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Preface

Malignant melanoma is one of the most rapidly increasing cancers in the world.
Invasive melanoma alone has an estimated incidence of 76,690 and an estimated
total of 9,480 deaths in the United States in 2013 [1]. Early diagnosis is particu-
larly important since melanoma can be cured with a simple excision if detected
early.

In the past, the primary form of diagnosis for melanoma has been unaided
clinical examination. In recent years, dermoscopy has proved valuable in visua-
lizing the morphological structures in pigmented lesions. However, it has also been
shown that dermoscopy is difficult to learn and subjective. Newer technologies
such as infrared imaging, multispectral imaging, and confocal microscopy, have
recently come to the forefront in providing greater diagnostic accuracy. These
imaging technologies can serve as an adjunct to physicians and provide automated
skin cancer screening. Although computerized techniques cannot as yet provide a
definitive diagnosis, they can be used to improve biopsy decision making as well
as early melanoma detection, especially for patients with multiple atypical nevi.

The goal of this volume is to summarize the state of the art in the utilization of
computer vision techniques in the diagnosis of skin cancer and provide future
directions for this exciting subfield of medical image analysis. The intended
audience includes researchers and practicing clinicians, who are increasingly using
digital analytic tools.

The volume opens with six chapters on dermoscopy images. In ‘‘Pigment
Network Detection and Analysis,’’ Sadeghi et al. describe a novel graph-based
method to extract pigment networks from dermoscopy images. Laplacian of
Gaussian edge detection output is converted to a graph from which cyclic sub-
graphs that correspond to skin texture structures are extracted. Subgraphs for round
structures such as globules, dots, and bubbles are eliminated based on their size
and color. Another higher-level graph is then created from the remaining sub-
graphs, where each node represents a hole in the pigment network. Finally, the
image is classified according to the density ratio of this graph using the LogitBoost
classifier. The authors obtain promising results on a set of 436 dermoscopy images.

In ‘‘Pattern Analysis in Dermoscopic Images,’’ Sáez et al. propose a model-
based approach for the classification of dermoscopy images based on five global
patterns (reticular, globular, cobblestone, homogeneous, and parallel) defined in
the commonly used Pattern Analysis scheme. The color information in the images
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is represented in a three-channel color space such as RGB, YIQ, HSV, and
L*a*b*. Each of these channels is then modeled as a Markov Random Field
following a Finite Symmetric Conditional Model. Coupling among color channels
is taken into account by assuming that the model features follow a multivariate
normal distribution. The authors obtain promising results on a set of 100 dermo-
scopy images.

In ‘‘A Bag-of-Features Approach for the Classification of Melanomas in
Dermoscopy Images: The Role of Color and Texture Descriptors,’’ Barata et al.
investigate the applicability of the bag-of-features (BOF) paradigm based on color
and texture features to the classification of dermoscopy images. Based on
experiments on a set of 176 dermoscopy images, the authors conclude that the
BOF paradigm provides an accurate representation of dermoscopy images and that
the color descriptors outperform texture descriptors with respect to classification
accuracy.

In ‘‘Automatic Diagnosis of Melanoma Based on the 7-Point Checklist,’’
Fabbrocini et al. present a fully automated computer-aided diagnosis system for
melanoma based on the 7-point checklist. The system involves border detection
using thresholding, extraction of various low- and high-level dermoscopic fea-
tures, and classification using logistic model trees.

In ‘‘Dermoscopy Image Processing for Chinese,’’ Xie et al. elaborate on a
computer-aided diagnosis system for melanoma specifically designed for Chinese
patients. The system involves hair removal using partial differential equation-
based inpainting, border detection using self-generating neural networks combined
with genetic algorithms, extraction of various shape, color, and texture features,
and classification using a neural network ensemble. The authors obtain promising
results on a set of 70 dermoscopy images.

The final dermoscopy chapter, ‘‘Automated Detection of Melanoma in
Dermoscopic Images’’ by Arroyo and Zapirain, describes a computer-aided
diagnosis system for melanoma based on the ABCD rule of dermoscopy. The
system involves removal of artifacts such as black frames, hairs, and bubbles,
border detection using thresholding, extraction of various low- and high-level
dermoscopic features, and classification using decision trees.

The volume continues with four chapters on clinical (macroscopic) images. In
‘‘Melanoma Decision Support Using Lighting-Corrected Intuitive Feature Models
,’’ Amelard et al. propose a framework that performs illumination correction and
feature extraction on photographs of lesions acquired using standard consumer-
grade cameras. They also discuss how these lighting-corrected intuitive feature
models can be used to classify skin lesions with high accuracy.

In ‘‘Texture Information in Melanocytic Skin Lesion Analysis Based on
Standard Camera Images,’’ Cavalcanti and Scharcanski describe five representa-
tive sets of visual features commonly used for the representation of texture
information in melanocytic lesions, and analyze how these features distinguish
between malignant and benign lesions using popular classifiers.

In ‘‘Recovering Skin Reflectance and Geometry for Diagnosis of Melanoma,’’
Sun presents a method for estimating and using the skin reflectance recovered as a
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replacement for conventional photographs in the evaluation of the ABCD criteria.
They also discuss how to use the geometry of a lesion’s surface to characterize the
topography disruption within the lesion. In order to demonstrate the effectiveness
of their approach, the authors compare features derived from reflectance and
geometrical information with two-dimensional skin line patterns.

A chapter on classification entitled ‘‘Melanoma Diagnosis with Multiple
Decision Trees’’ by Zhou and Song completes the volume. The authors discuss the
decision tree model as a mechanism that mimics the clinical diagnostic rules. They
also compare the performance of various decision trees via experiments, demon-
strating that decision trees can be effective in melanoma diagnosis.

As editors, we hope that this volume focused on analysis of skin lesion images
will demonstrate the significant progress that has occurred in this field in recent
years. We also hope that the developments reported in this volume will motivate
further research in this exciting field.

Jacob Scharcanski
M. Emre Celebi
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Pigment Network Detection and Analysis

Maryam Sadeghi, Paul Wighton, Tim K. Lee, David McLean,
Harvey Lui and M. Stella Atkins

Abstract We describe the importance of identifying pigment networks in lesions
which may be melanomas, and survey methods for identifying pigment networks
(PN) in dermoscopic images. We then give details of how machine learning can be
used to classify images into three classes: PN Absent, Regular PN and Irregular PN.

Keywords Dermoscopic structures · Pigment network · Melanoma · Computer-
aided diagnosis · Machine learning · Graph-based analysis

Introduction

Malignant melanoma, the most deadly form of skin cancer, is one of the most rapidly
increasing cancers in the world. Melanoma is now the fifth most common malignancy
in the United States [1], with an estimate of 9,180 deaths out of 76,250 incidences
in the United States during 2012 [2]. Metastatic melanoma is very difficult to treat,
so the best treatment is still early diagnosis and prompt surgical excision of the
primary cancer so that it can be completely excised while it is still localized. Unlike
many cancers, melanoma is visible on the skin; up to 70 % of all melanomas are
first identified by the patients themselves (53 %) or close family members (17 %) [3].
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Therefore, advances in computer-aided diagnostic methods based on digital images,
as aids to self-examining approaches, may significantly reduce the mortality.

In almost all the clinical dermoscopy methods, dermatologists look for the
presence of specific visual features for making a diagnosis of melanoma. Then,
these features are analyzed for irregularities and malignancy [4–7]. The most impor-
tant diagnostic feature of melanocytic lesions is the pigment network, which consists
of pigmented network lines and hypo-pigmented holes [7]. These structures show
prominent lines, homogeneous or inhomogeneous meshes. The anatomic basis of the
pigment network is either melanin pigment in keratinocytes, or in melanocytes along
the dermoepidermal junction. The reticulation (network) represents the rete-ridge
pattern of the epidermis. The holes in the network correspond to tips of the dermal
papillae and the overlying suprapapillary plates of the epidermis [8, 9].

A pigment network can be classified as either Typical or Atypical, where the
definition of a Typical pigment network is: “a light-to-dark-brown network with
small, uniformly spaced network holes and thin network lines distributed more or
less regularly throughout the lesion and usually thinning out at the periphery” [7].
For an Atypical pigment network, the definition is: “a black, brown or gray network
with irregular holes and thick lines” [7]. The goal is to automatically classify a given
image to one of three classes: Absent, Typical, or Atypical.

Figure 1 illustrates these three classes.
In melanocytic nevi, the pigment network is slightly pigmented. Light brown net-

work lines are thin and fade gradually at the periphery. Holes are regular and narrow.
In melanoma, the pigment network usually ends abruptly at the periphery and has
irregular holes, thickened and darkened network lines, and treelike branching at the
periphery where pigment network features change between bordering regions [10].
Some areas of malignant lesions manifest as a broad and prominent pigment network,
while others have a discrete irregular pigment network. The pigment network also
may be absent in some areas or the entire lesion.

To simulate an expert’s diagnostic approach, an automated analysis of dermoscopy
images requires several steps. Delineation of the region of interest, which has been
widely addressed in the literature, is always the first essential step in a computerized
analysis of skin lesion images [11, 12]. The border characteristics provide essential
information for an accurate diagnosis [13]. For instance, asymmetry, border irregu-
larity, and abrupt border cutoff are some of the critical features calculated based on
the lesion border [14]. Furthermore, the extraction of other critical clinical indicators
and dermoscopy structures such as atypical pigment networks, globules, and blue-
white areas depend on the border detection. The next essential step is the detection
and analysis of the key diagnostic features of specific dermoscopic structures, such
as pigment networks, discussed in this chapter.

We first review published methods for computer-aided detection and analysis of
pigment networks, and then provide details of a successful approach for quantifying
the irregularity of these pigment networks.
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Fig. 1 The three classes of the dermoscopic structure pigment network: a–b Absent; c–d Typical;
and e–f Atypical. b, d, f are magnifications of (a, c, e) respectively

Pigment Network Detection

The automated detection of pigment network has received recent attention [15–24],
and there is a very recent comprehensive review of computerized analysis of
pigmented skin lesions, by Korotkov and Garcia [25]. Fleming et al. [15] report
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techniques for extracting and visualizing pigment networks via morphological oper-
ators. They investigated the thickness and the variability of thickness of network
lines; the size and variability of network holes; and the presence or absence of radial
streaming and pseudopods near the network periphery. They use morphological tech-
niques in their method and their results are purely qualitative. Fischer et al. [17] use
local histogram equalization and gray level morphological operations to enhance the
pigment network. Anantha et al. [18] propose two algorithms for detecting pigment
networks in skin lesions: one involving statistics over neighboring gray-level depen-
dence matrices, and one involving filtering with Laws energy masks. Various Laws
masks are applied and the responses are squared. Improved results are obtained by
a weighted average of two Laws masks whose weights are determined empirically.
Classification of these tiles is done with approximately 80 % accuracy.

Betta et al. [19] begin by taking the difference of an image and its response to
a median filter. This difference image is thresholded to create a binary mask which
undergoes a morphological closing operation to remove any local discontinuities.
This mask is then combined with a mask created from a high-pass filter applied
in the Fourier domain to exclude any slowly modulating frequencies. Results are
reported visually, but appear to achieve a sensitivity of 50 % with a specificity of
100 %.

Di Leo et. al. [20] extend this method and compute features over the ‘holes’ of
the pigment network. A decision tree is learned in order to classify future images
and an accuracy of 71.9 % is achieved. Shrestha et. al. [21] begin with a set of 106
images where the location of the atypical pigment network (APN) has been manually
segmented. If no APN is present, then the location of the most ‘irregular texture’
is manually selected. They then compute several texture metrics over these areas
(energy, entropy, etc.) and employ various classifiers to label unseen images. They
report accuracies of approximately 95 %.

There are three works where supervised learning has been used to detect the
dermoscopic structure pigment network [22, 24, 26]. Serrano and Acha [22] use
Markov random fields in a supervised setting to classify 100 tiles (sized 40 × 40)
that have been labeled with one of five global patterns: reticular, globular, cobble-
stone, homogeneous, and parallel. In the context of the study, a reticular pattern can
be considered equivalent to pigment network. Using tenfold cross validation, they
achieve an impressive overall accuracy of 86 %, considering the difficulty of a five-
class problem. It is unclear, however, how the tiles were selected. It could be the tiles
were difficult, real-world examples, or that they were text-book-like definitive exem-
plars. Nowak et al. [24] have developed a novel method for detecting and visualizing
pigment networks, based on an adaptive filter inspired by Swarm Intelligence with
the advantage that there is no need to preprocess the images.

Wighton’s method, published in [26], used machine learning to analyze a dataset
of 734 images from [8] and classify the images into Absent/Present. Labels of either
Absent or Present for the structure pigment network are derived from the atlas. A
custom training set is created consisting of 20 images where the pigment network is
present across the entire lesion and 20 images absent of pigment network. Pixels are
assigned a label from the set L = {background, absent, present} as follows: for each
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image, pixels outside the segmentation are assigned the label background, while
pixels inside the segmentation are assigned either the label absent or present. By
considering these three labels, they simultaneously segment the lesion and detect the
structure pigment network. A feature-set consisting of Gaussian and Laplacian of
Gaussian filter-banks was employed. They present visual results in Fig. 2 by plotting
L = background, L = absent , and L = present in the red, green, and blue channels,
respectively.

Although these studies have made significant contributions, there has yet to be
a comprehensive analysis of pigment network detection on a large number of der-
moscopic images. All other work to date has either: (1) not reported quantitative
validation [15, 17, 24, 26]; (2) validated against a small (N < 100) number of
images [19]; (3) only considered or reported results for the 2-class problem (e.g.

Fig. 2 Qualitative results of pigment network detection from [26]. First column original dermo-
scopic images. Second column red, green, and blue channels encode the likelihood that a pixel is
labeled as background, absent, and present, respectively
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Absent/Present rather than Absent/Typical/Atypical) [18–21, 26]; (4) not explicitly
identified the location of the network [18]; or (5) has made use of unrealistic exclusion
criteria and other manual interventions [21].

Now we describe our successful approach to analyze the texture in dermoscopy
images, to detect regular and irregular pigment networks in the presence of other
structures such as dots and globules. The method is based on earlier work on the
2-class problem (Absent and Present) published in [27, 28] and our work on the
3-class problem (Absent, Typical, and Atypical) published in [29] (see Fig. 1).

Pigment Network Analysis: Overview

We subdivide the structure into the darker mesh of the pigment network (which we
refer to as the ‘net’) and the lighter colored areas the net surrounds (which we refer
to as the ‘holes’). After identifying these substructures we use the clinical defin-
itions previously mentioned to derive several structural, geometric, chromatic and
textural features suitable for classification. The result is a robust, reliable, automated
method for identifying and classifying the structure pigment network. Figure 3 illus-
trates an overview of our approach to irregular pigment network detection. After
pre-processing, we find the ‘hole mask’ indicating the pixels belonging to the holes
of the pigment network. Next, a ‘net mask’ is created, indicating the pixels belonging
to the net of the pigment network. We then use these masks to compute a variety of
features including structural (which characterizes shape), geometric (which charac-
terizes distribution and uniformity), chromatic and textural features. These features
are fed into a classifier to classify unseen images into three classes of Absent, Typical
and Atypical. The major modules in Fig. 3 are explained in the following sub-sections.

Pre-processing

In order to prevent unnecessary analysis of the pixels belonging to the skin, the
lesion is first segmented. Either manual segmentation or our automatic segmentation
method [12] was used. Next the image is sharpened using the MATLAB Image
Processing Tool Box function Unsharp mask, one of the most popular tools for
image sharpening [30]. A two-dimensional high-pass filter is created using Eq. 1.
This high-pass filter sharpens the image by removing the low frequency noise. We
use the default parameters of MATLAB in our experiments (α = 3). Figure 4b shows
the result of the sharpening step.

Shar peningFilter(α) = (
1

α + 1
)

∣
∣
∣
∣
∣
∣

−α α − 1 −α
α − 1 α + 5 α − 1
−α α − 1 −α

∣
∣
∣
∣
∣
∣

. (1)
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Fig. 3 Steps of the proposed algorithm for hole detection. a Original image. b LoG response. c
Image to graph conversion. d Cyclic subgraphs. e Graph of holes

Fig. 4 a A given skin lesion image. b Sharpened image. c Result of the edge detection after
segmenting the lesion

To investigate structures of the skin texture, it was necessary to reduce the color
images to a single plane before applying our algorithm. Various color transforms
(NTSC, L*a*b, Red, Green, and Blue channels separately, Gray(intensity image),
etc) were investigated for this purpose. After the training and validation step, we
selected the green channel as the luminance image. Results of the different color
transformations are reported in the result section of this chapter.
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Hole Detection

As discussed previously, a pigment network is composed of holes and nets. We first
describe the detection of the holes. Figure 3 shows steps of our novel graph-based
approach to hole detection. After the pre-processing step described above, sharp
changes of intensity are detected using the Laplacian of Gaussian (LoG) filter. The
result of this edge detection step is a binary image which is subsequently converted
into a graph to find holes or cyclic structures of the lesion. After finding loops or
cyclic subgraphs of the graph, noise or undesired cycles are removed and a graph
of the pigment network is created using the extracted cyclic structures. According
to the density of the pigment network graph, the given image can be classified into
Present or Absent classes, but for irregularity analysis we also need to extract more
features and characteristics of the net of the network.

We used the LoG filter to detect the sharp changes of intensity along the edge
of the holes inside the segmented lesion. Because of the inherent properties of the
filter, it can detect the “light-dark-light” changes of the intensity well. Therefore
it is good choice for blob detection and results in closed contours. The detection
criterion of the edge of a hole is set to the zero crossing in the second derivative
with the corresponding large peak in the first derivative. We follow the MATLAB
implementation of the LoG edge detection which looks for zero crossings and their
transposes. All zeros are kept and edges lie on the zero points. If there is no zero, an
edge point is arbitrarily chosen as a negative second derivative point. Therefore when
all ”zero” responses of the filtered image are selected, the output image includes all
closed contours of the zero crossing locations inside a segmented lesion. An example
of the edge detection step is shown in Figs. 4c and 3b. This black and white image
captures the potential holes of the pigment network.

Now, we consider the steps necessary to extract the holes accurately. In previous
works [15, 16, 19], these structures usually are found by morphologic techniques and
a sequence of closing and opening functions applied to the black and white image.
We did not use this approach because using morphologic techniques is error-prone
in detecting the round shaped structures. Instead, the binary image is converted to a
graph (G) using 8-connected neighbors. Each pixel in the connected component is a
node of G and each node has a unique label according to its coordinate.

To find round texture features (i.e. holes), all cyclic subgraphs of G are detected
using the Iterative Loop Counting Algorithm (ILCA) [31]. This algorithm transforms
the network into a tree and does a depth first search on the tree for loops.

After finding cyclic subgraphs which may represent the holes of a pigment net-
work, these subgraphs were filtered and noise or wrongly detected structures (glob-
ules and dots) were removed according to parameters learned in a training and
validation step.

Pigment network holes should have higher mean intensity than the border; on the
other hand the reverse is true for globules and brown dots. Therefore we thresholded
the difference between the average intensity of inner pixels and the average intensity
of the border to discriminate globules from holes of the pigment network. First, we
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remove all detected cycles which are shorter than 7 pixels and longer than 150 pixels.
These parameters can be set for a given data set according to the scale, magnification
and resolution of images. The atlas image set [8] used in the experiment does not
provide precise information about the resolution and magnification of the image set
which is used in our experiment. Furthermore, we are uncertain if the resolution and
magnification is the same for all images of the atlas. Therefore, to play safe, we set a
wide range (7–150) to find as many holes of pigment networks as possible. In order
to belong to a pigment network, a detected cyclic subgraph should have a higher
intensity on the area contained by the network structures (holes) than on the network
itself (lines), but in globules and brown dots, the mean intensity of the area inside the
structure is lower than the intensity of border pixels so we can discriminate them.
We also have to deal with oil bubbles and white cysts and dots. These structures are
similar to holes of the pigment network in terms of the mean intensity of the inside
being lighter than the border area, but they are much brighter inside. So, if there
is at least one pixel with high intensity (set to 0.8, on a scale of 0–1) in the inside
area of a hole, it will be colored as white representing oil bubbles, white cysts or
dots. Therefore, these wrongly detected round structures of brown dots and globules,
white dots, white cysts and oil bubbles are removed from the rest of the analysis.
We colored these noise structures with red and white in Fig. 5. Thus, the multi-level
thresholds, determined by the training step, are set up as:

Color =
⎧

⎨

⎩

Green 0.01 < (I − B) < 0.1
W hite 0.1 < (I − B) ∧ ∃PI > 0.8
Red Otherwise

(2)

where I is mean intensity of the inside area, B is the mean intensity of the border or
outside area, and PI is a pixel inside the hole. Figure 5 shows three examples of skin
lesions with filtered cyclic subgraphs overlaid. These structures can be used later for
the analysis of globules and dots which are other important structures of the skin
lesion texture.

In order to visualize the location of a pigment network based on the detected holes,
we created a new higher-level graph G whose nodes are centers of the holes belonging
to the pigment network (green colours). Nodes within a maximum distance threshold
(MDT) are connected together. However, there is not a minimum node distance
threshold. The value of the MDT is computed based on the average diameter of
all holes in the image. Based on the pigment network definition, holes of a regular
network are uniformly spaced. To consider this spatial arrangement, the MDT should
be proportional to the size of holes and is defined as alpha (set to 3) times the average
diameter of holes.

Figure 6 illustrates two examples of skin lesions with their graphs of holes overlaid
in green. The first column shows a Present image and the second one shows an Absent
image, both of which are classified correctly using the only the graph of the pigment
network holes.
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Fig. 5 Detected cyclic subgraphs are filtered based on their inside-outside intensity differences.
a, c and e show original skin lesions. b, d, f show green, red and white colours overlaid; the red
colours mostly belong to globules and brown dots. White dots and oil bubbles are colored as white
and holes of the pigment network are visualized as green

Net Detection

In order to identify the net of a pigment network, we apply the Laplacian of Gaussian
(LoG) filter to the green channel of the image. The LoG filter identifies high fre-
quency components of an image and therefore makes an ideal net detector. The
major issue with applying this operator is that its response is strongly dependent on
the relationship between the frequency of the structures and the size of the Gaussian
kernel used. We used σ = 0.15, which is an appropriate value for images of the two
atlases used in our experiment [8, 9], however it can be tuned for a given image-
set according to scale and magnification. In our experiment, we observed that the
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Fig. 6 Results of applying our approach to two Present and Absent dermoscopic images; (a) and
(b) are skin lesions, (c) and (d) show cyclic subgraphs, the green lines represent potential holes of
the pigment network and red lines show holes that did not pass the test of belonging to the pigment
network, and (e) and (f) visualize the pigment network over the image. a Original image. b Original
image. c Cyclic subgraphs. d Cyclic subgraphs. e Present. f Absent

average thickness of the pigment network is almost proportional to the average size
of holes of the network in Typical lesions. We therefore set the size of the LoG win-
dow to half of the average hole size in the image. The average window size over all
images of our data set is 11 pixels. We then threshold the filter response automati-
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cally, resulting in a ‘net mask’ which indicates which pixels belong to the net of the
pigment network. Furthermore, we skeletonize this mask, resulting in a ‘skeleton
mask’. Figure 7 illustrates the net extraction process.

Qualitative results of detecting pigment network ‘net’ and ‘holes’ ares illustrated
in Figs. 8 and 9 shows the result of pigment network detection on a dermoscopic
image taken by an iPhone dermoscope (HandyScope).

Fig. 7 Net detection. a A dermoscopic image, b detected holes in the previous step, c response of
the LoG filter, d the resulting ‘net mask’, e the extracted net of the pigment network overlaid on the
original image, and f the segmented pigment network
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Fig. 8 Four images of the image set: the left column shows the original images and the right column
shows their corresponding pigment networks (brown) and holes (white)
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Fig. 9 Pigment network detection on a dermoscopic image taken by an iPhone dermoscope. a A
dermoscopy image, b detected holes in the previous step, c the resulting ‘net mask’, and d the
segmented pigment network

Feature Extraction

Based on the definitions of Typical and Atypical pigment networks, we use the results
of the hole and net detection to propose a set of features capable of discriminating
among the three classes (Absent, Typical and Atypical). We propose a set of structural
(shape), geometric (spatial) chromatic and textural features.

Structural Features (20 Features)

Diagnostically important characteristics of a network include the thickness of the
nets as well as the size of the holes.

For each spatially disjoint section of the net mask, we compute its size (number
of pixels in the net mask) and length (number of pixels in the skeleton mask). Our
features are then the mean, standard deviation and coefficient of variation (mean/std)
of the sizes and lengths of the nets. Thickness is also computed by measuring the
distance from each pixel in the net mask to the closest pixel in the skeleton mask. The
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mean, standard deviation and ratio of thickness as well as a 6-bin thickness histogram
are also included as features. For each spatially disjoint section of the hole mask,
we compute the size (number of pixels) and include as features the mean, standard
deviation and coefficient of variation (mean/std) of hole size as well as the total
number of holes.

We also include the ratio of the network size (number of pixels in the net and hole
masks) to the lesion size (number of pixels in the segmentation mask).

Geometric Features (2 Features)

We have defined a new feature called ‘Density Ratio’ of holes which is useful in
discriminating between the absence and presence of a pigment network. This feature
is defined as

Density = |E |
|V | ∗ log(LesionSize)

(3)

where |E | is the number of edges in the graph G, |V | is the number of nodes of the
graph and LesionSize is the size of the area of the image within the lesion boundary,
being investigated for finding the pigment network. The rationale of Eq. 3 is that a
bigger |E | means that more holes are closer than the MDT. Also, having a smaller |V |
for a fixed |E | means that nodes or holes are uniformly spaced close to each other
and the graph of the pigment network is dense. Therefore, based on the pigment
network definition, having a high ’Density Ratio’ is a requirement for being Present.
LesionSize is used to normalize the ratio |E |/|V |. For example, a fixed number
of vertices and edges in a small lesion is more likely representing Present than in a
relatively big lesion. However, since there is not a linear relationship between the size
of a lesion and the probability of being Present or Absent, we found experimentally
that the logarithm of LesionSize is more appropriate.

Clinically, there is an emphasis on the ‘uniformity’ of the network in order to
differentiate between Typical and Atypical. We expect that lesions with a Typical
pigment network have a higher number of edges due to uniformly spaced holes.
Therefore, in addition to the ‘Density Ratio’ of holes as a feature, we included
another feature, which is the number of edges in the graph G.

Chromatic Features (37 Features)

Color also plays a crucial role in clinical diagnosis. We therefore convert the image to
HSV colour space [32] and compute features over each channel as well as the original
green channel of the image. In each channel, for the hole, net and lesion masks
respectively we compute the mean, standard deviation and coefficient of variation
(mean/std) of the intensity values. Additionally, we also propose a new chromatic
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feature called the ‘atypicality measure’ which is the sum of the intensity values over
the green channel of the pixels in the net mask normalized by the number of the
pixels in the net mask.

Textural Features (10 Features)

We use five of the classical statistical texture measures of Haralick et al. [33]: entropy,
energy, contrast, correlation and homogeneity which are derived from a grey level
co-occurrence matrix (GLCM). The GLCM is a tabulation of how often different
combinations of pixel luminance values (gray levels) occur in a specific pixel pairing
of an image. We construct 2 GLCMs (in the four directions of 0, 45, 90, 135 and
within the distance of 4 pixels using 8 gray levels averaged to obtain a single GLCM)
and extract the 5 texture metrics from each. The first GLCM is constructed over the
entire lesion (using the pixels in the lesion mask) and the second is constructed over
the pigment network (using the pixels in the net and hole masks).

Evaluation for Absent/Present Classification Using ‘Density
Ratio’

To measure the strength of our proposed feature, ‘Density Ratio’, we applied our
method to a set of dermoscopic images taken from Argenziano et al. Interactive
Atlas of Dermoscopy [8]. We tuned the parameters and thresholds of our proposed
method according to a set of 100 images (50 Absent and 50 Present) of size 768×512.
Then we tested the method for another set of 500 images (250 Absent, 250 Present)
randomly selected from the atlas. We classified the unseen images by feeding the
’Density Ratio’ into the SimpleLogistic [34] classifier implemented in Weka [35] (a
general data mining tool developed by University of Waikato in New Zealand) which
uses a powerful boosting algorithm, LogitBoost [36]. Boosting is a method for com-
bining the performance of many weak features to produce a powerful classifier [36].
SimpleLogistic fits logistic models by applying LogitBoost with simple regression
functions as base learners. Some of these images were challenging due to acquisition
parameters such as lighting and magnification, being partial (entire lesion was not
visible), or due to the presence of an unreasonable amount of occlusion by either oil
or hair. These challenging images are usually discarded from test sets in the previous
work. However, these images were kept in our test set.
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Table 1 Correct classification rates (Accuracy) of different colour transformations for N = 500
images

R G B YIQ Gray L*a*b

Correct classification (accuracy) 90.7 94.3 90.1 92.6 91.1 89.7

Evaluation for Different Color Spaces

Table 1 shows the percentage of correct classifications (Present or Absent) for the
500 test images, using different color transformations. It is seen that the green chan-
nel gives the best classification. Comparing our results to Anantha et al. method
[18] (achieving 80 % accuracy), we achieved a better result, however the same gold
standard is not used and the image sets are different. Therefore, a direct comparison
is impossible due to different images and ground truths. Note that we deliberately
created a difficult dataset by not excluding oily, hairy and low-contrast images. Our
method also locates the pigment network and provides a qualitative analysis which
can be used for extraction of pigment network characteristics to discriminate typical
pigment networks from atypical ones.

Interestingly the Y channel of YIQ (the transformation used for NTSC systems)
has the second best result. The Y channel transformation is defined as:

Y = 0.299R + 0.587G + 0.114B (4)

where R, G, B are the red, green, and blue color components, respectively. To compute
the luminance Y, the green channel has larger weight than the other channels so is the
likely reason the Y channel works well. In the gray-scale experiment, the intensity
image is calculated by (R + G + B)/3 and in the L* experiment, the L* component
of the L*a*b space is used as the intensity image.

Evaluation for Absent/Typical/Atypical Classification

In another experiment, we evaluated the whole feature set (69 features) on the three
class problem using the SimpleLogistic classifier.

Since we have not performed any artifact (hair and oil bubble) detection and
removal algorithm, in this evaluation we excluded oily and hairy images and we
applied the method described above to a set of 436 dermoscopic images taken from
two atlases of dermoscopy [8, 9]. Among these images, a clean subset of 400 images,
from the set of 600 images used in our Absent/ Present evaluation from [8], is used.
Each image is labeled as Absent, Typical or Atypical, representing the presence and
the regularity of the pigment network. The other 36 images are from [9] and have been
labeled by 40 experts, each one assigning a label of either Absent, Typical or Atypical
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to each image. Overall labels for these images are generated by majority voting. In
total, our dataset consists of 436 images (161 Absent, 154 Typical, 121 Atypical).
We compute results for both the 3-class (Absent, Typical or Atypical) and 2-class
problems (Absent, Present). Ten-fold cross validation was used to generate all results.
Table 2 summarizes these results in terms of Precision (Positive Predictive value),
Recall (True Positive Rate or Sensitivity), F-measure, and Accuracy. F-measure is a
measure of a test’s accuracy that considers both the Precision and the Recall of the
test to compute the score where

Precision = T ruePosi tive

T ruePosi tive + FalsePosi tive
(5)

Recall = T ruePosi tive

T ruePosi tive + FalseNegative
(6)

F-measure = 2 · Precision · Recall

Precision + Recall
(7)

and accuracy is computed as:

Accuracy = T ruePosi tive + T rueNegative

T ruePosi tive + T rueNegative + FalsePosi tive + FalseNegative
(8)

Comparing our results with the results generated by the others using different datasets
is not possible, and the only work that we could reproduce is the method by Di Leo
et al. [20]. For comparison, the feature set described in [20] was also implemented
and results over our image sets are computed. As can be seen, this work outperforms

Table 2 Comparing accuracy, precision, recall and f-measure of our proposed features with Di Leo
et al. features [20] using the same set of 436 images

Absent-Typical-Atypical classification

Precision Recall F-measure Accuracy N
Absent 0.905 0.950 0.927 – 161
Typical 0.787 0.792 0.790 – 154
Atypical 0.750 0.694 0.721 – 121
Our weighted avg 0.820 0.823 0.821 0.823 436
Di Leo et al. [20] 0.709 0.711 0.709 0.719 436

Absent-Present classification
Absent 0.893 0.932 0.912 – 161
Present 0.959 0.935 0.947 – 275
Our weighted avg 0.935 0.933 0.934 0.933 436
Di Leo et al. [20] 0.875 0.876 0.875 0.876 436
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the previous work [20] on the 2-class problem and is the only one to date that reports
quantitative results for the 3-class problem.

Fig. 10 Pigment network
detection on a challenging
image with an inter-expert
agreement of 82.5 % favoring
the Atypical diagnosis where
17.5 % of experts classify the
pigment network as a Typical
structure. This image was
misclassified as Typical by the
proposed algorithm
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The proposed method is able to correctly classify lesions where the pigment
network structure is present with the accuracy of 94.3 %. However, it has more diffi-
culties (with the accuracy of 82.3 %) on dealing with Typical/Atypical classification.
In some images, it is not easy to detect the atypicality of the pigment network even by
experts. Figure 10 shows one of these challenging images where an Atypical pigment
network is misclassified as a Typical pigment network by the proposed algorithm.
Please note how regular is the network size and distribution over the lesion, however
it is classified as Atypical by 82.5 % of the experts.

Summary

We reviewed the motivation and methods for identifying the structure Pigment Net-
work in dermoscopic images, and described in detail a successful, graph-based
method for classifying and visualizing pigment networks in real dermoscopic images.
In this method, a set of clinically motivated features was identified over these sub-
structures suitable for classification, and verified by evaluating its ability to classify
and visualize the structure. The feature set has proven to be robust, outperform-
ing previous work on a large dataset consisting of 436 images, which is the only
validation to date on the 3-class problem.

The accuracy of the system is 94.3 % in classifying images to one of two classes
of Absent and Present over a large and inclusive dataset consisting of 500 images.
The method was also validated on a different set and achieved an accuracy of 82.3 %
discriminating between three classes (Absent, Typical or Atypical).

This method can be used as a part of an automatic diagnosis system for classifying
moles and detecting skin cancer. Furthermore, the same idea with different features
may also be applied for extracting other diagnostic skin patterns such as globules
and streaks.
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Pattern Analysis in Dermoscopic Images

Aurora Sáez, Begoña Acha and Carmen Serrano

Abstract In this chapter an extensive review of algorithmic methods that
automatically detect patterns in dermoscopic images of pigmented lesions is pre-
sented. Pattern Analysis seeks to identify specific patterns, which may be global and
local. It is the method most commonly used for providing diagnostic accuracy for
cutaneous melanoma. In this chapter, a description of global and local patterns iden-
tified by pattern analysis is presented as well as a brief explanation of algorithmic
methods that carry out the detection and classification of these patterns. Although
the 7-Point Checklist method corresponds to a different diagnostic technique than
pattern analysis, it can be considered as a simplification of it as it classifies seven fea-
tures related with local patterns. For this reason, the main techniques to automatically
assess the 7-Point Checklist are briefly explained in this chapter.

Keywords Pattern analysis · Dermoscopy · Texture descriptors · Local patterns
detection · Global patterns detection · Classification · Machine learning

Introduction

The medical term melanoma refers to a malignant tumor developed from melanocytic
cells. Melanoma generally appears de novo, and less frequently as the evolution of
acquired benign melanocytic nevi. In the last decades, mainly due to sun exposure,
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the incidence of melanoma has dramatically increased, particularly in young white
population. If diagnosed and treated early, the mean life expectancy of individuals
suffering from melanoma can be increased by at least 25 years [11].

A non-invasive technique to assist dermatologists in the diagnosis of melanoma
is dermoscopy, which is an epiluminescence light microscopy, that magnifies lesions
and enables examination down to the dermo-epidermal junction. There are four
main diagnosis methods from dermoscopic images: ABCD rule, pattern analysis,
Menzies method and 7-Point Checklist. These methods were evaluated during the
2,000 Consensus Net Meeting on Dermoscopy (CNMD) [5] by experts from all over
the world. A 2-step procedure was used to facilitate the diagnosis:

1. To decide whether the lesion is melanocytic or non-melanocytic.
2. To decide whether the melanocytic lesion is benign, suspect, or malignant.

Pattern Analysis, considered as the classic approach for diagnosis in dermoscopic
images, was deemed superior to the other algorithms. The favorable results of pattern
analysis were not unexpected, because this method probably reflects best the way
the human brain is working when categorizing morphological images [5]. Pattern
Analysis, set forth by Pehamberger and colleagues in 1987 [36], was updated by
the Consensus Net Meeting of 2000 [5]. This methodology defines the significant
dermatoscopic patterns of pigmented skin lesions. Currently, it is the method most
commonly used for providing diagnostic accuracy for cutaneous melanoma [38].

Pattern Analysis seeks to identify specific patterns, which may be global or local.
The global features allow a quick preliminary categorization of a given pigmented
skin lesion prior to more detailed assessment, and they are presented as arrangements
of textured patterns covering most of the lesion. The local features represent individ-
ual or grouped characteristics that appear in the lesion. Some conclusions from this
methodology were extracted in the consensus mentioned [5]; the global feature most
predictive for the diagnosis of melanoma was the multicomponent pattern, whereas
the globular, cobblestone, homogeneous, and starburst patterns were most predictive
for the diagnosis of benign melanocytic lesions. Regarding to local features, atypical
pigmented network, irregular streaks, and regression structures were the features that
showed the highest association with melanoma, followed by irregular dots/globules,
irregular blotches, and blue-whitish veil. Vascular structures were not found to be
significantly associated with melanoma. On the contrary, typical pigmented network,
regular dots/globules, regular streaks, and regular blotches were mostly associated
with benign melanocytic lesions.

Although the 7-Point Checklist method corresponds to a different diagnostic tech-
nique than pattern analysis, it can be considered as a simplification of it, as it classifies
seven features related with local patterns [3]. Such simplified algorithm was designed
to prevent non-experts from missing the detection of melanomas, even at the cost of
decreased specificity.

Due to the proven benefits of applying digital imaging to dermatology [5, 49],
image processing research has directed a strong effort to develop Computer Aided
Diagnosis (CAD) tools to assist physicians in their task of analyzing pigmented
lesions, especially because a dermatologist is not always the physician that analyzes
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them in a first trial. In 2009 Maglogianis and Doukas [33] presented an overview of
CAD systems, describing how to extract features through digital image processing
methods and techniques for skin lesion classification. The special issue -Advances
in skin cancer image analysis [14]—edited by Celebi, Stoecker and Moss in 2011
summarized the progress that has taken place in this field, including works related
to multispectral imaging system, enhancement of dermoscopy images, detection of
lesion border and feature extraction. And the recent work from Korotkov and Garcia
[31] presents an extensive review of computerized analysis of pigmented skin lesions
applied to microscopic (dermoscopic) and macroscopic (clinical) images.

In this chapter an exhaustive review of methods devoted to quantify features in
pattern analysis is presented. A brief summary of the main techniques focused on the
extraction of local patterns [2, 13, 30, 34, 42, 43, 45], including those that quantify
the 7-Point Checklist [8, 9, 17, 19, 20] , will be presented in section “Local Pattern
Analysis”. Section “7-Point Checklist Method” will be devoted to explain the main
algorithms that implement the 7-Point Checklist method. When dealing with the
detection and/or classification of global patterns, a few methods have been published
in the literature [1, 25, 40, 44]. In section “Global Pattern Analysis” a description of
these methods is introduced, describing in detail Serrano’s work [44], where reticular,
globular, cobblestone, homogeneous and parallel patterns are classified.

Local Pattern Analysis

The presence of specific dermoscopic features in different regions of the same lesion
contributes to make a diagnosis of melanocytic lesions and are called local patterns.
They are dermoscopic structures such as pigment network, dots and globules, streaks,
blue-whitish veil, regression structures, hypopigmentation and vascular structures,
whose appearance description is presented below [4]. The predominant presence of
some of these local patterns can determine some global patterns [4, 5].

• Pigment network. Delicate, regular grid of brownish lines over a diffuse light-
brown background.

• Dots/globules. Sharply circumscribed, usually round or oval, variously sized black,
brown or grey structures.

• Streaks. Brownish-black linear structures of variable thickness.
• Blue-whitish veil. Grey-blue to whitish-blue, diffuse pigmentation associated with

pigment network alterations, dots/globules and/or streaks.
• Pigmentation. Dark-brown to grey-black, diffuse area that precludes recognition of

more subtle dermoscopic features such as pigment network or vascular structures.
• Hypopigmentation. Diffuse area of decreased pigmentation within an otherwise

ordinary pigmented lesion.
• Regression structures. White areas, blue areas and a combination of both. Virtually

indistinguishable from the blue-whitish veil.
• Vascular structures.
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Fig. 1 Example of local patterns

• Other criteria, such as milia-like cysts, comedo-like openings, blotches, Lacunas
network, etc.

Local patterns can be presented in the lesion with an irregular/regular or atyp-
ical/typical nature, implying malignancy or not. Figure 1 shows some examples of
local patterns.

In the literature we can find numerous works that are focused on the automatic
identification of local features. They are briefly explained in the subsections below.

Pigment Network

The pigment network is the most studied local pattern. The reason is that it is
the most common local pattern in melanocytic lesions, and the identification of
melanocytic lesions is the first step in the procedure of pigmented skin lesion diag-
nosis as explained in the Introduction Section. A pigment network can be typical,
when the pattern is regularly meshed, narrowly spaced and its distribution is more or
less regular, or atypical, characterized by a black, brown, or grey, irregular network,
distributed irregularly throughout the lesion. An atypical network signals malignancy
[4]. Figure 2 shows the variability of its appearance.

In the last years several authors have focused on the automatic detection of this
pattern.

Anantha et al. [2] in 2004 compared two statistical texture identification methods
for detecting the pigment network. The first method was the neighboring grey-level
dependence matrix (NGLDM), and the second method used the lattice aperture wave-
form set (LAWS). They analyzed images of 64 × 64 pixels. The authors concluded
that both methods detect grossly any pigment network with reasonable accuracy, with
slightly better results obtained by the latter. 155 dermatoscopic images were analyzed,
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Fig. 2 Example of lesions with pigment network. a and b present typical pigment network, whereas
c and d atypical

including 62 malignant melanomas and 93 benign lesions. The success classification
percentage was around 78 % and 65 % for LAWS and NGLDM, respectively.

Grana et al. [23] in 2006 presented an approach that addressed the problem of
detecting the pigment network based on the work of linear structure identification
presented in [48], applied to dermatological images by Fleming et al. [21] in 1998.
Line points detection was satisfied considering the lines of the pigment network
as ridges. As a consequence this set of points must satisfy at the same time two
conditions: the first order derivative should be zero, while the second order derivative
should have a high module value. After the detection of lines from the zeros of the
first derivative, Fleming et al. [21], following the procedure presented in [48], closed
lines through an analysis of the second derivative. However, Grana et al. [23] made
use of a set of morphological masks that rotate in different directions in order to
identify the terminations of the lines and, subsequently, line linking. The thinning
approach worked by selectively eroding line points which matched with exactly only
one of the morphological masks checking for the presence of an ‘L’ shaped point



28 A. Sáez et al.

which is not an 8-connection between two different network segments. ‘T’ shaped
connections were eroded with another set of masks. After the network extraction,
the image was divided into eight sectors oriented along the principal axes, in order to
provide some statistics on the network characteristics of the whole lesion and of every
eighth thereof counting the number of meshes, along with the number of unclosed
terminations and the average line width. A set of 60 selected lesions was examined.
Interestingly, the authors classified each lesion with regard to the distribution of
the pigment network as no network pattern, partial network pattern if the lesion is
partially covered with pigment network and complete network pattern. An overall
88.3 % network detection performance, without failed detections, was achieved.

Shrestha et al. [45] presented a study in 2010, whose purpose was to identify a
method that could discriminate malignant melanoma with an irregular texture, most
commonly an atypical pigment network (APN), from benign dysplastic nevi, which
generally do not have an APN, using texture measurements alone. In this study, a gray-
level co-occurrence matrix (GLCM) is constructed from the luminance plane. Five
different GLCMs were constructed for each image using pixel distances (d-values) of
6, 12, 20, 30, and 40. Five classical statistical texture measures were calculated from
each GLCM: energy, inertia, correlation, inverse difference, and entropy. Both the
average and the range of each of these measures were computed, yielding 10 para-
meters related to texture. These parameters fed six different classifiers (BayesNet,
ADTree, DecisionStump, J48, NBTree, and Ran- dom Forest) in order to determine
whether an image presented pigment network or not. The method was tested with
106 dermoscopy images including 28 melanomas and 78 benign dysplastic nevi. The
dataset is divided into APN areas and non-APN area. 10-fold validation is employed
to validate the method. The correlation average provided the highest discrimination
accuracy(95.4 %). The best discrimination of melanomas is attained for a d-distance
of 20.

Sadeghi et al. [42] proposed a method to detect and classify the dermoscopic
structure pigment network. The method was based on the detection of the ‘holes’ of
the network and follows the next steps: image enhancement, pigment network detec-
tion, feature extraction, and classification in three classes. First, a two-dimensional
high-pass filter was applied to highlight texture features. Then, the lesion was seg-
mented using Wighton et al. method [54] which employed supervised learning and
the random walker algorithm. In the pigment network detection step, a Laplacian of
Gaussian (LOG) filter was used to detect sharp changes of intensity. Then, the result-
ing binary image was converted into a graph using 8-connected neighbouring. Cyclic
structures were found in this graph, and noise or undersired cycles were removed.
Lines and holes of the pigment network were identified and 69 clinically inspired
features were extracted: 20 structural features, including network thickness and its
variation within the lesion, as well as size of the holes and its variation along the
network; 2 geometric features to study the ’uniformity’ of the network; 37 chromatic
features; and 10 textural features, using the five classical statistical texture measure-
ments, also proposed in [45]. This allowed to classify the network into typical or
atypical type. These 69 features were fed into a classifier based on a powerful boost-
ing algorithm LogitBoost. A dataset consisting of 436 images (161 Absent, 154
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Typical network, 121 Atypical network) was used. The authors computed results
for both the 3-class (Absent, Typical or Atypical) and 2-class problems (Absent,
Present). Ten-fold cross validation was used to generate all results. An accuracy of
82 % discriminating between three classes and an accuracy of 93 % discriminating
between two classes were achieved. In [43], the same authors, according to the den-
sity of the pigment network graph, classified a given image into Present or Absent.
The method was evaluated with 500 images obtaining an accuracy of 94.3 %.

In 2011 Wighton et al. [53] proposed the use of supervised learning and MAP
estimation for automated skin lesion diagnosis. The authors applied this method
to three task: segmentation, hair detection and identification of pigment network.
The method was divided into three main steps. First, in a feature extraction stage,
images were converted to CIE L∗a∗b∗ [37], and each color channel was filtered
with a series of Gaussian and Laplacian of Gaussian filters at various scale (σ =
1.25, 2.5, 5, 10, 20), so that a total of 30 features were obtained for each pixel.
Secondly, after feature extraction, Linear Discriminant Analysis (LDA) was used to
reduce the dimensionality. Finally, the posterior probabilities P(p|li ) (p = pixel,
li = class) in this subspace were modelled as multivariate Gaussian distributions. In
the training phase, parameters for multivariate Gaussian distributions of each class
were estimated. And in the labelling stage, individual pixels from previously unseen
images were assigned a label using MAP estimation. A training dataset consisting
in 20 images where pigment network was present across the entire lesion and 20
images absent of pigment network was employed. All the images belonged to the
dermoscopy atlas presented in [4], where labels of ‘present’ or ‘absent’ of pigment
network are supplied for each image. Pixels from the training images were assigned
a label as ‘background’, ‘absent’ or ‘present’. To label a new unseen image, features
were computed as in the training phase and the dimensionality of the feature space
is reduced. To estimate the probability that a pixel p was labelled li (P(li |p) ) the
authors assigned the most probable label according to MAP estimation.

Skrovseth et al. [47] also proposed a pattern recognition technique with supervised
learning to identify pigment network. They selected a training set consisting of a large
number of small images containing either a sample of network or a sample of other
textures, consisting of both skin and lesion regions. 20 different texture measures were
analyzed and the three that contributed maximally to separate the two classes with a
linear classifier were selected. A new image is divided into overlapping subimages
of the same size as the training images. A pixel is classified as network if at least one
of the subimages it belongs to is classified as it.

Barata et al. [7] presented a work focused on the detection of pigment network
in 2012. The method was based on the use of directional filters. The first step was
to convert the color image into a grey scale one to remove two types of artifacts:
hair and reflections caused by the dermatological gel. An inpainting technique was
applied. In the second step, regions with pigment network were detected using two
of its distinctive properties: intensity and geometry or spatial organization. A bank
of directional filters was applied to perform an enhancement of the network. The
spatial organization was implemented by connectivity among pixels. The result was
a binary net-mask. The final step aimed to assign a binary label to each image: with or
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without pigment network. To accomplish this objective, features which characterize
the topology of the detected regions in a given image were extracted and used to
train a classifier using a boosting algorithm. The algorithm was tested on a dataset
of 200 dermoscopic images (88 with pigment network and 112 without) achieving
a sensitivity of 91.1 %, a specificity of 82.1 % and an accuracy of 86.2 % in the
classification with or without pigment network.

Betta et al. [9] proposed a method for the detection of atypical pigment network.
The method was based on their previous work [8], where the pigment network was
detected but not classified as atypical/typical. The authors combined two differ-
ent techniques: structural and spectral analysis. The structural analysis searched for
primitive structures such as lines and/or points. To identify these local discontinuities
the monocromatic image was compared with a median filtered version of it. In the
spectral analysis the Fourier transform of the monocromatic image was performed in
order to determine the spatial period of the texture. In this way, local discontinuities,
not clearly associated with the network, were disregarded. The result of this phase
was a ‘regions with network’ mask. This mask in conjunction with ‘local discontinu-
ities’ image provided a ‘network image’, where the areas belonging to the lesion and
constituting the pigment network were highlighted. Two indices related to the spa-
tial and chromatic variability of these areas were presented to quantify the possible
atypical nature of the network. 30 images were processed to assess the performance
of this detection.

Di Leo et al. [19] extended the work proposed by Betta et al. [9] to detect atypical
pigmented network. First, the pigment network was detected following [9]. Then, 13
color and geometric features were extracted. C4.5 algorithm was used as classifier.
173 digital dermoscopy images (77 atypical pigment network, 53 typical pigment
network and 43 absent pigment network) obtained from the Interactive Atlas of
Dermoscopy [4] were used. 90 images were used for training and 83 images for
testing. Sensitivity and specificity values greater than 85 % were reached.

In Table 1 the classification results of the works reported in this section are
summarized.

Table 1 Results of pigment network detection

Algorithm Year Classification Accuracy (%) No. images

Anantha et al. [2] 2004 Absent/present 78 155
Grana et al. [23] 2006 No/Partial/complete 88.3 60
Shrestha et al. [45] 2010 Melanoma/no 95.4 106
Sadeghi et al. [42] 2010 Absent/present 93 436
Sadeghi et al. [42] 2010 Absent/atypical/typical 82 436
Skrovseth et al. [47] 2010 Absent/present (per-pixel) – –
Wighton et al. [53] 2011 Absent/present (per-pixel) – 734
Barata et al. [7] 2012 Absent/present 86.2 200
Betta et al. [9] 2006 Atypical/typical – 30
Di Leo et al. [19] 2008 Atypical/typical 85 173
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Fig. 3 Example of lesions with dots/globules

Table 2 Results of dots/globules detection

Algorithm Year Classification Accuracy No. images

Yoshino et al. [56] 2004 Absent/Present – –
Skrovseth et al. [47] 2010 Absent/Present – –

Dots and Globules

Dots and globules are round or oval, variously sized black, brown or grey structures,
as it has already mentioned in Local Pattern Analysis. It is another dermoscopic
structure which is difficult to discriminate from pigment network [42]. This could be
the reason why there are so few works in the literature focused on its identification.
Some examples of lesions with this structures are shown in Fig. 3.

Based on the classification described in [35], Skrovseth et al. [47] computed a
score for each pixel in a gray scale image. Given P surrounding pixels with values
gk , k = 1, ..., P at a radius R of a central pixel with gray value gc, the score of the
central pixel is calculated as Sc = �P

k=1(gc − gk). The authors argue that this score
will be large for a dark spot, and therefore, a simple thresholding would give the
position of the dot.

