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Preface

Cancer is a significant threat to human life. Currently, the United States
spends over 100 billion dollars annually on cancers, such as breast, lung, and
prostate cancer. Based on statistics from the World Health Organization
(WHO), deaths caused by cancer will reach approximately 12 million people
in 2030. Thus, it has become a challenge to fight cancers in both medical
practice and in the scientific research field. Imaging of cancer is an
increasingly important component of understanding and treating cancer.
Today, it is necessary to not only assess tumors morphologically but also
provide information about the pathophysiological and metabolic aspects of
tumor behavior with functional imaging techniques. Over the last two to three
decades, the field of diagnostic cancer imaging has witnessed remarkable
evolution that has affected virtually every aspect of research and clinical
management of cancer. This evolution has been the result of innovations in
three main aspects: innovative instrumentation (including a new class of
scanners); development of new contrast agents and radiolabeled tracers; and
imaging tools (including computer-aided detection or diagnosis technologies)
for the detection, evolution, staging, and prognosis of many types of cancer.
Current standard imaging techniques cannot accurately detect early diseases,
and they provide limited information for disease staging.

The major goals of current cancer imaging are as follows:

• Provide more reliable disease characterization through the synthesis of
anatomic, functional, and molecular imaging information;

• Refine and optimize imaging capabilities in oncology;
• Establish new imaging modalities and findings, and discover the
potential use of these techniques;

• Find more individualized assessment of tumor biology, personalized
treatments, and response to treatment;

• Develop image-processing-based cancer control systems; and
• Explore imaging capabilities and strategies to streamline cancer drug
development.
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Six levels of assessment to determine the efficacy of diagnostic imaging
should be considered:*

• Technical performance – the ability to obtain a high image quality.
• Diagnostic performance – the ability to identify a disease correctly.
• Diagnostic impact – a measure of sensitivity, specificity, positive
predictive value, negative predictive value, and accuracy.

• Therapeutic impact – the influence an imaging result has on clinical
diagnostic confidence.

• Alteration in management based on the results of imaging.
• Impact on health – the influence of imaging on the disease outcome.

Computer-aided detection or diagnosis (CAD) technologies play a key
role in the detection of cancers and help reduce the death rate; as such, they
have greatly advanced over the past decades. The aim of this book is to
publish and promote high-quality research in key technologies used in
computer-aided cancer detection and diagnosis systems. The following
11 chapters cover different types of cancers, including skin cancer, breast
cancer, prostate cancer, colon cancer, etc.; they also span different scientific
fields, such as biomedicine, imaging, image processing, pattern recognition,
system analysis, etc.

Colonic polyps are fleshy growths that appear on the inside of the large
intestine, and certain types of polyps grow large enough and can become
cancerous. Screening for colon polyps and removing them before they become
cancerous can reduce the risk of colon cancer. Chapter 1 reviews computer-
aided systems and technologies for colonic polyp detection using CT
colonography. It introduces the history, preparation, imaging protocol, and
clinical value of CTC and related image processing technologies, including
colon segmentation, supine–prone registration, colon unfolding, polyp
segmentation and characterization, classification, and content-based image
retrieval. It also summarizes the performances and limitations of various
CAD systems.

Digital image processing technologies have important applications in
computer-aided cancer imaging systems, and they play a key role in cancer
detection. These technologies include image enhancement, image segmenta-
tion, image compression, image encryption, etc., all of which are needed to
provide information about the extent of disease and help plan treatment of the
cancer. However, these technologies are not fully developed, and further
investigation is needed to improve the accuracy of computer-aided cancer
detection systems. Chapter 2 examines three image processing technologies

*[R. MacKenzie and A. K. Dixon, “Review: measuring the effects of imaging:
an evaluation framework,” Clin. Radiol. 50, 513 518 (1995); H. V. Fineberg,
J. Wittenberg, and J. T. Ferruci, “The clinical value of body computed tomography
over time and technologic change,” Am. J. Roentgenol. 141, 1067 1072 (1983)]
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(image enhancement, image compression, and image encryption) that are
often adopted by computer cancer detection systems. Based on nontraditional
representation of images in the form of 1D independent signals, new
approaches for enhancement, compression, and encryption are presented as a
preprocessing tool for computer-aided imaging systems.

Chapter 3 presents an overview of recent advances in multimodality
imaging technologies for diagnostic radiology and image-guided radio-
therapy. In particular, it discusses the expanding role of multimodality
imaging in cancer detection and segmentation for radiation oncology. Using
complementary information from multimodality images significantly
improves the robustness and accuracy of tumor volume definitions in
radiotherapeutic treatments of cancer. The chapter also provides working
examples for developing algorithms for multimodality target volume
definitions in different cancers and highlights the potential opportunities in
this field for computer-aided detection and image-guided treatment.

Mammography plays a key role in fighting breast cancer, and research has
found that screening has reduced breast cancer mortality by up to 44%.
However, low-dose x rays will generally reduce the contrast of the
mammograms. In order to resolve this issue, Chapter 4 introduces a new
nonlinear unsharp masking (NLUM) scheme for enhancing suspicious regions
in mammograms. The NLUM method offers users the flexibility to embed
different types of filters in the nonlinear filtering operator, to choose different
linear or nonlinear operations for the fusion processes, and to optimize the
NLUM parameters manually or by using a quantitative enhancement
measure. The chapter also introduces the new second-derivative-like measure
of enhancement (SDME). The comparison and evaluation of enhancement
performance demonstrates that NLUM can improve the disease diagnosis by
enhancing suspicious regions in mammograms with no a priori knowledge of
the image contents.

Skin cancer is the most common of all cancers, accounting for nearly half
of all cancers in the United States. Automatic detection of skin cancer is a key
technology in computer-aided skin cancer diagnosis. Chapter 5 studies skin
lesion detection based on color information. Several color spaces are studied,
and the detection results are compared. Experimental results show that the
YUV color space can achieve the best performance. Furthermore, the chapter
develops a distance-histogram-based threshold selection method that is
proven to be better than other adaptive threshold selection methods for color
detection. Based on the aforementioned methods, a hybrid skin-lesion
detection algorithm is presented. The book chapter also investigates GPU
techniques for skin lesion extraction, and the results show that GPUs have
potential applications in skin lesion extraction.

Chapter 6 presents an incremental learning method for lesion detection
using endoscopy videos. With advances in data acquisition technology, data
has become large and dynamic. A large number of examples often reduces the
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generalization error of the trained model. In the deployment of new image-
based diagnosis tools such as capsule endoscopy, new examples continue to be
acquired, which enriches the understanding of the imaging modality and
could potentially alter previous beliefs. Therefore, efficient and scalable
learning approaches are needed that can modify the model structure without
having to revisit all of the previously processed examples. The incremental
learning method presented in this chapter is developed based on geometric
support vector machines (SVMs). The chapter describes the concept of the
skin of convex hulls and a method to identify it (only the examples within
the skin are retained in the incremental training, which is approximated with
the extreme points). The set of extreme points are found via a recursive
process by searching along the direction defined by a pair of extreme points.
When additional examples become available, they are used along with the
retained ones within the skin of the convex hull constructed from the previous
data set. This process results in a small number of instances used in incremental
training steps and, hence, improved memory efficiency to handle a large
amount of data, as well as robustness that exhibits competitive performance.

Chapter 7 provides a comprehensive review of a melanoma screening
system, including various imaging technologies, publicly available skin lesion
data sets, and image analysis methods such as lesion segmentation, feature
extraction and selection, and classification. This chapter also describes in
detail a method to bridge the gap between the domain knowledge of
physicians (i.e., dermatologists) and computer-generated features representing
size, shape, spatial relationship, and texture. Comprehensive comparison
using publicly available skin lesion data sets demonstrates the advantage of
incorporating domain knowledge.

Microcalcifications are tiny deposits of calcium that appear as small,
bright spots on mammograms, and the detection of microcalcifications is an
extremely challenging task. In Chapter 8, a novel, hybrid 2D complex-
wavelet-transform-based (2D-CWT-based) multifractal feature extraction
system is proposed for the detection of microcalcification clusters (MCCs)
in digital mammograms. A hybrid feature set, including a set of texture-based
features and a set of 2D-CWT-based multifractal features, is presented as the
input to a SVM classifier for the detection of the MCCs. The 2D-CWT
algorithm and its 2D-CWT-based novel multifractal feature extraction
scheme are proposed in the book chapter. Experiments demonstrated a good
MCC detection rate and a satisfactory ratio of the true positive fraction to the
false positive fraction. The proposed MCC detection system with hybrid
features provides an adequate framework for MCC detection.

Chapter 9 focuses on challenges in accurately and automatically detecting
and validating suspected prostate cancer lesions in biopsy images. Despite
recent improvements in detection and treatment, prostate cancer continues to
be the most-common malignancy and the third-leading cause of cancer-
related mortality in American men. Evaluation of prostate cancer can be
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divided into detection, localization, classification, grading, and staging;
accurate assessment is a prerequisite for optimal clinical management and
therapy selection. Current diagnosis of prostatic adenocarcinoma is conducted
by experienced pathologists using visual analysis of biopsy tissue samples:
pathologists assess glass slides under a microscope in order to detect the
presence of tumors and to assign a grade according to the architecture of
prostatic glands. However, the grading process is time-consuming and error-
prone, as well as highly influenced by pathologist experience, pathologist
fatigue, and variability in the image interpretation. Therefore, CAD prostate
cancer diagnosis has been developed to assist pathologists in the analysis of
histopathology images. Prostate biopsy imaging has been accepted as a
primary imaging modality for evaluating prostate cancer grades. In the
coming decade, the main aim for prostate cancer imaging is more-accurate
disease description, characterization, and interpretation through the synthesis
of functional, anatomic, and molecular imaging information; therefore, in
order to make accurate diagnoses, it is important to thoroughly understand
their advantages and limitations, histological background related with image
findings, and their clinical relevance for evaluating prostate cancer. Chapter 9
provides an overview of the current clinical approach for detecting and
grading prostate cancer and describes the current status and future potential
of CAD technology applied to prostate cancer, which is intended to be a
support tool in cancer diagnosis and management. The chapter also presents
some future perspectives and new strategies in pursuit of better prostate cancer
CAD systems, and so on.

Chapter 10 investigates mass analysis using fractal dimension and shape
factors in order to differentiate benign masses and malignant tumors. Fractal
dimension (FD) and several shape factors—including compactness, convex
deficiency, a measure based on Fourier descriptors, fractional concavity, and
spiculation index—were calculated from the contour of a mass and used to
estimate whether the mass is benign and malignant. The results indicate that
shape analysis can lead to efficient discrimination between benign breast
masses and malignant tumors. The results also show that fractional concavity
gave the highest individual AUC (the area under the receiver operating
characteristic curve).

Chapter 11 deals with tomographic imaging, and a new approach for
reconstructing images from a finite number of projections is presented. In the
new approach, the ray integrals of the image are transformed uniquely into
the ray sums of the discrete image on the Cartesian lattice. The experimental
results of image reconstruction from a finite number of projections are
illustrated in the book chapter and demonstrate the effectiveness of the
proposed approach.

Jinshan Tang
Sos Agaian

November 2013
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Chapter 1

Computer-Aided Detection
of Colonic Polyps in CT
Colonography

Jianhua Yao
Radiology and Imaging Sciences Department, Clinical Center, National Institutes of
Health, Bethesda, Maryland

1.1 Colonic Polyps and Colon Cancer

Colonic polyps are fleshy growths that occur on the inside of the large
intestine, also known as the colon. Polyps in the colon are extremely common,
and their occurrence increases as individuals grow older.1 It is estimated that
50% of the people over the age of 60 will have at least one polyp. The
significance of polyps is that when certain types of polyps grow large enough,
they can become cancerous. Colon cancer is a cancer from uncontrolled cell
growth in the colon; it is the third most commonly diagnosed cancer in the
world, but it is more common in developed countries: approximately 60% of
cases were diagnosed in the developed world. Colon cancer is the second
leading cause of death from cancer in the United States. It is estimated that
there were 143,460 new cases of colorectal cancer in the United States in 2012,
with 51,690 deaths.2

The risk of a colon polyp becoming cancerous increases as the size of the
polyp increases.3 Therefore, screening for colon polyps and removing them
before they become cancerous should markedly reduce the incidence of colon
cancer.4 Many doctors in the U.S. are recommending colonoscopies to screen
healthy subjects with an average risk of developing colon cancer.5

Colonoscopies are recommended beginning at the age of 50 and every 7–10
years thereafter if no colon polyps or cancers are found. Unfortunately, many
patients do not undergo screening due to the perceived inconvenience and
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discomfort of existing screening tests. CT colonography (CTC), a CT-scan-
based imaging method, has been under study for the past ten years and shows
promise as a method of colorectal cancer screening that may be acceptable to
many patients.6,7 Figure 1.1 shows the colon anatomy and a colonic polyp
shown in the optical colonoscopy and CTC.

1.2 CT Colonography

The use of CT imaging for the detection and staging of colon cancer was first
proposed as early as 1980.8,9 In 1983, Coin et al.10 proposed that CT had
potential as a mass screening method for colorectal polyps. The terms “virtual
colonoscopy” and “CT colonography” were formally introduced in 1994.11

Since then, clinical studies began including more patients, and technologies
were advanced based on new hardware and software. Colon phantoms were
employed to determine the optimal CTC scanning parameters. Optical
colonoscopy was used as the reference standard to determine the feasibility of
using CTC in a clinical setting.12 After that, multiple investigations have been
conducted to improve the scanning parameters, the stool and fluid tagging
techniques, and the colon preparation techniques.13,14

The standard preparation for a CTC may begin several days before the
procedure. One to two days prior, patients undergo a standard 24-hour clear-
liquid-diet colonic preparation. Patients are orally administered laxatives:
90 mL of sodium phosphate [Fleet 1 preparation (Fleet Pharmaceuticals,
Lynchburg, VA)] and 10 mg of bisacodyl. Patients also consume oral contrast
agents in divided doses; a total of 500 mL of barium sulfate [Scan C (Lafayette
Pharmaceuticals, Lafayette, IN), 2.1% by weight] is administered for solid
fecal tagging; and a 120-mL solution of diatrizoate meglumine and diatrizoate
sodium [Gastrografin® (Bracco Diagnostics, Princeton, NJ)] is administered
to opacify any luminal fluid.15

Figure 1.1 Colon and colonic polyps: (a) Illustration of colon anatomy. (b) Optical and
(c) 3D virtual colonoscopy images of a 0.8-cm polyp in the sigmoid colon of a 60-year-
old man.
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The insertion of a small, flexible rectal catheter allows the patient to self-
insufflate the colon immediately before scanning. Insufflating the colon with
air or carbon dioxide (CO2) allows for polyps to be seen on a CT scan
because of the large contrast difference between air and soft tissue. The use
of CO2 has been shown to decrease immediate and delayed pain compared
the use of air.16

Patients are currently scanned in two positions: supine and prone. The
protocol required only one 20–25-second breathhold per scanning position.
Conducting a prone scan in addition to a supine scan has been shown to
increase the sensitivity of detecting polyps by 13–15%, but it has little effect
on or decrease of specificity.17 The optimal settings for CTC aim to
decrease scanning time, decrease radiation exposure, and increase image
quality. A high pitch value decreases the scanning time, a lower tube current
reduces the radiation exposure, and a smaller slice thickness improves image
quality. Typical CT scanning parameters include a 1.25–2.5-mm collimation, a
table speed of 15 mm per second, a reconstruction interval of 1 mm, and
scanner settings of 100 mAs and 120 kV.18 Figure 1.2 shows several examples
of 3D colon reconstruction using CTC, and Fig 1.3 shows examples of polyps
on CTC.

1.3 Computer-Aided Detection Using CTC

CTC is a promising diagnostic tool for detecting colorectal polyps and
preventing colon cancer; however, CTC requires a trained radiologist to
perform a lengthy interpretation of the CT images, which is both costly and

Figure 1.2 Anteroposterior projection images of the 3D reconstructions of colons using
CTC from nine patients. There are two consecutive images from each patient, one supine
and the other prone. Observe the diversity of colonic shapes and distensions, and the
completeness of the colonic segmentation.
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prone to human error.19 Challenges associated with CTC include a lack of
consistency in results between radiologists and difficulty detecting smaller
polyps (6–9 mm). Proposed solutions to these obstacles include double
readings or a computer-aided detection (CAD) system. CAD has the potential
to decrease the time needed to complete an interpretation and increase the
accuracy of the diagnosis.

The objective of the CAD system is to identify and mark suspicious
lesions on the CTC scan. Radiologists can use the results from the CAD
system along with 3D or 2D CT images to make a final diagnosis. Computer
vision and computer graphics techniques, such as colon and polyp
segmentation, supine–prone registration, novel unfolded view, and virtual
fly-through, can also help radiologists dictate the cases.

1.3.1 CAD pipeline

The pipeline of a typical CTC CAD system is shown in Fig. 1.4. First, a CTC
data set is read into the program. The colon surface is extracted using fuzzy

Figure 1.3 Examples of 16 2D CTC images showing eight adenomatous polyps 1 cm or
larger. Each polyp is shown twice: first in the prone view and then in the supine view.
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connectness and isosurface techniques.20 A curvature filter is applied to every
vertex on the surface to get the initial detections. The passed vertices are then
clustered according to their connectivity, and the centroid of each cluster is
treated as one detection. The detections are then sent to a polyp segmentor for
computation of boundaries, 3D shape, and attenuation features.

A CAD system has two phases: training and application. The system
needs to be trained (using training data) before being applied to new data.
Training data is usually manually or semi-automatically preprocessed to
identify lesions and structures of interest; a computer program is then
developed and optimized to detect as many true lesions and as few false
detections as possible. The trained CAD system generally has a segmentation
module, a feature-extraction module, and a classifier. In the application
phase, previously unseen data first undergoes the segmentation and feature-
extraction process. The features of potential detections are then fed to the
classifier to determine whether they are true lesions or false ones. The
following subsections describe a few key components in a CAD system.

1.3.2 Colon segmentation

Colon segmentation is an essential component of the CTC CAD software that
extracts a 3D representation of a colonic surface from the CTC data. Colon
segmentation is very important because incorrect segmentation may impair
interpretation using 3D visualization programs.

In clinical practice, an oral contrast agent may be given to patients for
CTC. The oral contrast agents contain iodine or barium, which eventually tag
residual colonic fluid and stool remnants. This appears advantageous when
CT scans are visually inspected by radiologists because it helps reveal hidden

Figure 1.4 CTC CAD pipeline.
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areas of the colon surface. However, the contrast agent also creates problems
for segmentation because it converts a two-class (air and tissue) segmentation
problem into a three-class (air, contrast, and tissue) problem.

Most colon segmentation algorithms rely on thresholding and connec-
tivity to extract the colon.21 Different schemes include region growing, fuzzy
connectivity, level set, active contour models, etc.22 To account for the
oral contrast, Franaszek et al.23 proposed a hybrid technique consisting of
eight steps:

1. Modified threshold-based region-growing segmentation,
2. Extraction of individual air/fluid pockets,
3. Identification of air–fluid boundaries,
4. Construction of the pocket tree,
5. Pruning of the tree,
6. Fuzzy connectedness segmentation,
7. Filling gaps and holes in fuzzy space, and
8. Level-set segmentation applied to fuzzy space.

Information collected in the first three steps is used in step 4 to organize
pockets of air and fluid into the tree. In step 5, the tree is pruned to mark
leaked regions of segmented colon. The two last steps provide final corrections
and smoothing. As input of the first step, original CT images are read, and the
location of one or more starting seeds is provided. As output of the last step,
the colonic wall approximated by an isosurface in level-set space is generated.
The results of the hybrid colon-segmentation algorithm are shown in Fig. 1.2.

1.3.3 Supine–prone registration

In CTC, a patient will be scanned twice—once supine and once prone—to
improve the sensitivity for polyp detection. This improves CTC sensitivity by
reducing the extent of uninterpretable collapsed or fluid-filled segments.
Figure 1.5(a) shows pairs of supine and prone CTC data. Because the colon
moves between the prone and supine scans, the two CT scans need to be
registered to match detections.24

One way to reduce the complexity of the registration problem is to
register the centerlines of the colon on prone and supine scans. Van Uitert
et al.25 proposed a subvoxel, precise centerline-extraction method that
utilizes information of the colon outer wall to determine the colon
centerline. Initially, segmentation of the colon is performed to obtain a
subvoxel representation of the colon. The discrete segmentation is used as
an initial surface for a narrow-band level-set segmentation to more-
accurately determine the location of the colon inner wall and smooth the
boundary between the air- and fluid-filled regions of the colon. From the
level-set segmentation, a subvoxel distance field is computed using the fast
marching method. The centerline of a colon is then computed based on the
distance field.
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To make full use of shape information of the colon for registration, Nain
et al.26 proposed a centerline registration algorithm based on dynamic time
warping (DTW) and colon distension along the centerline. Nappi et al.27

proposed a region-based supine–prone correspondence method to reduce
false-positive CAD polyp candidates in CTC. Li et al.28 proposed a heuristic
algorithm for the colon centerline registration by employing the coordinate
information of the centerline.

Wang et al.24 proposed an automated method for colon registration based
on correlation optimized warping (COW)29 and canonical correlation analysis
(CCA).30 Four anatomical, salient points on the colon are distinguished first,
and then a COWmethod is applied to the segments defined by the anatomical
landmarks to find better global registration based on local correlation of

Figure 1.5 Supine and prone registration: (a) supine scan, (b) prone scan (lines inside the
segmented colon indicate centerlines), and (c) matched centerline.
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segments. To utilize more features along the colon centerline, researchers
extended the COW method by embedding canonical correlation analysis into
it for correlation calculation of colon segments. Figure 1.5(b) shows the
matching of centerlines from supine and prone studies.

1.3.4 Colon unfolding

The colon is a tubular structure. The traditional way to navigate the colon
along the centerline is not efficient due to the limited view angle. A more-
efficient way is to open and flatten the colon, and view the surface from
above. Although this is not possible in optical colonoscopy, it can be
implemented in CTC via computer graphics techniques.

Many techniques have been proposed to unfold the colon; onemain category
is based on raycasting. Vilanova et al.31 first unfolded the colon locally by using a
local projection and then globally unfolding the colon using a suitable
parameterization. Wang et al.32 proposed a technique using the electrical field
of a charged centerline to transform the colon into a straight cylinder-like shape
and uniformly sample the planar cross-sections orthogonal to the centerline.
Sudarsky et al.33 presented an efficient method based on skeletal subspace
deformation and uniform raycasting along the central path. It is difficult to
choose the right sampling rate in raycasting-based techniques, and structures
behind the first object encountered by rays may be obstructed. Another category
of approaches is based on conformal mapping. Haker et al.34 used angle-
preserving conformalmapping tomap the entire colonic surface onto a flat plane.
Hong et al.35 proposed a conformal mapping method based on minimizing the
harmonic energy to achieve angle preservation and minimal distortion. These
techniques have to deal with texture distortion and surface parameterization;
they often require high-quality surfaces and are computationally expensive.
Another type of approach is based on local projection. Paik et al.36 proposed
various map-projection techniques, including cylindrical and planar projection
for the fly-through of virtual colonoscopy. Vos et al.37 projected six orthogonal
images onto an unfolded cube to render the complete FOV.

A reversible colon unfolding technique has been proposed by Yao et al.38

Given a CTC data set, the 3D colonic surface is first segmented using
thresholding, region growing, and level sets.23 The centerline of the colon is
then extracted based on a fast-marching level set and topographical
thinning.25 Rotation-minimizing frames (RMF) are then established along
the centerline. After that, a recursive ring-set technique is applied to map
vertices on the colon’s surface to their corresponding centerline points. Next,
mesh skinning is employed to straighten the colon, followed by the application
of cylindrical projection to flatten the colon. Finally, reverse transformation is
computed for each vertex. Mesh skinning is a skeleton-driven deformation
technique widely used in computer animation; this technique can be applied to
straighten the colon using its centerline as the skeleton of the colon. The result
of the colon unfolding is shown in Fig. 1.6.
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1.3.5 Polyp segmentation

Polyp segmentation is essential in the CAD pipeline because it provides the
entire voxel set of a polyp, which can be used to quantify the polyp’s
characteristics. Several comprehensive volumetric features and statistical
analysis can be obtained, such as the density distribution within the polyp, the
volume and dimension of the polyp, and its relationship with surrounding
tissues. Once the segmentation is obtained, additional analysis (such as texture
analysis) can be performed.39

Colonic polyp segmentation is a challenging task due to several reasons.
First, polyp shapes are irregular. Second, polyp sizes vary greatly. Third, the
surrounding regions are complex. Methods utilizing both shape and
densitometry information are necessary for a successful segmentation.

Figure 1.6 Colon unfolding: (a) 3D colon surface, (b) straightened colon, (c) unfolded
colon, (d, e) close-up views of the unfolded colon, (f) endoluminal view of polyps, and
(g) unfolded view of the same polyp in (f).
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Jerebko et al.40 used the Radon transformation and Canny edge operators to
detect polyp boundaries. They first applied Canny edge operators to locate
potential polyp–lumen boundaries, and then they used Radon transforma-
tion to connect the boundaries and identify round-shape structures. Their
method was primarily 2D and only worked well on round polyps. Dijkers
et al.41 proposed a method to segment polyps using the colon’s surface. After
a seed patch was placed, the patch grew over the surface based on criteria
of the surface normal and several stopping conditions according to the
polyp shape. The method relies heavily on the surface normal and is sensitive
to image noise. The assumption of polyp shape also makes it difficult to
apply to a wide range of polyps. The segmentation cannot be automated
because several key parameters need to be manually set according to the
character of a polyp.

Deformable models were applied in polyp segmentation.42 An initial
model of the polyp is first placed at the seed location and the initial
parameters are set, and then an iterative process is started. During each
iteration, deformation forces are computed, and the model is updated
according to the forces. The force weights and other control parameters are
then adaptively updated. The model resolution and topology is also
adaptively maintained. The iterative process is repeated until all forces reach
a balance (the model remains unchanged between iterations) or until a
maximum number of iterations are executed. The deformable model is
represented as triangular meshes. The model is driven by the combination of
internal force, image force, external force, and a counter force in the haustral
fold regions. Internal spline forces tend to maintain the smoothness and
continuity of the model.43 Polyp boundaries tend to have larger gradients than
other regions; therefore, the gradient of the edge map can be used as the image
force. Furthermore, an expansion force is exerted to push the model from its
initial state and prevent it from collapsing. Polyps on haustral folds are more
difficult to segment because the deformable model often leaks into the fold
region. Figure 1.7 shows the polyp segmentation results.

Figure 1.7 Polyp segmentation: (a) and (c) are 2D axial images superimposed with
segmentation result, and (b) and (d) are 3D surface reconstructions of the segmentation.
(a) and (b) show segmentation of a 7-mm sessile polyp, and (c) and (d) show segmentation
of a 10-mm polyp on-fold.
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1.3.6 Polyp characterization and features

Colonic polyps appear as elliptical protrusions on the inner surface of the
colon. Curvature-based features for colonic polyp detection have proved to
be successful in the CTC CAD systems. Curvatures are important shape
attributes;44 the two principal curvatures and the derived Gaussian and mean
curvatures can be computed from the surface using partial-differential-
equation- or kernel-based methods directly from the image.45 Curvedness and
shape index44 are more meaningful as the shape indicator compared to the
curvatures. The curvedness is a positive number that specifies the amount of
curvature. Shape index captures the intuitive notion of shape and classifies the
shape as one of the following: cup, rut, saddle, ridge, cap, trough, saddle rut,
saddle ridge, or dome. The global shape index or the distribution of local
shape index can be used as shape features.

Other useful features include shape features such as circularity, spherecity,
compactness, irregularity, elongation, or texture features such as contrast,
roughness, and texture attributes. The compactness of a shape measures how
close a structure is to a circle or a sphere. Compactness in 2D can be written as
C ¼ P2 / (4pA), where P is the perimeter, and A is the area of the shape. In 3D
space, compactness can be written as C ¼ A3 / (36pV2), where A is the surface
area, and V is the volume of the shape. In either case, the compactness of
the circle and sphere is 1, and that of other shapes is larger than 1. The
distribution and statistics of pixel intensity within a polyp reveals the
smoothness, contrast, regularity, or homogeneity of tissues. Texture analysis,
such as statistical moments and the co-occurrence matrix, provides ways to
describe the tissue appearance.46 The statistical moments are computed based
on the intensity histogram. The second moment of the histogram measures the
intensity variance within the region, which correlates with the roughness
perception. The third and fourth moments—skewness and kurtosis—reflect
the asymmetry and uniformity of the intensity distribution. The co-occurrence
matrix is also known as a spatial gray-level dependence matrix in the sense
that it combines spatial information and intensity statistics. The inertia of
the co-occurrence matrix characterizes the texture contrast of a region. The
entropy of the matrix quantifies the level of randomness in the region.
The angular second moment of the co-occurrence matrix can be used to
describe the homogeneity of a region.

Colonic polyps are small growths that protrude outward from the colon
wall and are characteristically round in contour. In contrast, other structures
inside the colon such as haustral folds and other normal colonic structures
tend to be circumferential and ridge-shaped. The unique topographic features
of bumps can be used in characterize polyps.47 Height maps are commonly
used in geographic information systems (GIS), where they are also called
digital elevation models.48 The height map generation is illustrated in Fig. 1.8.
The method is based on a ray casting technique. For every point pi on the
projection plane, a ray ri is cast through pi; the point at which ray ri encounters
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the colon surface is ei; and the distance di between pi and ei is recorded at pi.
The distance map can be converted to a digitized height map. Figure 1.8
shows an example of the height map. For a typical polyp, a concentric pattern
can be observed from the map.

1.3.7 Machine learning and classification

Machine learning techniques translate an expert’s knowledge into computer
algorithms. In a CAD system, a classifier is a mathematical model that
determines whether a detection is a true or false lesion. The classifier in a
CAD system is usually a supervised learning system, i.e., the classifier is
trained using annotated data by experts. Well-known classifiers, such as
neural networks (NN)49 and support vector machines (SVM),50 have been
widely used in CAD systems. In order to achieve an effective classifier, a
subset of features needs to be selected from the entire feature space based on
their individual or joint performances. Feature selection methods such as
forward stepwise search (FFS) and genetic algorithm (GA) have been
proposed.

SVM is a relatively new technique for data classification that uses
hyperplanes in a high-dimensional feature space to separate data into different
classes. SVM is trained with a learning system derived from statistical learning
theory and is generalizable to unknown data. In the training phase, detections
are given a class label (polyp, nonpolyp) to form feature-class pairs (x, y).
Given a training set of S detections (x1, y1), (x2, y2), . . ., (xs, ys) for
p-dimensional feature space xi 2 <pand yi 2 fþ1, 1g, a hyperplane can be
optimized to separate the two groups of data (true and false). The decision
function for a classification rule is then based on which side of the hyperplane
the detection lies. An SVM in higher-dimensional space (more features) can
lead to more-accurate classification. However, SVM in a very high-
dimensional space may increase the complexity of the model, overtrain the
data, and decrease the generality of the model. One solution uses an ensemble
of classifiers, and each classifier only includes a small number of features.
Figure 1.9 illustrates an ensemble of SVMs.

