ 0.458 m (9.14.1)
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b) The calculation of the primary consolidation settlement 3 years after
application of the surcharge load requires the value of the time factor; i.e.,

Tv ¼ cv t

ðHdrÞ2
(9.14.2)

The coefficient of consolidation is first converted to units of meters per
year

cv ¼
�
7:0� 10�4 cm2=s

�� m

100 cm

	2
�
60 s

min

��
60 min

h

��
24 h

d

��
365 d

yr

�
¼ 2:208 m2=yr

Soft clay

Impervious rock layer

Sand

8.0 m

4.0 m

2.0 m

Ground surface

applied surface load due to surcharge(A)

Soft clay

Impervious rock layer

Sand

2.0 m

4.0 m

2.0 m

Ground surface

applied surface load due to surcharge(B)

6.0 m

Sand seam
(free-draining boundary)

FIGURE EX. 9.14 Soil profile consisting of a consolidating clay layer (not to scale). (A) Without

a sand seam and (B) with a sand seam.
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Substituting this value, along with the other known quantities, into Eq.
(9.14.2) gives

Tv ¼ cv t

ðHdrÞ2
¼ ð2:208 m2=yrÞð3 yrÞ

ð8:0 mÞ2 ¼ 0:103 (9.14.3)

Assuming an average degree of consolidation (Uz) less than 60%

Tv ¼ p

4

�
Uz%

100

�2

0 Uz ¼
ffiffiffiffiffiffiffi
4Tv
p

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð0:103Þ

p

r
¼ 0:362 (9.14.4)

The value of Uz ¼ 36:2% < 60% verifies the above assumption5.
The primary consolidation settlement 3 years after application of the

surcharge load is thus

scð3 yrÞ ¼ ð0:362Þð0:458 mÞ ¼ 0.166 m (9.14.5)

c) To compute the excess pore fluid pressure at the middle and bottom of the
clay layer 4 years after application of the surcharge load, again begin with
the time factor; i.e.,

Tv ¼ cv t

ðHdrÞ2
¼ ð2:208 m2=yrÞð4 yrÞ

ð8:0 mÞ2 ¼ 0:138 (9.14.6)

At the middle of the clay layer, z/Hdr ¼ 4.0/8.0 ¼ 0.50. From either a
figure of z/Hdr versus Uz, or from a series solution, Uz ¼ 0.346. Noting that
the initial excess pore pressure is equal to the applied surcharge load; i.e.,
u0 ¼ 75.0 kPa, the excess pore pressure after 4 years is thus

uð4:0 m; 4 yrÞ ¼ u0ð1� UzÞ ¼ ð75:0 kPaÞð1� 0:346Þ ¼ 49.1 kPa (9.14.7)

At the bottom of the clay layer, z/Hdr ¼ 8.0/8.0 ¼ 1.00. From either a
figure of z/Hdr versus Uz, or from a series solution, Uz ¼ 0.114. The excess
pore pressure after 4 years is thus

uð4:0 m; 4 yrÞ ¼ u0ð1� UzÞ ¼ ð75:0 kPaÞð1� 0:114Þ ¼ 66.5 kPa (9.14.8)

d) The presence of a thin sand seam is present in the clay layer (Figure Ex.
9.14B) divides the layer into two sublayers. The upper sublayer is drained
along both of its boundaries, thus, Hdr ¼ 6.0/2 ¼ 3.0 m. The lower sublayer
is drained only along its top boundary, thus Hdr ¼ 2.0 m.

Assuming the same initial void ratio and same decrease in void ratio at
the end of primary consolidation, the ultimate primary consolidation set-
tlement in the two sublayers is

5. This result could have likewise been obtained using a series solution (recall Eq. 9.10).
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DHupper ¼
�

De

1þ e0

�
Hupper ¼

�
0:126

1þ 1:20

�
ð6:0 mÞ ¼ 0:344 m (9.14.9)

DHlower ¼
�

De

1þ e0

�
Hlower ¼

�
0:126

1þ 1:20

�
ð2:0 mÞ ¼ 0:115 m (9.14.10)

The coefficient of consolidation is assumed to be the same in the two
sublayers. Three years after application of the surcharge load, the time
factor for the upper sublayer is thus

Tvupper ¼
cv t

ðHdrÞ2
¼ ð2:208 m2=yrÞð3 yrÞ

ð3:0 mÞ2 ¼ 0:736 (9.14.11)

Assuming an average degree of consolidation (Uz) greater than 60%,

Tv ¼ 1:781�0:933 log10
�
100� Uz%

�
0 Uz ¼ 100� 10

�
1:781�0:736

0:933

�
¼ 86:8%

(9.14.12)

The settlement of the upper sublayer after 3 years is thus

scupper ¼ ð0:868Þð0:344 mÞ ¼ 0:299 m (9.14.13)