Yoshino et al. [56] presented an algorithm that use morphological closing opera-
tion to detect dots. The closing operation used a linear structural element. Afterwards,
a thresholding is applied to detect dots.

Table 2 shows a summary of the works focused on the globules detection.
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(a) (b)

Fig. 4 Example of lesions with (a) regular streaks, (b) irregular streaks

Streaks

Streaks are brownish-black linear structures of variable thickness that are found in
benign and malignant lesions. They are typically placed at the periphery of a lesion
and are not necessarily connected to the lines of the pigment network. Streaks can
be irregular, when they are unevenly distributed (malignant melanoma), or regular
(symmetrical radial arrangement over the entire lesion) [10]. An example of regular
and irregular streaks can be found in Fig. 4 .

Mirzaalian et al. [34] proposed a a machine-learning approach to detect streaks
which captures the quaternion tubularness in the color dermoscopic images. First,
tubularness filters [22] to enhance streak structures in dermoscopic images were
used. Given the estimated tubularness and direction of the streaks, a vector field in
order to quantify radial streaming pattern of the streaks was defined. Specifically,
they computed the amount of flux of the field passing through iso-distance contours
of the lesion, where each contour was the loci of the pixels which have equal distance
from the outer lesion contour. So, an appearance descriptor based on the mean and
variance of the flux through the different concentric bands of the lesion is constructed.
The final step is to learn how the extracted descriptors can best distinguish the three
different classes: the absence, presence of regular, or presence of irregular streaks
in the dermoscopic images. This task is performed with a SVM classifier with a
database 99 dermoscopic images.

In [41], the authors followed four steps to locate streaks: preprocessing, blob
detection, feature selection and two-class classification (absent-present). In the pre-
processing step, lesions were segmented, reoriented so that the major axis was parallel
to the x-axis and resized so that its major axis occupied 500 pixels. Lightness com-
ponent (L*) from L*a*b* color representation was used for the rest of the analysis.
Streaks can be modeled as linear structures with a Gaussian cross-section profile near
the border. Therefore, in the blob detection, four Laplacian of Gaussian (LOG) filters
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with different sizes, hsize = 3, 5, 7, 9, were employed to detect these linear structures.
Candidate to streaks were extracted in this step. Once they were detected, their orien-
tations were estimated using the Averaged Squared Gradient Flow (ASGF) algorithm
[29]. Then, 25 features were extracted from the candidate linear streak structures and
from the lesion: one set of 12 features was based on properties of the detected candi-
date streak lines and another feature set contained the 13 common color and texture
features of the entire lesion. These 25 features were fed to a SimpleLogistic classifier,
that classifies a lesion into absence and presence of streaks. The method was tested
with a database of 300 dermoscopic images (105 Absent and 195 Present) achieving
an accuracy detection of 0.815 using 10-fold cross validation.

Sadeghi et al. [39] recently presented an extension of their previous work [41].
In this version, they proposed an algorithm that classifies a lesion into absence of
streaks, regular streaks, and irregular streaks. The work aimed to identify valid streak
lines from the set of candidate streak lines obtained in [41] in order to reduce false
positive streaks such as hairs and skin lines. The method also extends the analysis to
identify the orientation and spatial arrangement of streak lines. These novel geometric
features are used to identify not only the presence of streak lines, but whether or not
they are Irregular or Regular; important for melanoma diagnosis. Therefore, a total of
31 features are fed into a classifier, achieving an accuracy of 76.1 % when classifying
945 images into the three classes.

Betta et al. [8] identified streaks as finger-like irregularities with uniform brown
color at the lesion contour. Therefore, they detected the simultaneous occurrence
of two different structures: finger-like track of the lesion contour, and brown pig-
mentation in the same restricted region. For the first purpose, the color image was
converted to an 8-bit gray-level image, and then three different binary images were
obtained by applying three different thresholds. The contours of these binary images
were extracted by a blob-finding algorithm. The best of the three extracted contours
was selected manually and divided into 16 parts. For each part, an irregularity ratio
was evaluated. This parameter represented the ratio between number of pixels of
the detected contour in this part and the number of pixels in the line connecting the
extreme contour points of this part. The contour in that region was assumed as irreg-
ular if the ratio was greater than a threshold. On the other hand, brown pigmentation
of those 16 subimages is analyzed by thresholding the hue component. Finally, the
occurrence of streaks was assumed only if both an irregular contour and a brown
pigmentation were found in the same sub-image. The authors presented experimen-
tal results for 10 images achieving a 90 % of success rate. A further evaluation was
presented by Fabbrocini et al. [20]. They used 23 and 30 images for training and
test set, respectively. The two thresholds mentioned above were determined by a
Receiver Operating Characteristic curve (ROC curve) on the training image set. A
sensitivity and a specificity of 86 and 88 %, respectively, were achieved.

Table 3 summarizes the classification results of the works reported in this section.
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Table 3 Results of streaks detection following pattern analysis and 7-Point Checklist

Algorithm Year Classification Accuracy (%) No. images

Mirzaalian et al. [34] 2012 Absent/regular/irregular 91 99
Sadeghi et al. [39] 2013 Absent/present 78.3 945
Sadeghi et al. [39] 2013 Absent/regular/irregular 76.1 945
Betta et al. [8] 2005 Absent/present 90 10
Fabbrocini et al. [20] 2010 Absent/present 86 30

Fig. 5 Example of lesions with blue–whitish veil

Blue–Whitish Veil

Blue-whitish veil is characterized by a grey-blue to whitish-blue diffuse pigmenta-
tion. Some examples of lesions that present this pattern are shown in Fig. 5.

Celebi et al. [13] proposed a machine learning approach to detect blue-white
veil in dermoscopy images based on their early work [12]. Fifteen color features
and three texture features were extracted. The color features involved absolute color
features and relative color features when compared to the average color of the back-
ground skin. The texture features were based on the gray level co-ocurrence matrix
(GLCM). The classifier used was C4.5 algorithm. Only 2 out of the 18 features were
finally selected for the classification model, both belonging to color features. The
classification results for manually selected test pixels yield a sensitivity of 84.33 %
and a specificity of 96.19 %. In a second experiment, the authors aimed to discrimi-
nate between melanoma and benign lesions based on the area of the blue–white veil
detected. They extracted three numeric values from the detected blue-white region:
area, circularity and ellipticity. A new classification model based on these features
was generated using C4.5 algorithm and 10-fold-cross validation. A sensitivity of
69.35 % and a specificity of 89.97 % for the entire image set (545 images) were
obtained.

In a recent work, Arroyo et al. [6] also proposed supervised machine learning
techniques to detect blue-white veil. To this aim, color features were extracted from
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Table 4 Results of blue-whitish veil detection

Algorithm Year Classification Sensitivity (%) Specificity (%) No. images

Celebi et al. [12] 2006 Absent/present (per pixel) 84.33 96.19 100
Celebi et al. [13] 2008 Melanoma/Benign 69.35 89.97 545
Arroyo et al. [6] 2011 Melanoma/Benign 80.50 90.93 887
Di Leo et al. [17] 2009 Absent/present 87 85 135

each individual pixel and the classifier used was C4.5 algorithm, that generated the
decision tree. Candidate areas selected in the previous step were subsequently clas-
sified as melanoma with blue-white veil. For this purpose 12 features were extracted
from the candidate area such as area, solidity or ellipticity. The authors used a data-
base consisting of 887 images. 120 images were selected to obtain the training data,
60 corresponding to melanoma with blue-white veil pattern and 60 corresponding
to other cases. The method achieved a sensitivity of 80.50 % and a specificity of
90.93 %

Di Leo et al. [17] focused on the detection of two different patterns, blue-whitish
veil and regression structures. Firstly, the lesion was subdivided into regions. The
color image is converted via principal component analysis (PCA) and a two dimen-
sional (2-D) histogram is computed with the two first principal components. The
most significant peaks in the 2-D histogram were found as representative of color
regions in the input image. All the pixels in the lesion were assigned to one the main
peaks via clustering, so that a lesion map was created. Regions in the lesion map
were subsequently classified as present or absent of blue whitish veil and regression.
To this aim geometric and color features were extracted and a logistic model tree
(LMT) was proposed as classifier. 210 digital dermoscopic images obtained from the
Interactive Atlas of Dermoscopy [4] were used. 70 and 50 cases corresponding to the
presence of Blue Veil and Regression area respectively were used as training set. 65
cases of Blue Veil and 40 cases of Regression structures were utilized for the test set.
A sensitivity of 0.87 and a specificity of 0.85 were obtained for the detection of blue
veil and a sensitivity and a specificity both equal to 0.85 for regression structures.

Table 4 shows the classification results of the mentioned works.

Blotches

Blotches are dark structureless areas within pigmented lesions [5]. Blotches that are
located asymmetrically within a lesion are indicative of malignant melanoma [30].

The chapter of Stoecker et al. [50] studied the effectiveness of the absolute and
relative color blotch features for melanoma/benign lesion discrimination over a der-
moscopy image set containing 165 melanomas and 347 benign lesions using a neural
network approach. The authors proposed two approaches to detect the blotchy areas.
The first method used thresholds placed upon the values of the red, green, and
blue (RGB) components of the pixels within the lesions. The second method used
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relative color thresholds, subtracting the observed pixel value within the lesion from
the background skin color before applying relative thresholds. Then, several blotch
indices were computed, including the scaled distance between the largest blotch cen-
troid and the lesion centroid, ratio of total blotch areas to lesion area, ratio of largest
blotch area to lesion area, total number of blotches, size of largest blotch, and irreg-
ularity of largest blotch. It was determined that relative color were more effective
than absolute color giving a diagnostic accuracy of about 77 %.

Khan et al. [30] investigated new and existing blotch features for melanoma dis-
crimination. Four experiments were performed to achieve this aim. Blotches are first
extracted using absolute and relative color thresholds to construct blotch masks pro-
posed in [50]. Then, fuzzy logic techniques for extracting blotches based on blotch
size were studied, where a fixed minimum blotch size was fuzzified to detect an area
as a blotch only if its size exhibits a certain degree of association with a fuzzy set rep-
resentative of blotch size. To compute the second fuzzy set, the relative color values at
each pixel position inside of the blotchy areas were extracted from melanoma lesions
belonging to a training set of images. This fuzzy set provided the basis for differenti-
ating between melanoma and benign skin lesions. A third fuzzy set was constructed
similarly, but using separate relative color histograms for the red, green and blue
color planes. These sets were also used for melanoma discrimination. Finally, a new
set of four asymmetry features were computed. The lesion border mask was divided
into four quadrants and a set of asymmetry features was computed. The work con-
cluded that features computed from blotches using the fuzzy logic techniques based
on three plane relative color and blotch size yielded the highest diagnostic accuracy
of 81.2 %. 424 dermoscopy images (134 melanoma and 290 benign images) from
three different sources were used.

Madasu and Lovell [32] proposed an extension of fuzzy co-clustering algorithm
for images (FCCI) technique [24] for detecting blotches. Madasu and Lovell extended
FCCI technique to include texture features as additional clustering parameters. Tex-
ture features were computed using the normalized entropy function. A set of 50
images were used for testing the proposed algorithm. The authors claimed that the
blotches are accurately located independently of their shape, size or location within
the image.

A summary of classification results of the three works presented is shown in
Table 5.

Table 5 Results of blotches detection

Algorithm Year Classification Accuracy (%) No. images

Stoecker et al. [50] 2005 Melanoma/Benign 77 512
Khan et al. [30] 2008 Melanoma/Benign 81.2 424
Madasu and Lovell [32] 2009 Absent/Present – 50
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Fig. 6 a Nevu with hypopigmentation. b Melanoma with hypopigmentation

Table 6 Results of hypopigmentation detection

Algorithm Year Classification AUC (%) No. images

Dalal et al. [15] 2011 Melanoma/Benign 95.2 244

Hypopigmentation

Hypopigmentation represents a diffuse area of decreased pigmentation within an
otherwise ordinary pigmented lesion. White areas in a melanoma have an eccentric
location and an irregular shape. White areas in a nevus are located in the lesion
periphery.

Dalal et al. [15] proposed a method to discriminate melanomas from benign nevi
by automatically detecting white areas and measuring features of these white areas.
In order to identify white and hypopigmented areas, thresholds were determined for
each color plane based on color histogram analysis using a training set of images.
The lesion was segmented in concentric deciles. Overlays of the white areas on the
lesion deciles were determined. Nine indices were calculated to characterize the
automatically detected white areas in a lesion. These indices included lesion decile
ratios, normalized number of white areas, absolute and relative size of largest white
area, relative size of all white areas, and white area eccentricity, dispersion, and
irregularity. A neural network was selected as classifier. 244 benign and malignant
dermoscopy images with white areas were selected. The methods used a randomly
selected training set of 75 lesions and a test set of 169 lesions.

Regression Structures

A regression structure is a white scarlike depigmentation irregularly distributed
within the lesion.
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Table 7 Results of regression structures detection

Algorithm Year Classification Sensitivity (%) Specificity (%) No. images

Di Leo et al. [17] 2009 Absent/present 85 85 90

Fig. 7 Example of lesion
with dotted vessels

As mentioned aboved, Di Leo et al. in their work [17] detected regression struc-
tures and blue-whitish veil. The method is reported in section “Local Pattern Analy-
sis”. Table 7 shows the classification result of this work.

Vascular Pattern

A vascular pattern, and more specifically, with atypical nature presents linear-
irregular or dotted vessels not clearly combined with regression structures and asso-
ciated with pigment network alterations, dots/globules and/or streaks.

In Betta et al. work [9], reported in section “Pigment Network”, a method for the
detection of atypical vascular pattern is also proposed. Due to its difficult to obtain a
relevant number of ELM images with the occurrence of this criterion, the training set
was constituted by N pixels selected as vascular patterns in a set of images containing
occurrences of this criterion. The Hue, Saturation and Luminance components was
evaluated and the frequency histograms corresponding to the three color planes were
determined. The pixel classification depended on the value of its HSL components.
However, the authors warned that in some cases the algorithm gave rise to wrong
detection, evidencing a low specificity.
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General Feature Extraction

Situ [46] formulate the problem of local dermoscopic feature detection as a multi-
instance learning (MIL) problem and not as the identification of each local pattern.
The first step was to segment each lesion image into five homogeneous regions by the
graph cut method. Each of these regions was considered an instance. In a standard
multi-instance learning (MIL) problem a lesion is positive if and only if at least
one of its instances is positive. The authors employed the method of diverse density
(DD) and evidence confidence (EC) function to convert MIL to a single-instance
learning (SIL) problem. Both texture and color descriptors were extracted and a SVM
classifier was used. The performance of this MIL approach was compared with its
boosting version and a baseline method without using MIL, where the descriptors
were extracted from the whole lesion. The authors concluded that MIL methods
can be helpful in recognizing certain local features that are important for melanoma
detection.

7-Point Checklist Method

Although the 7-Point Checklist method is a different diagnosis algorithm, it is consid-
ered a simplification of the classic pattern analysis due to the low number of features
to identify. This algorithm is applied once the lesion is diagnosed as melanocytic. It
was developed by Argenziano et al. [3]. The 7-Point Checklist is a score system. This
method uses seven specific criteria for melanoma. It includes three major criteria:

• Atypical pigment network
• Blue-whitish veil
• Atypical vascular pattern

to which 2 points are attributed to each of them, and four minor criteria:

• Irregular streaks
• Irregular pigmentation
• Irregular dots/globules
• Regression structures

to which 1 point is attributed to each of them. A score of 3 or greater is associated
with a high likelihood of melanoma diagnosis at pathology evaluation.

Some works focused on the detection of one or several specific criteria can
be found in the literature [8, 9, 17, 19, 20]. These works have been explained in
section “Local Pattern Analysis”.

Di Leo et al. in [18] and [16], joined some methods also mentioned in section
“Local Pattern Analysis” in order to present an automatic implementation of the
7-Point Checklist method. In [18] the authors focused on the detection of five criteria.
It is in [16] where the seven criteria of the method were addressed: Atypical pigment
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network and Irregular dots/globule were detected by the methods proposed in [19]
and [9]; Blue-whitish veil, Regression structures and Irregular pigmentation detection
followed the steps proposed in [17]; atypical vascular pattern was detected with [9];
and Irregular streaks with the method presented in [8]. 300 images were used for the
evaluation. For each dermoscopic criterion a training and testing set were selected
from the database in order to train a classifier and/or carry out a statistical analysis.
The system distinguished between Melanoma and Benign lesions. The performance
of the automatic system was estimated through a comparison with the application of
the 7-Point Checklist diagnostic method by expert dermatologists to 287 images of
the database. The global sensitivity and specificity values of the software diagnostic
tool were 0.83 and 0.76, respectively.

Other authors [11, 26] focused their works on machine learning approaches, where
the feature extraction step was inspired on the 7 point checklist criteria.

Global Pattern Analysis

Global features allow a quick preliminary categorization of a given pigmented skin
lesion prior to more detailed assessment, and they are presented as arrangements of
textured patterns covering most of the lesion.

The main global patterns are [4]:

• Reticular pattern. The most common global feature in melanocytic lesions is char-
acterized by a pigment network covering most parts of a given lesion. Basically,
the pigment network appears as a grid of thin brown lines over a diffuse light
brown background.

• Globular pattern. It is characterized by the presence of numerous, variously sized,
round to oval structures with various shades of brown and grey-black coloration.

• Cobblestone pattern. It is quite similar to the globular one but is composed of
closely aggregated, larger somewhat angulated globules resembling a cobblestone.

• Homogeneous pattern. It appears as a diffuse, brown, grey-blue to grey-black or
reddish-black pigmentation in the absence of pigmented network or other distinc-
tive local features.

• Starbust pattern. It is characterized by the presence of pigmented streaks in a radial
arrangement at the edge of a given pigmented skin lesion.

• Parallel pattern. It is found exclusively in melanocitic lesions on skin of palms and
soles due to particular anatomic structures inherent to this location.

• Multicomponent pattern. It is a combination of three or more distinctive dermo-
scopic structures within a given lesion.

• Lacunar pattern. It is characterized by various to numerous, smooth-bordered,
round to oval, variously sized structures called red lacunas, whose morphologic
hallmark is their reddish, blue-purplish or black coloration.

• Unspecific pattern. In some instances, a pigmented lesion cannot be categorized
into one of the global patterns listed above, because its overall morphologic aspect
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does not fit at all into these artificial, albeit rather distinctive categories. For this
type of lesion the term unspecific pattern is used.

In [51] and [52] Tanaka et al. presented an analysis of texture to classify a pat-
tern into three categories: homogeneous, globular and reticular. The lesion area was
divided into small regions. 110 texture features of each sub-image were calculated.
These features were based on intensity histogram information, differential statistical
features, Fourier power spectrum, run-length matrix, coocurrence matrix and con-
nected components. 35 features were selected by discriminant analysis. As result,
the patterns could be classified correctly into three categories at the ratio of 94% of
classification success rate.

In [44] Serrano and Acha proposed a model-based technique to automatically clas-
sify five types of global patterns (reticular, globular, cobblestone, homogeneous and
parallel). In the model-based methods, image classification was treated as an incom-
plete data problem, where the value of each pixel was known and the label, which
designated the texture pattern the pixel belongs to, is missing. In such techniques,
images were modelled as random fields and the segmentation/classification problem
was posed as an statistical optimization problem. Most of the existing techniques use
the spatial interaction models like Markov Random Field (MRF) or Gibbs Random
Field (GRF) to model digital images. Following Xia et al. model [55], Serrano and
Acha considered an image as a random field G, defined on a W × H rectangular lat-
tice, where W and H represented the image dimensions. The lattice was denoted by
S = {(i, j) : 1 ≤ i ≤ W, 1 ≤ j ≤ H} , which was indexed by the coordinate (i, j).
The color values were represented by G = {Gs = gs : s ∈ S} , where s = (i, j)
denoted a specific site and the random variable Gs represented a color pixel in the
L∗a∗b∗ color space. An observed image was an instance of G. It could be described
by a finite symmetric conditional model (FSCM) [28] as follows:

gs = μs +
∑

t∈νg

βs,t[(gs+t − μs+t) + (gs−t − μs−t)] + es (1)

where νg = {(0, 1), (1, 0), (1, 1), (−1, 1)} is the set of shift vectors corresponding
to the second order neighbourhood system, μs = [μL ,μa,μb]T is the mean of the
color pixels in a window centred in site s, {βs,t : t ∈ νg} is a diagonal matrix whose
elements are the set of correlation coefficients associated with the set of translations
from the central site s and {es} is a stationary Gaussian noise color sequence with a
diagonal covariance matrix � as:

� =
⎡

⎣

σ2
L 0 0

0 σ2
a 0

0 0 σ2
a

⎤

⎦ (2)

Thus, an 18-component feature vector characterized the random field G:

f = (μL ,μa,μb,σ
2
L ,σ2

a,σ2
b,βL ,t ,βa,t ,βb,t : t ∈ νg) (3)
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Fig. 8 Example of global patterns. 40×40 dermoscopic image sample representing global patterns:
a reticular pattern; b globular pattern; c cobblestone pattern; d homogeneous pattern and (e) parallel
pattern

In order to estimate the parameter vector f , the least-squares estimation method was
applied.

Features were supposed to follow a Normal mixture distribution, with a different
mean vector and covariance matrix depending on the global pattern each particular
image was representing. In other words, if λ represented the pattern class, features
will follow the distribution:

N (Mλ, �λ) = 1√
(2π)n|�λ| exp

(

−1

2
(f − Mλ)T �−1

λ (f − Mλ)

)

(4)

In order to find the optimum label the pattern belongs to, the maximum a-posteriori
(MAP) criterion was applied together with the assumption that the five possible global
patterns (reticular, cobblestone, homogeneous, parallel and globular) were equally
probable, what resulted in the maximum likelihood (ML) criterion. Then:

λ̂ = arg maxλ∈� P(F = f |λ) (5)

This ML problem can then be solved by minimizing the following energy:

λ̂ = minλ∈�EG(f,λ) = minλ∈�{((f−Mλ)T �−1
λ (f−Mλ)+ln

(

(2π)18|�λ|
)

} (6)

The proposed algorithm was tested on a database containing 100 40 × 40 image
samples of the five types of patterns (see Fig. 8). For each type of them 20 images
were used. 10-fold cross-validation was performed: 90 % of the total set of images
was used to train (90 images) and 10 % to validate (10 images). The total set was
divided into 10 groups for the testing. Each time one different testing group was
employed to validate the algorithm. In this way, 18 images of each pattern were used
to train and two images of each type were used to validate. The authors compared
different color spaces obtaining the success classification percentages described in
Table 8.

Since Serrano and Acha developed their methodology to analyze global pattern
in pigmented lesions in 2009, different researchers have followed their steps.

Gola et al. [25] presented a method which, in conjuction with the ABCD rule, tried
to detect three global patterns in order to increase diagnostic accuracy of pigmented
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Table 8 Percentage of success clasification in five global patterns for different color spaces

Reticular Globular Cobblestone Homogeneous Parallel Average

RGB 85 85 50 95 85 80
YIQ 75 90 70 95 70 80
HSV 70 80 65 95 95 81
L*a*b* 90 80 80 90 90 86

lesions. To this aim they developed three different algorithms. In the two first ones,
based on edge detection and mathematical morphology, they detected globular and
reticular patterns. In the third one, they performed color analysis in the RGB color
space with the aim of detecting the blue veil pattern. The algorithms were tested
with a database consisting of 20 images per global pattern. The proposed algorithms
produced an average accuracy above 85 %.

In [40] the authors detected and classified global dermoscopic patterns as well.
They investigated texture analysis and classified five classes of global lesion patterns
(reticular, globular, cobblestone, homogeneous, and parallel ones). To this purpose,
a statistical approach based on texton classification was followed, where texture
features were modelled by the joint probability distribution of filter responses. This
distribution was represented by texton (cluster center) frequencies, and textons and
texture models were learnt from training images. The classification of an unseen
image proceeded by mapping the image to a texton distribution and comparing this
distribution to the learnt models. The texton-based classification was performed in
the L*a*b* color space and in the gray-scale image using different filter banks. The
procedure was divided into two steps:

• Learning stage

1. A set of 81 × 81 pixel images representing the five patterns were assembled.
2. Training images were convolved with a filter bank to generate filter responses.
3. Exemplar filter responses were chosen as textons and were used to label each

filter response in the training images.
4. The histogram of texton frequencies was used to form models corresponding to

the training images.

• Classification stage

1. The same procedure as in the training stage was followed to build the histogram
corresponding to the unseen image.

2. This histogram was then compared with the models of the texton dictionary.
3. A nearest neighbor classifier was used and the Chi-square statistic was employed

to measure distances.

The proposed set of filters was a filter bank composed by 18 + 18 + 2 filters to
detect average intensity, edges, spots, wave, meshes and ripples of dermatoscopic
structures. The correct classification rate attained was 86.8 %.
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Table 9 Classification results in [1]

Pattern SE (%) SP (%) AUC

Reticular 87.11 97.96 0.981
Globular 86.25 97.21 0.997
Cobblestone 87.76 93.23 0.990
Homogeneous 90.47 95.10 0.996
Parallel 85.25 89.50 0.989
Starburst 89.62 90.14 0.966
Multicomponent 98.50 93.11 0.989

SE Sensitivity, SP specificity, AUC Area under the Receiver operating characteristic (ROC) curve

Table 10 Classification results in [27]

Classifier SE (%) SP (%) AUC

Melanoma 100 95.9 0.993
Parallel ridge pattern 93.1 97.7 0.985
Parallel furrow pattern 90.4 85.9 0.931
Fibrillar pattern 88 77.9 0.89

SE Sensitivity, SP specificity, AUC Area under the Receiver operating characteristic (ROC) curve

In their work, Abbas et al. [1] extracted color and texture features from the der-
moscopic image in order to classify it into its global pattern. Color related images
were extracted from the CIECAM02 representation of the color image. Texture was
analysed by means of the steerable pyramids transform (SPT). Both groups of features
fed an AdaBoost MC classifier, which classified pigmented lesions into seven differ-
ent groups of global patterns: (a) Reticular pattern or pigmented network, (b) Glob-
ular pattern, (c) Cobblestone pattern, (d) Homogeneous pattern, (e) Parallel pattern,
(f) Starburst pattern, (g) Multicomponent pattern. In Table 9 results are summarized.

Iyatomi et al. [27] focused only on the detection of parallel pattern. 428 image
features were extracted, which included color-related features, symmetry features,
border-related features and texture features. Then, using principal component analy-
sis (PCA), these features were transformed into 198 orthogonal principal components
(PCs) without information loss. The first 10 PCs more discriminative were selected.
Four linear classifiers were used for parallel ridge, parallel furrow and fibrillar pat-
tern detection. In addition, acral volar melanoma was also classified. The achieved
results are shown in Table 10.

Discussion

Pattern analysis is the method most commonly used for providing diagnostic accuracy
for cutaneous melanoma [38]. In fact, it was deemed superior to the other algorithms
(i.e., ABCD Dermoscopy Rule, Menzies score, 7-Point Checklist) for diagnostic
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efficiency by experts from all over the world in the 2000 Consensus Net Meeting on
Dermoscopy (CNMD) [5].

Pattern analysis aims to detect local or global patterns in a pigmented lesion to
determine if it is melanocytic and, in such a case, its malignancy [5]:

1. Detection of pigment network, aggregate globules, streaks, homogeneous blue
or parallel pattern are signs of melanocytic lesions.

2. Atypical pigment network, dots or streaks irregularly distributed, blue-white veil
or regression may be signs of melanoma.

The presence of specific dermoscopic features in different regions of the same
lesion contributes to make a diagnosis of melanocytic lesions and these features
are called local patterns. The predominant presence of some of these local patterns
determines some global patterns.

In the literature, much more works devoted to detect local patterns than global
patterns are published. Most of the papers related to local patterns address the problem
of the detection of the pigmented network, which is the most common local pattern
appearing in melanocytic lesions.

Regarding global patterns, Serrano’s article [44] was the first work that automat-
ically detected global patterns in dermoscopic images. Nevertheless, multicompo-
nent pattern was not considered in this paper. Later, other works have provided new
methods to classify global patterns, included multicomponent, with high success
classification rate.
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A Bag-of-Features Approach for the
Classification of Melanomas in Dermoscopy
Images: The Role of Color and Texture
Descriptors

Catarina Barata, Margarida Ruela, Teresa Mendonça
and Jorge S. Marques

Abstract The identification of melanomas in dermoscopy images is still an up to
date challenge. Several Computer Aided-Diagnosis Systems for the early diagnosis
of melanomas have been proposed in the last two decades. This chapter presents
an approach to diagnose melanomas using Bag-of-features, a classification method
based on a local description of the image in small patches. Moreover, a comparison
between color and texture descriptors is performed in order to assess their discrim-
inative power. The presented results show that local descriptors allow an accurate
representation of dermoscopy images and achieve good classification scores: Sen-
sitivity = 93 % and Specificity = 88 %. Furthermore it shows that color descriptors
perform better than texture ones in the detection of melanomas.

Keywords Melanoma diagnosis · Dermoscopy · Bag-of-features · Feature extrac-
tion · Feature analysis · Color features · Texture features

Introduction

Dermoscopy is a widely used microscopy technique for the in-vivo observation of
skin lesions. A magnification instrument is used to increase the size of the lesion
and a liquid (oil, alcohol or water) is placed on top of the lesion prior to the
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Fig. 1 Melanoma with
specific dermoscopic fea-
tures: blue-whitish veil (red
arrows); pigment network
(blue arrows), dots and glob-
ules (white circles)

observation to eliminate surface reflection. This step makes the cornified layer of
the skin translucent, allowing a better visualization of several pigmented structures
located within the epidermis, dermis and dermoepidermal junction [3]. Several mag-
nification instruments are currently used by dermatologists: dermatoscope, stere-
omicroscope or a digital acquisition system. The later allows the attainment of der-
moscopy images, that can be processed and analyzed by a Computer Aided-Diagnosis
(CAD) system.

The diagnosis of pigmented skin lesions using dermoscopy is based on medical
algorithms: ABDC rule [47], 7-point checklist [2] and Menzies’ method [29]. All of
these methods have in common a set of dermoscopic criteria that can be divided in
two groups. The first group is called global features and allows a preliminary and
quick categorization of a skin lesion. Global features are a set of patterns (reticular,
cobblestone, globular, parallel, etc) that can be found in different pigmented skin
lesions. The other group of dermoscopic criteria are the local features (pigment
network, dots and globules, streaks, pigmentation related structures, vascular pattern,
etc). These features are sometimes called the letters of the dermoscopic alphabet since
they are the cues that allow a final diagnosis of the lesion (melanoma or not) [3].
Figure 1 illustrates some of the local dermoscopic features.

Both global and local features play an important role in the diagnosis of mela-
nomas. Some dermatologists perform an analysis of skin lesions using as reference
only the global dermoscopic features. This global evaluation method is called pat-
tern analysis and has received some attention in the skin research area, such as [1,
36, 40], which try to reproduce the medical analysis. The published works focus on
the identification of the different patterns but do not perform a diagnosis of a skin
lesion. However, it is undeniable that local features are the backbone of the com-
mon medical algorithms since ABCD rule, 7-point checklist and Menzies’ method
use these features and their properties (shape or number of colors) to score a skin
lesion, thus diagnosing it as melanoma or not. There are several studies which focus
on detecting one or more of these dermoscopic criteria, such as pigment network
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[6, 37], irregular coloration [10, 31, 45], irregular streaks [35] and granularity [46].
However, as far as the authors know only one study combines a set of detectors
and the 7-point checklist algorithm in a CAD system to perform a diagnosis using
dermoscopy images [15]. Two reviews on state-of-the art methods can be found in
[11, 25].

Most of the CAD systems found in literature use a different procedure, following
a pattern recognition approach to classify dermoscopy images [9, 18, 21, 34]. These
works have successfully exploited a global representation of the lesion using features
inspired by the ABCD rule (color, shape, texture and symmetry). Most of the extracted
features are able to perform a good description of the lesion regarding its shape and
global color distribution. However, localized texture and color patterns associated to
differential structures (e.g., pigment network, dots, streaks or blue-whitish veil) might
be missed since a global analysis is being performed. To overcome this situation,
this chapter describes a different approach for the analysis of dermoscopy images.
Since experts usually try to characterize local structures in the image, the described
strategy will try to mimic this behavior and represent the image by a set of local
features, each of them associated to a small region in the image. The local features
used describe the texture and color of each region and a comparative study between
the two types of descriptive features is performed, in order to assess their degree of
discrimination.

Bag-of-Features

The description of an image with local features have been successfully used in sev-
eral complex image analysis problems, such as scene recognition and object-class
classification [22, 23, 27, 42, 44, 50]. The used approach is called Bag-of-Features
(BoF) [42, 44] and it is inspired by the bag-of-words (BoW) [5], which is a well
known text retrieval algorithm. The procedure used by BoW to model documents
evolves in three different steps. The first step consists of parsing the documents of
the dataset into words, i.e., dividing the documents to smaller components. Images
can also be sampled into smaller regions (patches). Two sampling strategies are com-
monly used in BoF: sparse and dense sampling. Sparse sampling is performed by
detecting a set of informative keypoints (e.g., corners) and their respective support
regions (square patches). This detection can be done using one or more of the several
detectors proposed in literature (e.g. Difference of Gaussian [28] or Harris-Laplace
[30]). A comparative study between the six most popular keypoint detectors can be
found in [22]. For dense sampling it is assumed that each keypoint is the node of a
regular grid defined in the image domain. The patches associated with the keypoints
are extracted by sampling uniformly over the grid. Both sampling methods have been
used in different works and a comparison between the two strategies was performed
by van de Sande et al. [38]. Their experimental results showed that dense sampling
outperformed sparse sampling. The BoF approach proposed in this work uses dense
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sampling to extract the patches from a given image and only patches whose area is
more than 50 % inside the lesion are considered.

The second step in BoW document analysis is to represent each word by its stem.
The equivalent for the image analysis case is to represent each patch by a feature
vector xi ∈ R

n . Different features can be used to locally describe the patches. This
chapter focus on two specific kinds of features, color and texture, which will be
addressed in section “Local Features”. N square patches are extracted from each
image I on the dataset. Therefore, a family of local features will be associated with
I as follows

F = {x1, . . . , xN } , xi ∈ R
n . (1)

The last step of both BoW and BoF corresponds to the training process. In the
first, each discriminative word receives an unique label. Very common words, which
occur in most documents, are rejected and do not receive a label. This process can
be seen as the creation of a dictionary of representative words. Then, each document
is analyzed separately and its discriminative words are compared with the ones
from the dictionary. From this comparison will result an histogram of the frequency
of occurrence of the dictionary words within the document. This histogram will
represent the document and will be used to compare different documents and assess
their degree of similarity. Reproducing this histogram representation in the BoF case
requires some extra effort. First, assuming that there is a dataset of L images, this
dataset has associated with it set of all the extracted local features

F =
L

⋃

k=1

F (k). (2)

In practice, the set F has many thousands (or even millions) of feature vectors.
Therefore, in order to obtain a visual dictionary (analogous to the dictionary of
BoW), this set has to be approximated by a collection of prototypes c1, . . . , cK ,

called visual words. The visual words are obtained using a clustering algorithm (in
this work K-means is used). After obtaining a visual dictionary, all feature vectors
in the training set are classified in the nearest visual word and a label

l(k)
i = arg min

j
‖x (k)

i − c j‖, (3)

which identifies a specific visual word, assigned to each feature vector x (k)
i . The final

step is to characterize each image I (k) by a histogram of visual words frequency

h(k)(l) = 1

N (k)

N (k)
∑

i=1

δ(l(k)
i − l), (4)
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Fig. 2 Block diagram of the BoF classification system

where δ(.) denotes the Kronecker delta (δ(x) = 1, if x = 0; δ(x) = 0, otherwise).
As in BoW, this histogram will act as the feature vector that describes the image and
the set of L feature vectors obtained this way will be used to train a classifier.

For each new image I to be classified the process is similar to the one described
previously. The image is sampled and local features are extracted. Then, the local
features are compared with the dictionary of visual words obtained in the training
phase and, finally, the histogram of visual words frequency is computed. The image is
classified using the computed histogram and the classifier learned using the training
set.

All the steps of the BoF strategy described previously are summarized in Fig. 2.
There are several factors that can impact the performance of BoF. Following the

blocks sequence on Fig. 2 these factors are: the size of the regular grid (δ) used in the
patch extraction step, the type and quantity of extracted features, the size of the dic-
tionary (K ), and the classification algorithm used. All these factors are thoroughly
analyzed in this work. Several values for δ and K are tried and three classifica-
tion algorithms with different properties are tested: k-nearest neighbor (kNN) [16],
AdaBoost [17] and support vector machines (SVM) [8, 12].

Local Features

The local dermoscopic criteria used by dermatologists to diagnose skin lesions can
be represented by two different kinds of image features: texture and color features.
Local dermoscopic structures such as pigment network, dots and streaks can be char-
acterized by texture features since these features represent the spatial organization of
intensity in an image, allowing the identification of different shapes. Color features
describe the color distribution, thus they are able to characterize particular pigmented
regions such as blue-whitish veil or regression areas.
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In theory both of these features provide a good description of the extracted patches
(see Fig. 2) and both play an important role in the final classification. One of the main
objectives of this chapter is to determine if the previous hypothesis are correct. This
objective is accomplished by assessing the performance of color and texture features
separately and by combining both of them. Moreover, since both color and texture
features can be extracted using different types of descriptors, a comparison between
some of them is also performed. The several texture and color descriptors tested are
described in the next sections.

Texture Descriptors

Texture features characterize the intensity of an image. Therefore, it is necessary
to convert the original RGB image into a gray level one before extracting texture
descriptors. This is done by selecting the color channel with the highest entropy [41].

Texture descriptors can be divided into several categories depending on the
methodology used. This chapter focus on three different methods: statistical, sig-
nal processing and gradient [33]. In statistical methods, the features are extracted
by computing neighbor pixel statistics. A very well known method for computing
these statistics is the gray level co-occurrence matrix (GLCM) proposed by Haralick
et al. [20]. This matrix stores the relative frequencies of gray level pairs of pixels
at a certain relative displacement and can then be used to compute several statistics
which will be the elements of the feature vector. The results presented in this chapter
are obtained using five of the most common statistics: contrast, correlation, homo-
geneity, energy and entropy. The performance of these features is directly related
with GLCM, since it has been already proved that the performance of a classification
system is influenced by the number of gray levels (G) used as well as the way of
combining the orientations of the nearest neighbors [13]. Therefore, several values of
G and two ways of combining the orientations (average GLCM versus four GLCM)
are tested, according to what is proposed in [13].

Signal processing approaches have in common three sequential steps. First, the
image I (x, y) is convolved with a bank of N filters, with a certain impulse response
hi (x, y), i = 1, . . . , N . Then, an energy measure of the output Ji (x, y) i =
1, . . . , N , is performed

Ei =
∑

x

∑

y

|Ji (x, y)|. (5)

Finally, the energy content is used to computed statistics that are the components of
the feature vector [33]. The two statistics computed in this chapter are the mean μi

and standard deviation σi

μi = Ei

M
, σi =

√

Ei − μi

M
, (6)

where M is the number of pixels (x, y) in Ji .
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Several filter banks can be found on literature [33]. This chapter compares two
of the most well known: Laws [26] and Gabor [4] filter masks. The filter masks
proposed by Laws [26] have been widely used for texture characterization. These
masks can have a dimension 3 × 3 or 5 × 5 and result from convolving two of of the
five possible 1-D kernels. Each 1-D kernel focus on specific textural characteristics
like edges, waves or ripples. In this chapter only three kernels will be used: L , which
computes the average grey Level, E that extracts Edges (describe linear structures,
such as pigment network) and S that extracts Spots (describe circular structures,
such as dots). The 1-D kernel values are the following: L3 = [1 2 1], E3 =
[1 0 − 1], S3 = [1 − 2 1], L5 = [1 4 6 4 1], E5 = [−1 − 2 0 2 1] and
S5 = [−1 0 2 0 −1]. All the possible combinations of 1-D kernels are considered,
thus the filter bank has a dimension N = 9. Since it is not known the dimension of
the masks that leads to the best results, both 3 × 3 and 5 × 5 filter banks are tested.

Gabor filters have been used for texture classification [4] and edge detection [19].
Therefore, they can be used to characterize dermoscopic structures that have a linear
shape (e.g. pigment network or streaks). The impulse response of a Gabor filter is
the following

hi (x, y) = e
x̃2+γ2 ỹ2

2σ2
G cos

(

2π
x̃

λ
+ ϕ

)

, (7)

where γ is an aspect ratio constant. σG is the standard deviation, λ is the wavelength,
ϕ is the phase of the filter and (x̃, ỹ) are obtained from rotating (x, y) as follows [19]

x̃ = x cos θi + y sin θi , ỹ = −x sin θi + y cos θi . (8)

The angle amplitude θi ∈ [0,π] determines the orientation of the filter hi and the
step between two consecutive filters is π

Nθ
, where Nθ is the number of filters in the

filter bank [19]. This descriptor depends on several parameters. In this chapter two
of them are varied: σG ∈ {1, 2, . . . , 5} and Nθ ∈ {2, 3, . . . , 10}. All the others are
kept constant and equal to: γ = 0.5, ϕ = 0 rad and x̃

λ = 0.56 [19].
Gradient features such as gradient histograms have also been successfully used

in several classification problems [14, 28]. In this work, two gradient histograms are
used: amplitude and orientation. The image gradient g(x, y) = [g1(x, y) g2(x, y)]
is computed using Sobel masks. Then, gradient magnitude and orientation are respec-
tively computed as follows

‖ g(x, y) ‖=
√

g1(x, y)2 + g2(x, y)2,φ(x, y) = tan−1
(

g2(x, y)

g1(x, y)

)

. (9)

Finally, the histograms of gradient amplitude and orientation are obtained
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Fig. 3 Texture features for three different 60 × 60 patches: energy content for Laws (5 × 5 masks)
and Gabor (Nθ = 1, 2, . . . , 7 and σG = 1, 2, . . . , 5) filters and histogram of the gradient phase
(Mφ = 25)

ha(i) = 1

N

∑

x

∑

y

bi (‖g(x, y)‖), i = 1, . . . , Ba,

hφ(i) = 1

N

∑

x

∑

y

b̃i (φ(x, y)), i = 1, . . . , Bφ, (10)

where N is the number of pixels inside the patch and Ba, Bφ are the number of bins
of the magnitude and orientation histograms, respectively. Finally, bi (.), b̃i (.) are the
characteristic functions of the i th histogram bin

bi (a) =
{

1 ifabelongs to thei th amplitude bin
0 otherwise

b̃i (φ) =
{

1 ifφbelongs to thei th orientation bin
0 otherwise

. (11)

The parameter varied for both gradient features is the number of bins of the histograms
(Ba ∈ {15, 25, 35, 45} and Bφ ∈ {15, 25, 35, 45}).

Figure 3 shows some of the extracted texture features for three different patches
within the same lesion. The exemplified patches were selected in order to include
a specific dermoscopic structure: pigment network (patch 1), dots (patch 2) and
globules (patch 3). It is clear that the extracted descriptors (Laws, Gabor and hφ) are
different for each patches, which demonstrates that different dermoscopic structures
have different textural properties and, therefore, must be described separately.
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Color Descriptors

Several color descriptors, such as histograms and mean color, have been used in
object and scene recognition problems [39]. The descriptors are usually computed
over one or more color spaces like RGB, HSV/I [49], CIE La*b* and L*uv [49] and
the biologically inspired opponent color space (Opp) [7]. These six color spaces have
different properties, thus they might provide different information for the melanoma
classification problem addressed in this chapter. For this reason the six previous color
spaces are tested.

For each color space a set of three histograms is computed (one for each of the
three color components). For each patch, the histogram associated with the color
channel Ic, c ∈ {1, 2, 3} is given by

hc(i) = 1

N

∑

x,y

bc(Ic(x, y)) i = 1, . . . , Bc, (12)

where N is the number of pixels inside the patch, i is the histogram bin, Bc is the
number of bins and bc(.) is the characteristic function of the i th bin

bc(Ic(x, y)) =
{

1 ifIc(x, y)belongs to thei th color bin
0 otherwise

. (13)

The bins are defined by dividing the color component range into intervals with the
same width. For all histograms, the number of intervals Bc ∈ {15, 25, 35, 45} is a
tested parameter.

Another common color descriptors are color moments [48]. Color moments result
from assuming that the distribution of color in an image can be seen as a probability
distribution. Since probability distributions are usually characterized by a set of
unique moments, they can be used as color features. The general definition of the
1st order color moment for the color channel Ic, c ∈ {1, 2, 3} is the following

M1
c =

∑N
x Ic(x)

N
, (14)

where N is the number of pixels inside the patch. Higher order (p) color moments
are defined by [48]

M p
c =

(∑N
x (Ic(x) − M1

c )p

N

) 1
p

. (15)

The first three order moments are used in this chapter. These moments correspond to:
mean (M1), standard deviation (M2) and skewness (M3). Therefore, each patch will
be represented by a total of nine color moments (three for each color component).



58 C. Barata et al.

Fig. 4 Color histograms (Mc = 25) for three different 60×60 patches: h RG B (green), hH SI (blue),
hL∗uv (red) and hOpp (black)

Figure 4 exemplifies some of the extracted color histograms (RGB, HSI, L*uv and
Opp) for three different patches. Each patch was selected in order to represent a dif-
ferent color section of the lesion: patch 1 was extracted from the brown region, patch
2 was extracted from the brown-white transition region and patch 3 was extracted
from the white region. As in the texture features case, the three feature vectors are
different, thus each color region is characterized differently.

Experimental Results

The proposed method was evaluated with a dataset of 176 dermoscopy images
(25 melanomas and 151 nevi). These images were taken during clinical exams per-
formed at Hospital Pedro Hispano, Matosinhos, with a digital acquisition system that
allows a magnification of 20×. Images are stored in B M P and J P EG formats and
their average resolution is 573 × 765. Each image was classified by an experienced
dermatologist as melanoma or non-melanoma (ground truth label).

The evaluation metrics used are the Sensitivity (SE) and Specificity (S P). These
two measures are combined in a cost function (C)
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C = c10(1 − SE) + c01(1 − S P)

c10 + c01
, (16)

where c10 is the cost of an incorrectly classified melanoma and c01 is the cost of
an incorrectly classified non-melanoma. This cost function represents the trade-off
between SE and S P . In this chapter it is assumed that an incorrect classification
of a melanoma is worse and, therefore, the classification error costs are defined as:
c10 = 1.5c01 and c01 = 1. The selected classifiers are those which achieve the lowest
values of C .

Since the dataset is small, the different possibilities are tested using a stratified
10-fold cross validation method. Both classes were evenly distributed by the ten
folds. To decrease the impact of class unbalance, local features associated with each
melanoma in the different training sets were repeated. Gaussian noise (w ∼ N (0,σ2

n),
with σn = 0.0001) was added to each repeated local features to prevent exact match-
ing between feature vectors on the training set.

BoF depends on several parameters. The local feature extraction process relies on
the size of the patches (δ) while the classification process depends both on the size
of the codebook (K ) and the classification algorithm used. The best δ is searched in
the set {20, 40, . . . , 100} and K in the set {100, 200, 300}. Each one of the tested
classification algorithms depends on several parameters as well. In the kNN case, the
parameters tested are the number of neighbors (k ∈ {5, 7, . . . , 25}) and the distance
d used to compare the feature vectors. For two vectors x and y these distances are
computed as follows

• Euclidean
d(x, y) = ‖x − y‖ (17)

• Histogram Intersection

d(x, y) =
∑

i

min(xi , yi ) (18)

• Kullback-Leibler

d(x, y) =
∑

i

log

(
yi

xi

)

yi (19)

For AdaBoost, the parameter tested is the number of weak classifiers (W ∈ [2, 300]).
SVM is tested using the BoF default kernel χ2, defined for two vectors x and y as

K ernelχ2 = e−ρdχ2 (x,y) (20)

where width parameter ρ is searched in the set {2−9, 2−8, . . . , 28, 29} and

dχ2(x, y) =
∑

i

(xi − yi )
2

xi + yi
(21)
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Fig. 5 Best cost results (x
axis) for single features using
kNN (blue circle), AdaBoost
(red triangle) and SVM (green
square)

The optimal parameters and results are computed using a total of more than 4,90,000
possible combinations.

Single Features Comparison for the Best Configuration
of Classifiers

Figure 5 shows the cost results obtained for the different local features and classi-
fiers. These results show that good classification scores can be achieved using single
features (e.g., C = 0.094 for MOpp, C = 0.099 for hL∗uv and C = 0.104 for
hLa∗b∗).

For texture features, the two best descriptors are the signal processing ones. Both
Laws and Gabor texture descriptors achieve promising results: C = 0.155 for Gabor
and C = 0.166 for Laws. GLCM and gradient features achieve worse results, which
suggests that filter descriptors provide more discriminative information regarding
local dermoscopic features.

Color space histograms outperform the corresponding color moments for kNN and
AdaBoost classifiers. In the case of SVM, color moments perform much better than
their corresponding histograms and the best single descriptor classification result
is achieved in this case: MOpp, C = 0.094, that corresponds to SE = 94 % and
S P = 88 %. The best results achieved with color features outperform those obtained
with texture features, which suggest that the former are more discriminative.

Table 1 shows the performance measures and the best configurations for some
of the best texture and color features. Good results are achieved both with kNN
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Table 1 Classification results and configurations for best texture and color features

Features SE (%) SP (%) C Feature para-
meters

Classifier parameters

Laws 100 61 0.155 δ = 40 5 ×5 K = 100, SVM: ρ = 2−5

Gabor 98 64 0.155 δ = 80, σG =
4 Nθ = 5

K = 100, kNN: k = 19,
Histogram intersection

hL∗uv 100 75 0.099 δ = 80,
Bc = 15

K = 300, kNN: k = 13,
Kullback-Leibler

hLa∗b∗ 93 85 0.104 δ = 80,
Bc = 25

K = 300, kNN: k = 19,
Kullback-Leibler

MOpp 93 88 0.094 δ = 40 K = 100, SVM: ρ = 2−4

and SVM and, for some features, both classifiers lead to very similar results (see
Fig. 5). However, kNN appears to achieve the best overall results. It is interesting
to notice that for Gabor, hL∗uv and hLa∗b∗ the best comparative distance are the
statistical ones: Kullback-Leibler or Histogram Intersection. This occurrence is also
noted for the other tested features and can be explained by the fact that the actual
features provided for training and classification are the histograms of visual words
frequencies, i.e., distributions.

Fusion of Color and Texture Features

Combining different descriptors of the same class may improve the results. To test
this hypothesis the two best texture descriptors (Gabor and Laws) and the two types
of color descriptors (moments and histograms) were combined. The fusion strategy
used is early fusion where the feature vectors are concatenated into a single one [43].
Figure 6 shows the results achieved for each pair of descriptors using kNN and SVM
(similar performance is achieved with AdaBoost). The results for the pairs color
moments/histograms are identified with the respective color space, whilst the pair
Gabor/Laws is labeled T ex . Finally, the performance achieved with each descriptor
of the pair is also represented in the graphics (red asterisks). These results show that
the fusion of descriptors can either improve the overall results (more evident on the
SVM case) or improve the results when compared with the worst descriptor of the
pair. Moreover, the fusion of descriptors approximate the results achieved with color
and texture descriptors by significantly improving the last ones.

Table 2 shows the best results achieved for each pair as well as the configurations
that led to those results. It is interesting to notice that the best global results are
achieved with RGB despite the drawbacks of this color space. Nonetheless, this
result is worse than the one achieved with the best single descriptor (see Table 1).