Figure 1.8 Polyp height map: (a) height-map generation based on ray tracing, (b) a 10-mm
adenoma polyp, and (c) height map of (b).
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Ensemble learning combines multiple trained classifiers under the
assumption that multiple models are better than one if they are diverse.
Popular ensemble approaches include boosting and bagging.51 Combination
strategies for the multiple decisions can be divided into two types: those that
adaptively adjust to the training set based on the performance of previous
models, as in boosting methods, and those that do not, as in bagging.52 The
bootstrap is widely used to estimate the standard error or confidence
intervals of an estimate. Bagging is based on the bootstrap technique
whereby the predictions on bootstrapped samples are aggregated to form an
ensemble hypothesis. Boosting combines the predictions from re-sampled
data based on the previous model’s performance such that harder data
samples for the system are more likely to be sampled. Bagging has been
shown to reduce the variance of classifiers, whereas boosting can reduce
both variance and bias. However, it is rarely shown that bagging and
boosting combined with feature selection can significantly reduce ensemble
training time in practice.

1.3.8 Content-based image retrieval

Content-based image retrieval (CBIR) is a computer vision technique
for searching for similar images within an image database. It has been
used in applications such as image searching53 and artwork retrieval.54

Recently, CBIR has shown potential as a diagnostic tool in medical
applications.

CBIR systems describe images as a set of features directly computed
from the images and then categorize the images into several categories. The
scale-invariant feature transform (SIFT) was first proposed by Lowe55 in the
applications of natural-scene and facial recognition. It has the advantage of
describing the local image feature with a scale- and rotation-invariant
representation. The bag-of-words (BoW) model56 was first introduced in
natural language processing then in computer vision, especially for object
categorization. The BoW model usually includes three steps: feature
detection, feature description, and codebook generation. A representative
database is built to store example images and their associated BoW

Figure 1.9 Ensemble of SVMs. Each plot illustrates one SVM; the classifier decision is
reached by combining all classifiers.
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histograms. Given a new detection image, its BoW histogram is computed
and compared against the representative database to retrieve the most-
similar example images.

CBIR has been tested in a CTC CAD system to reduce the number of
false positives57 and to characterize the histology type (adenoma or
hyperplastic)58 and shape (pedunculated or sessile)59 of a colonic polyp.
Figure 1.10 shows the flowchart of the application of CBIR on a CTC CAD
system. It consists of two stages: database construction and CBIR application.
In the database-construction stage, CAD results from the training images are
labeled by knowledgeable users and stored in a representative database. In the
CBIR-application stage, CAD detections from the test images are sent to
the CBIR for query. Based on the query results, certain false positives can be
eliminated and polyp lesions can be classified based on their histology type
and shape. Figure 1.11 shows the retrieval results of a true positive (TP)
detection and a false positive (FP) detection. Based on the retrieval set, FPs
could be eliminated.

1.3.9 CAD performance

The quality of a CAD system can be characterized by the sensitivity and
specificity of the diagnosis. Sensitivity refers to the fraction of diseased cases
correctly identified as positive in the system (true positive fraction, TPF).
Specificity refers to the fraction of disease-free cases correctly identified as

Figure 1.10 Flowchart of the application of CBIR on a CTC CAD system.
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negative. “Receiver operating characteristic” (ROC) curves are used to
describe the relationship between sensitivity and specificity. The ROC curves
show the true positive fraction (TPF ¼ sensitivity) versus the false positive
fraction (FPF ¼ 1 – specificity). In addition to ROC curves, free-response
ROC (FROC) curves (TPF versus FP per images) were proposed to more-
accurately represent the number of FP detections.60 The area under the ROC
and FROC curve is a measure of the quality of a CAD system. Note that there
is a tradeoff between specificity and sensitivity. A successful CAD system
should detect as many true lesions as possible and also retain as little FP
detection as possible.

Because CAD is still under intensive development, most studies of
CAD to date have reported its performance in the laboratory setting
rather than in the radiology reading room. The largest such study to date
was in 1186 patients for which the performance of CAD alone was
compared to optical colonoscopy.19 The patient data was randomly
divided into a training set of 394 patients and test set of 792 patients for
CAD to analyze. For polyps 10 mm or greater in size, the sensitivity of
CAD on the test set was 89.3%, whereas the sensitivity of optical
colonoscopy was only 85.7%. Similarly, there were two carcinomas found
in the study; the detection rate of carcinomas was 100% for CAD and 50%
for optical colonoscopy. Optical colonoscopy performed significantly
better than CAD for polyps 6 mm or greater in size (87.2% compared to
66.1%) but comparably for adenomas 8 mm or greater in size (89.6%
compared to 85.4%). CAD also had a FP rate of 7.9, 6.7, and 2.1 for
polyps that were at least 6, 8, and 10 mm, respectively. There was a FP
rate of 0.7 carcinomas per patient. The authors of this study concluded
that CTC with CAD had similar results compared to optical colonoscopy
for polyps that are 8 mm or larger in size. The FROC curve of the CAD
system is shown in Figure 1.12.

Figure 1.11 Retrieval sets of TP and FP detections in a CTC CAD system.
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1.4 Discussion

Currently, CTC is expensive for patients and not practiced regularly in most
American imaging centers. Patients prefer CTC over optical colonoscopy, but
for Americans to embrace CTC as their preferred colon cancer screening
method, insurance companies must begin reimbursing for it. If the cathartic
part of the bowel preparation can be eliminated, it is likely that patient
compliance rates to CTC will increase, leading to reduced cost per life year
saved and greater economic benefit to society. CTC is a low-risk method: the
radiation dosage and risk of perforation are minimal when compared to the
potential benefits.

Some studies have shown that CTC has the potential to perform well
when compared to other screening methods. Still, more studies must be
conducted for CTC to be an endorsed CRC screening method in the United
States. The results of several large clinical trials currently underway are
eagerly anticipated. Previous studies have shown that combined 2D and 3D
displays and adequately trained readers are essential to the success of CTC as
a reliable screening method. Further studies must be conducted on varying
risk populations to establish the proper screening recommendations for the
population as a whole. In addition, by maintaining uniformity in technology
and reading technique in future trials, and ultimately in the community,
radiology settings may allow for more accurate and consistent results.

With sensitivities approaching 90%, CAD shows promise in improving the
sensitivity of polyp detection beyond the capability of a radiologist alone.
CAD may enable CTC to overcome large barriers that CTC alone would
potentially face in the clinical setting. A good CAD system may reduce the
dependency that CTC has on an experienced, well-trained radiologist. In

Figure 1.12 FROC curves for the training (small markers) and test (large markers) sets for
adenomatous polyps 10 mm or larger (•), 8 mm or larger (<), and 6 mm or larger (♦).
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addition, CAD may greatly reduce the amount of time a radiologist needs to
spend on each CTC case, thereby making CTC more cost-effective and
reducing the number of significant polyps missed during a CTC. The results of
future CTC and CAD studies may provide the necessary foundation for the
acceptance of CTC as a consistent and reliable screening method for CRC.

Several studies have been conducted to determine the efficacy of CTC as a
screening method for colon cancer. Unfortunately, the results of various
studies have a wide range in sensitivity values for CTC. There are several
factors that may contribute to the inconsistent results between CTC studies:
different stool tagging and fluid opacification protocols were used, or none
were used at all; different display methods were used for interpretation; image
processing techniques such as electronic fluid cleansing were used in some
studies and not in others; double readings were performed in some studies and
not in others; multiple risk populations were used; and, depending on the
study, radiologists had varied experience and training with CTC.
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Chapter 2

Preprocessing Tools for
Computer-Aided Cancer
Imaging Systems

Artyom M. Grigoryan and Sos S. Agaian
Department of Electrical and Computer Engineering, University of Texas at
San Antonio, TX, USA

Digital image processing methods are widely used in medical imaging cases
where different types of cancer require complex processing of images (see
Fig. 2.1). For many medical images, it is desirable to enhance the quality of
images; detect, extract, and analyze the areas with tumors; accurately classify
the type of the tumor; compress the images (when necessary); and encrypt
images to protect patient data. All of these methods serve one purpose: provide
information about the extent of disease and help plan treatment.

Figure 2.1 Schematic representation of a medical imaging system.
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2.1 Introduction

Digital image enhancement is a powerful tool for many image processing
applications when the critical details cannot be seen clearly enough. The
purpose of image enhancement is to improve digital image quality and to
support human perception;1 7 for example, in medical imaging, computed
tomography (CT), magnetic resonance (MRI), and fluorescence in situ
hybridization (FISH) produce 3D images (or a stack of 2D images) of
different organs and tissues.8 13 There are many sources of interference in the
production of medical images, such as the movement of a patient, insufficient
performance, and noise produced by imaging devices. When the quality of an
image is poor in contrast, enhancement methods can be used to improve the
image quality, enhance edges, and reduce noise for diagnostic purposes.
Examples of such low-quality medical images are shown in Fig. 2.2.

Unitary transforms play an important role in image processing, and they
are used in different stages of processing such as filtering, coding, recognition,
and restoration analysis.14 21 This chapter focuses on the transform-based
image enhancement methods, although different spatial domain methods
operate directly on pixels, and both frequency and spatial domain methods
are also used for image enhancement.3,22 24,34 38 This chapter considers the
tensor transform and Fourier transform methods of enhancement that are
widely used and have been generalized for the Hartley, Hadamard, cosine,
and other transforms.21,26 32,37 These methods are based on manipulating all
or part of the spectral components of the transform. The well-known methods
of a-rooting25 27and log-a-rooting,58,59,82,83 modified unsharp masking32 34

and contrast entropy,36,37 as well as methods based on wavelet transforms, are
also mentioned.60 64

Image enhancement is considered the first important step in processing
medical images, and the following steps in image processing are image
compression85 and image cryptography.89 93 These three steps in medical
image processing are considered from the same point of view, i.e., the images
will be considered in new forms of representation when the information of the
2D images can be transferred uniquely into the set of 1D signals, and then

Figure 2.2 (a) FISH image, (b) MRI prostate image, and (c) breast and (d) chest x-ray
images.
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these signals will be processed and transferred back to the spatial domain to
form the processed image.

2.1.1 Novel view on image processing

Processing images in the frequency domain is very effective for many imaging
applications, including image enhancement. The advantages of transform-
based image enhancement techniques include low complexity of computa-
tions; high quality of enhancement; the presence of bright, visible zones in the
frequency domain; the ease in using parameterized linear filters; and the
critical role of fast unitary transforms in digital image processing. The main
idea behind enhancement methods in the frequency domain consists of
calculating a discrete unitary transform (DUT) of the image, which is denoted
by F manipulating the transform coefficients by a parameterized operator M;
and then performing the inverse transform, as shown in Fig. 2.3.

As an example, Fig. 2.4. illustrates an image that is processed by the 2D
discrete Fourier transform. The discrete breast x-ray image of 512 � 512
pixels is shown in (a), along with the amplitude of the transform
fFp,s; p, s ¼ 0 : 511g in (b), the amplification of the transform in (c), and
the result of the inverse 2D DFT in (d). In (c), the 2D DFT was amplified by
M½Fp,s� ¼ ½1þ kðp2 þ s2Þ�Fp,s with a factor of k > 0.

Because the calculation and analysis of the 2D discrete unitary transform
of the image, including the 2D DFT, are the main steps of image
enhancement, this section considers forms of splitting the 2D DFT
mathematical structure that can be used effectively for image enhancement.
The tensor and paired forms of image representation65 74 can reduce the
problem of image enhancement (as well as image filtration, compression, and
encryption) to the processing of 1D signals. The image can be uniquely

Figure 2.3 Block diagram of the F-transform-based image enhancement.

Figure 2.4 (a) Breast x-ray image, (b) 2D DFT of the image (in absolute scale and shifted
to the center), (c) amplified transform, and (d) image of the inverse 2D DFT.
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described as a certain totality of 1D “independent” signals that carry the
spectral information of the 2D DFT at frequencies of different or disjoint
subsets in the frequency plane. These signals are called splitting-signals or
image-signals, and they can be processed separately to achieve effective image
enhancement. The enhancement is with respect to the quantitative measure of
image enhancement based on the Weber definition of the contrast, which is
described in detail in the literature.21,75,83

Figure 2.5 shows a diagram of the proposed method of processing anN�N
image with the Fourier transform. The image is transferred to a totality of
K splitting-signals that represent the image f in tensor representation�½f �. This
number equals N þ 1 and 3N=2 when N is a prime and a power of two,
respectively. For other N, the number of splitting-signals can also be
calculated.21 Rather than enhance the image by methods of the Fourier
transform, one can process (P) them all separately, or only a few splitting-
signals, and then calculate the 2DDFT of the enhanced image from 1DDFTs
of the processed splitting-signals. The enhanced image can then be calculated
by the inverse 2D DFT. This diagram can also be used when processing the
image with other discrete unitary transforms, such as the 2D Hartley,
Hadamard, and cosine transforms. For that, the corresponding 1DDUTs are
used to process the splitting-signals, and the enhanced image is calculated by
the inverse 2D DUT.

A similar diagram is used for image enhancement when using a more-
advanced paired representation of the image, which is considered next for the
case of most interest when N is a power of two. There is a redundancy in the
tensor representation, which means that the different splitting-signals carry
the spectral information of the image at subsets of frequency points, which
may have intersections. The tensor transform is invertible but not orthogonal.
The paired representation of the image removes the redundancy of the tensor
transform, and it is orthogonal. The paired transform-based method of
enhancement requires many fewer operations of multiplication when
compared with the traditional transform-based methods. For instance,
approximately N=2ðN kÞ operations of multiplication can be saved when

Figure 2.5 Enhancement of an image of size N � N by processing K splitting-signals.
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enhanced by k splitting-signals. By processing only one or a few splitting-
signals, enhancement of the image can be achieved, which in many cases is
greater than the traditional methods. For instance, the a-rooting method of
image enhancement can be fulfilled by processing one splitting-signal. As
an example, Fig. 2.6(a) shows a CT image of size 256 � 256, (b) shows one
splitting-signal, and (c) shows its 1D DFT, which equals the 2D DFT of
the image at frequency points located in the main diagonal. The 1D DFT of
the signal is amplified by coefficients shown in Fig. 2.6(d) and the processed
signal in I; the image changed by this one splitting-signal is shown in (f). As
described in Section 2.5, this signal allows for processing the image along the
diagonal direction. In other words, the enhancement of the image in this
example is achieved by processing the image in the diagonal direction.

The block diagram in Fig. 2.5 illustrates the effective realization of the
Fourier transform methods of image enhancement. Fast algorithms exist for
calculating the tensor and paired transforms, and image enhancement can be
performed without calculations of the DFT, i.e., by processing the splitting-
signals and transforming them back to the image. Fourier transform methods
of image enhancement modify the image in the frequency domain. The tensor

Figure 2.6 Frequency-time method of image enhancement: (a) the original image, (b) the
splitting-signal, (c) the amplitude spectrum of the signal, (d) coefficients of amplification and
the processed signal I, and (f) the enhanced image.
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and paired transforms are referred to as the 2D frequency and 1D time
representations, respectively. In such a time-in-frequency domain, image
processing is performed. This chapter presents effective formulas for inverse
2D N � N-point tensor and paired transforms, where N is a prime and a
power of 2, respectively. New concepts of direction and series images will be
introduced that define the resolution and periodic structures of the image
components, which can be packed in the form of the “resolution map” of the
size of the image. Such a resolution map can be effectively used not only in
image compression but also in image enhancement. Other applications of the
2D tensor and paired transforms can be found in medical imaging, including
the image encryption that is described in Section 2.11.

2.2 Transform-Based Image Enhancement

The basic idea behind the frequency domain methods consists of computing a
discrete unitary transform of the image (for instance, the 2D discrete Fourier
transform), manipulating the transform coefficients by operator M, and then
performing the inverse transform, as shown in Fig. 2.7.

Transform-based image enhancement methods include techniques such as
a-rooting, weighted a-rooting, modified unsharp masking, and filtering, which
are all motivated by the human visual response.27 Consider the 2D DFT of the
image to be the transform F for image processing, which is defined as

Fp,s ¼
XN 1

n 0

XN 1

m 0

fn,mWnpþms,p, s ¼ 0 : ðN 1Þ,W ¼ WN ¼ expð j2p=NÞ:

In the Fourier-transform-based method of image enhancement, M is an
operator of magnitude, and the enhancement is described by

f fn,mg!fFp,s ¼ jFp,sje j#p,sg ! M � F!fF̂p,s ¼ M½jFp,sj�e j#p,sg!f f̂ n,mg:
In the a-rooting method of image enhancement, the magnitude of the Fourier
transform is modified as

M½jFp,sj� ¼ jFp,sj/, p, s ¼ 0 : ðN 1Þ, a > 0,

where the parameter a is taken from the interval (0, 1). Thus, in the a-rooting
enhancement, the coefficients of the Fourier transform are multiplied by
coefficients C1ðp, sÞ ¼ jFp,sja 1:

Fp,s ! F̂p,s ¼ M½Fp,s� ¼ jFp,sj/e j#p,s ¼ jFp,sj/ 1Fp,s:

Figure 2.7 Block diagram of transform-based image enhancement.
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This is one of the simplest parameterized methods used to effectively
enhance images. The “best” value of a may be dynamically adjusted by the
user, or it can be found automatically if the quantitative measure of image
enhancement is used.49 55,76 Operators M with two and three parameters can
also be used for image enhancement in the log-magnitude and the combined
a-rooting methods when the coefficients have the forms C2ðp, sÞ ¼
logbjX ðp, sÞjg and C3ðp, sÞ ¼ C1ðp, sÞ � C2ðp, sÞ, respectively (see Grigoryan
and Agaian21 and Agaian et al.75 for more details).

2.2.1 Quantitative measure of image enhancement

To measure the quality of images and select the optimal processing
parameters, consider the quantitative measure of image enhancement
(described by Agaian et al.59,75) that relates to Weber’s law of human visual
system.28,29,35,97 This measure can be used to select the best parameters for
image enhancement by the Fourier transform, as well as other unitary
transforms F. The measure is defined as follows: A discrete image f fn,mg of
size N1 �N2 is divided by k1k2 blocks of size L1 � L2, where ki ¼
bNi=Lic, i ¼ 1, 2, and where b.c denotes the floor function. The quantitative
measure of enhancement of the image processed by the F transform Ma;F :

f fn,mg ! f f̂ n,mg is defined by

EMEFð f̂ Þ ¼ EMEa,k1,k2;Fð f̂ Þ ¼
1

k1k2

Xk2
k 1

Xk1
l 1

20 log
maxk,lMa;Fð f̂ Þ
mink,lMa;Fð f̂ Þ

" #
, ð2:1Þ

where maxk,lMa;Fð f̂ Þ and mink,lMa;Fð f̂ Þ are the maximum and minimum,

respectively, of the image f̂n,m inside the (k,l)th block, and a is a vector

parameter of the enhancement algorithm. EMEFð f̂ Þ is called a measure of
enhancement or measure of improvement of the image f with respect to the
transform F. A parameter a0 is defined such that

EMEa0,Fð f Þ ¼ max
a

fEMEa,Fð f Þg
is the best (or optimal) F-transform-based image enhancement vector
parameter. When F is the identical operator Fð f Þ ¼ f , the value of
EMEð f Þ ¼ EMEIð f Þ is called the enhancement measure of the image.
Experimental results show that the discrete Fourier transform can be
considered optimal when compared with the cosine, Hartley, Hadamard,
and other transforms. Therefore, the enhancement measure EME( f ) will be
considered with respect to the Fourier transform, i.e., when F ¼ F .

As an example, Fig. 2.8(a) shows an image, and 2.8(b) shows the measure
of enhancement that was calculated for block sizes 5 � 5 and 7 � 7. Image
enhancement by the a-rooting method has been parameterized by a varying in
the interval ð0:35, 1�. The curves have one pike with maximums at point
a0 ¼ 0:93. The experimental results show that the parameter a0 corresponds

29Preprocessing Tools for Computer-Aided Cancer Imaging Systems



to the best visual estimation of enhancement. Figure 2.8(c) illustrates the
a-rooting enhancement of the original image f when a ¼ 0.93, which yields
the enhancement EMEð f0:93Þ EMEð f Þ ¼ 24:43 18:55 ¼ 6:88.

2.3 Tensor Representation of the Image

This section describes the main concepts of the theory of splitting the 2D
discrete unitary transforms by 1D transforms of the signals that uniquely
represent the image, which were developed by Grigoryan65 70 and described
in detail by Grigoryan and Agaian.21,57 In many recent publications, these
concepts (with various applications in digital image processing) were
published under various names, such as the discrete Radon transform
[Gertner (1988)], fast multidimensional Radon transform [Labunets (1999)],
the finite Radon transform [Matúš and J. Flusser (1993)], a new discrete
transform based on the exact discrete Radon transform [Guèdon, Barba, and
Burger (1995)] or the mojette transform [Gueèdon and Normand (2005)], the
discrete periodic Radon transform [Hsung, Lun, and Siu (1996)], the
orthogonal discrete periodic Radon transform [Lun, Hsung, and Shen
(2003); Kingston (2006)], and the generalized finite Radon transform
[Kingston and Svalbe (2007)].

Figure 2.8 Parameterized image enhancement based on the 2D discrete Fourier transform
by a-rooting.
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The tensor representation of the image fn, m of size N � N is defined as a
set of splitting-signals of length N each:

� : f fn,mg ! f fTp,s ¼ f fp,s,t; t ¼ 0 : ðN 1Þggðp,sÞ2J :
By definition, the components of these signals are calculated as the sums of
the image along the parallel lines:

fp,s,t ¼
X
ðn,mÞ

f fn,m; npþms ¼ tmodNg, t ¼ 0 : ðN 1Þ:

In the notation of the splitting-signal fTp,s, the cyclic group

Tp,s ¼ fðkp mod N,ks mod NÞ; k ¼ 0 : ðN 1Þg
is used because this signal defines the 2D DFT of the image at frequency
points of Tp,s. This means that the 1D DFT of the splitting-signal coincides
with values of the 2D DFT of the image at frequency points of Tp,s:

Fkp mod N, ks mod N ¼
XN 1

t 0

fp,s,tWkt,k ¼ 0 : ðN 1Þ, ð2:2Þ

where the kernel of the discrete Fourier transform isW ¼ WN ¼ expð 2pj=NÞ.
As an example, Fig. 2.9(a) shows the image of size 512 � 512, and (b) shows the
splitting-signal of length 512, which is generated by the frequency-point
ðp, sÞ ¼ ð3, 1Þ. The 1D DFT of the splitting-signal in absolute scale is shown in
Fig. 2.9(c), and the 2DDFTof the image and the location of all frequency points
of the cyclic group T3,1 is shown in (d).

X denotes the Cartesian lattice XN,N ¼ fðn,mÞ; n,m ¼ 0; ðN 1Þg. Given
a triplet ðp, s, tÞ, where ðp, sÞ � X and t 2 f0, 1, 2, :::,N 1g, the following set
of points (n,m) of the lattice are defined: Vp,s,t ¼ fðn,mÞ; n,m ¼ 0 :
ðN 1Þ, npþms ¼ tg, where l ¼ lmodN; consider its characteristic function:

Xp,s,tðn,mÞ ¼ 1, ifðn,mÞ 2 Vp,s,t,

0, otherwise:
ð2:3Þ

�

The set Vp,s,t, if it is not empty, is the set of points (n,m) along a maximum of
pþ s parallel straight lines at the angle w ¼ arctanðs=pÞ to the horizontal axis.
In the square domain ½0,N� � ½0,N�, the equations for the set Lp,s,t of
parallel lines are xpþ ys ¼ tþ kN, where k ¼ 0 : ðpþ s 1Þ. It is interesting
to note that the direction of parallel lines of Lp,s,t is perpendicular to the
direction of frequency points of the group Tp,s.

Example 1
In the lattice X8,8, consider the generator ðp, sÞ ¼ ð2, 1Þ and two sets of
parallel lines L1 and L2. Each family contains three parallel lines. For the
family L1, the parallel lines are

y1 : 2x þ y ¼ 1, y9 : 2x þ y ¼ 9, y17 : 2x þ y ¼ 17:
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One point (0,1) of the set V2,1,1 lies on the first line of L1; four points (1, 7),
(2, 5), (3, 3), (4, 1) lie on the second line; and three points (5, 7), (6, 5),
(7, 3) lie on the third one. Therefore, f2,1,1 ¼ ðx0,1Þ þ ðx1,7 þ x2,5 þ x3,3 þ
x4,1Þ þðx5,7 þ x6,5 þ x7,3Þ. The parallel lines of the family L2 are
defined by

y2 : 2x þ y ¼ 2, y10 : 2x þ y ¼ 10, y18 : 2x þ y ¼ 18,

and the component f2, 1, 2 is calculated by f2,1,2 ¼ ðx0,2 þ x1,0Þþ
ðx2,6 þ x3,4 þ x4,2 þ x5,0Þ þ ðx6,6 þ x7,4Þ. The disposition of the points
lying on the parallel lines of these sets is given in Fig. 2.10. The location
of the frequency points of the group T2,1 is also shown. Two parallel
lines pass through these frequency points, which are defined in the
frequency plane ðv1,v2Þ as l1 : 2v2 v1 ¼ 0 and l2 : 2v2 v1 ¼ 8. The

Figure 2.9 (a) The original image, (b) splitting-signal fT 3,1, (c) 1D DFT of the splitting-
signal, and (d) arrangement of values of the 1D DFT in the 2D DFT of the image at points of
the set T3,1.
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parallel lines l1 and l2 are perpendicular to the parallel lines of both sets
L1 and L2.

From Eq. (2.4), the following can be stated:

1. The image can be presented as a set of splitting-signals f ðkÞ, k ¼ 1 : l,
each of length N:

f fn,mg $ f f ð1Þ, f ð2Þ, . . . , f ðlÞg:
2. The 2D DFT FN,N of the image can be split by 1D transforms FN of the

splitting-signals:

FN,N ½ f � $ fFN½ f ð1Þ�,FN½ f ð2Þ�, . . . ,FN½ f ðlÞ�g:
The number l of the splitting-signals depends on N and can be determined
by the set of generators J ¼ JN,N for the splitting-signals. This set is defined as
a set for which the totality of cyclic groups fTp,s; ðp, sÞ 2 JN,Ng is an
irreducible covering of the discrete lattice of frequency points
XN,N ¼ fðp, sÞ; p, s ¼ 0 : ðN 1Þg. Given N, one can construct different such
sets JN,N; however, their cardinalities are equal. For cases where N ¼ 4, 5, and
8, we obtain l ¼ 6, 6, and 12, respectively, because the following sets of
generators can be considered:

J4,4 ¼ fð1, 0Þ, ð1, 1Þ, ð1, 2Þ, ð1, 3Þ, ð0, 1Þ, ð2, 1Þg,
J5,5 ¼ fð1, 0Þ, ð1, 1Þ, ð1, 2Þ, ð1, 3Þ, ð1, 4Þ, ð0, 1Þg,
J8,8 ¼ fð1, 0Þ, ð1, 1Þ, ð1, 2Þ, ð1, 3Þ, ð1, 4Þ, ð1, 5Þ, ð1, 6Þ, ð1, 7Þ, ð0, 1Þ, ð2, 1Þ, ð4, 1Þ, ð6, 1Þg:

2.4 Decomposition by Direction Images

Consider the case where the size of the image is N � N, and N is a prime. The
tensor representation in this case has a minimum redundancy, and it can be
used effectively to process images with other sizes. For instance, the problem

Figure 2.10 The locations of the points of sets V2,1,1 and V2,1,2 and the frequency points of
the group T2,1.
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of image enhancement of an image of size 256 � 256 can be reduced to
processing the extended image of size 257 � 257. When N is a prime, (N þ 1)
splitting-signals represent the image fn,m. Indeed, the grid N � N can be
covered by the family (Tp,s) of (N þ 1) cyclic groups. The set J of generators
(p,s) for these groups can be defined as

J ¼ JN,N ¼ fð0, 1Þ, ð1, 1Þ, ð2, 1Þ, ð3, 1Þ, . . . , ðN 1, 1Þ, ð1, 0Þg:
Figure 2.11(a) shows the FISH image of size 521 � 521, and (b) shows the set
of all splitting-signals. The splitting-signals are written in rows of the image
of size 522 � 521. The magnitude of the 2D DFT of the image is shown in
Fig. 2.11(c), and the magnitudes of all 1D DFTs of the splitting-signals
written in rows of the image are shown in (d). There is no redundancy in the
tensor transform because all sums of splitting-signals equal the sum of the
image:

XN 1

t 0

fp,s,t ¼
XN 1

n 0

XN 1

m 0

fn,m,;ð p, sÞ 2 J521,521:

Therefore, one complete splitting-signal can be written, e.g., for (p, s) ¼ (1,0),
and only the first (N 1) components of the remaining splitting-signals need
be written. As a result, the tensor transform will be written in the table of
N þ N (N – 1) ¼ N2 elements.

Given a generator (p,s), the following complex dataD¼D(p, s) of sizeN�N
is thus defined:

Dp1,p2 ¼ Dðp, sÞp1,p2

¼ Fkp,ks, if ðp1, p2Þ ¼ ðkp,ksÞ,k ¼ 0 : ðN 1Þ,
0, otherwise,

(

where p1,p2 ¼ 0 : ðN 1Þ. The data D represents an incomplete 2D DFT of
the image that is zero at all frequency points except the group Tp,s. The
direction image dn1,n2 is defined as the inverse 2D DFT of D, which can be
calculated as follows:

Figure 2.11 (a) FISH image of size 521� 521, (b) image of all 522 splitting-signals, (c) the
521 � 521-point 2D DFT of the image, and (d) the image of 522 � 521-point 1D DFTs of
the splitting-signals. (All DTFs are shifted to the center.)
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dn1,n2 ¼ dðp,sÞ
n1,n2 ¼

1
N2

XN 1

p1 0

XN 1

p2 0

Dp1,p2W
n1p1þn2p2 ¼ 1

N2

XN 1

k 0

Fkp, ksW
n1ðkpÞþn2ðksÞ

1
N

1
N

XN 1

k 0

Fkp,ksW
kðn1pþn2sÞ 1

N
fp,s,ðn1pþn2sÞmodN:

Thus, N values of the splitting-signal are placed along the parallel lines in N2

points of the image N � N. As an example, consider an FISH image of size
521 � 521, shown in Fig. 2.12(a). The direction images for the generators
ðp, sÞ ¼ ðp, 1Þ, where p ¼ 0 : 10, are shown in Figs. 2.12(b–l).