Three years after application of the surcharge load, the time factor for
the lower sublayer is thus

Tvupper ¼
cv t

ðHdrÞ2
¼ ð2:208 m2=yrÞð3 yrÞ

ð2:0 mÞ2 ¼ 1:656 (9.14.14)

Again assuming an average degree of consolidation (Uz) greater than
60%,

Uz ¼ 100� 10

�
1:781�1:656

0:933

�
¼ 98:6% (9.14.15)

The settlement of the lower sublayer after 3 years is thus

sclower ¼ ð0:986Þð0:115 mÞ ¼ 0:113 m (9.14.16)

The total settlement 3 years after application of the surcharge load is
thus

sctotal ¼ scupper þ sclower ¼ 0:299þ 0:113 ¼ 0.412 m (9.14.17)

To put this result into context, the total settlement associated with the
sand seam is �

0:412

0:458

�
� 100% ¼ 90%

of the total settlement that would occur without the sand seam (recall the
result obtained in Eq. 9.14.1).
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Chapter 10

Example Problems Related
to Shear Strength of Soils

10.0 GENERAL COMMENTS

The subject of shear strength of soils typically proves rather challenging for
undergraduates. Indeed, most students only truly understand this subject in a
second, often graduate level, course that focuses on shear strength. For this
reason, the material presented in this chapter is limited to basic aspects related
to shear strength of soils.

10.1 SHEAR STRENGTH OF SOILS

“Strength” typically refers to some limiting stress state that, if exceeded, will
result in some type of failure. At failure there is typically large deformation
(e.g., plastic flow, rupture, etc.).

The shear strength of a soil represents its resistance to shear stresses. It is a
measure of the material’s resistance to deformation by continuous displace-
ment of its individual particles. Shear strength in soils thus depends primarily
on interparticle interactions and is associated with effective stress (recall the
discussion of Chapter 5). Shear failures occur when the stresses between the
particles are such that the particles slide or roll past each other.

10.2 FACTORS CONTROLLING SHEAR STRENGTH
OF SOILS

The stressestrain relationship of soils, and therefore their shearing strength, is
affected by the following factors:

1. Soil composition (basic soil material)
l mineralogy
l grain size and grain size distribution
l particle shape
l pore fluid type and ion content (for cohesive soils).

2. Microstructure of the soil
l undisturbed, disturbed, remolded
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l microfabric, i.e., the geometric arrangement of particles and voids (e.g.,
flocculated, dispersed, cemented, etc.).

3. Initial state of the soil defined by
l initial void ratio
l initial effective stress and shear stress state
l overconsolidation ratio.

4. Loading history
l stress path
l type of loading (e.g., static, dynamic, monotonic, cyclic)
l history of load application.

10.3 VOLUME CHANGE CHARACTERISTICS

For engineering materials such as steel, wood, polymers, etc., volume changes
typically do not influence yielding and strength (i.e., failure).

In geomaterials (i.e., soil and rock), applied stresses induce changes in
volume. For example, loose sands and normally consolidated clays will
contract (i.e., undergo a reduction in void ratio) when sheared. Dense sands
and overconsolidated clays will primarily dilate (i.e., undergo a increase in
void ratio) when sheared. Strength and volume change are thus interrelated for
geomaterials.

10.4 IMPORTANCE OF SHEAR STRENGTH OF
GEOMATERIALS

The safety of any geostructure is dependent on the strength of the geomaterial.
If the material fails, the structure founded on it can become overstressed and
collapse. An understanding of shear strength is thus fundamental to analyzing
different classes of soil stability problems such as (1) the lateral earth pressure
acting on retaining walls, (2) the stability of slopes, (3) the bearing capacity of
footings, etc.

10.5 MOHR’S FAILURE CRITERION

The principal stresses associated with failure in a soil, as well as the angle of
the plane in which the failure will occur, are commonly determined using
Mohr’s circles such as those shown in Figure 10.1 (Section 4.2.5.4 gives
additional details pertaining to Mohr’s circles of stress1). Mohr used his well-
known graphical representation of stress at a point to devise a strength theory
that could be adapted to various stress conditions and thus be brought into
better agreement with experimental observations. Mohr assumed that of all the

1. Named in honor of Otto Mohr (1835e1918).
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planes having the same magnitude of normal stress the weakest one, on which
failure is most likely to occur, is that with the maximum shear stress.

The failure is thus by shear, but the critical shear stress is governed by the
normal effective stress acting on the potential failure plane. It is thus necessary
to consider only the Mohr’s circle that corresponds to the maximum difference
in principal stress (i.e., the difference between the major and minor principal
stress). If there are a sufficient number of such circles, an envelope of failure
points can be drawn (Figure 10.2).