Combining different classes of descriptors is an usual approach in BoF and other
pattern recognition methods. In this chapter, the best color and texture descrip-
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Fig. 6 Early fusion cost
results (x axis) for kNN
(top) and SVM (bottom).
The performance of each
descriptor of the pair is also
shown (red asterisk)

tors were combined. Due to the different properties of the feature sets and to the
large dimension of the feature vector that would result from an early fusion, a late
fusion strategy was applied in this case [43]. In this method, the final decision is
made by combining the outputs of different classifiers (in this case one classifier for
color and other for texture descriptors). The SVM classifier trained using the MOpp

(see Table 1) descriptor was combined with two classifiers that achieved similar clas-
sification results: kNN (C = 0.145) and SVM (C = 0.135), both trained using the
early fusion of Laws and Gabor descriptors (see Fig. 6). Late fusion strategies use
the posteriori probability of each class and one of several possible rules [24] to make
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Table 2 Classification results and configurations for descriptors fusions

Fusion SE (%) SP (%) C Feature
parameters

Classifier parameters

T ex 91 79 0.135 δ = 40, 5 × 5 K = 100, SVM: ρ = 2−3

σG = 1 Nθ = 5
Opp 96 77 0.121 δ = 20, Bc = 25 K = 100, kNN: k = 15,

Histogram intersection
L∗uv 93 75 0.141 δ = 20, Bc = 15 K = 200, kNN: k = 9,

Kullback-Leibler
H SI 100 67 0.131 δ = 60, Bc = 25 K = 300, kNN: k = 23,

Histogram intersection
La∗b∗ 89 86 0.124 δ = 80, Bc = 25 K = 100, SVM: ρ = 2−3

H SV 98 73 0.121 δ = 60, Bc = 45 K = 300, kNN: k = 11,
Histogram intersection

RG B 100 75 0.099 δ = 80, Bc = 45 K = 200, kNN: k = 15,
Histogram intersection

the final decision. For SVM, the probabilities are computed using the Platt’s method
[32] while for kNN, the posterior probabilities are computed as follows:

P(w|x) = kw

k
, (22)

where w represents the class that can be either 0 or 1, x is a pattern to be classified
and kw is the number of patterns amongst the total number of neighbors k that belong
to class w. The combination is computed using the Sum-Rule [24].

The best fusion result was achieved using the kNN classifier trained with texture
descriptors combined with the MOpp: C = 0.097, SE = 96 %, SP = 82 %. Since
the color descriptor performs much better than the texture descriptors (Gabor and
Laws), it is understandable that the performance of the fusion is slightly inferior to
the color descriptor alone.

Visual Words Analysis

The analysis of the identified visual words can provide important information regard-
ing the most distinctive dermoscopic structures. Therefore, a simple study of the
visual words that lead to the best results is performed in this chapter.

This study is done using the information of local color features MOpp, using
the best configuration for these features (see Table 1). The average visual words
histograms for melanomas and non-melanomas were computed using all the his-
tograms of the dataset. Figure 7 shows the obtained average histograms. These two
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Fig. 7 Average visual words histograms for melanoma (red) and non-melanoma (green), obtained
using the local color features MOpp . Most frequent visual word is highlighted (blue)

Fig. 8 Example of the most selected color visual word in melanomas: melanomas (left); 9th bin
visual word (mid); visual words histograms, with the 9th bin visual word highlighted (right)
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Fig. 9 Example of the most selected color visual word in non-melanomas: non-melanomas (left);
98th bin visual word (mid); visual words histograms, with the 98th bin visual word highlighted
(right)

histograms are significantly different and it is interesting to notice that there are some
visual words which are more common than others.

The next step is to select the most frequent visual word for melanomas (see
Fig. 6, highlighted 9th bin) and assess the patches associated with this word. Figure 8
shows three melanomas from the dataset, the patches associated with the visual
word and the corresponding histograms. Although each lesion is described by a
different histogram, the same visual word (9th bin) is present in all of them and
is one of the most frequent. The detected patches are extracted from a blue-gray
region (blue-whitish veil), which is one of the atypical pigmentations associated
with melanoma [3].

A similar analysis can be performed using the most frequent visual word of non-
melanomas (see Fig. 7). As before, the patches identified as being this specific visual
word were extracted from examples of benign lesions (see Fig. 9). This visual word
corresponds to a healthy light brown region in all the exemplified lesions. Moreover,
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this visual word is associated with a considerable number of patches, which suggests
that these lesions have a more or less uniform pigmentation. Experts usually associate
these two evidences (light brown and uniform pigmentation) with benign lesions
[3]. It is interesting to notice that, as in the previous analysis, the observations are
consistent with the medical knowledge.

The visual words analysis performed is simple. However, the results are inter-
esting and in accordance to what is expected to observe in both melanoma and
non-melanoma lesions. This suggests that BoF can be used to classify melanomas
and to identify specific dermoscopic features and patterns [3] by associating them to
visual words. Future work should focus on this task, which can be seen as a multiple
object recognition problem.

Conclusions

This chapter investigates the applicability of local color and texture features to the
melanoma classification problem. Several factors associated with the performance of
BoF were tested, namely the type of descriptors used and the classification algorithm.

The results show that individually color descriptors perform better than texture
descriptors and that good classification results can be achieved using kNN (SE =
93 %, SP = 85 % with hLa∗b∗ and SE = 100 %, SP = 75 % with hL∗uv) and SVM
(SE = 93 %, SP = 88 % with MOpp). The fusion of color and texture descriptors also
achieved good results, with a score of SE = 96 %, SP = 82 % for the combination
of Opp moments with Gabor and Laws texture descriptors.

A simple analysis of the visual words showed that the dictionary obtained using
BoF has potential to be used as a detector/identifier for specific dermoscopic features
and patterns. Future work will rely on testing this hypothesis in order to develop a
more medical oriented system. Moreover, sparse sampling methods should be tested
in order to compare their performances with that of the dense sampling used in this
chapter. Finally, high-level descriptors should be tested as well.
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Automatic Diagnosis of Melanoma Based
on the 7-Point Checklist

Gabriella Fabbrocini, Valerio De Vita, Sara Cacciapuoti,
Giuseppe Di Leo, Consolatina Liguori, Alfredo Paolillo,
Antonio Pietrosanto and Paolo Sommella

Abstract An image based system implementing a well-known diagnostic method
is disclosed for the automatic detection of melanomas as support to clinicians. The
software procedure is able to recognize automatically the skin lesion within the dig-
ital image, measure morphological and chromatic parameters, carry out a suitable
classification for detecting the dermoscopic structures provided by the 7-Point Check-
list. Advanced techniques are introduced at different stages of the image processing
pipeline, including the border detection, the extraction of low-level features and
scoring of high order features.

Keywords Melanoma · Pigmented lesions · Dermoscopy · Image analysis · Semi-
automatic diagnosis

Introduction

Malignant melanoma is currently one of the leading cancers among many fair skinned
populations around the world. Change of recreational behavior together with the
increase in ultraviolet radiation have caused dramatic increase in the number of
melanomas diagnosed [1–3].

Currently, the possibility to increase the accuracy of diagnosis of melanoma is
one of the most important tools to reduce the mortality rate of this tumor. The aim
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of prevention campaigns is to increase public awareness of early warning signs. The
possibility of new diagnostic methodologies and algorithms can contribute to per-
form an earlier diagnosis and to reduce the metastatic risk. Investigations have shown
that the curability rate of thin melanomas (<1 mm) is between 91.8 and 98.1 % [4].
Epiluminescence microscopy (ELM) is an in vivo, non invasive technique that has
disclosed a new dimension of the clinical morphologic features of pigmented skin
lesions, using various incident light magnification systems with an oil immersion
technique [2, 3]. Results of previous studies demonstrated that ELM improves accu-
racy in diagnosing pigmented skin lesions from 10 to 27 % when compared to clinical
diagnosis by the naked eye [5].

Three diagnostic models with similar reliability have become more widely
accepted by clinicians: 1. pattern analysis, which is based on the “expert” qualitative
assessment of numerous individual ELM criteria; 2. the ABCD-rule of dermoscopy
which is based on a semi-quantitative analysis of the following criteria: asymmetry
(A), border (B), color (C) and different dermoscopic (D) structures; 3. the ELM
7-Point Checklist scoring diagnosis analysis, proposed by Argenziano et al. defining
seven standard ELM criteria: Atypical pigment network, Blue-whitish veil, Atypical
vascular pattern, Irregular streaks, Irregular pigmentation, Irregular dots/globules,
Regression structures. The ELM 7-Point Checklist provides a simplification of stan-
dard pattern analysis and, if compared to ABCD, allows less experienced observers
to achieve higher diagnostic accuracy values [6].

The 7-Point Checklist

The 7-point checklist is a diagnostic method that requires the identification of only 7
dermoscopic criteria to help clinicians to use dermoscopy. This simplified algorithm
has been shown to be reproducible with non-expert dermatologists, who were able
to classify a high percentage of melanomas [6].

In the original paper on the 7-point checklist, dermoscopic images of melanocytic
skin lesions were studied to evaluate the incidence of 7 standard criteria. These
features were selected for their frequent association with melanoma.

The 7 standard criteria are briefly defined in Table 1 along with the corresponding
histological correlates and the scoring system (the 3 major criteria have a score of 2
points and the 4 minor criteria a score of 1 point). The differences between melanomas
and nevi were evaluated by a univariate statistical test and the significant variables
were used for stepwise logistic regression analysis to determine their diagnostic
weights in the diagnosis of melanoma, as expressed by odds ratios. Using the odds
ratios calculated with multivariate analysis, a score of 2 was given to the 3 criteria
with odds ratios >5, termed “major” criteria, and a score of 1 to the 4 criteria with
odds ratios <5, termed “minor” criteria. The total score for the lesion is obtained
by simple addition of the individual scores for each detected criterion. In order to
diagnose a melanoma, the identification of at least 2 melanoma-specific dermoscopic
criteria is required, i.e. a minimum total score of 3 (1 major plus 1 minor or 3 minor
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Table 1 Dermoscopic criteria and scores according to the 7 point checklist method

ELM criterion Definition Score

Atypical pigment network Prominent (hyper-pigmented and broad)
network with irregular shape or
distribution

2

Blue-whitish veil Irregular, confluent, gray-blue to whitish
blue pigmentation not associated with
red-blue lacunes or maple leaf
pigmentation

2

Atypical vascular pattern Linear, dotted or globular red structures
irregularly distributed outside areas of
regression

2

Irregular streaks Radially and asymmetrically arranged
linear or extensions at the edge of the
lesion

1

Irregular pigmentation Brown, gray and black areas of diffuse
pigmentation with irregular shape or
disruption and abrupt end

1

Irregular dots/globules Black, brown or blue round structures
irregularly distributed within the lesion

1

Regression structures White areas, peppering, multiple
blue-gray dots associated

1

Fig. 1 Application of the 7-point checklist to the digital ELM image of a pigmented skin lesion:
blue-whitish veil (score 2) + atypical pigment network (score 2) + irregular pigmentation (score 1)
+ irregular dots/globules (score 1) = total score 6. In order to diagnose a melanoma, the identification
of at least 2 melanoma-specific dermoscopic criteria is required: in fact, a minimum total score of
3 is required (1 major plus 1 minor or 3 minor criteria). Histology confirmed the diagnosis of
melanoma. Source of this figure: www.dermoscopy.org

criteria). Figure 1 shows a diagnosis example where different structures are present
and scores corresponding to melanomas are computed.

Like most other diagnostic algorithms, the 7-point checklist was developed and
validated retrospectively on a set of 342 dermoscopic images of histologically proven

www.dermoscopy.org
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melanocytic skin lesions (the sensitivity and specificity of melanoma detection were
95 and 75 %, respectively). Argenziano et al. showed that the ELM 7-point checklist,
in the hands of experienced observers, gave the greatest sensitivity value (95 %),
especially in the subgroup of early cutaneous melanoma. Compared with overall
ELM diagnosis, the specificity was lower (75 vs. 90 %) because of the tendency to
overclassify melanocytic nevi (especially the atypical types) as melanomas with the
scoring diagnostic systems. A decrease in specificity may result in some increase in
biopsy examinations of benign lesions, but the increase in sensitivity would decrease
the chances of missing melanomas. The authors designed a model that requires the
identification of only 7 standard ELM criteria, thus enabling even the less experi-
enced clinician to use the method. In fact, this simplified scored pattern analysis
was shown to be reproducible not only with a test set performed by experts but also
by less experienced dermatologists, who were able to classify a high percentage of
melanomas (85–93 %). The lower specificity values (45–48 %) obtained by the less
experienced observers could be explained by the fact that most of the non-melanomas
used to determine specificity were clinically atypical (leading to the decision to per-
form a biopsy); thus, they require more experience to perform correct assessments.
However, use of the model would have avoided the excision of almost half of those
lesions. For a cutaneous melanoma to be diagnosed, identification of at least 1 major
and 1 minor ELM criterion (or 3 minor criteria) was required. This confirmed the
previously reported rule that a single criterion usually does not suffice to make a
diagnosis [6].

More recently, Haenssle et al. have assessed the sensitivity, specificity, and diag-
nostic accuracy of the 7-Point Checklist in the setting of a prospective long-term
study. They have screened patients at increased melanoma risk at regular intervals by
naked-eye examination, the dermoscopic 7-point checklist, and digital dermoscopy
follow-up (10-year study interval). They have detected 127 melanomas including 50
melanomas in situ. The mean Breslow thickness of invasive melanomas has been 0.57
mm. A total of 79 melanomas were detected using the 7-point checklist melanoma
threshold of 3 or more points (62 % sensitivity, compared with 78–95 % in retro-
spective settings). In all, 48 melanomas have scored fewer than 3 points and have
been excised because of complementary information (e.g., lesional history, dynamic
changes detected by digital dermoscopy). The specificity of the 7-point checklist
has been 97 % (compared with 65–87 % in retrospective settings). Regression pat-
terns, atypical vascular patterns, and radial streaming have been associated with
the highest relative risk for melanoma (odds ratio 3.26, 95 % confidence interval
2.05–5.16; odds ratio 3.04, 95 % confidence interval 1.70–5.46; odds ratio 2.91, 95 %
confidence interval 1.64–5.15; P < 0.0003, respectively). Melanomas thicker than
0.5 mm have exhibited significantly more regression patterns and atypical vascular
patterns (P < 0.02). The malignant versus benign ratio for all excised lesions has
been 1:8.6 (127 melanomas, 1092 non-melanomas). As a consequence, the 7-point
checklist has appeared less sensitive but highly specific in this prospective clini-
cal setting. Complementary information has clearly increased sensitivity. Thus, the
authors have suggested that regression patterns or radial streaming in nevi of patients
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at high risk should raise a higher melanoma suspicion than might be concluded from
retrospective studies [7].

Further studies have proposed the use of simplified diagnostic algorithms, such as
3-point. Firstly Soyer et al. have evaluated the diagnostic performance of non-experts
using a new 3-point checklist based on a simplified dermoscopic pattern analysis.
Clinical and dermoscopic images of 231 clinically equivocal and histopathologi-
cally proven pigmented skin lesions were examined by 6 non-experts and 1 expert in
dermoscopy. For each lesion the non-experts assessed 3 dermoscopic criteria (asym-
metry, atypical network and blue-whitish veil) constituting the 3-point method. In
addition, all examiners made an overall diagnosis by using standard pattern analysis
of dermoscopy. Asymmetry, atypical network and blue-white structures were shown
to be reproducible dermoscopic criteria, with a kappa value ranging from 0.52 to 0.55.
When making the overall diagnosis, the expert had 89.6 % sensitivity for malignant
lesions (tested on 68 melanomas and 9 pigmented basal cell carcinomas), compared
to 69.7 % sensitivity achieved by the non-experts. Remarkably, the sensitivity of
the non-experts using the 3-point checklist reached 96.3 %. The specificity of the
expert using overall diagnosis was 94.2 % compared to 82.8 and 32.8 % achieved
by the non-experts using overall diagnosis and 3-point checklist, respectively. These
data showed that the 3-point checklist can be considered a valid and reproducible
dermoscopic algorithm with high sensitivity for the diagnosis of melanoma in the
hands of non-experts. Thus, the authors suggested that the 3-point checklist might be
applied as a screening procedure for the early detection of melanoma [8]. Afterwards,
Zalaudek et al. revaluated these preliminary results in a large number of observers
independently from their expertise in dermoscopy. The three-point checklist showed
good interobserver reproducibility (kappa value: 0.53). Sensitivity for skin cancer
(melanoma and basal cell carcinoma) was 91.0 % and this value remained basically
uninfluenced by the observers’ professional profile. These results confirmed that the
three-point checklist was a feasible, simple, accurate and reproducible skin cancer
screening tool [9].

In 2010, Gerely et al. compared the sensitivity, specificity, and diagnostic accu-
racy of the seven-point and three-point checklist methods in the diagnosis of clin-
ically atypical pigmented skin lesions and melanoma. The sensitivity, specificity,
and positive and negative predictive values of the seven-point checklist method were
87.50, 16.17, 51.22, and 57.14 %, respectively. The sensitivity, specificity, and pos-
itive and negative predictive values of the three-point checklist method were 89.58,
31.25, 56.58, and 75 %, respectively. Thus, this study highlighted that the three-point
checklist was observed to be a superior screening test. The seven-point checklist pro-
vided a more detailed analysis, especially for thin melanomas. In comparison with
the seven-point method, the three-point method may be useful for less experienced
observers when they need to obtain greater diagnostic accuracy [10].

However, it has been demonstrated that the 7-point checklist and the other above-
cited diagnostic algorithms have actually a lower diagnostic accuracy if they are
performed by inexperienced dermatologists [11]. Dermoscopy requires high training
to optimize diagnosis of pigmented skin lesions. Indeed, Binder et al. demonstrated
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that ELM pattern analysis increases the quality of diagnostic performance of ELM
experts but decreases the performance of clinicians not specially trained in ELM [12].

To avoid these problems, to enhance the reproducibility of clinical diagnosis and
to help clinicians with poor dermoscopic experience, computer-assisted analysis
of dermoscopic images has been investigated. Computer-aided diagnosis can help
clinicians in the diagnosis of skin lesions. The aim of these systems is to increase
the specificity and the sensitivity in melanoma recognition and reduce unneces-
sary biopsies. Most of these automated systems are based on the afore-mentioned
melanoma diagnosis methods. In general, image processing techniques are used to
locate the lesions, extract image parameters describing the dermatological features
of the lesions, and, based on these parameters, perform the diagnosis. Their potential
benefits are very promising, but there are considerable difficulties involved in their
development and their use in clinical practice. It has been widely stated that their
accuracy can achieve the same range as dermoscopic diagnosis performed by experts
or even that they can obtain better accuracy [13]. Computer-aided diagnosis, based
on mathematical analysis of pigmented skin lesions, can be a tool to transform a qual-
itative evaluation into a quantitative one and to increase sensitivity of dermatologists
with low dermoscopic experience. Suggest clinicians step by step the dermoscopic
criteria arising from observation can mean to implement the dermoscopy use without
reduce its diagnostic accuracy.

Automatic Diagnostic Systems

As previously introduced, there has been much research aimed at obtaining an
improved and consistent differentiation between benign and malignant melanocytic
skin lesions by means of digital dermoscopy analysis. Computerized dermoscopy
image analysis, in fact, adds a quantitative evaluation to the “clinical eye observa-
tion” and can be used to improve biopsy decision-making [14].

Therefore, different groups have been developing diagnostic systems of recorded
images (slides or digital cameras) techniques to assist clinicians in differentiating
early melanoma from benign skin lesions [15].

For example, in [16] an automated melanoma recognition system is proposed
taking into account 21 parameters extracted from images.

Schmid [17] proposed a color based segmentation scheme without extracting
features, whereas a new procedure based on the Catmull-Rom spline method and the
computation of the gray-level gradient of points extracted by interpolation of normal
direction on spline points was employed in [18].

A computer algorithm for the diagnosis of melanocytic lesions based on the eval-
uation of 64 different analytical parameters is described in [19], whereas a software
module which automatically evaluates the outline of a lesion providing 50 objec-
tive parameters subdivided into three categories (geometries, texture and coloured
islands) is developed in [14].
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Very interesting summaries of the main researches about the digital dermoscopy
(in terms of acquisition, calibration, image datasets and processing methods) are
reported in [20, 21]. As a results of these surveys, high accuracy may be achieved
by computer aided diagnostic systems employing statistics obtained from low-level
features and parameters. Nevertheless, it is not likely that the digital system will
completely substitute the expert in dermoscopy.

The Proposed Framework

According to the author’s opinion, the automated system should be in fact integrated
by higher level features based on a particular diagnostic scheme in order to gain
greater clinical acceptance.

More precisely, the software diagnostic system should be able to reproduce the
expertise of a well-trained dermatologist and support the clinician in his/her visual
inspection and diagnosis according to well-known dermoscopic methods. In detail,
three different diagnostic models have become more widely accepted by clinicians
for the interpretation of the features inspected by dermoscopy.

Starting from the previous considerations, the authors have tackled the problem
of defining suitable image processing algorithms for the automatic implementation
of the 7-Point Checklist.

A preliminary study about the image processing techniques for the extraction of
the pigmented lesion (from healthy skin) and the detection of chromatic features was
reported in [22].

Further studies [23, 24] have led to the introduction of a software framework [25]
for the automatic detection of dermoscopic criteria. Following the example of the
Computer Aided System architecture proposed for digital ELM images by Schmid
[26] and the methodological approach to the classification suggested in [27], the
software framework includes all the processing algorithms derived from the clinical
knowledge gained by expert dermatologists (well-trained in the 7-Point Checklist
application).

In [28] a statistical approach is introduced for the automatic detection of a minor
criterion (Irregular dots/globules).

The present chapter reviews the main image processing techniques adopted to
provide and improve the diagnostic capability of the automatic tool which implements
the 7-Point Check-List. Basic software tasks such as feature identification and high-
level classification are deeply investigated with respect to multiple dermoscopic
structures. Finally, the experimental results are extended to a large set of pigmented
lesion and a comparison among the different techniques is also carried out.
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Fig. 2 Scheme of the software framework for the automatic diagnosis of ELM images

Methods

According to the scheme reported in Fig. 2, the software procedure developed for
the automatic analysis and diagnosis of dermoscopic images is organized into three
main detection stages.

After a preliminary processing stage designed to remove hair and/or artifacts,
the Boundary Detection (I) allows the pigmented lesion to be extracted from the
surrounding healthy skin. Then, the Low-Level Structure Detection (II) aims to iden-
tify and measure the main morphological and chromatic features throughout the
lesion. Finally, at Dermoscopic Structure Detection (III), the feature classification
and analysis are performed in order to detect each ELM criterion (high-level struc-
ture) provided by the 7-Point Checklist.

In the following subsections, for each stage of the automated procedure the
remarkable literature is reviewed as well as the authors’ novel approach is detailed
in terms of advanced statistical techniques.
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Pre-processing

Lesion segmentation in the presence of hair is usually doomed to failure. Because
shaving the lesion area before the acquisition often interferes with the clinical prac-
tice, a computer-aided system for the analysis of dermoscopic images should always
include an automated hair removal algorithm.

A well known hair removal algorithm was proposed in [29]: it identifies the
image segments that approximate the structure of the hair, and then the regions that
contain these segments are interpolated using the information of the surrounding pix-
els.
A similar approach is proposed by Schmid in [30], concerned with uniform color
spaces, such as L*u*v* (the main advantage is that color difference can be mea-
sured and used for comparisons between pixels or distance measures in the spectral
domain). According to the latter approach the morphological closing operator with
a spherical structuring element is applied to the luminance component L*, then
the threshold operation is carried on the difference with the original image. More
sophisticated techniques [31, 32] have also been introduced using image inpainting.
Nevertheless, similar results are achievable. Thus, the algorithm disclosed in [30]
has been preferred as preliminary stage in the proposed framework.

Boundary Detection

Boundary detection is a critical problem in ELM images because the transition
between the lesion and the surrounding skin is smooth and hard to detect accurately,
even for a trained dermatologist. Consequently, different approaches [33] have been
developed for automatic detection of lesion border in both clinical and dermoscopy
images.

Many studies have introduced techniques based on color clustering [17, 34–36].
For example, in [17] the first two principal components of the CIE L*u*v* color space
are adopted to determine a 2D histogram. Then, initial cluster centers are calculated
from the peaks using a perceptron classifier and, finally, the lesion image is seg-
mented using a modified version of the fuzzy c-means (FCM) clustering algorithm.
Other color clustering algorithms provide for median cut, k-means, FCM and mean-
shift [37]. Further approaches investigating on digital lesion images include snakes
methods based on gradient vector flow [38, 39], improved region-based active con-
tour algorithms [40], morphological flooding [30] and optimized JESG segmentation
[41]. Finally, the Histogram Thresholding represents a widely-adopted strategy, upon
which the latest investigations have been focused by introducing color channel opti-
mization, hybrid (i.e. combined global and local) thresholding [42], and/or fusion
within Markov Random Field framework [43].

A very interesting comparison of the main proposed approaches is reported in
[44], where a new algorithm based on Statistical Region Merging (SRM) is also



80 G. Fabbrocini et al.

introduced. As results of this survey, two approached emerged as the most effective
methods: SRM and DTEA (Dermatologist-like Tumor Extraction Algorithm, [45]).

The Statistical Region Merging is a recent technique [46] belonging to the region
growing and merging group. The method models segmentation as an inference prob-
lem, in which the image is treated as an observed instance I of an unknown theoret-
ical image I*, whose statistical (true) regions are to be determined. This method is
typically adopted for its simplicity, computational efficiency, and excellent perfor-
mance without the use of quantization or color space transformations. Specifically,
each pixel of the true image I* can be modeled as a set of Q independent random
variables whereas the statistical regions represent theoretical objects sharing a com-
mon homogeneity property:

– inside any statistical region the pixels have the same expectation for each color
channel (for example Red, Green and Blue);

– the expectation of adjacent regions are different for at least one color channel.

Given the homogeneity property the ideal segmentation of the observed image
I relies on the frontiers between the statistical regions which are connecting pixels
with differences in their color expectation. Figure 3 depicts an example of color seg-
mentation for the ELM image performed through the SRM: each region is displayed
according to its mean RGB values (averaged on pixels constituting the region). The
parameter Q allows to quantify the statistical complexity of I*, the generality of the
model and finally control the coarseness of the segmentation.

Thus, the lesion map resulting from SRM segmentation can be further investigated
in order to detect the inner regions constituting the pigmented lesion to be contoured.
According to the method suggested in [44], the background skin color is estimated as
mean R, G and B colors of the pixels belonging to four patches (20×20 sized) from the
corners of the image. Post-processing provides for the deletion of light-colored and
bounding regions (including the regions whose mean color has an Euclidean distance
less than 60 to the background skin color, the regions that touch the image frame
and those with rectangular borders). The initial border detection result is obtained
by removing the isolated regions and then merging the remaining regions. Finally
a morphological dilation with a circular structuring element is applied to obtain the
automatic border.

The DTEA algorithm is based on thresholding followed by iterative region grow-
ing. Following the same approach, the authors suggested in [25] a novel lesion border
detection. The developed algorithm, referred to as Adaptive Thresholding, consists
of three steps:

i. color to monochrome image conversion;
ii. image binarization using an adaptive threshold;

iii. border identification, based on a blob-finding algorithm.

In the first step, 3 different monochrome images are obtained from the source
image (RGB standard color) corresponding to the red, green and blue planes. For each
component (see Fig. 4a), two modes (classes) are typically evident in the pixel inten-
sity histogram (as depicted in Fig. 4b) corresponding respectively to the pigmented
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lesion (the image foreground) and the surrounding skin (the image background).
Then, the algorithm introduced by Otsu [47] is adopted to select the optimum thresh-
old S* for each histogram, thus allowing the image background and foreground to
be detected. The adaptive algorithm aims to minimize the intra-class variance σW :

σ 2
W (S) = P0(S)σ 2

0(S) + P1(S)σ 2
1(S) (1)

defined as a weighted sum of variances σi of the two intensity classes Ci resulting
from the S threshold:

P0(S) =
S

∑

k=1

fk

N
P1(S) =

L
∑

k=S+1

fk

N
(2)

Fig. 3 Segmentation using statistical region merging: a ELM image; b results for Q = 32; c results
for Q = 64; d results for Q = 256
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where Pi is the probability distribution, N is the number of the image pixels, L is the
number of histogram bins and fk the number of pixels associated with k intensity
value.

Otsu shows that minimizing the intra-class variance is the same as maximizing
the between-class variance σB :

σ 2
B(S) = σ 2 − σ 2

W (S) = P0(S)P1(S)[μ0(S) − μ1(S)]2 (3)

which is expressed in terms of class probabilities Pi and class means μi (with
i = 0, 1).

The adoption of the Otsu’s method to RGB color image leads to three histograms
and potentially different thresholds values. Since the proposed approach has been

Fig. 4 Example of boundary detection: a image conversion (Red, Green, Blue planes); b intensity
histogram; c binary mask; d lesion contour
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experimentally revealed to be more sensitive to surrounding skin (the image back-
ground), the largest binary mask (the image foreground) is considered for next
processing. An example of result is shown in Fig. 4c.

Finally, a simple blob-finding algorithm is adopted to extract the contour of the
lesion from the binary mask. According to the modified version of Moore’s Neigh-
bor Contour Tracing proposed in [48], the tracking algorithm collects and sorts the
contour lines (single pixel width) of the binary mask into an ordered list (the adopted
algorithm also reveals to be computationally efficient by deleting the stopping crite-
rion concerned with the start pixel). At this point, the border is superimposed on the
color ELM image and displayed for visual inspection to the diagnostician (Fig. 4d).

Low Level Structure Detection

The dermoscopic criteria as defined by 7-Point Checklist Method are characterized
both by chromatic and morphological low level structures (features). Thus, once the
lesion is localized, feature extraction is performed by adopting suitable statistical
techniques, which may be grouped into the following macro-categories:

• color segmentation
• texture analysis

Color Segmentation

Starting from the source image and the binary mask, the color segmentation stage
is carried out with the aim of splitting the internal area into multiple chromatically
homogenous regions (the lesion map).

To this aim, the SRM algorithm previously introduced may be adopted, by regu-
lating the coarseness through a suitable choice of the Q parameter.

An alternative approach, proposed in [49] and investigated by the authors for der-
moscopic images in [25], is represented by the Multi-Thresholding of the color image.
In particular the following steps are proposed: (i) Principal Component Analysis
(PCA); (ii) 2D histogram construction; (iii) peaks picking algorithm; (iv) histogram
partitioning; (v) lesion partitioning.

(i) The Principal Component Analysis (also known as the discrete Karhunen-
Loeve Transform or Hotelling Transform [50]) is a technique for reducing the dataset
dimensionality while retaining those characteristics that contribute most to dataset
variance. As for the application of the Principal Component Analysis to the ELM
image, the RGB components of the pixels corresponding to lesion area (selected
trough the binary mask obtained as final result of image segmentation) constitute
the starting dataset (belonging to a state space with dimension N = 3). A new 3D
representation of the lesion pixels can be obtained from the Hotelling Transform
equation. An example is reported in Fig. 5a–c: the decreasing variability in each
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Fig. 5 Color segmentation based on Multi-thresholding: a 1st principal component; b 2nd principal
component; c 3rd principal component; d joint histogram of the first 2 principle components;
e down-sampled 2-D histogram; f result of peak-picking method; g partitioned 2-D histogram;
h ELM image and lesion contour; i lesion map
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individual band as long as the order of the principal component increases can be noted
easily (for more evidence, PCA is related to all image pixels taking into account also
the surrounding skin).

(ii) Since the low order components preserve sufficient information in order to
obtain reliable information (Fig. 5a, b) whereas the third component contains most
of the image noise (Fig. 5c), a joint histogram is created from the first 2 principle
components (referring to which the multithresholding has to be carried out). An
example of 2-D histogram is depicted in Fig. 5d. Because the estimated histograms
are, in general, noisy due to the scarcity of data, it is advantageous to smooth and
down-sample the histograms to eliminate noise effects. In particular the original
histogram is reduced from size 256 × 256 to size 64 × 64 (see Fig. 5e).

(iii) The multithresholding is carried out by finding peaks in the 2-D histogram
with significant mass around them. It is expected that these peaks will correspond
to the cluster centroids in 2-D space and consequently will be well-representative of
corresponding color regions (or segments) in the starting image. The knowledge of
the number of segments is implicit in the peak search, and so is the maximum number
K of peaks which have to be determined in the 2-D histogram. In our application
the algorithm of Koonty [51] has been considered as peaks-picking method. As an
example, in Fig. 5f the result of the peaks-picking algorithm is depicted with reference
to the 2-D histogram shown in Fig. 5e when K equal to 10 is selected as maximum
number of different color regions.

(iv) Once the peaks are identified, each corresponding hopefully to a segment,
the other (non-peaks) histogram bins are attributed to the nearest dominant peak,
constituting effectively their domains. Thus, a 2-D histogram is partitioned using
its peak bins and an assignment rule (gravity force) which takes into account the
strength (height) of the peak and the distance from the pick to the histogram bin under
consideration. Figure 5g shows a partitioned 2-D histogram (after the partitioned
64×64 2-D histogram has been sampled back to its original size by simple replication
of the bin labels by 4 × 4 fold): each color represents a histogram region.

Once the partitioned 2-D is computed, each pixel in the starting image (see Fig. 5h)
can be directly labeled by taking into account the corresponding values for the two
principal components. In particular assigning to each histogram region (or segment)
an arbitrary intensity value, a gray-level image (or alternatively a false-color image)
can be obtained where different regions are easily identified (see Fig. 5i).

Texture Extraction

As to the search for morphological (low-level) structures within the lesion, several
approaches have been proposed in literature, including both structural and spectral
methods [52]).

The structural techniques, which are intended to search for primitive structures
such as points, lines and circles, have been extensively adopted for automatically
detecting texture and/or local networks in dermoscopic images. For example, one of
the most recent studies about the pigment network [53] introduces a feature extraction
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based on the Laplacian of Gaussian (LOG) filtering. More in detail, the result of the
edge detection step is a binary image which is subsequently converted into a graph to
find the lesions meshes. Similarly, the detection of cyclic structures representing the
pigment network is performed in [54] on the basis of the matching filtering principle
and the adoption of suitable directional filters (namely 2-D Gabor filters).

The spectral technique is based on the Fourier analysis of the grey-level image.
About computerized dermoscopic analysis, the approach is useful to determine the
spatial period of the texture, thus allowing the identification of the regions where
typically a network exists.

Thus, in order to disclose the pigment network (the dermoscopic criterion mainly
correlated to low level morphological structures), a feature extraction combining
structural and spectral methods has been introduced by the authors in [23]. With ref-
erence to the diagram in Fig. 6, the proposed algorithm is arranged into two processing
paths, which share the input 8-bit grey-level image extracted from the ELM color
image at first stage:

(i) The structural technique is proposed in order to identify the main local disconti-
nuities within the image: the monochromatic image is first compared with its version
obtained by a suitable median filter, then a close-opening operation is performed,
which deletes eventual isolated points.

(ii) A sequence of Fast Fourier Transform (FFT), high-pass filtering, Inverse
Fast Fourier Transform (IFFT) and suitable thresholding has been adopted. As goal
of the spectral path, the local discontinuities which are not clearly associated to a
network are disregarded. The result of this phase is a “regions with network” mask
to be applied on the image yielded by the structural technique, in order to remove
discontinuities which do not actually belong to the pigment network.

Finally the intermediate results from boundary detection (“lesion” mask), struc-
tural path (“local discontinuities” mask), and spectral path (“regions with network”
mask) are combined according to the AND logic.

As a final result, a “network image” is achieved, where the areas constituting the
pigment network are highlighted.

Feature Description

Following the automatic extraction of low level structures, the feature analysis is
proposed in order to determine measurement information in terms of both chromatic
and morphological descriptors.

Thus, the lesion map resulting from segmentation (performed through the SRM
technique or the Multi-Thresholding algorithm) is investigated in order to identify
the most significant descriptors of the local regions (features), such as components
in the main color spaces in terms of mean value and standard deviation as well as
relative difference among neighbors. An example is reported in Fig. 7, where the
corresponding feature extraction resulted from a color fine segmentation (Q = 256).

More in detail, for each local region the pixel components in RGB, HSI and Luv
color space are considered and the corresponding mean value and standard deviation
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are computed. A percentage (30 %) dilation is also considered in order to compute
further chromatic descriptors as the relative difference (mean value) with respect to
neighbor regions. Moreover, the following morphological descriptors are computed
for further analysis:

– relative dimension A%, defined as the number of the region pixels with respect to
the lesion area;

– eccentricity e of the ellipse that has the same second-moments as the region; it
is computed as the ratio of the distance between the foci of the ellipse and its
major axis length with value between 0 and 1 (the degenerate cases corresponding
respectively to a circle and a line segment).

About the feature extraction results concerning with the pigment network, some
feature descriptors are computed from the statistical distribution of observed intensi-
ties in the network image at specified positions relative to each other. According to the
number of intensity points (pixels) in each combination, statistics may be classified
into first-order, second-order and higher-order statistics.

The Gray Level Co-occurrence Matrix (GLCM) method [55] is an extensively
adopted way of extracting second order statistical texture features.

Fig. 6 Proposed scheme for texture analysis of pigmented lesions

Fig. 7 Example of fine color segmentation (SRM, Q = 256) feature description: segment area A %
(percentage with reference to the lesion area); segment Eccentricity e, mean value of Red (R), Green
(G), Blue (B), Hue (H), Saturation (S), Intensity (I) components (averaged on pixels constituting
the segment)
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Generally speaking, a GLCM is a matrix where the number of rows and columns is
equal to the number of gray levels, G, in the image; each matrix element P(i, j |d, θ)

contains the second order statistical probability values for changes between gray
levels i and j at a particular displacement distance d and at a particular angle θ .
A very interesting example of GLCM application to the computerized analysis of
digital dermoscopic images is reported in [56], where 176 texture descriptors (on a
total of 428 objective descriptors including color and asymmetry properties) were
derived from 11 different-sized co-occurrence matrices with distance value d ranging
from 1/2 to 1/64 of the length L of the major axis of the lesion. Texture descriptors
mainly contributed to PCA-based classifiers able to effectively discriminate between
melanomas and nevi as well as ridges and furrows.

Following this example, in order to avoid dependency of direction, one may cal-
culate an average (isotropic) matrix out of four matrices (θ = 0◦, 45◦, 90◦, 135◦),
whereas the parameter d is suitable chosen according to the image resolution (as d =
L /32). Finally, form the isotropic GLCM, a set of texture descriptors is computed,
which includes entropy, inverse difference moment and correlation.

Dermoscopic Structure Detection

At this stage, each (high-level) dermoscopic structure provided by 7-Point Checklist
is automatically disclosed within the lesion through suitable classification algorithm
and/or statistical analysis, which take into account the features descriptors previously
introduced.

Feature Classification

Most literature concerning with computerized dermoscopy has been focused on
supervised learning as typical approach to classify discriminative features inspired
from both ABCD rule and identification of specific patterns within the lesion. Super-
vised learning is, in fact, a general technique of estimating model parameters given
a set of training examples. Thus, dermoscopic features are fed into a classifier and
supervised learning is typically used to diagnose unseen images.

Although a general model using supervised learning and Maximum A Posteri-
ori Probability (MAP) estimation has been recently proposed in [57] to perform
common tasks in automated skin lesion diagnosis (also including border detection,
artifact detection) with interesting and promising results, it is usually the case that a
supervised learning is only performed in the final stage of feature classification.

Following this trend, the classification of the chromatic features (the lesion map)
is straightforwardly viewed as a problem of data mining from feature descriptors. In
this context a well-known class of solutions is represented by Decision Tree Classi-
fiers, which belong to the Machine Learning techniques [58]. This type of classifiers
has been firstly introduced in the computer-assisted analysis of ELM images by
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Debeir et al. in [59], where Decision Tree were suitably learned and adopted both for
skin-lesion segmentation and pigmented lesion classification (between five lesion
patterns). Moreover, decision trees have been successfully adopted as pixel classifi-
cation technique in [60] in order to automatically detect the blue-white veil areas in
dermoscopic images.

A Decision Tree Classifier is a predictive model, trained (or induced) by adopting
a suitable dataset with respect to which classification results are already available.
More in depth, given a collection of objects (each one described by a set of attributes)
a Decision Tree is a graph, wherein each internal node stands for an attribute, each
arc toward a child node defines a property related to the parent node and finally
a terminal node (or leaf) constitutes a classification result (a single value for the
attribute adopted as class discriminator). The paths constituted by internal nodes
with a parent-child relationship and the corresponding arcs define the rules of the
predictive model that can be adopted for classifying new collections of objects. The
Decision Tree Technique can be generally preferred to other solutions (also including
Artificial Neural Networks and Support Vector Machines) because Decision Tree
Classifiers are often fast to train and apply and generate easy to understand rules.
Many induction algorithms have been proposed in literature, which are different for
the type (discrete and/or continuous) of attributes they can apply to and the parameter
adopted as performance index for the evaluation of the goodness of induction.

Probably the C4.5 algorithm [61] is the most widely adopted for decision tree
induction. It can be related to attributes varying into both discrete and continuous
range, whereas the information gain (relative entropy or Kullback-Leibler diver-
gence) is considered as leading parameter in the splitting procedure (i.e. identifi-
cation of a significant attribute and its corresponding optimal value to segment the
collection into suitable groups). Moreover the C4.5 algorithm tries to prevent the
over-fitting condition by implementing a pruning strategy. Given a large training set,
in fact, decision tree classifiers could produce rules that perform well on the training
data but do not generalize well to unseen data. In particular the C4.5 is able to iden-
tify sub-trees that do not contribute significantly to predictive accuracy and replacing
each by a leaf.

Another popular method for classification is instead linear logistic regression.
For example, in [54, 62], the SimpleLogistic classifier is proposed to perform the
automatic detection of pigment network and irregular streaks respectively. Generally
speaking, logistic regression tries to fit a simple (linear) model to the data through
a process which typically reveals quite stable, resulting in low variance but poten-
tially high bias. The tree induction exhibits low bias but often high variance because
searches a less restricted space of models, allowing it to capture nonlinear patterns in
the data, but making it less stable and prone to over-fitting. Consequently a promising
way explored by the authors for performing the classification tasks is a combination
of a tree structure and logistic regression models resulting in a single tree according
to the model proposed in [63].

Thus, the Logistic Model Tree (LMT) has been proposed for classifying the chro-
matic features (the lesion map resulting from the color segmentation) on the basis of
the corresponding descriptors, as detailed further in the text.
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Fig. 8 Result of feature
extraction: detection of round
items within the lesion area

Statistical Analysis

About the classification of morphological features, a statistical approach based on
the Test Hypothesis is proposed in order to verify the irregular distribution of the
dermoscopic structures of interest. For better explaining the underlying idea, the
method description refers to the example of feature extraction reported in Fig. 8.
The symmetry axes (blue lines) of the lesion are computed as the major and minor
axis of the ellipse characterized by the same normalized second central moments as
the region of interest. Moreover, the main round items highlighted as red boxes are
the chromatic and/or morphological features resulting from color segmentation and
texture extraction (more details are given further in the text). They could correspond
to texture elements of the lesion network and/or isolated dots and globules. Thus,
the candidate features could be associated to irregular dermoscopic structures within
the lesion (and classified as irregular) if their spatial distribution is not uniform. In
the opposite case, i.e if the observed (spatial) round items were randomly scattered
within the lesion, the number of elements in each of 4 quadrants (as resulted from
the drawing of the main lesion axes) could be modeled according to the Binomial
Distribution.

Therefore, a Binomial Test can be performed to estimate the casual distribution
of N round objects, once the accepted risk α of Type I Error is fixed. According to
the proposed approach, if the paucity or plenty of objects is observed in any quadrant
and/or couple of quadrants, the Null Hypothesis (i.e. the spatial symmetry of round
items) is refused and the morphological structured are classified as irregular.

The approaches previously introduced have been adopted to perform the automatic
detection of dermoscopic high-level structures (criteria) provided by the 7-Point
Checklist method.
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Fig. 9 Detection of dermoscopic criteria according to 7-point checklist

Examples of the diagnosis (by expert dermatologist) about two pigmented lesions
are shown in Fig. 9, where the dermoscopic structures are highlighted.

More in detail, Fig. 9a shows a melanoma (total diagnostic score equal to 4) where
a major criterion (Atypical Pigment Network) and two minor criteria (Regression and
Irregular Dots/Globules) are detected. Similarly, within the melanoma displayed in
Fig. 9b a major dermoscopic criterion (Blue-whitish Veil) and two minor structures
(Regression and Irregular Pigmentation) are highlighted.

Hereinafter, two performance indexes are considered to estimate the accuracy of
each classification algorithm:

– sensitivity, defined as the ratio of correct detection of the high-level structure
analyzed and total number of cases where the dermoscopic criterion is present;

– specificity, defined as the ratio of correct decision about the high-level structure
and total number of cases where the dermoscopic criterion of interest is absent.

The performance indexes range from 0.0 to 1.0 with the ideal classifier charac-
terized by sensitivity and specificity both equal to the maximum value.

Blue-Whitish Veil, Irregular Pigmentation and Regression

The approach based on the Logistic Model Tree is adopted for the automatic detec-
tion of the dermoscopic structures which are more closely dependent on chromatic
features. The model can be suitably computed for classify the regions constituting
the lesion map which results from the color segmentation.

As already mentioned, for each region the components of the corresponding pixels
in the RGB, HSI (Hue, Saturation and Intensity) and CIE Luv color spaces have been
considered to compute mean value and standard deviation as feature descriptors
(vector x). In addition the area percentage of each region with respect to total area
of the lesion is taken into account.

An example of Logistic Model Tree as obtained by training is reported in Fig. 8
with reference to the detection of the Blue-whitish Veil.
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Logistic Model Tree 
for  Blue-whitish Veil

Fig. 10 Detection of the blue-whitish veil: a logistic model tree; b lesion map (feature extraction);
c regions classified as blue-whitish veil

As you can see in the scheme (Fig. 10a), three different logistic regression models
are computed on the basis of three ranges for the Hue mean value of the region to be
analyzed (which can be interpreted as corresponding to blue, red or polychromatic
“path”). The regression functions Fi (x) (with i = 1, Blue-Veil region and i = 2, no
Blue-Veil region) take into account the standard deviation for the Hue component,
the mean and standard deviation for Saturation and Intensity components, in order
to determine the probability that the chromatic features (color regions displayed in
Fig. 10b) belong to an area characterized by the Blue Veil (the resulting detection of
the criterion is depicted in Fig. 10c).

Analogous LMT models are computed (with reference to the same feature vec-
tor x) and adopted to classify the color regions (not detected as Blue-whitish Veil) as
area of either Regression or Irregular Pigmentation.

About the automatic detection of regression structures, two different logistic mod-
els (see Fig. 11a) have been computed according to the range wherein the mean value
for the Saturation component of the region segment falls. Just five feature descrip-
tors are truly significant to determine the probability that the color region belongs
to an area characterized by Regression (an example of the resulting detection is also
reported in Fig. 11b–d).



Automatic Diagnosis of Melanoma Based on the 7-Point Checklist 93

Logistic Model Tree
for  Regression

Fig. 11 a LMT for classification with respect to regression; b ELM image and contour; c lesion
map; d detection results

Fig. 12 LMT for automatic detection of irregular pigmentation

About the Irregular Pigmentation, a very simple LMT has been obtained: it com-
putes the class probabilities taking into account the Intensity and L components
(mean and standard deviation), and the area percentage measured for each color
segment of the image (see Fig. 12).

F1(x) = −0.5 − 0.09µL + 0.07S% + 0.04µI − 0.02σi F2(x) = −F1(x)
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(a) (b)

Fig. 13 Detection of irregular dots and globules: a color segmentation (SRM); b feature extraction:
rounded items for hypothesis test

Irregular Dots and Globules

In order to detect the small dark areas of interest, a fine level of color segmentation
is required which can be achieved by considering the Statistical Region Merging
for high value of Q. As you can easily note in the example reported in Fig. 13a,
the darkest segments may be deeply investigated to seek for the structures which
represents Irregular Dots and Globules.

A statistical analysis based on the histogram of the SRM image is adopted by
considering and ordering the statistical regions with respect to the increasing value
of Intensity value (within a suitable range for Hue component). Moreover, the mor-
phological feature descriptors previously introduced (percentage area A% and eccen-
tricity e) are also compared with corresponding thresholds derived by experimental
testing and tuned in order to extract rounded items inside the lesion.

Once the feature identification and analysis is completed with the detection of N
round objects (see the items lightened with respect to the main symmetry axes of
the lesion in Fig. 13b), according to the statistical approach previously introduced,
the casual distribution is considered as Null Hypothesis of a Binomial Test. The
following thresholds k1,min , k1,M AX and k2 can be jointly adopted for estimating the
irregularity of Dots and Globules:
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k=0
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K

) (
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4
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≤ α (5)

where α is the accepted risk of Type I Error.
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When the round items observed in each quadrant exceed the calculated thresholds,
the Null Hypothesis is refused and the corresponding Dots and Globules are classified
as Irregular.

Atypical Pigment Network

The approach based on the Hypothesis Test is also adopted for the classification (in
terms of spatial irregularity) of the results from the feature extraction.

As introduced in the previous section, the pigment network within the lesion of
interest is detected suitably combining the texture extraction and the color segmen-
tation. Specifically, the areas constituting the network (white objects in Fig. 14a) are
matched with the darkest regions of the lesion map computed through the Statistical
Region Merging (see Fig. 14b). Then, the N objects resulting from the coupled analy-

Fig. 14 Detection of atypical pigment network: a texture extraction; b color segmentation; c clas-
sification results
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sis are classified as irregularly distributed (“atypical”) by performing the Hypothesis
Test according to the Eqs. (4) and (5). In the example reported in Fig. 14c, the major
criterion is detected in the darkest right-bottom area where the pigment network is
mainly distributed.

Irregular Streaks

Although the presence of Irregular streaks is highly suggestive for malignancy of
a lesion, the modeling, detection and analysis of streak lines and starburst pattern
have rarely been used. A summary of the previous studies is reported in [62], where
an original graph-based approach and very interesting feature set are also proposed.
Nevertheless, the main hypothesis (the lesion modeling as an ellipse) leads to reduced
detection accuracy when the algorithm is applied to generalized image set. A shape
independent approach is proposed by the authors combining structural technique
and color segmentation. The presence of asymmetrically arranged (linear or bulbous)
extensions at the edge of the lesion can be detected by searching for the simultaneous
occurrence of two different structures:

(i) brown pigmentation localized in the same restricted region, and
(ii) finger-like track of the contour of the lesion.

Both structures are detected by mean a local analysis of the lesion contour, this
last is split into 10 equally length segments. A color segmentation of the region of
interest is performed through the Statistical Region Merging in order to seek for
the black/brown dermoscopic structures. Then a morphological irregularity index is
computed and compared with a suitable threshold.

The irregularity index is defined as ratio of number of pixels constituting the
lesion contour and the shortest path”, where the “shortest path” pixels are the points
belonging to the line that connects the farther contour points in the region (see
Fig. 15).

Atypical Vascular Pattern

About the automatic detection of Atypical Vascular Pattern, an approach combining
color segmentation and structural analysis is proposed similarly to the methodology
concerned with the Irregular Dots/Globules. Again the inner area of the lesion (see
Fig. 16a) is considered and segmented through the Statistical Region Merging at fine
level (Q = 256).

The resulting SRM image (see Fig. 16b) is firstly matched with the texture descrip-
tors (entropy, inverse difference moment and correlation) based on the gray level
co-occurrence matrix in order to exclude texture areas.

Then, a statistical analysis of the candidate SRM segments is performed by com-
paring the corresponding Hue range and eccentricity with suitable thresholds (exper-
imentally tuned through a supervised learning approach) in order to detect linear or
globular red structures irregularly distributed within the lesion. An example of linear
vascular pattern is reported in Fig. 16c.
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(a) (b)

(c) (d)

Fig. 15 Detection of irregular streaks: a ELM image and lesion contour; b the lesion area next
to the border segment (blue line) is investigated (colour segmentation based on SRM) searching
for darkest regions; c finger-like structures are detected through a quantitative comparison between
the edge (yellow line) of the brown pigmentation and the corresponding straight line (green line);
d results of automatic detection

Experimental Results

In order to develop and test the automatic procedure for the diagnosis of pigmented
skin lesions, images of benign and malignant lesions were collected and stored in a
database.

200 cases were extracted from a dermoscopy atlas [64] and observed by epilu-
minescence microscopy by two different dermatologists (M.S., G.F.) to evaluate the
grade of accuracy in the management of 7 Point Checklist algorithm. Moreover,
three dermatologists specifically trained in dermoscopy were asked to assess digital
images of 100 melanocitic skin lesions selected among a digital collection of lesions
screened between 2010 and 2012 at the Department of Dermatology of the Univer-
sity of Naples Federico II. In this department, the imaging is performed by a digital
camera (Canon Power-Shot G9 with Heine Dermaphot Optics) that is combined with
an epiluminescence microscope in order to produce digitized ELM images of skin
lesions. The observers were first asked to use pattern analysis to score each lesion as
naevus, melanoma or lesion to be excised, using the individual criteria listed in the
seven-point checklist. For each image, the corresponding clinical and/or histological
analyses were available. The images were extracted in order to obtain a quite homo-
geneous diagnosis distribution of the cases with respect to the criteria of interest.