All (N þ 1) cyclic groups intersect only at frequency point (0,0). Therefore,
taking the inverse 2D DFT of the sum of all incomplete 2D DFTs, the
following image is obtained:X
ðp,sÞ2J

dðp,sÞ
n1,n2 ¼

X
ðp,sÞ2J

ðF 1
N,N �Dðp, sÞÞn1,n2 ¼ F 1

N,N � ðFp1,p2 þNFdðp1,0Þ, dðp2,0ÞÞ
h i

n1,n2

¼ fn1,n2 þ
1
N

F0,0 ¼ Fn1,n2 þNE½f �,

Figure 2.12 (a) The image of size 521 � 521 and (b)–(l) its eleven direction images in
tensor representation. (All images are scaled.)
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where dðn,mÞ is the delta symbol of Kronecker, which is 1 when m ¼ n, and 0
otherwise. Here, E [ f ] denotes the mean of the image. If it is assumed that the
image is centered, i.e., fn1,n2 ! fn1,n2 E½ f �, then

fn1,n2 ¼
X

ðp,sÞ2J
dðp,sÞ
n1,n2 ¼

1
N

X
ðp,sÞ2J

fp,sðn1pþn2sÞ mod N, n1, n2 ¼ 0 : ðN 1Þ: ð2:4Þ

Statement 1 (Principle of Superposition): The image fn1,n2 of size N�N, where
N is odd and prime, can be composed from (N þ 1) directional images or
splitting-signals as follows:

fn,m ¼ 1
N

XN 1

p 0

fp,1,ðnpþmÞ mod N þ f1,0,n

" #
NE½ f �, n,m ¼ 0 : ðN 1Þ:

Thus, the simple formula for reconstructing an image from its projections
is obtained by using (N þ 1) splitting-signals or direction images in tensor
representation. Each direction image or splitting-signal is defined by the
direction at the corresponding angle wð p, sÞ ¼ arctanðs=pÞ to the horizon-
tal axis. (N þ 1) is the required number of directions for the exact
composition of the image. The interesting property of the tensor transform
is derived. The splitting-signal is defined as the sum of the image along the
parallel lines. The direction image is composed of N values of the splitting
signal, which are placed at all points of the image N � N along another set
of parallel lines (these two sets of lines are perpendicular to each other). As
an example, Fig. 2.13(a) shows the image of size 521 � 521, (b) shows the

Figure 2.13 (a) The original cell image, and images with one amplified direction image for
(p,s) equal to (b) (1, 1), (c) (1, 2), and (d) (1, 5).
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image after amplifying the projection data that corresponds to the
generator ðp, sÞ ¼ ð1, 1Þ, (c) shows ðp, sÞ ¼ ð1, 2Þ, and (d) shows
ðp, sÞ ¼ ð1, 5Þ. The same factor of 4 is used to amplify the corresponding
direction images in Figs. 2.13(b)–(d). The direction of these images can be
seen, defined by the angles arctgðs=pÞ ¼ 45 deg, 26.56 deg, and 11.30 deg,
respectively.

2.5 Tensor Transform Method of a-Rooting

The Fourier transform method of image enhancement can be performed by
processing the splitting-signals fTp,s , ðp, sÞ 2 JN,N: In other words, the problem
of enhancing 2D images can be reduced to processing 1D splitting-signals.
Consider the following implementation of the a-rooting method of image
enhancement by splitting-signals.

Tensor algorithm of image enhancement
Step 1: Calculate the splitting-signals fTp,s .
Step 2: Perform the 1D DFTs of the splitting-signals:

fTp,s ! Fk ¼
XN 1

t 0

fp,s,tWkt, k ¼ 0 : ðN 1Þ:

Step 3: Multiply the coefficients of the splitting-signal transforms by
coefficients Ck ¼ AjFkja 1: The new transform is F̂ k ¼ CkFk, k ¼ 0 :
ðN 1Þ: Consider A ¼ 1, or find the value of A from the condition

F0,0 ¼ F0 ¼
XN 1

t 0

fp,s,t ¼
XN 1

t 0

f̂ p,s,t ¼ F̂ 0 ¼ C0F0,

and therefore C0 ¼ 1 and A ¼ jFkj1 a:

Step 4: Fill the 2D DFT with new 1D DFTs at frequency points of sets
Tp,s: Only sets with generators ð p, sÞ 2 JN,N are considered.
Step 5: Perform the inverse 2D DFT.

Rather than process all splitting-signals by the 1D a-rooting method with a
fixed parameter a, the splitting-signals can be processed separately by
different values of a to achieve an optimal enhancement. The optimality is
with respect to the enhancement measure EMEF ð f Þ: Thus, step 3 may be
changed in the algorithm by using different or optimal a ¼ aðp, sÞ 2 ð0, 1� for
each splitting-signal. The preliminary results show that there is not much need
to process all splitting-signals; only a few can be processed for image
enhancement. For instance, consider splitting-signals with high energy. The
energy carried by splitting-signal fTp,s is defined as

Eð p, sÞ ¼
XN 1

t 0

f 2
p,s, t ¼

1
N

XN 1

k 0

jFkp,ksj2: ð2:5Þ
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As an example, Fig. 2.14 shows the graph of the energy Eð p, sÞ for all
generators ð p, sÞ of the groups Tp, s in the order given in the construction of
the covering s ¼ ffT1,s; s ¼ 0 : 511g, fT2p,1; p ¼ 0 : 255gg: The splitting-
signal with the maximum energy 76.09 is fT1,0: The next two signals of high
energy are fT0,1 and fT1,256:

Figure 2.15(a) shows the graph of the enhancement measure
EMEðn;a0Þ, n ¼ 0 : 767, calculated after processing only one—the nth
splitting-signal—for a0 ¼ 0:97: The maximum of EMEðn;a0Þ equals 19.78
and is achieved for n ¼ 361, which corresponds to the splitting-signal fT 1,361 :

This splitting-signal is shown in Fig. 2.15(b); coefficients Ck,k ¼ 0 : 511
appear in (c), and the image enhanced by this splitting-signal is shown in (d).

One can see that by processing only one splitting-signal, significant
enhancement of the image can be achieved. The function EME(361;a) has a
spike at the point a ¼ 0.97. Value 0.97 is considered to be optimal for this
splitting-signal. Note that the traditional a-rooting method yields the optimal
value of a to be 0.92, and image enhancement equals 22.3. In general, one
may process m � 1 selected splitting-signals and achieve enhancement close to
or even greater than this estimate. Moreover, for each of the splitting-signals,
the best value of a can be used. Thus, for an image of size 2r � 2r,
approximately 2r 1ð2r mÞ operations of multiplication can be saved when
compared with the traditional Fourier-transform method of image

Figure 2.14 The energy curve of the splitting-signals of the image of Fig. 2.3(a). (The
image was centered.)
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enhancement. As shown in Arslan and Grigoryan,77 the tensor method of
image enhancement via splitting-signals is more effective than the wavelet
transform methods of image enhancement, including the methods of wavelet
thresholding62 and wavelet scaling.63

2.5.1 Effective formula for image enhancement

When processing only one or a few splitting-signals, the image enhancement
can be performed in the following way. If a splitting-signal, for instance, the
signal with generator ðp, sÞ ¼ ð1, 1Þ :

f f1,1,t; t ¼ 0 : ðN 1Þg ! f f̂ 1,1,t; t ¼ 0 : ðN 1Þg,
is processed with the condition

XN 1

t 0

f̂ 1,1,t ¼
XN 1

t 0

f1,1,t ¼ N2E½ f �,

Figure 2.15 (a) The enhancement measure function EMEðn;a0Þ calculated for a0 ¼ 0:97,
when n ¼ 0 : 767. (b) Splitting-signal fT 1,361 : (c) Coefficients C1ðkÞ, k ¼ 0 : 511 of the 1D
a0-rooting enhancement. (d) Image enhanced by the splitting-signal.
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then the new image, denoted by f̂ n,m, can be calculated as follows:

f̂ n,m ¼ 1
N

XN 1

p 0ðp 6 1Þ
fp,1,ðnpþmÞ mod N þ f̂ 1,1,ðnþmÞ mod N þ f1,0,n

2
4

3
5 NE½ f �

¼ 1
N

XN 1

p¼0

fp,1,ðnpþmÞ mod N þ f1,0,n

" #
�NE½ f �þ 1

N
f̂ 1,1,ðnþmÞ mod N � f1,1,ðnþmÞ mod N

h i

¼ fn,m þ 1
N

f̂ 1,1,ðnþmÞ mod N f1,1,ðnþmÞ mod N

h i
, n,m ¼ 0 : ðN 1Þ:

Thus, the direction image that is calculated from the difference of the splitting-
signals Df1,1,t ¼ f̂ 1,1,t f1,1,t, t ¼ 0 : ðN 1Þ can be used to calculate the
processed image:

f̂ n,m ¼ fn,m þ 1
N

Df1,1,ðnþmÞ mod N , n,m ¼ 0 : ðN 1Þ:
A similar inverse formula can be used for image enhancement via one
splitting-signal generated by another frequency point ðp, sÞ 2 JN,N : For
instance, the enhancement of the image in Fig. 2.15 is due to the a-rooting
of the splitting-signal that is generated by frequency point (1,361). The image
in Fig. 2.15(d) can be calculated by

f̂ n,m ¼ fn,m þ 1
512

Df1,361,ðnþmÞ mod 512, n,m ¼ 0 : 511:

Thus, the enhancement is achieved by changing one image component
directed by the angle arctan(361).

Now analyze the general equation for the a-rooting image enhancement
when processing the splitting-signal generated by ðp, sÞ:

f̂ n,m ¼ fn,m þ 1
N

Dfp,s,npþms mod N ,

where Dfp,s,t ¼ f̂ p,s,t fp,s,t , t ¼ 0 : ðN 1Þ: The directional image Dn,m ¼
Dfp,s,npþmsmodN has N different values Dt, t ¼ 0 : ðN 1Þ, which can be
calculated in the spatial domain as the circular convolution of the splitting-
signal. Indeed, the following calculations hold:

Dt ¼ 1
N

XN 1

k 0

ðF̂ k FkÞW tk ¼ 1
N

XN 1

k 0

ðCkFk FkÞW tk Ck ¼ AjFkja 1
� �

¼ 1
N

XN 1

k 0

FkðCk 1ÞW tk ¼ ðfTp,s �cÞðtÞ, t ¼ 0 : ðN 1Þ:

Here, the sequence c(t) is calculated by

cðtÞ ¼ cp,s,aðtÞ ¼ 1
N

XN 1

k 0

ðCk 1ÞW tk ¼ 1
N

XN 1

k 0

CkW tk dt,0, t ¼ 0 : ðN 1Þ,
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where dt,0 is the delta symbol that equals 1 when t ¼ 0, and 0 otherwise. Thus,
the set of coefficients cðtÞ þ dt,0 is the inverse 1D DFT of the coefficients Ck.
The enhancement of the image by one splitting-signal represents the circular
convolution of the signal with the sequence or impulse response c(t). This
impulse response is defined by the splitting-signal itself and is parameterized
by the frequency point ( p,s) and parameter a of enhancement. In image
enhancement, the processing of one splitting-signal can therefore be described
as a linear discrete system with impulse response c(t). These calculations
hold not only for the a-rooting but also for other Fourier-transform-based
methods of processing splitting-signals.

As an example, Fig. 2.16(a) shows the enhanced FISH image with
EME ¼ 20:05, which is due to the processing of the splitting-signal ff0,1,t; t ¼
0 : 511g: The EME curve of a-rooting for this signal is shown in Fig. 2.16(b);
the maximum of EME is at point a ¼ 0:975: The coefficients Ck,k ¼ 0 : 511
are shown in Fig. 2.16(c), and the impulse response c0,1,0:975ðtÞ, t ¼ 0 : 511
appears in (d).

Figure 2.16 (a) Image enhanced by the 0.975-rooting of one splitting-signal generated by
ðp,sÞ ¼ ð0,1Þ, (b) EME curve of the 1D a-rooting, (c) coefficients Ck, and (d) impulse
response c0,1,0:975ðtÞ:
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2.5.2 Algorithm of image enhancement by 1D a-rooting

The fast-splitting a-rooting enhancement via one splitting-signal with number
ðp0, s0Þ presented earlier is described by the following algorithm:

Algorithm I: Image enhancement by one splitting-signal.
Step 1: Calculate the splitting-signal fTp0, s0

:

Step 2: Calculate the N-point DFT of the splitting-signal:

fTp0,s0 ! Fk ¼
XN 1

t 0

fp0,s0,tW
kt, k ¼ 0 : ðN 1Þ:

Step 3: Calculate the inverse N-point DFT by

Dt ¼ 1
N

XN 1

k 0

FkðCk 1ÞW tk, t ¼ 0 : ðN 1Þ:

Step 4: Calculate the new image by

f̂ n,m ¼ fn,m þ 1
N

Dnp0þms0 modN , n,m ¼ 0 : ðN 1Þ:

For the a-rooting method of enhancement, the coefficient Ck ¼
AjFkja 1, k ¼ 0 : ðN 1Þ: This algorithm can also be used for other
transform-based methods of image enhancement, including enhancement by
the log-magnitude and the combined a-rooting methods, and by modified
unsharp masking and filtering, all of which are motivated by the human visual
response.17,27,75 77

2.6 Decomposition by the 2D Paired Transform

Consider the case of most interest, where the size of the image f ¼ f fn,mg
equals N �NðN ¼ 2r, and r > 1 is integer). The tensor transform f fp,s,t; t ¼
0 : ðN 1Þ, ðp, sÞ 2 JN,Ng is redundant; the groups Tp,s cover the Cartesian
lattice and have intersections at many frequency points. Therefore, consider
the modification of the tensor transform, which is called the paired transform
and is orthogonal.

The unitary 2D discrete paired transformation represents the image as a
family of ð3N 2Þ 1D splitting-signals:21 66 67

�0
N,N : f fn,mg !ff f 0p,s,2kt; t ¼ 0 : ðN=2kþ1 � 1Þg, 2k ¼ g:c:d:ðp, sÞ, ðp, sÞ 2 J 0

N,Ng:
Components of splitting-signals are numbered by the triplets ðp, s, 2ktÞ, where
ðp, sÞ are the frequency points that generate the signals, and 2kt is the time
parameter that runs the interval ½0,N=2 1� with the step 2k, which depends
on the frequency ðp, sÞ: The discrete paired transformation is thus a unitary
transformation from the 2D image domain into the 2D frequency and 1D
time domain.
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The set of frequency points or generators ð p, sÞ of the paired splitting-
signals can be defined as

J 0
N,N ¼ [r 1

k¼0
f2kJN=2k ,N=2kg[fð0, 0Þg,

where subsets

JN=2k ,N=2k ¼ fðp, 1Þ; p ¼ 0 : ðN=2k 1Þg[fð1, 2sÞ; s ¼ 0 : ðN=2kþ1 1Þg:
The elements f 0p,s,t of the paired representation of the image fn,m are defined
by

f 0p,s,t ¼ fp,s,t � fp,s,tþN=2, t ¼ 0 : ðN=2� 1Þ: ð2:6Þ
Thus, the pair of elements of the tensor representation fp,s,t and fp,s,tþN=2

defines f 0p,s,t: Figure 2.17(a) shows an image, (b) shows the paired splitting-
signal f f 01,2,0, f 01,2,1, f 01,2,2, . . . , f 01,2,511g of length 256, and (c) shows the
tensor splitting-signal f f1,2,0, f1,2,1, f1,2,2, f1,2,3, . . . , f1,2,511g of length 512.
The first 3N=2 splitting-signals of the paired transform with length N=2
each can be obtained directly from the tensor transform, i.e., the tensor
splitting-signals fTp,s, ðp, sÞ 2 JN,N : The next 3N=8 paired splitting-signals
ff 0p,s,tg, ðp, sÞ 2 JN=2,N=2 are also calculated by (2.10), but f2p,2s,2t, t ¼ 0 :
N=2 2 are not components of the tensor transform. In other words, the
splitting-signals fT2p,2s are not calculated in this transform, nor are splitting-
signals fT2kp, 2ks when ðp, sÞ 2 JN=2k ,N=2k , k ¼ 2, 3, . . . , ðr 1Þ: However, it
should be noted that the paired splitting-signal, or the set of components
f 02p,2s,2t of the paired transform, can be calculated by the tensor transform
as follows:

f 02p,2s,2t ¼ fp,s,t fp,s,tþN=4 þ fp,s,tþN=2 fp,s,tþ3N=4:

Figure 2.17 (a) FISH image of size 512 � 512, (b) splitting-signal fT 0
1,2 , and (c) splitting-

signal fT1,2 :
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Similarly, the components of the splitting-signals generated by frequencies
ð4p, 4sÞ, ð8p, 8sÞ, . . . can be calculated from the same tensor splitting-signal
f fp,s,t; t ¼ 0 : ðN 1Þg: The calculation of these (r þ 1) paired splitting-
signals, which together compose N components, is reduced to the fast 1D
paired transform of the tensor splitting-signal.71 72 83 Therefore, although
the complete family of paired splitting-signals consists of ð3N 2Þ signals, all
of these signals can be calculated from 3N=2 splitting-signals in tensor
representation. In other words, the 2D paired transform of the image can be
calculated from the 2D tensor transform.

2.6.1 Fourier transform splitting theorem

The 2D paired representation of the image as a set of splitting-signals of
different lengths, with a total of N2 components, allows discovery of the
structure of the 2D DFT of the image. The 2D DFT is calculated by ð3N 2Þ
1D DFTs without a redundancy. All subsets T 0

p,s, where ðp, sÞ 2 J 0
N,N , do

not intersect.
Given a frequency point ð p, sÞ, the following holds for the N �N-point

2D DFT: 66 67 72

Fð2mþ1Þp,ð2mþ1Þs ¼
XN=2kþ1 1

t 0

f 0p,s,2ktW
t
N=2k

� �
Wmt

N=2kþ1 , m ¼ 0 : ðN=2kþ1 1Þ,

ð2:7Þ
where 2k ¼ g:c:d: ðp, sÞ. The 2D DFT at frequency points of the subset

T 0
p,s ¼ fð2mþ 1pÞ, ð2mþ 1Þs;m ¼ 0 : ðN=2kþ1 1Þg

is defined by the N=2kþ1-point DFT of the splitting-signal fT 0
p,s modified by

the vector of twiddle coefficients

f f 0p,s,2kt; t ¼ 0 : ðN=2kþ1 1Þg ! ff 0p,s,2ktWt
N=2k

; t ¼ 0 : ðN=2kþ1 1Þg:
In paired representation, the 2D DFT splits into a set of ð3N 2Þ 1D DFTs of
different orders: N=2,N=4,N=8, . . . , 4, 2, and 1: As an example, Fig. 2.18(a)
shows a discrete image of size 512 � 512, and Fig. 2.18(b) shows the magnitude
of the 2D DFT of the image. In the paired representation, this image is
described by 3ð512Þ=2 ¼ 768 splitting-signals, as shown in Fig. 2.19(a), and the
2D DFT of the image is calculated by 1D DFTs of these splitting-signals
modified by the twiddle coefficients, as shown in Fig. 2.19(b). The splitting-
signals of the same length are united and separated from others according to
the order of the paired transform components, which is given in the definition
of the set J 0

N,N . In Fig. 2.19(a), the first part of size 768 � 256 represents the
set of paired-splitting signals of size 256 each. This set of splitting-signals
are generated by ðp, sÞ 2 J512,512. The second part of size 384 � 128
represents the set of paired-splitting signals of size 128 each, which are
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generated by ðp, sÞ 2 2J256,256, and so on. The set of 1D DFTs of modified
splitting-signals is shown in a similar way.

Both sets of paired splitting-signals and the corresponding 1D DFTs can
be written in form of N �N matrices. Figure 2.20 shows the same sets of the
splitting-signals and 1D DFTs, which are written into the matrices of size
512 � 512 each. All DFTs were shifted to the centers.

Figure 2.18 (a) Image of size 512 � 512 and (b) the 2D DFT of the image in absolute scale.

Figure 2.19 (a) The set of paired splitting-signals of lengths 256, 128, 64, 32, 16, 8, 4, 2, 1,
and (b) the set of 1D DFTs of the modified splitting-signals (the transforms are shown in the
absolute scale).
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2.6.2 Complete set of the 2D paired transform

The paired transform does not require multiplications. The components of the
transform are calculated by

f 0p,s,2kt ¼ �0
p,s,2kt � f ¼

XN 1

n 0

XN 1

m 0

�0
p,s,2ktðn,mÞ fn,m,

where the basis paired functions are defined as

�0
p,s,2ktðn,mÞ ¼

1, if npþms ¼ 2kt mod N

1, if npþms ¼ ð2ktþN=2Þ mod N

0, otherwise:

ð2:8Þ

8><
>:

Three such functions for the N ¼ 32 case are illustrated in Fig. 2.21 in the
form of grayscale images of size 32 � 32 each. The values of 1, 1, and 0

Figure 2.20 (a) 2D paired transform of the image of size 512 � 512 and (b) the set of 1D
DFTs of the modified splitting-signals.

Figure 2.21 The images of 2D paired functions: (a) �01,2,4ðn,mÞ, (b) �01,3,5ðn,mÞ, and
(c) �01,4,2ðn,mÞ,where n,m ¼ 0 : 31.
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are displayed by intensities of 255 (white), 0 (black), and 128 (gray),
respectively. The directions of parallel lines, on which 1 and 1 are located,
are defined by the generators as wðp, sÞ ¼ arctanðp=sÞ,where ðp, sÞ ¼
ð1, 2Þ, ð1, 3Þ, and ð1, 4Þ:

The complete set of the paired basis functions can be defined by the
following set of triplet numbers:

U ¼ fðp, s, 2ktÞ; t ¼ 0 : ðN=2kþ1 1Þ, 2k ¼ g:c:d:ðp, sÞ, ðp, sÞ 2 J 0
N,Ng:

All paired basis functions can be calculated from the binary functions of the
tensor transform as �0

p,s,2kt
ðn,mÞ ¼ �p,s,2ktðn,mÞ �p,s,2ktþN=2ðn,mÞ, where the

characteristic function �p,s,lðn,mÞ ¼ 1 if np þ ms ¼ l mod N, and 0
otherwise, when l 2 f0, 1, ::: ,N 1g.

2.7 Paired Direction Images

The paired splitting-signals define the corresponding direction image
components that together compose the image f fn,mg: The image is the
algebraic sum of direction images; any discrete image can be viewed as
the composition of direction images.78,83,84

To show this property, consider a generator ðp, sÞ and denote 2k ¼
g:c:d:ðp, sÞ: Let D be the incomplete 2D DFT composed only from the
components of the 2D DFT in frequency points of the subset T 0

p,s, i.e.,

D ¼ Dp1,s1 ¼
Fp1,s1 ; ifðp1, s1Þ 2 T 0

p, s,

0; otherwise:
ð2:9Þ

�

The set J 0
N,N of generators of the paired splitting-signals is divided

by groups, or series. Consider the first series of generators, when
g:c:d:ðp, sÞ ¼ 1: There are 3N=2 such generators, and they compose the
subset JN,N . The inverse transform of the above incomplete 2D DFT can be
calculated as follows:

dn,m ¼ 1
N2

XN 1

p1 0

XN 1

s1 0

Dp1,s1W
ðnp1þms1Þ ¼ 1

N2

X
ðp1,s1Þ2T 0

p,s

Fp1,s1W
ðnp1þms1Þ

¼ 1
N2

XN=2 1

k 0

F ð2kþ1Þp, ð2kþ1ÞsW
ð2kþ1Þ ðnpþmsÞ

¼ 1
2N

2
N

XN=2 1

k 0

F ð2kþ1Þp, ð2kþ1ÞsW
kt

N=2

 !
W t

¼ 1
2N

ðf 0p,s,tWtÞW t ¼ 1
2N

f 0p,s,t,
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where t ¼ ðnpþmsÞ mod N: The following direction image of the first series
is then obtained:

dn,m ¼ dn,m;p,s ¼ 1
2N

f 0p,s,ðnpþmsÞ mod N , n,m ¼ 0 : ðN 1Þ:
Now consider that the components f 0p,s,tþN=2 ¼ f 0p,s,t when t ¼ 0 : ðN=2 1Þ.
In other words, the direction image N � N is composed of t ¼ 0 : ðN=2 1Þ
values of the splitting-signal fT 0

p,s , which are placed in the image along the set
of parallel lines npþms ¼ t mod N, t ¼ 0 : ðN 1Þ.

As an example, Fig. 2.22(a) shows an image of size 512 � 512, and
Figs. 2.22(b–h) show the seven direction images dn,m;p, s for generators
ðp, sÞ ¼ ð0, 1Þ, ð1, 1Þ, ð2, 1Þ, ð3, 1Þ, ð4, 1Þ, ð1, 2Þ, and ð1, 4Þ, respectively.

Consider the kth series of generators, i.e., when g:c:d:ðp, sÞ ¼ 2kk 2
f2, 3, :::, r 1g. This set 2kJ 0

N=2k ,N=2k
has 3N=2k 1 generators. The calculation

of the inverse transform of the incomplete 2D DFT results in the following
direction image of the kth series:

dn,m ¼ dn,m;p,s

¼ 1
N2

XN 1

p1 0

XN 1

s1 0

Dp1,s1W
ðnp1þms1Þ ¼ 1

N2

X
ðp1,s1Þ2T 0

p,s

Fp1,s1W
ðnp1þms1Þ

¼ 1
N2

XN=2kþ1 1

l 0

F ð2lþ1Þp, ð2lþ1ÞsW
ð2lþ1Þ ðnpþmsÞ

¼ 1

2kþ1N

2kþ1

N

XN=2kþ1�1

l 0

F ð2lþ1Þp, ð2lþ1ÞsW
�lt
N=2kþ1

0
@

1
AW�t

N=2k ¼
1

2kþ1N
f 0p,s,ðnpþmsÞ mod N ,

Figure 2.22 (a) Original image and (b)–(h) seven paired direction image (PDI)
components of the image. (All images were scaled.)
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where 2kt ¼ ðnpþmsÞ mod N. In this case also, the direction image is
defined by the corresponding splitting-signal. The last series of generators
contains only the frequency ðp, sÞ ¼ ð0, 0Þ, and the direction image is the
following constant image:

dn,m ¼ dn,m;0, 0
1
N2 F0,0 ¼ 1

N2

XN 1

n1 0

XN 1

m1 0

fn1,m1 ¼
1
N2 f

0
0,0,0 ¼ E½ f �:

2.7.1 Principle of superposition by direction images

All ð3N 2Þ subsets T 0
p,s with generators ðp, sÞ 2 J 0

N,N compose a partition
of the Cartesian lattice N �N, which means that the sum of corresponding
ð3N 2Þ incomplete 2D DFTs equals the 2D DFT of the image. The sum of
all direction images equals the image fn,m.

Principle of Superposition: The discrete image of size N �N, where
N ¼ 2r, r > 1, can be composed from its (3N 2) direction images as

fn,m ¼
X

ðp,sÞ2J 0
N,N

dn,m;p,s ¼ 1
2N

Xr 1

k 0

1

2k
X

ðp,sÞ22kJ2r k, 2r k

f 0p,s,ðnpþmsÞ mod N þ 1
N2 f

0
0,0,0:

ð2:10Þ
The splitting-signals of the paired transform can be normalized for each
series of generators as

f 0p,s,t ! 1

N2kþ1 f
0
p,s,t, g:c:d:ðp, sÞ ¼ 2k,k 2 f0, 1:, . . . r 1g,

and f 00,0,0 ! f 00,0,0=N
2. The above formula of image composition via

splitting-signals can then be written as

fn,m ¼
Xr 1

k 0

X
ðp,sÞ22kJ2r k, 2r k

f 0p,s,ðnpþmsÞ mod N þ f 00,0,0, n,m ¼ 0 : ðN 1Þ:

This is the formula for the inverse 2D paired transform, i.e., for image
composition from its direction images, or paired splitting-signals.21,78 83

The inverse paired transform requires only operations of addition/
subtraction and N2 divisions by powers of two.

2.7.2 Paired method of image enhancement

Similar to the image enhancement by splitting-signals in tensor representation,
the splitting-signals can be processed in paired representation and the image
can be enhanced by performing 1D a-rooting enhancement of the signals. The
inverse 2D DFT of the modified transform can then be calculated. This is an
effective method of image enhancement. However, consider a method that
processes the splitting-signals without performing the 2D DFT. The image
enhancement has a simple structure: First, the image is represented as a set of
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1D signals, or splitting-signals, which is the 2D paired transform of the image.
Then, the problem of image enhancement is transformed to processing these
signals. In other words, the 2D problem is reduced to processing 1D signals
separately. The processed signals are transformed to the 2D DFT and then
back to the image by performing the inverse 2D DFT; alternatively, the
inverse 2D paired transform can be used with the calculations in accordance
with the principle of superposition.

Here, the method of a-rooting is described for processing the splitting-
signals, but other methods of signal processing for image enhancement can
also be considered. Let ðp0, s0Þ be the generator of the splitting-signal that is
selected for image enhancement. According to the paired representation, the
processing of the splitting-signal

fT 0
p0,s0

! f̂ T 0
p0,s0

with number ðp0, s0Þ leads to a change of the 2D DFT of the image at
frequency points of the subset T 0

p0, s0 . The image is changed to

fn,m ! fn,m þ 1

2kþ1N
Df 0p0,s0, ðnp0þms0Þ mod N , ð2:11Þ

where

Df 0p0,s0,t ¼ f̂
0
p0,s0,t f 0p0,s0,t, t ¼ 0 : ðN 1Þ:

The processing of the image through its splitting-signals is a process along
parallel lines in certain directions. In image enhancement by a-rooting, one or
a few paired splitting-signals can be processed by the following scheme:77

f 0p0,s0,t ! f 0p0,s0,tW
t !1 DDFT

Fm !a rotfF̂ m ¼ CmFmg !
1 DIDFT

ĝ 0
t ! ĝ 0

tW t ¼ f̂
0
p0,s0,t:

Some splitting-signals or direction images are highly expressed, and others are
little expressed, by their characteristics, such as energy. The following are the
main steps of the paired splitting a-rooting algorithm when processing one
paired splitting-signal with number ðp0, s0Þ with g.c.d.ðp0, s0Þ ¼ 2k, k � 0.

Algorithm II: Image enhancement by one paired splitting-signal.
Step 1: Calculate the splitting-signals fT 0

p0, S0
.

Step 2: Calculate the 1D DFT Fm of the modified splitting signal:

fg0
p0,s0,2

kt ¼ f 0p0,s0,2ktW
t
N=2k

; t ¼ 0 : N=2kþ1 1g:
Step 3: Calculate coefficients of enhancement Cm ¼ jFmja 1, m ¼ 0 :
ðN=2kþ1 1Þ.
Step 4: Change values of the 1D DFT by

Fm ! F̂ m ¼ CmFm, m ¼ 0 : ðN=2kþ1 1Þ:
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Step 5: Calculate the enhanced splitting-signal f̂ T 0
p0,s0

by the inverse 1DDFT
modified by the twiddle factorsW t

N=2k
, as follows:

f̂
0
p0,s0,2

kt ¼ W t
N=2k

XN=2kþ1 1

m 0

F̂ mW mt
N=2kþ1 , t ¼ 0 : ðN=2kþ1 1Þ:

Step 6: Calculate the new directional image by

d̂ n,m ¼ 1

2kþ1N
f̂
0
p0,s0,ðnp0þms0Þ mod N , n,m ¼ 0 : ðN 1Þ:

Step 7: Calculate the enhanced image by

f̂ n,m ¼ fn,m þ ½d̂ n,m dn,m�
¼ fn,m þ 1

2kþ1N
f̂
0
p0,s0,ðnp0þms0Þ mod N f 0p0,s0,ðnp0þms0Þ mod N

h i
:

Figure 2.23(a) shows the splitting-signal fT 0
1,361

of length 256 of the FISH

image, (b) shows the 256-point DFT of the modified splitting-signal gT 0
1,361

,

Figure 2.23 (a) The splitting-signal fT 0
1,361

. (b) The 256-point DFT of the modified splitting-
signal. (c) Coefficients cm,m 0 : 255 of the 1D a-rooting enhancement for a ¼ 0:97. (d) The
processed 256-point DFT. (e) The splitting-signal after processing by the a-rooting method.
(f) The FISH image enhanced by the splitting-signal.
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(c) shows the coefficients cm, calculated for a ¼ 0:97, and (d) shows the 256-

point DFT of the processed signal gT 0
1,361

. The splitting-signal f̂ T 0
1,361

after

processing by the a-rooting method is shown in Fig. 2.23(e), and the image
enhanced by the splitting-signal appears in (f). The enhancement of the image
equals 17.03.