Stated in another way, Mohr’s criterion states that failure will occur along
that plane for which the ratio of shear stress to normal stress reaches a critical
limiting value, i.e.,

sff ¼ f
�
s0ff

�
(10.1)

where sff is the shear strength of the material and s0ff is the normal effective
stress on the failure plane (Figure 10.3).

For any stress states for which there is no experimental data, it may be
assumed with sufficient accuracy that the limiting circle will also touch this
failure envelope. Although the failure envelopes for soils and rock are
generally curved, for simplicity they are commonly replaced by a straight line.
The most common straight line assumption is based on Coulomb’s friction
hypothesis. When combined with Mohr’s failure criterion, it gives the
so-called MohreCoulomb failure criterion.

FIGURE 10.1 Principal stresses and Mohr’s circles associated with a three-dimensional stress

state.
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10.6 MOHReCOULOMB FAILURE CRITERION

Coulomb’s friction hypothesis2, which states that a linear relationship exists
between the shear stress at failure and the associated with normal stress,

failure envelope

τ

σ

FIGURE 10.2 Schematic illustration of a failure envelope constructed using Mohr’s circles.

FIGURE 10.3 Schematic illustration of a Mohr’s circle at the failure envelope.

2. C.A. Coulomb (1736e1806).
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represents the simplest approximation of a failure envelope. To better under-
stand this approximation, briefly recall the Coulomb’s friction law.

Figure 10.4A shows a block resting on a rough surface. This roughness is
characterized by a coefficient of static friction m.

Using the free-body diagram shown in Figure 10.4B, the following equa-
tions of equilibrium are written:X

Fx ¼ Q� f ¼ 0 0 f ¼ Q (10.2)X
Fy ¼ N � P ¼ 0 0 N ¼ P (10.3)

Then, at the point of sliding (i.e., failure) along the interface,
Q ¼ f ¼ mN ¼ mP.

The forces N and f can also be replaced by a resultant force R and an angle
of “obliquity” j. From the free-body diagram shown in Figure 10.4C, the
following equations of equilibrium are written:X

Fx ¼ Q� R sin j ¼ 0 0 Q ¼ R sin j (10.4)

X
Fy ¼ R cos j� P ¼ 0 0 R ¼ P

cos j
(10.5)

Thus,

Q ¼ R sin j ¼
�

P

cos j

�
sin j ¼ P tan j (10.6)

FIGURE 10.4 Schematic illustration of Coulomb’s friction law.
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Then, at the point of sliding (i.e., failure) along the interface, j ¼ f, where
f is angle of internal friction. Thus, Q ¼ P tanf, indicating that when the
friction is mobilized along the interface, m ¼ tanf.

Due to its simplicity, the Coulomb’s hypothesis is commonly used in
conjunction with Mohr’s graphical representation to determine the combina-
tion of shear and normal stress that will cause a failure of the material.
Figure 10.5 shows the so-called MohreCoulomb failure criterion.

Stated mathematically, the MohreCoulomb failure criterion is written as

sff ¼ s0ff tan f0 þ c0 (10.7)

where sff and s0ff are as defined earlier, c0 is the “strength parameter” or
“cohesion intercept” (units of FL�2), and f0 represents the effective angle of
internal friction.

10.6.1 Obliquity Relations

It is typically advantageous to write the MohreCoulomb failure criterion in
terms of principal stresses. Consider the Mohr’s circle at failure shown in
Figure 10.6.

For the triangle having OC as its hypotenuse in Figure 10.6,

sin f0 ¼ R

c0 cot f0 þ 1

2

�
s01f þ s03f

� ¼
1

2

�
s01f � s03f

�
c0 cot f0 þ 1

2

�
s01f þ s03f

� (10.8)

FIGURE 10.5 Schematic illustration of the MohreCoulomb failure criterion.
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or

1

2

�
s01f � s03f

�
¼ c0 cos f0 þ 1

2

�
s01f þ s03f

�
sin f0 (10.9)

Eq. (10.9) is commonly rewritten as

s01f ð1� sin f0Þ ¼ s03f ð1þ sin f0Þ þ 2c0 cos f0 (10.10)

or

s01f ¼ s03f

�
1þ sin f0

1� sin f0

�
þ 2c0

�
cos f0

1� sin f0

�
(10.11)

If c0 ¼ 0, then Eq. (10.11) is typically rewritten as

s01f
s03f

¼ 1þ sin f0

1� sin f0 or
s03f
s01f

¼ 1� sin f0

1þ sin f0 (10.12)

Eq. (10.12) is commonly rewritten in terms of the angle of internal
friction as

sin f0 ¼
s01f � s03f
s01f þ s03f

(10.13)