As consequence, the overall database refers both to cutaneous melanomas and
melanocytic nevi (also including Clark, Spitz, Reed nevi). About the image qual-
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Fig. 16 a ELM image and lesion contour; b SRM segmentation of the lesion area; c automatic
detection of atypical vascular pattern

ity, all the pictures are 24-bit RGB color images in JPEG format with dimensions
ranging from 700 × 447 to 2272 × 1520 pixels. The lesions are imaged com-
pletely with healthy skin visible at margins. As previously mentioned, the image
pre-processing strategy based on mathematical morphology [30] has been adopted
for artifact removal.

Border Detection

The proposed technique based on the Adaptive Thresholding has been compared with
the unsupervised approach based on the SRM algorithm, which was revealed the most
effective method [44] for contour detection in dermoscopy images of pigmented skin
lesions.

Comparison has taken into account 120 dermoscopy images (60 invasive malig-
nant melanoma and 60 benign) randomly selected from the starting dataset.
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As a ground truth for the evaluation of the border detection error, a manual border
was obtained by selecting a number of points on the lesion border, connecting these
points by a second-order B-spline and filling the resulting closed curve. More in
detail, three dermatologists were asked to select the points on the lesion border,
then the corresponding binary images were suitable combined. A majority policy is
taken into account: only the image pixels resulted as inner points of the lesion by
at least two dermatologist are considered as white-value pixels of the ground truth
binary image (Ref_Binary). Finally the tracing contour algorithm [48] is applied to
determine the ground truth manual border.

Using the dermatologist-determined borders, the automatic borders resulting from
the Adaptive Thresholding and SRM have been compared using the metric suggested
in [65]. Here, the percentage border error is given by:

Border Error = (Automatic_Binary)XOR(Ref _Binary)

Area(Ref _Binary)
100 % (6)

where Automatic_Binary is the binary image obtained by filling the computer
detected border, the exclusive-OR operation gives the pixels for which the Auto-
matic_Binary and Ref_Binary disagree, and Area(I) denotes the number of pixels in
the binary image I.

Table 2 shows the mean and standard deviation border error for the automated
methods considered. Although the error rates increase in the melanoma group (due
to the presence of higher border irregularity and color variegation in these lesions),
the proposed approach has achieved the best results (lowest error values) in terms of
both accuracy (mean) and consistency (standard deviation).

An example of automatic contour extraction for a melanoma is reported in Fig. 17a,
where the resulting borders are compared with the manual border.

As you can see in the reported details (Fig. 17b, c), the automatic border resulting
from the Adaptive Thresholding is able to better match the manual border than the
result from SRM. The threshold which takes into account the image as whole is, in

Table 2 Dermoscopic criteria and scores according to the 7-Point Checklist method

Segmentation
technique

Benignant lesions Melanoma All lesions

Mean (%) Standard
deviation (%)

Mean (%) Standard
deviation (%)

Mean (%) Standard
deviation (%)

Adaptive statistical
thresholding

7.4 2.3 10.0 6.2 8.7 4.8

Unsupervised
approach
(SRM)

8.5 3.3 13.1 8.7 10.8 6.9
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Fig. 17 Comparison between automated procedures for border detection: ground truth (green line),
adaptive thresholding (red line), unsupervised approach (blue line)

fact, able to separate lesion and surrounding healthy skin also in critical local regions
where the pixels components in RGB space are statistically close.

Automatic Detection of Dermoscopic Structures

As preliminary step a Training and Test Set have been suitably selected from the
reference database for each dermoscopic criterion.

As guideline, the Training and Test Set have to share the same case distribution
with respect to the criterion of interest. For example, 150 digital images have been
adopted to develop the automatic detection of Irregular Dots/Globules, whereas the
remaining 137 images have been adopted as Test Set to verify the software procedure.

As result, the Training and Test Set include respectively 45 and 39 skin lesions
characterized by dermoscopic structures of interest.

About the color segmentation, a comparison has been carried out between the
Statistical Region Merging (controlling the coarseness by varying Q from 32 to
256) and the Multi-Threshold approach based on Principal Component Analysis and
2D-histogram.

The classification results from physicians have been taken into account: 3 expert
dermatologists were asked to inspect the results (lesion map) from the color segmen-
tation in order to set the classification attribute for the features (local regions) of each
image belonging to the Training Sets.
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About the detection of Blue-whitish Veil, Irregular Pigmentation and Regression,
multiple Logistic Model Trees (correspondingly to the different color segmentation)
have been induced from the Training Set and verified (in terms of classification per-
formance) with respect to the Test Set. Moreover, on the basis of experts’ observations
concerned with the Training Set, suitable thresholds (about the minimum detection
area) have been derived to aggregate the per-feature labeling into per-image classi-
fication accuracies.

About the detection of Atypical Pigment Network Irregular Dots/Globules, suit-
able thresholds have been determined from the image properties of the Training Set
through ROC curves [66] for the quantities introduced in the feature extraction stage
(maximum region dimension A%, and eccentricity e, range for I component) as well
as the classification (minimum number N0 of round items to perform the statistical
test and the risk α).

As an example, the verification of the proposed approach about Irregular Dots/
Globules with respect to the previously introduced Test Set has resulted in 35 skin
lesions correctly scored (with respect to 39 cases where the minor criterion was
present).

Moreover, the classifier lead to 15 false detections (automatic score = 1). Table 3
summarizes the corresponding per-image results (both for Training and Test Set)
in terms of sensitivity and specificity. The overtraining has been avoided: similar
performance of the classifier have been achieved for the two Image Sets.

Analogous results have been achieved for the detection of all dermoscopic criteria
of interest.

Table 4 summarizes the performance indexes of diagnostic algorithms with refer-
ence to the images including into the corresponding Test Sets.

Goal of the comparison has been the evaluation of the color segmentation approach
(between the SRM technique and Multi-threshold) that better allows to highlight the
chromatic and morphological features, on which the classification of the dermo-
scopic criteria are based. Thus, the per-image performance corresponding to the best
segmentation technique are reported in bold.

As you can easily note, the Statistical Region Merging has been revealed as the
preferred solution for color segmentation.

A quite coarse segmentation (Q = 64) is able to disclose the areas characterized
by Atypical Pigment Network, Irregular Pigmentation and Regression. Namely a
satisfactory sensitivity (not inferior than 0.80) is achieved without downgrading the
specificity (which has to be in special account for the minor criteria).

Table 3 Irregular dots/globules: classifier performance (SRM, Q = 256)

Image set Sensitivity (%) Specificity (%)

Training set 80 82
Test set 90 85
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Table 5 Classifier performance for atypical vascular pattern and irregular streaks

ELM criterion Sensitivity (%) Specificity (%)

Atypical vascular pattern 80 78
Irregular streaks 86 88

The finest segmentation (Q = 256) has to be preferred (in terms of sensitivity)
for the detection of the reduced-size objects (otherwise not revealed) which can be
classified as Irregular Dots/Globules.

Finally, the Multi-Threshold approach is the segmentation technique able to better
identify the large areas of the lesions characterized by Blue-whitish Veil.

Finally, Table 5 summarizes the classification performance in corresponding Test
Sets of the proposed approach for the automatic detection of Atypical Vascular Pattern
and Irregular Streaks.

Discussion and Future Work

On the basis of advanced techniques of image processing a Computer-Aided Sys-
tem has been achieved for the analysis of digital dermoscopic images according to
the 7-Point Checklist method. The software routines are suitable to carry out: (i) the
detection of the lesion contour; (ii) the extraction and measurement of the main chro-
matic and morphological features within the pigmented lesion; (iii) the classification
and scoring of the dermoscopic structures.

The automatic procedures have been be tested with respect to a quite extensive
metrological characterization (performance of each classifier estimated in terms of
the sensitivity and specificity) and revealed to be a very promising software tool
supporting the physician. Using pooled data obtained from expert observation and
from computer detection, the diagnostic outcomes of pattern analysis were compared.
The sensitivity of the system was calculated as the percentage of dermoscopic images
scored as melanomas from the computer system and diagnosed as melanoma from
expert dermatologists and confirmed by histology (the gold standard): it was resulted
97 %. The specificity was calculated as the percentage of dermoscopic images scored
both by the observers and by computer analysis as benignant melanocytic and naevi:
it was resulted 87 %.

Starting from the present framework, further research efforts will be firstly
addressed to compare and integrate the very promising approaches and correspond-
ing feature descriptors reported in the most recent literature [53, 54, 57, 62], in order
to improve the classification accuracy of the dermoscopic structures.

Then, the correlations existing among the seven dermoscopic criteria will be
deeply investigate and a confidence level will be computed for each intermediate
classification (for example on the basis of multi-resolution segmentation, Fuzzy
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fusion and/or Markov Random Field approach [43]). The corresponding information
could be effectively adopted at Lesion Diagnosis stage for improving sensitivity and
specificity of the software system as whole.

Finally, an intensive measurement campaign will be carried out aiming to a double
goal. The control of the image acquisition and the availability of a large image
database will allow to deeply investigate the influence of the color calibration on the
proposed processing algorithms. Moreover, the diagnosis from the automatic system
will be compared with the results from the interactive adoption of the software tool
by two groups of physicians (respectively expert and not acquainted with the 7-Point
Check List) in order to estimate the improvements in the daily clinical practice of
dermatologists.

This system will help dermatologists to deliver a fast and non-invasive diagno-
sis. Thus, it will help prevent skin cancer and treat it in its early stages, because
patients will be more comfortable when tracking their lesions. However, because
such instrumentation will never achieve 100 % diagnostic accuracy, and because the
gold standard of histopathologic diagnosis suffers from significant interobserver dis-
agreement, the diagnosis can’t be only performed by computer, but a semiautomatic
computer diagnosis can help the clinicians to achieve the best diagnostic accuracy.
These technologies can be used in accordance with the patient history and clinical
examination to enhance the ability to diagnose melanoma while avoiding unneces-
sary biopsies.
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Dermoscopy Image Processing for Chinese

Fengying Xie, Yefen Wu, Zhiguo Jiang and Rusong Meng

Abstract Dermoscopy image analysis technology is discussed based on Chinese in
this chapter. It includes four aspects: preprocessing, segmentation, feature extrac-
tion and classification. Firstly, in preprocessing stage, hair is extracted out according
to the elongate of connected region, and then removed from the image by using
PDE-based image inpainting technology. Secondly, a novel dermoscopy image seg-
mentation algorithm is introduced using self-generating neural network (SGNN)
combined with genetic algorithm (GA). And in the feature description stage, the
features including color, texture, shape and border are extracted for the lesion object.
Lastly, the model of combined neural network classifier is employed to classify the
lesion object successfully with a sensitivity and specificity of 93.3 and 96.7 % respec-
tively. Based on the image analysis method disscussed in this chapter, an automatic
analysis system of dermoscopy images of Chinese is successfully developed and has
been applied for the clinical diagnosis of skin tumors.

Keywords hair removal · PDE-based inpainting · automatic segmentation ·
self-generating neural network · feature extraction · lesion object classification ·
combined neural network classifier

Introduction

The skin cancer is one of the most rapidly increasing cancers in the world, with an
estimated annual incidence of 76,330 and 11,980 deaths in the US in 2011 [1]. At
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(a)

(b)

Fig. 1 Dermoscopy images of Caucasians and Chinese. a Dermoscopy images of Caucasians
(https://b0112-web.k.hosei.ac.jp/DermoPerl/) b Dermoscopy images of Chinese

present, the diagnostic accuracy depends on the doctor’s experience and computer-
aided diagnosis for skin lesions is full of significance. Literature [2] provides a
comprehensive review of the research done in the computerized pigmented skin
lesion image analysis and literature [3] shows us the latest special issue on skin
cancer image analysis.

Although the incidence of skin cancer in China is lower than the U.S., Europe
and Australia, it has increased 3–8 % annually and has doubled over the past decade.
Because of the different skin color, there exits discrepancy in the color and contrast
of dermoscopy image between Caucasians and Chinese (shown in Fig. 1) So the
computer-based diagnosis methods used in dermoscopy images of Caucasians do
not often work well on Chinese.

Cooperating with the General Hospital of the Air Force of the Chinese Peo-
ple’s Liberation Army, the Image Processing Center of Beihang University in China
has been studying the analysis and diagnosis technology of dermoscopy images for
Chinese since 2007, including removing hair from images in preprocessing phase,
image segmentation, feature extraction and recognition. So far, we are the only one

https://b0112-web.k.hosei.ac.jp/DermoPerl/
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to study the analysis of dermoscopy image of Chinese, and discusses in the chapter
is based on our researches.

This study was supported by the Chinese National Natural Science Foundation
(Grant Nos. 61027004, 61071138) and the Science Foundation of Beihang University
(Grant no. YWF-12- LXGY-013).

Hair Removal from Dermoscopy Image

The factors influencing dermoscopy image quality include defocus blur, poor illu-
mination, weak contrast, hair, air bubble, and other factors. Hair noise is processed
in this section. To get the precise segmentation and analysis of the skin malignant
melanoma image with hairs, it is very necessary to detect and remove the hair from
the image.

In a study conducted in Italy [4], the investigators decided to shave the hairs using
a razor before the imaging segmentation. This procedure not only adds extra costs
and time to the imaging session, but it is also impractical when applied to total-
body nevus imaging [5]. Lee [6] located the hair through morphological closing
operator firstly and then removed the hairs from image by replacing the hair pixels
by the nearby non-hair pixels, but the algorithm worked well just for the thick and
dark hairs. In Literature [7], inpainting performs approximately 33 % better than
DullRazor’s linear interpolation, and is more stable under heavy occlusion. Literature
[8] achieves automatic hair and ruler marking detection using curve fitting and models
curve intersection and replaces the artifact pixels using feature guided, exemplar-
based inpainting. In [9], Kimia Kiani et al. firstly detects hair pixels by using Radon
transform and the Prewitt filters and then replaces the detected hair pixels with the
average gray-level of the background. In [10], Qaisar Abbas et al. proposed a fast
marching method for hair removal which includes three steps: (a) initial hair detection
by derivative of Gaussian, (b) refine hair detection by morphological technique,
(c) repairing of hair-occluded information by fast marching. In [11], the fast marching
method is developed.

In the section, we introduce an automatic algorithm to remove hair, which includes
three steps [12]:

(1) Enhancing the melanoma image with hairs by morphologic closing-based top-
hat operator and thresholding the enhanced image; (2) Extracting out hairs based on
the elongate of connected region; (3) Repairing the hair-occluded information using
the PDE-based image inpainting technology.
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Fig. 2 Two skin melanoma
images with hairs

Detecting Hair

The hair objects can be treated as the black structures because the pixels inside the
hair are darker than those surrounding it (shown in Fig. 2), thereby hair objects can
be enhanced using morphological closing-based top-hat operator.

The morphological top-hat operator for grayscale images is a part of the basic
toolbox of mathematical morphology operators [13, 14]. It is often used to detect
contrasted objects on non-uniform backgrounds. For grayscale images, there are
two versions: the opening-based top-hat operator can extract bright structures in
the image, and the closing-based top-hat operator can extract dark structures in the
image.

Let the processing image F and the structure element B are respectively:

F = {[x, f (x)]|x ∈ P, P ⊆ E2} (1)

B = {[m, b(m)]|m ∈ S, S ⊆ E2} (2)

And then for the image F, the dilating (f ⊕ B)(x) and eroding (f�B)(x) by
structure element B at point x can be written as:

(F ⊕ B)(x) = sup
m∈S

x−m∈P

{ f (x − m) + b(m)} (3)

(F�B)(x) = inf
m∈S

x+m∈P

{ f (x + m) − b(m)} (4)

where f (x ± m) means each point x in the image F moves along the vector m.
The opening F ◦ B and the closing F•B by structure element B are respectively

defined as:
F ◦ B = (F�B) ⊕ B (5)

F•B = (F ⊕ B)�B (6)



Dermoscopy Image Processing for Chinese 113

(a) (b) (c)

Fig. 3 Segmentation of melanoma images with hairs. a Original image b Closing-based top-hat
operation c binary image

Further the opening-based top-hat OTH F,B and the closing-based top-hat CTH F,B

can be respectively written as:

OTH F,B = F − F ◦ B (7)

CTH F,B = F•B − F (8)

The morphological top-hat operator has the property of high-pass filter. The
opening-based top-hat operator, also called peak detector, can extract bright struc-
tures in the image. Different with the opening-based top-hat, the closing-based top-hat
operator, also called valley detector, can extract black structures in the image.

We enhance hair objects on the grayscale image according to Eq. (8). Figure 3a is a
dermoscopy image, and Fig. 3b is the result of carrying out the closing-based top-hat
on Fig. 3a. From Fig. 3b, the non-hair regions including lesion are weakened, on the
contrary, both weak and strong hair objects are greatly enhanced. Enhanced hairs
become the bright regions in image, and the area of these bright regions occupied
some ratio in the whole image. According to the experience, the ratio is about 5 %
with which Fig. 3c is the threshold segment result for Fig. 3b.

Figure 3 is an example for black hairs. In fact, the blond or gray hairs are darker
than the surrounding background, and thereby they can also be enhanced and detected
out from the image. But for those brighter hairs than surrounding background, the
opening-based top-hat operator can be used to enhance the hair objects.

Extracting Hairs

From Fig. 3c, with the non-hair noises, the hairs are detected, and the connected
regions belonging to hair are bigger and longer than those non-hair connected regions
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(a) (b) (c)

Fig. 4 The illustration of defined elongate function. a Connected region b Outspreaded region
c Outspreaded square

which are smaller and shorter. It is simple to take the length or area size of connected
region as measure to extract hairs from image, but some short hairs will not be
separated from those long non-hair connected regions.

We use the elongate of connected region as measure to extract the hairs from
image. For a band-like connected region, the elongate function is defined as:

Definition 1: For a given connected region R, its expanded area, E A, is the area
of the square outspreaded by the central axis, the formula is as follows:

EA = l2 (9)

where l is the central axis length of R.
The geometrical explanation is illustrated in Fig. 4. The broken line in Fig. 4a is

the central axis of the connected region, the area of the square in Fig. 4c is just the
expanded area of Fig. 4a. From Fig. 4, for a connected region, the longer the central
axis is, the bigger its expanded area is.

Definition 2: For a given connected region R, its elongate function E(R) is the
ratio of its expanded area to its real area, the formula is as follows:

E(R) = EA/RA = l2/R A (10)

where R A is the real area of R.
From the Eq. (10), the elongate function E measures the size of expanded area in

unit area for connected region and it is related to two variables l and R A. Supposing
l is invariable, with the decrease of R A, the connected region will be thinner, its
elongate becomes more and more strong, and E(R) is increasing; Supposing R A is
invariable, with the increasing of l, the connected region will be longer, its elongate
becomes more and more strong, and E(R) is increasing. Thereby the thinner and
longer a band-like object is, the bigger the function value E(R) is.

The central axis of one band-like connected region can be obtained by skele-
ton extraction algorithm based on morphological Hit-Miss transform [15]. And the
central axis length l, which is one of the parameters of elongate function, can be
calculated according to the central axis locus. Taking the pixel number of connected
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Fig. 5 Extracted hair regions
based on elongate measure

region as the real area R A, and the elongate function value can be obtained according
to Eq. (10).

The thin and long hair is a kind of band-like object in Fig. 3c, and its elongate
feature function value E(R) is bigger than the non-hair connected region. Thereby
an appropriate threshold T can be selected according to real application instance and
the hair whose elongate feature function value E is bigger than T is determined to
be hair object. Figure 5 is the extracted hairs from Fig. 3c with the elongate measure
defined by Eq. (10). It can be seen that the elongate feature function proposed in this
paper is efficiently measured for extracting hairs.

Repairing the Hair-Occluded Information

The influence of hair to diagnosis analysis can be eliminated through excluding the
hair regions from further analysis. But for the image segmentation, it can improve
the veracity of segmentation to repair the melanoma texture occluded by hairs. Thus
the PDE-based inpainting method is selected to repair the hair-occluded information
in this chapter.

Initially proposed by Perona and Mafik, the non-linear diffusion filters have been
widely used in the last decade in edge preserving and enhancement filtering. The
gray levels of an image (U ) are diffused according to [16].

∂u
∂t

= div(c(x,y,t) · ∇u) (11)

where div(•) is the divergence operator, ∇ is the gradient operator. the scalar diffusiv-
ity c(x, y, t), in a pixel of coordinates (x, y), is chosen as a non-increasing function
g(•) of the Gradient ∇U , which governs the behavior of the diffusion process. A
typica1 choice for the diffusivity function g is:

c(x, y, t) = g(∇U ) = 1

1 + (∇U/K )2 (12)
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Fig. 6 Inpainting result for
Fig. 3a based on PDE

where, K is gradient threshold. Practical implementations of the P-M filter are giving
impressive results that noise is eliminated and edges are kept or even enhanced
provided that their gradient value is greater than K .

Equation (12) is an anisotropic partial differential equation. Let u0(x, y) be the
original image, and the discrete iterating form of Eq. (12) for image inpainting is:

ut+1(x, y) = ut (x, y) + λ

n

∑

p∈D

c(∇ t u(x, y))∇ut (x, y) (13)

where, (x, y) is pixel coordinate. D is the neighborhood of (x, y) pixel. n is the
number of neighborhood pixels. The positive constant λ denotes smooth degree and
t is the iteration times.

For color image of skin melanoma, the hair regions extracted from image with
elongate measure are taken as mask, and the inpainting result can be obtained through
iterating the Eq. (13) repeatedly within the region of the mask respectively in three
color bands on the original image. Figure 6 is the inpainting result for Fig. 3a, and
it can be seen that the repaired texture of melanoma is consistent with the human
vision.

The automatic repair problem of the hair-occluded information can be resolved
very well through combining hair object extraction with image inpainting technology
in this section. Figure 7 is the local effect repaired by the method, it can be seen that
there is no any blur in the region without hairs and the repaired texture in the hair
region is logical. Figure 8 is the segmentation effect by Otsu’s threshold after or before
repairing the hair-occluded information, and it can be seen that the segmentation is
improved after repairing the hair-occluded information. This introduced method is
practical and robust, and the segmentation error of the skin melanoma image with
hairs is effectively reduced after repairing the occluded information.

Segmentation Based on SGNN

The segmentation stage is quite important since it affects the accuracy of the sub-
sequent feature extraction and analysis. However, segmentation is quite difficult
because [17]: (i) the transition between the lesion and the surrounding skin is usually
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Fig. 7 Local repaired effect. a Part cut out from Fig. 2a b Repaired result by our method

Fig. 8 Segmented result after or before inpainting. a Segmented result before inpainting b Seg-
mented result after inpainting

of low contrast; (ii) the lesion borders are usually irregular and fuzzy; (iii) compli-
cating artifacts are often present such as skin texture, air bubbles and hairs; and (iv)
the interior of the lesion may exhibit variegated coloring.

To address these problems, a number of dermoscopic segmentation algorithms
have been developed [18]. For convenience, we broadly classify these into three cat-
egories: thresholding, edge/contour-based and region-based. An effective threshold-
ing method proposed by Grana [19] uses Otsu’s threshold to automatically segment
the melanoma image, then selects k points for spline-based interpolation, yield-
ing a smoothed lesion border. Thresholding methods such as this can achieve good
results when there is good contrast between lesion and skin, but encounter prob-
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lems when the modes of the two regions overlap. Edge/contour-based approaches
were used in [20, 21]. Rubegni [20] segmented dermoscopy images using the zero-
crossings of a LoG edge operator, while Zhou [21] used an improved snake model to
detect lesion borders. Edge and contour-based approaches perform poorly when the
boundaries are not well defined, for instance, when the transition between skin and
lesion is smooth. In such situations, the edges have gaps and the contour may leak
through them. Region-based approaches have also been used. Some examples include
multi-scale region growing [22], fuzzy c-means based on anisotropic mean shift [23],
multi-resolution Markov random fields [24] and statistical region merging (SRM)
[17]. Region-based approaches have difficulties when the lesion or the skin region is
textured, or has different colors presentation, which can lead to over-segmentation.

Color is a significant feature for image segmentation and unsupervised color
clustering [25] has been successfully used for region-based segmentation. Such data-
driven methods have great potential of dealing with varied imaging situations, pro-
vided that an accurate model that is flexible enough to span the space of possible
lesion image environments can be found. Since modeling such a high-dimensional
complex space of possibilities is quite difficult, learning-based methods that can
be trained on large datasets are of interest. Towards this end, we introduce a color
clustering model for dermoscopy images [26] that combines the technique of the self-
generating neural network (SGNN) with genetic algorithms (GA). Using a measure
of cluster validity, the clustering algorithm that we develop automatically determines
an appropriate number of clusters. By merging the clustering regions into lesion and
background skin, segmentation of dermoscopy images is achieved.

Self-generating Neural Networks

SGNN is proposed as one of the competitive learning neural networks firstly by Wen
[27], and then is in-depth researched by Inoue [28, 30], which is characterized by
simplicity in network design, fast in learning and self-organizing ability, thus can be
competent for the clustering or classification with high performance [27–29].

As shown in Fig. 9, the SGNN has been implemented as a self-generating neural
tree (SGNT) which is a tree structure for hierarchical classification. Figure 9a is a
clustering sample set, where ei , i = A, B, . . . E is the sample attribute. Figure 9b is
the generated SGNT for Fig. 9a according to the SGNT generating rules [27, 28],
where wi notes the neuron weight. Each leaf neuron corresponds to one or multiple
samples, and its weight is the average attribute of the corresponding samples. For the
SGNT, every leaf neuron is corresponding to one or multiple samples, and its weight
is the attribute average of the corresponding samples, and the weight of every node
neuron (non-leaf neuron) is the attribute average of all the leaf neurons covered by
this node neuron. Taking every child of the root neuron as a cluster center, all of the
leaf neurons in the sub-network rooted by this child belong to the same cluster, and
the number of the clusters is just the number of the root neuron’s children. Obviously,
in the Fig. 9b, A is in the same cluster with B; C is in the same cluster with D and E,
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Fig. 9 The structure of the SGNT. a 5 samples b Generated SGNT for (a)

Fig. 10 Different clustering results using SGNN with different input order of samples. a Original
image. b Clustering result 1. c Clustering result 2

and the number of the clusters is 2. It may refer to references [27–30] for more details
about SGNN and pass over the further discussion here. Taking the image pixels as
clustering samples and the color or coordinates information as sample attributes,
SGNN can be used for image clustering.

In spite of its fitting capacity for clustering, the SGNN algorithm is influenced
by the input order of the training samples, which can cause inconsistent clustering
results, as depicted in Fig. 10, where Fig. 10a is the original image, and Fig. 10b, c
are the results that are achieved when different samples are selected as the first input
into the SGNT.

In Fig. 10b, the area of the lesion is under-segmented, whereas a more accurate
result is obtained in Fig. 10c. To ameliorate this in [26], the SGNT is generalized
to a Self-Generating Neural Forest (SGNF), and GA is subsequently employed to
consistently select an appropriate group of seed samples as the first input into the
SGNF, thereby yielding optimized clustering results.
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Self-generating Neural Forest

The SGNT can be generalized to a Self-Generating Neural Forest (SGNF) as follows.
Suppose that a given sample set has c cluster centers. Then the SGNF generating
algorithm can be described as follows:

Step 1: Remove c seed samples randomly from the sample set, treating these seeds
as initial neural trees to form an initial forest;

Step 2: Generate neuron n j for sample i, then search each SGNT in the SGNF to
find the neuron nwin at the shortest distance from neuron n j ;

Step 3: Connect the n j into the SGNT covering the neuron nwin ;
Step 4: Repeat steps 2 and 3 until all samples are input into the SGNF;
The generated SGNF includes c SGNTs, each SGNT corresponding to a cluster,

and all the leaf neurons in a SGNT belong to the same cluster. Whereas, the number
of clusters based on SGNF is user-specified.

Optimal Clustering by Genetic algorithm

GAs [31–33] are efficient searching algorithms as well as a stochastic search tech-
nology based on natural selecting and genetics principle, and they are capable of
adaptively searching solution space for optimal solution and thus successfully used
for pattern classification including clustering of data [34–36]. The relevant steps of
GA are:

Step 1: Randomly generate an initial population G(0);
Step 2: Evaluate the fitness f(m) of each individual m in the current population

G(t);
Step 3: Execute genetic operators including selection, crossover and mutation;
Step 4: Generate the next population G(t+1) using genetic operators;
Step 5: Return to Step 2 until the maximum of the fitness function is obtained.
The clustering results derived from the SGNF generating algorithm are influenced

by the c seed samples used to generate the initial neuron forest. Suppose we parti-
tion the sample set X into c clusters X1, X2, . . . , Xc; then their cluster centers are
m1, m2, . . . , mc respectively, and the between-class variance can be estimated:

σ2
B(X1, X2, . . . , Xc) =

c−1
∑

i=1

c
∑

j=i+1

pi p j (mi − m j )
2 (14)

where pi = ni/n, ni is the number of pixels for cluster Xi , and n is the total number
of pixels. For an RGB image, (mi − m j )

2 is given by:

(mi − m j )
2 =

3
∑

q=1

(mq
i − mq

j )
2 (15)
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Fig. 11 Clustering based on SGNN seeded by GA. a Original image b Region growing c Trimming
by filtering d Clustering

where mq
i is the value of the ith cluster center in the qth color band.

According to the idea behind Otsu’s thresholding method [37], the higher the
between-class variance σ2

B , the more accurate the partitioning of the sample set.
Clustering with maximum σ2

B should subsequently yield an optimal partitioning of
the sample set. Therefore the selection of the c seed samples can be modeled as an
optimization problem. By taking σ2

B as the fitness function, the GA can be used to
search for the c seed samples to optimize the clustering solution.

Figure 11 is an example of optimal clustering by GA. In order to enhance the
computational speed, the coarse-to-fine segmentation strategy is adopted here. The
image is coarsely segmented into some small sub-regions by using the region growing
algorithm shown as Fig. 11b. And then some little regions are filtered out to obtain a
trimmer image shown as Fig. 11c for the purpose of saving more computational time
and reducing the influence of noises. Further treating various sub-regions in Fig. 11c
as training samples, two samples are selected to be seeds via GA, and the clustering
result is shown in Fig. 11d.

Adaptive Clustering Based on GA and SGNN (ACluster-GA-SGNN)

In Fig. 11, the number of clusters is specified before clustering. In practical applica-
tions, the number of clusters is often unknown because of the complexity of der-
moscopy image. How to determine this value adaptively? This problem can be
addressed using indices of cluster validity. Cluster validity indices are commonly
used for clustering evaluation and selection of optimal clustering schemes. A num-
ber of validity indices have been introduced, e.g., the Davies-Bouldin (DB) index
[38], Dunn’s index [39], and the SD index [40]. Most validity indices are based on
two criteria: Compactness, where the idea is that the members of each cluster should
be as close to each other as possible, and Separation, meaning, the clusters should be
widely spaced. We utilize the SD index to determine the proper number of clusters
here.

The SD index is based on measurement of the scattering of clusters and the
separation between clusters. Let σ(X) be the variance of data set X and σ(mi ) be
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the variance of cluster i. Then the scattering of clusters and the separation between
clusters are:

Scat (c) = 1

c

c
∑

i=1

‖σ(mi )‖/‖σ(X)‖ (16)

Dis(c) = Dmax

Dmin

c
∑

i=1

⎛

⎝

c
∑

j=1

∥
∥mi − m j

∥
∥

⎞

⎠

−1

(17)

where c is the number of clusters, Dmax = max(
∥
∥mi − m j

∥
∥) and Dmin =

min(
∥
∥mi − m j

∥
∥) are the maximum and minimum distances between cluster cen-

ters, respectively. The SD index is then:

SD(c) = αScat (c) + Dis(c) (18)

where α = Dis(cmax) is a weighting factor, where cmax is the maximum number of
input clusters.

Suppose the number of clusters for a given dermoscopy image lies between 2 and
cmax, then calculate the SD index for every c using (18). Then the optimal number
of clusters can be determined:

c∗ = arg min
c

SD(c) (19)

Suppose the number of clusters for a given dermoscopy image lies between 2 and
cmax, the adaptive clustering algorithm includes following two steps:

Step 1: For c = 2 to cmaxdo
(i) Specify the number of clusters to be cand run the SGNN algorithm seeded by

GA
(ii) Calculate SD(c) using Eq. (18)
Step 2: determining the optimal number of clusters using Eq. (19)
Using ACluster-GA-SGNN, the number of clusters can be determined adaptively,

and the clustering task completed automatically. Figure 12 shows an instance of
adaptive clustering by ACluster-GA-SGNN on a malignant skin tumor image.

The ACluster-GA-SGNN model is compared against two widely used color
clustering algorithms: k-means and FCM. For k-means and FCM, the number of
clusters is specified by the user, and a filtering operator is carried out to remove
noise. For the sake of fairness, the number of clusters for ACluster-GA-SGNN is
specified by the user also. Figure 13 is a group of clustering results. It may be seen
that when the contrast is large between the lesion object and its surrounding skin, and
the lesion has a homogeneous texture and clear edge, then all three methods deliver a
reasonable clustering result. While the object has no regular edges, shape or uniform
color, and the contrast is reduced between the lesion object and its surrounding skin,
then our model yields a more satisfying result.
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Fig. 12 Clustering results using ACluster-GA-SGNN. a Original image b Clustering result for (a)

Fig. 13 Clustering results by three methods. a Original image b Manual border c k-means d FCM
e ACluster-GA-SGNN

Clustering Region Merge

The number of clusters varies across dermoscopy images, and the clustering image
often includes more than two sub-regions that can be used for subsequent feature
extraction and lesion segmentation. Features, such as the number of clusters, the color
and texture in each sub-region, are important information for lesion classification.
Actually, segmentation must be done before feature extraction, since the purpose is to
determine those regions belonging to the lesion object and to detect the lesion border,
because [18] firstly, the resulting border structure provides a basis for the calculation
of important clinical features, such as lesion size and symmetry axes; and secondly, it
is crucial for the extraction of some of the most discriminating dermoscopy features,
such as radial streaming and pseudopods.
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Fig. 14 Segmentation results using ASegment-GA-SGNN. a Segmentation result b Extracted
border

We place the focus on the segmentation of a lesion from its surrounding skin.
Generally, the background skin region is brighter than the lesion region and will
touch the image frame. According to this feature, we merge these clustering sub-
regions into two parts: background skin and lesion object, and then lesion border can
be extracted, as shown in Fig. 14, where the red line in Fig. 14b is the extracted border
from Fig. 12b. Actually, this merge step is the post-processing for the ACluster-GA-
SGNN, and this segmentation algorithm is named as ASegment-GA-SGNN.

Generally, when the image has strong contrast and homogeneous texture, most
of the automatic methods can deliver satisfactory accuracy. While for the images
with weak contrast, heterogeneous texture and variational colors, ASegment-GA-
SGNN can have better performance, for example Fig. 15. Figure 15 is a group
of segmentation instances using the automatic methods including Otsu’s threshold,
k-means, FCM, and ASegment-GA-SGNN, where the blue line is a manually
inscribed border and the red line is the automatically determined border. It can be
seen, for the complex image, ASegment-GA-SGNN yields more consistent segmen-
tation result with manual border.

Classification of Lesion Objects

The feature extraction and classification of lesion object is one of the key steps for
the automatic analysis of dermoscopy images which have been addressed by many
researchers. In 2004, Tanaka et al. [41] used the statistical method based on the
ABCD rule to get 105 features and then employed recursive discriminant method to
classify lesion object with the accuracy rate of 96 %. In the same year, Motoyarna
et al. [42] divided each channel of the RGB color space into 16 equal parts, and the
RGB color space was quantized into 16 × 16 × 16 bins. By using these spaces to ana-
lyze features of the malignant melanoma, about 26 % of melanoma images could be
successfully classified through the color information. Literature [43] classified skin
lesion objects by using the neural network technology on dermoscopy images, and by
using fuzzy membership function and adaptive wavelet transform on multispectral
images. And it was concluded that the combination of dermoscopy and multispec-
tral technologies can improve the diagnostic accuracy of lesions object. In 2007,
Celebi et al. [44] extracted 437 features including color, texture and shape informa-
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Fig. 15 Group of segmentation instances by automatic methods.The column from (a) to (e) is the
original image, Otsu’s threshold, k-means, FCM, and ASegment-GA-SGNN respectively

tion according to the ABCD rule, and then employed Weka data mining to select the
most important 18 features. Finally he used SVM classifier to achieve a result with the
sensitivity and specificity of 93.3 and 92.3 % respectively. In 2012, based on the color
of asymmetric and multi-scale texture features, literature [45] used AdaBoost.MC
(adaptive boosting multi-label learning algorithm) classifier model to divide lesions
into 7 kinds of model: reticular, globular, cobblestone, homogeneous, parallel ridge,
star-burst and multicomponent, with obtaining the sensitivity and specificity of 89.28
and 93.75 % respectively. Some important achievements of image classification for
skin cancer since 2001 are shown in Table 1.

The research above is about the dermoscopy image from Caucasians, and next
we introduce a classification method aiming at Chinese dermoscopy images. In this
method, the features including color, texture and shape are extracted according to the
diagnosis standards in clinic, and combined neural network is employed to classify
the skin lesion object.
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Table 1 Classification research of dermoscopy image

Paper Date Feature description Classifier

[46] 2001 Color/shape/ boundary KNN
gradient distribution

[47] 2001 Color/shape/border ANN
[48] 2002 Color/texture/shape ANN
[49] 2003 Color/shape Multiple classifiers
[50] 2004 Color/texture/shape Logistic regression
[51] 2005 Color/entropy/shape Logistic regression
[52] 2007 Color/texture/shape SVM
[53] 2009 Color/texture/shape Adaboost/C4.5

Paper Number Malignant (%) Benign (%) Sensitivity (%) Specificity (%)
[46] 5363 2 98 87 92
[47] 58 38 62 77 75
[48] 147 39 61 93 92.8
[49] 152 28 72 81 74
[50] 837 10 90 80.0 82.4
[51] 2430 16 74 91 65
[52] 564 16 84 93.3 92.3
[53] 513 16 84 95 NR

NR not reported, kNN k nearest-neighbor
ANN artificial neural network

Feature Description

At present, the artificial diagnosis standards of melanoma mainly include: ABCD
rule [53], Menzies scoring [54] and seven-point checklist [55]. Benign melanocytic
lesions tend to have few colors, an architectural order, and symmetry of pattern and
are homogeneous; and malignant melanomas often have many colors, architectural
disorder, and asymmetry of pattern and are heterogeneous. The ABCD rule describes
these visual features associated to malignant lesions (Asymmetry, Border irregular-
ity, Color irregularity and different structural components), from which a score is
computed. In automated diagnosis of skin lesions, most of feature design is based
on the ABCD rules. The same with automatic methods in literature [47, 56, 57], we
extract the color, texture and shape features based on ABCD rule in this section.

Before extracting features, we divide the dermoscopy image into three parts
according to the characteristics of the skin lesion image: inner lesion region, transi-
tion zone and the background region (shown in Fig. 16.)And features are extracted
in the RGB color space over these regions [38, 56].
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Fig. 16 Three regions of a
dermoscopy image

background  
region 

transition 

inner 

Color Features

(1) Mean and standard deviation of color
The mean and standard deviation values of lesion over each channel of the RGB
color space are calculated respectively. The two statistics over three regions are
calculated: lesion object (including the inner region and transition region), inner
region and transition region. We also calculate the ratios and differences of the
two statistics over the inner and transition region for each channel. The total
number of color features is n = 30, they are:

n = (3 channels in RGB color space) × (3 means

+ 3 standard deviations + 1 difference of mean,

1 difference of standard deviation

+ 1 ratio of mean + 1 ratio of standard deviation) (20)

(2) 3D color histogram
Color diversity is an important indicator to judge whether the lesion is malignant
or not. The mean and standard deviation of color above is calculated in single
channel of color space. Here, the color space was quantized into 16 × 16 × 16
bins and the 3D histogram of the lesion is formulated based on it, for the image
color diversity is the result of the interaction of different channels [42]. Let
p(i, j, k) be color statistical probability when the value of R, G, B is i , j ,
k respectively and ColorNum be the value of color distribution over the 3D
histogram, which is defined as:

ColorNum =
16
∑

i=1

16
∑

j=1

16
∑

k=1

h(i,j,k) (21)

where

h(i,j,k) =
{

1, p(i,j,k) 	= 0
0, p(i,j,k) = 0

(22)
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Compaired with benign lesion, the malignant lesion is full of various color and
the value of Color Num is bigger.

(3) LUV histogram distances
In order to determine the color difference of two regions (the inner lesion and
transition area), the histogram distance in the CIE L*u*v space is employed.
First, the color space is quantized into 4 × 8 × 8 bins, which resulting in a
256-dimensional vector of color features for a region. Then, the distance of two
histogram is employed to calculate the similarity of two regions:

d1(h,g) =
n

∑

i=1

|h(i) − g(i)| (23)

d2(h,g) =
(

256
∑

i=1

(h(i) − g(i))2

)1/2

(24)

where, i = 1, 2, . . . , 256, is the ith bin of color, h(i) and g(i) are the color
histograms of the two regions (the inner lesion region and the transition region)
respectively. Thus we obtain two color features d1 and d2.

Texture Features

The Grey Level Co-occurrence Matrix (GLCM) [58] is one of the methods most
commonly used in texture statistical analysis. Given an image composed of pixels
each with an intensity (a specific gray level), the GLCM is a tabulation of how often
different combinations of gray levels in an image co-occur in the certain direction.
Texture feature calculations [40] use the contents of the GLCM to give a measure
of the variation in intensity at the pixel of interest. Given an image f (x, y) with size
N × N , the GLCM is defined as:

P(i, j |d, θ) = {(x, y)| f (x, y) = i, f (x + dx, y + dy) = j} (25)

where d = (dx, dy) is an offset vector in x and y directions.
Five textrue features, which include contrast, energy, correlation, entropy and

inverse difference, are calculated from GLCM and employed to quantify the texture
of dermoscopy image here. As the calculation of mean and standard deviation, the
texture statistics are calculated in three regions: the lesion object (including the inner
and the transition), the inner lesion region and the transition region, and then the
ratios and differences of the latter two regions are calculated. The number of texture
features is 25.
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Fig. 17 Lesion object and its ellipse. a Lesion object b Drawing an ellipse c Non-overlaping regions

Shape Features

Compared with the malignant tumors, the shape of benign tumors is closer to a
circle or ellipse and is symmetric, and the object boundary is more regular with less
prominent twigs. The actual size of the benign tumors is closer to its convex hull
area. Thus the common shape features for lesions include ellipseness, aspect ratio,
symmetric ratio, and solidity.

(1) Ellipseness
For an object, the major axis Llong , minor axis Lshort and the major axis orien-
tation (θ) can be calculated respectively as:

Llong =
√

2(μ02 + μ20 + (4μ2
11 + (μ02 − μ20)2)1/2) (26)

Lshort =
√

2(μ02 + μ20 − (4μ2
11 + (μ02 − μ20)2)1/2) (27)

θ = 1

2
tan−1(

2μ11

μ20 − μ02
) (28)

An ellipse for the lesion object is drawn in Fig. 17b. There are some black regions
in the ellipse and some white regions out the ellipse near the boundary line. Let
Adifference be the sum area of the black and white regions (the red regions in
Fig. 17c), and Aellipse be the area of the ellipse, then the ellipseness is defined as:

Ellipseness = 1 − Adi f f erence

Aelli pse
(29)

(2) Aspect Ratio
Aspect Ratio is the ratio of the length of the major axis to the length of the minor
axis:



130 F. Xie et al.

Fig. 18 Rotating object according to the major axis orientation. a Lesion object in Fig.17a b Object
is rotated θ degree clock-wise

Aspect_Ratio = Lshort

Llong
(30)

(3) Symmetry
In order to calculate the symmetry, we rotate the object θ degrees clockwise
(shown in Fig. 18) firstly. And then, taking the major axis as x-axis, the object is
folded about the x-axis hypothetically. The area Ay of the same region between
the overlapping folds is calculated as the amount of symmetry about the x-axis.
Taking the minor axis as image y-axis, the same area Ax is obtained by the same
procedure. As shown in Fig. 19, the gray region is the same region between the
overlapping folds.
Let A be the total area of the object, and the symmetry rates is defined as:

Symmetry_Rate = Ax + Ay

2A
(31)

(4) Solidity
The convex hull for the lesion is defined as the convex polygon region with the
minimum area including the lesion object (shown in Fig. 20).
Let Aconvex_hull be the area of convex hull, the solidity is defined as [59]:

Solidi t y = A

Aconvex_hull
(32)

According to the features of lesion object, for the four shape indices, the lower
the value, the more the lesion tends to be malignant.
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Fig. 19 Symmetry region about the symmetry axis. a Symmetry region about the y-axis b Symmetry
region about the x-axis

Fig. 20 The convex hull for
the lesion

Border Features

In practical applications, there are often big objects which can not be acquired
completely. To overcome this shortcoming, two border features including the border
depression degree and the non-similar degree between the inner and outer border are
introduced in [57].

(1) Border depressed degree
For a lesion object, the border depressed degree Rdepressed is defined as:

Rdepressed = 1
n

n
∑

i=1

RAi

li
(33)

where n denotes the number of depressed area of one object, li is the span of
the i th depressed area, and RA denotes the area of depressed border. Figure 21
shows the intuitive explanation. Rdepressed represents the average depth of all
depressed area of one object.

(2) Non-similar degree between the inner and outer borders
The outer and inner border of lesion object are shown in Fig. 22. Let �outer

and �inner be the pixel sets of outer and inner border respectively; D(pi , p j )
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l

benign

malignant

RA

(a) (b) (c)

Fig. 21 BDR of the lesion. a Lesion b Convex hull c Concave region

Outer border

Inner 

Fig. 22 The outer and inner border of the lesion. a Inner and outer border of the benign b Inner
and outer border of the malignant

denotes the distance between pixel pi to p j . Thus, the minimum distance from
outer border pixel pi to inner border pixel p j is defined as:

di = min
j

(D(pi , p j )), pi ∈ �outer , p j ∈ �inner (34)

The non-similar degree between the inner and outer borders can be represented
by the variance of the distance from the outer border pixel to the inner border:

BorderUnsimilar =
√
√
√
√

1
n

n
∑

i=1

(di − m)2 (35)
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Where n denotes the number of pixels of outer border, and m = 1
n

n∑

i=1
di is the

mean of di .
Compared with benign, the boundary of malignant lesion object has more promi-

nent twigs, and the inner border is very different with the outer border. Thus the
Rdepressed and BorderUnsimilar for malignant lesion have bigger values.

Feature Selection

The total number of features is 64 and too many features will introduce irrelevant
noisy features, which reduce the recognition rate. Good feature set would be of good
discernibility, high reliability, strong independence, high stability and includes fewer
members. GA is a kind of optimizing search method based on biological selection and
evolution process. For its nice adaptation, good parallel search property and satisfied
performance in many complex optimization decision and design, GA is employed to
find out the most optimal combination of features.

The Model of Combined Neural Network Classifier

Combined neural network consists of multiple sub-networks. Compared with the
single neural network, the performance and classification accuracy of combined
neural network classifier is much better [60, 61].

A combined neural network topology diagram of parallel structure is shown in
Fig. 5. The combined neural network is a combination of relatively independent sub-
neural networks, which can be trained parallel and independently. The final output
of the combined neural network is the weighted sum of the output of every single
sub-network. The function is:


y(
x, 
a) =
p

∑

j=1

ajyj(
x) (36)

where x is the feature input vector and ai is the weight of the ith single network.
From above topology structure in Fig. 23, it can be known that the combined neural

network will have no any improvement if generalization ability of every sub network
is the same. So sub-neural network with individual differences need to be trained
and that’s the way how individual generates. At the same time, the combination
of output weights need to be optimized to obtain a high-quality combined neural
network classifier (conclusion generating), taking the BP neural network as a basic
learning classifier, we employ Adaboost [62] method to generate individual subnets,
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Fig. 23 Topology structure
of combined neural nework

and use GA to optimize the output weights [63], and then a combined BP neural
network classifier is generated.

Experiment analysis is carried out on the data set with 70 samples from the General
Hospital of the Air Force of the Chinese People’s Liberation Army. The optimal
features selected by GA from the 64 original features include: the two border features,
correlation and entropy of the lesion object, 3D color histogram, mean of red and
green of the transition region and deviation of all color channels of both lesion object
and the inner lesion. Then the features are input the combined BP neural network
classifier. seven fold cross-validated is adopted in the section. Finally we achieve
sensitivity and specificity of 93.3 and 96.7 % respectively and this is very useful to
the research of the automatic aided diagnosis system for Chinese dermoscopy image.

Conclusion

Aiming at Chinese dermoscopy images, the methods including hair removal, seg-
mentation, feature extraction and classification are introduced in this chapter. Image
processing center of Beihang is the firstand the only one group by far, to research
computational analysis technology for Chinese skin images. At present, an automatic
analysis system of dermoscopy images for Chinese has been developed successfully
and has been applied for the clinical diagnosis of skin tumors in the General Hospital
of the Air Force of the Chinese People’s Liberation Army. The analysis result from
this system affords an important reference for the doctors, which contributes to the
development of dermatology in China.
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Automated Detection of Melanoma
in Dermoscopic Images

Jose Luis García Arroyo and Begoña García Zapirain

Abstract In this chapter a software system for the automated detection of melanoma
over dermoscopic images is presented. The analysis is carried out by supporting
in the “ABCD Rule” medical algorithm, undertaking the automated detection and
characterization of the corresponding indicators. For this purpose the system uses
different image processing techniques and three supervised machine learning tasks.
To test the robustness of the system the different indicators of the algorithm are tested,
obtaining good results of accuracy in all of them, and there also was determined in
a direct way the diagnostic capacity of the system, obtaining results of 81.25 %
of sensitivity and 77.14 % of specificity. Moreover, the system is also capable of
analyzing macroscopic images, having been designd with multiplatform architecture
and being firmly oriented to teledermatology, which is increasingly used.

Keywords Melanoma · Segmentation · Biosignal processing techniques · Pattern
recognition · Machine learning

1 Introduction

In this chapter a software system for the automated detection of melanoma over
dermoscopic images designed and developed by our development team is presented.

Melanoma is a type of skin cancer which represents approximately 1.5 % of can-
cer worldwide, being diagnosed approximately 1,60,000 new cases every year. The
phototype of a person, the ability of the skin to assimilate the solar radiation, is
important to determine the melanoma risk and, therefore, the highest incidence is
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registered in developed countries, with white population predominance, where 81 %
of the worldwide cases are given, increasing every year to the extent that, in some
countries, it has become into a serious health problem in citizens [1, 2].

In the fight against melanoma it is fundamental the early detection. To get a better
idea of the importance of it, the following fact: the survival rate for those patients
whose melanoma is detected in good time, before the tumor has penetrated the skin-
non-invasive melanoma or melanoma in situ-is 99 %, falling by 15 % in advanced
cases-invasive melanoma-when the metastases has entered [1].

Historically, the main method used for the early detection of melanoma was the
“naked-eye” vision of the doctor, in pursuit of suspicious lesions, and for these the
biopsy, which consists on removing the skin lesion for its subsequent analysis, with
100 % reliability. The problem of this method is that the accuracy of the “naked
eye” method is manifestly improvable, especially if it is not carried out by a medical
dermatologist and, conversely, the biopsy is the most secure diagnostic procedure,
but its utilization presents the inconveniences of being an invasive method and the
needing of many resources, either human or material ones. It therefore becomes
evident the necessity of using non-invasive techniques, with good precision.

The most used is, by far, the dermatoscopy, or epiluminescence microscopy, which
consists on the exam of the skin through the utilization of an optical system and a
light source designed to reduce the irregular refraction and the light reflection in its
surface. Thus, it is possible to visualize in depth structures, forms and colors which
are not accessible to the visual inspection. The dermatoscopy has been demonstrated
especially useful to define the benignity or malignancy of the pigmented lesions.
The device used is called dermatoscope which, as it can be seen in Fig. 1, connected
to a computer captures the images, existing two types of taken images, those of the
dermatoscopy with contact illumination type and non-polarized light, using a liquid
in the interphase, and those of the dermatoscopy with cross-polarized light, for which
it is needed the dermatoscope to be equipped with polarized light lenses, with a cross
polarization filter [3]. Although there are many differences, most of the structures

Fig. 1 Using dermatoscope.
Source Ref. [13]
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and observed colors with contact dermatoscopy and polarized light dermatoscopy
are equivalent.

This method presents better results than the “naked eye” analysis. In expert hands
a sensitivity of 89 % is achieved (against the 70–85 % obtained through the “naked
eye”) [4]. This is an indicative of the robustness of this technique and means that
most melanomas can be diagnosed, although it should always be taken into account
that there is a percentage of 11 % of the cases in which it is not applicable. This
system also allows the reproducibility in the diagnosis, enabling second opinions
and allowing the use of image processing technologies.