The splitting-signals can also be processed by dividing the set of all
generators by subsets. As an example, Fig. 2.24(a) shows all 1,534 generators
ðp, sÞ 2 J 0

256,256. This set of frequency points was divided into three zones by
circles with radii of 100 and 400. The splitting-signals with generators of the
second zone were amplified by a factor of 2.5. The result of processing the
splitting-signals is shown in Fig. 2.24(b) together with the original x-ray breast
image in (c).

2.8 Enhancement by a Series of Direction Images

Consider the decomposition of the image by its direction images in more
detail. The paired splitting-signals have different energies and for image
enhancement, the signals with high energies can be selected. Figure 2.25 shows

Figure 2.24 (a) All generators for the 512� 512 case are separated by three zones, (b) the x-
ray breast image with amplified splitting-signals of zone 2, and (c) the original image.

Figure 2.25 Energygraphof pairedsplitting-signalsof thebreast x-ray imageof size512�512 .
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a graph of the energies of all splitting-signals for the breast x-ray image. For a
selected energy level of 100, there are 28 splitting-signals with energies greater
than 100.

The paired transform is a unitary transform, and according to the Parseval’s
theorem, the energy of all splitting-signals equals the energy of the image, i.e.,

E2½f � ¼
XN 1

n 0

XN 1

m 0

f 2n,m ¼
X

ðp,sÞ2J 0
N,N

E2½ fT 0
p,s �

¼
X

ðp,sÞ2J 0
N,N

1

2kðp, sÞ
XN=2kðp,sÞþ1 1

t 0

½ f 0p,s,t�2, ð2:12Þ

where k ¼ kðp, sÞ ¼ g:c:d:ðp, sÞ, and kð0, 0Þ ¼ r.

The image composed of 28 high-energy splitting-signals, or the
corresponding direction images, is shown in Fig. 2.26(a), and the image
composed of the remaining 1548 – 28 ¼ 1506 splitting-signals is shown in (b).
The sum of these two images equals the original breast x-ray image.

It follows from the definition of the paired representation that from each
image, specific periodic structures can be extracted, which together compose
the image.78,81,83 These structures do not have the smooth forms of cosine or
sine waves, but the forms that are defined by binary paired basis functions are
united by subsets.

To illustrate this property, the sum of direction images corresponding to
the subset of generators 2kJN=2k ,N=2k ,

SðkÞ
n,m ¼

X
ðp,sÞ22kJN=2k ,N=2k

dn,m;p,s, k 2 f0, 1, . . . , r 1g,

is called the kth series image. For the k ¼ r case, such an images is defined by
SðrÞ
n,m ¼ F0,0=N2.

Figure 2.26 (a) Image composed of the splitting-signals with energies greater than 100,
and (b) image composed of the remaining splitting-signals.
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Figure 2.27(a–e) shows the first five series images for the breast x-ray
image. The sum of only these series images is shown in Fig. 2.27(f). One can
see that each series image, starting from the second one, has a periodic
structure with a resolution that increases exponentially with the number of the
series. The number 2k is called the resolution of the kth series image. Each
resolution is referred to as a periodic structure of one part of the image. The
first series image is the component of the image with the lowest resolution,
and the ðr 1Þth series image is the component of the image with the highest

resolution. The constant image SðrÞ
n,m has 0 resolution. The sum of all series

images equals the original image.
The consequent sum of the three first series images of the breast x-ray

image is given in Fig. 2.28; one can see that series images with a resolution of

Figure 2.27 (a)–(e) The first five series images of the image, and (f) the sum of these
series images.

Figure 2.28 (a) The first series image, (b) the first plus second series images, and (c) the
sum of the first three series images.
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1, 2, and 4 result in good-quality images. The other four resolutions add more
details to the image.

2.9 Compression: Multiresolution Map of the Image

It is important to mention that the first series image is also composed of
periodic structures N=2�N=2. In this image, as well as the rest of the series
images, subsets of direction images can be separated in the following way. The
set of generators J2r is divided by three parts as

Jð1Þ
2r ¼ fð1, 2sÞ; s ¼ 0 : ðN=2 1Þg, Jð2Þ

2r ¼ fð2p, 1Þ; p ¼ 0 : ðN=2 1Þg,

Jð3Þ
2r ¼ fð1, 2sþ 1Þ; s ¼ 0 : ðN=2 1Þg:

The division of the first series image S0 by these subsets is denoted as

Pð0Þ
n,m ¼

X
ðp,sÞ2Jð1Þ

2r

dn,m;p,s, N0
n,m ¼

X
ðp,sÞ2Jð2Þ

2r

dn,m;p,s, U0
n,m ¼

X
ðp,sÞ2Jð3Þ

2r

dn,m;p,s,

so that Sð0Þ ¼ Pð0Þ þ Nþð0Þ þ U ð0Þ.
Figure 2.29(a) shows the image P0 for the breast x-ray image, and

Figs. 2.29(b) and (c) show the images Nð0Þ and U ð0Þ respectively. In these
images, one can notice different parts of the original image with their negative
versions periodically shifted by N=2 ¼ 256 along the horizontal, vertical, and
diagonal directions.

Each image is divided by four parts ðN=2�N=2 Þ with similar structures,
which can be used to form the entire series image Sð0Þ. Therefore, the series
image components Pð0Þ, Nð0Þ, and U ð0Þ can be defined by their first quarters,
which are denoted by P1, N1, and U1 respectively, as follows:

Pð0Þ ¼ P1 P1

P1 P1

� �
, Nð0Þ ¼ N1 N1

N1 N1

� �
, U ð0Þ ¼ U1 U1

U1 U1

� �
:

Figure 2.30 shows the decomposition of the second series image S1 for the
breast x-ray image.

Figure 2.29 Three components of the first series of the breast x-ray image.

55Preprocessing Tools for Computer-Aided Cancer Imaging Systems



For this series image, as well as the remaining series images SðkÞ, k ¼ 2 :
ðr 1Þ the similar decompositions can be used. Each of these images can be
defined by the three quarters Pkþ1, Nkþ1, Ukþ1 of their periods N=2kþ1 �
N=2kþ1 in away similar to that for the first series image.As a result, the following
resolution map (RM) associates with the image f:

The last element in the RM equals the mean of the image, F0,0=N2. This
resolution map has the same size as the image and contains all periodic
parts of the series images, i.e., all periods by means of which the original
image can be reconstructed. Each periodic part is extracted from the
direction images, whose directions are given by subsets of generators of
J 0
N,N . The RM itself represents the image packed by its periodic structures
that correspond to a specific set of directions. The image can be
reconstructed exactly from its resolution map; the RM can be used to
change the resolution of the entire image by processing selected direction
components of the image.81 93

As an example, Fig. 2.31(a) shows a FISH image, and its 512 � 512
resolution map appears in Fig. 2.31(b) For better visualization of the
resolution map, the series images have been magnified by factors 1, 2, 4, 8, 16,
32, 64, 128, and 256, respectively. The last coefficient of the RM is the mean
of the image; it has been normalized by a factor of 1=ð512Þ2.

Figure 2.32(a) shows the grayscale cell image of size 512 � 512, and the
resolution map of the image appears in Fig. 2.32(b).

2.9.1 A-series linear transformation

The resolution map can be used to change the resolution of an image by
processing direction images along the desired directions or set of directions.

Figure 2.30 Three components of the second series of the breast x-ray image.

P1 U1

N1

P2 U2

N2

P3 U3

N3

P4 U4

N4 . . .

(2.13)RM½ f �

56 Chapter 2



For instance, consider the following simple method of image enhance-
ment.78,83 Let A be a set of r parameters, A ¼ fa0, a1, :::,ar 1g that are
considered to be the weighed coefficients for the series images. The image fn,m
enhanced by the set A is defined as

f̂n,m ¼
Xr
k 0

akSðkÞ
n,m, n,m ¼ 0 : ðN 1Þ: ð2:14Þ

In the case ak ¼ 1, k ¼ 0 : ðr 1Þ and the image f̂n,m equals fn,m. The operation

A : fn,m ! f̂n,m is called the A-series linear transformation. The selection of a

coefficient ak greater than 1 means that the resolution 2k of the image increases,

Figure 2.32 (a) The cell image and (b) its resolution map (this image was scaled).

Figure 2.31 (a) FISH image and (b) its resolution map (this image was scaled).
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and in the ak < 1 case, the resolution decreases. The ak ¼ 0 case means that the
corresponding resolution will be removed from the image.

As an example, Fig. 2.33(a) shows the x-ray breast image of size 512� 512
and Fig. 2.33(b) shows the image when the high resolution (series number 8)
was removed.

The quality of this image can be improved by manipulating the resolution
of the series images in the desired way. For example, for the FISH image,
Fig. 2.34(a) shows the result of the A-series linear transformation when the set
of parameters A equals {1.5, 2, 1.5, 1, 1, 1, 1.5, 1.5, 0}, and Figs. 2.34(b) and
(c) show the results for {1, 2, 1, 1, 1, 2, 4, 2, 1} and {1, 3, 2, 1, 1, 1, 1, 1.5, 1},
respectively. In (a), the resolutions of 1, 2, 4, 64, and 128 of the series images
have been increased, but the high resolution was removed; many small spots
were removed from the FISH image. In (b) and (c), the resolutions 2, 32, 64,
128 and 2, 4, 128, respectively, have been increased.

Figure 2.35(a) shows the result of the A-series linear transformation on the
breast x-ray imagewhen the set of parametersA equals {1, 1, 1, 1, 1, 1, 1, 0.75, 2}.
The similar result with set of coefficients {1, 1, 1, 1, 1, 0.25, 0.25, 0.5, 1} is shown
in Fig. 2.35(b) and its negative image appears in (c).

Figure 2.33 (a) The image and (b) the image without the eighth series.

Figure 2.34 A-series linear transformation of the FISH image by the sets of parameters
(a) {1.5, 2, 1.5, 1, 1, 1, 1.5, 1.5, 0}, (b) {1, 2, 1, 1, 1, 2, 4, 2, 1}, and (c) {1, 3, 2, 1, 1, 1, 1, 1.5, 1}.
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The paired form of image representation leads to the splitting of the 2D
DFT by the set of 1D DFTs of splitting-signals that define the direction
images as components of the image. This representation allows for extracting
the periodic structures of the image components, which are defined by
direction images united in special subsets of directions, referred to as series
images. The image can be packed and described by its resolution map, which
can be used for image enhancement. It is clear that each periodic structure in
the resolution map can also be represented by its resolution map. In such a
recursive way, the resolution map can be crushed into small pieces from which
the whole image can be reconstructed. Thus, such a set of resolution maps can
be used for image compression.

2.10 Compression by the Tensor Transform

This section briefly describes new methods of image compression via the tensor
transform, or splitting-signals. Consider the case where the size of the image is
N �N andN is a prime. It is important to say that the 2DN �N -point discrete
tensor transform is not redundant, and it is composed of ðN þ 1Þ splitting-signals
that are all independent. Each of these splitting-signals contributes as a basis
image component in the specific direction. These direction components cannot
therefore be substituted or approximated from other components, even when the
directions are at angles with a very small difference range. As an example,
Fig. 2.36(a–c) shows three splitting-signals generated by the frequency points
ð p, sÞ ¼ ð150, 1Þ, ð151, 1Þ, and ð152, 1Þ, respectively. These signals define the
image components along the directions at angles of 89.6180 deg, 89.6206 deg,
and 89.6231 deg within the difference range of 0.0051 deg.

Figure 2.37(a–c) shows another three splitting-signals of the same image that
are generated by the frequency points ð p, sÞ ¼ ð220, 1Þ, ð221, 1Þ, and ð222, 1Þ,
respectively. These signals define the image components along the directions at
angles of 89.7396 deg, 89.7407 deg, and 89.7419 deg. The difference range of
0.0023 deg is approximately two times smaller than 0.0051 deg, and again it
appears that these splitting-signals are not correlated.

Figure 2.35 A-series linear transformation of the FISH image by the sets of parameters
(a) {1, 1, 1, 1, 1, 1, 1, 0.75, 2}, (b) {1, 1, 1, 1, 1, 0.25, 0.25, 0.5, 1}, and (c) the negative image.
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The difference of these signals even in such a small difference range of
angles can also be seen in the corresponding direction images, which are given
in Fig. 2.38. Each direction image has its own structure with a pattern that is
periodic, unique, and cannot be seen in other direction images.

Remember that these direction images are on the discrete Cartesian
lattice, not in the continuous image plane. If such images are obtained from

Figure 2.37 The splitting-signals of FISH image that define the direction images at angles
of (a) 89.6180 deg, (b) 89.6206 deg, and (c) 89.6231 deg.

Figure 2.38 (a) FISH image and the direction images calculated from the splitting-signals
of FISH image, which are generated by the frequency points (b) (220,1), (c) (221,1), and (d)
(222,1). (The direction images were scaled.)

Figure 2.36 The splitting-signals of FISH image that define the direction images at angles
of (a) 89.6180 deg, (b) 89.6206 deg, and (c) 89.6231 deg.
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the projection data, as a result of transferring geometry from the line integrals
to the ray sums,84 the images will be unique and different. The line integrals
may look similar but not the ray sums. For example, the discrete “tomo”
image as the result of 257� 257 reconstruction in computed tomography is
shown in Fig. 2.39(a), along with the three direction images that correspond to
the splitting-signals defined by very close angles of 89:7396�, 89:7407�, and
89:7419�. These three direction images have very different periodic textures.

The corresponding splitting-signals of the “tomo” image are shown in
Fig. 2.40; the signals were normalized by a factor of 1=N.

Because each splitting-signal or its direction image is unique and
independent of other splitting-signals, the splitting-signals can be processed
and encoded for purposes of lossy or lossless image compression. Thus, the
problem of compression of the 2D image can be reduced to the compression
of the 1D signals, as shown in the block diagram in Fig. 2.41. All splitting-
signals are integer, and different encoding methods can be used to process
these signals separately in order to achieve an effective image compression.
The inverse process of decoding the block tensor transform followed by the
inverse 2D tensor transform is also shown in this diagram.

The sample-to-sample difference of components of the splitting-signals may
vary more than the actual values. Therefore, to encode the splitting-signals,

Figure 2.39 (a) X-ray image and direction images calculated from the splitting-signals
generated by the frequency points (b) (220,1), (c) (221,1), and (d) (222,1). (The direction images
were scaled.)

Figure 2.40 The splitting-signals for the direction images at angles of (a) 89.7396 deg, (b)
89.7407 deg, and (c) 89.7419 deg.
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there is the well-known approach of decomposing the splitting-signals into
different frequency bands and then applying the best coding methods for these
signals. For instance, the components fp,s,t, t ¼ 0 : ðN 1Þ can be decomposed
into the average and difference sequences:

xt ¼ fp,s,t þ fp,s,tþ1
� �

=2, and yt ¼ fp,s,t þ fp,s,tþ1
� �

=2, t ¼ 0 : ððN � 1Þ=2� 1Þ:
The differential encoding can be used for the sequence xt, and each value of
the sequence yt can be quantized separately.

In tensor representation, all splitting-signals have the same lengthN.WhenN is
not prime, the 2D paired transform can be used for image compression in a
similarway.For instance, the paired transform is effective forN �N images,when
is a power of 2. In this case, the image is represented by the set of ð3N 2Þ
splitting-signals of different lengths, and the maximal length of signals isN=2 . As
shown previously, the paired splitting-signals can be separated by series, each of
which is definedbyadifferent frequencyband.Therefore, the coding techniquebest
suited to each splitting-signal canbeused to improve the compressionperformance.

2.10.1 Block-tensor-transform lossy image compression

Consider the traditional approach for lossy image compression, where the
image is divided by blocks, and the 2D transform, such as the discrete cosine
transform, is calculated for each block; the coefficients of the transform
are then quantized and encoded, as in the JPEG standard.85 For that, there is
the case where the size of the image is N �N and N > 1 is a prime.

The image is processed block-wise with calculation of the 2D tensor
transform of each block, quantization, and encoding of the transform
coefficients. The block diagram of such lossy image compression is given in
Fig 2.42. The N �N image is divided by blocks f½k1,k2�of size L� L each,

Figure 2.41 Block diagram of image compression by encoding the tensor splitting-signals.
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where it is common to consider L equal 8 or 16. Here, ½k1, k2� denotes the
block number, and k1, k2 ¼ 1 : dN=Le where d:e is the ceil function. For each
block, the tensor transform TT½k1, k2� is calculated and then quantized by a
quantized Q with the subsequent encoding cðqn,mÞ, n,m ¼ 0 : ðL 1Þ of the
quantized coefficients q½k1, k2� of the tensor transform. During the encoding
stage, the Huffman and Art codes can be used.86,87

To show themainpart of the tensor transform-based lossy image compression,
consider the FISH image shown in Fig. 2.43(a) and its block tensor transform
(BTT) in (b). The blocks of size 5� 5 were used. For simpler processing, the third
value of all splitting-signals in the tensor transform of each block was deleted, i.e.,
6 coefficients from 25were removed from the transforms. The result of the inverse
BTT is shown in Fig. 2.43(c); the obtained image is of high quality.

For comparison with the known method of the DCT, consider one block
in the image, for instance, the block with number [12,12], and its 5� 5-point
tensor transform,

f½12,12� ¼

14 14 0 6 12

9 9 3 12 3

0 14 17 23 17

17 3 3 32 17

3 14 9 12 17

2
6666664

3
7777775
, TT½12,12� ¼

43 54 32 85 66

46 36 71 72 55

57 81 38 57 47

49 63 46 70 52

66 52 61 63 38

89 50 21 60 60

2
666666664

3
777777775
:

Figure 2.42 Block diagram of the block-tensor-transform-based method of lossy image
compression.

Figure 2.43 (a) The image, (b) the 5� 5 block tensor transform of the image, and (c) the
compressed image on the first stage (reduction is 24%).
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Five underlined coefficients of the tensor transform in the last column can
be omitted because the sums of components of all splitting-signals (shown in
rows) are equal. The tensor transform is an integer-to-integer transform, and
it does not have large DC coefficients, as in the discrete cosine transform.
Namely, the concept of DC coefficients does not have a meaning for the
tensor transform. In the considered example, the DCT of the block (without
subtracting 128 from the values of the block image) is equal to the following
matrix with DC coefficient of 56:

DCTðf½12,12�Þ ¼

56:0000 11:3408 3:7419 4:5152 13:2287

8:4060 12:0652 2:8083 3:5777 0:1927

6:4101 8:4117 8:6833 8:9848 1:6430

8:1877 3:5777 8:8183 8:9348 2:2613

4:1965 5:0272 8:6430 13:6104 3:3167

2
6666664

3
7777775
:

The tensor transforms of other blocks can be analyzed and compared with the
DCT, as well; the results are similar. The tensor transforms are integer-to-
integer transforms, and their coefficients do not fall in a large dynamic range,
as shown below for two neighboring blocks with numbers [15,21] and [15,22]:

TT½15,21� ¼

85 82 53 41 62

95 82 44 51 51

59 77 52 70 65

73 56 73 61 60

65 51 78 59 70

61 47 76 72 67

2
666666664

3
777777775
: TT½15,22� ¼

71 50 36 70 48

78 80 51 15 51

62 53 45 68 47

59 59 64 60 33

55 39 54 77 50

50 48 65 59 53

2
666666664

3
777777775
:

Another advantage of using the tensor transform in block-wise image
compression is the simplicity of the transform. This transform has the fast
algorithm for prime numbers N, and many such prime numbers can be used
when selecting the block size. For instance, the main sizes in lossy image
compression by the DCT are 8� 8 and 16� 16. Figures 2.44(a–c) show
the block tensor transforms of the FISH image when the block sizes are
7� 7, 11� 11, and 17� 17, respectively.

With the tensor transform, there are many prime numbers (such as 3, 5, 7,
11, 13, and 19) that can be used for different image sizes to cover the entire
image without extending the last columns or rows with zeros if the entire image
is not divided exactly by blocks. For instance, for the 257� 257 image, the
division of N ¼ 257 can be written as 257 ¼ 36� 7þ 5 : the image can be
divided by ð36Þ2þ 1 blocks of size 7� 7 each and 100 blocks of size 5� 5 each.

The following interesting property of the block tensor transform should be
mentioned. For many images, such as the cell image shown in Fig. 2.45(a), the
tensor transform can be considered the operation of filtration when working
with small-size blocks. The images in Fig. 2.45(b) and (c) illustrate this fact;
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the 5� 5- and 3� 3-block TT are shown in these images, respectively. One
can see the contours of the cells, and these are the images of the block tensor
transform, i.e., the images in the 2D frequency and 1D time domain, not the
2D spatial domain.

The histograms of the same images are given in Fig. 2.46. From the
histograms of the block tensor transform, it is easy to select the threshold for
filtering the images and obtain a high-quality image of contours of all cells. In
other words, the image can be visually analyzed in the 2D frequency and 1D
time domain.

2.11 Tensor Transform in Image Cryptography

The tensor transform can also be applied for fast and very effective image
encryption and decryption without loss of information. The tensor-transform-
based image cryptography allows for the effective encryption of images of any

Figure 2.44 The block TT of the FISH image, when block size is (a) 7 � 7, (b) 11 � 11,
and (c) 17 � 17.

Figure 2.45 (a) The image, and the block TTs of the image, when block size is (b) 5 � 5
and (c) 3 � 3.
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size by distributing the cryptographic key between the sender and recipient,
who should keep the key secret. The encryption of the image and its
decryption are fast: For instance, the original version of the code written in
MATLAB (in other words, not optimized M-code), the CPU working time is
0.0781 s for encrypting a grayscale image of size 256 � 256, and 0.2031 s for
an image of size 512 � 512. The decryption uses almost the same amount of
time as the encryption.

Consider the method of mapping the 2D image on the 3D torus, which
was developed for image encryption as well as any other document.88 For
simplicity, let us examine the N � N case, where N ¼ 2r and r > 1. In the
tensor representation of the image, which is in the 3D space, two
dimensions of this space are for frequency and one dimension is for time.
Let ffn,mg be the discrete image defined on the square Cartesian lattice
XN,N ¼ fðn,mÞ; n,m ¼ 0 : ðN 1Þg. In tensor representation, the image
is described by a set of 3N=2 splitting-signals of length N each:
ffp,s,0, fp,s,1, fp,s,2, . . . , fp,s,N 1g Frequency generators ðp, sÞ are pairs of
coprime numbers of types ðp, 1Þ and ð1, 2sÞ, where p ¼ 0 : ðN 1Þ and
s ¼ 0 : ðN=2 1Þ. Each component fp,s,t of the splitting-signal is the sum of
the image at points of the set Vp,s,t, t ¼ 0 : ðN 1Þ. Thus,

fp,s,t ¼
X

ffn,m; ðn,mÞ 2 Vp,s,tg, t ¼ 0 : ðN 1Þ:
The sets Vp,s,t contain N points on the lattice each, and the lattice XN,N

can be reordered in such a way that the summation of each component
of the splitting-signal will be performed only along the rows (or
columns).

In the 3D space, one can identify the opposite sides of boundaries of the
square domain X ¼ ½0,N� � ½0,N� of the real space R2 and can consider
this square X as a torus and the lattice XN,N as a net traced on the torus. Such
a torus and net is called the discrete torus of size N � N. Given a triplet

Figure 2.46 The histograms of (a) the original image, and the block TTs of the image,
when block size equals (b) 5 � 5 and (c) 3 � 3.
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ðp, s, tÞ, the straight lines along which points of the set Vp,s,t are located
np þ ms ¼ t þ kN, k ¼ 0 : ðp þ s 1Þ compose one discrete spiral Sp,s,t

on the torus.21 As an example, for ðp, sÞ ¼ ð1, 1Þ, Fig. 2.47 shows the locus
of two spirals s1,1,3 and s1,1,7 on the discrete torus of size 32� 32.

Spirals have different forms depending on the value of the frequency
point ðp, sÞ. Fig. 2.48(a) shows the locus of the spiral S2,1,1 on the discrete
torus of size 128 � 128. The spiral passes through 128 points of the
discrete torus. The net of size 128 � 128 on the torus is not shown in the
figure. 127 similar, or “parallel,” and disjoint spirals s2,1,t, t ¼ 0, 2 : 127
cover the net of size 128 � 128 on the torus. Other spirals s4,1,2, s1,3,1, and
s1,5,1 on the discrete torus of size 128 � 128 are shown in Figs. 2.48(b-d),
respectively.

Given the generator ðp, sÞ 2 JN,N , all values of the image can be
reordered and transferred into another matrix N � N. The image seen along
these spirals is a permutation of the original image and can be referred to as
the redirected image or the image redirected along N spirals on the torus, which
are defined by the frequency points (p, s). In the 2D plane, this image is said to
be redirected cyclically along the direction defined by the angle wðp, sÞ ¼
tanðs=pÞ or p tanðs=pÞ. Such a permutation can be performed with
different blocks of the image in a successive way, with different block sizes and
in a different order to achieve the “best” encryption.

Figure 2.47 The net with knots of the grid of size 32� 32 in the 3D space with the locus of
two spirals s1,1,3 and s1,1,7.
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As an example, Fig. 2.49(a) shows the original FISH image, 2.49(b) shows
the encrypted image, 2.49(c) shows the 2D DFT of the image in absolute
scale, and (d) shows the 2D DFT of the encrypted image.

Likewise, Fig. 2.50(a) shows the x-ray breast image, 2.50(b) shows the
encrypted image, and 2.50(c) shows the 2D DFT (in absolute scale) of the
encrypted image.

One can see from both examples that the 2D discrete Fourier transforms
of the encrypted images have chaotic structures similar to the encrypted
image. Correlation coefficients between the pairs of horizontally, vertically,

Figure 2.49 (a) FISH image, (b) encrypted image, (c) 2D DFT of the image, and (d) 2D
DFT of the encrypted image.

Figure 2.48 Spirals (a) s2,1,1, (b) s4,1,2, (c) s1,3,1, and (d) s1,5,1.
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and diagonal adjacent pixels were calculated in the encrypted images and
compared with the original images. Experimental results show that the
correlation coefficients are very small for encrypted images. As an example,
Table 2.1 shows the correlation coefficients of a pair of horizontally,
vertically, and diagonal adjacent pixels of the image of the original tree image
and the encrypted image.

Thus, the tensor transform allows for effective encryption of the image.
The 2D paired transform can be also used for image encryption with many
other methods of image encryption.89 98

2.12 Conclusion

The three main preprocessing tools for processing medical images of
cancer were considered in this chapter: image enhancement, compression,
and encryption. The preprocessing is accomplished from the unique point
of view where the 2D image is represented (described) in the form of the
1D splitting-signals that simultaneously carry the spectral information of
the image and define the direction components of the image. Such a
representation of the image is described in terms of the tensor and paired
transforms. This chapter discussed in detail the applications of the tensor
and paired forms of image representation for image enhancement by one
or a few splitting-signals, via sets of such signals with generators separated
by zones and series. The splitting-signals can be processed separately and
transferred back to the image. The 1D a-rooting algorithms for image

Table 2.1 Correlation coefficients of two adjacent pixels (among 32620 random pixels).

Correlation Horizontal Adjacency Vertical Adjacency Diagonal Adjacency

Original image 0.94542 0.96855 0.93231
Encrypted image 0.00088 0.00572 0.00019

Figure 2.50 (a) The x-ray breast image, (b) encrypted image, and (c) 2D DFT of the
encrypted image.
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enhancement have been described in the frequency domain and
implemented in the spatial domain without calculating the 2D discrete
Fourier transform. Emphasis has been placed on the effective implemen-
tation of the a-rooting method, but other transform-based methods of
image enhancement can be implemented by processing splitting-signals, as
well. The methods described previously can be improved and used with
other 2D unitary transforms, including the Hadamard and cosine
transforms. The tensor transform can be also used for image compression
and image encryption; effective methods of such image processing were
presented, and preliminary experimental results show that the new forms
of the image can be used effectively for preprocessing medical images at
different stages of imaging.
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Chapter 3

Multimodality Imaging for
Tumor Volume Definition
in Radiation Oncology*

Issam El Naqa
Department of Oncology/Medical Physics Unit, McGill University

3.1 Introduction

Multimodality imaging (or hybrid imaging, as it is sometimes called) is
witnessing an extraordinary surge in diagnostic and therapeutic radiology for
diagnosing, staging, and monitoring treatment response in complex diseases
such as atherosclerosis1 and cancer.2,3 This trend has been made possible by
the recent evolutionary developments in medical imaging instrumentation
technology that allows for the identification of anatomical structures or
functional processes in vivo. An elegant comprehensive review that follows the
historical developments of multimodality imaging instrumentation for clinical
use and its future potential has been recently published by Townsend4 in the
first proposal to design and build a combined scanner.

In modern conformal, intensity-modulated image-guided radiotherapy
(IGRT) particularly, there is noticeable value in using hybrid multi-
modality imaging in treatment planning, diagnosis, and staging of different
cancer sites. The goal is to achieve improved target definition by
incorporating information from different imaging modalities [computed

* I would like to thank my previous postdoctoral fellow, Dr. Deshan Yang, for his
contribution to the development of the MIASYS software. This work was partially
supported by the Natural Sciences and Engineering Research Council of Canada
under grant NSERC- RGPIN 397711-11.
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tomography (CT), magnetic resonance (MR), and 3D ultrasound] as well
as improved staging, disease characterization, and localization using
functional and molecular imaging [positron emission tomography (PET),
single photon emission computed tomography (SPECT), and magnetic
resonance spectroscopy (MRS)]. In addition, onboard imaging systems
[cone-beam CT (CBCT) and mega-voltage CT (MVCT)] are currently
deployed in many clinics to correct patient setup and improve daily
delivery of fractionated radiation treatments. Although these advanced
imaging modalities have created new opportunities in radiotherapy
treatment planning and delivery, they have also presented many technical
challenges regarding the integration of different-modalities information,
which affects visualization, delineation, and related areas.5

Historically, kilovoltage CT (kVCT) has been the standard for
treatment planning in 3D conformal or intensity-modulated radiation
therapy (IMRT). However, it is well known that there can be significant
variability when multiple observers contour tumor target volumes.6 Several
studies indicated that this inter- and intraobserver variability could be
reduced by combining information from multiple modalities. For instance,
lung-cancer researchers reported reduced variability when using CT with
PET for target definition.7,8 Furthermore, a study of fractionated
stereotactic radiotherapy for meningioma patients demonstrated improved
target definition by combining physiological information from PET,
anatomical structure from CT, and soft-tissue contrasts from MRI,
resulting in alterations of the original contour definitions in 73% of the
cases.9 However, this visual approach for integrating multimodality
imaging information is prone to observer subjectivity and variations with
regard to single-image analysis. Therefore, this chapter discusses methods
for integrating multimodality imaging information by extending automated
and semi-automated segmentation methods into an interactive multi-
modality framework.10

3.2 Single versus Multimodality Image Segmentation

Medical image segmentation is a process that separates structures of
interest in an image from the background or other neighboring structures.
It is a prerequisite step for many medical imaging applications in
radiology and radiation therapy. These applications may include
automatic organ delineation, quantitative tissue classification, surface
extraction, visualization and image registration, etc.11,12 For instance,
Pham and coworkers divided segmentation algorithms into eight different
categories: thresholding, region growing, classifiers, clustering, Markov
random field models, artificial neural networks, deformable models, and
atlas-guided approaches. In our work on PET-guided treatment planning
in radiotherapy, we presented a comparative survey of the current
methods applied for tumor segmentation.13,14
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There are several commercial and academic software tools that support
different segmentation algorithms. In general, commercial software packages
have better implementation (with a user-friendly interface for manual and
semi-automatic segmentation methods), but they often lag behind the latest
developments in the field. In contrast, academic software packages, such as
ITK,15 BioImage Suite,16 MIPAV17 and ImageJ,18 tend to be more oriented
toward single-modality applications and less friendly in handling multi-
modality images, as proposed here.