Using the trigonometric identities

1þ sin a

1� sin a
¼ tan2

�p
4
þ a

2

�
;

cos a

1� sin a
¼ tan

�p
4
þ a

2

�
(10.14)

FIGURE 10.6 MohreCoulomb failure criterion.
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Eq. (10.11) is also written as

s01f ¼ s03f tan
2

�
p

4
þ f0

2

�
þ 2c0 tan

�
p

4
þ f0

2

�
(10.15)

where f0 must be in radians. If c0 ¼ 0, then Eq. (10.15) reduces to

s01f
s03f

¼ tan2
�
p

4
þ f0

2

�
or

s03f
s01f

¼ tan2
�
p

4
� f0

2

�
(10.16)

To relate the orientation of the failure plane to the effective angle of in-
ternal friction f

0
, consider Figure 10.7.

From the horizontal line OC,

2qf þ ð90� f0Þ ¼ 180� 0 qf ¼ 45� þ f0

2
(10.17)

where f0 is measured in degrees. If f0 is measured in radians, then

qf ¼ p

4
þ f0

2
(10.18)

Next consider the angles shown in Figure 10.8.
The triangle from Figure 10.8 is redrawn in Figure 10.9.
The center and radius of the Mohr’s circle are given by Eqs. (4.32) and

(4.38), respectively, i.e.,

C ¼ 1

2
ðsx þ syÞ; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1

2
ðsx � syÞ


2
þ ðsxyÞ2

s
(10.19)

FIGURE 10.7 MohreCoulomb failure criterion: relation among various angles.
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From Figure 10.8, it is evident that d ¼ C � s03f ¼ R. Using the law of
sines for the triangle shown in Figure 10.9 gives

sin af

R
¼ sin g

d
¼ sin g

R
0 g ¼ af (10.20)

Noting that, for the triangle shown in Figure 10.9, 2af þ (90�� f
0
) ¼ 180�,

it follows that

af ¼ 45� þ f0

2
¼ qf (10.21)

Finally, consider the triangle shown in Figure 10.10.

FIGURE 10.8 MohreCoulomb failure criterion: additional insight into relevant angles.

FIGURE 10.9 Expanded view of triangle from Figure 10.8 in terms of angles.

FIGURE 10.10 Expanded view of triangle from Figure 10.8 in terms of stresses.
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For the triangle having R as its hypotenuse,

sin f0 ¼ C � s0ff
R

0 s0ff ¼ C � R sin f0 (10.22)

Substituting for C and R in terms of principal stress at failure gives

s0ff ¼
1

2

�
s01f þ s03f

�
�1

2

�
s01f � s03f

�
sin f0 (10.23)

For the same triangle,

tan f0 ¼ C � s0ff
sff

¼ R sin f0

sff
0 sff ¼ R sin f0

tan f0 ¼ R cos f0 (10.24)

Next consider the triangle containing the angle af. Here

tan af ¼ sff
s0ff � s03f

¼ R cos f0

ðC � R sin f0Þ � s03f
(10.25)

where Eq. (10.22) has been used.
Writing Eq. (10.19) for C in terms of principal stresses at failure and noting

that on the s-axis

C ¼ 1

2

�
s01f � s03f

�
(10.26)

Eq. (10.25) becomes

tan af ¼ cos f0

1� sin f0 (10.27)

EXAMPLE PROBLEM 10.1

General Remarks

This example problem illustrates the manner in which strength quantities are
computed from test data.

Problem Statement

A series of drained triaxial compression tests on a normally consolidated clay
indicated that f0 ¼ 28� and c0 ¼ 0 for this soil. Determine the deviator stress at
failure for a sample that was consolidated to 49 psi prior to shearing.

Solution

In a triaxial compression test the minor principal stress is maintained at the
consolidation stress. Thus, s03 ¼ 49 psi at failure.
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As discussed in Section 10.6.1, for the case of c0 ¼ 0, the major and minor
principal stresses at failure are related according to Eq. (10.15), i.e.,

s01f ¼ s03f tan
2

�
45� þ f0

2

�
(10.1.1)

Substituting the known values gives

s01f ¼ ð49 psiÞtan2
�
45� þ 28�

2

�
¼ 135:7 psi (10.1.2)

The deviator stress at failure is thus

s01f � s03f ¼ 135:7� 49:0 ¼ 86.7 psi (10.1.3)

EXAMPLE PROBLEM 10.2

General Remarks

This example problem illustrates the manner in which strength quantities are
computed from test data.

Problem Statement

A sample of sand subjected to axisymmetric triaxial compression failed when
the major and minor principal stresses were 11,600 and 3300 psf, respectively.
Determine the angle of internal friction and the normal and shear stresses on
the failure plane.