There exist new promising techniques which are alternative to dermatoscopy [5–
8], notwithstanding the easiness of image acquisition, its good results and its utiliza-
tion level between medical experts ensures its utilization over a long period of time.
In fact, dermoscopy has been recognized as the “gold standard” in the screening
phase [8].

In the diagnosis of the melanoma over dermoscopic images the most used method
is the 2-stage method. As it can be seen in Fig. 2, this method consists on, in a first
stage, the dermatologist has to discern whether the lesion is melanocytic or not, with
a series of criteria and, in a second stage, if so, to use a diagnostic method to deter-
mine the level of malignancy, with the aim of deciding if the skin lesion should be
removed [3]. The 4 main methods used by the dermatologists are: “Pattern Analy-
sis” [9], “ABCD Rule” [10], “Menzies Method” [11] and “7-Point Checklist” [12]. It
is, in all of them, about to detect and to characterize a series of indicators present in
the skin lesion image, determining the diagnosis in line with pre-established criteria.
Notwithstanding, it should be noted that its objectivation is difficult, since, in many
cases, the detection and characterization of these indicators are highly biased by the
subjectivity of the dermatologists.

It is clear that the automation of this process through computer aided diagnostic
software is of great importance, since, on the one hand, it can accelerate the medical
task, and on the other hand to provide a qualitative and objective evaluation of the

Fig. 2 Two steps procedure
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skin lesion, decreasing the inter-observer and intra-observer variability which can be
found in the diagnoses made by human experts.

Facing to the automation of the diagnosis, there exist a great number of algorithms
which address different parts of this process, like certain processing or segmentation
tasks, or the detection and characterization of indicators. However, there exist few
software systems that address the automation of the whole process, and even less
commercial tools which offer a certain degree of robustness in the diagnosis.

In this context, our research team has designed and developed a complete family
of digital image processing algorithms which have been integrated in an automated
system in support of the detection of melanoma, carrying out the help in the diagnosis
over the quantitative base of the medical algorithm “ABCD rule”, also supporting
the decision in the “Pattern Analysis”.

The results that are being obtained are very promising in the different stages of
the diagnostic system: preprocessing, segmentation, detection, characterization of
indicators and diagnosis.

Currently, this system is in piloting stage, and the aim is that the system can be
applied in different areas. For instance, it can be used as a guide to medical profes-
sionals which are not experts in dermatology. The case of primary care physicians,
or even if it is an expert dermatologist the task will be make it easier, either because
of being great the number of moles to analyze or, simply, to give a second opin-
ion. Another possible application is the execution of the system in massive analysis
processes, over repositories of dermoscopic images, with the purpose of searching
possible malign lesions. Or even in screening systems directed to the population
in order to detect melanomas in early stages, over telemedicine platforms or from
another type

In fact, the system has been designed in such a way that it is multiplatform, likely
to be accessed by the doctor, apart from the desktop application, via web or mobile, to
a server system centralized to the diagnoses. Furthermore, the system can be accessed
by a normal user, via web or mobile, for screening objectives withstanding for this
the analysis of macroscopic images: in fact, the system has a determined vocation
towards the teledermatology, which is increasingly used.

This chapter has been structured as follows: in section “State of the Art”, a detailed
review of the state of the art in the automated detection of melanoma is made, in
section “System Design” the design of the proposed system is explained, in section
“Results” the results of the system are presented, and, finally, in section “Conclusions
and Future Work” the conclusions and the future work are showed.

2 State of the Art

In this section the state of the art in the automated detection of melanoma is presented.
First of all, the aforementioned medical diagnostic methods are commented briefly,
deepening in the “ABCD rule” and the “Pattern Analysis”. Secondly, the state of the
art techniques for the automated detection of melanoma in dermoscopic images are
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explained in detail. Finally, a review of some of the most relevant commercial tools
which currently exist for the early detection of melanoma is carried out.

2.1 Medical Methods in Dermoscopy: “Pattern Analysis”
and “ABCD Rule”

As stated previously, in the diagnosis of melanoma over dermoscopic images the
most used method is the 2 stage method, being these the most important 4 diagnostic
methods used: “Pattern analysis”, “ABCD Rule”, “Menzies Method” and “7-Point
Checklist”. It is about, in all of them, to detect and characterize a series of indicators,
present in the image of the skin lesion, determining the diagnosis according to some
established criteria.

The “Pattern Analysis” is the method by which the best results are obtained, since
it allows a more complete approach of the pigmented lesions although, conversely,
it is the one which requires more experience [3]. The other 3 methods are named
medical algorithms, since in all of them it is about to detect and characterize quan-
titatively a series of indicators, present in the skin-lesion image, and thus assign
them numerical scores, being the final value obtained the malignancy measurement
result of the algorithm, determining the diagnosis according to pre-established value
ranges. Obviously, owing to manage with characterizations and numerical punctua-
tions, when approaching an automation of the diagnosis, the most appropriate is to
implement a medical algorithm.

2.1.1 Pattern Analysis

It consists of finding the existing patterns in the lesion and taking a diagnostic deci-
sion. These patterns are visual structures with forms, colors and characteristic tex-
tures, as it can be seen in Fig. 3. It allows the recognition and valuation of a series of
parameters and patterns which allow the dermoscopic distinction between a benign
and a malignant lesion [9].

2.1.2 ABCD Rule

“ABCD Rule” is a medical algorithm that intends to facilitate diagnosis of melanoma
to those observers less experienced in the technique. It is based on the valuation of
4 criteria [10], as can be seen in the Table 1:

Asymmetry: The pigmented lesion is divided in two perpendicular axes, in such a
way that we achieve as much symmetry as possible, and the asymmetry is evaluated
with respect to the shape, the color and the structure in both sides of each axis.
A punctuation of 0 is granted if there is no asymmetry in any axis, of 1 if there exists
asymmetry in one axis and of 2 if it presents it in both axes, in such a way that the
lesion can have a score of 0–2.
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Fig. 3 Dermoscopic patterns. Source Ref. [14]

Table 1 Criteria and
punctuation of “ABCD rule”

Dermoscopic
criteria

Score Weighting/
correction
factor

Asymmetry 0 to 2 X 1, 3
Border 0 to 8 X 0, 1
Color 1 to 6 X 0, 5
Dermoscopic/
dermoscopic
structures

1 to 5 X 0, 5

Border: The lesion is divided in eight segments and it is scored with 1 each
portion which might present an abrupt completion of the border. In such a way that
the minimum score that it can be obtained is 0 and the maximum is 8.

Colors: It evaluates the presence of six colors (white, light brown, dark brown,
blue-gray, red and black). Consequently, the maximal score will be 6 and the min-
imum 1. The white color will only be scored if it is lighter than the adjacent skin;
that is, when it belongs to white areas of regression.
Dermoscopic Structures:

In the clinical ABCD, applicable to macroscopic images, the “D” is corresponding
to the Diameter and it is considered a symptom of malignancy that it drops from 6 mm.

Here, we are describing the dermoscopic ABCD, in which the “D” is corre-
sponding to dermoscopic structures, a similar concept to the “pattern” which it was
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Table 2 Diagnosis with
“ABCD rule”

TDS

<4.75 4.8–5.45 >5.45
Benign Suspicious Malignant

Fig. 4 Tasks of the life cycle of an automated system for the detection of melanoma

considered in the “Pattern Analysis”. It is considered five structures, each of them
scored with 1. Consequently the maximum score will be of 5 and the minimum of
1. The dermoscopic patterns are:

• Pigmented network (reticular): either if it is typical of atypical.
• Homogeneous and unstructured areas: should cover more than 10 % of the lesion.
• Points: should be more than two.
• Globule: should be at least two.
• Linear ramifications/pseudopods: should be more than two.

Subsequently each value is multiplied by each weighting factor, the partial scores
are added, and the total dermoscopic score (TDS) is obtained.

Once calculated the TDS, as can be seen in the Table 2, the diagnosis is determined,
with the following ranges:

TDS < 4.75: BENIGN
4.8 <= TDS <= 5.45: SUSPICIOUS
5.45 < TDS: MALIGNANT

2.2 Techniques for the Automated Detection of Melanoma in
Dermoscopic Images

Here a state of the art of the techniques for the automated detection of melanoma
in dermoscopic images used in the most relevant works is presented. To do so, first
of all, the complete life cycle of an automated system in support of the detection of
melanoma is going to be undertaken, and secondly, the techniques used in some of
the most relevant works will be commented.

2.2.1 Life Cycle of an Automated System for the Detection of Melanoma

The complete life cycle of an automated system for the detection of melanoma, using
the dermoscopic technique, as can be seen in Fig. 4, consists on the following stages:

1. Image acquisition: The acquisition of the dermoscopic image is carried out.
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2. Image preprocessing: The preprocessing of the image is carried out. First of
all, the problems of the improvement in the image quality are covered, with the aim
of these representing as closely as possible the original one. Secondly, and it is here
where the automated process of a software tool really begins, the problem in the
detection and treatment of the “noise” is covered, which used to appear in this kind
of images, such as hair, bubbles, flashes, shadows, ink marks in the skin, electronic
marks (usually digital identifiers or copyright information), black frames and devices
and rulers to measure.

3. Skin lesion segmentation: The skin lesion segmentation is carried out. Habit-
ually, it is undertaken in an automated way. Notwithstanding, there exist semi-
automated systems in which the expert is allowed to intervene in this stage, intro-
ducing information for the segmentation improvement.

4. Detection and characterization of indicators: The automated detection and
characterization of the chosen indicators to undertake the diagnosis.

5. Diagnosis: On the basis of the medical algorithm, the quantitative calculation
of the degree of malignancy is made to determine the diagnosis according to the
ranges of the pre-established values.

2.2.2 Techniques Used in Relevant Works

Here the techniques used in the 2–5 of the life cycle of a system of automated
detection of melanoma will be explained.

2.2.3 Image Preprocessing

Here the problem in the detection and the treatment of the “noise” which sometimes
appear in these type of images, detecting the devices existing in the image, and
substituting the existing pixels in an appropriate manner.

Due to its inevitability in the acquisition of images, the most relevant problem is,
by far, the detection and treatment of hair, and in fact, it is the one which is treated
more in the medical literature.

The majority of works are based on the DullRazor� algorithm, presented in [15]
by Lee et al., using morphological filters for each of the RGB bands, and bilinear
interpolation for replacing the pixels. In [16], Zhou et al. present a novel system which
automatically detects the artifacts with curvilinear property, i.e. hair and ruler mark-
ings, and removes them from dermoscopy images using exemplar-based inpainting.
In [17], Wighton et al. carry out an inpainting study as an alternative to DullRazor’s
bilinear interpolation.

In [18], Kiani et al. present a method for hair removal, better and more efficient
than DullRazor� algorithm, whose principal contribution is in the hair detection,
for which an initial task of determining the hairs orientation is performed, using the
Radon Transform, followed by a second task that subsequently carries out a border
detection, made by Prewitt filters.
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In [19], Abbas et al. present a novel algorithm for detecting and repairing of
hair-occluded information from dermoscopy images, which has a capability to pre-
serve the skin lesion features such as color and texture. For the hair detection the
method uses Gaussian and morphological filters, and for the restoration it uses a fast
marching inpainting method.

In [20], Abbas et al. undertake a comparative study between the previously
presented method and the three main method of the state of art: linear interpola-
tion, inpainting by nonlinear partial differential equation (PDE) and inpainting by
exemplar-based repairing techniques.

2.2.4 Lesion Segmentation

For the segmentation of the skin lesions within the dermoscopic lesion numerous
methods have been proposed, corresponding to different approaches which the seg-
mentation can be addressed with.

In [21], Celebi et al. analyze the state of the art and the issue existing in the
segmentation of the skin lesions in dermoscopic images. In this work the different
segmentation methods are classified roughly in the following categories: 1. His-
togram thresholding: obtaining an histogram threshold to make the segmentation;
2. Clustering: obtaining homogenous regions using color clustering algorithms; 3.
Edge-based: using edge operators; 4. Region-based: obtaining homogenous regions
using region merging, region splitting, or both; 5. Morphological: using the watershed
transform; 6. Model-based: modeling of images as random fields; 7. Active contours
(snakes and their variants): using active contours techniques; 8. Soft computing:
using soft-computing techniques.

In [22], Delgado et al. carry out the segmentation, using the IHP method, a method
based on the accomplishment of a linear transformation over another color space in
which the segmentation is made using techniques through histogram thresholding.
With an idea similar to the previous one, in [23], Garnavi et al. undertake the projec-
tion of the dermoscopic image to different color channels, making subsequently the
segmentation in two regions, through histogram thresholding, using the Otsu method,
with the aim of obtaining the optimal projection. In [24], Celebi et al. propose a new
method based on the fusion of some thresholding methods, using a Markov ran-
dom field (MRF) framework, and subsequently this method is compared with nine
methods of the state of art.

In [25], Schmid et al. carry out the segmentation on the basis of the fuzzy c-
means (FCM). In [26], Cucchiara et al. also use that method, paying the attention in
issues of color, as well as topological ones, guiding the recursion of the algorithm by
evaluation of adjacency and mutual inclusion properties of extracted regions. In [27],
Zhou et al. present a new mean shift based FCM algorithm improving the computing
cost. In [28], Melli et al. compare four color clusterization methods: median-cut,
k-means, FCM and mean shift, the latter having obtained the best results. In [29],
Celebi et al. carry out the segmentation using the JSEG algorithm based on the color
quantization and spatial segmentation. In [30], Celebi et al. use the statistical region
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merging algorithm method comparing the results with six methods of the state of the
art, with very good results.

The use of the watershed technique has been proposed in some works; one of the
most relevance is presented in [31], where Wang et al. use the watershed approach,
and adding for the improvement of the segmentation a postprocess by a correction
based on neural networks.

The technique of the active contours/snakes is described in the methods section.
This method is normally used in semiautomatic systems, which require some inter-
action by the user, although there also exist methods in which this interaction is not
undertaken, like [32], in which Erkol et al. use a method based on gradient vector
flow (GVF) snakes with an automatic initialization. More recently, in [33], Zhou et
al. propose an improved algorithm based on GVF and, in [34], Abbas et al. present
a work that uses the active contour model in the CIECAM02 based uniform color
space, to achieve an adaptation to human perception.

2.2.5 Detection and Characterization of Indicators and Diagnosis

Previously the most commonly used medical methods for the diagnosis were com-
mented. But examining the indicators present in those methods, it can be observed
that the objectivization of some of the present indicators, the C of the “Color” of
the “ABCD Rule”, can be easily quantified and objectifiable. However, there exist
other indicators, as it is the case of many of the patterns or dermoscopic structures,
which are very difficult to quantify and objectify, in fact, its determination by human
experts is largely subjective. Thus, many methods of the state of the art have other
approach.

Figures 5 and 6 show the two approaches, firstly the classical approach, that maps
directly the detection and characterization of indicators from the medical algorithm,
and secondly the other approach, where a process of extraction of features is under-
taken and, on the basis of a classification procedure, the diagnosis is determined.

In the second approach should be noted that, really, these features behave
themselves like the indicators of the algorithm. Normally, this approach uses super-
vised machine learning techniques: based on a set of features, a sample of image
values is extracted, and its numerical values are studied in relation with its benignity
or malignancy. On the basis of this, some classification rules are generated, which
determine the diagnosis, and which are applied over the entirety of images.

Fig. 5 Diagnosis made with the classical approach mapping directly from the medical algorithm
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Fig. 6 Diagnosis made with the approach based on the extraction of features and classification
algorithms

The problem this approach has is that, these being habitually automations are a
support for the diagnosis of the doctor and, since he is the one who takes the decision
at the end, he usually prefers to do it supported by algorithms used in the medical
practice, and that is why he feels more comfortable if the guide to the diagnostic
shows him the estimated value of the medical indicators.

Hence, the classical approach which is to be followed is to attempt to reproduce
as closely as possible the medical method, making to do so a detection and char-
acterization of the indicators of the medical algorithms. The system presented here
would be located in this classical approach.

We are watching some of the most relevant works, using both approaches.
In [35], Iyatomi et al. carry out an implementation of the ABCD algorithm by

selecting 80 features for the A, 32 for the B, 140 for the C and for the D, instead of
undertaking the detection of different dermoscopic structures, it selects 176 texture
features, and the process of machine learning and rule generations is made with ANN
(Artificial Neural Network).

In [36], Alcon et al. present a detection system based on the ABCD algorithm,
with an approach similar to the previous one, selecting features for A, B, C and D,
and taking texture features for the D. For the rule generations various classifiers are
used.

In [37], Di Leo et al. present a detection system based on the 7-Point Checklist
Method. For the detection of the different structures they use color, texture, spec-
tral and structural analysis features. The analysis and classification are made using
statistical methods and machine learning methods.

In [38], Ganster et al. select a set of color, geometric and texture features to describe
the malignancy of a lesion, delivering the final kNN classification a sensitivity of
87 % with a specificity of 92 %.

In [39], Tomassi et al. define a series of color and texture features, then a classi-
fication with SVM and spin glass-Markov random fields. The results are compared,
over 270 images, with those of the previous method exposed by Ganster et al.

In [40], Celebi et al. present a work in which a series of geometric features are
defined, color and texture ones, which are subsequently studied with SVM, using
kernel RBF. Out of a total of 564 images a sensitivity of 84.33 % and a specificity of
96.19 % are obtained.

In [41], Rahman et al. present a system of detection of melanoma. 128 features of
color and texture are presented, the classification is made with Bayes and 358 images
are tested, with an accuracy of 75.69 %.
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In [42], Surowka presents a work in which supervised learning with MLP and
SVM is used. The feature set is composed of wavelet-based multi-resolution filters
of dermoscopy images, and feature selection is done by the Ridge linear models. A
sensitivity of 89.2–94.7 % and a specificity of 85–95 % are obtained.

In [43], Situ et al. use the technique of Bag-of-Features (BoF), widely used in
artificial vision and equivalent to the Bag-of-Words used in the documents. The
classification results are made using Naive Bayes classification and Support Vector
Machines. The best performance obtained is 82.21 % on a dataset of 100 skin lesion
images.

In [44], Zhou et al. present a new technique for the detection and description of
invariant rotation and scaling features. Based on the interest point detection model,
the concept of DIP (Dermoscopic Interest Points) is introduced for the first time, and a
detector and descriptor of those points is proposed, comparing the information taken
with others of the state of the art like SIFT and SURF over 150 images, obtaining
good results.

In [45], Situ et al. present a work in which, using the same BoF framework
designed in [43], implement lesion classification using DIPs. SVM classifier is used,
and over 1505 images 86.17 % of accuracy and 84.68 % of specificity are obtained.

Regarding the detection of the individual patterns, it will be commented hereafter.
In [46], Anantha et al. use for the detection of the pigment network texture analysis

algorithms.
In [47], Betta et al. for the detection of the atypical pigment network use two

techniques, one structural, in which morphological methods are used, and another
one spectral, in which the FFT is used, high pass filters, inverse FFT and finally
thresholding techniques. Furthermore, in this work, a pixel classification method is
used to find the pixels belonging to a vascular pattern.

In [48], Di Leo et al. from the same research group, improve the previous work,
defining 9 chromatic characteristics and 4 spatial ones, and use decision tree classi-
fiers, in the categories of “Absent”, “Typical” and “Atypical”, using the C4.5 algo-
rithm. The process is carried out over 173 images with more than 85 % of sensitivity
and specificity (the exact values are not specified).

In [49], Barata et al. undertake the detection of the pigment network using a bank
of directional filters and morphological operations, followed by a feature extraction
and an AdaBoost algorithm for the classification, and then obtaining over a database
of 200 images a sensitivity of 91.1 % and a specificity of 82.1 %.

In [50], Shrestha et al. use different texture metrics for the analysis of the del
atypical pigment network, with an accuracy of 95 %. In [51], Sadeghi et al. carry
out the detection of the pigment network using the Laplacian of Gaussian (LoG)
filter in the first place to capture correctly the “Light-Dark-Light” and then, over
the generated binary image, seeks cyclical sub-networks, using the ILCA algorithm
(Iterative Loop Counting Algorithm). 500 images are tested with an accuracy of
94.3 %.

In [52], Sadeghi et al. from the same research group, improve the previous work
and present a method for the classification between “absence of pigment network”,
“typical pigment network” and “atypical pigment network”. To do so they propose
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an algorithm based on the previous work to find the mesh and the extraction of
structural, geometric, chromatic and texture characteristics, treated with the Login-
Boost algorithm, thereby generating a classification between “Absent”, “Typical”
and “Atypical”, over 436 images. 82.3 % of accuracy is obtained. If it is made over
the “Absent” and “Present” categories, 93.30 % of accuracy is obtained.

In [53], Skrovseth et al. seek different texture parameters for the detection of the
pigment network and the globular pattern.

In [54],Yoshino et al. present a work in which morphological filters are used for
the detection of the globular pattern.

In [14], Gola et al. undertake the detection of globules combining morphological
techniques with an edge detection algorithm.

In [55], Celebi et al. study the presence of the pattern blue-white veil in the
melanocytic lesions. To do so a series of features corresponding to the veil pixels are
captured, and a tree for the classification is generated, using the C4.5 algorithm, with
the rules obtained for the classification of the pixels of a skin lesion between veil
and not veil. After that, the study about if the region with the pixels might have the
blue-white pattern, on the basis of geometric features, using the C4.5, and generating
a tree with the corresponding rules.

In [56], Di Leo et al. carry out a partition of the lesion into different colors using
PCA. Over the regions some features are defined, to determine those of blue-white
veil and those of regression. LMT are used, generating a tree of rules, achieving
sensitivity results of 87 % and specificity results of 85 %.

In [57], Garcia et al. study the blue-white veil and the dark-red patch of pigment
patterns in melanocytic lesions, using machine learning techniques, obtaining color
features for the pixels detection and calculating morphological and geometric features
for the regions classification, and also incorporating in the generated rules for the
patterns detection the relation between both types of structures.

For the streaks detection, in [58], Mirzaalian et al. develop a machine-learning
approach, using for the identification of the streaks color, spectral and geometric
features, and for the classification a SVM model, validating the method over 99
images, differenced in “absence”, “presence of regular” and “presence of irregular”,
with an AUC of 91 %.

In [59] Sadeghi et al. present a novel approach for the detection of the streaks,
applying techniques based on ridge and valley detection used in fingerprint image
recognition. It is tested in 300 images of melanocytic lesions, with an AUC of 90.5 %.
In [60], Sadeghi et al. from the same research group, improve the previous work, and
present a method for the detection of the streaks. They classify the dermoscopy
images into streaks “Absent”, “Regular” and “Irregular”, testing in 945 images,
and obtaining an AUC of 85 %. This method also includes the Absent/Present and
Regular/Irregular classifications.

For the detection of the hypopigmentation pattern, in [61], Dalal et al. study the
features of the hypopigmentation areas from different point of views (color, geometry,
position inside the lesion, etc.), and using neuronal networks arrive to a series of rules.

For the detection of blotches, in [62], Madasu et al. present a work in which
blotches are identified using the texture analysis.
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In [63], Stoecker et al. design a blotches extraction algorithm divided into two
parts. First of all the thresholding is made to find the regions and, secondly, they are
analyzed through a series of features, using machine learning techniques. Results
with an accuracy of 77 % are obtained.

For the detection of blotches, in [64], Pellacani et al. present two methods for
the automated extraction of ’Absolute’ (ADAS) and "Relative" dark areas (RDA)
and a set of parameters for its description. It is tested in 339 images of melanocytic
lesions, sifting from melanomas and nevus, obtaining a result of 74.2 and 71.2 %
respectively.

In [65], Khan et al. use fuzzy techniques for the detection of blotches. A machine
learning process is carried out, obtaining some rules, using neuronal networks. An
accuracy of 81.2 % is obtained.

For the detection of parallel pattern, typical in acral volar melanomas, in [66],
Iyatomi et al. propose a novel method, obtaining over a dataset of 213 images a sen-
sitivity of 81.1 % and a specificity of 92.1 %, consisting in three subpattern detectors
for the three typical parallel structures such as parallel ridge, parallel furrow and
fibrillar pattern. They use color, texture and structural features, reduced by using
PCA, and classified by a linear model.

If wanting to enlarge more, it can be consulted in [67], from Korotkov et al., that
present a comprehensive survey in the field of computerized pigmented skin lesion
image analysis. Finally, in [68], Celebi et al. present the editorial of the latest special
issue on skin cancer image analysis.

2.3 Most Relevant Tools for the Automated Detection of Melanoma
in Dermoscopic Images

A state of the art of some of the most relevant software systems for the automated
detection of melanoma in dermoscopic images will be carried out.

To do so, first of all, a characterization of the automated systems in dermoscopic
images will be undertaken, describing some of the criteria to be taken into account
in those systems, secondly a brief description of the most relevant systems in the
market will be made, and finally, thirdly, a comparison between them is carried out.

2.3.1 Characterization of the Software Systems for the Automated Detection
of Melanoma in Dermoscopic Images

Some of the characteristics of interest which are used to be taken into account when
characterizing a software system for the automated detection of melanoma in der-
moscopic images will be carried out.

It should be noted, in any case, that the approach taken in this review is to place
especially the standpoint in the analysis of the software systems in support to the
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diagnosis used and it shall not be assessed the technical specifications of the hardware
which in most cases are integrated with the software.

Integrated with proprietary hardware: Most of the relevant systems work
with proprietary hardware, having been developed by the manufacturers themselves,
which complement the acquisition of images with a software to support to the diag-
nosis. The advantage of this is that it assures a stronger integration between the
software system and the acquired images. The disadvantage is the coupling this may
induce to, and the worse flexibility when analyzing the not acquired with proprietary
technology.

Teledermatoscopy: A system with teledermatoscopy support is capable of under-
taking the distance transmission of dermoscopic images, for its remote analysis. The
teledermatoscopy can be used with different purposes: for the medical user it allows
to carry out the diagnosis from a remote center, or else a second diagnosis to review
the diagnosis already carried out; for the non-medical user it allows the possibility
of making the screening directly, via mobile or web, or else, it should be integrated
in a telemedicine platform.

Multiplatform: Quite related to the previous one, this characteristic has to do
with the different platforms from which it can be accessed to the diagnostic system,
via web, mobile devices, via web services, via desktop application, etc.

Multiaccess: There exist systems which can be accessed by the public in general,
other ones which can only be accessed by health professionals and other ones which
allow both types of users.

Bodymapping: Currently, most of the systems have access to the bodymapping,
that is to say, they are capable of storing and processing macroscopic images corre-
sponding to parts of the body, with sets of lesions, mapped to dermoscopic images
corresponding to the different lesions. Notwithstanding, for the accomplishment of
this task there exist different degrees of sophistication, which allow a greater agility
in the procurement and processing of this information.

Macroscopic images: Most of the systems of automated detection of melanoma
are capable of analyzing macroscopic images of the lesion, carried out with a normal
photo camera, generally without any magnification. Obviously, this analysis always
has a worse accuracy, but in some occasions it can be convenient.

Classic dermoscopic images: By “classic dermoscopic” images we mean the
ones obtained through the utilization of a dermatoscope. Usually, these images are
defined as just dermoscopic, however, here we have established the convention of
encompassing the multispectral ones within the dermoscopic ones, and to differen-
tiate them they will be named as “classic dermoscopic” .

Multispectral dermoscopic images: Images obtained by a device using different
wavelenghts of light, which penetrate the skin to different depths, which allow the
visualization of invisible criteria to macroscopic images and classic dermoscopic
ones. Various images in gray are obtained corresponding to the different bands on
the spectrum which are handled.

Frequently quoted and positively evaluated in relevant publications in recent
years: When a system is quoted in a relevant publication is regarded as a system of
greater acceptance by the scientific and medical community, being also important
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the assessment given to it. Obviously, there are always questionable systems of
analyzing, depending on who carries out the experiment and how this is undertaken,
the database tested, and so on.

High degree of penetration on the market of the health professionals: It is
an important characteristic the analysis of the degree of penetration on the market,
among the health professionals, since if this is high it can be an indicator that the
experts trust in it. In any case, it always has to be taken into account that, in many
instances the hardware and the software are sold integrated and, consequently, the sale
of the software might be due to the hardware. And, of course, many other commercial
considerations can be taken.

Approval by institutions: A key feature when it comes to assess the reliability
of a diagnostic is its approval by the institutions.

Algorithm for the diagnosis: Obviously, all the software systems implement
proprietary algorithms. Notwithstanding, this automations are really a guide to the
diagnosis of the doctor, and since he is the one who takes the decision at the end,
in many instances he prefers to do so supporting in algorithms accepted by the
medicine. Consequently, normally, the diagnosis is accompanied by the quantitative
information corresponding to a medical algorithm.

Accuracy: It is obvious that the most important feature of an automated system
is its level of accuracy, and more specifically its sensitivity and specificity. Notwith-
standing, it deals with a sensitive issue. Many corporations do not provide these data
explicitly and, in any case, as it has been commented previously, these data need
to be taken with great caution, since the accuracy data are always questionable data
to analyze, depending on who does the experiment and how this was carried out,
the database tested, whether the difficulty is higher or lower in the discernment of
images, the factors to be taken into account, and so on.

2.3.2 Most Relevant Automated Systems for the Detection of Melanoma on
the Market

Some of the, in our opinion, most relevant software systems for the automated detec-
tion of melanoma in dermoscopic images will be commented here, based on the
previously mentioned criteria and always from the point of view of the software in
support of the diagnosis.

Additionally, it should be also noted that, presently, due to the importance of the
early detection of melanoma, the applications in macroscopic images aimed at the
public in general are proliferating. To illustrate this type of tools, which are obviously
less accurate, three systems which work exclusively with macroscopic images will
be commented, two of them are mobile applications.

Finally, the Molemap, the most important screening worldwide program for the
detection of melanoma, and Melanoscan, a screening program which is having good
results lately, will be commented. In both cases the diagnostic software is not com-
mercialized per se but, nevertheless, due to its importance, it has been considered
appropriate to include them here.
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As it has been stated previously, it should be noted that most of the relevant
systems work with proprietary hardware, having been developed by the manufac-
turers themselves, which complement the acquisition of images with a software
supporting the diagnosis though, in many cases, this was developed in principle by
a research team external to the manufacturing company.

MoleMax™

It is a property of the Derma Medical Systems company (Austria) and it was devel-
oped in cooperation with the medical faculty of the University of Vienna [69]. It is a
system which lasts present on the market for many years, and it works in classic der-
moscopic images obtained with proprietary hardware. In fact, today MoleMax™ is a
worldwide accepted clinical standard in digital epiluminescence microscopy. It also
allows the analysis of macroscopic images, captured with digital cameras, and giving
support for webcam. It is sold only to health professionals, although the interaction
with the non-medical user system is allowed, for the accomplishment of screening
and, in fact it is focused to teledermoscopy. It is multiplatform to a great extent,
and it has been quoted and positively evaluated in various relevant publications. Its
degree of penetration among the health professionals is very high. The diagnosis is
undertaken in an automated way, using as diagnostic support the ABCD Rule and
the 7-Point Checklist. Recent data about the accuracy of the Molemax diagnostic
software are not available. It can be seen in Fig. 7.

Fig. 7 Molemax software tool, integrated with proprietary system. Source in [69]
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Fig. 8 DBDermo-Mips/DDAX the software tool. Source in [70]

DBDermo-Mips/DDAX

It is a property of the Biomips company (Italy) [70]. It is a system for the aided
diagnosis of melanoma which works in classic dermoscopic images, on the basis of
the DBDermo-Mips system which remains for many years on the market. The main
addendum is its great speed, which provides the possibility of performing in real-time
analysis of the patient lesions, without the necessity of storing previously the images.
It is not integrated with proprietary hardware, but there are dermatoscopes which it
is more integrated with. It is only directed to health professionals, being its level of
penetration between them high and having been quoted and positively evaluated in
some relevant publications. The diagnosis is carried out using as medical algorithm
the ABCD rule, although it analyses a large number of indicators using the same
similarity pattern and the company itself reports an accuracy with a mean sensitivity
of 92 % and a mean specificity higher than 80 % [70]. It can be seen in Fig. 8.

Fotofinder

It is a property of the FotoFinder Systems Inc. company (Germany) [13].
It is a system which works in classic dermoscopic images obtained with propri-
etary hardware. It is widespread among the health professionals being aimed only
at them, offering a large number of performances, among them an advanced capture
software for the bodymapping. It is multiplatform, allowing use even mobile devices
integrating an optical device. It has been quoted and positively evaluated in various
relevant publications. The diagnosis is made in an automated way using the diagnosis
Mole Analyzer tool, having as diagnostic support the ABCD Rule. No recent data
about the accuracy of the diagnostic Mole Analyzer software are available. It can be
seen in Fig. 9.
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Fig. 9 Mole Analyzer tool, integrated with the Fotofinder system. Source in [13]

DermaGraphix/Mirror

It is a property of the Canfield Imaging Systems company (US) [71]. It is a system
which works in classic dermoscopic images with proprietary hardware. It is quite
established among health professionals, mainly in UK and US, and it has been quoted
and positively evaluated in some relevant publications. The diagnosis is carried out
in an automated way monitoring the evolution of the lesions on the skin and using for
the diagnosis the ABCD rule. No relevant data about the accuracy of the diagnostic
software is available. It can be seen in Fig. 10.

SIAscopy™-Molemate

It is a property of the MedX Health Corporation company (Canada) [72]. It is a system
which works in multispectral dermoscopic images obtained with proprietary hard-
ware, which are generated using the SIAscopy™ technology, and they correspond
to eight consecutive discrete wavebands between 400 and 1,000 nm penetrating to
a depth of 2 mm. It is directed only to the health professionals, being high its level
of penetration and having been quoted and positively evaluated in some relevant

Fig. 10 Mirror software tool, Canfield dermatoscope. Source Ref. [71]
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Fig. 11 Molemate system.
Source Ref. [72]

publications. The diagnosis is made in an automated way, using the Molemate tool,
on the basis of proprietary algorithms. On July 2012, the British Medical Journal
published a study in which Molemate obtained good results, though no evidence that
the MoleMate system improved appropriateness of referral was found and, neither if
the systematic application of best practice guidelines alone was more accurate than
the MoleMate system [73]. It can be seen in Fig. 11.

MelaFind�

It is a property of the MELA Sciences Inc. (U.S.) company [74]. It is a system
which works in multispectral dermoscopic images obtained with proprietary hard-
ware, corresponding to 10 distinct spectral bands from 430 to 950 nm, from near
infrared through visible light spectrum, with 20 micron resolution. MelaFind ana-
lyzes the data using proprietary algorithms which work in a database containing
multi-spectral data and histological diagnoses for more than 10,000 biopsied lesions
from over 7,000 patients. It is directed only to dermatologists providing them with
an output of yes or no to do the biopsy. It is considered presently as the most reliable
diagnostic system on the market. In fact it has been the first software system accepted
by the FDA of U.S. On February 2011, the Archives of Dermatology published a
study on the diagnostic accuracy of MelaFind vs dermatologists. MelaFind achieved
a sensitivity of more than 98 %, and the average specificity was 91.5 %. Both of these
parameters were better than the clinical diagnoses made by the investigators [75]. It
can be seen in Fig. 12.

Dermoscopix

It is a property of the Dermoscopix company (Germany) [76]. It is an automated sys-
tem in support of the diagnosis which admits classic macroscopic and dermoscopic
images, from different sources, not being integrated with any particular device of
image capturing, allowing to be used with any camera-dermatoscope combination.
It is multiplatform, being aimed at health professionals. The diagnosis is carried out
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Fig. 12 Melafind. Source
Ref. [74]

in an automated way, using as medical algorithm the Menzies Method. No recent
data about the accuracy of the diagnostic software are available. It can be seen in
Fig. 13.

Fig. 13 Dermoscopix software. Source Ref. [76]
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Fig. 14 Microderm. Source
Ref. [77]

MicroDerm

It is a property of the VisioMed (Germany) company [77]. It is an automated system
in support of the diagnosis in classic dermoscopic images, integrated with proprietary
hardware. It is multiplatform, being aimed at health professionals. The diagnosis is
carried out in an automated way, using as medical algorithm the ABCD rule. No
recent data about the accuracy are available. It can be seen in Fig. 14.

MoleExpert

It is a property of the DatInf GmbH (Germany) company [78]. It has a support for
macroscopic and dermoscopic images, allowing to monitor the evolution between
images taken in different dates. It uses for the diagnosis the ABCD Rule, not reporting
accuracy data. It can be seen in Fig. 15.

DermAlert�

It is a property of the Western Research Company Inc. (US) [79]. It works in macro-
scopic images, allowing the comparison between images of parts of the body taken
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Fig. 15 Moleexpert. Source Ref. [78]

in different periods and the visualization of the existing differences. It uses for the
diagnosis the ABCD Rule, not reporting the accuracy data. It can be seen in Fig. 16.

MelApp

It is a property of the Health Discovery Corporation company (US) [80]. It works in
dermoscopic images and it is available for Iphone and Android. It is supported by
a database of images over which it uses recognition of patterns using the machine
learning Support Vector Machines (SVM) technique, carrying out using the ABCD
rule. It can be seen in Fig. 17.
UMSkinCheck

It is a property of the University of Michigan (US) [81]. It works in macroscopic
images and it is available for Iphone. It proposes a protocol based on the taking of
23 images, covering the whole body, whose aim is to monitor the evolution, being
this its main innovation. It can be seen in Fig. 18.
Molemap

It is a property of the Molemap company (Australia) [82]. It is the world leading
melanoma detection program for screening tasks with the aim of helping to identify
melanoma skin cancer at an early stage. It comprises other programs such as the
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Fig. 16 DermAlert�. Source Ref. [79]

Fig. 17 MelApp. Source Ref. [80]

Molesafe [83], existing a network of centers worldwide, in which the specialists
take the images, consisting on a full scan of the body of the patient, and classic
dermoscopic ones corresponding to the lesions which are seen irregular or have
changed from a previous review. The images are sent to a diagnostic center, where
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Fig. 18 UMSkinCheck tool. Source Ref. [81]

expert dermatologists analyze the images and draw a report. They report a high
accuracy, though no quantitative data are specified. It is really a screening program
and it is aimed at the patients directly, it does not commercialize diagnostic software
as such, nevertheless, due to the importance of this program it has been considered
adequate to include it here. It can be seen in Fig. 19.
Melanoscan�

It is a property of the Melanoscan Inc. company (US) [84]. It is a screening system
developed recently, with very encouraging results. It undertakes a rapid bodyscanning
seeking suspicious lesions, from which it obtains more detailed images. If it has
previous studies, it carries out comparisons in real time. It is really a screening
program and it is aimed at the patients directly, it does not commercialize diagnostic
software as such, nevertheless, due to the importance of this program it has been
considered adequate to include it here, since currently it is being used increasingly
in US. For the diagnosis it uses the ABCD algorithm. In the study [85] a sensitivity
of 75 % is reported and a specificity of 73.70 % is reported. It can be seen in Fig. 20.

2.3.3 Comparative Among Systems

Hereafter the features which are, as far as we are concerned, the most relevant ones
in each system of the previously described ones are to be shown, together with the
algorithms which are used in the diagnosis, the accuracy reported for these (in the
event of existing) and, in those cases where such information is reported by the
company, the information of the used datasets. It can be seen in Table 3.
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Fig. 19 Molemap. Source Ref. [82]

Fig. 20 Melanoscan. Source Ref. [84]
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Table 3 Comparative of the systems

MoleMax™ ABCD/
7-point
checklist

DBDermo-
Mips/DDAX

ABCD Sensit. 
92%
Specif. 
80%

Not 
reported

Fotofinder ABCD
DermaGraphix-
Mirror

ABCD

SIAscopy™-
Molemate

Proprietary
algorithms

MelaFind® Proprietary 
algorithms

Sensit. 
98%
Specif. 
91.5%

1632
images /
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Dermoscopix Menzies’
method

MicroDerm ABCD
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DermAlert® ABCD
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Fig. 21 Architecture of the system

3 System Design

Our research team designed and developed a complete family of digital image
processing algorithms which have been integrated in an automated system in support
of the detection of melanoma, which is to be presented in this section. It will start
with a high level to thereupon explain the design of the system in its different parts.

3.1 High Level View

It will start commenting the architecture and the design of the system.
As it can be seen in Fig. 21, the system is designed multiplatform and multiaccess,

offering the possibility of analysing macroscopic and classic dermoscopic images.
The doctor can access to it via software tool to the diagnostic system, which is
integrated with the database. The non-medical users, for screening works, can access
via mobile phone or via web, to the application of teledermoscopy, which is integrated
with the own diagnostic system.

The system core is the software tool and the diagnostic system, and its analysis of
the dermoscopic images, taken from different sources, from different manufacturers,
not being integrated with any particular hardware. As it can be seen in Fig. 22,
four modules are taken, corresponding to the four last tasks of the life cycle of an
automated system of detection of melanoma, explained in the previous section.
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Fig. 22 Design of the diag-
nostic system

3.2 Preprocessing

For the undertaking of the preprocessing in the original image IMG_SOURCE the
following steps are carried out:

P1—Generation of the color map of the complete image IMG_SOURCE. This
color map takes advantage for the preprocessing and the subsequent C of the
ABCD.

P1.1—The color map is carried out through a machine learning supervised
process. In 50 images doctors were required to catalogue the pixels of an image
sample of each of the colors: white, red, light-brown, dark-brown, blue-gray
and black.
P1.2—From the selected pixels features from different color spaces are extracted:
RGB, rgb (normalization of RGB), HSV, CIEXYZ and CIELab, classifying each
one of the pixels in the 6 described colors.
P1.3—Through the obtained data a tree classifier was used, the C4.5 algorithm
being chosen to generate the decision tree, which possesses the classification
rules [86]
P1.4—Through the generated rules, the partition of the lesion is made in
regions corresponding to the 6 colors of ABCD Rule named R_WHITE, R_RED,
R_LIGHT_BROWN, R_DARK_BROWN, R_BLUE_GRAY and R_BLACK.

P2—Detection of the black frames:

P2.1—From each one of the edges of the image (up, right, down and left) it
starts to examine the parallel lines
P2.2—For each parallel line:

P2.2.1—The pixels are gone through. For each pixel:
· P2.2.1.1—It is calculated as darkness measure: darknessMeasure=

(max(R, G, B) + min(R.G, B))/2.

· P2.2.1.2—The condition is evaluated (darkness Measure < T H R_
D ARK N E SS_P I X E L), which is a threshold darkness value.
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P2.2.2—If the THR_PERCENT_PIXELS_LINE% of the pixels fulfills the pre-
vious condition, the line as part of the frame is preselected, where that per-
centage is a threshold value.
P2.2.3—The median of the red and blue of the pixels of the line are calculated,
medianRed and medianBlue, and the variance of the Red varianceRed.
P2.2.4—The condition is evaluated((median Red − medianBlue) < T H R
_M E DI AN S_RE D_BLU E)AN D(varianceRed < THR_VARIANCE_
RED), where both of them are threshold values. If the line is fulfilled it is
from the black frame.

P2.3—The previous process ends when one of the parallel lines does not fulfill
the conditions to be selected.
P2.4—The mask of the black frames is the attachment of all the selected parallel
lines, in each one of the directions, naming the region R_MASK_MARKS.

P3—Detection of the flashes and bubbles:

P3.1—All the pixels are gone through and it is compared (R >= T H R_F L A−
SH_BU B BL E S)O R(G>=T H R_F L ASH_BU B BL E S)O R(B>=T H R_
F L ASH_BU B BL E S), whereT H R_F L ASH_BU B BL E S is a threshold
value.
P3.2—The mask with the flash pixels and bubbles will be named R_MASK_FLA-
SH_BUBBLES.

P4—Detection of rules:

P4.1—The dark side of the image is sought R_MASK_DARK through the thresh-
old value THR_DARKNESS.
P4.2—The dark side of the R image which is not frame is sought R_MASK_
DARK_2= R_MASK_DARK- R_MASK_MARKS.
P4.3—To the previous one, the regions corresponding to white, red and light
brown from the color map is subtracted. R_MASK_DARK_3 = R_MASK_
DARK_2- R_WHITE- R_RED- R_LIGHT_BROWN.
P4.4—The components of 8-connected from R_MASK_DARK_3 higher than
an amount of threshold pixels THR_NUM_MIN_PIXELS_MAJOR, with the aim
of taking large pieces of the rule.
P4.5—With each of the founded components C_MAJOR:

P4.5.1—It is preselected if it does not intersect a circle with center and radius
a value THR_RADIO_CIRC_CENTER, to avoid selecting part of the rule to
the lesion.
P4.5.2—The median of the color of the values of C_MAJOR, is calculated,
naming colorMedian_M.
P4.5.3—C_MAJOR is selected if the conditions are fulfilled:
· P4.5.3.1—If it has big holes in the middle the proportion of C_MAJOR_H

is calculated, which is the C_MAJOR with holes bigger than a threshold
value THR_SIZE_BIG_HOLES filled: percent=Area( C_MAJOR_H)/
Area(C_MAJOR) and is selected if (percent > T H R_C O M P ARE_
O RI G_F I L L E D), which is a threshold value.
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· P4.5.3.2—If the color is similar to THR_COLOR_M: i f ||color Median_
M-T H R_C O L O R_M || < THR_DIFF_MEDIANS, where THR_COL-
OR_M is a threshold color and THR_DIFF_MEDIANS is a threshold
value.

P4.5.4—If C_MAJOR has been selected C_MAJOR_NO_NOISE is calcu-
lated, with C_MAJOR filling of the holes with a smaller size than a threshold
value THR_SIZE_SMALL_HOLES, with the aim of removing noise pixels
which may be like holes of the mask .

P4.6—The union of all of the C_MAJOR_NO_NOISE obtained in R_MASK_
UNION_MAJORS.
P4.7—If there is any C_MAJOR selected, that is to say, if there are big pieces
of rule, the components 8-connected of R_MASK_DARK_3 are selected, lower
than the amount of pixels THR_NUM_MIN_PIXELS_ MAJOR already defined
and higher than a threshold value THR_NUM_MIN_PIXELS_MINOR, with the
aim of taking small pieces of the rule.
P4.8—With each one of the components found C_MINOR:

P4.8.1—C_MINOR is selected if it fulfills the conditions:
· P4.8.1.1—If ||color Median_M − T H R_C O L O R_M || < THR_

DIFF_MEDIANS, where THR_COLOR_M and THR _DIFF_MEDIANS
are thresholds already defined.

· P4.8.1.2—If the distance of C_MINOR to R_MASK_ UNION_MAJORS
is lower than a threshold value THR_DIST_MAJOR_MINOR.

P4.8.2—If C_MINOR has been selected C_MINOR_NO_NOISE is calculated
, with C_MINOR filling of the holes of a lower size than a threshold value
THR_SIZE_SMALL_HOLES.

P4.9—The union of all of the C_MINOR_NO_NOISE are calculated, obtained
in R_MASK_UNION_MINORS.
P4.10—The mask with the pixels of the rule will be named R_MASK_ RULE
and it is the result of the union of R_MASK_UNION_MAJORS and R_MASK_
UNION_MINORS.

P5—Calculation of the color of the skin:

P5.1—The region of the skin pixels is calculated R_MASK_COLORS_SKIN
as the ones which fulfill the condition of (R > T H R_RE D)AN D(R >

G)AN D(R > G) where THR_RED is a threshold value.
P5.2—From that region 3 masks already defined are subtracted R_MASK_SKIN
=R_MASK_COLORS_SKIN-R_MASK_MARKS-R_MASK_FLASH_BUBB-
LES-R_MASK_DARK.
P5.3—The color of the skin skinColor is calculated as the value of the median
of the pixels of the region R_MASK_SKIN.

P6—Detection of the mask with the hairs. The idea is similar to that one exposed
in [15] by Lee et al., with some modifications:

P6.1—A morphological closing is made in the 3 RGB bands.
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P6.2—The 3 bands RGB are subtracted to the 3 bands with the closing accom-
plished.
P6.3—A grey image is created in which the value of each pixel is the minimum
of the 3 gray images created in the previous stage.
P6.4—Through the previous stage a mask R_MASK_HAIR_1 is created through
a threshold value THR_HAIR.
P6.5—The 8-connected components of the R_MASK_HAIR_1 are selected,
higher than an amount of threshold pixels THR_NUM_ MIN_PIXELS_HAIR,
and the union of all of them is made, creating R_MASK_HAIR_2, with the aim
of removing loose pixels.
P6.6—R_MASK_HAIR=R_MASK_HAIR_2-R_WHITE-R_RED-R_LIGHT _
BROWN-R_DARK_BROWN is calculated, that is to say, 4 of the values of the
initial map of colors are removed with this, the trusses are removed or from
other type which should not be confused with hairs R_MASK_HAIR is the mask
with the hairs.

P7—Substitution of the detected artifacts pixels:

P7.1—The pixels of the mask R_MASK_MARKS and R_MASK_RULE are sub-
stituted by the skin color skinColor.
P7.2—The pixels of the masks R_MASK_FLASH_BUBBLES and R_MASK_
HAIR are substituted by a bilinear interpolation.

P8—For its use in the C of ABCD a mask is kept with the union of all the substituted
artifacts R_MASK_ARTIFACTS, since the pixels of that mask should be classified
once again for the map of colors, since the initial classification is made from the
original one and not from the preprocessed one.
P9—As the output of the process it is taken that through the original image
IMG_SOURCE a preprocessed image has been generated IMG_PREPROC.

3.3 Segmentation

Here the automated segmentation accomplished by the application will be com-
mented in detail:

S_SEG_1—Determination of coefficients (COEF_RED,COEF_GREEN, COEF
_BLUE) for a linear transformation of RGB to a grayscale which allows the
optimization of the segmentation using the Otsu Method. The idea is similar to
the one exposed in [22] of Delgado et al., with some modifications. Those coef-
ficients will fulfill the condition of for all of the pixels of IMG_PREPROC, the
image in gray IMG_PREPROC_GRAY in which IMG_PREPROC_GRAY(x,y)=
COEF_RED*IMG_PREPROC(x,y,1)+COEF_GREEN*IMG_PREPROC(x,y,2)
+COEF_BLUE* IMG_PREPROC(x,y,3) will be segmented by the Otsu Method
[87]in an optimal way.
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S_SEG_1.1—In 110 images the doctors were required to carry out the segmen-
tation of the lesions, generating 110 masks R_MASK_SEG_MED.
S_SEG_1.2—An experiment is carried out with different combinations of coef-
ficients (COEF_R,COEF_G, COEF_B), positive numbers which fulfill the con-
dition (COEF_R+COEF_G+COEF_B)=1.
S_SEG_1.3—With each (COEF_R,COEF_G,COEF_B):

S_SEG_1.3.1—With each one of those 110 images, through the preprocessed
images IMG_PREPROC, the linear transformation is undertaken with the
coefficients (COEF_R,COEF_G,COEF_B), a blurring is carried out applying
to the low pass filter, a Gaussian filter with 3 pixels of radius, and subsequently
the segmentation is made using the Otsu Method, generating a mask. The 8-
connected component of higher size is selected, which is finally smoothed by
using a morphological opening, having a result R_MASK_TEST.
S_SEG_1.3.2—A measure to determine whether the segmentation was correct
is defined: measureSeg=Area(Intersection( R_MASK_TEST,R_MASK_SEG_
MED))/Area(Union(R_MASK_TEST, R_MASK_SEG_MED)).
S_SEG_1.3.3—The segmentation is considered good if (measureSeg>

THR_SEG).
S_SEG_1.3.4—The number of good segmentations are counted numSegOk.

S_SEG_1.4—The coefficients with a greater number of good segmentations
are selected numSegOk. Those coefficients are: (COEF_RED, COEF_GREEN,
COEF_BLUE).

S_SEG_2—To segment an image IMG_PREPROC:

S_SEG_2.1—The image in gray is generated IMG_PREPROC_GRAY through
the coefficients (COEF_RED,COEF_GREEN,COEF_BLUE).
S_SEG_2.2—A blurring applying to the low pass filter and a Gaussian filter
with 3 radius pixels is carried out.
S_SEG_2.3—The segmentation using Otsu Method is carried out.
S_SEG_2.4—The 8-connected component of larger size is selected.
S_SEG_2.5—It is smoothed using a morphological opening.

S_SEG_3—Through the previous segmentation the mask of the lesion is generated
R_MASK_SEG.

3.4 Detection and Characterization of Indicators

In the state of art section it was already commented that in the works of computer
aided diagnosis of melanoma there exist two approaches: on the one hand, those
which are based on a medical algorithm and on the other hand, those which are not
based on any medical algorithm, and which consists on the extraction of features
followed by a classification algorithm in the values of those features, based on a set
of rules generated in a machine learning process.
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Here the first approach was chosen. The choice of a medical algorithm as a basis
of the diagnosis enables the analysis to have their basis on the existing extensive
literature, which provides the experts with more confidence.