Most automatic algorithms attempt to utilize image intensity varia-
tions or image gradient information. However, for low-contrast images,
many of these algorithms tend to provide suboptimal solutions that are
not clinically acceptable. For such cases, it has been demonstrated that if
multiple images are available for the same object (same image modality or
different image modalities), all of the available complementary informa-
tion can be fed into the segmentation algorithms to define the so-called
biophysical target.19 Thus, the segmentation algorithms would benefit
from the complementary information from different images, and
consequently the accuracy of the final segmentation results could be
improved. Similar approaches have been applied to detect the blood-wall
interface of heart ventricles from CT, MRI, and ultrasound images using a
snake deformable model;20 to classify coronary artery plaque composition
from multiple contrast MR images using the K-means clustering
algorithm;21 and to define tumor target volumes using PET/CT/MR
images for radiotherapy treatment planning by using a multivalued,
deformable level set approach, as in our previous work. Mathematically,
such an approach is a framework that could be thought of as a mapping
from the imaging space to the “perception” space identified by
radiologists:19

Biophysical target ¼ f ðCT ,PET ,MRI , :::; lÞ, ð3:1Þ
where f ð�Þ is the mapping function from the different imaging modalities to
the target space parameterized by l, which represents the users’ defined set of
parameters representing prior knowledge. This framework is highlighted in
Fig. 3.1.

Despite the opportunities presented by this framework for streamlining
the integration of multiple imaging modalities for better tissue classifica-
tion or target definition, there are several challenges that should be
addressed before clinical implementation can be achieved. First, image
misalignment is an issue when dealing with images acquired from different
scanners. This is partially resolved for PET/CT but not for many other
image modalities. Therefore, methods for image registration should be
incorporated into the framework. The second and more-challenging issue
is the characterization of the mapping in Eq. (3.1) because it relies on
translating higher-level human expertise into cues that computer algorithms
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can understand. These challenges have motivated us to develop a software tool
to support such a multimodality image segmentation framework that can
potentially learn information from the user’s interactions. In our recent work,
we attempted to resolve some of these problems by developing a dedicated
software tool for multimodality image analysis called MIASYS.10 This
software is the first tool to offer a dedicated and comprehensive framework
to cope with the emerging needs of therapeutic and diagnostic radiological
applications.

3.3 Methods for Multimodality Image Segmentation

There are several methods that have been proposed to integrate
multimodality imaging information, primarily by extending automated
and semi-automated single- or monomodality segmentation methods into
an interactive multimodality framework in which the available comple-
mentary information can be fed into the segmentation algorithms to define
the biophysical target (as described earlier). Thus, the segmentation
algorithms would benefit from the complementary information provided
by different images, and consequently the accuracy of the final segmenta-
tion results could be improved. Similar approaches have been applied to
detect the blood-wall interface of heart ventricles from CT, MRI, and
ultrasound images using a snake deformable model (Sebbahi et al., 1997);
to classify coronary artery plaque composition from multiple contrast MR
images using the K-means clustering algorithm;22 and to define tumor

Figure 3.1 Biophysical target generated from multimodality imaging by combining
anatomical and functional information.
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target volumes using PET/CT/MR images for radiotherapy treatment
planning by using a multivalued deformable level set approach.19 This
approach could be applied to several segmentation algorithms that are
amenable to such generalization,10 as discussed in the following sections.

3.3.1 Multiple-image thresholding

Thresholding is one of the most basic image segmentation methods; it is
commonly used to delineate objects with high contrast with respect to the
surrounding image background. Threshold values can be selected
experimentally, e.g., in detecting tumors in PET based on cutoff values
of the standardized uptake value (SUV), a threshold value is usually
selected as SUV > 2.5 or 40% of maximum SUV.23 In another example, an
optimal threshold image-intensity value could be selected iteratively to
separate the lungs from the body and chest wall structures.24

One way to expand the thresholding method to support hybrid images
involves applying different threshold values to the different images and
combining the thresholding results for different images in logical ways to form
the final result. Previous work by Yang et al.10 used the “thresholding
conditions” notion to describe such multiple-image thresholding operations.
For example, a thresholding condition could be “Im1 < 100 & Im2 > 50 |
20 < Im3 < 150,” where Im1, Im2, and Im3 denote the intensity values of
images 1, 2, and 3. MIASYS, for instance, is able to interpret the meaning of
such a thresholding condition expression and carry out all of the mathematical
and logical computations to yield the final combined result. The software tool
is implemented with MATLAB, and it accepts any valid MATLAB
expression as a thresholding condition. The expressions can contain any
arithmetic, logical operators, and parentheses. The new thresholding method,
which accepts such mathematical expressions, is flexible, easy to use, and very
powerful.

3.3.2 Clustering algorithms

Clustering algorithms are frequently used for different image analysis
problems such as image segmentation, object recognition, and image
retrieval.25 For image segmentation, they are used to automatically
discriminate different tissue types based on primitive image features such as
image intensity. One of the most commonly used algorithms is the K-means
algorithm. Another algorithm found to be more robust is the fuzzy C-means
(FCM) algorithm.

3.3.2.1 Fuzzy C-means algorithm

Similar to other clustering algorithms, the goal of the FCM algorithm26

is to divide the image histogram into a few clusters and to iteratively find
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the center of each cluster by minimizing the following system energy
function:

Jðx, cÞ ¼
XN
i 1

XK
k 1

kxi ckk2, ð3:2Þ

where xi is the image intensity for pixel i, N is the total number of pixels in the
image, K is the total number of clusters, and ck is the cluster center intensity
value for cluster k.

In the FCM algorithm, a fuzzy membership function is defined and
computed as Eq. 3.3, and the cluster center cnk is updated according to Eq. (3.4):

unik ¼ kxi cnkk 2XK

k 1
kxi cnkk 2

, ð3:3Þ

cnþ1
k ¼

XN

i 1
ðunikÞbxiXN

i 1
ðunikÞb

, ð3:4Þ

where unik is the fuzzy membership probability that image pixel xi belongs to
cluster k at iteration n, cnk is the updated cluster center intensity value for
cluster k at iteration n, and b is a user defined parameter, where 0 < b < 1.

The user starts the FCM method by setting the value of K, after which the
c0k can be automatically and randomly initialized, and the iterations are
repeated by computing Eqs. (3.3) and (3.4), respectively. The iterations stop
when cnk is stabilized.

3.3.2.2 Extending the fuzzy C-means algorithm to multiple images

The FCM method can be naturally expanded to support multiple images by
defining xi and cnk as vectors instead of scalar values:

xi ¼ xi,1,xi,2, . . . ,xi,Mh i, ð3:5Þ
cnk ¼

�
cnk,1, c

n
k,2, . . . , c

n
k,M

�
, ð3:6Þ

where M is the total number of images in the multimodality image data set,
xi,M is the image pixel intensity value for the pixel i in the imagem (1<m<M),
and cnk,m is the cluster center intensity value for the cluster k in the image m for
iteration n.

With xi and cnk defined as vectors, Eqs. (3.3) and (3.4) can be rewritten as

unik ¼
XM

m 1
amðxi,m cnk,mÞ2

� � 2

XK

k 1

XM

m 1
amðxi,m cnk,mÞ2

� � 2 , ð3:7Þ
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cnþ1
k,m ¼

XN

i 1
ðunikÞbxi,mXN

i 1
ðunikÞb

, m ¼ 1,M, ð3:8Þ

where am is the user-defined weighting parameter for image m.
In this case, the computation of the fuzzy membership value unik is

contributed by all of the images in the multimodality image dataset. The new
weighting parameters am control the contribution from the different images
according to the users’ prior knowledge.

The FCM algorithm works in the image intensity histogram domain;
image pixel spatial information is not considered in the algorithm, and there is
also no difference in applying this algorithm to 2D images or to 3D volume
images. Better FCM algorithms that consider image pixel spatial information,
which may be added to the software tool in the future, have been reported in
the literature.27,28

3.3.2.3 K-means clustering algorithm

The K-means algorithm29 is actually a precursor of the FCM algorithm. It
uses the hard membership function instead of the fuzzy membership function.
The performance of the K-means algorithm is generally comparable to but
less robust than the performance of the FCM algorithm. However, both
algorithms may suffer from lacking a proper spatial neighborhood definition,
which is addressed in the active contour algorithms.

3.3.3 Active contour algorithms

Deformable models are geometric representations of curves (in 2D) or
surfaces (in 3D) that are defined explicitly or implicitly in the imaging
domain. These models deform under the influence of force-like equations that
are computed from the image data.30,31 Contours of structures in the images
are characterized by sharp variations in the image intensity, and therefore the
deformable models can be warped to match the contours by means of energy
minimization.31 33

So-called “snake” algorithms were among the first deformable models
developed.34 Snakes use an explicit parametric representation of the
object boundary that deforms by means of energy minimization (or
dynamic force equilibrium). Mathematically, if the deformable model is
represented by

CðsÞ ¼ fxðsÞ, yðsÞ, zðsÞg, s 2 ½0, 1�, ð3:9Þ
then its movement is governed by the following functional:

JðCðtÞÞ ¼
Z1
0

aðsÞ @Cðs, tÞ
@s

����
����
2

þ bðsÞ @
2Cðs, tÞ
@s2

����
����
2

 !
dsþ g

Z1
0

PðCðs, tÞÞds, ð3:10Þ
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where the first term corresponds to the internal energy and controls the
tension and rigidity of the model.† The second term corresponds to the
external energy (P represents the potential energy) that could be given as
gðjrI jÞ, where g is selected to be a monotonically decreasing function of the
gradient of image intensity I. Other examples could include using pressure or
balloon representations to represent an expanding object or other diffusing
functions. Using calculus of variation techniques, the solution to the equation
is obtained by solving the associated Euler–Lagrange PDE:31,33

@

@s
a
@C
@s

� �
þ @2

@s2
b
@2C
@s2

� �
þrPðCðs, tÞÞ ¼ 0: ð3:11Þ

However, the formulation in Eq. (3.11) is nonconvex and suffers from
several drawbacks such as sensitivity to contour initialization, dependency on
parameterization, and an inability to account for topological adaptation
(e.g., delineation of a necrotic tumor). To solve the sensitivity problem, the
geodesic active contour model was proposed,35 which in principle is
equivalent to Eq. (3.10) if the smoothness constraint is eliminated (i.e., by
setting b ¼ 0). This has led to the development of the flow or curve evolution
concept:

@C
@t

¼ !
V ðkÞ, ð3:12Þ

where
!
V is the velocity function (of magnitude V ) in the normal direction (

!
N ),

and k is the local contour curvature. However, to resolve the main problem of
parameterization and topological adaptation, the level set approach was
proposed.30

In the level set approach, the curve [in Eq. (3.12)] is embedded in an
implicit level set function f. This function defines sets of contour
values and positions, including the target boundary at the zero level
[fðCÞ ¼ 0], as illustrated in Fig. 3.2. In this case, the evolution equation
is rewritten as

@f

@t
¼ VðkÞjrfj þ FðQÞ, ð3:13Þ

where V is defined to be proportional to the curvature and inversely
proportional to the image gradient, and FðQÞ is the external force constraint
with vector parameter Q that could be used to add context-knowledge
information such as shape priors. The level set function f is typically selected
as a signed distance function. Efficient solutions were developed for Eq. (3.13)
by using finite difference and fast marching methods.30

† The first-order derivative suppresses stretching and makes the contour behave like
an elastic string. The second-order derivative suppresses bending and makes the
model behave like a rigid rod.
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3.3.3.1 “Active-contour-without-edge” algorithm

The “active-contour-without-edge” algorithm is one of the frequently used
active contour image segmentation algorithms, originally reported by Vese
and Chan.36 Unlike many other algorithms, it is based on regional average
intensity value instead of image gradient because gradients tend to be more
sensitive to noise and therefore less reliable.

To separate an image into two mutually exclusive partitions, the following
system energy equation is to be minimized:

Fðc1, c2,CÞ ¼
Z
V1

ðI c1Þ2dV
1

þ
Z
V2

ðI c2Þ2dV2 þ mjCj þ n � GðCÞ, ð3:14Þ

where I is the image intensity; V1 and V2 are the two partitions (V1 is inside the
contour defined by the level set, and V2 is outside the contour); c1 and c2 are the
average image intensity in partition V1 and V2, respectively; C is the partition
boundary and |C | is the total length of C for 2D images (or the total surface
area of C for 3D images); and n and m are user-selected weighting constants.
G(C) is the area inside C for 2D images or the volume inside C for 3D images.

The level set formation for Eq. (3.14) is

Fðc1, c2,CÞ ¼
Z
V

ðI c1Þ2HðfÞ þ ðI c2Þ2ð1 HðfÞÞ
h

þm �dðfÞjrfj þ n �HðfÞ�dV, ð3:15Þ

Figure 3.2 Deformable image segmentation by the level set method. (a) Representation of
the level set surface at time t of the evolving function f. (b) A projected view showing the
evolution direction. Typically, the function f evolves at a velocity proportional to the
curvature of the contour and inversely proportional to the image gradient. In the present
example, f is represented by a signed Euclidean distance transform of value L. The contour
is extracted at L ¼ 0, with negative values inside the contour representing the volume of
interest and positive values outside representing the background.
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where V ¼ V1 þ V2 is the entire image, H is the Heaviside function (a unit
step function) of level set f, and d is the delta function of f.

The iterative solution for the level set equation is given by

@f

@t
¼ d:ðfÞ mdiv

rf

jrfj
� �

n ðI c1Þ2 þ ðI c2Þ2
� �

, ð3:16Þ

where d:ðfÞ is delta function of level set f with width :. Note that the constant
parameter n is also often known as the balloon force because it controls the
constant inflation or deflation of the level set.

The two average image intensity values c1 and c2 are updated per iteration
according to

c1ðfÞ ¼

Z
V

I �HðfÞdVZ
V

HðfÞdV
, ð3:17Þ

c2ðfÞ ¼

Z
V

Ið1 HðfÞÞdVZ
V

ð1 HðfÞÞdV
: ð3:18Þ

The implementation here also adds an additional spring force ðc1 c2Þ2 to
further balance the distance between c1 and c2. This level set equation is
given by

@f

@t
¼ d:ðfÞ mdiv

rf

jrfj
� �

� n� l1ðI � c1Þ2 þ l2ðI � c2Þ2 þ l3ðc1 � c2Þ2
� �

, ð3:19Þ

where l1, l2, and l3 are user-configurable constant parameters that were
previously omitted for simplicity.

3.3.3.2 Extension to multiple images

The concept of a multivalued level set used to extend the “active-contour-
without-edge” method to multiple images was originally suggested to process
multichanneled color images as follows:37,38

@f

@t
¼ d:ðfÞ mdiv

rf

jrfj
� ��

�n�
XM
m¼1

amðl1ðIm � c1,mÞ2 � l2ðIV � c2,mÞ2 � l3ðc1,m � c2,mÞ2ÞÞ, ð3:20Þ
where am is the user-defined relative weighting parameters for image m with
image intensity um, M is the total number of images, and c1,m and c2,m are
the c1 and c2 values for image m that are computed using Im as intensity I in
Eqs. (3.17) and (3.18). In this generalization, the level set iterative evolution is
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contributed by all of the images in the multimodality image dataset. The
weighting parameters am control the contribution amounts from different
images according to the user’s perception of importance.

3.4 Examples of Multimodality Tumor Volume Definition

3.4.1 PET/CT target definition in radiotherapy

Radiotherapy is a localized treatment of directed high-energy irradiation
toward the tumor target. For example, in the case of radiation therapy
treatment planning of lung cancer, CT and PET images are often registered
and fused to help the physician more-accurately delineate the “true” tumor
volume. CT images contribute to determine the anatomic boundaries, while
PET images contribute to determine the tumor metabolic activity bound-
ary.39 42 Using the MIASYS software tool, Fig. 3.3 shows a pair of co-
registered CT and PET images of a lung tumor.

Figure 3.4 shows some demonstrative results obtained by using the
generalized “active-contour-without-edge” algorithm, the FCM clustering
algorithm, and the thresholding algorithm. These example results demon-
strate that different segmentation algorithms could be applied for the

Figure 3.3 Co-registered CT and PET images of a lung cancer tumor. The tumor is
indicated by the arrows: (a), (b), and (c) are the transverse views; and (d), (e), and (f) are the
coronal views. (a) and (d) are CT images, (b) and (e) are PET images, and (c) and (f) are
fused CT and PET images.
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combined PET/CT images and would generate similar but slightly different
results in this case.

3.4.2 PET/CT segmentation of cervix cancer example

In this example PET/CT images were taken from patients with cervix cancer.
The PET image was sharpened using a deconvolution approach.43 The 40%
maximum SUV thresholding has been adopted by many institutes to estimate
gross tumor volume for cervix cancer patients due to the high target-to-
background ratio of these tumors in PET and the difficulty of distinguishing
their boundaries in CT. This is different than the lung case, where such criteria
suffer from significant variability, as discussed earlier. In Fig. 3.5, the active
contour algorithm is initialized with a circle (in white) 15.9 mm in diameter.
The evolved contour took ten iterations (in blue), and the final estimated
contours (in thick black) are shown. The algorithm converged in just 30
iterations. This fast convergence could be attributed in part to the almost-
spherical shape of the tumor and the sharpness of the gradient. It is noticed
that the results of the algorithm matches the PET ground truth (99%). Hence,

Figure 3.4 Examples of using (row 1) the active contour algorithm, (row 2) the FCM
clustering algorithm, and (row 3) the thresholding method, with the condition “(CT > 500 &
PET > 1500) | (CT > 400 & PET > 2000) | PET > 2500.” Columns (a)–(e) are CT
transverse, CT coronal, PET transverse, PET coronal view, and 3D views, respectively.
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the delineation results were explained mainly by PET in this case, although
information from CT could still be used to steer the algorithm, if desired.

3.4.3 MR/CT segmentation of prostate cancer example

A more-challenging case was the analysis of a prostate MRI/CT, shown in
Fig. 3.6(a). The images were co-registered using the rigid-body mutual
information algorithm. The normalized mutual information (NMI)

Figure 3.5 A 3D generalization of the MVLS algorithm in the case of PET/CT cervix. (a)
The MVLS algorithm is initialized with a sphere (in white) diameter of 15.9 mm, curve
evolution in steps of ten iterations (in magenta), and the final estimated contour (in thick
blue). The algorithm converged in 30 iterations. (b) MVLS-estimated contour superimposed
on CT. (c) MVLS-estimated contour superimposed on PET.

Figure 3.6 Analysis of a prostate MRI/CT. (a) Co-registered MRI/CT and selected ROI,
(b) the MVLS algorithm is initialized with a shape prior that roughly resembles prostate
(in black), and (c) the curve evolution in steps of ten iterations and the final estimated
contour (in thick red).
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improved from 1.07 to 1.11. The results of this example seemed to be more
dependent on the initial shape; hence, the initial contour (in white) was
emphasized in the algorithm as prior knowledge, as shown in Fig. 3.6(b).
The evolved contour is shown in steps of 10 iterations (in blue) and the
final estimated contour (in thick red) in Fig. 3.6(c). The algorithm
converged in 50 iterations (less than 1 s). Note that in this case the
delineation of the prostate in the CT image is significantly improved by
incorporating the MR. On the other hand, CT also improved the
convergence results of MR by offering an additional external force to
guide the curve evolution to the desired target’s boundary.

3.4.4 Coronary artery plaque MR image analysis

The composition of an atherosclerotic plaque is an important predictor for
thromboembolic events. Intraplaque hemorrhage and a lipid core are
considered especially high-risk components.44 Multicontrast MR images can
be applied to detect these components. This example used multiple MR
images that were acquired by scanning cadavers’ coronary artery tissue
samples. The ex vivo tissue samples were scanned using T1w (T1 weighting),
T2w (T2 weighting), and PD (proton density) sequences. The generalized
“active-contour-without-edges” algorithm was used to perform automatic
image segmentation and compare the results to contours manually drawn by
an experienced radiologist for demonstration purposes. The artery lumen, the
calcification component, and the lipid core component were contoured, as
shown in Fig. 3.7.

3.5 Issues, Problems, and Future Directions

While advances in multimodality imaging have created ample opportunities in
diagnostic and therapeutic radiology, they have also presented many technical
challenges to integrating information from different modalities, which affects
visualization, delineation, and related areas.

A set of applicable algorithms for concurrent segmentation of images
from different imaging modalities has been presented here. The underlying
principle in this chapter is to combine complementary information from
different imaging sources to better understand the nature of the imaged object
relevant to the depicted clinical task. This would result in a better target
definition in radiotherapy treatment planning of cancer by integrating
anatomical and physiological information to decide the target extent, and
better classification of different tissue types from multispectral MR images in
cardiac diagnosis routines, for instance. The multiple images to be integrated
into such a framework need not be from different image modalities; they
could be from the same image modality but with different acquisition
protocols (e.g., different MRI pulse sequences), or from the same acquisition
protocol but at different times (e.g., 4D-CT images). Despite the framework’s
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strong potential for streamlining multiple-imaging-modality integration for
better target definition during treatment planning and better localization
during treatment fractions, several challenges must be addressed before
clinical implementation.

3.5.1 Image understanding

The biophysical target formalism presented in Eq. (3.1) relies on characteri-
zation of higher-level human expertise that must be translated into
primitives understandable by a computer algorithm. A new weighting-
parameters approach to control the influence of each image in the
multimodality image dataset has been introduced.19 These weighting
parameters should be determined according to the user’s experience and
prior knowledge. However, this procedure may be too simplistic, and this
issue is still an open area for future research. A promising direction would be
the utilization of human–machine interaction methods to capture radiolo-
gists’ perception of image similarity. This concept has been previously
applied to content-based image retrieval (CBIR) from mammographic

Figure 3.7 Examples of ex vivo coronary artery plaque segmentation: (a) the PD slice,
(b) the T1w slice, (c) the T2w slice, and (d) the PD slice overlaid with both manual contours
and automatically segmented contours for calcification, lipid components, and artery lumen.
The solid yellow lines are the manually drawn ROI regions. The other solid lines are
manually drawn contours. The dotted lines are the automatic segmentation results. The
expert’s manual contour and the multimodality automated segmentation results are in good
agreement.
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databases successfully,45,46 which could be extended into the multimodality
framework by using machine learning algorithms.

3.5.2 Deformable image registration

Image misalignment is a major issue when dealing with images acquired from
different scanners, which has been partially resolved for PET/CT but not for
many other combined modalities. Further improvements to performance
could be further achieved by combining segmentation and deformable image
registration algorithms in an iterative framework. Improvement in the
robustness and effectiveness of coupling segmentation and registration has
been recently demonstrated.47 The working idea is that prior knowledge of the
boundary obtained from segmentation improves the registration, as in finite
element registration methods.48 At the same time, the registration can
improve locally weak boundary segmentation via a correspondence to
stronger edges in the other image (template), as in atlas-based segmentation.49

3.6 Conclusions

This chapter presented a framework for tumor volume definition using
multimodality imaging in radiation oncology. It has shown that many
different single-modality image segmentation algorithms could be extended to
support simultaneous multimodality image analysis tasks. This was demon-
strated by using clinical examples from radiation oncology as well as
diagnostic radiology. In addition, the current challenges in the field were
discussed, as well as the opportunities for medical image scientists to improve
tumor definition using the multimodality framework to support better
diagnostic and therapeutic interventions of cancer.
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4.1 Introduction

Breast cancer is the leading cause of death in women between the ages of 35
and 55. The National Cancer Institute estimates that one out of eight women
in the United States will develop breast cancer at some point during her
lifetime.1 The mortality rate of 30% in the U. S. and 45% in Europe has been
demonstrated by repeated, randomized, and controlled trials.2 Currently,
there are no effective ways to prevent breast cancer.3,4 However, treatments of
breast cancer in the early stages are more successful; therefore, early detection
is an important and effective method to significantly reduce mortality. There
are several imaging techniques for breast examination, including magnetic
resonance imaging (MRI), ultrasound imaging, positron emission tomography
(PET) imaging, computed tomography (CT) imaging, optical tomography/
spectroscopy, and x-ray imaging. Among them, mammography (x-ray image)
is the most-common technique that radiologists use to detect and diagnose
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breast cancer.5,6 Two types of mammography are currently used: film
mammography and digital mammography. Digital mammography is preferred
by physicians7,8 because it has better image quality, requires a lower x-ray
dose,8 provides interpretations with greater confidence in difficult cases, and
offers faster diagnosis for routine cases.9

Due to the limitations of the x-ray hardware systems, screened
mammograms—even when using digital mammography—may present low
resolution or low contrast, making it difficult to detect tumors at an early
stage. Important indicators of early breast cancer,10,11 such as irregularly
shaped microcalcifications, are very small calcium deposits that appear as
bright, granular spots in mammograms.12,13 The distinction between the tiny
malignant tumors and the benign glandular tissue is not readily discernable;
misinterpretation results in unnecessary additional examinations and
biopsy.14 The situation becomes worse when radiologists routinely interpret
large numbers of mammograms and can misdiagnose a condition.15

To improve the visual quality of mammographic images, more image data
can be collected at the data acquisition stage, thus improving the image
resolution. However, this significantly increases the overall acquisition time,
the amount of radiation that a patient is exposed to, and hardware costs.16 On
the other hand, the image visual quality can be enhanced during the post-
image-processing stage in medical imaging systems. It utilizes different image
enhancement techniques to enhance the contrast of mammograms. In this
way, the visual quality of mammograms is improved without affecting the
acquisition process or increasing the hardware costs.

The underlying concept of mammogram enhancement involves applying
image enhancement algorithms to improve the contrast of suspicious regions
and objects in mammograms, and then use a threshold to separate them from
their surroundings.11 To employ it in the medical imaging system, two
problems need to be addressed: (1) How to automatically choose the best
enhancement algorithm, and (2) how to automatically select the thresholding.

Several algorithms for mammogram enhancement have been developed
recently. They can be classified into two main categories: frequency domain
methods and spatial domain methods.

• Frequency domain methods are based on different transforms or fuzzy
logic theory. These transforms include the discrete Fourier transform
(DFT),17 23 discrete cosine transform (DCT),24 26 discrete wavelet
transform (DWT),27 44 and other transforms.23,26,45,46

The DWT-based enhancement algorithms for mammograms first
decompose mammograms into a multiscale subband representation
using the contourlet transform30 or other wavelet transforms such as the
discrete dyadic wavelet transform,31,33 35 integrated wavelets,36 or
redundant discrete wavelet transform.37 Next, the transform coefficients
in each subband of the multiscale representation are modified using
different technologies, including nonlinear filtering,38 regression-based
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extrapolation,39 adaptive unsharp masking,40 the wavelet shrinkage
function,41 or direct contrast modification.42 Finally, the enhanced
mammograms can be obtained from the modified coefficients. However,
it has been reported that a wavelet representation does not efficiently show
the contours and the geometry of edges in images.30

Fuzzy set theory has been used to enhance the contrast of
mammograms because it is suitable for dealing with the uncertainty
associated with the definition of image edges, boundaries, and
contrast.4,47 49 Fuzzy logic has also been successfully integrated with
other techniques such as histogram equalization for enhancing medical
images48 and structure tensor for contrast enhancement of micro-
calcifications in digital mammograms.49 However, the frequency
domain methods have limitations. They may introduce artifacts called
“objectionable blocking effects”17 or enhance images globally but not
enhance all local details/regions in the image very well. Furthermore, it
is very difficult to apply them to automatic image enhancement
procedures.18,19

• Spatial domain methods are based on the human visual system
(HVS),50 53 empirical decomposition,54 57 histogram equaliza-
tion,48,52,58 62 logarithmic framework,63 66 nonlinear filtering,43,53,67 70

adaptive neighborhood,9,15,71,72 or unsharp masking.73 75

Because nonlinear filtering is known for its ability to obtain more
robust characteristics for suppressing noise and preserving edges and
details, it is a desirable technique that can be used to enhance
mammographic images and other types of medical images. Examples
include utilizing the adaptive density-weighted filter,67 tree-structured
nonlinear filters,43 and also adaptive anisotropic filtering.76

Several other algorithms have been developed for mammogram
enhancement using adaptive neighborhood (or region-based) contrast
enhancement (ANCE).9,15,71,72 ANCE is intended to improve the
contrast of specific regions, objects, and details in mammograms based
on the local-region background and contrast. The region contrast is
calculated and enhanced according to the region’s contrast, its
background, its neighborhood size, and its seed pixel value.9

Unsharp masking (UM) is another interesting enhancement
technique belonging to spatial domain methods. The traditional UM
has good performance to enhance the fine details in the original images.
However, it also amplifies noise and overshoots the sharp details at the
same time.75,77 To overcome this problem, several modification schemes
have been developed by replacing the high-pass filter with the adaptive
filter,77 quadratic filter,78 and its derived filtering operators, called
rational unsharp masking75 and cubic unsharp masking.79 Other
algorithms using unsharp masking techniques for mammogram
enhancement have been developed.40,73,74 A set of measure metrics for
mammogram enhancement is introduced in Singh and Bovis.80
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This chapter introduces a new nonlinear unsharp masking (NLUM)
scheme for mammogram enhancement by combining the nonlinear filtering
and unsharp masking techniques. Leveraging the advantages of these two
techniques, the new scheme can enhance the contrast of suspicious regions,
objects, and details to achieve better visibility of mammographic images for
human observers (radiologists). Furthermore, to address the two questions
posed earlier concerning the automatic selection of the best enhancement
algorithm and of the threshold, a new enhancement measure called the
second-derivative-like measure of enhancement (SDME) is introduced.
Different parameters in the enhancement algorithm are varied, and the
results are measured automatically to choose the best one to present. The
NLUM enhancement performance is demonstrated by comparison with other
existing enhancement algorithms, quantitative evaluation using the SDME
measure, and receiver operating characteristic (ROC) analysis based on a
medical doctor’s inspection.