Solution

Assuming c
0 ¼ 0 for the sand, then Eq. (10.13) gives

sin f0 ¼
s01f � s03f
s01f þ s03f

¼ 11; 600� 3300

11; 600þ 3300
¼ 0:557 (10.2.1)

Thus,

f0 ¼ sin�1ð0:557Þ ¼ 33.9� (10.2.2)

From Section 10.6.1, the normal stress acting on the failure plane is given
by Eq. (10.22), i.e.,

s0ff ¼ C �R sin f0 ¼ 1

2

�
s01f þ s03f

�
� 1

2

�
s01f � s03f

�
sin f0

¼ 1

2
ð11; 600þ 3300Þ � 1

2
ð11; 600� 3300Þð0:557Þ ¼ 5138 psf

(10.2.3)
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Finally, the shear stress acting on the failure plane is given by Eq. (10.24),
where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1

2
ðsx � syÞ


2
þ ðsxyÞ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1

2
ð11; 600� 3300Þ


2
þ ð0:0Þ2

s
¼ 4150 psf

(10.2.4)

Thus,

sff ¼ R cos f0 ¼ ð4150 psfÞcosð33:9�Þ ¼ 3445 psf (10.2.5)

Figure Ex. 10.2 shows the Mohr’s circle associated with this problem. As
evident from Figure Ex. 10.2, the shear stress acting on the failure plane (sff) is
less than the maximum in-plane shear stress smax(¼R).

EXAMPLE PROBLEM 10.3

General Remarks

This example problem illustrates the manner in which strength quantities are
computed from test data.

Problem Statement

A normally consolidated clay sample has an undrained shear strength equal to
1.00 kg/cm2. In the laboratory the clay is found to have an angle of internal
friction equal to 30 degrees and a cohesion intercept of zero. If a sample of this
clay fails under undrained conditions, determine the effective principal stresses
at failure.

FIGURE EX. 10.2 Mohr’s circle associated with the problem (not to scale).
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Solution

The known undrained shear strength of the sample is written as follows:

1

2

�
s01f � s03f

�
¼ 1:00 kg

�
cm2 (10.3.1)

Since the cohesion intercept is zero, the principal stresses at failure are
related by Eq. (10.11), i.e.,

s01f ¼ s03f

�
1þ sin f0

1� sin f0

�
¼ s03f

�
1þ sin 30�

1� sin 30�

�
¼ 3:0s03f (10.3.2)

Substituting for the major principal stress, the undrained shear strength is
rewritten as

s01f �s03f ¼ ½3:0� 1�s03f ¼ 2
�
1:00 kg

�
cm2

�
0 s03f ¼ 1.00 kg

�
cm2 (10.3.3)

The major principal stress is thus

s01f ¼ 2:00þ s03f ¼ 3.00 kg
�
cm2 (10.3.4)

EXAMPLE PROBLEM 10.4

General Remarks

This example problem illustrates the manner in which strength quantities are
computed from test data.

Problem Statement

The major and minor principal stresses measured in a soil element are equal to
200 and 100 kPa, respectively. The soil is a dry sand with an internal friction
angle of 32 degrees and a cohesion intercept of zero. When the soil will be
loaded, additional compressive stress increments of Ds and Ds/4 will be
superimposed on s1 and s3, respectively.

Determine the maximum possible value of Ds such that the shear strength
will not be exceeded in the soil element.

Solution

Since c0 ¼ 0 for the sand, then at failure Eq. (10.11) gives

s01f ¼ s03f

�
1þ sin f0

1� sin f0

�
¼ s03f

�
1þ sin 32�

1� sin 32�

�
¼ 3:255 s03f (10.4.1)
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For the soil element in question,

s01f ¼ ð200þ DsÞ; s03f ¼
�
100þ Ds

4

�
(10.4.2)

Thus,

ð200þ DsÞ ¼ 3:255

�
100þ Ds

4

�
(10.4.3)

Solving for the stress increment gives�
1� 3:255

4

�
Ds ¼ ð3:255Þð100Þ � 200 0 Ds ¼ 673.8 kPa (10.4.4)

EXAMPLE PROBLEM 10.5

General Remarks

This example problem illustrates the manner in which strength quantities are
computed for field data.

Problem Statement

The groundwater table in the deposit of fine sand shown in Figure Ex. 10.5 is
located at a depth of 15 ft. The sand is, however, saturated beginning at a depth
of 8 ft. The sand has a uniform dry unit weight of 100 lb/ft3, a specific gravity
of solids (Gs) of 2.70, and a moisture content (w) of 12% for the depth range
between 0 and 8 ft.

If the angle of internal friction for the sand is 31 degrees, what is the shear
strength at a depth of 10 ft?