In the system indicators corresponding to the medical algorithm of the “ABCD
rule” are sought, having selected as diagnostic algorithm the “ABCD Rule” for being
easier to objectify and quantify.

A: Asymmetry
The algorithm for the calculation of the asymmetry is decomposed into the fol-

lowing steps:

A1—Calculation of the axes: higher and lower. The major axis will be an axis
which will cut the lesion by the middle in two halves, more or less equal and
symmetrical, and the lower axis will be the perpendicular to this by the middle.

A1.1—The centroid of the lesion of the mask R_MASK_SEG is calculated, which
is assumed to be the origin of the coordinates.
A1.2—A threshold value has been defined THR_DIFF_PIXELS. Through the
calculated point, and assuming that point a coordinate axis with parallel axes
to the border of the images some straight line segments of the first quadrant
which pass through that point and cut the mask of the lesions in two halves
which have as maximum an area difference of THR_DIFF_PIXELS. The one
with longer length is selected.
A1.3—The same thing as in the previous point is made, with the straight segments
of the second.
A1.4—The segment of longer length is selected among the ones of the first and
the second quadrant: the major axis is already available.
A1.5—The minor axis will be the segment perpendicular to the major axis which
passes through the center point.

A2—The calculation of the asymmetry in shape with respect to the major and
minor axis:

A2.1—With respect to the major axis:
A2.1.1—The left and right regions of R_MASK_SEG are calculated with
respect to the major axis: R1 and R2.
A2.1.2—The symmetric region with respect to the major axis of one of the two
halves, of the R2, for instance, is calculated: It is obtained S2=Sim(R2).
A2.1.3—The intersection of R1 and S2 is calculated: I= Intersection (R1,Sim
(R2)).
A2.1.4—The union of R1 and S2: U=Union(R1, Sim(R2)).
A2.1.5—Hereafter the number of pixels of the intersection I is divided by the
number of pixels the U union, which we will name intersectionPercent.
A2.1.5—The next condition is evaluated: (intersectionPercent<THR_INTER-

SECTION_PERCENT),being this a threshold value, in positive case it is
asymmetric in shape with respect to the major axis.

A2.2—The same with respect to the minor axis.
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A3—The calculation of the asymmetry in color with respect to the major and minor
axis:

A3.1—With respect to the major axis:
A3.1.1—The RGB histograms are calculated with respect to both halves.
A3.1.2—The means of the RGB histograms of both halves are obtained, finding
meanHistMajor1(meanRedHistMajor1,meanGreenHistMajor1,meanBlue
HistMajor1)and meanHistMajor2(meanRedHisMjor2,meanGreenHist-
Major2,meanBlueHistMajor2).
A3.1.3—The Euclidean distance is found: distMeansHistMajor=||meanHist-
Major1-meanHistMajor2||
A3.1.4—The condition is evaluated: (dist Means Hist Major > THR_
MEAN_HIST), in positive case, it is asymmetric in color with respect to
the major axis.

A3.2—The same with respect to the minor axis.

A4—The asymmetry is calculated in each axis: if with respect to the axis it is
asymmetric in shape or color, then it is asymmetric.

B: Borders
The algorithm for the calculation of borders is decomposed in the following stages:

B1—Calculation of bisectors and determination of the octants:

B1.1—The 2 bisectors are calculated.
B1.2—The skin lesion is divided in 8 octants.

B2—Calculation of the crown for the analysis of the borders. Through THR_WID-
TH_INTERIOR_BORDER and THR_WIDTH_EXTERIOR _BORDER, threshold
values, the crown is calculated with the origin the border of the lesion, which has
a width on the inside THR_WIDTH_INTERIOR_ BORDER and on the outside
THR_WIDTH_EXTERIOR_BORDER.
B3—Calculation of radii: The 7 radii which divide the angle of the octant in 8
pieces of PI/32 radians are calculated.
B4—The study of the graphics of the radii in each octant:

B4.1—The graphic with the values of each one of the radii in the grayscale in
(WIDTH_INTERIOR + WIDTH_EXTERIOR + 1) values corresponding to the
interval of the segment corresponding to the radius inside the crown.
B4.2—Given a threshold constant THR_DIFFERENCES_RANGE in all the val-
ues of the interval the wider of the differences which are given in each one of
the subintervals of the size THR_DIFFERENCES_ RANGE is sought, satisfying
the fact of being more or less monotonous the increasing, which is calculated
through a threshold value THR_CHANGES_IN_SUCCESSIVE_POINTS, con-
trolling the fact that in that interval would not vary in more than that value. For
each one of the radii it is obtained a maxDiffRadio value.
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B5—For each octant the degree of abruption of the border is the maximum of the
maxDiffRadio of each of the radii found in the previous point, this value is called
abruptionLevel.
B6—For each octant the degree of abruption of the border is calculated: the found
value is compared with a threshold constant THR_ABRUPT_BORDER, which
determines if this degree of increasing can be considered as an abrupt border or
not, if (abruptionLevel > THR_ABRUPT_BORDER)then it is abrupt.

C: Colors
The determination of the colors in the application is shown thereupon:

C1—Generation of the map of colors:

C1.1—Through the supervised machine learning process described in the
image processing section, the masks through the original image IMG_SOURCE
were generated, corresponding to the 6 colors, named R_WHITE, R_RED,
R_LIGHT_BROWN, R_DARK_BROWN, R_BLUE _GRAY and R_BLACK.
C1.2—The intersection of these masks with the mask of the lesion R_MASK_SEG
is calculated.
C1.3—To generate the definitive masks R_WHITE, R_RED, R_LIGHT _BROWN,
R_DARK_BROWN, R_BLUE_GRAY and R_BLACK corresponding to the 6
colors of the lesion, it only needs to be determined the pixels of the masks
R_MASK_ARTIFACTS of the preprocessed image IMG_PREPROC. Through
the rules generated in this process of machine learning the different pixels of
this mask are made to correspond to each one of the masks of the 6 colors.

C2—The percentages of each one of the regions with respect to the total of the
lesion, selecting the colors with the regions which pass through a percentage
THR_PORCENTAJE_COLOR.

D: Dermoscopic Structures
The detection of the dermoscopic structures is shown thereupon:
Homogeneous and unstructured areas

D_HOM_UNSTR1—Determination of the blue homogeneous, hiperpigmentation
and hypopigmentation: they are calculated through the color map generated in the
previous stage. The blue homogeneous region coincides with the blue-gray region,
the hiperpigmentation region coincides with the union of the dark brown and black
regions and the hypopigmentation region coincides with the white region. Thus, 3
regions are generated: R1, R2 and R3.
D_HOM_UNSTR2—For each one of the regions the union of the 8-connected
components of large size to a threshold value are selected of size bigger than a
threshold THR_SIZE_HOMOG_UNSTR, obtaining the regions C1, C2 and C3.
D_HOM_UNSTR3—The percentages of each one of the previous regions are cal-
culated with respect to the total lesion. We shall obtain the percentages, percent1,
percent2 and percent3.
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D_HOM_UNSTR4—It is seen which of the previous ones are superior to a thresh-
old THR_PERCENT. If even one of the percentages will be superior it would
already be punctuation in this criterion.

MACHINE LEARNING PROCESSES FOR: 1—PIGMENT NETWORK;
2—GLOBULES, POINTS AND PSEUDOPODS

For the detection and characterization of, in the first place the reticular pattern,
and in the second place the globular, points and pseudopods patterns two supervised
machine learning processes have been carried out, with similar features.

For the first process the experienced doctors were required to catalogue in a
sample of images the reticular and non-reticular pixels. For the second process, the
same with the globular, points and pseudopods pixels and the ones not satisfying that
condition.

For both processes color features have been extracted, DoG (Difference Of Gaus-
sians), Laplacian of Gaussians (LoG), Determinant of Hessian (DoH), gradient,
and also typical texture variables based on the Gray Level Co-occurrence Matrix
(GLCM): entropy, contrast and correlation.

According to the data obtained, in both cases tree classifiers were used, for effi-
ciency reasons, RandomForest algorithm [88] being chosen to generate the decision
trees, with the classification rules.

Reticular

D_RETIC1—Determination of the region with the pixels which fulfill the rules
generated in the machine learning process for the determination of the pigment
network pixels: R1
D_RETIC2—The intersection of the previous rule is carried out with the color
R_LIGHT_BROWN, R_DARK_BROWN and R_BLACK: R2.
D_RETIC3—The 8-connected components higher than an amount of pixels are
selected THR_NUM_PIXELS_RET_REGIONS.
D_RETIC4—With each one of the found C components the holes which it has been
calculated (since the reticular pattern has network shape):

D_RETIC4.1—To do so first of all the presence of holes is calculated, calculating
the percentage of the C_H area, which is the mask with all holes of more than
one threshold value THR_NUM_PIXELS_HOLE filled, with respect to the area
of C: percent=Area(C_H)/Area(C).
D_RETIC4.2—C The condition is evaluated with respect to one threshold value
(percent> THR_COMPARE_ORIG_FILLED).
D_RETIC4.3—In positive case, the possessing holes are calculated, with an
area superior to the THR_NUM_PIXELS_HOLE value, focusing this value in
numHoles.
D_RETIC4.4—C is selected if numHoles has more than one threshold value
THR_NUM_HOLES holes, that is to say, if (numHoles>THR_NUM_HOLES).

D_RETIC5—The union of all the C regions which fulfill the previous conditions
is made, generating the R_MASK_RET region.
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D_RETIC6—The addition of all of the numHoles corresponding to the C regions
which fulfill the previous conditions is calculated, sumNumHoles=sum(numHoles).
D_RETIC7—If the number of sumNumHoles is higher than a threshold value
THR_NUM_MIN_HOLES, that is to say if (sumNumHoles> THR_NUM_ MIN_
HOLES)then it has the reticular pattern, with R_MASK_RET mask.

Previous to Globular, Points and Pseudopods

D_GLOB_POINT_PSEUDO1—Determination of the region with the pixels which
fulfill the rules generated in the machine learning process, for the determination
of the globule, points and pseudopod pixels: R1.
D_GLOB_POINT_PSEUDO2—The intersection of the previous region is under-
taken with the color masks R_LIGHT_BROWN, R_DARK_BROWN, R_BLUE_
GRAY and R_BLACK: R2.
D_GLOB_POINT_PSEUDO3—A subtraction of the reticular mask is made
R_MASK_RET: R3.
D_GLOB_POINT_PSEUDO4—For each 8-connected C component of R3, those
which are higher than the value THR_PIXELS_REGIONS_GLOB_ PSEUDO
pixels are considered as potential globule or pseudopods, and those which are
lower are considered as potential points, though higher than a value THR_ PIX-
ELS_REGIONS_POINTS.

Previous to Globular and Pseudopods

D_GLOB_PSEUDO1—A crown similar to the one created in the borders section is
created through THR_WIDTH_INTERIOR_GLOB_PSEUDO and THR_WIDTH_
EXTERIOR_ GLOB_PSEUDO.
D_GLOB_PSEUDO2—For each 8-connected C component (already described
previously):

D_GLOB_PSEUDO2.1—The maximum diameter is calculated maxDiame-
ter and the elongation, where the formulation is elongation=maxDiameter
/area(C).
D_GLOB_PSEUDO2.2—If C satisfies the condition (maxDiameter>THR_
MIN_DIAM_GL) AND (maxDiameter<THR_MAX_DIAM_GL) AND
(elongation<

THR_ELONGATION) C is globule, being thresholds the described values.
D_GLOB_PSEUDO2.3—If C is contained in the crown by the border of
the lesion and (maxDiameter>THR_MIN_DIAM_PSEU) AND (maxDiameter
<THR_MAX_DIAM_PSEU) C is a pseudopod, being thresholds the described
values.

Globular

D_GLOB1—The regions C which fulfill the condition described of globule are
counted: numGlob, and the union of these in R_MASK_GLOB mask.
D_GLOB2—If (numGlob>THR_MIN_GLOB)is fulfilled, then it has the globular
pattern, with R_MASK_GLOB mask.
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Points

D_POINTS1—The C regions which fulfill the condition described of point: num-
Points, and the union of these in R_MASK_POINTS mask.
D_POINTS2—If (numPoints>THR_MIN_POINTS)is fulfilled, then it has the

points pattern, with R_MASK_POINTS mask .

Pseudopods

D_PSEUDO1—The C regions which fulfill the condition described of pseudopod:
numPseudo, and the union of these in R_MASK_ PSEUDO mask.
D_ PSEUDO 2—If (numPseudo>THR_MIN_PSEUDO) is fulfilled, then it has
the pseudopods pattern, with R_MASK_ PSEUDO mask.

3.5 Diagnosis

The diagnosis is carried out with the “ABCD Rule”, from the calculated values of
the indicators. Concerning the described methods, an observation, in the algorithms
intervene some numerical values which start by “THR”, which correspond to deter-
mined thresholds. The values of these thresholds were obtained by a statistic study
as well as by an empirical study.

Hereafter, in Fig. 23 some images of the complete process can be seen, captured
using the software tool, with the diagnosis at the end.

4 Results

In this section the results of the system will be presented. The image database used
to carry out the research, was created with the collaboration of J.L. Díaz and J.
Gardeazabal, dermatologists from IMQ clinic company, in Bilbao, Spain. It consists
of 1179 images, with a resolution of 768×512 pixels. All of the images are cataloged
by experts, having 287 images of melanoma.

4.1 Preprocessing

When applying the preprocessing in the different images satisfactory results were
obtained. The results of the preprocessing in a visual way will be showed thereupon
in Fig. 24, with various images, to illustrate it.
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23-1 23-2

23-3 23-4

23-5 23-6

23-7 23-8

Fig. 23 Some windows of the software tool: 1 Original image; 2 Preprocessed; 3 Segmented with
help to segmentation; 4 Segmented; 5 A: Assimetry; 6 B: Borders; 7 C: Colors; 8 D: Dermoscopic
structures; 9 Results; 10 Reticular Mask; 11 Homogeous and unstructured areas; 12 Globular mask;
13 Points Mask; 14 Pseudopods mask; 15 Diagnosis in the generated report
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23-9 23-10

23-11 23-12

23-13 23-14

Fig. 23 (continued)
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Fig. 23 (continued)

Fig. 24 Processing process in three images: for each image, first the original image, second the
artifacts mask image (the fact that it is detecting the black frames in the edge of the images should
be noted) and third the preprocessed image
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4.2 Segmentation

The testing to the images to test the segmentation is intrinsically united to the
process described in the system design for the determination of the coefficients
(COEF_RED,COEF_GREEN,COEF_BLUE).

In 110 images experienced doctors were required to carry out the segmenta-
tion of the lesions, generating 110 masks R_MASK_SEG_MED. In those own
images the segmentation has been made generating 110 masks R_MASK_SEG.
As a segmentation measure measureSegment=Area(Intersection(R_MASK_SEG,
R_MASK_SEG_MED))/Area(Union(R_MASK_SEG,R_MASK_SEG_MED)) has
been defined.

Good segmentations are considered those which fulfill (measureSegment>THR_
SEG), where THR_SEG is a threshold value.

Accuracy results of 87.27 % were obtained. On the whole, the segmentation
method works correctly. The vast majority of the misfires are in the images in which
exist hypopigmented lesions not contained within the surface of the region. In these
cases it is used in the system the non-automated segmentation.

Some segmentation examples can be seen thereupon, in Fig. 25.

4.3 Detection and Characterization of Indicators

For the determination of the results in the detection and characterization of indicators
the following indicators of the “ABCD Rule” were studied, separately.

A: Asymmetry
40 images were taken, which have been diagnosed by expert dermatologists about

this indicator and comparing with which was generated by the system. In the asym-
metry the evaluations of the experts were computed, for each one of the images, in
the minor and major axes. Thus, 80 evaluations of asymmetry are obtained. Obvi-
ously, before the own evaluations, a coordinate axis was specified, being in general
the ones generated by the system satisfactory for the experts.

88.75 % of accuracy is obtained in the evaluation of asymmetry. In most cases, the
errors have been product of the own subjectivity in the appreciation. Some examples
can be seen thereupon, in Figs. 26 and 27.

B: Border
40 images were taken, which have been diagnosed by expert dermatologists con-

cerning that indicator and comparing it with which it was generated by the system. In
the borders the evaluation of the experts were computed, for each one of the images,
in the 8 octants. Thus, 320 evaluations of borders are obtained (Figs. 28, 29, 30
and 31).

86.88 % of accuracy in the evaluation of the borders is obtained. In most cases, as
it happened in the asymmetry, the errors have been product of the own subjectivity
in the appreciation. Some examples can be seen thereupon:



182 J. L. G. Arroyo and B. G. Zapirain

Fig. 25 Segmentation in four images: for each image, first the image, second the mask of the
automated segmentation of the lesion and third the image with the segmentation by experts (black
line) and automated (green line). In the last image there is an error in the automated segmentation,
which it does not select correctly the part of the hypopigmented lesion

C: Colors
40 images were taken, which have been diagnosed by expert dermatologists

concerning that indicator and compared with which was generated in the system.
In the colors the evaluations of the experts were computed, determining the number
of colors which were seen, and comparing with the generated color maps. Thus 40
evaluations of colors are obtained. It should be noted here that in this case before
this test a supervised machine learning process was carried out to the own doctors,
requiring them to report about the color of various pixels in each one of 50 images,
as it has been described previously in the System Design.

62.5 % of accuracy is obtained in the evaluation of colors. It should be noted here
that in these results it is considered as a hit the fact of having success in the colors
acutely with the criterion of the expert. This does not mean that in many lesions
which are not fully correct has not coincided with the experts partly the colors of
the generated color map, in some cases it was considered to be some further one, in
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26-1 26-2 26-3 26-4

26-5 26-6 26-7 26-8

Fig. 26 Computing asymmetry in an image: 1 Preprocessed, 2 Comparison of shape with respect
to major axis; 3 Halves with respect to the major axis; 4 Comparison of histograms with respect of
the major axis; 5 Image with the axes; 6 Comparison of shape with respect to minor axis; 7 Halves
with respect to the minor axis; 8 Comparison of histograms with respect to minor axis. The image
is symmetric in shape with respect to both axes, and asymmetric in color with respect to both axes.
Hence, it is asymmetric in both axes. Punctuation: 2.6

Fig. 27 Computing asymmetry in two images, from each one the preprocessed is taken and the
one containing axes. The first one is symmetric with respect to both axes. Punctuation: 0. Second
one is symmetric with respect to the major axis and asymmetric with respect to the minor axis.
Punctuation: 1.3

28-1 28-2 28-3 28-4

28-5 28-6 28-7

Fig. 28 Computing borders in an image: 1 Preprocessed; 2 Image with the generated sectors; 3
Crown surrounding the border of the lesion where the abruption of the lesion is examined; 4 Image
with the limits drawn; 5 Image with the radius for the generated analyses; 6 Sector I; 7 Analysis of
the sector I. The image has abrupt sectors: I, II, V, VI and VII. Punctuation: 0.5
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Fig. 29 Computing borders in two images, from each one the preprocessed and the one which has
the two sectors is taken. The first one has no abrupt sectors. Punctuation: 0.0. The second one has
the abrupt sectors: I, II, III, IV, VI, VII and VIII. Punctuation: 0.7

Fig. 30 Computing colors in two images. First it has three colors. Punctuation: 1.5. Second it has
2 colors. Punctuation: 1.0

other some pieces of regions catalogued as a certain color there were considered as
another one. Some examples can be seen thereupon:

D: Dermoscopic Structures
Homogeneous and Unstructured areas
40 images were taken, which have been diagnosed by expert dermatologists con-

cerning that indicator and compared with which was generated by the system. 92.5 %
of accuracy is obtained in the evaluation of whether there are homogeneous and
unstructured areas or not.

Reticular
40 images were taken, which have been diagnosed by expert dermatologists con-

cerning that indicator and compared with which was generated by the system. 90 %
of accuracy is obtained in the evaluation of whether there is a reticular pattern or not.
The proposed algorithm presents a very robust behaviour.

Globular
40 images were selected, which have been diagnosed by expert dermatologists

concerning which was generated by the system. 77.5 % of accuracy is obtained in
the evaluation of whether there is a globular pattern or not. In most cases the errors
had a great deal to do with the subjectivity.

Points
40 images were taken, which have been diagnosed by expert dermatologists con-

cerning that indicator and compared with which was generated in the system. An
accuracy of 77.5 % is obtained in the evaluation of whether there is a points pattern
or not. In most cases, as it happens in the previous case, errors had a great deal to do
with the subjectivity.
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Fig. 31 Computing dermoscopic patterns: first the preprocessed image, second the mask of the
pattern (map in the case of homog./unstructured). 1–2 Reticular, punctuation: 0.5; 3–4 Homogeneus
and unstructured, punctuation: 0.5. 5–6 Globular, punctuation of first: 0.5, punctuation of second:
0.0; 7–8 Points, punctuation: 0.5; 9–10 Pseudopods, punctuation: 0.5

Pseudopods
40 images were taken, which have been diagnosed by expert dermatologists con-

cerning that indicator and compared with which was generated by the system. An
accuracy of 70 % is obtained in the evaluation of whether there is a pseudopods
pattern or not. In this case the proposed algorithm does not present a very robust
behaviour, and should be improved in the future.

Some examples can be seen thereupon:
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Table 4 Diagnosis results Positive Negative

Melanoma 13 (TP) 3 (FN)
Not melanoma 7 (FP) 27 (TN)

4.4 Diagnosis

For testing the robustness of the whole system in the diagnosis support, in distin-
guishing between malignant and benign lesions, 50 images were taken, with a total
amount of 16 melanomas.

The results are presented thereupon, in the Table 4:
The results are therefore of 81.25 % of sensitivity and 77.14 % of specificity, in

the tested set of images.

5 Conclusions and Future Work

The design of a system of automated detection of melanoma created by our research
team is presented. Being still at the pilot scheme stage, it already presents very
encouraging results.

The described system offers the possibility to analyze images of two types: macro-
scopic and dermoscopic, which can be taken from different sources and different
manufacturers, since it is not integrated with any particular hardware. Moreover, it
has been designed with multiplatform and multiaccess architecture, having a firm
orientation to teledermatology which is increasingly using.

The analysis of the dermoscopic images is carried out by supporting in the “ABCD
Rule” medical algorithm, undertaking the automated detection and characterization
of the corresponding indicators. That enables the analysis to have a basis on the
existing extensive medical literature, which gives the expert dermatologists a greater
confidence.

To measure the degree of robustness of the system a set of tests was carried out,
obtaining good results in overall.

In the case of preprocessing, the detection of artifacts (black frames, flashes,
bubbles, rulers and hairs) is undertaken satisfactorily, although it is working in its
improvement. In particular, for the detection of hairs, it has been thinking on incorpo-
rating a supervised machine learning process, extracting similar features to the ones
used in the detection of the reticular pattern, combining it with curvilinear detection
functions, and for the elimination of hairs inpainting techniques will be tested.

In the case of the segmentation, 87.27 % of accuracy is obtained. Those are good
results, but they can be improved, especially in the case of having hypopigmented
zones not contained absolutely within the lesion. To do so the design of the algorithm
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should be improved making it scale to a better behaviour in cases of lesions with
infrequent shape and distribution, as well as to test other techniques.

In the case of the asymmetry, borders and colors, the results are also good, with
an accuracy of 88.75, 86.88 and 62.5 % respectively; in the case of the colors, as
it was commented in the previous section, this result is much higher than might
be assumed, since it is considered a merit the fact of being fully successful in the
colors, with the criterion of the expert, which makes it much difficult the success.
The results for these three indicators are good, though it can be improved, having to
take into consideration the improvement process of the algorithms which, in most
cases, the errors have been product of the own subjectivity in the appreciation of the
expert dermatologists, which were taken as a reference to validate the accuracy of
the algorithm.

In the case of dermoscopic patterns, given the good results in the case of the
reticular pattern and the homogeneous areas, with an accuracy of 92.5 and 90 %
respectively, though they might be improved by refining the algorithm. In the case
of the globular and points patterns the accuracy is 77.5 and 77.5 % respectively,
reaching a considerably improvement margin, although it has to be born in mind that
in this case there is also a great degree of subjectivity in the appreciation. In the case
of the pseudopods pattern, the accuracy is 70 %, given nonetheless in this case the
fact that the proposed algorithm does not present a very robust behaviour, thus, it
should be improved in the future. Besides improving the design of the algorithms,
for the reticular, globular, points and pseudopods patterns it is thought to test new
techniques to improve the results.

There also carried out tests to determine in a direct way the diagnostic capacity
of the system, obtaining results of 81.25 % of sensitivity and 77.14 % of specificity,
applying to do so the diagnostic rules of the “ABCD Rule” medical algorithm through
the undertaken detection and automated characterization of the indicators. The results
are considered good, though they also should be improved, through the improvement
of each one of the indicators.

In the evolution of the system, which has been designed in a modular and scalable
way, a multidisciplinary team, composed by expert dermatologists, researchers spe-
cialized in image processing and computer programmers continues working, adding
new images to the database, improving the existing algorithms and adding new func-
tionalities. The research work is going on, in a specialized way in the improvement
of the existing diagnostic algorithm, to obtain better results and, as it has been com-
mented before, in the incorporation to that algorithm of the analysis of new dermo-
scopic patterns, like indicators, in such a way that the system gives a more robust
diagnosis. To do so, new digital image processing techniques will be also included.

Once the pilot scheme stage is completed, the system may be used as a guide
to medical professionals who are not expert in dermatology, which is for instance
the case of the primary doctors, or even if it is the case of an expert dermatologist
the task will be facilitated to this medical professional, either for being high the
number of moles to be analyzed, or simply for giving the doctor a second opinion.
Another possible application will be the execution of the system in massive analysis
processes, in repositories of dermoscopic images, with the aim of seeking possible
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malignant lesions, or even in screening systems directed to the population with the
aim of detecting melanomas in early stages, in telemedicine platforms or from another
type.
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Melanoma Decision Support Using
Lighting-Corrected Intuitive Feature Models

Robert Amelard, Jeffrey Glaister, Alexander Wong and David A. Clausi

Abstract Skin lesion analysis using standard camera images has received limited
attention from the scientific community due to its technical complexity and scarcity
of data. The images are privy to lighting variations caused by uneven source lighting,
and unconstrained differences in resolution, scale, and equipment. In this chapter, we
propose a framework that performs illumination correction and feature extraction on
photographs of skin lesions acquired using standard consumer-grade cameras. We
apply a multi-stage illumination correction algorithm and define a set of high-level
intuitive features (HLIF) that quantifies the level of asymmetry and border irregularity
about a lesion. This lighting-corrected intuitive feature model framework can be
used to classify skin lesion diagnoses with high accuracy. The framework accurately
corrects the illumination variations and achieves high and precise sensitivity (95 %
confidence interval (CI), 73.1–73.5 %) and specificity (95 % CI, 72.0–72.4 %) using a
linear support vector machine classifier with cross-validation trials. It exhibits higher
test-retest reliability than the much larger state-of-the-art low-level feature set (95 %
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Introduction

Melanoma is the most deadly form of skin cancer and is caused by the development
of a malignant tumour of the melanocytes [42]. It was estimated that 76,250 men
and women were diagnosed with melanoma in 2012 and 9,180 men and women died
of it in the US alone [31]. One in five Americans are expected to be diagnosed with
melanoma in their lifetime [54]. One of the most alarming facts about melanoma
is that it is the most common form of cancer for young adults [30] and it is one
of the few cancers where the incidence rate is increasing for men [34]. Fortunately,
the five-year survival rate is 98 % if the lesion is extracted while the cancer is still
confined to its primary location. However, the five-year survival rate decreases to
15 % if the cancer has spread to remote parts of the body [31].

Some clinical tools exist that can assist dermatologists diagnose skin lesions.
For example, the Asymmetry, Border irregularity, Colour variation, and Diameter
(ABCD) rubric serves as a guide for dermatologists to check skin lesions in a sys-
tematic manner [41, 50]. However, expert dermatologists using the ABCD rubric
with a dermatoscope (a specialized tool that optically magnifies and enhances skin
structures) reported a sensitivity of 76.0–87.7 % and a specificity of 61.0–77.8 %
[5]. Furthermore, only 48 % of US fellows of the American Academy of Dermatol-
ogy reported using a dermatoscope [25]. Recent developments include melanoma
detection using standard camera images [1, 8, 9], but there is still much room for
technological advances.

This chapter presents a systematic framework to analyse and assess the risk of
melanoma using dermatological photographs taken with a standard consumer-grade
camera. The framework consists of illumination preprocessing and feature extraction,
and is validated using a simple malignancy classification scheme. The preprocess-
ing step consists of a multi-stage illumination modeling algorithm. The proposed
features that are extracted are high-level intuitive features (HLIF) describing lesion
asymmetry and border irregularity. The segmentation is obtained using a manually-
drawn ground-truth border and an existing classification algorithm is used. Automatic
segmentation is not discussed here.

The first step in the proposed framework is a preprocessing step, where the image
is corrected for illumination variation. This preprocessing step serves to improve
performance of the subsequent steps. Illumination correction tries to remove illumi-
nation variation, such as shadows, so that healthy skin is a more consistent colour
throughout the photograph. Since the lesion is typically a darker colour than the sur-
rounding healthy skin, a segmentation algorithm may misclassify shadows as lesion.
The illumination correction can improve the classification algorithm by standardiz-
ing features reliant on underlying pixel values. For example, features that rely on
lesion colour are affected by shadows.

Once an image has been preprocessed, features are extracted and used to clas-
sify the image as “malignant” or “benign”. The quality of this feature set is very
important in differentiating the two classes. Furthermore, it is generally preferable
to project the image into a low-dimensional feature space, since high-dimensional
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feature spaces are usually associated with larger computational cost and possibly var-
ious classification problems such as overfitting and the curse of dimensionality. In
the proposed framework, we extract HLIFs that were designed specifically to model
a human-observable characteristic. These features may take more effort to design
than low-level features, but we show in the experimental results that classification
accuracy improves dramatically by integrating HLIFs with low-level features.

The rest of the chapter is organized as follows. A literature review of existing
methods and algorithms is presented in “Background”. The multi-stage illumination
modeling algorithm is described in “Illumination Correction Preprocessing”. A set
of high-level intuitive features for describing skin lesions is presented in “Feature
Extraction”. Experimental results of the proposed unified framework are shown in
“Results” and conclusions are drawn in “Conclusion”.

Background

The problem of diagnosing cutaneous cancer has received more attention from the
technical community in recent years. Unlike classical medical imaging modalities
that produce an image using dedicated equipment (e.g., magnetic resonance imaging
and X-ray), skin diagnosis is performed using visual information. This workflow
poses more difficult computer vision problems as there is no standard modality with
which data is captured.

The majority of the melanoma detection methods in the literature analyse images
acquired using dermoscopy [21], also known as epiluminescence microscopy (ELM)
or the unfortunate similarly-named “dermatoscopy”. Dermoscopy is a non-invasive
technique whereby the dermatologist uses a handheld dermatoscope to visually
analyse the skin. Dermatoscopes optically magnify the area of interest, and most
can elucidate sub-surface structures by applying a dermoscopic oil on the skin or,
more recently, employing light cross-polarization. These produce images with stan-
dardized lighting conditions, and show sub-surface microstructures of the epidermis.
However, it has been reported that only 48 % of American Academy of Dermatology
fellows use dermatoscopes [25]. There is, therefore, a large demand for methods that
analyse images taken without a dermatoscope.

Our framework’s workflow is summarized in Fig. 1. We present a literature review
of preprocessing, feature extraction, and classification methods in the following sec-
tions, as it pertains to our framework.

Illumination Correction Preprocessing

Most illumination correction algorithms are not specific to skin lesion photographs
and can be applied to any scene. Histogram equalization adjusts the distribution
of pixel intensities, minimizing illumination variation globally [47]. Other algo-
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Fig. 1 Workflow of the proposed melanoma decision support framework

rithms correct for local illumination variation. These algorithms typically assume
a multiplicative relationship between illumination and reflectance components. The
estimated illumination component is estimated and used to find the reflectance com-
ponent. The illumination component is assumed to be low-frequency, while the high-
frequency detail is in the reflectance component. Using this assumption, there are
many different algorithms that estimate illumination. One of the earliest is the Retinex
algorithm, which uses a set of Gaussian filters of different sizes to remove detail and
to estimate illumination [27, 36]. Morphological operators [49], bilateral filters [24],
Monte Carlo sampling [53] and total variation [16] approaches have also been used
to estimate illumination.

Other methods involve correction algorithms that are specific to images of skin
lesions. Earlier algorithms enhance images taken with a dermatoscope to better sep-
arate lesion pixels from healthy skin. These algorithms include colour calibration
[29] and normalization [33] to improve lesion classification or contrast enhancement
[13, 46] to improve segmentation.

Recent work focuses on correcting photographs of skin lesions acquired using
standard digital cameras to improve segmentation and classification. Work by Cav-
alcanti et al. [10] apply morphological operators to estimate the illumination com-
ponent. The initial estimate of illumination is used to fit a parametric surface using
the illumination intensities in the four corners of the photograph. The reflectance
component is estimated using the parametric surface. Initial work on the correction
algorithm outlined in this chapter was initially presented by Glaister et al. [28].

Feature Extraction and Classification

Most existing feature sets have been designed to model the ABCD criteria using
dermoscopic images. Lee and Claridge propose irregularity indices to quantify the
amount of border irregularity [37]. Aribisala and Claridge propose another border
irregularity metric based on conditional entropy [6]. Celebi et al. propose shape,
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colour, and texture features with rationale, and using a filter feature selection method
[12]. Colour features are primarily taken either in the RGB space (usually mean
and standard deviation of the three channels), or a perceptually-uniform CIE colour
space. Good overviews of existing features can be found in [35, 39].

Features designed to analyse dermoscopic images may not necessarily be suitable
for the noisy unconstrained environment of standard camera images. Some work has
been done to identify suitable features for standard camera images [1, 8, 9], however
the focus of these methods has primarily been in the preprocessing and segmentation
stages, resulting in large sets of low-level features. For example, Cavalcanti and
Scharcanski [9] propose the same low-level feature set as Alcon et al. [1] with a few
minor adjustments. Amelard et al. proposed the first set of high-level asymmetry and
border irregularity features that were modeled assuming standard camera images
[3, 4], which are used in this chapter.

Most of the methods use existing classification schemes, such as support vector
machines (SVM), artificial neural networks (ANN), decision trees, and k-nearest
neighbour (K-NN) [35]. Ballerini et al. designed a hierarchical classification system
based on K-NN using texture and colour features to classify different types of non-
melanoma skin lesions with 93 % malignant-versus-benign accuracy and 74 % inter-
class accuracy [8]. Piatkowska et al. achieved 96 % classification accuracy using a
multi-elitist particle swarm optimization method [44]. Thorough reviews of existing
classification schemes can be found in [35, 39].

Some emphasis has been placed on constructing content-based image retrieval
(CBIR) frameworks for recalling similar lesions. These methods rely on constructing
a representative feature set that can be used to determine the similarity of two images.
Ballerini et al. extracted basic colour and texture features such as colour mean,
covariance, and texture co-occurrence matrix calculations, and used a weighted sum
of Bhattacharyya distance and Euclidean distance to find visually similar lesions [7].
Celebi and Aslandogan incorporated a human response matrix based on psychovisual
similarity experiments along with shape features to denote similarity [11]. Aldridge
et al. designed CBIR software and experiments which showed with high statistical
significance that diagnostic accuracy among laypeople and first-year dermatology
students was drastically improved when using a CBIR system [2].

There has been some work done to extract melanin and hemoglobin information
from skin images. The melanin and hemoglobin information can be very useful in
trying to identify the stage and type of the lesion. All of the proposed methods rely
on various physics-based models of the skin to characterize the reflectance under
some assumptions about the absorption, reflectance, and transmission of the skin
layers. Work primarily led by Claridge explores using multispectral images using
spectrophotometric intracutaneous analysis to analyse melanin, hemoglobin, and
collagen densities [19, 40]. Claridge used a physics-based forward parameter grid-
search to determine the most feasible skin model parameters assuming standardized
images [17]. Tsumura et al. used an independent component analysis (ICA) scheme
to decompose the image into two independent channels, which they assumed are
the melanin and hemoglobin channels [51]. D’Alessandro et al. used multispectral
images obtained using a nevoscope and used a genetic algorithm to estimate melanin
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and blood volume [20]. Madooei et al. used blind-source separation techniques
using a proposed corrected log-chromaticity 2-D colour space to obtain melanin
and hemoglobin information [38].

Illumination Correction Preprocessing

The proposed framework first corrects for illumination variation using the multi-
stage algorithm outlined in this section. The illumination correction algorithm uses
three stages to estimate and correct for illumination variation. First, an initial non-
parametric illumination model is estimated using a Monte Carlo sampling algorithm.
Second, the final parametric illumination model is acquired using the initial model
as a prior. Finally, the parametric model is applied to the reflectance map to correct
for illumination variation. The three stages are outlined in this section.

Initial Non-parametric Illumination Modeling

The first stage involves estimating the initial non-parametric illumination model.
This stage is required to estimate illumination robustly in the presence of artefacts,
such as hair or prominent skin texture. Certain assumptions are made about the illu-
mination in the dermatological images. The images are assumed to have been taken
inside a doctor’s office, in a controlled environment and beneath overhead lights.
This means that the illumination model does not need to account for sudden changes
in lighting conditions. Instead, the illumination will change gradually throughout an
image. Illumination variation is assumed to be produced by white lights, so the cor-
rection algorithm does not need to correct colour variation. Finally, a multiplicative
illumination-reflectance model is assumed [36]. In this model, the V (value) channel
in the HSV (hue-saturation-value) colour space [48] is modeled as the entry-wise
product of illumination i and reflectance r components. After applying the logarith-
mic operator, this relationship becomes additive (1).

v(x, y) = i(x, y) × r(x, y)

vlog(x, y) = ilog(x, y) + rlog(x, y) (1)

To estimate the illumination map i , the problem can be formulated as Bayesian
least squares (2), where p(ilog|vlog) is the posterior distribution.

îlog = argmin
ilog

{

E
(

(ilog − îlog)
2)|vlog

}

= argmin
ilog

{∫

(ilog − îlog)
2 p(ilog|vlog)dilog

}

(2)
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Fig. 2 Sample posterior distribution p̂
(

ilog|vlog
)

, built from pixels accepted in the set �. Each
stacked element corresponds to a pixel sk in �, where the height is α(sk |s0) and bin location is sk

To estimate the posterior distribution, a Monte Carlo posterior estimation algo-
rithm is used [15]. A Monte Carlo estimation algorithm is used to avoid assuming
a parametric model for the posterior distribution. In this Monte Carlo estimation
strategy, candidate samples are drawn from a search space surrounding the pixel of
interest s0 using a uniform instrumental distribution. An acceptance probability α is
computed based on the neighbourhoods around the candidate sample sk and pixel
of interest s0. The Gaussian error statistic used in this implementation is shown in
(3). The parameter σ controls the shape of the Gaussian function and is based on
local variance and hk and h0 represent the neighbourhoods around sk and s0 respec-
tively. The term λ in the denominator normalizes the acceptance probability, such
that α(sk |s0) = 1 if the neighbourhoods around sk and s0 are identical. The elements
in the neighbourhoods are assumed to be independent, so the acceptance probability
is the product of the probabilities from each site j .

α(sk |s0) =
∏

j

1
2πσ exp

[

− (hk [ j]−h0[ j])2

2σ2

]

λ
(3)

The candidate sample is accepted with a probability of α into the set � for esti-
mating p(ilog|vlog). The selection and acceptance process is repeated until a desired
number of samples were found in the search space. The posterior distribution is esti-
mated as a weighted histogram, using α as the weights associated with each element.
A sample histogram is shown in Fig. 2. The estimate of the log-transformed illumi-
nation map îlog is calculated using (2), as outlined in [26]. The initial illumination
estimate î is acquired by taking the exponential of îlog . An example of an image with
visible illumination variance is shown in Fig. 3a and the associated non-parametric
illumination model is shown in Fig. 3b.
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Fig. 3 Methodology to estimate illumination map: a original image of a skin lesion, where the top
edge is noticeably darker than the bottom edge; b illumination map determined via non-parametric
modeling using Monte Carlo sampling; c segmentation map found using Statistical Region Merging;
d regions included in the subset of skin pixels, where pixels black in colour are not classified as
normal skin; e new illumination map determined by using (d) as a prior to the quadratic surface
model; f resulting corrected image using the multi-stage illumination correction algorithm

Final Parametric Illumination Modeling

The initial non-parametric illumination model results in an estimate of the illumi-
nation variation in healthy skin, but does not properly model illumination near the
lesion. Instead, the initial model identifies the lesion as a shadow. Using the initial
model to correct the image would result in a significant bright spot around the lesion,
which is obviously undesirable. To better model the illumination, a second stage is
added, which results in a parametric model of illumination that uses the initial illumi-
nation pixel values. The parametric model can adequately estimate the illumination
variation because illumination is assumed to change slowly throughout the image.
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The subset of pixels that are used to fit the parametric surface correspond to healthy
skin in the original image.

To find the subset of healthy skin pixels, the original image is segmented into
many regions. The segmentation algorithm used in this implementation is Statistical
Region Merging [43]. The resulting segmented image is shown in Fig. 3c, where
each region is represented as a single colour. Any regions that touched 20 × 20
pixel regions in the four corners of the image are considered part of the “healthy
skin” class. While this method does not yield a perfect segmentation of the healthy
skin and lesion classes, only an estimate of healthy skin pixels is required for fitting
the parametric model. The regions that are considered ‘healthy skin” are shown in
Fig. 3d.

The final illumination model î ′ is estimated as a parametric surface (4) with
coefficients c1 to c6, which is fit to the initial illumination values î corresponding to
pixels in the “healthy skin” subset S using maximum likelihood estimation (5). The
final parametric illumination model is shown in Fig. 3e.

i ′(x, y) = c1x2 + c2xy + c3 y2 + c4x + c5 y + c6 (4)

î ′ = argmax
î ′

∏

(x,y)∈S

P(î(x, y)|î ′(x, y)) (5)

whereP(î(x, y)|î ′(x, y)) i.i.d. N (î ′(x, y),σ2)

Reflectance Map Estimation

The reflectance map is calculated by dividing the V channel v from the original image
in the HSV colour space by î ′. The reflectance map r̂ replaces the original V channel
and is combined with the original hue (H) and saturation (S) channels. The resulting
image is corrected for illumination. An example of a corrected image is shown in
Fig. 3f.

Feature Extraction

Once the image has been preprocessed, descriptive features are extracted to describe
the lesion as a vector of real numbers. One of the most prominent clinical methods for
diagnosing a skin lesion is using the ABCD rubric [41, 50], where the dermatologist
looks for signs of asymmetry, border irregularity, colour variations, and diameter.
However, this is done in a very subjective manner, and results in discrete categorical
values. For example, the score assigned to a lesion’s asymmetry is determined by
identifying whether the lesion is asymmetric across two orthogonal axes chosen by
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the dermatologist, resulting in a score A ∈ {0, 1, 2} [50]. This type of subjective
visual analysis leads to large inter-observer bias as well as some intra-observer bias
[5]. We aim to create continuous high-level intuitive features (HLIFs) that represent
objective calculations modeled on a human’s interpretation of the characteristic.

High-Level Intuitive Features

A “High-Level Intuitive Feature” (HLIF) is defined as a feature calculation that has
been designed to model a human-observable phenomenon (e.g., amount of asym-
metry about a shape), and whose score can be qualitatively intuited. As discussed
in “Background”, most skin lesion features are low-level features. That is, they are
recycled mathematical calculations that were not designed for the specific purpose
of analysing a characteristic of the lesion shape.

Although designing HLIFs is more time-consuming than amalgamating a set of
low-level features, we show in “Results” that the discriminative ability of a small set
of HLIFs is comparable to a large set of low-level features. Since the HLIF set is
small, the amount of required computation for classification decreases, and the risk
of overfitting a classifier in a highly dimensional space is reduced, especially with
small data sets.

In the next two sections, we describe nine HLIFs to evaluate the asymmetry and
border irregularity of a segmented skin lesion. These HLIFs are designed to model
characteristics that dermatologists identify. This work is described in detail in [3, 4],
so we limit our analysis here to a general overview of the features.

Asymmetry Features

Dermatologists try to identify asymmetry with respect to shape or colour to indi-
cate malignancy. These visual cues result due to the unconstrained metastasis of
melanocytes in the skin.

HLIF for Colour Asymmetry

Asymmetry with respect to colour can be quantified by separating the lesion along an
axis passing through the centre of mass (centroid) such that it represents the maximal
amount of colour asymmetry. This “maximal” axis was found iteratively. First, we
calculate the major axis of the lesion. The major axis is that which passes through the
centroid and describes the maximal variance of the shape. The lesion image was then
converted to the Hue-Saturation-Value (HSV) space so we can use the illumination-
invariant hue measure to analyse the colours. The normalized hue histograms of both
sides of the axis were smoothed using a Gaussian filter for robustness and were then
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compared to generate the following HLIF value:

f A
1 = max

θ

{

1

2

nbins
∑

i=1

|H θ
1 (i) − H θ

2 (i)|
}

(6)

where H θ
1 and H θ

2 are the normalized smoothed hue histograms according to the
separation axis defined by rotating the major axis by θ, and nbins is the number of
discretized histogram bins used for binning hue values (we used 256 bins). Notic-
ing that f A

1 ∈ [0, 1], f A
1 can be intuited as an asymmetry score ranging from 0

(completely symmetric) to 1 (completely asymmetric).
Figure 4 depicts an example of this calculation. The lesion has a dark blotch on

one side of it, rendering it asymmetric with respect to colour, which is reflected in
the calculated value of f A

1 = 0.3866.

HLIF for Structural Asymmetry

Making the observation that symmetry can usually not be found in highly irregular
shapes, we express the segmented lesion as a structure and analyse its simplicity.
Fourier descriptors apply the Fourier series decomposition theory to decompos-
ing some arbitrary shape into low-frequency and high-frequency components. In
particular, the points on the shape border are mapped to 1D complex number via
F : (x, y) �→ x + iy, where i is the complex number. The Fourier transform is
performed on this set of complex numbers. We can then compare a low-frequency
(“simple”) reconstruction with the original shape to determine the amount of asym-
metry due to shape irregularity.

First, since we must use the discretized Fourier transform, the lesion border was
uniformly sampled at a fixed rate to ensure the same decomposition in the frequency
domain across all images. The Fast Fourier Transform (FFT) was then applied, and
only the two lowest frequency components were preserved. These two frequencies
represent the zero-frequency mean and the minimum amount of information needed
to reconstruct a representative border. The inverse FFT was applied on these two
frequencies to reconstruct a low-frequency representation of the lesion structure.
Comparing this shape with the original is ill-advised, as this would yield a metric
that is more suitable for border irregularity. Instead, we applied the same procedure
to reconstruct a structure using k frequencies, were k is some small number that
reconstructs the general shape of the lesion. This shape is compared to the original
shape to generate the following HLIF calculation:

f A
2 = area(Sk ⊕ S2)

area(Sk
⋃

S2)
(7)

where Sk and S2 are the k-frequency and 2-frequency reconstructions of the original
lesion shape. This feature value can be intuited as a score representing the general
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Fig. 4 Example of the design of f A
1 by comparing the normalized hue histograms of both sides

of the separation axis. The red bars represent the original binned histogram of hue values, and
the blue line represents these histograms smoothed by a Gaussian function (σ = 2 bins), which
allows us to compare hue histograms robustly. In this example, f A

1 = 0.3866, representing a lesion
with asymmetric colour distributions. a Image separated by the axis that produces maximal hue
difference. b Normalized hue histogram of the left side of the lesion. Note the prominence of blue
pixels along with the red ones in the histogram due do the dark blotch in the image. c Normalized
hue histogram of the right side of the lesion. Note the prominence of red pixels in the histogram in
correspondence with the image. d Absolute difference of the two hue histograms. The amount of
blue and lack of red pixels in the first histogram are reflected by the two “humps” in the difference
histogram

structural variations. We found empirically that linearly sampling the border with
1000 points and setting k = 5 yielded good results.

Figure 5 depicts an example of this calculation. Notice how the lesion has a very
abnormal shape that does not seem to contain any symmetry. The logical XOR
(Fig. 5b) captures this structural variation, and the calculation represents the dark
area with respect to the union in Fig. 5c.
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Fig. 5 Example of the design of f A
2 by comparing a baseline reconstruction of the lesion (magenta)

with a low-frequency reconstruction (green) that incorporates the structural variability, it any exists.
In this example, f A

2 = 0.1609, representing a structurally asymmetric lesion. a Original lesion,
and reconstruction using 2 (pink) and 5 (green) frequency components. b Logical XOR of the two
reconstructions (dark area). c Union of the two reconstructions (dark area)

HLIF for Asymmetric Areas

Cavalcanti and Scharcanski propose the following four HLIFs as a measure of area
asymmetry [9]:

• f8 : (B1 − B2)/A with respect to L1
• f9 : (B1 − B2)/A with respect to L2
• f10 : B1/B2 with respect to L1
• f11 : B1/B2 with respect to L2

where L1, L2 are the major and minor axes of the lesion, and B1, B2 are the areas of
each side of L1 or L2. No explicit constraint exists on the relative sizes of B1 vs B2.
Thus, for very asymmetric shapes, { f8, f9} can either before positive or negative,
and { f10, f11} can be large or small. For clarity, we add the following constraint to
the features:

f A
3 = (A1 − A2)/A with respect to L1, (8)

f A
4 = (A1 − A2)/A with respect to L2, (9)



206 R. Amelard et al.

Fig. 6 Example of the design of { f A
3 , f A

4 , f A
5 , f A

6 } by comparing the areas to each side of the
lesion’s major and minor axes. Notice that the red area appears much larger than the green area
when separated by the minor axis. In this example, f A

3 = 0.0052, f A
4 = 0.1560, f A

5 = 0.0105,
f A
6 = 0.3698, representing a structurally asymmetric lesion about the minor axis. a Original lesion.

b Major axis (L1). c Minor axis (L2)

f A
5 = (A1 − A2)/A2 with respect to L1, (10)

f A
6 = (A1 − A2)/A2 with respect to L2 (11)

such that:

A1 = max {B1, B2} ,

A2 = min {B1, B2}

where B1, B2 are as before. This way, { f A
3 , f A

4 } represent the positive difference in
areas with respect to the total area, and { f A

5 , f A
6 } represent the positive difference in

areas with respect to the smaller area.
Figure 6 depicts an example of this calculation. When this lesion is separated by

the minor axis which passes through the centroid, the red area is much larger than
the green area, indicating a large amount of structural asymmetry, which is reflected
in the scores f A

4 = 0.1560 and f A
6 = 0.3698.

Border Irregularity Features

Clinically, border irregularities are usually defined by spiky non-uniform pigmen-
tation. Benign lesions usually have relatively smooth borders that form an oval-like
shape. We therefore want to design features to capture this “spiky” nature.

HLIF for Fine Irregularities

One indicator of the malignancy of a lesion is the amount of small spiky deviations
from a theoretical smooth border. We therefore wish to quantify the degree to which a
lesion border contains these fine irregularities. To do so, it seems natural to compare
the border to a “smoothed” version of itself, thus preserving the overall structure and



Melanoma Decision Support Using Lighting-Corrected Intuitive Feature Models 207

capturing the spikes. This can be accomplished using morphological operations. In
particular, given an arbitrary shape and a structuring element, morphological closing
tends to smooth over abrupt exterior peaks. Conversely, morphological opening
tends to smooth over abrupt internal peaks. If the morphological operation yields
any changes to the original shape due to abrupt structural elements, the modified
shapes will have a different area than the original. These areas are compared to
generate the following HLIF calculation:

f B
1 = Aclosed − Alesion

Alesion
+ Alesion − Aopened

Alesion
(12)

where Alesion is the area of the original lesion shape, and Aclosed and Aopened are the
areas of the modified shape under the specific morphological operations. The sum of
the two normalized areas indicates the level of fine irregularities in a lesion’s border.

Figure 7 depicts an example of this calculation. The red border denotes the result-
ing area from the morphological operation. notice how morphological closing pro-
duces a larger area that fills in the gaps from extreme irregularities of the border, and
morphological opening produces a smaller area that crops these extreme irregulari-
ties.