Section 4.2 reviews several existing enhancement algorithms that are to be
compared with the new NLUM scheme, and the operations of the
parameterized logarithmic image processing (PLIP) to be consistent with
the human visual system. Section 4.3 introduces the new NLUM scheme.
Section 4.4 introduces the new enhancement measure after reviewing several
existing ones for quantitatively evaluating the performance of enhancement
algorithms. Section 4.5 shows the parameter design and optimization for the
NLUM scheme using the SDME measure, compares the NLUM scheme with
three existing enhancement algorithms, and evaluates the NLUM using the
thresholding technique and ROC analysis. Section 4.6 reaches a conclusion.

4.2 Background

This section briefly discusses traditional unsharp masking and four existing
enhancement algorithms including rational unsharpmasking (RUM),75 adaptive
neighborhood contrast enhancement (ANCE),9 contrast-limited adaptive histo-
gram equalization (CLAHE),58 and direct image contrast enhancement
(DICE).42 Those algorithms will form the basis for comparison to the new
NLUM scheme. The arithmetic operations of parameterized logarithmic image
processing (PLIP) are also presented here and will be used as an operator in the
presented NLUM scheme to better represent the human visual system response.

4.2.1 Traditional unsharp masking

The foundation of the traditional unsharp masking (UM) technique involves
subtracting a low-pass filtered signal from its original. The same results can be
achieved by adding a scaled high-frequency part of the signal to its original. This is
equivalent to adding the scaled gradient magnitude back to the original signal.78

The unsharp masking is used to improve the visual quality of images by
emphasizing their high-frequency portions that contain fine details as well as

102 Chapter 4



noise and sharp details. The scheme for image enhancement is shown in
Figure 4.1.

The output enhanced image Eðm, nÞ is defined by

Eðm, nÞ ¼ Iðm, nÞ þ aFðm, nÞ, ð4:1Þ
where the constant a is a scaling factor, and Fðm, nÞ is a high-pass filtered
image obtained from the original Iðm, nÞ.

The high-pass filter and scaling process in traditional UM amplify those
high-frequency portions of original images that contain fine details as well as
noise and sharp details. Therefore, due to the fact that traditional UM
enhances fine details in images, it also amplifies noise while overenhancing the
steep edges.

4.2.2 The RUM algorithm

Rational unsharp masking75 (RUM) uses a rational function operator to
replace the high-pass filter in traditional unsharp masking, shown in
Figure 4.2. The rational function is the ratio of two polynomials of the input
variables. This scheme is intended to enhance the details in images containing
low and medium sharpness without significantly amplifying the noise or
affecting the steep edges. The enhanced image is defined by

Eðm, nÞ ¼ Iðm, nÞ þ l½Cxðm, nÞFxðm,nÞ þ Cyðm, nÞFyðm, nÞ�, ð4:2Þ
where l is the scaling factor, and

Cxðm, nÞ ¼ ½Iðm, nþ 1Þ Iðm, n 1Þ�2
k½Iðm, nþ 1Þ Iðm, n 1Þ�4 þ h

, ð4:3Þ

Cyðm,nÞ ¼ ½Iðmþ 1, nÞ Iðm 1, nÞ�2
k½Iðmþ 1, nÞ Iðm 1, nÞ�4 þ h

, ð4:4Þ

Fxðm,nÞ ¼ 2Iðm,nÞ Iðm, n 1Þ Iðm, nþ 1Þ, ð4:5Þ

Fyðm,nÞ ¼ 2Iðm,nÞ Iðm 1, nÞ Iðmþ 1, nÞ, ð4:6Þ
where k and h are proper positive factors.

Figure 4.1 The block diagram of the traditional unsharp masking.
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4.2.3 The ANCE algorithm

The adaptive neighborhood contrast enhancement (ANCE) method9 was
developed to improve the contrast of objects and features with varying sizes
and shapes. In this algorithm, each pixel in an image is considered a seed
pixel for a region-growing process. Including those neighboring pixels whose
gray values are within a specified gray-level deviation (known as the growth
tolerance k) from the seed, a local region—called the foreground—is
generated around the seed pixel. Another region—called the background—
consists of those neighboring pixels that are outside the range of a specified
gray-level deviation. The background, which surrounds the foreground,
contains nearly the same number of pixels as the foreground. The region
contrast is defined by

C ¼ f b
f þb

, ð4:7Þ

where f and b are the mean gray-level value of the foreground and
background, respectively.

The contrast equation in Eq. (4.7) is similar to Weber’s ratio59

W ¼ DL=L, where DL is the luminance difference between the central
region and the overall image luminance L. The minimum contrast of
the region is Cmin ¼ k=2, and k is the growth tolerance. A Weber’s rate
of approximately 0.02 for a just-noticeable object under standard
light conditions indicates that the growth tolerance should be at most
0.04 if regions or objects are to be distinguishable from their
background.

The region’s contrast is enhanced by increasing its foreground value when
the following conditions are satisfied:

1. The region’s contrast is low, i.e., 0:02 � C � 0:4; and
2. The pixels in the region’s background have a standard deviation normalized

by their mean values less than 0.1.

The background in the second condition is defined as a region three pixels
thick, molded to the original region in shape. The new foreground value is
defined by

f 0 ¼ b
1þ C0

1 C0 , ð4:8Þ
where C0 is the increased contrast based on an empirical look-up table
described by Morrow et al.9

Therefore, only regions with low contrast are enhanced, whereas the
high-contrast regions, such as steep edges, remain unaffected. In order to
save computational costs, the redundant pixels in the foreground regions,
which have the same values as the seed pixels, are changed to the same new
values.
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4.2.4 The CLAHE algorithm

The contrast-limited adaptive histogram equalization58 (CLAHE) is a
well-known technique for adaptive contrast enhancement. The normal and
adaptive histogram equalizations enhance images using the integration
operation. This operation yields large values in the enhanced image if the
histogram of the nearly uniform regions of the original image contain
several high peaks. As a result, those enhancement methods may
overenhance noise and sharp regions in the original images. To solve this
problem, the CLAHE algorithm uses a clip level to limit the local
histogram in such a way that the amount of contrast enhancement for
each pixel can be limited. This clip level is a maximum value of the local
histogram specified by users. An interactive binary search process is used
to redistribute those pixels that are beyond the clip level. The CLAHE
algorithm has the following steps:

1. Divide the original image into contextual regions,
2. Obtain a local histogram for each pixel,
3. Clip the histogram based on the clip level,
4. Redistribute the histogram using binary search, and
5. Obtain the enhanced pixel value by histogram integration.

4.2.5 The DICE algorithm

The direct image contrast enhancement (DICE) algorithm was introduced to
enhance screening mammograms in the wavelet domain.42 It directly amplifies
the vertical, horizontal, and diagonal subband components of the original
image at different levels of the wavelet decomposition and then reconstructs
them to obtain the enhanced image.

4.2.6 The PLIP operations

The parameterized logarithmic image processing (PLIP) model was
introduced to provide a nonlinear framework for image processing.64 The
PLIP model can process images as absorption filters using the gray-tone
function of images, which is a more-precise approach from a human visual
system perspective, while keeping the image pixel values within the range
½0,mÞ. Operations use the human visual system characteristics that are listed
in Table 4.1, where f ði, jÞ is the original image; gði, jÞ, g, g1, and g2 are
the gray-tone functions to generate negative photos of the original images;
�~ ,Q~ , �~ ; and �~ are PLIP addition, subtraction, scalar multiplication, and
image multiplication, respectively; c and b are constants; and m, g, k, and l
are parameters that can be selected as the maximum value of images or other
values. Note that the PLIP addition and scalar multiplication use the same
parameter g because the scalar multiplication is an extension of addition,
adding the image to itself c times.63
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4.3 Nonlinear Unsharp Masking

Integrating the nonlinear filtering operation with the unsharp masking
technique, this section introduces a new unsharp masking scheme, called
nonlinear unsharp masking (NLUM), for mammogram enhancement. This is
a complex unsharp masking scheme. It is good at enhancing suspicious
regions in mammographic images.

4.3.1 The new NLUM scheme

The block diagram of the NLUM scheme is shown in Figure 4.2. The
original mammogram Iðm, nÞ is filtered by a nonlinear filter. The filtered
mammogram Fðm, nÞ is then normalized and combined with the original
mammogram using the fusion #1 and #2 to obtain an enhanced mammogram
Eðm,nÞ.

The nonlinear filtering operation applies a nonlinear operation to the
pixels within a 3 � 3 window. Depending on the different applications, the
filtering operation and fusion #1 and #2 can be selected as the arithmetic
operations, the PLIP operations, or the nonlinear operations such as the mean
square root or logic operations. This property makes the NLUM scheme
more general, meeting more-complicated requirements for different objects
and applications.

Figure 4.2 Block diagram of the proposed NLUM scheme.

Table 4.1 The PLIP operations.

PLIP Operation Definition

Gray tone function gði, jÞ m f ði, jÞ
Addition g1 �~g2 g1 þ g2

g1g2
g

Subtraction g1Q
~
g2 k

g1 g2
k g2

Scalar multiplication c�~g g g 1
g
g

� �c

Image multiplication g1 �~g2 ~w�1 ~wðg1Þ ~wðg2Þ
� �

,

where ~wðgÞ l ln b 1
g
l

� �
, and

~w�1ðgÞ l 1 exp
g
l

� �1=b� �
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If the NLUM scheme uses the arithmetic operations and fusion #1 and #2
are set to be the arithmetic addition and multiplication, respectively, then the
NLUM scheme will resemble the flow shown in Figure 4.3(a). The enhanced
mammogram is defined by

Eðm, nÞ ¼ A1Iðm, nÞ þ A2
Fðm,nÞ
jF jmax

Iðm,nÞ, ð4:9Þ

where A1 and A2 are the scaling factors, and jF jmax is the maximum absolute
value of the mammogram Fðm, nÞ filtered by a 3 � 3 nonlinear filter
defined by

Fðm,nÞ ¼ w0I0 w1I1 w2I2, ð4:10Þ
where constants w0,w1,w2 
 0 are weight coefficients, and

I0 ¼ I2a0ðm, nÞ,
I1 ¼ I2a1ðm� 1, nÞ þ I 2a1ðmþ 1, nÞ þ I 2a1ðm,n� 1Þ þ I2a1ðm, nþ 1Þ, ð4:11Þ
I2 ¼ I2a2ðm� 1, n� 1Þ þ I2a2ðmþ 1,n� 1Þ þ I2a2ðmþ 1,n� 1Þ þ I 2a2ðmþ 1,nþ 1Þ,
where a0,a1,a2 are exponential coefficients, and Ið•Þ is the image pixel
intensity value.

On the other hand, if NLUM chooses the PLIP operations and fusion #1
and #2 are selected as the PLIP addition and multiplication, respectively, then
the NLUM scheme follows the flow shown in Fig. 4.3(b). The NLUM output
will change to

Eðm,nÞ ¼ A1�~ Iðm,nÞ �~A2�~ Fðm,nÞ
jF jmax

�~ Iðm, nÞ
� �

, ð4:12Þ

Figure 4.3 Practical examples of the proposed NLUM scheme (a) using the arithmetic
operations and (b) using the PLIP operations.
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where the filtered mammogram Fðm, nÞ is defined as

Fðm, nÞ ¼ w0�~ I0Q~w1�~ I1Q~w2�~ I2 ð4:13Þ
and

I0 ¼ I2a0ðm, nÞ
I1 ¼ I2a1ðm� 1, nÞ �~ I2a1ðmþ 1, nÞ �~ I2a1ðm,n� 1Þ �~ I2a1ðm,nþ 1Þ ð4:14Þ
I2 ¼ I 2a2ðm� 1,n� 1Þ �~ I2a2ðmþ 1,n� 1Þ �~ I2a2ðmþ 1, n� 1Þ �~ I 2a2ðmþ 1,nþ 1Þ,
where �~ ,Q~ , �~ ; �~ are PLIP addition, subtraction, scalar multiplication, and
image multiplication, respectively, and A1,A2,w0,w1,w2,a0,a1,a2 are weight
coefficients.

A pseudo-code implementation of the NLUM scheme appears below.

Input the original image I(m,n)
Set values for parameters A1, A2, w0, w1, w2, a0, a1, a2

Switch (operation)
Case: linear operation

If (Fusion #1 = arithmetic addition) && (Fusion #2 =
arithmetic multiplication)

F(m,n) ( apply Eq. (4.2) to input image I(m,n)
E(m,n) ( Eq. (4.1)

End
Case: PLIP operation

If (Fusion #1 = PLIP addition) && (Fusion #2 = PLIP
multiplication)

F(m,n) ( apply Eq. (4.5) to input image I(m,n)
E(m,n) ( Eq. (4.4)

End
End

Output the enhanced image E(m,n)

4.3.2 Discussion

NLUMis a complex unsharpmasking schemebecause there are eight coefficients
to be specified for practical applications. However, more coefficients offer
NLUM more power and design flexibility to meet more-complex and specific
requirements in real-world applications. The nonlinear filtering operation in the
NLUMscheme can be designed as a combination of two different types of filters,
which offers NLUM more-robust characteristics. For example, the coefficients
w0,w1,w2 can be designed as a high-pass filter, and a0,a1,a2 can be chosen as a
center-weighted mean filter.

The users can manually/experimentally select all of the NLUM
coefficients. However, this is a time-consuming method that makes it
difficult to reach the best enhancement results due to a lack of criteria for
quantitative evaluation. Alternatively, the NLUM coefficients could be
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represented by one or two variables based on some reasonable assumptions
to simplify the NLUM design and reduce the number of its coefficients in
practical applications. An enhancement measure approach could then be
used to optimize the coefficients, thus obtaining the best enhancement result.
(This method is discussed in Section 4.5.2.)

In summary, the presented new NLUM scheme can be an embodiment of
the following scenarios:

1. The fusion operators can be defined as different linear or nonlinear operations.
2. The new nonlinear filtering operator can be designed as a combination of

different types of filters.
3. The coefficients allow users to change the NLUM properties to better

meet application specific requirements.

These scenarios offer users more design flexibility to adapt the scheme to
more specific and complicated requirements in real-world applications. The
proposed NLUM can also be applied to other imaging modalities.

4.4 New Enhancement Measure

Developing a good quantitative measure to assess image enhancement is
extremely difficult because the improvement in the enhanced images is often
subjective and hard to measure. On the other hand, a good quantitative measure
is important in order to select the best enhancement results for computer-aided
detection (CAD) systems. This section reviews several existing methods of
measuring the quality of image enhancement and then introduces a new
enhancement measure using the concept of the second derivative.

4.4.1 Discussion

Several measures of image enhancement have been developed by using a contrast
measure. The EME (measure of enhancement)81 and the EMEE (measure of
enhancement by entropy) have been developed by Agaian et al.18 These two
measures are based on a Weber-law-based contrast measure. Including the
Michelson contrast law,82 the AME (Michelson–Law measure of enhancement)
and AMEE (Michelson–Law measure of enhancement by entropy) were later
introduced to improve the measure performance of the EME and EMEE.19

Because PLIP subtraction has been shown to be consistent withWeber’s contrast
lawand characteristics of the humanvisual system,65 the contrast information can
be presented and processed more accurately. Including the PLIP operators to
further improve these measures, Panetta et al.51,83 have developed the logAME
(logarithmic Michelson contrast measure) and logAMEE (logarithmic AME by
entropy). The improved versions of the logAME are the SAME (similarity-
based logAME) proposed by Wharton et al.84 and the Global LogAMEE by
Gao et al.69

All of these enhancement measures divide an image into k1 � k2 blocks
and then calculate the average values of the measure results of all blocks in the
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entire image. The definitions of these measures are listed in Table 4.2, where
the image I is divided into k1 � k2 blocks, and a is constant. Imax and Imin are
the maximum and minimum of the intensity values in these blocks,
respectively. However, these enhancement measures only calculate the
maximum and minimum values of the small regions or blocks in images.
As a result, they are sensitive to noise and to steep edges in images.

Other enhancement measures include region contrast of a region in an
image42 Iðx, yÞ and contrast in the DCT domain.85 A new enhancement
measure is introduced here using the concept of the second derivative because
it measures the change ratio of the variation speed of pixel values.

4.4.2 New enhancement measure: SDME

Integrating the idea of the second-derivative-like visibility operator44 with the
strengths of the earlier reviewed measures, a new enhancement measure called
the second-derivative-like measure of enhancement (SDME) is introduced
here. It is defined by

SDME ¼ 1
k1k2

Xk1
l 1

Xk2
k 1

20 ln
Imax,k,l 2Icenter,k,l þ Imin,k,l

Imax,k,l þ 2Icenter,k,l þ Imin,k,l

����
����, ð4:15Þ

where an image is divided into k1 � k2 blocks, Imax,k,l, Imin,k,l are the maximum
and minimum values of the pixels in each block separately, and Icenter,k,l is the
intensity of the center pixel in each block. Thus, the size of the blocks should be
an odd number of pixels, such as 3�3 or 5�5.

Because Icenter,k,l 6¼ � 1
2 ðImax,k,l þ Imin,k,lÞ according to the SDME defini-

tion, the blocks with Icenter,k,l ¼ � 1
2 ðImax,k,l þ Imin,k,lÞ will be discarded when

calculating the SDME of an image. Therefore, when Icenter,k,l approaches
� 1

2 ðImax,k,l þ Imin,k,lÞ, the SDME value will approach infinity; when
Icenter,k,l ¼ 0 for all blocks, the minimal SDME value is zero.

4.5 Simulation Results and Evaluations

This section provides experimental results to discuss the SDME measure
performance, the NLUM parameter optimization, and the NLUM enhance-
ment analysis, comparison, and evaluation.

4.5.1 Comparison of enhancement measures

The SDME is compared with six existing measure methods. The measure
performance of each method is determined by the consistency of the measure
results and subjective evaluation of visual quality of mammograms.

The subjective evaluation method uses the mean opinion score (MOS)
recommended by the International Telecommunication Union Telecommuni-
cation Standardization Sector (ITU-T).86 The MOS intends to determine
which results are the most visually pleasing for a human observer. In this
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subjective test, seven human observers visually evaluated all original and
enhanced mammograms. Each mammogram was given a MOS score of 1–5,
where a score of five indicates the best visual quality.

A set of 19 test mammograms was randomly selected from the Internet
and the mini-MIAS database of mammograms.87 They were enhanced using
four algorithms: NLUM, RUM, ANCE, and CLAHE. Therefore, including
the original and enhanced mammograms, there were 95 test images in total
(19 � 5 ¼ 95) for this comparison. They were evaluated according to the
subjective method and enhancement measures.

Table 4.3 shows the average subjective evaluation scores of each observer for
the test mammograms. The bottom row lists the average evaluation scores of all
human observers on enhanced images categorized by enhancement algorithms.
Based on the scores, NLUM gives the best overall visual quality with a score of
4.6857, whereas CLAHE obtains the worst quality with a score of 1.9048.

The SDME and six existing measures are then used to measure the quality
of all 95 test images. Each individual enhancement measure has its own data
range; a good measure method should yield higher measure results for images
with higher visual quality, and vice versa.

As shown in Table 4.4, different measures have diverse evaluation results
for these enhancement algorithms. For example, the EME evaluates CLAHE-
enhanced images as the best, whereas the AME gives the highest value to the

Table 4.4 Comparison of measure results based on different algorithms. For each individual
enhancement measure, a higher score indicates better enhancement performance.

Enhancement
Measure

Original NLUM RUM ANCE CLAHE

EME 0.9129 1.0833 1.0024 1.0023 2.5425
EMEE 0.0560 0.0688 0.0715 0.0614 0.1961
AME 26.4940 25.1455 26.3165 25.6358 17.4429
AMEE 0.0611 0.0679 0.0619 0.0653 0.1105
logAME 0.0526 0.0485 0.0522 0.0506 0.0316
logAMEE 0.0894 0.0993 0.0894 0.0942 0.1366
SDME 43.6388 47.2091 43.3729 42.2219 35.5386

Table 4.3 Subjective evaluation for the enhanced results by different algorithms. The rating
scale: 1 ¼ bad, 2 ¼ poor, 3 ¼ fair, 4 ¼ good, 5 ¼ excellent.

Observer Original NLUM RUM ANCE CLAHE

#1 3.5556 4.6111 3.3333 2.6111 1.4444
#2 3.6667 4.9444 3.0000 2.5556 1.7222
#3 3.4444 4.2222 3.1111 2.3889 1.6667
#4 3.7778 4.6889 3.0000 2.3333 2.0000
#5 3.3333 4.8889 3.2222 2.6667 2.6111
#6 3.8889 4.7778 3.2778 2.0000 2.1111
#7 4.1111 4.6667 3.4444 2.4444 1.7778
Average 3.6825 4.6857 3.1984 2.4286 1.9048
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original images. Comparing theMOS evaluation results in Table 4.4, the SDME
is the onlymeasure whose results are consistent with theMOS evaluation results.
The rest of this chapter uses the SDME to assess the enhancement performance
of different algorithms.

4.5.2 Parameter optimization

To demonstrate how to design and automatically optimize the NLUM
parameters using the proposed SDME, one mammogram obtained from the
Internet is used as an example; HVS-based image decomposition is then
applied for the visualization and analysis of the enhanced results. The SDME
is also used to measure and evaluate the performance of the NLUM for
mammogram enhancement.

To assess the enhancement performance of the presented NLUM scheme,
the users have the flexibility to use any existing measure approach to establish
a qualitative metric of mammogram enhancement. The enhancement measure
can also be used to optimize all of the NLUM coefficients to achieve the best
enhanced results. Here, the SDME is selected to measure and evaluate the
performance of NLUM for mammogram enhancement.

There are eight coefficients in NLUM: To reduce the number of
parameters, the user can make assumptions according to the practical design
requirements, for example, (1) A2 ¼ 1=A1, w0 ¼ 2, a0 ¼ 8h, a1 ¼ a2 ¼ h,
and w1 ¼ w2 ¼ 0:125; or (2) A2 ¼ 20A1, w0 ¼ 8h, a0 ¼ 12h, a1 ¼ h,
a2 ¼ 2h, and w1 ¼ w2 ¼ h. These assumptions design the nonlinear filter
as a combination of a high-pass filter (w0,w1,w2) and a low-pass filter
(a0,a1,a2). More weight is given to the filtered image in order to enhance the
fine details in images. With these assumptions, all of the NLUM coefficients
are correlated with the parameters A1 and h. Assumption (1) is selected here to
demonstrate how to automatically design NLUM.

By automatically changing the parameters A1 and h, several enhanced
mammograms are generated and then measured by the SDME; the measure
results are then plotted as a graph. The parameters giving the best enhanced result
can be located at the points where the SDME curve reaches the local extrema.

Different fusion operations can be used in the NLUM scheme; compare
the arithmetic operation with the PLIP version. Taking Figure 4.4(a) as a test
image, the SDME measure results of the enhanced mammograms by NLUM
with arithmetic and PLIP operations are plotted in Figure 4.5. The measure
results allow one to find the location of parameters A1 and h that yield the best
enhanced result for each operation.

Using the parameters obtained from the measure in Figures 4.5(a) and
(b), the original mammogram is enhanced by NLUMwith arithmetic addition
and PLIP addition, respectively. The enhanced mammograms and their
cropped suspicious regions are shown in Figure 4.4. The visual quality and
local contrast of the enhanced mammograms are much better than those of
the original. Fine details such as microcalcifications and masses in the original
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because the NLUM based on PLIP operation slightly overenhances the mass
region, as shown in Figure 4.4(c). Therefore, the arithmetic operation is
chosen for NLUM to enhance mammograms in the rest of this chapter.

4.5.3 Enhancement analysis

There are many different methods used to analyze the enhanced images.
Figure 4.6 provides two examples: the negative view and thresholding of the
specific region of interest (ROI). The shape of the suspicious regions is very clear
and easily discernable. This demonstrates thatNLUMperformswell in improving
the contrast of suspicious regions, objects, and details in mammograms.

4.5.4 HVS-based analysis and visualization

While the user can view the entire image’s enhanced results, the process would
be improved if only the suspicious regions could be emphasized during
analysis. Instead of using the segmentation algorithms, HVS-based decompo-
sition can be used as an alternative method to provide visualization of results
that isolate ROIs, mainly suspicious regions.

By using the background intensity and the rate of information change,
HVS-based decomposition separates images into four subimages based on
four defined regions: (1) region 1: the saturation region for overilluminated
areas; (2) region 2: the Weber region for properly illuminated areas; (3) region 3:
the Devries–Rose region for underilluminated areas; (4) region 4: the fourth
region for all pixels containing the least informative pixels.88,89 This section
extends its application to enhancement analysis and visualization.

Figures 4.7 and 4.8 show the HVS-based decomposition results of the
enhanced mammogram and its negative (tonal inversion), respectively. In
general, the mass regions can be segmented by HVS-based decomposition in
one subimage without involving any segmentation algorithms. The results are
shown in Figures 4.7(b) and 4.8(d). Therefore, HVS-based decomposition can
be used for segmentation and classification of pathological cases in a CAD
system.

Figure 4.6 Enhancement analysis: (a) the enhanced region cropped from the mammo-
gram in Figure 4.4(b), (b) the threshold image of (a), and (c) the negative photo of (a).
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4.5.5 Comparison of enhancement performance

After demonstrating how to automatically optimize the parameters in
NLUM, this section applies it to more mammograms and compares it with
other well-known enhancement algorithms.

The mammograms for this comparison were obtained from the mini-
MIAS database of mammograms.87 The database consists of 322 mammo-
grams, and the cases of patient records range from fairly dense to
extraordinarily dense breast parenchyma. Some cases are completely fatty.
Most masses are ill-defined, indistinct, or speculated.

All test mammograms are cropped into smaller-size images for analysis
such that the resulting cropped mammographic images contain most of the
microcalcifications, masses, and suspicious regions that may be interesting to
radiologists. These mammograms have a limited black background, which
contains nonobject regions and background project noise.

Six mammograms were used as examples, and the enhanced results are
shown in Figures 4.9 and 4.10. They clearly show how the enhancement
algorithms change fine details and suspicious regions in images. Their SDME
results are shown in Table 4.5.

Figure 4.7 HVS-based decomposition of the enhanced mammogram: (a) the enhanced
mammogram, (b) the first subimage, (c) the second subimage, (d) the third subimage, and
(e) the fourth subimage.

Figure 4.8 HVS-based decomposition of the inversed mammogram: (a) the negative of the
image of the enhanced mammogram; (b) the first subimage; (c) the second subimage; (d)
the third subimage; and (e) the fourth subimage.
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Figure 4.9 Comparison of mammogram enhancement using different algorithms:
(a) Original mammograms (Mam 1 to Mam 3), (b) NLUM-enhanced results, (c) RUM-
enhanced results, (d) ANCE-enhanced results, (e) CLAHE-enhanced results, and (f) DICE-
enhanced results.
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Figure 4.10 Comparison of mammogram enhancement using different algorithms:
(a) Original mammograms (Mam 4 to Mam 6), (b) NLUM-enhanced results, (c) RUM-
enhanced results, (d) ANCE-enhanced results, (e) CLAHE-enhanced results, and (f) DICE-
enhanced results.
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• RUM slightly improves the visual quality of images, but it generates
spot artifacts, as shown in Figures 4.8(c) and 4.9(c).

• ANCE has very limited visual improvement and produces many textile
artifacts in the mammograms.

• CLAHE overenhances the background of all mammograms, making
microcalcifications and/or masses more unrecognizable than the
original ones.

• As evident from Figures 4.9(f) and 4.10(f), DICE improves the contrast
of the microcalcifications, but it fails to enhance mass regions. It also
generates background noise and textile artifacts.

The measure results in Table 4.5 support these observations. The
presented NLUM outperforms the others because it improves the contrast
of mammograms and visual quality of suspicious regions such as masses and/
or microcalcifications, which is useful for detecting and diagnosing diseases or
breast cancer at an early stage. The enhanced mammograms have no detail
information loss. The measure results in Table 4.5 verify the excellent
enhancement performance of NLUM.

4.5.6 ROC evaluation

The receiver operating characteristic curve was originally developed for
signal-detection theory. It is a well-known evaluation methodology used for
medical decision making and medical diagnostic imaging systems.90,91 The
ROC curve is a graphical plot of the true positive rate (a fraction of true
positives over the positives) versus the false positive rate (a fraction of false
positives over the negatives). To determine whether a person has a specific
disease in the clinical diagnosis, a true positive case occurs when the person
tests positive and actually has the disease. A false positive case, on the other
hand, occurs when the person tests positive but does not actually have the
disease.92 The MATLAB® implementation of the ROC analysis is addressed
in references.93,94

This section uses the ROC curve to evaluate the NLUM enhancement
performance. 60 mammograms were selected from the mini-MIAS database.
They consist of 30 normal mammograms (which do not contain suspect

Table 4.5 SDME results of mammograms enhanced by different algorithms. A higher
score indicates better enhancement performance.

Original NLUM RUM ANCE CLAHE DICE

Mam 1 44.7378 47.4100 44.5905 41.9886 36.1296 39.748
Mam 2 42.4422 44.7627 42.1725 42.4422 34.2108 37.12654
Mam 3 44.1716 46.9127 44.1132 42.0401 35.8518 39.03196
Mam 4 45.3980 47.6609 45.2934 42.0689 36.2382 39.94165
Mam 5 46.7206 49.7931 46.6719 44.6588 37.5773 41.72588
Mam 6 45.0838 47.6866 44.9040 42.1152 35.9426 39.9139
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regions such as calcifications and masses) and 30 suspicious mammograms.
All mammograms were cropped into smaller-size images such that the
resulting images have minimal background or contain most of abnormal
regions such as microcalcifications and masses.

All mammograms were enhanced by NLUM and then divided in two
groups: original and enhanced mammograms. They were inspected by a
medical doctor who has a great deal of clinical experience with viewing
mammograms. The doctor marked each mammogram with the case type
(‘0’ for the truly negative case indicating a completely normal mammogram
and ‘1’ for the truly positive case referring to an abnormal mammogram.)
and the confidence rate for each case type. The confidence rate is from 1–5,
where ‘1’ indicates a definitely negative case, and ‘5’ means definitely
positive.94

Using an online code of the ROC analysis developed by Eng,94 the
doctor’s inspection results were individually plotted into ROC curves for
the original and enhanced mammograms. The results are shown in
Figure 4.11.

The area under the ROC curve (AUC) is used to quantitatively evaluate the
classification performance of the diagnosis system.90,91 The AUC value is always
between 0 and 1.AhigherAUCvalue indicates better classification performance.
The AUC for the enhanced mammogram is 0.957, whereas the AUC for the
originals is 0.874. This demonstrates that the NLUMenhancement improves the
doctor’s diagnosis. It could potentially improve cancer breast diagnosis and
detection in the CAD systems.

4.6 Conclusion

This chapter introduced a new nonlinear unsharp masking scheme for
mammogram enhancement. NLUM has been shown to provide more design
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Figure 4.11 The ROC curves of the original and enhanced test mammograms.
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flexibility that makes it possible to meet more specific and complex requirements
in real world applications. The simulation results have demonstrated that the
NLUM parameters can be optimized by the enhancement measure to obtain
the better enhanced result for clinical applications. Enhancement comparison has
proven that the NLUM shows better performance for improving the local
contrast of suspicious regions and fine details in mammograms. NLUM has
potential applications of improving the automatic disease detection anddiagnosis
in CAD systems.