S < 100% Fine sand

Fine sand

10.0 ft
8.0 ft

7.0 ft

Ground surface

S = 100% 5.0 ft

FIGURE EX. 10.5 Deposit of fine sand with capillary rise.
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Solution

The requisite unit weights are first computed. In the upper 8 ft of the sand
deposit,

g ¼ gdð1þ wÞ ¼ �
100 lb

�
ft3

�ð1þ 0:12Þ ¼ 112:0 lb
�
ft3 (10.5.1)

The void ratio is computed using Case 1.4 of Chapter 1, i.e.,

gd ¼
Gsgw

1þ e
0 e ¼ Gsgw

gd

� 1 (10.5.2)

Assuming that the void ratio is the same throughout the upper 10 ft of the
sand layer gives

e ¼ Gsgw

gd

� 1 ¼ ð2:70Þð62:4 lb
�
ft3Þ

100 lb=ft3
� 1 ¼ 0:685 (10.5.3)

The saturated unit weight is then computed using the expression developed
in Case 1.8 of Chapter 1, i.e.,

gsat ¼
gwðGs þ eÞ

1þ e
¼ ð62:4 lb

�
ft3Þð2:70þ 0:685Þ
1þ 0:685

¼ 125:4 lb
�
ft3 (10.5.4)

The vertical total stress at a depth of 10 ft is thus

sv ¼
�
112:0 lb

�
ft3

�ð8 ftÞ þ �
125:4 lb

�
ft3

�ð2 ftÞ ¼ 1146:8 lb
�
ft2 (10.5.5)

The pore pressure at a depth of 10 ft is due to capillary rise in the 5 ft above
the groundwater table, so

u ¼ ��62:4 lb
�
ft3

�ð5 ftÞ ¼ �312:0 lb
�
ft2 (10.5.6)

Finally, the vertical effective stress at a depth of 10 ft is

s0v ¼ sv �u ¼ 1146:8�ð�312:0Þ ¼ 1458:8 lb
�
ft2 (10.5.7)

The shear strength at a depth of 10 ft is thus

s ¼ s0v tan f0 ¼ �
1458:8 lb

�
ft2

�
tan 31� ¼ 876.5 lb

�
ft2 (10.5.8)

EXAMPLE PROBLEM 10.6

General Remarks

This example problem illustrates the manner in which strength quantities are
computed from data obtained from some standard laboratory experiments.
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Problem Statement

A sand sample is tested in a direct shear device. The vertical normal stress on
the sample is 300 kPa. The horizontal shear stress at failure is equal to
210 kPa.

a) Compute the angle of internal friction for the sand and the magnitude and
direction of the principal stresses at failure.

b) During a consolidatededrained triaxial test, a sample of the same sand
failed at a principal stress difference of 130 kPa. Determine the magnitude
of the initial confining stress, which remains constant in the test, and of the
major principal stress at failure.

c) The sand considered earlier is to be used as backfill material behind a
retaining wall. The stress state behind the wall consists of a vertical normal
stress of 200 kPa and a horizontal normal stress of 80 kPa. Is this condition
safe from failure?

d) The horizontal normal stress behind the wall mentioned in part (c) reduces
as a result of movement of the wall. The vertical normal stress remains
unchanged. Compute the value of the horizontal normal stress that will
cause failure.

Solution

a) For sands the cohesion intercept (c) is zero. Figure Ex. 10.6A shows the
Mohr’s circle associated with the problem. Since c ¼ 0, the value of the
friction angle is computed as follows:

tan f0 ¼ sff
sff

¼ 210

300
¼ 0:700 0 f0 ¼ 35.0� (10.6.1)

The radius of the Mohr’s circle is computed from Eq. (10.24), i.e.,

sff ¼ R cos f0 0 R ¼ sff
cos f0 ¼

210 kPa

cos 35�
¼ 256:4 kPa (10.6.2)

The center of the Mohr’s circle is next computed from Eq. (10.22), i.e.,

s0ff ¼ C �R sin f0 0 C ¼ s0ff þ R sin f0 ¼ ð300 kPaÞ
þ ð256:4 kPaÞsin 35� ¼ 447:0 kPa

(10.6.3)

The principal stresses are then computed using Eq. (4.39), i.e.,

s1 ¼ C þ R ¼ 447:0þ 256:4 ¼ 703.4 kPa (10.6.4)

s2 ¼ C � R ¼ 447:0� 256:4 ¼ 190.6 kPa (10.6.5)
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The angle between the stress point (300.0, 210.0) and the minor prin-
cipal stress direction is computed as follows:

tan 2qp2 ¼
210:0

447:0� 300:0
¼ 1:429 0 2qp2 ¼ 55:0� 0 qp2 ¼ 27:5� (10.6.6)

The angle between the stress point (300.0, 210.0) and the major prin-
cipal stress direction is thus

2qp1 ¼ 180� � 2qp2 ¼ 180� � 55:0� 0 qp1 ¼ 62:5� (10.6.7)