HLIF for Coarse Irregularities

Another indicator of the malignancy of the lesion is the amount of structural devia-
tion from a standard circular shape. This shape is influenced by the non-linear spatial
reproduction of melanocytes in the skin. We can use Fourier descriptors again to char-
acterize these coarse irregularities. In particular, we can compare a low-frequency
reconstruction of the lesion shape to the original lesion shape. These two shapes
will differ significantly if the lesion has a varying border. We capture this informa-
tion by comparing the perimeters of the two shapes to generate the following HLIF

Fig. 7 Example of the design of f B
1 by comparing the areas resulting from morphological closing

and opening. The red borders denote the resulting area from the respective morphological operation.
Notice how the morphological closing fills in the white areas that are present due to the external
spikes of the border, and morphological opening crops those spikes. In this example, f B

1 = 0.3063
representing a border with abrupt spikes. a Morphological closing. b Morphological opening
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Fig. 8 Example of the design
of f B

2 by comparing the
perimeters of the original
(red) and low-frequency
reconstructed (blue) borders.
Notice how the reconstructed
border follows the general
shape of the lesion, but does
not take into account the large
amounts of irregularity. In
this example, f B

2 = 0.24951
representing a border with
coarse irregularities

calculation:

f B
2 = |Plesion − Plow|

Plesion
(13)

where Plesion and Plow are the perimeters of the original and low-frequency recon-
struction of the lesion.

Figure 8 depicts an example of this calculation. The reconstructed (blue) border
follows the general shape of the original lesion border (red), however it does not
account for the coarse irregularities present in the actual border.

HLIF for Comparing Against Average Malignant Lesion

Over time a doctor will start to recognize malignant lesions based on the visual
similarity to previously diagnosed cases. We can model this “learning” procedure by
comparing a new case against the average malignant lesion border found across the
training data. To perform this comparison, we must be able to compare the Fourier
descriptors in a translation-, scale-, rotation-invariant manner. Given a set of Fourier
coefficients C = {C0, C1, . . . , CN−1}, Fourier descriptor normalization is performed
using the following three steps [52]:

1. Translation Invariance: set the first Fourier component (i.e., the DC component)
to 0 (C∗

0 = 0).
2. Scale Invariance: divide each k −1 Fourier coefficient by the complex magnitude

of the second Fourier coefficient (C∗
k = Ck|C1| ).

3. Rotation/Point-Order Invariance: consider only the real-valued complex magni-
tude of each Fourier component (C∗

k = |C∗
k |).

For each image in the training set, we sampled the border at a fixed rate (1,000
points on the border using linear interpolation produced good results), applied this
normalization process, and computed the average normalized Fourier coefficients
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across these images to obtain C̄∗ = {C̄∗
0 , C̄∗

1 , . . . , C̄∗
N−1}, where C∗

k = |Ck/|C1||.
This “average malignant” frequency representation is compared to a new case using
the sum of squared differences to generate the following HLIF calculation:

f B
3 =

N−1
∑

u=0

(|C∗
u | − |C̄∗

u |)2 (14)

where C∗ = {C∗
0 , C∗

1 , . . . , C∗
N−1} is the normalized set of Fourier coefficients for a

new lesion image. Intuitively, the feature value corresponds to the amount of deviation
from the “typical” malignant lesion.

Figure 9 depicts an example of this calculation. Note that the frequency compo-
nents of the average malignant lesion (computed from the training data) and the
extracted frequency components of the new lesion’s border are quite similar, even in
log space. This represents a “typical” malignant lesion in terms of structure.

Results

We validated the proposed framework in two phases using publicly accessible skin
lesion images. First, we validated the resulting photographs after applying the ini-
tial illumination correction preprocessing algorithm. The photographs before and
after correction were compared visually. We then tested the complete framework
by extracting the HLIFs and low-level features from the corrected photographs and

Fig. 9 Example of the design of f B
3 by comparing the frequency components of a lesion to the

computed average malignant frequency components via sum of squared differences. This will give
a low value for cases that look like a standard malignant lesion, based on training data. In this
example, f B

3 = 0.0087, representing a typical malignant case. a Example melanoma lesion shape.
b Log-frequency components of the average malignant lesion in the training data (red) and the
example lesion on the left (blue). Log-space was used for visualization only
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performing classification using a linear SVM model. This allowed us to validate the
separability of the proposed framework’s feature space.

Data and Setup

Our data set comprises 206 standard camera images which were taken in com-
pletely unconstrained and varying environments. These images were obtained from
the Dermatology Information System [22] (43 malignant melanomas, 26 nevi) and
DermQuest [23] (76 malignant melanomas, 61 nevi). Each image contains a single
lesion of interest, which was manually segmented by the authors. In order to ensure
rotation- and scale-invariance, each image was automatically rotated and scaled such
that the major axis of the lesion lies parallel to the horizontal axis, and the lesion
bounding box fit within a 200 × 200 rectangle prior to feature extraction. The test
infrastructure was implemented in MATLAB.

Illumination Correction Results

After applying the illumination correction algorithm, the images were compared
visually to the original images. The images were also compared visually to the
Cavalcanti et al. illumination correction results. Figure 10 shows a set of images
for comparison. To allow for a fair comparison between corrected and uncorrected
images, the dynamic range of the V channel intensities were normalized.

In Fig. 10a–e, there is a visual improvement between the corrected and uncorrected
images. Furthermore, in Fig. 10a, the framework‘s correction algorithm performs
better than the Cavalcanti et al. algorithm for correcting illumination variation. This is
because the correction algorithm uses a much larger subset of pixels in the parametric
illumination model. The Cavalcanti et al. algorithm only uses pixels in the four
corners, whereas the framework‘s correction algorithm uses any regions that touch
the corners.

Figure 10f is an example of poor correction of illumination variation by both
algorithms. This occurs when the illumination is complicated and cannot be modelled
using a quadratic surface. For example, in Fig. 10f, the quadratic surface model is a
false assumption due to the large patch of dark hair in the top of the photograph. As
a result, the top left corner of the photograph becomes too bright.

Feature Extraction and Framework Classification Results

Upon applying the illumination correction algorithm, we extracted the asymmetry
and border irregularity HLIFs (see “Feature Extraction”) as well as Cavalcanti and
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Fig. 10 Examples of dermatological photographs corrected for illumination variation. First column
is the original photograph. Second column is the illumination correction results using the algorithm
outlined in [10]. Third column is the illumination correction result using the proposed framework‘s
multi-stage algorithm outlined in “Illumination Correction Preprocessing”. In (a–e), the illumination
variation is removed or reduced in the corrected image, while in (f), the illumination variation is not
reduced. Examples of dermatological photographs corrected for illumination variation, continued
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Scharcanski’s low-level standard camera feature set for comparison [9]. For conve-
nience, we use the following naming convention in the discussion:

• FC : Cavalcanti and Scharcanski’s low-level feature set.
• FHLIF : set of HLIFs from “Feature Extraction”.
• FT : Total combined feature set containing both of the above feature sets (FT =

FC
⋃

FH L I F ). Note that four features from FC are replaced by the HLIFs in
“Feature Extraction”.

Due to the small data set, leave-one-out cross-validation (LOO CV) trials were used
to calculate the success metrics.

Classification

We used a linear soft-margin SVM model [18] to calculate sensitivity, specificity,
and accuracy. We used the LIBSVM implementation of SVM [14]. Linear SVM
was chosen to emphasize the separability of the proposed framework‘s feature space
due to illumination correction and descriptive features, rather than emphasizing the
performance of an advanced classifier.

Parameter Optimization

For each feature set we found the optimal soft-margin constraint (c) and benign class
weight (w) using a grid-search algorithm. In particular, for each set of parameters
(c, w), we calculated the F-score [45] over 100 CV trials using randomized 80 %/20 %
splits of the data for training and testing, respectively. Recall the standard F-score
formula:

Fβ = (1 + β2)
precision × recall

β2 × precision + recall
(15)

where

precision = TP

TP + FP
(16)

recall = TP

TP + FN
(17)

accuracy = TP + TN

TP + FP + TN + FN
(18)

where TP, TN, FP, FN are the number of true positive (i.e., malignant), true negative
(i.e., benign), false positive, and false negative cases from classification. The F-score
measure is the weighted harmonic mean of the precision and recall. For stability of
the results due to the relatively restricted data set, we use β = 1 to calculate the
harmonic mean of precision and recall.
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The training and testing data points were chosen at random from the entire data
set for each iteration. In accordance with the authors’ suggestions [32], we varied
the value of c ∈ {2i |i = −5, . . . , 11} and w ∈ {2i |i = −3, . . . , 3}. Let (c∗, w∗) be
the parameter values that exhibit the highest F1 score. Upon determining (c∗, w∗),
we sub-sampled the parameter space {( 1

2 c∗, 1
2 w∗), (2c∗, 2w∗)} at ci = 20.15ci−1 and

wi = 20.5wi−1. The optimal parameter values found according to F1 in this sub-
sampling over 100 independent cross-validation trials with 80 %/20 % train/test split
were used in the classification.

Discussion

Table 1 shows that classification using the nine HLIFs exhibits higher test-retest
reliability as compared to classification using the 52 low-level features. In partic-
ular, although mean sensitivity (95 % confidence interval (CI), 73.1–73.5 %) and
specificity (95 % CI, 72.0–72.4 %) of the small HLIF set are slightly lower than the
sensitivity (95 % CI, 78.1–79.7 %) and specificity (95 % CI, 75.3–76.3 %) of the large
low-level set, classification using the HLIFs is much more reproducible as shown
through the more narrow confidence interval. This is a powerful observation, since
the HLIF set is only one-fifth the size of the low-level feature set. Since the features
are in a lower dimensional space, the cost of computation and curse of dimensionality
are not as pervasive as with the large low-level feature set.

Moreover, combining the HLIFs with the low-level features yields by far the
best results (95 % CI, 83.3–84.8 % sensitivity, 79.7–80.1 % specificity). Adding only
the nine HLIFs to the low-level feature set increases the number of features to 59,
but yields non-trivial sensitivity and specificity improvements while also increas-
ing reproducibility (i.e., decreasing standard deviation). This can be attributed to
the HLIFs’ ability to replicate human-observable phenomena in the data, whereas
using many low-level features to model a high-level characteristic introduces a lot of
variability in the measure, since the features were not designed specifically for the
intended purpose of diagnosing skin cancer.

Statistical Significance

We wish to investigate each feature’s ability to uniquely separate a malignant lesion
from a benign lesion. The t-test indicates whether there is enough statistical signifi-

Table 1 Comparing classification results of different feature sets over 100 cross-validation trials
see “Results” for feature set descriptions

Feature set # features Sensitivity (%) Specificity (%) Accuracy (%)
μ σ μ σ μ σ

FC 52 78.89 4.21 75.80 2.40 76.51 1.08
FHLIF 9 73.32 0.92 72.21 0.99 72.52 0.49
FT 59 84.04 3.67 79.91 0.98 81.26 1.31

μ mean, σ standard deviation
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cance to reject a null hypothesis about a population using data from a sample of that
population. In a two-sample t-test, the null hypothesis states that the means of two
normally-distributed populations are equal (H0 : Δμ = μ1 − μ2 = 0). A p-value
can be calculated using Δμ, which indicates probability that we can observe a test
statistic at least as extreme as the one observed assuming H0 is indeed valid.

Representing the populations as a particular feature’s scores across malignant
(population 1) or benign (population 2) cases, we seek to reject this null hypothesis
with a low p-value, thus showing that a particular feature’s scores are significantly
different between malignant and benign classes (i.e., the feature separates malignant
and benign cases well). We therefore assume that the population responses of the
malignant and benign cases follow a normal distribution. We use Welch’s t-test,
which assumes populations with different variances.

Table 2 summarizes the p-value scores for each HLIF using Welch’s t-test. That
is, for each feature, we set the null hypothesis H0 : Δμ = μm − μb = 0, where μm

and μb are the mean response values for malignant and benign feature scores. The
t-statistic is calculated as follows:

t = μm − μb
√

s2
m

Nm
+ s2

b
Nb

, (19)

where sm, sb are the sample standard deviations of malignant and benign feature
scores, and Nm, Nb are the number of malignant and benign cases in the data set.
The associated p-value is the area under the normal curve to the right of the calculated
t-score.

Most of the p-values are relatively low, indicating a high ability to separate malig-
nant from benign. In particular, { f A

1 , f A
2 , f B

1 , f B
2 } seem to be very good predictors

of malignancy as indicated by their very low p-values. Recall that f A
3 and f A

5 are
the relative area differences with respect to the major axis. So, although these p-
values are high, it is probably worth keeping them in the feature set because they
complement the minor axis features f A

4 and f A
6 .

Sources of Error

Figure 11 provides some examples of false negative cases (i.e., misidentified malig-
nant cases) using the framework classification results. Using the FHLIF feature set
(Fig. 11a), we see lesions that have a fairly smooth and regular border, and most
are fairly symmetric as well. It appears as though the colour patterns would be the

Table 2 Performing Welch’s two-sample t-test on the set of HLIFs

HLIF f A
1 f A

2 f A
3 f A

4 f A
5 f A

6 f B
1 f B

2 f B
3

p-value < 0.0001 0.0340 0.7208 0.1215 0.6822 0.1372 0.0006 < 0.0001 0.3308
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Fig. 11 Classification false negative examples using each feature set. a False negatives using FHLIF .
b False negatives using FC . c False negatives using FT

primary characteristic in determining the malignancy, of which there are no features
in FHLIF . Using the FC feature set (Fig. 11b), we see lesions with varying colour
distributions and symmetries. It is therefore no surprise that using the FT feature set
(Fig. 11c) also misclassifies lesions with prominent colour patterns.

Figure 12 provides some examples of false positive cases (i.e., misidentified
benign cases) in the above classification results. Using the FHLIF feature set (Fig. 12a),
we see lesions that have asymmetric colour distributions and irregular borders, thus
being classified as malignant. However, similar to the false negative cases above,
their colour is fairly uniform, and could be an indicator of its benign nature. Using
the FC feature set (Fig. 12b), we see lesions with varying borders and some colour
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Fig. 12 Classification false positive examples using each feature set. a False positives using FHLIF .
b False positives using FC . c False positives using FT

asymmetry, although some appear symmetric, smooth border, and uniform colour,
making it peculiar that some were classified as malignant. However, by adding FHLIF

to this set, we see that the false positive cases of FT (Fig. 12c) are very suspicious
lesions, with irregular borders and strange symmetries.

Conclusion

In this chapter we have proposed a novel framework for aiding in the diagnosis of
skin lesions that uses lighting-corrected intuitive feature models. The multi-stage
preprocessing step correctly adjusted the illumination across the standard camera
image to ensure consistent analysis of that lesion. High-level intuitive features (HLIF)
that characterize asymmetry and border irregularity were extracted and combined
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with state-of-the-art low-level features. Designing HLIFs ensures that the feature
scores can be conveyed to the doctor with intuitive rationale, as they are modeled in
an intuitive manner.

Experimental results indicate that the illumination correction algorithm produces
photographs taken with standard cameras that have been better corrected for illumi-
nation variation compared to a state-of-the-art algorithm [10]. Furthermore, linear
classification using the small set of extracted HLIFs produces accurate and reliable
results compared to the large state-of-the-art low-level feature set, and when com-
bined with this large set we obtained improvements in sensitivity, specificity, and
test-retest reliability. This unified framework can be used along with segmentation
and advanced classification methods to provide a robust automatic diagnostic system
for analysing skin lesions.
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Texture Information in Melanocytic Skin Lesion
Analysis Based on Standard Camera Images

Pablo G. Cavalcanti and Jacob Scharcanski

Abstract The classification of melanocytic skin lesions is a very difficult task, and
usually computer-aided diagnosis systems or screening systems focus on reproduc-
ing medical criteria as the ABCD rule. However, the texture information can also
contribute significantly for the lesion classification, since malignant cases tends to
present texture patterns different from benign cases. In this chapter, we detail five
representative sets of features that have been proposed in the literature for the repre-
sentation of melanocytic lesions texture information, and then we analyze how these
features distinguish between malignant and benign classes using two well known
classifiers.

Keywords Melanoma · Melanocytic skin lesion · Standard camera imaging ·
Texture analysis · Computer vision

Introduction

Discriminating benign from malignant cases of melanocytic skin lesions can be a
very challenging task. Malignant melanomas and benign atypical nevi share at least
some, and sometimes all, clinical characteristics detected visually [18, 35].

Different methods can be used to help diagnosing melanocytic lesions. The ABCD
rule is probably the most frequently used methodology, trying to differentiate malig-
nant and benign cases using a set of lesion characteristics, namely Asymmetry,
Border irregularity, Color variation and lesion Diameter. However, there is no default
protocol for acquiring the image, and the diameter measurement despite being a
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very important feature, is difficult to measure in practice. There is also a similar
methodology called ABCD rule of dermoscopy [29], which is applicable of der-
moscopy images and changes the D letter to Differential structures, i.e. submacro-
scopic morphologic and vascular structures (e.g., pigment network, dots, globules)
that occur more frequently in malignant cases. These characteristics also can be an
important part of other dermoscopic methodologies for the lesion diagnosis, such as
the Menzies Scoring Method or the 7-point Checklist [23]. Nevertheless, these char-
acteristics usually are not visible on standard camera images, and texture analysis
can used as an attempt to overcome this difficulty. For example, the Pattern Analysis
methodology [33] suggests using a type of global texture pattern (reticular, globular,
homogeneous, etc) as an important feature for the lesion diagnosis.

Consequently, several texture analysis techniques have been tested in the recent
years trying to quantify textural patterns in skin lesions, using both dermoscopy
and standard camera images. The texture descriptors based on the gray-level co-
occurrence matrices are probably the most frequently used technique [1, 10, 22], but
other texture analysis approaches, such as those based on the intensity variability [6],
based on independent component analysis (ICA) [39], fractal measurements [26] or
local binary patterns (LBPs) [43] have been studied.

Specialists state that in the early evolution stages of malignant lesions, dermoscopy
may not be helpful since it often does not improve the diagnosis accuracy [37].
Moreover, a recent study indicate that only 48 % of dermatologists in the United States
use dermoscopy [17] when performing the visual inspection of the lesion (however,
a definitive diagnosis is only given after the biopsy). So, in this chapter we focus on
standard camera images only, which are more accessible to dermatologists and also
provides the possible utilization on telemedicine [28]. Our objective is to present
different techniques for the quantification of the texture patterns of melanocytic
skin lesions and evaluate on a image dataset which features can better differentiate
malignant and benign cases.

Texture Features Often Used for Melanocytic Skin Lesions
Image Analysis

In many computer vision and image processing applications, the texture analysis is an
important procedure for the success of the technique. However, many characteristics
can define a texture, such as uniformity, density, roughness, regularity, direction,
etc [40]. Consequently, several approaches based on different representations have
been proposed in the literature aiming to represent the texture patterns of different
kinds of images.

As already mentioned in section “Introduction”, texture descriptors approaches
for melanocytic skin lesion images have also been proposed in the literature. In
the following subsections we describe representative state-of-art approaches that
are often used to differentiate benign and malignant cases of melanocytic skin
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lesions. These methods are organized inspired on the classification of texture analysis
methods proposed by Tuceryan and Jain [40].

Statistical Methods

The spatial distribution of gray values is a very important quality of texture, and
the use of statistical features to represent the texture information is one of the early
and most used methods in the computer vision literature [40]. We present next the
use of co-occurrence matrices, a statistical tool frequently used for the analysis of
melanocytic skin lesions.

Co-occurrence Matrices Features

A co-occurrence matrix is a matrix representing the distribution of co-occurring
values at a given offset. Mathematically, a co-occurrence matrix C is defined over
an n × m image I , parameterized by an offset (�x , �y), as:

C�x,�y(i, j) =
n

∑

p=1

m
∑

q=1

{

1, i f I (p, q) = i and I (p + �x, q + �y) = j

0, otherwise
. (1)

The indexes i and j , and consequently the size of C , are defined by the range of
possible values in I . For instance, if I is binary, the generated co-occurrence matrix
C has size of 2 × 2, while a 24-bit color image generate a 224 × 224 co-occurrence
matrix. Usually, texture analysis methods compute these matrices for 8-bit grayscale
images, frequently quantized for even less than 256 values, and are referred as gray-
level co-occurrence matrices (GLCM).

Moreover, it should be observed that the (�x , �y) parametrization makes the
co-occurrence matrix sensitive to rotation. Unless the image is rotated in 180
degrees, any image rotation will result in a different co-occurrence distribution.
So, to achieve a degree of rotation invariance, usually texture analysis proce-
dures compute co-occurrence matrices considering rotations of 0, 45, 90, and 135
degrees. For instance, if we are considering one single pixel offsets (a reference
pixel and its immediate neighbour), four co-occurrence matrices are computed using
(�x , �y) = {(1, 0), (1,−1), (0,−1), (−1,−1)}. This process is exemplified in
Fig. 1 using an example image with four possible pixel values.

Because co-occurrence matrices are typically large and sparse, these matrices are
not directly used for image analysis. In 1973, Haralick et al. [19] proposed a set of
14 metrics (frequently referred as the Haralick features) computed through the co-
occurrence matrices to represent the image textural patterns, and this set of metrics
and other similar metrics proposed in the literature [12, 38] have been used in the
last decades for many different applications.
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(a)

(b) (c) (d) (e)

Fig. 1 Co-occurrence matrices computation example. a Reference example image; b–e Co-
occurrence matrices for the rotations of 0◦, 45◦, 90◦ and 135◦, respectively

As mentioned in section “Introduction”, textural features based on the
co-occurrence matrices are also very frequently used in melanocytic lesions analy-
sis, though not existing a default scheme for that. Celebi et al. [10], for instance,
suggest to uniformly quantize the images to 64 gray levels, and then extract 8 Haral-
ick features for each one of the four orientations using single pixel offsets. Iyatomi
et al. [22] proposed using only 4 features, but 11 different offsets. While Celebi et al.
and Iyatomi et al. applied these techniques on dermoscopy images, Alcón et al. [1]
used the Haralick features for the quantification of the textural structures on standard
camera images. However, Alcón et al. is probably the simplest algorithm, computing
only 4 Haralick features using single pixel offsets. In our experiments (see section
“Experimental Comparison of Texture Features for Melanocytic Skin Lesion Image
Analysis”) we will follow the Celebi et al. algorithm, as described next, which in our
opinion is the most complete procedure.

Celebi et al. [10] initially divide the image in three regions. Based on a predefined
segmentation, it is defined the lesion region, an outer periphery and an inner periphery.
These peripheral regions are defined as adjacent regions with areas equal to 20 % of
the lesion area, respectively outside and inside the lesion region. To reduce the effects
of segmentation inaccuracies, these peripheral regions omit areas equal to 10 % of
the lesion area next to the lesion border. Then, the images are uniformly quantized
to 64 gray levels, and co-occurrence matrices C considering the four orientations are
defined for each one of three regions. Finally, these matrices are normalized (i.e.,
divided by the total of co-occurrences), and eight Haralick features [12, 19, 38] are
computed:
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Maximum probabili t y = max
i, j

c(i, j) , (2)

Energy =
∑

i

∑

j

c(i, j)2 , (3)

Entropy = −
∑

i

∑

j

p(i, j) log(c(i, j)) , (4)

Dissimilari t y = |i − j | c(i, j) , (5)

Contrast =
N−1
∑

n=0

⎧

⎨

⎩

∑

i

∑

j

c(i, j)

∣
∣
∣
∣
|i − j | = n

⎫

⎬

⎭
, (6)

I nverse di f f erence =
∑ c(i, j)

1 + |i − j | , (7)

I nverse di f f erence moment =
∑ c(i, j)

1 + (i − j)2 , (8)

Correlation = (i j)p(i, j) − μxμy

σxσy
, (9)

where c(i, j) is the value of the normalized co-occurrence matrix at indexes (i, j),
N is the number of gray levels, μx and μy are, respectively, the mean values of the
rows and columns of c, σx and σy are the respective standard deviations, and in Eq. 6
the symbol ′|′ indicates a condition that must be valid.

To obtain rotation invariant features, the 8 statistics are averaged over the four
orientations, obtaining 24 features to represent the textural information in the three
image regions. Celebi et al. also add the ratios and differences of the 8 statistics in
each one of these regions, amounting 72 generated features for each single image.

In Celebi et al. experiments [10], these texture features were combined with 11
features based on the lesion shape and 354 color features to classify dermoscopy
images. In section “Experimental Comparison of Texture Features for Melanocytic
Skin Lesion Image Analysis” we present some experiments and discuss its perfor-
mance to classify standard camera images using these texture features standalone.

Model and Pattern Oriented Methods

The objective of model and pattern oriented texture analysis methods is to capture
the essence of the texture, not only describing this information but also synthesizing
it [40]. We present next typical approaches based on those assumptions often used
in melanocytic skin lesion analysis.
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Fig. 2 Pseudoelevation surface example. a Melanocytic skin lesion image; b 3D fractal surface
generated from the lesion image

Fractal Features

Given a melanocytic skin lesion image, Manousaki et al. [26, 27] proposed to create a
three-dimensional pseudo-elevation surface by using the image intensities. Attribut-
ing the value of 255 to black and 0 to white (i.e., the complement of the grayscale
intensities) to the z-coordinate component, the two-dimensional image (I (x, y)) is
converted to 3D (I (x, y, z)). Consequently, these pseudoelevations reveals delicate
differences of texture within the lesions, and appear as spatial isotropic surfaces [27].
An example of the generated 3D fractal surface can be seen in Fig. 2.

As we know, points, curves, surfaces and cubes are described in Euclidean geom-
etry using integer dimensions of 0, 1, 2, and 3, respectively. A measure of an object
such as the length of a line, the area of a surface and the volume of a cube are associ-
ated with each dimensions, and these measurements are invariant with respect to the
used unit. However, almost any object found in nature appear disordered and irreg-
ular for which the measures of length, area and volume are scale-dependent. This
suggests that the dimensions of such objects cannot be integers, i.e. these objects
should be represented using fractal dimensions. For instance, a melanocytic lesion
must have a dimension between 2 and 3, i.e. the dimension of an object that is not
actually regular in shape and not a cube.

Many methods were proposed to compute the fractal dimension of an object [36].
The most used technique is probably the Minkowski–Bouligand dimension, also
known as Minkowski dimension or box-counting dimension. Suposing the fractal
on an evenly-space grid, we must count the number of boxes required to cover the
object. The box-counting dimension is calculated by seeing how this number changes
as we make the grid finer. Assuming N (ε) as the number of boxes of side ε required
to cover the object, the fractal dimension D is defined as:

D = lim
ε→0

log N (ε)

log (1/ε)
. (10)
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In [27], Manousaki et al. used a modified algorithm of the Minkowski-Bouligand
dimension proposed by Dubuc et al [16], using disks instead of boxes in its imple-
mentation. They performed experiments with 132 melanocytic skin lesion images,
23 of them being melanomas, 44 atypical nevi and 65 common nevi. While the
melanomas achieved fractal dimension of 2.49 ± 0.10 (average ± standard devia-
tion), the atypical nevi resulted 2.44 ± 0.11, and the common nevi resulted 2.46 ±
0.07.

In combination with fractal dimension, Manousaki et al. [26, 27] proposed the use
of lacunarity parameter to classify the different textures. Lacunarity is a quantitative
measure to describe differences in appearance of fractal surfaces with the same fractal
dimension [25], measuring the distribution and size of “holes” within a textured
surface.

Again, many different methods were proposed to compute the surface lacunar-
ity [2]. Manousaki et al. suggested the gliding box method proposed by Allain and
Cloitre [2]. A gliding box with size r × r is placed directly over the image and
moves as a simple window, and the box mass M is determined as the sum of the
box content. The lacunarity at scale r is defined as the variation of the computed M
values over the image divided by its square mean. Using the same image database
with 132 lesion images, Manousaki et al. computed for melanomas lacunarity of
0.42±0.35 (average ± standard deviation), while aytpical nevi resulted 0.25±0.22,
and common nevi resulted 0.19±0.14.

Manousaki et al. did not experimented these computed textural descriptors in a
classification step. However, they observed through statistical tests (Kruskal-Wallis
and Mann-Whitney tests) that lacunarity can be potentially used to differentiate
malignant and benign skin lesions, while fractal dimension do not provided signifi-
cant statistical differentiation.

LBP Features

Local binnary pattern (LBP) is a texture operator that was proposed by Ojala
et al. [30]. and has already been used for many different applications. This tech-
nique labels the pixels of an image by thresholding the neighborhood of each pixel
based on its value, and generates a binary number to quantify the local texture. Let
us consider the following 3 × 3 image to illustrate its functionality:

As can be observed in Fig. 3, all neighbor pixels with value higher or equal to
the center pixel value assume ‘1’ in the LBP, while the neighbor pixels with lower
value assume ‘0’. Arranging these 8 binary values in sequence we obtain a 8-digit
binary number, i.e. the local texture of the 3×3 neighborhood can be represented by
28 = 256 different labels. After computing the LBP for each image position, usually
a histogram is used to describe the texture information of the whole image. This
methodology also has been extended for larger neighborhoods, considering circles
of larger radius and a large number of pixels [31].

However, if we observe again Fig. 3, it is obvious that the binary number gener-
ated from the neighborhood is dependent of the initial position to arrange the val-
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(a) (b)

Fig. 3 Local Binnary Pattern (LBP) computation example. a Reference example image; b Com-
puted LBP (the 8 neighbor pixels are thresholded by the center pixel value)

ues. Although usually the clockwise direction is adopted, we can obtain 8 different
numbers (or more, if larger neighborhoods are used). For instance, if we start at the
top-left pixel we obtain 00110100, while we obtain 01000011 if we start arrang-
ing from the bottom-right pixel. So, to create a rotation invariant descriptor, Ojala
et al. proposed to generated all the possible binary numbers, and the resultant LBP
is the minimum possible value. In this case, the minimum possible binary value is
00001101 (i.e., starting the arrangement from the bottom-left pixel), and that would
be the resultant rotation variant LBP to the example image in Fig. 3a.

Also, Ojala et al. proposed a step to reduce the feature vector. For instance, the
256 bins histogram can be a too high dimensional vector to be used in a posterior
classification step. Considering that many applications use 16 neighbor pixels, the
generated 216 = 65, 536 bins histograms make unpractical the use of LBPs. So, they
also proposed the concept of uniform pattern, which was inspired by the fact that
some binary patterns occur more commonly in texture images than others. A LBP is
called uniform if its binary number contains at most two bitwise transitions from 0
to 1 or vice versa. For example, the patterns 00000000 (0 transitions), 01110000 (2
transitions) and 11001111 (2 transitions) are uniform whereas the patterns 11001001
(4 transitions) and 01010010 (6 transitions) are not. Since LBPs with lower number
of transitions are much more frequent, the final histogram is computed in such way
that all the non-uniform patterns are counted in a single bin. For instance, in the 256
possible patterns of a 3×3 neighborhood, 58 of which are uniform, and consequently
the generated feature vector will be 59-dimensional. Moreover, if we consider the
rotation invariant descriptors, this dimensionality is reduced to only 10 bins.

Zortea et al. [43] proposed to use LBPs for the texture analysis of melanocytic
skin lesions. Although their experiments have been performed with dermoscopy
images, we present their proposed algorithm here understanding that it is a valuable
contribution to the literature. Moreover, our experiments (see section “Experimental
Comparison of Texture Features for Melanocytic Skin Lesion Image Analysis”)
indicate that this technique is a potentially useful also for standard camera images.
Their algorithm starts by dividing the whole image in windows of w ×w pixels, with
50 % overlapping of adjacent windows. Then, uniform rotation invariant LBPs of
16 neighbor pixels are computed, and a 18-dimensional feature vector is generated
to each one of these windows. Finally, the whole set of computed features vectors is
clustered in K sub-classes (using the K -means algorithm) and we obtain a dictionary
of possible LBPs presented in melanocytic lesion images.
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We may observe that there is no segmentation before the texture feature extraction,
so the “skin” texture pattern is also presented in the generated dictionary of K pat-
terns. Zortea et al. understand that the “skin” pattern will be present in both malignant
and benign classes, and consequently will not influence the posterior classification.
Furthermore, that would make this technique not-dependent of segmentation inac-
curacies.

So, after obtained the K -dimensional texture dictionary, LBPs are computed in
the testing image set, and the frequency of occurrence of each of the K textural
patterns is used as a textural representative vector. Additionally, they included a
feature accounting the number of different patterns in each single image, providing a
K + 1 feature vector. The algorithm is based on the idea that malignant cases would
generated higher frequencies for some textural patterns, while benign cases higher
frequencies for different patterns of the dictionary.

In their experiments, Zortea et al. [43] used a Support vector machine (SVM) clas-
sifier with Radial Basis Function kernel and tested different parameters specification.
The best classification results have been obtained using w = 40 pixels and K = 22
clusters, achieving sensitivity of 73.3 % and specificity of 73.9 %. In our experiments
(see section “Experimental Comparison of Texture Features for Melanocytic Skin
Lesion Image Analysis”), we randomly selected 30 images from each class for the
computation of the texture dictionary, and we also varied the K parameter to check
the performance of these LBP features in a classification procedure.

Signal Oriented Methods

Many texture analysis techniques have been proposed relying on signal processing
techniques, such as features computed from filtered images [40]. We present next
two approaches often used for the melanocytic skin lesions analysis focused on that
idea.

ICA Features

Tabatabaie et al. [39] proposed a filtering method based on independent component
analysis (ICA) to describe the texture information of melanocytic skin lesion images.
ICA is a method to construct independent components from an ensemble of data [34].
Let X be a linear mixture of mutually statistically independent source signals S:

X = AS, (11)

where A is the mixing matrix. The objective of ICA is to identify the independent
component of S, given the matrix X . However, since both A and S are unknown, this
is a typical case of blind source separation, i.e. no information is provided about the
set of signals that should be estimated. So, several methods have been proposed to
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estimate a matrix W :
Y = W X, (12)

where the inverse of W is a estimation of A, and consequently Y is a estimation of S.
The most frequently used methods to compute W is the Non-Gaussianity family
of ICA algorithms. According to the central limit theorem, the probability density
function of a sum of n independent random variables tends to a Gaussian, as n tends
to infinity. So, these ICA algorithms goals to compute W in a way that each recovered
signal in Y is as non-Gaussianity as possible [34].

Tabatabaie et al. [39] proposed to use FastICA [20, 21], an ICA algorithm based
on non-Gaussianity, to compute texture features of melanocytic skin lesions. The
approach starts by linearly normalizing each image, i.e. the processed images have
zero mean and unit variance. Then, thousands of small image patches of 16 × 16
pixels are extracted from inside the lesion areas. From each patch the local mean
is subtracted to remove the DC component, and all the patches are concatenated
to create a matrix of mixed signals X . Finally, the FastICA is applied. This algo-
rithm initially perform data whitening and dimension reduction through principal
component analysis (PCA), and then identify the independent components using a
fixed-point iteration scheme. Tabatabaie et al. suggest the hyperbolic tangent as the
nonlinear function to estimate the non-Gaussianity of the signals, and obtained 100
independent components from FastICA. This technique has been used both for the set
of malignant images and for the set of benign images, resulting in 200 independent
components.

After the ICA application, each obtained independent component is used as an
image filter, and the energy of an image I in response to the filters is used to represent
the texture features. This energy is defined as:

Ei = ‖I ⊗ f ilteri‖ , (13)

where ⊗ represents the 2D convolution, and ‖.‖ denotes the Euclidean norm. Con-
sidering that we obtain 200 components/filters (i.e., i ∈ [1, 200]), we obviously also
obtain 200 energy values or texture features Ei for each image. Ideally, malignant
cases may result stronger energies from the filters generated from the malignant
patches, while benign cases may result stronger energies from the filters generated
from the benign patches. Consequently, these features can be used in a classification
scheme aiming to differentiate malignant and benign cases.

In their experiments, Tabatabaie et al. [39] ranked the 200 computed features
by t-test separability criteria [42], and a Support Vector Machine (SVM) classifier
to identify the images as malignant or benign using from 1 to 200 features. The
best results were obtained when a radial basis function (RBF) kernel was used, and
approximately 25 features,1 achieving 73.7 % of accuracy. These experiments were
performed in 160 images collected from online atlases [13, 14].

1 The results are presented in a line chart, and the exact number is not provided.
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Tabatabaie et al. also proposed the combination of these ICA-based textural
features with some color descriptors to improve the classification results, achiev-
ing 88.7 % of accuracy. However, since color features are out of the scopus of this
chapter, we refer the reader to their work [39] to obtain more details about that.

Section “Experimental Comparison of Texture Features for Melanocytic Skin
Lesion Image Analysis” presents some experimental results, comparing the classifi-
cation results of melanocytic lesions using these features with other texture descrip-
tors features. In these experiments, we randomly selected 30 images of each class
and extracted 100 patches from each image, obtaining 3,000 patches to generate the
100 components/filters for each class.

Intensity Variability Features

Skin lesions often have more local textural variability than healthy skin areas, and
that can be used to differentiate healthy and unhealthy skin regions. Cavalcanti and
Scharcanski [6] proposed to quantify this texture information in a image pixel I (x, y)

through the intensity variability of its neighborhood. Their method starts by comput-
ing τ(x, y, σ ):

τ(x, y, σ ) = I (x, y)

S(x, y, σ )
− I (x, y), (14)

where, S(x, y, σ ) = I (x, y) ⊗ G(σ ) (i.e., image I is smoothed by a Gaussian filter
with standard deviation σ ). Re-arranging terms in Eq. 14, τ(x, y, σ ) can also be
defined as:

τ(x, y, σ ) = I (x, y) − I (x, y) · S(x, y, σ )

S(x, y, σ )

= I (x, y) (1 − S(x, y, σ )))

S(x, y, σ )

= I (x, y)
S̃(x, y, σ )

S(x, y, σ )
, (15)

where, S̃(x, y, σ ) represents the complement of the L̄ smoothed image [(i.e. S̃
(x, y, σ ) = 1 − S(x, y, σ )]. If an image region is dark (i.e. has low pixel inten-
sities, as often occurs in skin lesions), S̃(x, y, σ ) > S(x, y, σ ) and the ratio
S̃(x, y, σ )/S(x, y, σ ) tends to increase, and the local region and textural infor-
mation are emphasized; if the region is bright (e.g. as in healthy skin regions),
S̃(x, y, σ ) < S(x, y, σ ) and the ratio S̃(x, y, σ )/S(x, y, σ ) tends to decrease, and
the local region and its textural information are de-emphasized. This process is illus-
trated in Fig. 4. Usually, most pixels in I correspond to healthy skin (i.e., have higher
intensity values). However, most skin pixels have lower values (closer to zero) in
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Fig. 4 Texture variability quantification τ(x, y, σ ). a Melanocytic skin lesion image; b Histogram
of the image; c and d show the histograms of I (x, y)S̃(x, y, σ )/S(x, y, σ ) (see Eq. 15) using σ = 1
and σ = 43

7 , respectively; e and f show the image instances associated to the histograms shown in
Figs. c and d

τ(x, y, σ ), while skin lesion pixels tend to be brighter, as the histogram peaks show
in Figs. 4c and d. 2

A single Gaussian filter may not be sufficient to capture the intensity variability of
different types of lesions in generic images. So, τ(x, y, σ ) is computed for different

2 The higher histogram peaks are associated to healthy skin regions in Figs. 4c and d.
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σ values3 {σ1, σ2, ..., σN }, and select at each pixel the maximum τ(x, y, σ ) among
all scales σ :

T (x, y) = maxσ [τ(x, y, σ )], σ ∈ {σ1, σ2, ..., σN } . (16)

The procedure described in Eq. 16 was designed to capture the local intensity
variability information at each pixel (x, y), in lesions of different sizes, shapes and
texture patterns. And, finally, texture variability channel Itext is computed by nor-
malizing T :

Itext (x, y) = (T (x, y) − min (T )) / (max (T ) − min (T )). (17)

As mentioned in the beginning of this section, the main objective when proposing
this intensity variation channel Itext was differentiate healthy and unhealthy skin tex-
ture patterns, aiming to help the segmentation task. However, Cavalcanti and Schar-
canski [6] also included 4 features based on the channel Itext on their classification
system to differentiate malignant and benign melanocytic lesions in standard camera
images. These 4 features are the maximum, minimum, average and variance of the
Itext values inside the lesion region, based on a precomputed segmentation. Combin-
ing these features with other 48 features based on the lesion shape, border and color,
Cavalcanti and Scharcanski obtained high accuracy levels. In section “Experimental
Comparison of Texture Features for Melanocytic Skin Lesion Image Analysis” we
analyze the performance of these features alone for classifying melanocytic lesions.

Experimental Comparison of Texture Features for Melanocytic
Skin Lesion Image Analysis

In order to compare the performances of the five state-of-art sets of texture features
for melanocytic skin lesions images presented before, we use the image dataset
proposed in Alcón et al. [1], which contains 152 images that have been collected
from the Dermnet atlas [14]. This dataset consists of 107 melanomas and 45 atypical
nevi, a benign kind of lesion that present similar characteristics to melanomas. We
extracted the texture features from these 152 images, and provided a label to each
image using two different classifiers. However, before we present these results, we
detail the preprocessing steps that were necessary before the feature extraction task.

3 Cavalcanti and Scharcanski [6] suggest using σ = 1, 11
7 , 15

7 , ..., 43
7 , and filter window sizes of

7σ × 7σ .
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Preprocessing and Skin Lesion Segmentation

As already mentioned, our experiments were performed with standard camera
images, i.e. standard photographs of melanocytic skin lesions. However, it is not
trivial to acquire reliable standard photographs of these lesions, since these skin
lesions usually are only a few millimeters width, the camera should be placed near
the the skin and the acquired image usually is affected by shading effects. So, before
to realize any processing or analysis with these images, we perform a preprocessing
step to attenuate the image shading effects using the Cavalcanti et al. [8] algorithm [5],
as described next.

Cavalcanti et al. [9] proposed a shading attenuation method that is adaptive to the
image data. Their method assumes that images are acquired in a way that the lesion
appears in the image center, and it does not touch the image outer borders. The first
step of the method is to convert the image from the original RGB color space to the
HSV color space, and retain the Value channel V . This is justified by the fact that
this channel presents the higher visibility of the shading effects. A region of 20 × 20
pixels is extracted from each one of the four V corners, and the union of these four
sets define the pixel set S (with a total of 1600 image pixels). This pixel set is used
to adjust the following quadric function z(x, y):

z(x, y) = P1x2 + P2 y2 + P3xy + P4x + P5 y + P6, (18)

where the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize
the error ε:

ε =
1600
∑

j=1

[

V (S j,x , S j,y) − z(S j,x , S j,y)
]2

, (19)

where, S j,x and S j,y are the x and y coordinates of the j th element of the set S,
respectively.

Calculating the quadric function z(x, y) for each image spatial location (x, y),
we have an estimate z(x, y) of the local illumination intensity in the image V (x, y).
Dividing the original V (x, y) channel by z(x, y), we obtain a new Value channel
where the shading effects have been attenuated. The final step is to replace the original
Value channel by this new Value channel, and convert the image from the HSV color
space to the original RGB color space. In Fig. 5, an example of applying this method
to a skin lesion image is presented. As can be seen, the result is a color image
easier to be analyzed once the lesion region is more emphasized in relation to the
healthy skin. Since the methods presented in section “Texture Features Often Used
for Melanocytic Skin Lesions Image Analysis” were proposed for grayscale images,
we convert the color images to grayscale using the weighted sum (0.2989 R +
0.5870 G + 0.1140 B) from the NTSC/YIQ standard [24].

Some of the texture methods presented in section “Texture Features Often Used
for Melanocytic Skin Lesions Image Analysis” require a precomputed image seg-
mentation, i.e. the texture features are extracted based on a previous identification
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Fig. 5 Shading attenuation example. a Input image; b Obtained quadric model using the corners
of the input Value channel; c Obtained quadric model in 3D; d Result obtained by the division of
the Value channel by the obtained quadric model

of the lesion region. To perform this task we used the ICA-Based Active-Contours
segmentation method as proposed by Cavalcanti et al. [9]. They observed that when
applying ICA to the melanocytic skin lesions color images, the independent com-
ponent with most non-Gaussian histogram correspond to a large part of the lesion
region. So, this component is thresholded using the Otsu’s method [32], and the
thresholded image is used as initialization to the Chan-Vese Active-contours method
for vector-valued images [11]. After some post-processing techniques, this segmen-
tation method achieved the lower segmentation errors in previous experiments with
this same dataset [7]. Some segmentation results are presented in Fig. 6, and we
indicate the original paper [9] for more details about this method.

Comparative Results and Discussion

To compare how the presented sets of texture features are able to distinguish the
textural patterns of malignant and benign cases of melanocytic skin lesions, we
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Fig. 6 Segmentation results using the ICA-Based Active-Contours method

applied two classifiers on the computed features by each one of these methods.
These classifiers are:

• K-nearest neighbors (KNN): classifies samples based on K closest matches in the
N -dimensional feature space [3]. We use K = 1 and each sample is assigned
to its nearest neighbor class by using the Euclidean distance. This classifier has
already been used in previous approaches for the classification of melanocytic skin
lesions [4, 15], including very accurate results for this same dataset [6].

• support vector machine (SVM): based on a training set, this classifier [41] con-
structs a hyperplane representing the largest separation between the two classes
in the N -dimensional feature space, i.e. a hyperplane that maximizes the dis-
tance from it to the nearest sample on each side. To facilitate the hyperplane
computation, usually SVMs are used with the advantage of the “kernel trick”,
projecting the data to a higher dimensional space. Then, testing samples are clas-
sified based on its localization in relation to the hyperplane. This method has also
been used in previous approaches for the classification of melanocytic skin lesions
[10, 15, 39]. In our experiments, we used SVM with linear kernel.

During these experiments, we used 5-fold cross-validation. It means that 80 %
of the samples are used for training, while 20 % of the samples are tested. This
process is repeated 5 times, alternating the samples in the test set and assuring that
all samples receive a label. We also varied the number of features used. Following the
approach proposed by Tabatabaie et al. [39] (see section “ICA Features”), we ranked
the features using the t-test separability criteria [42], and classified each sample using
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Fig. 7 Classification results by the KNN classifier using: a Co-occurrence matrices features; b Frac-
tal features; c LBP features; d ICA features; e Intensity variability features. The experiments were
performed varying the number of features, as indicate in the x-axis
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Fig. 8 Classification results by the SVM classifier using: a Co-occurrence matrices features; b Frac-
tal features; c LBP features; d ICA features; e Intensity variability features. The experiments were
performed varying the number of features, as indicate in the x-axis

from 1 to N features (where N is the maximum number of features generated by
the texture descriptor). The only exception was the LBP features (see section “LBP
Features”), which we varied the number of features by changing the K parameter,



Texture Information in Melanocytic Skin Lesion Analysis 239

Table 1 Best classification results by the KNN classifier

Approaches Sensitivity (%) Specificity (%) Accuracy (%) Number of features

Co-occurrence matrices 88.78 73.33 84.21 44
Fractal 84.11 55.55 75.65 1
LBP 88.78 62.22 80.92 20
ICA 74.76 33.33 62.50 17
Intensity variability 81.30 60.00 75.00 2

Table 2 Best classification results by the SVM classifier

Approaches Sensitivity (%) Specificity (%) Accuracy (%) Number of features

Co-occurrence matrices 93.45 46.66 79.60 52
Fractal 97.19 33.33 78.28 1
LBP 85.04 51.11 75.00 20
ICA 89.71 42.22 75.65 40
Intensity variability 92.52 35.55 75.65 2

i.e. the number of clusters identified by the K-means algorithm and consequently the
size of the texture dictionary.

We analyze the classification results in terms of three metrics ordinarily used for
this purpose: (a) Sensitivity (i.e, the percentage of images correctly classified in the
malignant class); (b) Specificity (i.e., the percentage of images correctly classified
in the benign class); (c) Accuracy (i.e., the percentage of images correctly classified
overall, considering all images). The obtained results for the texture features obtained
by the implementation of the five presented sets of texture features are presented in
Figs. 7 and 8. Figure 7 shows the classification results using the KNN classifier, and
the best results (in terms of accuracy) for each one of the five methods are presented in
Table 1. Figure 8 and Table 2 present the respective results using the SVM classifier.

Analyzing the classification results we can observe that the best results are not
usually obtained using all the computed texture features, and the dimensionality
reduction is important to enhance the classifier performance. Furthermore, the higher
number of malignant cases than benign cases in the image dataset contributed for
better sensitivity than specificity percentages. Finally, the results indicate that the
use of texture feature standalone hardly generate accurate results as other literature
approaches that combine those features with shape, color and other kind of features,
and obtain accuracies higher than 90 % [6, 10].

Not coincidentally, the texture descriptor that obtained the best classification
results in our experiments is the Co-occurrence matrices features, which is the method
that received more attention in the literature [1, 10, 22]. However, the implemented
algorithm proposed by Celebi et al. [10] takes advantage of other image information
and not only the lesion region, such as the outer and inner periphery of the lesion.
In opposite way, the fractal features do not require preprocessing steps and with
only one feature (the lacunarity measure, see section “Fractal Features”) obtained
promising classification results.
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Summary and Future Trends

In this chapter, we reviewed five approaches proposed in the literature for the
numerical representation of the texture information of melanocytic skin lesions.
Then, we extracted these five sets of features from a dataset of standard camera
images containing malignant and benign cases, and verified how these features help
classifying these lesions.

According to our experiments, the set of texture features based on Co-occurrence
matrices is the best option to represent the texture information distinction between
malignant and benign lesions. However, we also observe that simpler approaches also
obtained promising results, and may receive attention in future works. Moreover, the
combination of texture features from different algorithms is a possibility that has not
been tested, as far as we know.

In particular, we believe that computational texture analysis methods is an open
research topic, and future works will contribute to better representing the texture
information of melanocytic lesions and earlier identifying malignant melanomas
cases.
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Recovering Skin Reflectance and Geometry
for Diagnosis of Melanoma

Jiuai Sun, Zhao Liu, Yi Ding and Melvyn Smith

Abstract In order to achieve an early detection of skin cancers, various
state-of-the-art imaging modalities have been investigated from optical, impedance,
biomechanical and physiological perspectives to find out the potential biomarkers.
However multilayered skin microstructure and a wide spectrum of dynamical chro-
mophores embedded underneath skin make it very challenging to quantify this mostly
accessible, but very complex and heterogeneous largest organ of the human body.
Rather than concentrating on characterizing those internal features in a microscopic
level, both lesion reflectance (colour) and 3D geometry have been suggested to
recover through a relative easy and cost effective way towards an improved diagnosis
of melanoma. The reflectance recovered can be used as a good replacement for con-
ventional photograph for the measurement of the ABCD criteria, while the geometry
of lesion surface provides extra dimension for characterizing the topography disrup-
tion of lesion region. As both the reflectance and geometry of skin surface generally
reflect the growth of chromophore cells under the skin, any external abnormalities
indicating the change of skin conditions must accompany with some irregular evolve-
ment and change with these cells. For example, a blurred and asymmetrical border
possibly reveals an abnormal growth of melanocytes in the horizontal phase; whiles
3D surface indentations and protrusions accompanying variegated pigmentation may
indicate an aggressive penetration of melanin into the dermal layer. We compared
new features derived from reflectance and geometrical information with those tra-
ditional ones and demonstrated their significance as additional clues for melanoma
diagnosis.
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Introduction

As people tend to expose themselves under the sun for longer periods of time, exces-
sive ultraviolet rays may penetrate deeply into the skin to cause sunburn and other
forms of skin disease. Most of these diseases are curable relatively easily; however,
malignant melanoma (MM)—the most fatal form of skin cancer—is one important
exception. Perhaps even more worrying, the incidence of malignant melanoma is
increasing rapidly worldwide, with an annual increase second only to lung cancer in
women. Currently Australia/New Zealand have highest incidence rates with almost 1
in 50 populations in the risk of developing melanoma. Apart from high degree of sun
exposure, unhealthy lifestyle such as less exercise and high calorie diet may be also
blamed for the high prevalence rate. The average lifetime risk of developing malig-
nant melanoma in the UK has also doubled every 10 years, making it the fastest
growing type of cancer among all major cancers over the past few decades [1].
Even so, early diagnosis is the most effective way to reduce the mortality rate of
melanoma, unfortunately the successful diagnosis of this cancer at its early stage
can be practically difficult due to limitations of the naked human eye in identifying
subtle suspicious details and potential changes from the appearance of skin lesions.
In order to improve the early detection of melanoma, various imaging techniques
have been investigated to extend clinician’s capability to pick up the fine structures
of suspicious lesions for differentiating MM from benign lesions (BLs).