To quantitatively evaluate NLUM performance for mammogram
enhancement, we have introduced a new enhancement measure called the
second-derivative-like measure of enhancement. Compared with other
existing measure methods, the SDME shows better performance for
enhancement measurement and assessment. HVS-based decomposition has
been verified to be a useful tool to analyze and display suspicious regions in
mammograms.
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Chapter 5

Skin Lesion Extraction Based
on Distance Histogram and
Color Information

Yanliang Gu and Jinshan Tang
Medical Informatics Program & Computer Network and Systems Administration Program,
School of Technology, Michigan Technological University, Houghton, MI, USA

5.1 Introduction

As is well known, skin is the largest organ in human body, making up 12–15%
of body weight, with a surface area of 1–2 square meters.1 There are two main
layers of skin: the top layer is called the epidermis, and the inner layer is called
the dermis. Malignancies are always found in the epidermis, and it contains
three kinds of cells:2 squamous, basal cells, and melanocytes. Squamous is
on the surface and looks flat and scaly; basal cells are round cells; and
melanocytes give color to skin.2 The dermis contains blood vessels and sweat
glands. It is used to keep skin from drying out.3

People whose skin is exposed to sunlight for longer amounts of time are
more prone to develop skin cancer.3 Australia and New Zealand are the two
countries with the highest rates of skin cancer incidence in the world, with
rates that are almost four times that of the United States.4 Based on the
statistics in 2008, 59,695 people in the US were diagnosed with melanomas of
the skin, and 8,623 people died from it.5

Skin cancers are named after three kinds of cells in the epidermis from
which they arise. Basal cell cancer arises on basal cells and is the most-
common skin cancer. Squamous cell cancer is found on squamous cells and is
less common. Basal and squamous cell cancers are called nonmelanoma skin
cancer and are less dangerous than melanoma, which develops on melanocyte
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cells. Melanoma is less common than nonmelanoma skin cancer, but it is
more likely to spread and become fatal.6 8

Basal cell cancer appears as a raised, smooth bump on the sun-exposed
skin of the head, neck, or shoulder. It grows slowly and painlessly. Even
though this kind of skin cancer hardly spreads, it can extend below the skin to
the bone and cause further damage. Squamous cell cancer appears as a red,
crusted patch on the face, lips, and mouth. It is usually found in elderly
people, and it grows rapidly in size to form a large mass.7 Melanoma appears
in an asymmetrical zone, with an irregular border, with a diameter frequently
greater than 6 mm. Most melanomas display color between brown and
black, but a few appear pink or red. This type of cancer grows rapidly and
sometimes displays different colors and shapes, which can be warning signs.8

Fortunately, even melanoma can be cured if it is detected early. Thus, the
detection of skin cancer in its early stage has attracted the attention from
different fields.8

Computer technologies play an important role in the early detection of
skin cancer, and different methods for detecting skin cancer have been
proposed. A skin cancer detection system was developed by F. Ercal;9 in the
proposed system, the border of the skin lesion was extracted by doctors, and
the features were constructed using the “ABCDE rule.” A commercial neural
network classifier was adopted to classify the skin lesions into benign or
malignant. This system can achieve 80% accuracy rate. Another computer
program, named MoleSence, was developed by Opticom Data Research,10

which also used the ABCDE rule to analyze skin cancer images. An
automated melanoma recognition system was developed by H. Ganster.11 In
this system, automated image segmentation was accomplished by fusing the
output of 3 algorithms, and the segmentation accuracy is 96%. A 24-NN
(nearest neighbor) classifier was used for skin cancer classification, and it
achieved a 73% melanoma-recognition rate. The sensitivity and specificity are
87% and 92% for the “not benign” class in a two-class scenario.

Handyscope was developed by the company called Fotofinderin
Germany;12 it merges a dermatoscope with an iPhone and can extract lesion
features. However, it does not incorporate lesion classification in the same
device. A multi-direction gradient vector flow (GVF) has been proposed for
skin cancer border extraction.13 In the proposed method, a new anisotropic
diffusion filter employing new gradient computation and an adaptive
threshold selection method was used to remove the noise. After noise
reduction, the system used a multidirectional GVF snake that was extended
from the single-direction GVF snake to segment the skin cancer image.13 An
automatic detection method employing a radial search algorithm to detect
irregular borders in skin tumor images was proposed.14 A method based
on domain-specific algorithms was used to extract the boundary of a skin
lesion, and this method can achieve a high success rate.15 An automatic
approach for skin cancer segmentation was proposed by the modification of
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the region-based active contour model (RACM).16 In the proposed approach,
the initial threshold was set automatically, and a function named Courant–
Friedreichs–Lewy (CFL) was used to enforce the stability of curves.
Compared with other state-of-the-art methods, this approach achieves better
accuracy. A method based on a principal component transform algorithm was
developed for automatic color segmentation.17 This method can detect the
borders of skin cancer in six different color spaces. Many images were
obtained with low contrast and lack color calibration; thus, an approach to
improve the accuracy of skin cancer segmentation for these cases was
provided.18 This approach enhanced color information by a preprocessing step,
and then skin cancer segmentation was performed on the preprocessed images.
A segmentation algorithm based on an evolution strategy (EV) was provided to
detect the skin cancer area.19 The segmentation results were compared with
those obtained by a dermatologist, and the comparison showed that the
proposed method can get high accuracy for images with either high noise level,
less prominent edges, or very small size lesions. Using region fusion and
narrow-band energy graph partitioning technology, a novel multimodal skin
lesion segmentation method was developed.20 The proposed method can
process skin cancer images with blurred and irregular edges well and can
achieve a better performance compared with other state-of-the-art segmentation
methods. A new automatic skin cancer segmentation method was introduced,21

which first converted a color image into a gray image before segementing it
using intensity thresholding. The segmentation is refined using image edges.

This chapter proposes a new method for skin lesion detection. The
proposed system uses a distance histogram and color information to segment
the skin lesions.

5.2 Color-Based Skin Lesion Segmentation

The proposed skin lesion segmentation system consists of three main stages,
shown in Fig. 5.1. In the first stage, noise reduction technology is used to
remove the noise and hairs in the skin cancer image. In the second stage, the
color image is converted into a color space and an adaptive color model is
constructed. In the third stage, color information and a distance histogram are
used to extract the border of the lesions from the skin cancer image.

5.2.1 Noise reduction

Because skin cancer images obtained usually include noise and hairs, noise
reduction technology is used in the system so that the segmentation results will
be good. Many noise reduction methods have been proposed in the past, one
of the most popular being a Gaussian filter. However, a Gaussian filter
generally blurs the edges of the images, and thus a bilateral filter is
investigated in this chapter. Compared with a Gaussian filter, a bilateral filter
has good performance in edge preservation.22 A bilateral filter was first
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introduced by Tomasi and Manduchi22 and has been found to have wide
application in noise reduction.

There are different types of bilateral filters.22,23 One type of bilateral filter
is called the Gaussian bilateral filter, which can be expressed mathematically
as22,24

I ðXÞ ¼ 1
C

X
Y2NðX Þ

e
kY Xk2
2s2

d e
kIðY Þ IðX Þk2

2s2r IðYÞ, ð5:1Þ

where I ðXÞ is the output pixel value vector, IðYÞ is the input pixel value
vector, X and Y are the coordinate vectors, s2

d and s2
r are the parameters

controlling the fall-off of weights in spatial and intensity domains,
respectively, NðX Þ is a spatial neighborhood of pixel IðX Þ, kk is
Euclidean distance, and C is used for the normalization and can be
expressed as

C ¼
X

Y2NðX Þ
e

kY Xk2
2s2

d e
kIðY Þ IðX Þk2

2s2r : ð5:2Þ

5.2.2 Adaptive Color Model Building

5.2.2.1 Color spaces

Several color spaces are investigated in this chapter: RGB, YUV, HSV, and
YCbCr. YUV color space consists of two components: one is luminance (Y),
which carries the brightness information of the images, and the others are

Original image 

Noise reduction 

Adaptive Color Model 

Building   

Skin Lesion Extraction 

Output 

Figure 5.1 System architecture.
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chrominance components U and V, which represent the color information of
the images.27 HSV color space uses two cylinders to represent the pixels in an
RGB color space. In HSV color space, H means “hue,” which is the degree of
the angle around the center vertical axis in each cylinder; S means
“saturation,” which indicates the degree to which the hue differs from a
neutral gray; and V means “value,” which stands for the illumination level.28

YCbCr, Y0CbCr, or Y Pb/Cb Pr/Cr, also written as YCBCR or Y0CBCR, is a
family of color spaces used as a part of the color image pipeline in video and
digital photography systems. Y is the luminance component, and CB and CR
are the blue-difference and red-difference chroma components.29 The
relationship between RGB color space and other color spaces can be obtained
by different mathematics. For RGB to YUV, the following equation is
adopted:

Y ¼ 0:299Rþ 0:587G þ 0:114B,

U ¼ 0:14713R 0:28886G þ 0:436B,

V ¼ 0:615R 0:51499G 0:10001B:

ð5:3Þ

The conversion from RGB to YCbCr can be expressed as

Y ¼ 0:299Rþ 0:587G þ 0:114B,

Cb ¼ 0:564ðB Y Þ þ 128,

Cr ¼ 0:713ðR Y Þ þ 128,

ð5:4Þ

and the conversion from RGB to HSV can be obtained by

M¼max ðR,G,BÞ,
m ¼min ðR,G,BÞ,
V ¼M=255,

S ¼f 1 m=M if M > 0

0 if M ¼ 0,

H ¼f cos 1 ðR� 0:5G � 0:5BÞ= R2 þ G2 þ B2 � RG � RB� GB
ph i

if G � B

360� cos 1 ðR� 0:5G � 0:5BÞ= R2 þ G2 þ B2 � RG � RB� GB
ph i

if G < B:

ð5:5Þ

5.2.2.2 Adaptive color model building

In order to use color information to detect the lesions, the color model must be
built. This chapter investigates adaptive color modeling by building the color
model for background, consisting of two steps. The first step builds a general
background color model for color detection, and the second step, wherein the
general model is used to detect the color information in a specific image, uses
the color information from the four corners of the image detected by the
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general model (Fig. 5.2) to rebuild a color model specified for the image; the
new color model is then used to detect the lesions in the image. Specifically, in
the building processing, the mean and co-variance of color components is
calculated for each color space, using 20 images as the general color model.
The following is an example of mean and co-variance computations in YUV
color space:

M ¼ ðMy,Mu,MvÞ, ð5:6Þ

C ¼
Cyuð1, 1Þ Cyuð1, 2Þ Cyvð1, 2Þ
Cyuð1, 2Þ Cyuð2, 2Þ Cuvð1, 2Þ
Cyvð1, 2Þ Cuvð1, 2Þ Cuvð2, 2Þ

0
B@

1
CA, ð5:7Þ

where M is the mean value, and C is the co-variance. After the mean and co-
variance of the general color model is built, and when color detection begins
for a specific image, the general color model is used to detect the color from
four corners of the image. The color regions found using the general color
model will be used to rebuild a color model for the specific image for which
the specific mean and co-variance are obtained.

5.2.3 Distance-histogram-based lesion extraction

The proposed lesion extraction is composed of three steps: skin color
detection, adaptive thresholding, and morphological post-processing.

5.2.3.1 Skin color detection

In this step, we will use color information to find the lesion regions based on
the assumption that lesion regions and background have different color
distributions, which can be characterized using mean and co-variance. Thus,

Figure 5.2 Adaptive color modeling.
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we can classify a pixel as the part of the background or part of the skin lesion
using the Mahalanobis distance

dðx, yÞ ¼ ðIðx,yÞ MÞT � C 1 � ðIðx,yÞ MÞ, ð5:8Þ
where I(x, y) is a vector constructed from the color components of pixel (x, y),
and d(x, y) is the Mahalanobis distance at pixel (x, y). M and C are the mean
and the co-variance of the adaptive color model obtained using Eqs. (5.6) and
(5.7). A d(x, y) can be obtained for each pixel in the original image. A pixel at
location (x, y) is determined to be background by the following rules: for a
predetermined threshold T, if d(x, y) < T, then either the pixel belongs to
background regions or it is classified into skin lesions. The pixel values are set
to 1 if the pixel is classified as a skin lesion and 0 if it is classified as
background, thus producing a binary image. For convenience, the binary
image is denoted as B, which has the same size as the original image.

5.2.3.2 Adaptive thresholding

One of the important steps in classifying a pixel as skin lesions or background
involves the threshold T. Several methods have been proposed in the
literature. In this paper, we will develop a new adaptive thresholding method.
The proposed method is a distance-histogram-based method. The basic idea is
to use d(x, y) to generate a histogram and determine the threshold based on
the histogram. However, the histogram generated directly from d(x, y) is
sticky and noisy, it is difficult to find a suitable T. The proposed method first
smooths the histogram directly obtained from d(x, y) and then the smoothed
histogram is used to get the threshold. Figure 5.3(a) shows the original
histogram obtained directly from d(x, y), and Fig. 5.3(b) shows the histogram
smoothed using a Gaussian filter (s ¼ 3). In order to find the threshold, the
lowest point between the first peak and the second peak of the smoothed
histogram must be found. The first peak stands for the number of the pixels

Figure 5.3 (a) Distance histogram without smoothing. (b) Smoothed histogram from
Fig. 5.3(a). The asterisk in the second graph is the threshold.
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that are closest to the adaptive color model (normal skin), so the lowest point
splits the normal skin and the lesion skin. The parts whose distances are larger
than the threshold are the lesion skin.

5.2.3.3 Morphological processing

In this step, morphological technology is used because the image obtained via
the method in Section 5.2.3.2 may have noise in the normal skin and the lesion
skin. Two morphological operators are used to postprocess the binary image B.

The first operator used is called “connected-component labeling
technology,” which is used to remove the small objects. The basic idea of
connected-component labeling technology is to separate the images into
several objects and label them. During processing, the background is labeled
as 0, the first object is labeled as 1, the second object is labeled as 2, and so on.
After all of the objects are labeled, the size of these objects is compared with a
preset threshold. If the size of an object is smaller than the preset threshold,
the object will be labeled as 0 (the background). Figure 5.4(a) shows the
original binary image, and Fig. 5.4(b) shows the processed one.

After the image is processed using the first morphological operator, the
second operator is used in the postprocessing, known as a closing operation.
Closing is defined simply as a dilation followed by an erosion using the same
structuring element for both operations; it is useful to remove small holes.
Figure 5.5 shows the images after the closing operation.

Figure 5.4 (a) The original binary image, and (b) the processed image.

Figure 5.5 (a) The original binary image, and (b) the processed image.
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5.3 Experimental Results

Experiments were performed to verify the effectiveness of the proposed
method. The experiments are divided into two parts. The first part is used to
test the noise reduction method, and the second part is used to test the
proposed skin-lesion-extraction method.

5.3.1 Noise reduction on synthetic images

The first experiment was used to perform noise reduction on synthetic images.
A red square image was created and different levels of noise were added to the
image. In this chapter, Gaussian noise was added to the images. Figure 5.6
shows the original images and the corresponding images after noise reduction.

Figure 5.6 Filtered results of different Gaussian-noised synthetic images. Column
(a) shows the original synthetic images; column (b) shows the images after Gaussian
noise with different variances are added; column (c) shows the filtered images obtained by a
Gaussian filter; and column (d) shows the filtered images obtained by a bilateral filter.
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To evaluate the performance of the two filters, this section uses the
quantitative measure mean square error (MSE), defined as follows:25

M ¼
X

ðx,yÞ2image

ðI0ðx, yÞ Iðx, yÞÞ2
s

, ð5:9Þ

MSE ¼ ðMR þMG þMBÞ=3, ð5:10Þ
where I0 and I are the original synthetic image and the filtered image,
respectively. When noise reduction methods are compared, the smaller the
MSE value is, the better the filtered result will be. Table 5.1 shows the
comparison results of the two noise reduction methods; it shows that under
different variances of Gaussian noise, the MSE values obtained by a bilateral
filter are always smaller than the MSE values obtained by a Gaussian filter. It
means that a bilateral filter has a better performance than a Gaussian filter
when they are applied to reduce the noise in the synthetic images.

5.3.2 Noise reduction on skin lesion images

How do the two filters work on the real images? In order to demonstrate their
ability, they were applied to 20 different skin lesion images from different
sources.26 Each image has one or more lesions, and some of them have hairs
and noise. Figure 5.7 shows a sample of the original image and the
corresponding image filtered by a Gaussian filter and bilateral filter
respectively. Figure 5.7(a) shows the original skin lesion image, 5.7(b) shows
the image filtered by a Gaussian filter, and 5.7(c) shows the image filtered by

Table 5.1 MSE values obtained by Gaussian and bilateral filter.

Variance Gaussian filter (MSE) Bilateral filter (MSE)

0.001 6.752 3.183
0.002 7.773 4.455
0.005 9.933 7.034
0.01 12.469 10.232
0.02 16.177 15.636

Figure 5.7 (a) Original skin lesion image; (b) the image filtered by a Gaussian filter; and
(c) the image filtered by a bilateral filter.
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bilateral filter. From Fig. 5.7, it can be seen that a bilateral filter is much
better than a Gaussian filter.

In order to evaluate the performance of the two filters working on the real
images quantitatively, two things must be evaluated: the performance for
noise reduction, and the performance for edge preservation. Because this
chapter focuses on border detection, the performance of edge preservation is
much more important. The local contrast of the homogeneous region and
edge region in the image is computed to evaluate the performance. The
contrast measure used is defined in13

CwðIÞ ¼ 1
m

X
w

jcðx, yÞjlogð1þ jcðx, yÞjÞ, ð5:11Þ

where c(x,y) is the local contrast at pixel (x, y) and is defined as

cðx,yÞ ¼ 4Iðx, yÞ � fIðx� 1, yÞ þ Iðx,y� 1Þ þ Iðxþ 1, yÞ þ Iðx, yþ 1Þg, ð5:12Þ
where I(x, y) is the pixel intensity value at pixel (x, y) of an image, w is a region
or a set of edge points, and m is the number of the pixels in the region or edge
points.

Three images were used to compare the performance of the two filtering
methods. One homogenous region and one set of edge points for each image
were selected for evaluation. Figure 5.8 shows the selections.

When comparing the two filters, this chapter considers the edge
preservation in the set of edge points and noise reduction in homogenous
regions selected. A good filter should remove the noise while preserving the
edges in the image. Thus, in the comparison of the two filters, the edge
preservation in the set of selected edge points was compared and the selected
homogenous regions were made to have similar smoothness. Table 5.2 shows
the average contrasts in the homogenous regions obtained by a Gaussian filter
and bilateral filter, respectively, which corresponds to Fig. 5.8(a). Table 5.3
shows the average contrasts in the set of edge points obtained by a Gaussian
filter and bilateral filter, respectively, which corresponds to Fig. 5.8(b). The
two tables show that the contrast of the set edge points obtained by a the
bilateral filter is much bigger than those obtained by a Gaussian filter even
though they have the similar contrast in the selected homogenous regions,
which means that a bilateral filter is much better than a Gaussian filter.

5.3.3 Experimental results on skin lesion segmentation

For skin lesion extraction, 20 images including one or more skin lesions were
used in the experiments. Different color spaces were tested and compared. For
each color space, the same procedure developed in Section 5.2.3 was used to
extract skin lesions. Figure 5.9 shows some samples of lesion extraction using
different color spaces, from which it can be seen that RGB, YUV, and YCbCr
color spaces almost achieved the same performance, whereas HSV is much
worse than the other three color spaces. To evaluate the performance for skin
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Figure 5.8 Homogenous regions and edge points selected for evaluating the performance.
Column (a) shows the homogenous regions selected, and column (b) shows edge-point sets
selected.

Table 5.2 The contrasts of selected homogenous regions.

Image Gaussian filter (C) Bilateral filter (C)

Image 1 0.000016 0.000015
Image 2 0.000012 0.000011
Image 3 0.000196 0.000194

Table 5.3 The contrasts of a selected edge-points set.

Image Gaussian filter (C) Bilateral filter (C)

Image 1 0.0001 0.0004
Image 2 0.0002 0.0004
Image 3 0.0013 0.0035
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lesion extraction using different color spaces, Pratt’s quality measurement
metric (FOM) was used. The definition of the FOM is defined as

F ¼

XIA

i 1

1

1þ aðdðiÞ2Þ
max ðIA, II Þ , ð5:13Þ

where IM is the number of boundary pixels that are delineated by der-
matologists, IN is the number of boundary pixels delineated by this system,

Figure 5.9 Segmentation results of skin lesions using four different color spaces on five
skin lesion images. Column (a): original skin lesion images; column (b): segmentation
obtained by RGB color space; column (c): segmentation obtained by YUV color space;
column (d): segmentation obtained by HSV color space; and column (e): segmentation
obtained by YCbCr color space.
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(arithmetic logic unit) is designed for data processing. Thus, the major
difference between GPUs and CPUs is that a GPU has highly parallel
structure (many more ALUs), which makes it more effective than a CPU
for some operations.

In matrix operations, the size of the matrix will affect the performance.
There is a threshold to decide whether or not to use a GPU. If the matrix size
is below this threshold, the computing speed between a CPU and GPU are
nearly the same. Otherwise, a GPU is faster than a CPU. The bigger the
matrix size is, the faster the GPU will be. In this chapter’s skin lesion
extraction example, GPU technology was used to perform the matrix
operations in Eq. (5.8), and the results are shown in Fig. 5.12: border
extraction involving GPU technology can improve from 30–40% in running
speed according to the matrix size.

Figure 5.11 CPU and GPU structure.

Figure 5.12 Comparison of CPU and GPU technologies for border extraction.
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5.4 Conclusion

In this chapter, we provided an overview of skin lesion segmentation and
proposed a new skin border extraction based on distance histogram and color
information. The new distance-histogram-based skin lesion border extraction
can achieve high accuracy.

In order to remove the noise, two noise reduction technologies were
investigated. A Gaussian filter and bilateral filter were compared in the noise
reduction part. The experimental results show that a bilateral filter is better at
edge preservation than a Gaussian filter.

We also compared four color spaces (RGB, YUV, HSV, and YCbCr) for
skin lesion extraction, and we found that YUV color space is more suitable for
the proposed method. Because YUV color space separately stores the
brightness information (Y) and chrominance information (UV) of images, it
can reduce the effect by brightness for color images.

We also investigated GPU techniques for skin lesion extraction and the
results show a GPU has potential applications in skin lesion extraction.
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6.1 Introduction

Capsule endoscopy (CE) is a method used to visualize the entire small
intestine. It is a widely adopted procedure for diagnosing gastrointestinal
diseases including obscure bleeding, Crohn’s disease, gastric ulcers, and colon
cancer. The CE videos used in this research were produced with the Pillcam®

by Given Imaging. The imaging component of this system is a vitamin-sized
capsule that comprises a color CMOS camera, a battery, a light source, and a
wireless transmitter. The device captures two images per second for
approximately eight hours and generates approximately 55,000 color images
with a size of 256 � 256 pixels during the life of its usage.
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Reviewing CE videos to make diagnostic decisions is a tedious task and is
achieved by watching the video playback and marking suspicious frames and
anatomical landmarks. It usually takes more than one hour to annotate a full-
length video, and a typical mid-size hospital produces an average of twelve
CE videos per day.

Given the large amount of training data, computer algorithms are in great
demand to reduce the review time by identifying frames that contain signs of
lesion, bleeding, and polyps, as well as segment videos into gastrointestinal
sections. Many existing learning algorithms require all training data to be
present in memory to achieve the best generalization performance. Limited by
the computing power and memory size, it is usually difficult to implement
such a learning scheme. Incremental learning has great potential to
accommodate the inclusion of examples that become available over time or
represent a change of perception. The initial data set can be used to create a
model; when new data becomes available, it is integrated to update the
classifier. In practice, clinical videos are acquired over time. Furthermore,
knowledge of the visual appearance of the diseases in CE video changes over
time due to the relatively shorter practice time. It would be practical to build a
classifier based on initial data and revise the classifier as new examples arrive.

A key question of incremental methods is how to retain knowledge from the
training examples in each repetition to maximize the unbiased representation of
underlying data distribution. Retaining some key examples, e.g., support vectors
in a support vector machine (SVM), works well in cases where the existing
examples closely represent the topography of the class boundary. However, if a
new instance dramatically changes the topography and hence the decision
hyperplane, some previously removed examples could become themarginmover.

This chapter presents an incremental learning method that extends the
geometric SVM to multiclass classification with large training data. The
proposed method identifies important examples and models the data such that
when new examples become available, a classifier is built without revisiting all
of the past data available but with generalization accuracies, which are
comparable to those obtained in the batch-learning setting.

6.2 Related Work

6.2.1 Related work on CE video analysis for automatic
object detection

Among efforts in computer-aided CE video analysis, color and texture
features are used in many applications,24 particularly for detecting heteroge-
neous objects, e.g., ulcers and polyps.3,10,28,39 Many classification algorithms
have been applied to video analysis including neural networks,39 SVMs,16 and
thresholding. Despite improvements, many previous studies were evaluated
with a small number of examples, and to the best of our knowledge no
performance was reported with respect to the entire videos.
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Table 6.1 summarizes the characteristics of experimental data sets and
performances in recent related work on automatic detection using CE
videos. Despite the use of different features and classification methods, the
experimental data and performances vary greatly. Among these studies,
results in eight studies were generated from experiments using 1000
examples or less. Two studies used a moderately larger number of
examples. Compared to the number of frames available in a CE video
(approximately 50,000), however, the training data set size is small. Ideally,
if the training set is well selected and comprehensive, the classifier can
achieve satisfactory generalization performance. It is unclear if the formed
cohort represents the true data distribution. An important question awaits
investigation: “Given the relatively small number of positive examples from
CE videos, how does one train learning algorithms to achieve minimal false
negative detections?”

6.2.2 Related work on incremental learning using SVMs

Although a large number of training examples helps reduce the generalization
error, the learning process can become computationally expensive, if not
infeasible. Efficient and scalable approaches are needed that can modify the
knowledge structure in an incremental fashion without having to revisit all of
the previously processed data.

Attempts at an incremental SVM started by retaining the support vectors.
The method in Syed et al.38 keeps only the support vectors at each incremental
step. The model obtained via this strategy will be the same or very similar to
what would have been obtained by using all training examples. Mitra et al.32

used an error-driven technique in the incremental SVMs. In addition to the
support vectors, this method keeps a number of non-support-vector examples.
Given a trained SVM(t) at iteration t, the SVs of SVM(t) (along with a certain

Table 6.1 Experimental data and detection outcomes. “–” indicates not reported in the
paper. The sensitivity, specificity, and accuracy are in percentages.

Reported Studies Data Set Size Performance

Total Abnormal Normal Sen. Spe. Acc.

Kodogiannis and Boulougoura24 140 35 35 95.7
Kodogiannis and Lygouras25 140 35 35 97.1
Vilarino et al.39 400 100 300 95.5
Coimbra and Cunha10 1000 87
Lau and Correia26 1705 577 1128 88.3
Li and Meng27 60 30 30 65.2 82.5
Li and Meng28 400 200 200 91 93
Jung et al.18 2000 1000 1000 92.8 89.5
Barbosa et al.3 204 100 104 98.7 96.6
Karargyris and Bourbakis19 20 30 75 73.3
Karargyris and Bourbakis20 50 10 40 100 67.5
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number of correctly classified and misclassified instances) are used to train the
new model SVM(tþ1). Alternatively, Domeniconi and Gunopulos13 proposed
a method that keeps only the misclassified examples. When a given number of
misclassified examples is collected, the update occurs. The support vectors of
the last-trained SVM, along with the misclassified instances, are used as
training data to obtain the new model. The assumption of minimum change in
the hyperplane serves as the foundation of the previous methods.

Katagiri and Abe21 proposed using one-class SVMs to select support
vectors, which reduces the possibility of support vectors being deleted when
the hyperplane is rotated. A hypersphere is generated for each class, and
only the instances lying close to the boundary of the hypersphere are
retained as candidate support vectors for future updates. Although this
method handles the rotation of the decision boundary, the assumption of a
hypersphere to model data distribution is unrealistic in many real-world
applications.

To manage the space complexity and size of the representative data set,
Hernandez et al.14 employed a multiresolution approach. Agarwal et al.40

demonstrated that the concept of the span of support vectors can be used to
build a classifier that performs reasonably well while satisfying space and time
constraints, thus making it suitable for online learning. Mitra et al.33

presented probabilistic SVMs wherein the training set is refined by active
query from a pool of unlabeled data. Orabona et al.34 proposed an online
algorithm that approximately converges to the standard SVM solution each
time new examples are added. This method uses a set of linearly independent
observations and tries to project every new observation onto the set obtained
so far, thus reducing time and space requirements at a negligible loss of
accuracy. Proximal SVM36 employs a greedy search across the training data
to select the basis vectors of the classifier and tunes parameters automatically
using the simultaneous perturbation stochastic approximation after incre-
mental additions are made.

Instead of selecting training examples randomly, Chen et al.9 divided the
training set into groups using the k-means clustering algorithm. In active
query, a weight is assigned to each example according to its confidence, which
is calculated from the error upper bound of the SVM to indicate the closeness
of the current hyperplane to the optimal one.

Another key issue in incremental learning is to adapt to the nonstationary
underlying data distribution. Cauwenberghs and Poggio6 developed an
incremental and decremental SVM method that divides the training set into
three categories: the margin SVs, the error SVs (ones that violate the margin
but are not necessarily misclassified), and ignored vectors (ones within the
margin). When a new instance is misclassified, the SVM is updated.
Bookkeeping is used to categorize examples, the complexity of which is
O(n3) for each incremental example. A later work of Diehl and Cauwen-
berghs12 reduced the computational cost by using “leave-one-out” error
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estimation. Again, the methods assume that the hyperplane does not change
significantly.

Klinkenberg and Joachims23 proposed a method to handle drift in SVMs.
The drift represents changes to the underlying distribution of the data
collected over an extended period for learning tasks. The method maintains a
window to the training data stream and adjusts its size so that the estimated
generalization error is minimized. Shilton et al.37 addressed the sequentially
arriving data and parameter variation using a warm-start algorithm. It allows
efficient retraining of a SVMafter adding a small number of additional examples.
Boubacar et al.5 employed an online clustering algorithm that is developed to
learn continuously evolving clusters fromnonstationarydata.This algorithmuses
a fast incremental learning procedure to account for model changes over time.
Dedicated to online clustering in multiclass environment, the algorithm is based
on an unsupervised learning process with self-adaptive abilities.

6.3 Geometric Incremental Support Vector Machines

Geometric and quadratic optimization views of SVMs were shown to be
equivalent.4,11 A geometric SVM represents each class as a convex hull and
finds the minimum distance between the two.22 To address nonseparable
classes, the reduced convex hull (RCH)11 was developed.30,31 The method of
incremental learning presented here extends the RCH concept and proposes
that convex skin represent key examples in training, as well as a means of
finding convex skins.