It is timely to note that the magnitude of the maximum in-plane shear
stress is given by Eq. (4.40)

jsmaxj ¼ R ¼ 256:4 kPa (10.6.8)

which is greater than sff. For completeness, the angle that the failure plane
makes with the horizontal is computed using Eq. (10.21), i.e.,

af ¼ 45� þ f0

2
¼ 45� þ 35:0

2
¼ 62:5� (10.6.9)

This value could likewise have been computed using Eq. (10.27)

tan af ¼ cos f0

1� sin f0 ¼
cos 35�

1� sin 35�
¼ 62:5� (10.6.10)

Figure Ex. 10.6B shows the detailed Mohr’s circle associated with part
(a) of this problem.

FIGURE EX. 10.6A General Mohr’s circle associated with part (a).
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The same results could likewise be obtained using the pole method.
Figure Ex. 10.6C shows the Mohr’s circle associated with such a solution.

First the point (300.0, 210.0) is located, to scale, in the s-s plane. Since
the cohesion intercept is zero, the MohreCoulomb failure line is passed
through this point and the origin. The angle that this line makes with the
s-axis, which represents the friction angle, is then measured.

A line perpendicular to the failure line at the point (300.0, 210.0) is
next drawn. Its intersection with the s-axis locates the center (C) of the

FIGURE EX. 10.6B Detailed Mohr’s circle associated with part (a) (not to scale).

FIGURE EX. 10.6C Mohr’s circle associated with part (a) using the pole method (not to scale).
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circle (447.0, 0.0). The radius of the circle (R) is next measured to be
256.4 kPa.

The Mohr’s circle is next drawn. Its intersection with the s-axis gives
the major and minor principal stresses (703.4 and 190.6 kPa, respectively).

Since the original failure stress state (300.0, 210.0) was determined
from a direct shear test, these stresses act on a horizontal plane of the soil
sample. A horizontal line is thus drawn from the point (300.0, 210.0) until
it intersects the circle at point P. This point is the pole of the Mohr’s circle
of stress. The major and minor principal stresses act normal to the planes
found by drawing lines from point P through the major and minor principal
stress values.

b) From the given information,

s01f � s03f ¼ 130 kPa (10.6.11)

A second equation is necessary to determine the magnitude of the
initial confining stress. Using Eq. (10.13) gives

sin f0 ¼
s01f � s03f
s01f þ s03f

¼ 130 kPa

s01f þ s03f
¼ sin 35�0s01f þ s03f ¼

130 kPa

sin 35�
(10.6.12)

Subtracting Eq. (10.6.9) from Eq. (10.6.10) gives

2s03f ¼
130 kPa

sin 35�
� 130 kPa ¼ 96:6 kPa0s03f ¼ 48.3 kPa (10.6.13)

For completeness, from Eq. (10.6.9),

s01f ¼ 130 kPaþ s03f ¼ 130þ 48:3 ¼ 178.3 kPa (10.6.14)

Figure Ex. 10.6D shows the detailed Mohr’s circle associated with part
(b) of this problem. If plotted to scale, the Mohr’s circle could have been
used directly to solve the problem. This solution involves drawing the
circle so it just touches the failure line, inclined at 35 degrees. The inter-
section of the circle with the s-axis gives the two principal stresses.

c) In solving this part of the problem, it is important to note that the vertical
and horizontal normal stresses are principal stresses (i.e., the shear stress is
zero). Thus,

sv h s1 ¼ 200 kPa; sh h s3 ¼ 80 kPa (10.6.15)

The next step in the solution is to construct the Mohr’s circle associated
with the given stress state. The s-coordinate of the center of the circle is
computed using Eq. (4.32), i.e.,

C ¼ 1

2
ðs1 þ s3Þ ¼ 1

2
ð200þ 80Þ ¼ 140:0 kPa (10.6.16)
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The radius of the Mohr’s circle is next computed using Eq. (4.32), i.e.,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	ðs1 � s3Þ

2



þ ðsxyÞ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	ð200� 80Þ
2



þ ðsxyÞ2

s
¼ 60:0 kPa

(10.6.17)

Using the aforesaid values of C and R, the normal and shear stresses on
the failure plane are next computed using Eqs. (10.22) and (10.24). From
the former equation,

s0f ¼ C �R sin f0 ¼ 140:0�ð60:0Þsin 35� ¼ 105:6 kPa (10.6.18)

where only a single “f” is used as the subscript because the normal stress
computed earlier is not necessarily associated with a failure state. From
Eq. (10.24),

sf ¼ R cos f0 ¼ ð60:0Þcos 35� ¼ 49:2 kPa (10.6.19)

For the same value of normal stress, the failure would occur at a shear
stress of

sff ¼ sf tan f0 ¼ ð105:6 kPaÞtan 35� ¼ 73:9 kPa (10.6.20)

Since 49.2 < 73.9 kPa, the soil behind the wall will not be at a failure
state. Figure Ex. 10.6E shows the Mohr’s circle associated with this part of
the problem.