Dermoscopy is a valuable handy tool being widely used in dermatology to reveal
the penetration and distribution of pigments for predicting the malignancy of skin
tumours. In order to enhance the observation of morphological structures and pigmen-
tation patterns, the polarized light or immersion oils are often employed to remove
the specular reflection from the skin surface and render the epidermis translucent.
This enhanced visibility gives experienced examiners more confidence and improves
their diagnostic accuracy of melanoma, but inexperienced or less trained clinicians
may find it difficult to identify and explain those complex morphological struc-
tures such as pigmented network, dots and globules within the lesion [2]. Another
similar approach, spectrophotometric intracutaneous analysis (SIAScopy), uses sev-
eral lights with different spectrum to characterize the chromophore and structure of
skin subsurface. The penetration of melanin within the dermis is estimated through
the Kubelka–Munk model by concerning both the optical scattering and absorp-
tion mechanisms. This additional capability of detecting the presence of melanin
below the dermo-epidermal junction gives the SIAScopy potentiality to pick up the
metastatic invasion signal of skin cancers [3]. Other approaches being investigated
to enhance the melanoma diagnosis may include ultrasound imaging modality work-
ing either independently or with the optical approach to quantify general thickness
and volume of skin cancers [4], optical coherence tomography and Terahertz pulsed
imaging modalities to differentiate between normal and cancerous tissues [5].

Melanoma is a dark-pigmented, widely metastasizing tumour arising from
melanocytes, which give our skin different colours through the melanogenesis
process. Apart from melanin produced by the melanocytes human skin also con-
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tains other forms of chromophores such as bilirubin, beta-carotene and haemoglobin
whose optical absorption characteristics all present very different from each other.
For those microstructures with size comparable to the wavelength of incident light,
the light interaction will become dominated by the scattering mechanism. All these
chromophores associated with the microstructure of skin sub-layers make up of a
complex, dynamic, variegated and multilayered optical turbid medium. It is approved
very challenging to identify rigorous formulas to accurately model all this nature com-
plexity [6]. Fortunately any development and evolvement of these chromophores
and microstructures will finally reflect on its external appearances. For example,
melanoma may pathologically present with variegated colour or distorted skin line
or net patterns [7]. This allows the diagnosis of melanoma from the observation of
the skin external appearances directly. As a good example, the ABCD rules are two
dimensional geometry and colour visual descriptors summarized by clinicians and
being most frequently used for melanoma diagnosis in clinics.

Direct visual observations of skin lesion or its photograph have been used for
diagnosis of melanoma for decades; however they tend to suffer from the problems
of low accuracy and subjective judgment based on personal experience. Meanwhile
observation under one specific set of conditions or one photograph normally has
difficulty to represent the full characteristics of skin surface as the appearance of
skin surface is jointly determined by several internal and external factors such as
geometry and reflectance of the skin surface, the ambient lighting and the spectral
sensitivity of cameras. A simple example in Fig. 1 shows two different impressions
of a skin replica illuminated by a light from two different directions. Fig. 1a reveals
more detail in a horizontal primary direction, whereas the details in both horizontal
and vertical secondary direction can be found in Fig. 1b. To improve the diagnosis
of skin diseases, an objective and comprehensive representation of skin surface must
be obtained at first hand.

Fig. 1 One skin replica illuminated from top (a) and right hand side (b)
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At a micro scale the skin surface is not simply flat but able to be characterized by a
particular micro-relief representing the keratinisation progress of epidermis and 3D
organization of dermis and subcutaneous tissue [8]. The periodical cellular updating
and frequent mechanical interaction with external environment also give skin the
macro level net-like topographic structures in regular geometrical forms like trian-
gles, polygons and line patterns. The roughness and palpation parameters of these
geometrical structures can be used to estimate an overall size and depth of a cutaneous
tumour [9]. On the other hand, skin colour/reflectance, another important element to
give skin general appearance, originates from the chromophores including melanin,
one main and particular chromophore directly indicating the invasive depth of the
melanoma. It usually gives the melanoma bluish colour as the pigments penetrating
in the deep dermal layer absorb a large amount of light with long wavelengths [10].

Therefore both the geometric and colour/reflectance information of skin lesion are
potentially important for differentiating the MM from BLs. A working device called
skin analyzer (SA) has been purposely developed with the capability to recover the
orientation and reflectance of skin surface simultaneously by using multiple images
captured from same viewpoint but illuminated from different directions [11]. This
provides an effective way to simulate the procedure adopted by dermatologists in
making a clinical diagnosis, i.e. look those suspicious lesions from different angles,
pick up suspicious physical features, and then possibly feed the features into a spe-
cialized intelligent classification system (doctor’s brain) to conclude which class the
lesion may belong to. Such an imaging system is expected to help objectively detect
and quantify features which are not easily picked up by naked human eyes.

Characterizing Skin Reflectance and Geometry

When a beam of light projects onto the surface of skin, it will undergo hundreds of
absorption and scattering before emission. This process makes the radiation distri-
bution isotropic in all directions. The micro facet structure of the stratum corneum
further contributes diffusive impression of the skin appearance [12]. Therefore a
diffuse reflection model is used here to approximate the mechanism of the pho-
tons interacting with the chromophores and layered structure of skin. Based on this
reasonably simplified skin optical reflection model the working SA device is able
to recover both orientation and reflectance of skin surface simultaneously from the
theory of photometric stereo.

Colour Photometric Stereo

The image intensity I of a Lambertian surface can be simply expressed as the product
of the composite reflectance K and the cosine of the incidence angle θ, i.e. the angle
between the direction of the incident light l and the surface normal n:
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I = K cos(θi ) = K (l · n) (1)

Without any prior geometry knowledge of an object’s surface, more than one image
is required to recover the surface normal and reflectance. In general several images
are taken using the same imaging system from the same observation point, but for
each the object is illuminated by a single light source from a different direction l j

(j = 1, 2,…, N, N ≥ 3). A six evenly distributed light source photometric stereo
method has been proposed to ensure that all visible points on a convex surface can be
illuminated by at least three light sources, the minimum required for traditional pho-
tometric stereo [13]. Shadows and highlight can be eliminated by directly using the
intensity values through a hierarchical light-source selection stratagem. The redun-
dant information from the images illuminated through the use of the extra light
sources can improve the accuracy of the recovery as well as overcoming the effects
of highlights and shadows. With the wide accessibility of colour photographs which
provide three values at three channels, an improved solution can be achieved by aver-
aging the results on three channels after implementing the traditional photometric
stereo approach separately [14].

Suppose I j
c (c= r, g, b) represents the intensity values of each pixel in three

colour channels respectively within the j th image, 6 × 3 intensity values can form
three groups of intensity vectors Ic = (I 1

c , I 2
c , . . . , I 6

c )T . In the same way, an
illumination matrix can be obtained through arranging the lighting directions as:
L = (l1, l2, . . . , l6)T . So total 3 × 6 equations from Eq. (1), corresponding to the
same pixel in six images, can be written as the following linear system of equations:

Ic = Kc(L · n) (2)

When the matrix L is know through calibration, and is of at least rank 3, three groups
of albedo and surface normal can be uniquely calculated using a linear least-squares
method:

Kc = |(LT L)−1 · LT · Ic| (3)

n = (LT L)−1 · LT · Ic/Kc (4)

After discarding those problematic pixels, the above procedure is carried out for each
of the three channels of the captured colour images respectively. Theoretically the
surface normal calculated at three channels should be same. However some slight
variation always exists in practice as there is usually noise within the acquired images
and uncertainty in the estimation of lighting location. To minimize these errors, the
mean of the three surface normal values is calculated as a standard optimal value.
After the surface normal is determined, the composite albedo can be recalculated
from Eq. (3) and then converted into RGB colour space to form the colour reflectance
image.
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Fig. 2 Schematic (a) and developed handheld skin analyzer (b)

Different from the available techniques which only measure either skin reflectance
or skin topography [15, 16], this simplified reflection model allows both the
reflectance and shape information recovered simultaneously and then provided as
an improved input representation for differentiating suspicious lesions.

Evaluation of the Skin Analyzer

The SA is an ergonomically and aesthetically pleasing hand-held device designed
and manufactured for undertaking pilot clinical studies. Figure 2 shows the schematic
and prototype of the device which is finished in a black colour with a compact digital
CCD camera and six surface mounted LEDs whose relative positions are optimized
to achieve better recovery accuracy [13]. It can be easily operated through customized
software interfacing with a PC or laptop. Due to the light-weight design, it can be
held in a single hand without touching the skin being measured. This ensures the
measurements have good repeatability and stability because any external distortion
on the skin due to the contact is largely excluded from the skin surface during this
non-contact imaging procedure.

Eight images are totally collected within one second for each clinical case. The
first image, taken without any lights on is considered as the image under illumination
from ambient light only. Following the first image acquisition, six images are acquired
with each spot light in a different position sequentially activated. The eighth image
is acquired with three equally distributed lights switched on at the same time to
simulate a diffuse lighting condition. The effect of ambient light is eliminated by
subtracting the first image from each of the later seven images. The device is evaluated
through its performance in 3D reconstruction and rendering synthetic images for
diagnosis purposes. The experiments are carried out on both skin replica and in vivo
skin.
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3D Reconstruction

A ground truth of skin surface is required in order to evaluate the performance of 3D
recovery of the SA; however it is normally difficult to obtain a good ground truth
of skin surface because of its elastic, dynamic and multilayered microstructure. A
negative skin replica collected by smearing a silicon rubber material mixed with a
catalyst is used. This provides a simple and repeatable means to record the external
detailed structures of the skin without affecting the skin function. Fine detail in the
form of the furrows and peaks of the skin relief can be reproduced exactly proving
this process is carefully undertaken. After the skin replica has been produced, the
topography of skin can be obtained by scanning the surface of the replica through
either a contacting mechanical stylus or noncontact optical systems. These measure-
ment techniques have proved useful for recording skin topography through static
silicone replicas with satisfactory accuracy in analyzing skin microstructure and
anisotropy. Here a commercial optical scanning device, phase shifting rapid in-vivo
measurement of skin device (PRIMOS) is used to obtain the profile of skin replica as
a standard reference for comparing with the data acquired by the skin analyzer [15].
The PRIMOS recovers a height map of skin surface from the images illuminated by
a series of phase shifting stripe lights onto the skin or skin replica.

To make the surface normal extracted from the photometric stereo technique
comparable to that output from the PRIMOS device, the 3D data from the PRIMOS
is transformed into a gradient representation format through partial differentiation,
which will not introduce any global error due to the local calculating operation. On
the other hand, the gradient data obtained from photometric stereo approach is also
integrated into a format of skin profile which can be compared with the PRIMOS
height map directly, though the integration and comparison are only applied on
a relative small area to minimize the effect from the accumulated errors with an
integration procedure.

Figure 3 shows skin replica taken from normal skin on the back of a hand and
the 3D topography representation in the form of needle maps and 3D reconstruction
results. The rectangle area in Fig. 3a formed by the black solid lines specifies the
interested area where the integration of surface normal and comparison are carried
out.

Figure 3b and c are needle maps extracted from the 3D data acquired by the
PRIMOS and derived from the surface normal data captured by the SA. The SA
demonstrates a higher sensitivity as more vectors are presented with long ampli-
tudes. Meanwhile the reconstructed skin profile from the skin analyzer changes more
smoothly, while sharp edges can be found with the results from the PRIMOS. This can
be observed from the reconstructed results of three identified small holes in Fig. 3d
and e. This failure of the PRIMOS in the recovery of sharp edges may be explained
by the obstruction of light projected from only one direction. The skin analyzer is
able to take advantage of the multiple light sources to remove the presence of shadow
and specularities before recovery. This makes those edges and holes reconstructed
from photometric stereo look more reliable and credible.
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Fig. 3 Evaluation of geometry recovery on skin replica (a) through comparing the surface normal
(b) and (c), 3D reconstruction (d) and (e) obtained from PRIMOS and SA

Skin replicas have been used as an acceptable means to investigate the topography
of the skin. However it requires considerable operator skill to successfully copy the
skin structure. Most importantly it cannot replicate skin colour information which is
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Fig. 3 continued

sometimes more important than skin microstructure in clinics. Meanwhile the serial
of parallel black/white light stripes projected by the PRIMOS onto the skin surface
may be concealed by the heavy pigmentation of skin lesions. It may deteriorate the
accuracy and resolution of the reconstruction results [17]. The bulky weight also
prevents the PRIMOS in vivo measurement of skin lesions distributing arbitrarily
around the body. On the contrary the SA provides a new flexible mean to record the
appearance of skin surface for either clinical or cosmetic purposes.

Synthetic Colour Images

Figure 4 shows four types of images used to assess the colour representation achieved
by the SA. They are traditional photography captured with only one illumination (a),
diffuse photograph illuminated by a ring-type of flash (b), reflectance reconstructed
from multiple images with the elimination of specular and shadow effects (c), and
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Fig. 4 Four type of images of two sample lesions (a) illuminated from one direction, (b) illuminated
from all directions, (c) recovered with surface reflectance, and (d) rendered into virtual photographs
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images rendered by using a virtual light source (d). The eighth image illuminated by
three equally distributed lights is used to simulate the idea diffuse or ring-type flash
photograph, one of the popular manners to reliably record visual information of the
skin lesions [18].

The photographs illuminated by one light in Fig. 4a present heavy highlight on the
left of the lesion and shadows on the right side of the lesion. The diffuse (multiple)
lights can resolve such problems to some extent in Fig. 4b, although illumination
by diffuse light often does not produce an image with perceived depth and structure
details as may be seen by the human naked eye. The fine scaling of valleys and bumps
can hardly be discerned due to the effects of the diffuse illumination. It may make
this method unacceptable due to the reduced fidelity and ‘unreal’ nature of the image
especially when the topographic information is interested.

The PS approach can average the specular or shadow effects to obtain an approx-
imation of the surface reflectance in Fig. 4c. Similar to diffuse photograph, the three-
dimensional topographic details have been eliminated in reflectance image too. How-
ever the disappearance of skin structure texture in Fig. 4b is caused by the illumination
from multiple directions, whereas the reflectance is the reflective properties of the
skin and independent from the topography of the skin. When the reflectance is com-
bined with the recovered surface orientation information, the skin surface can be
fully characterized. Figure 4d shows a synthetic skin image, illuminated by a virtual
light source. It is noticeable that both the colour and profile information are rendered
effectively.

Reflectance Mapping for Segmentation of Lesions

The reflectance image reflecting the type, quantity and distribution of the chro-
mophores under the skin is largely independent from the position and intensity of the
illumination. Such objective information potentially offers significant benefit for out-
lining the lesion area and then differentiating between malignant and benign tumors.
Here we examine its applications for the first step of automated diagnosis, i.e. the
segmentation of skin lesion. Due to the lack of a reference method which could
provide the exact boundary of lesion area, experienced dermatologists are invited to
outline the border of the lesion on the conventional photographs and indicate using
black lines. An established automated segmentation algorithm is used to separate the
lesion from normal skin for both photographs in red line and reflectance images in
green line [19].

As the automated segmentation algorithm works on the intensity of the images,
the results of border tracking are sensitive to changes in the intensity values. Figure 5a
shows that the boundary of the lesion tends to be larger than those in Fig. 5b and c.
This is caused by shadows occurring during the photographing of the bumped and
raised lesion, even though multiple light sources have been used.

To compare quantitatively the automatic segmentation results obtained from con-
ventional photographs with those obtained from reflectance images, a performance
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Fig. 5 Four pigmented skin lesions a intradermal naevus, b intradermal naevus, c basal cell carci-
noma and d dermatofibroma, superimposed with manually segmentation result (black line), auto-
matic segmentation result from the diffuse photograph (red line), and automatic segmentation result
from the photometrically derived reflectance image (green line)

indicator was calculated by subtracting the area enclosed within the manually derived
outline from that enclosed within the automatically derived outline, and then express-
ing this difference as a percentage of the area within the manually derived outline.
Figure 6 provides the results in this form for all four lesions, as well as for a series
of inverted binary difference images in which white areas indicate regions that lie
within the automatically derived boundary but not within the corresponding manu-
ally derived boundary (the top row of results is from the reflectance images and the
bottom row is from the conventional photographs).

It is readily apparent that the segmentation from the reflectance images and the
photographs are both deviated from the results outlined manually by the dermatol-
ogists. However the segmentation results based on the reflectance images approach
the ground truth closer than those based on the diffuse photographs. The results for
sample 1 and 2 make it clear that shadows and specularities can heavily affect the seg-
mented results when diffuse photographs are used as sources to be segmented. How-
ever, such errors are effectively eliminated when reflectance images are employed.
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Fig. 6 Comparison of the performance of automated segmentation applied to photometrically
derived colour reflectance images (top row), with that applied to conventional photographs taken
with diffuse lighting condition (bottom row)

Therefore the employment of the surface reflectance photograph extracted from
photometric stereo, rather than a conventional photograph, can obtain an improved
segmentation result. It will then be able to provide a more objective and reliable
extraction of the ABCD features as important input for subsequent automatic diag-
nosis of melanoma.

Diagnosis Enhancement Through Chromophore Indexes

Measurement of lesion reflectance provides a more objective way to characterize
skin lesions as skin reflectance reflects the concentration and distribution of those
major chromophores like melanin and haemoglobin, important diagnosis evidence
linking to the invasiveness of cancers. These biological indexes can be extracted from
the reflectance image as alternatives to describe the colour variegation of lesion for
melanoma diagnosis.

Melanin Index and Erythema Index

When only absorption are concerned, human skin can be simplified as two uniform
optical media layers over an ideal diffusive surface. The first and second layers repre-
sent epidermis and dermis, and the lowest surface is equivalent to the perfect diffusive



256 J. Sun et al.

fat layer with no chromophores. The direct reflection on the epidermis surface and
the interface between epidermis and dermis are negligible and the absorption is one
main manner of light transportation within the first two layers [20]. Melanin, the
major pigmented chromophore, effectively absorbs light of all wavelengths in the
spectral range from 300 to 1000 nm, but the strongest absorption occurs at shorter
wavelengths, especially near UV radiations [21].

Within long wavelength light spectrum the absorption caused by the haemoglobin
is negligible so that light attenuation is dominated by the absorption of melanin, which
can be considered as a linear function of the melanin content providing the absorption
of bottom layer is constant. Therefore the melanin index can be approximated by the
diffuse reflectance at a long wavelength,

MI = 100 ∗ log10
1

Rr
(5)

where Rr represents the reflectance (or albedo) at the red wavelength recovered from
the above colour photometric stereo approach.

Similarly when melanin content is low, the difference of the absorption at the
green and red wavelength can be approximated as a linear function of haemoglobin
content. When melanin pigmentation is not negligible, a correction coefficient can be
adapted to weight the contribution from melanin component. Therefore the erythema
index, a parameter to reflect the blood component within the skin, can be expressed
as:

E I = 100 ∗ log10

(
1

Rg
− ξ · 1

Rr

)

(6)

where is the reflectance (or albedo) at green wavelength, and ξ is the correction
coefficient.

This calculation works with the reflectance image recovered from the PS approach.
It may also apply to any other colour images providing an ideal white balanced
reference point can be found within the images. Figure 7 demonstrates the calculated
MI and EI images of one lesion sample captured from the SA. Clearly the contribution

Fig. 7 Reflectance image (a) and extracted MI (b) and EI (c) images
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of different pigmentation becomes more obvious by working with the MI and EI
mappings separately rather than the reflectance image directly.

Colour Variegation of Chromophore Indexes

As the content of cutaneous melanin and haemoglobin are important clues character-
izing the pigmentation of skin surface, the direct employment of the MI and EI should
give a better description on colour variegation for early diagnosis of melanoma. Sim-
ilar to conventional representation of colour variegation in cutaneous lesion images,
the variegation of chromophore indexes is also expressed through the difference
between the lesion and its own mean value or mean value of the surrounding normal
skin.

Suppose there are a set of pixels Pi in the lesion areas �lesion with Pi ∈ �lesion. By
quantizing the colour range (intensity value) into N(16) bins, the colour variegation
CV can be defined as,

CV =
√

∑15

i=0
(Hi − H̄i)2PD(Hi) (7)

where Hi describes the quantised absolute colour value in an image (MI, EI,
reflectance and colour image intensity), H̄i is the mean value within the overall

lesion, i is the index of the quantised bin, and PD(Hi ) = �Hi
�lesion

is the probability
density function, with �Hi standing for the number of pixels in a quantized bin.

A four-dimensional feature vector is generated by the chromophore indexes of
lesion area and all normal skin area surrounding the lesion, while a six-dimensional
feature vector is constructed using the conventional colour spaces of RGB, as illus-
trated as follows:

CVchrom = {CVMI
les , CVEI

les, CVMI
sur, CVEI

sur} (8)

CVRGB = {CVR
les, CVG

les, CVB
les, CVR

sur, CVG
sur, CVB

sur} (9)

Chromophore Indexes for Melanoma Diagnosis

The effect of the colour variegation extracted from chromophore indexes (as well as
the topography disruption to be addressed in the next session) is evaluated through
the following clinical database: 253 cutaneous lesions including 69 MMs and 184
non-melanoma cutaneous lesions acquired by the Skin Analyser device. A linear
support vector machine (SVM) is applied as the classifier, and a tenfold cross val-
idation is employed as the training-testing strategy for evaluating the classification
performance. Sensitivity (SE), specificity (SP) and overall accuracy (Acc.) are used
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Table 1 Classification results
using colour variegation
descriptors derived from RGB
colour space and the
chromophore indexes

Pigmentation RGB MI+EI

SE (%) 67.85 76.81
SP (%) 76.27 80.97
Acc. (%) 73.97 79.84
AUC 0.71 0.80

as the quantitative measurements of correct discriminations. Specifically, sensitivity
represents the proportion of melanomas correctly recognized as malignant lesions,
and specificity denotes the proportion of non-melanoma naevi correctly classified
as non-melanoma lesions. Accuracy is the value showing the correct classification
within the whole database. The receiver operating characteristic (ROC) curves and
the area under the ROC curve (AUC) values are calculated with a confidence interval
of 95 %.

Colour variegation as the only diagnostic descriptor is investigated in this section
to demonstrate the effectiveness of the chromophore indexes for melanoma diagnosis
and compare the classification results with those derived from reflectance images. To
demonstrate the usefulness of the major chromophores for melanoma identification,
colour variegation descriptors, computed from RGB colour space, and the major
chromophore indices as shown in Eqs. (8) and (9), are respectively applied as the
feature vectors, to automatically classify melanoma and non-melanoma lesions.

The classification results in Table 1 shows the RGB colour gives the lowest diag-
nostic accuracy, with 67.85 % SE and 76.27 % SP for the reflectance images obtained
by the SA. The highest classification is achieved by the chromophore indices, which
boost the sensitivity by 9 % for the reflectance data. As expected these results demon-
strate that the melanin index and erythema index can characterize the major chro-
mophores underneath the skin better than the colorimetric representations based on
human vision system for melanoma diagnosis.

Obtaining 3D Malignancy Indicators

Early works have found that the loss of skin topographic markings may imply a late
sign of the tumour invasion into the deep dermis [22–24]. The statistical parameters
of skin topography such as co-occurrence matrices, Fourier power spectrum and
fractal features obtained through the 3D laser scanning measurement on the negative
skin replicas also show distinctive difference between the surface of benign lesions
and that of malignant lesions [25]. The skin line patterns have also been developed
to represent the local skin line direction (SLD) and the variation of skin primary line
direction (SLV) between lesion area and surrounding normal skin area [26]. The skin
line patterns have the advantages of being able to be extracted from only one white-
light photograph without requiring any special 3D scanning devices, though they are
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inherently sensitive to the selection of parameters for extracting high frequency of
skin line patterns.

We investigate the potentiality of 3D lesion representation extracted from the PS
approach for identifying the abnormality of skin lesions. Specifically the surface
orientation rather than an integrated 3D height or depth maps are used directly for
this purpose as the process of integrating surface normal into a height map is prone
to accumulated errors.

Adaptive Modeling of Skin Disruption

Relative to the observation center the orientation of a skin patch can be expressed
by tilt angle φ and slant angle θ which are able to be calculated from surface normal
and therefore they are equivalent to each other. Figure 8 shows three different repre-
sentation of a sample patch isolated from an image of a benign lesion. The regular
skin line patterns are not immediately visible on the intensity image in Fig. 8b as
some 3D information projected onto a 2D optical sensor may be concealed during
photographing. While those fine topographic details become more visible with the

Fig. 8 A colour image of a skin lesion (a), zoom-in view of the sample patch (b) isolated by the
rectangle, skin tilt pattern (c) and slant pattern (d) of the isolated region expressed as needle maps,
and a rendered grayscale image (e)
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tilt/slant representation. This shows the advantages of a 3D representation of skin
surface over the conventional 2D image format. This enhanced power to visualize
subtle disruptions on skin surface can help to identify those features less obvious to
the naked eyes [27].

The skin tilt and slant representations characterize the topographic variations in x-
y (horizontal) direction and in z (vertical) direction respectively. In order to quantify
the topographic disruptions of skin lesion, two reference skin models are developed
to simulate the skin tilt/slant patterns of the ideal normal skin lesions closest to
the acquired skin tilt (slant) patterns captured by the Skin Analyser. The deviation
between the acquired patterns and those ideal reference skin patterns are be used to
indicate the malignancy of the lesions [28].

Skin Tilt Pattern

Figure 9 shows a local dominant skin tilt distribution of a malignant melanoma and a
benign seborrheic keratosis. The benign lesion presents more regularly distribution
with respect to its centre across all directions than that for the MM. Therefore a
2D isotropic function uniformly distributed with respect to its centre is chosen to
generate an ideal skin tilt pattern.

Since the distribution centre of lesion’s acquired skin tilt patterns could be any-
where within the lesion region, an arbitrary skin tilt pattern can be generated by
searching every location (u, v) being the distribution centre. However there should
be only one simulated skin tilt pattern best-fits (i.e., having the smallest difference
to) lesion’s acquired skin tilt patterns. The best-fit skin tilt pattern is estimated as the
one having the minimum sum of difference to the acquired lesion’s skin tilt patterns.
This can be expressed by the following equation.

(u∗
c , v∗

c ) = argmin
∑

{(u,v),(u∗
c ,v∗

c )}∈�lesion
||φ(u, v) − φ∗(u, v)|| (10)

where (u∗
c , v∗

c ) is the estimated centre of the skin tilt pattern model, || · || denotes the
Euclidean distance, φ are the acquired skin tilt patterns, φ∗ is the estimated skin tilt
pattern. The star sign “*” indicates an estimated variable.

After all skin tilt models are searched across the whole lesion region, an estimated
distribution centre and a skin tilt pattern is guaranteed to correspond to a global
minimum. Having found the best-fit skin tilt pattern model, the resultant disruptions
in skin tilt pattern can be described by the following two measures.

(A) Overall disruption in skin Tilt pattern (OT): it represents an average of the
sum of differences between the best-fit skin tilt pattern and the acquired skin tilt
patterns over the lesion region:

φ̄�(u, v) =
∑

{(u,v)}∈�lesion
||φ(u, v) − φ∗

min(u, v)||
�lesion

(11)
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Fig. 9 Conventional photographs (a), (b) of a malignant melanoma and a benign seborrheic ker-
atosis and their skin tilt pattern plots (c), (d)

(B) Most disruption in skin Tilt pattern (MT): a square region of size T × T (5 × 5)

centred at (u, v) is firstly chosen to estimate local disruptions in skin tilt pattern and
reduce the noise effects from individual pixels. Its local skin tilt pattern disruptions
are then defined as the average of the sum of differences between the best-fit skin tilt
patterns and the acquired skin tilt patterns.

φlocal(u, v) =
∑T/2

i=−T/2

∑T/2
j=−T/2 ||φ(u + i, v + j) − φ∗

min(u + i, v + j)||
T2 (12)

The MT is finally defined as the maximum local skin tilt pattern disruptions within
the whole lesion region:

φMT (u, v) = max{φlocal(u, v)|(u, v) ∈ �lesion} (13)
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Skin Slant Disruptions

Although the exact 3D topography of an acquired lesion is unknown without recon-
struction, the skin slant pattern will be able to sense and adapt to the 3D topographic
variation on the lesion surface by comparing with the lesion’s acquired skin slant pat-
terns. In order to generate the candidate skin slant patterns, a series of 3D Gaussian
topographies are generated by varying the amplitude A, the variances in the x-axis
σx and y-axis σy and the rotation angle τ of a 2D Gaussian function. This 3D skin
model is adaptive to variable 3D topographies of lesions, i.e. able to match for both
flat and non-flat lesions’ topographies by adjusting its parameters, but also able to
pick up those subtle topographic variations.

Among the generated skin slant pattern models, only the one that best-fits a lesion’s
acquired skin slant patterns is used to estimate the disruptions in skin slant pattern.
The best-fit skin slant pattern θ is estimated as the one having the minimum sum
of differences to the acquired skin slant patterns among all the skin slant models θ∗
generated by the 2D Gaussian functions. This can be expressed as

(A∗,σ∗
x ,σ

∗
y, τ

∗) = argmin
∑

(m,n)∈�lesion
||θ(u, v) − θ∗(u, v)|| (14)

A 2D Gaussian function may have the following form,

Z∗(u, v) = A∗e−(a(u−u∗
c )2+2b(u−u∗

c )(v−v∗
c )+c(u−u∗

c )2) (15)

where a = cos2τ∗
2(σ∗

x )2 + sin2τ∗
2(σ∗

y)
2 , b = sin2τ∗

4(σ∗
x )2 + sin2τ∗

4(σ∗
y)

2 , and c sin2τ∗
2(σ∗

x )2 + cos2τ∗
2(σ∗

y)
2 , the (u∗

c , v∗
c ) is

the same distribution centre as that used by the best-fit skin tilt model. The possible
values for the variances and the amplitude are chosen empirically to cover a sufficient
large number range while the data range for the rotation angles of the 2D Gaussian
function is [0 π).

Having found the best-fit skin slant pattern, the disruptions in skin slant pattern at
a pixel is defined as the difference between the slant pattern of the best-fit skin slant
pattern and the acquired skin slant pattern:

θ�(u, v) = ||θ(u, v) − θ∗(u, v)|| (16)

Upon the estimation of the best-fit skin slant pattern model, the resultant disruptions
in skin slant pattern can be described by two similar measures.

(A) Overall disruptions in skin Slant pattern (OS): the average of the sum of
differences between the best-fit skin slant pattern and the acquired skin slant patterns
over the whole lesion region:

θ̄�(u, v) = min
∑

{(u,v)}∈�lesion
||θ(u, v) − θ∗(u, v)||

�lesion
(17)
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Table 2 Classification
performances with different
combination of skin
topographic patterns

Lesion disruption patterns SE % / SP %

OT + OS 79.3/80.5
MT + MS 75.1/83.3
OT + MT 79.5/78.2
OS + MS 75.3/80.8
SLD + SLV 77.5/63.4

(B) Most disruptions in skin Slant pattern (MS): a local skin slant pattern disruption
is firstly defined as the average of the sum of differences between the best-fit skin
slant patterns and the acquired skin slant patterns over a window region with the size
T × T centred at (u, v):

θlocal(u, v) =
∑T/2

i=−T/2

∑T/2
j=−T/2 ||θ(u + i, v + j) − θ∗

min(u + i, v + j)||
T2 (18)

The MS is then defined as the maximum local skin slant pattern disruptions within
the whole lesion region, i.e.

θMT (u, v) = max{θlocal(u, v)|(u, v) ∈ �lesion} (19)

Skin Disruption Descriptors for Melanoma Diagnosis

The effectiveness of the proposed skin tilt pattern and skin slant pattern derived
from recovered skin topography for melanoma diagnosis is assessed through the
linear SVM classifier to differentiate the benign and malignant lesions and compare
with the results from the 2D skin line patterns. Table 2 summarizes the classification
performances of different combination of the proposed skin surface patterns on the
same database as used in last section for evaluating the discrimination power of MI
and EI. The two global features in the tilt and slant patterns OT and OS demonstrate
complementary to each other and their combination offers a better classification
between the MMs and benign lesions than those using only the tilt pattern (OT and
MT) or slant pattern (OS and MS) features. Both the line patterns and the proposed
3D skin surface patterns demonstrate comparably good performance in sensitivity,
however the skin line patterns shows a poorer performance in specificity. This could
be caused by the line pattern (either SLD or SLV) which is extracted from one image,
but inherently has difficulty to reveal the topographic variations in vertical direction.
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Conclusion and Future Work

This chapter looks into the potentiality of the new recovered reflectance and 3D
geometry of lesion surface for diagnosis of melanoma. This unique avenue produces
an easy and cheap way to quantify the malignancy of suspicious skin lesions. The
features derived from the proposed approach have been approved useful in providing
complementary information for differentiating the melanoma from benign lesions. It
is also understood that each individual feature has its own weaknesses and strengths
for lesion classification. An optimal combination of these newly-found features
with those traditional ABCD rules may offer new hope for improving the diagnosis
accuracy. The simplicity and cost effectiveness of this approach may also lend itself
an applicable mean to monitoring suspicious skin lesions over time especially for
those with family history and under environmental risks.
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Melanoma Diagnosis with Multiple Decision
Trees

Yu Zhou and Zhuoyi Song

Abstract This chapter highlights the application of multiple binary decision trees
in melanoma diagnosis. Since the clinical rules in diagnosing melanoma involve
inhomogeneous/non-metric data and various ‘if-then’ statements, direct utilization of
machine learning techniques such as neural networks can not perform satisfactorily
in modelling the clinical diagnostic knowledge which, typically, is nonlinear and
fuzzy. As a versatile and intuitive paradigm in pattern classification, the decision
tree is perhaps the optimal mechanism in mimicking the clinical diagnostic rules.
This chapter compares the performances of two different designs of the multiple
decision trees via experiments. Digital image attributes, including both geometric and
colorimetric ones, are all examined in detail. Receiver operating characteristic curves
of varying ensemble sizes are presented, illustrating the effectiveness of decision trees
in melanoma diagnosis.

Keywords Computer aided diagnosis · Decision tree · Melanoma

Introduction

Computer based early diagnosis of melanoma has been studied for more than 2
decades [13]. One of the key aims of this research field is to build an assistance
system for clinical diagnosis applications. This task is important because the manual
inspection, while common in clinical practice, has undesirable features such as repet-
itiveness and subjectivity. Computer based methods, however, have huge potential in
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Fig. 1 General melanoma
diagnosis process
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alleviating these shortcomings and providing an important clinical alternative when
second opinion is needed.

For a computerized melanoma diagnosis system, there are two key components:
data and decision-making. As shown in the flowchart in Fig. 1, the data are mainly
images while the decision-making process refers to applying certain machine learning
techniques to label the sample as either benign or malignant. In the literature, a variety
of imaging protocols, such as digital dermoscopy, infrared imaging, multispectral
imaging, confocal microscopy, consumer level digital cameras, have been applied in
collecting digital data of lesions [6, 15, 16].

Though data is the inalienable part of a computer aided diagnosis (CAD) sys-
tem, the decision-making is of utmost importance, especially with the abundance of
numerous imaging devices on the market. Here for a CAD system, decision-making
refers to carrying a diagnosis based on certain algorithms/classifiers. In other words,
a CAD system mimics the clinical diagnosis process, which typically involves com-
puting techniques such as feature extraction and classification.

Although CAD based melanoma diagnosis has been an active research area,
its clinical application is still stagnating currently. Before bringing CAD based
melanoma inspection into real clinical practices, it seems there are two critical chal-
lenges which deserve highlights here:

(1) Data gap: The feature descriptors describing pigmented lesion properties may
include both metric and non-metric values. Some attributes might involve physi-
cal meanings such as the diameter, some other features, such as Euler number of
the lesion area, might not have any unit. If this is the case, the decision-making
process has data gap. Typical learning paradigms like support vector machines
[11] and neural networks [9] treat these data as purely numerical ‘inputs’ without
paying attention to the physical/clinical meanings of these attributes.

(2) Decision-making gap: This refers to the decision making styles discriminating
clinical diagnosis and computer based early diagnosis of melanoma. For instance,
[1, 14, 21] only used border attributes in melanoma diagnosis. This decision-
making style focuses on just one property of pigmented lesions. Though the one-
feature based CAD is effective in justifying the usefulness of certain descriptors,
there is a gap between these CAD systems and the clinical diagnosis.

There are a few publications covering the decision gap [2, 9, 18], which are of
varying performances in dealing with the decision-making gap. However, to our
knowledge, the data gap is still neglected by and large in CAD based melanoma
diagnosis. To avoid data gap in CAD systems, it is important to choose attributes
with equivalent metrics if numerical operations are going to be carried out between
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these attributes. In addition, numerical operations for attributes of different metrics
shall be avoided.

In the literature, there are a few protocols proposed for decision-making in
melanoma diagnosis.

In [9], a neural network was proposed to carry diagnosis of melanoma. The feature
descriptors cover asymmetry/border/colour properties and overall there are 14 entries
in the feature vector. In experiments, one of the tested neural networks includes 14
input neurons, 7 hidden neurons and 1 output neuron. This neural network was trained
with the well-known back-propagation method.

Sboner et al. [17] formulated a multiple classifier system, including linear discrim-
inant analysis (LDA), decision trees and k-nearest neighbor. The feature descriptors
cover geometrical and colorimetric domains, resembling the ABCD rules proposed
in [10].

In [18], another ABCD rules based system for melanoma diagnosis was tested.
In this system, there are 8 feature descriptors: skin line direction, skin line inten-
sity, asymmetry, border irregularity, red component variegation, green component
variegation, blue component variegation and diameter of lesion. After dimension
reduction for the feature vectors, the first two principal components of these 8 com-
ponents are selected for designing a linear classifier. The area under the receiver
operating characteristic (ROC) curve obtained is 0.94.

She et al. [18] represents a typical approach in designing computer aided diag-
nosis of melanoma, which involves dimension reduction after feature extraction.
In [18] and [9, 17], there is one hidden assumption behind this method: differ-
ent features representing different properties are numerically computable. Here by
computable, it means they are allowed to be mixed together numerically, including
addition/deduction etc. Due to the non-homogeneity of the attributes, this operation,
though commonly accepted, neglects the data gap between different attributes. The
associated undesirable risks include: Firstly, the result depends on the chosen metrics.
Secondly, the result only has numerical meaning but the physical/clinical meaning
might be elusive. For instance, suppose the skin line direction, blue component var-
iegation and diameter of lesion are f1, f7 and f8 respectively, adding them together
as f1+f7+f8 gives a numerical number, which is hardly of any clinical significance.

This chapter utilizes multiple decision trees for melanoma diagnosis, aiming at
solving the data gap and the decision gap simultaneously. Section “Method” discusses
the main designs of two multiple decision tree systems. Section “Experiments and
Results” presents experimental results on a test dataset. For an early version of this
paper, see [20].

Method

Since a typical decision-making process involves feature extraction and classifica-
tion, this section is divided into two subsections. In section “Feature descriptors”, the
shape, size and colour features for the pigmented lesions are examined, which are



270 Y. Zhou and Z. Song

Table 1 2D features for lesion images

Asymmetry x1 a1 Asymmetry w.r.t. horizontal axis
x2 a2 Asymmetry w.r.t. diagonal axis
x3 a3 Asymmetry w.r.t. off-diagonal axis
x4 a4 Asymmetry w.r.t. vertical axis

Border x5 b1 Indentation irregularity index
x6 b2 Protrusion irregularity index
x7 b3 Maximum indentation irregularity index
x8 b4 Maximum protrusion irregularity index

Colour x9 c1 Colour variation in red channel
x10 c2 Colour variation in green channel
x11 c3 Colour variation in blue channel
x12 c4 Colour variation in gray intensity

Diameter x13 d1 Equivalent diameter
x14 d2 Equivalent diameter of convex hull
x15 d3 First singular value of covariance matrix of coordinate vector
x16 d4 Second singular value of covariance matrix of coordinate vector

inspired by the ABCD rules [10, 16]. In section “Decision Trees”, unlike [17] which
used three heterogeneous classifiers the decision tree is the only classifier employed
here to conduct diagnosis.

Feature Descriptors

This is a classical topic in CAD based melanoma diagnosis. Here a set of features
are extracted following the ABCD rules. As shown in Table 1, there are 16 attributes
altogether.

Asymmetry

In [10], asymmetry rule means the more asymmetrical the lesion is, the more likely
it is malignant. Celebi et al. and She et al. [7, 18] use principal axis based methods
to describe the asymmetry features. In this chapter, a four-axis method is utilized
to describe the asymmetry features. Figure 2 shows the idea of how to construct the
asymmetry features. For instance, in Fig. 2a, the solid line is the first axis selected
and the original lesion area lies within the region enclosed by the solid boundary.
The dashed line encloses an area which, given the axis, is symmetrical with respect
to (w.r.t.) the original lesion area. Apart from the horizontal line in Fig. 2a serving as
the symmetrical axis, the diagonal line, off-diagonal line and vertical line can also
be used as symmetrical axes. Figure 2b–d show these symmetrical axes and their
corresponding symmetrical images of the original lesion area respectively.
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Fig. 2 Extract asymmetrical features for suspicious pigmented lesions

To construct one symmetrical area as shown in Fig. 2, there are two steps. Firstly,
one detects the centroid of the lesion area. Then a reference axis, i.e., the symmetrical
axis, is selected. In Fig. 2, these symmetrical axes are 0, 45, 90, 135 degrees w.r.t.
the horizontal axis. Denote the original lesion area as A0, and the symmetrical lesion
area as Ai, the asymmetry indices are defined as:

ai = #XOR(A0, Ai)

2A0
, i = 1, 2, 3, 4 (1)

where XOR means exclusive-or operation at pixel level; ‘#’ is to take the number of
all non-zero elements. Thus these four attributes are all non-metric variables.
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Border Irregularity

To maintain the equivalence in terms of units for the border irregularity descriptors,
indentation/protrusion index proposed in [14] is used here.

The method in [14] constructs an area based irregularity index in several steps:
Firstly, a smoothed outline of the lesion is extracted via a series of multiscale Gaussian
filters. Then the area enclosed within the smoothed outline is compared with the
original lesion area. Denote the original lesion area as A0 and the smoothed area as
As, the indentation area lies within As while outside A0. The protrusion area is the
opposite: it lies within A0while outside As. So the indentation and protrusion maps
can be obtained as follows:

Iind = A0 − As, (2)

Ipro = As − A0, (3)

where Iind and Ipro represents the indentation and protrusion images respectively.
Specifically, for pixels in Iind and Ipro, the definitions are as follows:

Iind(x, y) =
{

1, A0(x, y) == 1&As(x, y) == 0
0, otherwise

, (4)

Ipro(x, y) =
{

1, A0(x, y) == 0&As(x, y) == 1
0, otherwise

. (5)

With the above definitions, one can extract the border irregularity features as
follows:

b1 := #(Iind)

#(A0)
, (6)

b2 := #(Ipro)

#(A0)
, (7)

b3 := #( Ĩind)

#(A0)
, (8)

b4 := #( Ĩ pro)

#(A0)
, (9)

where #(.) represents the total area in terms of pixels; (∼) refers to the region of the
maximum indentation/protrusion area. Therefore, from the above definitions of the
border irregularity features provided by [14], it can be seen that these features are
non-metric and they lie within [0, 1].
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Colour Variation

The colour variations are extracted via four different channels: red, green, blue and
intensity channels Fig. 3. The intensity channel is obtained by fusing the RGB chan-
nels as follows:

I (x, y) =
√

R2(x, y) + G2(x, y) + B2(x, y), (10)

where x and y denotes the coordinates of the pixels. By calculating the statistics of
the images, the four features of colour variations in Table 1 are defined as follows:

c1 := log
σ(R)

μ(R)
, (11)

c2 := log
σ(G)

μ(G)
, (12)

c3 := log
σ(B)

μ(B)
, (13)

c4 := log
σ(I )

μ(I )
, (14)

where μ and σ denotes the mean value and standard deviation of the lesion area
pixels of the given colour channel. Since the mean value and the standard deviation
are of the same unit, i.e., the image intensity in different colour channels, the ratios
between these two are free of metric unit. For computational conveniences, one can
set the range for the above colour variation descriptors, e.g., [−10, 10].

Diameter

Unlike the original diameter feature expressed in [10] which states that 6mm diameter
is the critical threshold in judging a suspicious lesion as malignant, here a 4-element
diameter feature vector is extracted, which includes the following attributes:

d1 := 2
√

#(A0)/π, (15)

d2 := 2
√

#(Ac)/π, (16)

d3 := svd(S, 1) × 2, (17)

d4 := svd(S, 2) × 2, (18)
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Fig. 3 Example of one raw image in red channel (a), green channel (b), blue channel (c) and gray
intensity channel (d)

where Ac is the convex hull extracted with the given lesion area. Figure 4 gives an
example of a lesion area and its convex hull. Therefore from (15), d1 is the equivalent
diameter of the original lesion area. Likewise, (16) means that d2 is the equivalent
diameter of the convex hull.

S in (17) and (18) is the covariance matrix constructed by the coordinates of the
lesion area pixels. Since the image plane is 2D and S is a 2 by 2 positive definite
matrix. Therefore, there are two singular values for S and svd(S, 1) and svd(S, 2)

represent the first and the second singular values of S respectively.
Clearly the four diameter feature descriptors above are of length units expressed

in image pixels. In addition, the numerical values of these four attributes are non-
negative.

Therefore, in the above subsections, the ABCD rules have been implemented in
a way aiming at reducing the data gap between attributes within each feature group.
As there are 4 elements for every feature group, altogether there are 16 attributes
extracted for one 2D image sample of pigmented skin lesions.
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Fig. 4 Example of a lesion
area and its convex hull

Decision Trees

Here decision trees [8] and only decision trees are used for decision making. They
are selected not only because of the learning capability, but also because of the
interpretability and intuitiveness [19].

Recently, [19] proposes a decision tree based classification system which allows
the end-users to tune the trees manually. This technique, called Visually Tuned Deci-
sion Tree (VTDT), illustrates that decision tree not only can generate comprehensible
rules to domain experts, it also has the potential to allow human experts to embed
their domain knowledge in designing the decision making models.

Figure 5 shows one example of the binary decision tree generated during exper-
iments. As can be seen from Fig. 5, every non-leaf node for this decision tree splits
into 2 branches and the split is based on univariate nodes only.

In utilizing decision trees to design the CAD system for melanoma diagnosis,
there exist two approaches. As shown in Fig. 6a, this method stacks the feature
vectors together and feeds the overall feature vector into decision trees. The final
output is generated by majority voting of the member decision trees. This approach
has the data gap problem since the diameter attributes are in pixels while the other
values are non-metric.

Figure 6b offers an alternative which eliminates the data gap. This is achieved
by forwarding only homogeneous data into one given decision tree, i.e., no mixture
or stacking of variables bearing different metric units. In addition, for the decision
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Fig. 5 Example of a binary
decision tree based on uni-
variate splits for melanoma
diagnosis

making part, since Fig. 6b combines both the geometric and colorimetric properties
of skin lesion in diagnosis, the decision-making gap is avoided as well, making it
more similar to the clinical diagnosis than using a single diagnosis rule.

Experiments and Results

This section presents the CAD experimental results, which were obtained by testing
the diagnosis systems in Fig. 6a, b via cross-validations.

Experimental Setup

In the collected 2D macroscopic image dataset, there are 110 malignant samples
and 125 benign lesions. The lesion areas in these data were segmented by using the
online graph-cut based algorithm [3–5, 12]. Feature descriptors were extracted with
the above methods. Figure 7 shows scatter plots of the samples by applying principal
component analysis. In addition, to run the experiments, Matlab 7.12 is used as the
experimental platform.

In standard k-fold cross validation, the data are divided into k-subsets first. Then
k-1 subsets are used to train the classifier and the remaining subset is left for testing.
As multiple decision trees are used in both Fig. 6a and b, employing standard k-fold
cross-validation will introduce significant training data overlaps among different
decision trees. Thus in training the multiple decision trees, only 1 of the k subsets
was selected to train the classifier. Hence for different decision trees, the probability
for two of them holding the same training data is generally small (1/k 2). In the
following experiments, k is chosen as 5 and for multiple decision trees, N is set as
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Fig. 6 Melanoma diagnosis using multiple decision trees. a with data gap; b data gap free

3. In this case, the Fig. 6b design has 12 trees. When making a majority voting for
Fig. 6b, if there is a draw, the outputs of the decision trees using colour attributes are
then chosen to make a final decision. This draw-breaking strategy is supported by
Fig. 8.

For the design of nodes in the binary decision trees in Fig. 6, one can typically
use either univariate nodes, or multivariate nodes with linear discriminant analysis
to split a mother node into two daughter nodes. Specifically, for a univariate node,
there is no data gap since no direct numerical operation between attributes arises.
However, it also limits the flexibility in choosing the decision boundaries [8]. For
multivariate nodes with linear classifiers, as shown in Table 2, receiver operating
characteristic (ROC) curves can be generated which offers an effective evaluation
for different methods.
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Fig. 7 Scatter plots of samples based on principal component analysis: a asymmetry; b border; c
colour; d diameter

Table 2 Two setups for evaluating multiple decision trees

Nodes with univariate splits Nodes with linear classifiers
Data gap ROC curve Data gap ROC curve

Fig. 6a No – Yes Available
Fig. 6b No – No Available

ROC Analysis

Figure 8 shows the ROC curves for the ABCD features. Each ROC curve corresponds
to one feature group processed via linear discriminant analysis based multivariate
nodes. The areas under curves (AUCs) in Fig. 8 are 0.69, 0.71, 0.74 and 0.62 respec-
tively.

Figure 9a presents the ROC curve by stacking the descriptors directly as one vector
and then feeding the vector into a decision tree with multivariate nodes. As can be
seen from Fig. 9a, the AUC is 0.88. Figure 9b shows the ROC curve for decision
system in Fig. 6b. This AUC is 0.93, slightly higher than Fig. 9a.

In addition, from Figs. 8 and 9, it can be seen that by applying multiple decision
trees to mimic the ABCD rules, the diagnostic performance can be enhanced effec-
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Fig. 8 ROC curves for ABCD descriptors respectively. a Asymmetry (AUC = 0.69); b border
irregularity (AUC = 0.71); c colour variations (AUC = 0.74); d diameter (AUC = 0.62)

tively. Although there exists data gap in using Figs. 6a, 9a still suggests that the direct
stacking of features deserves certain efforts. The multiple decision trees in Fig. 6b
eliminate the data gap while performing even better, at least qualitatively as shown
in Fig. 8’s ROC analysis.

Classification Result

Apart from the ROC analysis, the two multiple decision tree systems in Fig. 6 are
also evaluated in classification. Table 3 shows the classification results, in which the
performance indicators, including accuracy/sensitivity/specificity, positive predictive
value (NPV) and negative predictive value (NPV), are defined as follows:
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Fig. 9 ROC curve for multiple decision trees in Fig. 6a and b. a Fig. 6a: AUC = 0.88; b Fig. 6b:
AUC = 0.93

Table 3 Simulation results with different multiple decision tree designs (%)

Accuracy Sensitivity Specificity PPV NPV

Fig. 6a 79.6(±0.39) 73.8(±0.50) 84.7(±0.39) 81.1(±0.44) 78.4(±0.42)
Fig. 6b 82.9(±0.24) 77.2(±0.51) 87.8(±0.01) 84.8(±0.08) 81.5(±0.34)

(PPV positive predicative value; NPV negative predicative value)

facc : = TN + TP

TN + FN + TP + FP
, (19)

fspe : = TN

TN + FP
, (20)

fsen : = TP

TP + FN
, (21)

f ppv : = TP

TP + FP
, (22)

fnpv = TN

TN + FN
, (23)

where TN/FN/TP/FP refer to the number of test results which are ‘true negative’,
‘false negative’, ‘true positive’ and ‘false positive’.

From Table 3, it can be seen that Fig. 6b is better than Fig. 6a in terms of mean
values of the above indicators, though with varying levels. The standard deviations
of these indicators for Fig. 6b’s design are generally less than results obtained from
using Fig. 6a, indicating a slightly better consistency in performance.
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Conclusion

By working on the data gap as well as the decision-making gap, this chapter examined
the application of multiple decision trees in computer aided diagnosis of melanoma.
Two structurally different designs are compared: the classic design (Fig. 6a) and the
new design (Fig. 6b). In experimental studies on a dataset containing 235 samples
(125 benign and 110 malignant), while the first design gives good results in ROC
analysis and classification tests, the second design can perform even better. One
disadvantage of the new design is that its structure appears less straightforward than
the first design. However, if one needs a higher performance CAD system, as shown
in the above experiments, choosing the system in Fig. 6b might be slightly better than
Fig. 6a.

Though Fig. 6a and b are different, in fact Fig. 6b can be obtained from Fig. 6a
in two steps. Firstly, one can set the number of decision trees in Fig. 6a as 12, i.e.,
N = 12. Then by putting feature selections prior to feeding the data into the decision
trees, one can generate the design in Fig. 6b.
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