FIGURE EX. 10.6D Detailed Mohr’s circle associated with part (b) (not to scale).
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d) If the vertical normal stress remains unchanged, the horizontal normal
stress behind the wall is computed using the second of Eq. (10.16); i.e.,

s03f
s01f

¼ tan2
�
p

4
� f0

2

�
0 s03f ¼ s01f tan

2

�
p

4
� f0

2

�

¼ ð200:0 kPaÞtan2
�
45� � 35�

2

�
¼ 54.2 kPa

(10.6.21)

Figure Ex. 10.6F shows the Mohr’s circle associated with this part of
the problem.

FIGURE EX. 10.6E Mohr’s circle associated with part (c) (not to scale).

FIGURE EX. 10.6F Detailed Mohr’s circle associated with part (d) (not to scale).
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saturated soil, phase diagram, 336, 336f

slope of virgin compression line, 337,

338f

swelling/rebound, 336

void ratio vs. logarithm, 336, 337f

secondary consolidation settlement, 334

ultimate primary consolidation settlement,

341e342

Confined flow, 316

Confined seepage, 316e317

Consolidation. See Time rate of consolidation

Consolidation curve, 348e350, 349fe350f

normally consolidated soil, 370, 371f

overconsolidated soil, 371, 372f

Consolidation ratio, 381e382
Constant-head permeability test, 253, 253f

Constitutive relations, 155e160

constitutive matrices, 156e157

elastic material idealizations, 157e160,
158f

linear elastic material idealizations,

158e160
general form, 156

material idealizations classes, 157

problems

remarks, 160, 163e165, 167, 169,

171e172, 175e176, 178e179,

181e182, 184, 187, 189, 195e196,

198

solution, 161e171, 161fe162f,
173e185, 175f, 177fe181f,

187e188, 188fe190f, 191e203,

192fe194f
statement, 161, 163e165, 166f, 167,

169, 172, 175, 177e179, 182e184,

183f, 187, 190, 190f, 195e196, 195f,

197f, 198, 199f, 201f, 202

Continuum concept, 131e132

Coulomb’s friction hypothesis, 421e423

Critical hydraulic gradient, 261e262

D
Darcy permeability, 379

Darcy’s law, 250f, 317, 321e322, 378

permeability/hydraulic conductivity,

250e251

permeability values, common soil types,

252, 252t

rate of flow, 250

seepage through inclined sand filter, 251,

251f

Deformation, 331e332, 331f

Density index, 95

Downward seepage, 257e258, 257f

Dry mass density, 3

Dry unit weight, 4

E
Embankment loading, 363, 364f

Equipotential drop, 318

Equipotential lines, 318

Equivalent horizontal permeability, 262e263,

262f

Equivalent vertical permeability, 263e264,

264f

F
Falling-head permeability test, 254e255,

254f

Fine-grained soils, 66

Flow apparatus, 277e278, 278f
Flow channel, 318

Flow lines, 318

Flow nets

concrete retaining structure, 326, 327f

equipotential lines, 318

flow lines, 318

hypothetical one-dimensional flow

experiment, 321, 324f

rate of flow, 319e321, 320f

square flow net, 323

G
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Parabolic partial differential equation, 379
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424f
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Mohr’s circle of stress, 146e148,

147fe148f

pole method, 148e150, 149f, 151f
principal stress, 141e143, 142f, 144f

Superposition principle, 160

Surface loads, 160

Surface tension, 205e206

T
Temperature correction, 58
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382f, 383te384t

coefficient of compressibility, 379

coefficient of consolidation, 379

coefficient of volume compressibility, 379

Darcy permeability, 379

double drainage, 380, 380f

load increment, 378e379
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parabolic partial differential equation, 379

separation of variables solution, 381

single drainage boundary, 380, 380f

Three-dimensional deformation, 375
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Darcy permeability, 379
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Total stress, 211, 212f

Two-dimensional deformation, 374e375

Two-dimensional fluid flow

assumptions, 316e317
boundary conditions, 317

solution of, 317e318
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flow nets

equipotential lines, 318
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rate of flow, 319e321, 320f
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325e329, 327f
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Unsaturated. soil, 205

Upward seepage, 258e260, 259f

critical hydraulic gradient,

261e262

V
Vertical stress, 213

Volumetric strain, 154

W
Water mass density, 3

Water unit weight, 4

Weightevolume relations, 1

Well-graded soils, 55

Z
Zero air voids (ZAV), 94

Zero correction, 68
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