6.3.1 Geometric support vector machines

Let x be a data point in a convex hull C. According to Caratheodory’s
theorem, x can be represented as a convex combination of a finite number of
points in C:

x ¼
Xk

j 1
ljxj, where lj � 0, and

Xk

j 1
lj ¼ 1: ð6:1Þ

Given a set of data points X, the convex hull is a linear combination of all the
elements in X and can be represented as follows:

CðX Þ ¼
�Xk

i 1
ajxi; xi 2 X , 0 � aj � 1,

Xk

i 1
ai ¼ 1

�
: ð6:2Þ

Reduced convex hull4 (also known as soft convex hull11) is the set of all
convex combinations of elements of X, denoted by RðX ,mjm < 1Þ, as follows:

RðX ,mÞ ¼
�Xk

i 1
ajxi; xi 2 X , 0 � ai � m,

Xk

i 1
ai ¼ 1

�
: ð6:3Þ

The difference between a convex hull and a RCH is that the weight factor
ai is bounded by m in a RCH. Using a suitable m for each class, two
overlapping classes can be transformed into a linearly separable case.4,11,31
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However, the RCH provides no means of finding the extreme points. To
overcome this, a compressed convex hull was proposed.35 It, however, makes
explicit assumptions on the kernel, which limits its application.

Geometric SVM represents classes as convex hulls and solves the
problem by finding the minimum distance.22 Given a set of examples
X ¼ fx1,x2, :::, xng, the function f maps each instance into a features space
fðxiÞ. For simplicity, fi is used here to denote fðxiÞ, and the mapped
examples form a feature set F ¼ ff1,f2, :::,fng. The convex hull CðFÞ is
rewritten as follows:

CðFÞ ¼
�Xk

j 1
aifijfi 2 F, 0 � ai � 1,

Xk

j 1
ai ¼ 1

�
: ð6:4Þ

Similarly, a RCH is the set of convex combinations of instances in F with ai

bounded by m as follows:

RðF,mÞ ¼
�Xk

i 1
aifijfj 2 F, 0 � ai � m,

Xk

i 1
ai ¼ 1

�
: ð6:5Þ

The decision boundary is then perpendicular to the nearest points between
RCHs and can be found following Bennett’s method.4

6.3.2 Geometric incremental support vector machine (GISVM)

Our method extends the concept of RCH and defines the skin of a convex
hull. The idea is that only the examples within the skin are most
informative and should be retained for future training, which is similar to
Katagiri’s idea,21 but a model for the data distribution is not specified.
When additional examples become available, they are used to update the
SVM together with the skin of the current convex hull. In such a way,
many fewer instances are used in a training process. In addition, with a
superset of the possible SVs retained, missing SVs due to significant
changes to the data distribution caused by the addition of new examples is
avoided.

The skin of a convex hull consists of the outer-most vertices (i.e.,
examples). Given bounding factors mu and ml, 0 � ml < mu � 1, the skin
SðF,ml,muÞ of a convex hull CðFÞ consists of instances between two RCHs
and can be expressed as follows:

SðF,ml,muÞ ¼ ffijfi 2 fRðF,muÞ RðF,mlÞgg: ð6:6Þ
When the data set is dense enough and evenly distributed in the space,

the geometric center can be used to find the extreme points of the convex
hull. However, this is usually not the case in real-world applications. Due
to the lack of knowledge of data distribution, the above procedure could
miss less-prominent extreme points. Thus, a recursive method is proposed
that finds the vertices (i.e., extreme points) of a convex hull to represent
the skin.

154 Chapter 6



It is said that fj 2 F is an extreme point of convex hullCðFÞ if there exists a
direction d in terms of two instances, i.e., d ¼ fb fa, and fa, fb 2 CðFÞ,
such that

fj ¼ max fk2Fðfk fa, dÞ, ð6:7Þ
where ðfk fa, dÞ is the inner product of the difference vectors with respect
to fa and the direction d.

The extreme points are found in two steps: first, a set of initial extreme
points are identified based on the center of gravity; and second, additional
extreme points are then found via recursively searching along the direction
defined by a pair of extreme points.

For a set of feature vectors F, the gravity center F is approximated with
the arithmetic average, i.e., F ¼Pn

i 1
1
nfi. The initial set of extreme points is

identified by projecting each point fj 2 F to the direction dðfmÞ ¼ fm F

and selecting the ones that give the maximum projection magnitude:

EseedðX Þ ¼ ffn jarg maxfnPðfn, dðfmÞÞ,; fm,fn 2 Fg, ð6:8Þ
where Pðfn, dðfmÞÞ denotes the projection of fn to dðfmÞ.

The explicit expression of the feature vectors fi is not needed to compute
the extreme points in the above procedure. The projection Pðfn,dðfmÞÞ in the
feature space can be achieved by the kernel operation in the input space as
follows. Given two feature vectors fa and fb in F, the projection of vector fc
is Pðfc, dðfa,fbÞÞ. Thus,
Pðfc, dðfa,fbÞÞ ¼ hfb fa,fc fai

¼ hfb,fci hfb,fa i hfa,fci þ hfa,fai
¼
X
i

bifi �
X
j

cjfj

X
i

bifi �
X
j

ajfjX
i

aifi �
X
j

cjfj

X
i

aifi �
X
i

aifi

¼
X
i

X
j

bicjKðxb,xcÞ
X
i

X
j

biaj Kðxb,xaÞ
X
i

X
j

aicj Kðxa,xcÞ
X
i

X
i

aiai Kðxa,xaÞ, ð6:9Þ

where
X
i
aifi,

X
i
bifi, and

X
i
cifi are convex representations of feature vectors

fa, fb, and fc, respectively. For a vector fj 2 F, its coefficient vector equals
½0, 0, :::, 1, :::, 0, 0�0 , within which the index value of the number 1 is j. For a
vectorfk 2 C F butfk 2 CðFÞ, the values in its coefficient vector are in the range
of [0, 1), e.g., the coefficient vector of the gravity centerF is 1

n ,
1
n , :::, 1

n

� �0
.

An example is illustrated in Fig. 6.1(a). The solid squares denote the
examples, and the gravity center is marked with a large circle. The projected
vectors are marked with solid dots. Using the proposed method, three extreme
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points are identified and highlighted with solid squares. For example, point 16
is identified as an extreme point because it gives the greatest projection to
dðx16,X Þ [as well as dðx15,X Þ]. However, instances 14, 15, 17, and 18 are
extreme points that are missed by the process.

The primary cause of missing extreme points is the insufficient number of
examples, which could be exaggerated in high-dimensional cases. If data points
in the feature space are known, classical algorithms such as QuickHull2 and
Gift Wrapping17 can be used to complete the search. The idea of the proposed
algorithm is to recursively search along the perpendicular directions of the
convex hull boundaries, which is presented in Algorithms 1 and 2.

Algorithm 1: Search for extreme points.
Require: F and E

1. Randomly select fp, fq 2 E
2. Randomly select fm 2 F and m 6¼ p,m 6¼ q
3. Identify probing direction d� using Eq. (6.10)
4. F  ffijPðfi,d

�Þ < 0g
5. Fþ  ffijPðfi,d

�Þ > 0g
6. E  E [ ProbingðFþ, d�,fp,fqÞ
7. E  E [ ProbingðF , d�,fp,fqÞ
8. Return E

This algorithm randomly selects two extreme points fp,fq 2 E and another
instance fm 2 F. The searching direction d� can then be determined as follows:

d� ¼ fm fp P fm, dðfp,fqÞ
fq fp

jjfq fpjj
: ð6:10Þ

! 

A hyperplane through fq fp and perpendicular to d splits the space into
two halves. The projections of instances, i.e., Pðfi, d

�Þ, that are on the same
sides as fm are positive, denoted by Fþ; whereas the projections of the rest

Figure 6.1 Finding extreme (a) data and (b) seed points recursively.
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instances are negative, denoted by F . Hence, the further searching for
extreme points is divided into two parts, as shown in Algorithm 1.

Searching in each half space is achieved recursively using a pair of
identified extreme points fp and fq. Let F

0 denote the instances in the half
space. With a random instance fm in F0, a probing direction d� can be
determined by Eq. (6.10) that points toward the outside of the convex hull;
otherwise, change its direction. Hence, an extreme point is identified in F0

following Eq. (6.7). fm is paired with fp and fq to split the feature space for
further probing. The process stops when no additional points exist in F0.

Algorithm 2: Recursively probe and search for the extreme points Probing
(F0, d , fp, fq).
Require: F

0
⊆F, d, fp, and fq

1. F  ∅
2. Randomly select fm 2 F

0
and m 6¼ p, m 6¼ q

3. If F
0 6¼ ∅, then

4. Identify probing direction d� using Eq. (6.10)
5. If hd�,di < 0, then
6. d�  d�

7. End if
8. d�  d�

jjd�jj
9. F  F [ ffejfe ¼ arg max

fK2F0PðFk, d�Þg
10. For all fi 2 F0, do
11. If Pðfi, d�Þ > 0, then
12. F00  F00 [xi
13. End if
14. End for
15. F  F [ ProbingðF00, d,fp,feÞ
16. F  F [ ProbingðF00, d,fq,feÞ
17. End if
18. Return F

Figure 6.1(b) illustrates an example of probing in a half space. The dotted
lines depict the projections of the instances. The two extreme points are 17 and
18, which determine the probing direction (d and –d in Algorithm 1). Extreme
points 1 and 12 are found.

In the algorithm, themagnitude of vectorsfð2Þ fð1Þ is calculated as follows:

kfð2Þ fð1Þk ¼ hfð1Þ,fð1Þi þ hfð2Þ,fð2Þi 2hfð2Þ,fð1Þi 1
2

��

¼
�X

i

X
j

b
ð1Þ
i b

ð1Þ
j Kðxi,xjÞ þ

X
i

X
j

b
ð2Þ
i b

ð2Þ
j Kðxi,xjÞ

2
X
i

X
j

b
ð2Þ
i b

ð2Þ
j Kðxi,xjÞ

� 1
2 ð6:11Þ
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The range of the projections RX,d of a set of examples X in given

directions d ¼ xð1Þ xð2Þ, xð jÞ ¼
X
i

xib
ðjÞ
i for j ¼ 1, 2 would be

RX ,d ¼ ½min xi2XPxi, d ,max xi2XPxi, d �: ð6:12Þ
Given a set X ¼ fx1, � � � ,xng, the skin segment with an angle u around

d ¼ xð1Þ xð2Þ is

SSX ,d ¼ xi jxi 2 EðXÞ, cos 1 d,xð2Þ xj
� 	
kdk � xð2Þi xj




 


 � u

8<
:

9=
;: ð6:13Þ

The angle uj between vectors xj 2 Xi and center of gravity xðgÞi and w ¼
x�þ x� can be found using

w,xðgÞ xj
i

D E
¼ kwk � jjxðgÞi xjjjcosu, and u ¼ cos 1 hw,xðgÞi xji

jjwjj � jjxðgÞi xjjj :
ð6:14Þ

The decision boundary is perpendicular to w�2 w�1, where w�1 and w�2 are
the nearest points between the RCHs. Gilbert’s algorithms15 are used to identify
the nearest points between convex hulls (as shown in Algorithm 3). Figure 6.2
illustrates an example of GISVM for a linearly nonseparable case. The two
classes are enclosed with convex hulls and overlap, as shown in Fig. 6.2(a). The
skin of the convex hull is shown in Fig. 6.2(b). Two RCHs are highlighted with
solid triangles: the outer RCHs transform the problem into a linearly separable
case [see Fig. 6.2(c) for an example], whereas the inner RCHs define the skin
thickness. The skin for retention is depicted in Fig. 6.2(d).

Algorithm 3: Gilbert’s algorithm for finding the nearest points of two convex
hulls.15

1. Z  ffþ f jfþ 2 Fþ,f 2 F g
2. Randomly select z� 2 CðZÞ
3. Repeat
4. z�old  z�

5. z arg min zi2ZPðzi, z�Þ
6. z arg min zi2ZPðzi, z�Þ
7. Until jjz� z�oldjj 	 0

6.4 Experimental Results and Discussion

6.4.1 Synthetic and benchmark data preparation

The experiments presented here used synthetic data sets, real-world data sets,
and CE videos for evaluation. Two synthetic data sets were created by
randomly sampling 2D Gaussian functions and the checkerboard function,
namely the XOR data set (see Fig. 6.3 for examples). Ten sets of examples
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were randomly generated using each model. The Gaussian data set has 1%
overlap, whereas the XOR data set has no overlap. Four real-world data sets
were obtained from the UCI machine learning repository.1 In addition, a
mammogram8 data set was used. Each feature in a data set was normalized to
unify its range to between 0 and 1. Table 6.2 lists the properties of the
benchmark data sets used in the experiments.

6.4.2 Parameter selection

Figure 6.3 illustrates the decision boundaries of the proposed method applied
to synthetic data sets using RBF, polynomial, and linear kernels. The shade in

Figure 6.2 Geometric incremental SVM using convex hull skin for linearly nonseparable
problems. (a) Two linearly nonseparable classes consisting of 700 examples. (b) The
classes become linearly separable using RCHðm ¼ 0:1Þ. (c) The decision boundary is found
by finding the nearest points between two RCHs. (d) Examples within Sðxi ,0:1,1Þ are
retained for future model updates.
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Table 6.2 Benchmark data sets and their characteristics.

Data Sets Number of
Dimensions

Positive Class Data Set Size

þ Class Class

SPECT 22 1 212 55
PIMA 8 1 268 500
YEAST 8 CYT 463 1021
IONOSPHERE 34 b 126 225
MAMMOGRAM 6 2 260 10923

Figure 6.3 Decision boundaries from applying the proposed method to the synthetic data
sets using different kernels.
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the plots depicts the distance to the decision boundary. The incremental
training starts with ten examples, and with each update, five new examples are
randomly selected and used. The updates continue until all examples are
exhausted. As shown in the figure, when the s of the RBF kernel is decreased,
the final classifier appears overfitted. Among all of the kernels tested, RBF
kernels with s ¼ 0:1 resulted in better decision boundaries. It is evident that
when examples are presented to the GISVM in an incremental fashion, the
proposed method achieves superior closeness in modeling the underlying data
distribution. The optimal level is reached with RBF kernels of s ¼ 0:1.

6.4.3 Efficiency analysis

Figures 6.4(a) and (c) illustrate the maximum number of examples retained
(i.e., the examples in the skin of the RCHs) for various s used in RBF kernels.
As s decreases, the number of examples retained significantly increases. When
s reaches 0.01, the number of examples retained is approximately the total
number of examples in the training set. This indicates overfitting of the model,
which is consistent with previous experimental results. On the other hand, the
number of support vectors (in solid curve) varies slightly. According to these
plots, a good choice for s is 0.1, which provides a close description of the data
sets and retains only a small number of examples in the training iterations.

Figures 6.4(b) and (d) show the number of examples retained in the
training iterations. With a properly chosen s, the number of retained
examples is small, which implies the stability of the incremental learning

Figure 6.4 The number of extreme points identified using RBF kernels. (a) and (c) show
the number of retained examples and SVs as a function of s using Gaussian and XOR data
sets, respectively. (b) and (d) show the number of retained examples using RBF kernel when
s ¼ 1:0,0:1,and 0:01 (from left to right).
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process. This also indicates that a much-smaller amount of memory was used
to complete the learning.

Table 6.3 lists the time (in seconds) required by the GISVM and batch-
learning libSVM to complete the training. Ten repetitions were conducted,
and the average time and the standard deviation are reported. Because
random examples were used, the training time varies. These experiments
assumed that an equal number of examples was used to update a classifier in
the incremental learning. The size of examples is referred to as step size D.

Limited by the number of examples in the benchmark data sets, two step
sizes (i.e., D ¼ 10 and D ¼ 20) were used in the evaluations. It is clear that the
time used by incremental learning is much less than that used by the libSVM.
Among all cases, the MAMMOGRAM case consists of the largest number of
examples and took significantly more time for training. Although the
minimum time to complete training using MAMMOGRAM is in the time
range of the GISVM, it can require up to triple the time that the libSVM
needs. It is evident that the proposed incremental learning handles data
efficiently and can update the classifier in much less time. The average time
cost for this method to complete is approximately 13.4% of the time cost for
batch-learning SVMs.

It is an interesting observation that a larger step size does not necessarily
result in a longer training time. For data sets SPECT, PIMA, and
MAMMOGRAM, training of the GISVM took less time using a step size
of 20 than a step size of 10. Even in the other cases, the difference is small.
This is probably due to the fact that only a small number of examples (i.e.,
examples within the skin of the RCHs) were carried over to the next round of
updates.

Table 6.3 The average training time (in seconds) and standard deviation using batch-
learning libSVM and the proposed GISVM. The number of iterations is also reported for the
GISVM.

Data Sets Batch-Learning
libSVM

GISVM

D 10 D 20

Time Time Iteration Time Iteration

GAUSSIAN 2.9 (0.4) 0.2 (0.04) 19 0.21 (0.06) 9
XOR 5.2 (0.4) 0.34 (0.03) 19 0.54 (0.08) 9
SPECT 2.7 (0.3) 0.35 (0.05) 11 0.25 (0.02) 6
YEAST 97.2 (12.5) 3.59 (0.25) 73 5.16 (0.42) 37
PIMA 71.4 (7.9) 21.14 (0.25) 36 13.39 (1.34) 19
IONOSPHERE 3.8 (0.5) 0.3 (0.04) 15 0.43 (0.05) 8
MAMMOGRAM 4787 (2261) 2859 (541) 445 1540 (338) 223
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6.4.4 Accuracy analysis

Figure 6.5 illustrates the classifiers’ performance based on accuracy,
sensitivity, and specificity during the incremental iterations. Ten repetitions
were conducted with randomized initial examples. In each data set, 50% of the
data were used for training; the remaining examples were used for testing.

In each case, a SVM classifier was created using all the training data. The
best parameters were selected based on their generalization performance with

Figure 6.5 Accuracy performance of the GISVM using UCI data sets.
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the testing data set. Table 6.4 lists the selected kernels and parameters that
gave the best performance measures. The results from these classifiers are used
as a reference and are depicted as the horizontal lines in Fig. 6.5.

In the proposed incremental learning process, ten examples were
randomly selected from each class of the training set, and a SVM was
trained. In each incremental step, ten randomly selected examples from the
remaining training data set were used to update the classifier. The
intermediate classifiers were evaluated with the test data set. For each data
set, ten repetitions were conducted, and the average performance is plotted
with a solid line in Fig. 6.5. The shaded area depicts the accuracy variation.

With more examples included in the training process, the classifier trained
with the proposed method improves its performance; this is evident in the
cases of YEAST, SPECT, PIMA, and IONOSPHERE. In the case of
MAMMOGRAM (i.e., ISM), the performance is already close to optimal at
the beginning, and there is no room for improvement. However, improvement
in sensitivity can still be observed in the training, and by the end of iterations,
the classifier outperformed the batch learning by a small margin.

Despite a slight drop of specificity of the SPECT data set, the SVMs
trained with the proposed method achieved the same performance or even
outperformed the batch-learning method. As listed in Table 6.2, the SPECT
data set contains more positive examples than negative ones, the ratio of
which is approximately 4:1. Hence, the improvement of sensitivity leverages
the underperformance of specificity, and the overall accuracy is close to the
batch-learning results. It is interesting that in five cases, the intermediate
classifier had degradation in early iterations, but the training process was able
to recover to the benchmark performance asymptotically as additional
examples are included.

6.4.5 Experiments with CE videos

The analysis tool provided by the manufacturer of the Pillcam® capsule
endoscope plots the path of the device through the digestive tract based on the
wireless signal strength transmitted to the external image downloader carried

Table 6.4 Parameters used in the proposed GISVM.

Data Sets Kernel Parameter Convex Skin

mu ml

SPECT s 0:05 0.9 0.6
YEAST s 0:10 0.9 0.6
PIMA s 0:15 0.5 0.3
IONOSPHERE s 0:01 0.5 0.3
MAMMOGRAM s 0:01 0.8 0.4
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by the patient. Our experiments on CE videos were performed to automate the
classification of the frames in CE videos into digestive organs, namely the
esophagus, stomach, small intestine, and colon.

Six CE videos were collected and manually annotated by gastroenterol-
ogists. Each video consists of approximately 55,000 frames. Out of the six
videos, one was randomly selected to train the classifier, and the other five
were used for testing.

In previous experiments with CE videos, the HSV color space was found
to have a better classification performance on average.16 In addition, using the
histogram significantly reduces the dimensionality.* Hence, the color
histogram in the HSV space was adopted as a feature. The color histogram
is a very large and sparse matrix: With n bins used in each color component,
there are n3 features using the HSV histogram for every video frame, most of
which are zeros or close to zeros. To suppress sparseness and the number of
values in features, only the hue and saturation (HS) components were used.
As observed in previous experiments,16,29 using HS components improves
control of lighting variations in the GI tract.

The order of classification of multiclass SVMs was determined based on
the preliminary evaluation. In the experiments, identification of the esophagus
gives the best accuracy followed by the identification of the small intestine.
Hence, the order is determined and listed in Table 6.5. The kernels used to
train a SVM are also included in this table.

In the learning process, 50 frames were randomly selected from each class
of the training video to train a SVM. In each incremental step, 20 frames
randomly selected from the remaining training video frames were used to
update the classifier. The iteration repeats until the training examples exhaust.
Table 6.6 lists the accuracy of the final classifiers. The performance of this
method is highly satisfactory. With the majority of frames acquired in the
stomach and small intestine, the average accuracies are 86.9% and 94.4%,
respectively. Images acquired in the colon are disturbed by the presence of feces.

At the end of incremental training, only 12% of the frames were part of
the skins among the four classes for the hierarchical SVMs. Apparently, the

Table 6.5 Order and parameters of hierarchical classification of organs of CE videos.

Order Dividing Classes Kernel Parameters

1 Esophagus vs. the rest RBF (s 0:15)
2 Small intestine vs. stomach and colon RBF (s 0:1)
3 Stomach vs. colon RBF (s 0:5)

* Each frame is a 256� 256 color image. If color is used, the dimensionality of each
example is up to 196,608.

165Geometric Incremental Support Vector Machine for Object Detection...



smaller number of examples demands much less memory space for the
learning process and thus provides a plausible mechanism for handling a large
amount of data. When new examples are added, the classifier is updated
efficiently in contrast to the conventional batch-learning methods.

6.5 Conclusion

This chapter presents a GISVM method to learn from large data sets with an
emerging trend and dynamic patterns. To overcome high computational
demands from a large data set, this method identifies a subset of examples for
the training process. It extends the reduced convex hull concept and defines
the skin segments of convex hulls. The skin is found by identifying the extreme
points of the convex hull. This method is founded on the idea that the
examples within the convex hull skin are a superset to the support vectors,
including the potential ones in future training. When additional examples are
provided, they are used together with the skin of the convex hull constructed
from the previous data set.

Using the skin of convex hull in the incremental learning process results in
a small number of instances at every incremental step. The set of extreme
points are found by recursively searching along the direction defined by a pair
of extreme points. Besides the advantages in computational efficiency, the
proposed method handles linearly nonseparable cases in multiclass problems.

Experiments were conducted with synthetic, benchmark, and CE data
sets. With the synthetic data sets, the proposed method achieves highly
satisfactory classifiers that closely model the underlying data distribution with
appropriate kernels. The choice of RBF kernel for the synthetic data sets
provides a good description of the data sets and retains only a small number
of examples in the training iterations.

Using the experiments on benchmark data sets, this chapter demonstrates
that the GISVM learning handles data efficiently and updates the classifier in
approximately 13.4% of the time needed by the batch-learning SVM.
Performance over the incremental steps further verifies the superior stability,
improvement, and recoverability of the proposed method. The accuracy over
the incremental steps increases steadily. Even in the cases when the
performance drops, the classifier is able to recover to previous levels in
future iterations because the convex hull skin that contains useful examples is

Table 6.6 GISVM performance of digestive organs in CE videos.

Video Esophagus Stomach Small Intestine Colon

1 100% 87.6% 94.2% 85.3%
2 94.4% 85.8% 95.3% 82.2%
3 95.0% 87.2% 94.7% 84.3%
4 100% 86.4% 94.1% 83.7%
5 90.0% 87.7% 93.9% 94.3%
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retained. Furthermore, the improvement in the performance measures over
the incremental steps (by deleting examples other than the ones on the skin)
indicates that retaining the examples on the skin preserves adequate
information about the decision boundary of SVMs.

From the experiments on CE videos it was noted that the average
performance of classifying a CE video is above 86.9%, which is very
competitive. The amount of memory space required in the training process
could be one-eighth of what is required by the conventional SVM, which casts
new light on processing large data sets with limited resources. Further
experiments on CE videos demonstrated that the GISVM can handle data
that could not be handled by the libSVM.
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Melanoma is a malignant tumor of melanocytes. Though less common than
other types of skin cancer, it is considered the deadliest form not only because
it causes the majority (75%) of deaths related to skin cancer,1 but also because
it can metastasize to other organs in the body. The lifetime risk of developing
a melanoma has been skyrocketing in the United States, growing from 1:1,500
people in 1953 to nearly 1:100 in 1996.2 In fact, the American Cancer Society
(ACS) reported that in 2010 an estimated 68,130 new cases of melanoma were
diagnosed, resulting in a total of 8,700 deaths.3 The National Cancer Institute
(NCI) at the National Institutes of Health (NIH) estimates that in 2012 the
new cases of confirmed diagnosis and resulting deaths from melanoma are

* This work was supported by the University of Houston, Texas Heart Institute,
National Science Foundation, and National Institutes of Health.
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76,250 and 9,180, respectively.4 On the other hand, the survival rate of
melanoma is above 85% if detected no later than stage I/II,5 and the cost for
an early-stage melanoma treatment is as low as about $1,800 per patient.6

Advances in imaging technologies enabled non-invasive skin cancer screening
and early detection using pigmented skin lesion (i.e., moles) images.
Furthermore, such non-invasive and low cost imaging systems (such as
dermoscopy†) made it possible for mole screening in the public-health setting
by general doctors. However, even the most experienced dermatologist is
challenged to perform an assessment and give the correct diagnosis using these
images. Because moles vary in size, color, shape, and texture pattern, and the
diagnosis severity ranges from completely benign to aggressive and lethal (not
to mention the sheer number of lesions that need to be evaluated), such
screening is still nonexistent in the current healthcare system even though
reports recognize the paramount importance of screening and early detection.
An automated melanoma screening and early detection system uses computer-
generated quantitative features from dermoscopic skin lesion images to detect
the feature models (i.e., signature) of various types of skin cancer.7

This chapter begins with an overview of skin-lesion-imaging-based
diagnosis systems as well as the available dermoscopy skin lesion datasets
in Section 7.1. We present the architecture of an automated melanoma
screening and early detection system, AutoScan, and discuss the function of
each component in Section 7.2. Section 7.3 describes typical computer-
generated feature sets used in melanoma detection systems before presenting
our effort to incorporate dermatologists’ domain knowledge as a high-level
feature. Section 7.4 presents our method to integrate feature selection and
decision making by selecting the optimum feature set to build an “on-the-fly”
feature model based on their holistic predictive performance. Section 7.5
concludes the chapter and presents future research directions.

7.1 Overview of Automated Melanoma Screening and Early
Detection Systems

This section presents common imaging modalities for acquiring pigmented
skin lesion images, key functions in a computer-aided skin cancer diagnostic
system, skin cancer detection research projects that have successfully
transitioned to commercial products, and available skin lesion image datasets.

7.1.1 Optical imaging modalities for pigmented skin lesion
image acquisition

Skin lesion imaging technologies are classified based on their resolution and
the depth of penetration.8 In general, optical imaging modality uses a light

† Dermoscopy, an imaging technology, allows visualizing structures inside pigmented
skin lesions beyond the capacity of the naked eye.
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energy source that shines on the skin and an optical sensor receiver that
measures the absorption, reflection, and scattering of the light spectra. The
resolution of the skin lesion images the optical imaging modality produces
decreases with the depth of penetration. Based on the physiological scale (from
subcellular and cellular to nevocellular and surface lesions), skin lesion imaging
modalities can be classified as (1) Primary: subcellular structures (melano-
somes); (2) Secondary: cellular level (melanocytes); (3) Tertiary: nevocellular
nests, collagen, blood vessels; and (4) Quaternary: surface, clinical lesions.
Six popular optical imaging modalities for acquiring pigmented skin lesion
images used by researchers and practitioners are reviewed here and categorized
as such.

• Color video camera, a quaternary modality, uses a standard color video
camera, illumination source, and frame grabber. It was used in the
earliest skin lesion imaging system with corresponding image analysis
software.

• Epiluminescence microscopy (ELM), also known as dermatoscopy,
dermoscopy, or magnified surface microscopy) is a tertiary modality
that uses optical magnification to view the oil “immersed” skin lesion.
ELM devices use a light ring for illumination, a magnification lens, and
a CCD camera to capture and store digitized images. Figure 7.1 shows
examples of dermatoscopes and polarized-light dermatoscopes. The
magnifying lens of a microscope is typically placed directly on the
surface of the skin, with the polarized light ring illuminating subsurface
structures. Because of their digital imaging capability, ELM devices are
the most-common modality used in automated melanoma screening and
early detection systems.

• Reflectance spectrophotometry, alsoa tertiarymodality,usesa spectrometer
tomeasure a reflected light spectrum that provides an objective measure of

Figure 7.1 Examples of (polarized light) dermatoscopes.16
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skin color. Because different light wavelengths penetrate different levels of
skin, multispectral spectrophotometry is used to measure reflectance at
different wavelengths and correlates them to specific subsurface structures
that may indicate melanoma.

• Optical coherence tomography (OCT), a tertiary modality, analogous to
ultrasound, captures micrometer-resolution, 3D images from within
optical scattering media (e.g., biological tissue). Using near-infrared
low-coherence light directed at a point on the skin, OCT acquires a
vertical slice of a high-resolution skin lesion image by taking a sequence
of measurements of light reflectance based on the Michelson
interferometry principle.

• Confocal scanning laser microscopy (CSLM) is a secondary modality
that uses a low-power laser beam to tightly focus on a specific point on
the skin. The CSLM sensor detects the light reflected from the focal
point. By scanning across the skin surface, CSLM collects a 2D grid that
forms a horizontal slice beneath the skin surface.

• Fluorescence imaging is also a secondary modality that uses ultraviolet
light to excite endogenous fluorophores. Given that cancerous tissue
auto-fluoresces differently than healthy tissue at cellular and subcellular
levels, fluorescence imaging provides a measurable indicator of the
presence of skin cancer.

7.1.2 Key functions of existing skin lesion classification systems

Figure 7.2 shows a functional flowchart summarizing the research on skin
lesion image classification.9,10 After reading the skin lesion images and going
through functions such as preprocessing, segmentation, and feature extraction
and selection, the system can output a decision on the probability of the skin
lesion being melanoma.

Figure 7.3 shows some examples of the pigmented skin lesion images
acquired using a dermatoscope (ELM, shown in Fig. 7.1). It is clear that all
the images need to go through image pre-processing such as color space
conversion, resizing, masking, background subtraction, and noise smoothing.
It is also important to even out the difference of light illumination and its
effect on skin color and texture pattern. When the image quality is very bad,
e.g., the lesion region is covered by heavy hair, as shown in the last row of the
left column of Fig. 7.3, it is better to take a new image. The right column of
the last row shows the results after the hair-removing algorithm.11

After image preprocessing, segmentation extracts the lesion from the
background by quantifying its border. As shown in Fig. 7.3, correctly
segmenting the lesion will not only make the subsequent steps more efficient
but also prevent the signature of the lesion being drowned out by that of the
healthy skin in the background. Once the lesion is correctly identified, the
system calculates quantitative features to describe a lesion, such as color, size,
border smoothness, asymmetry, and texture. There are a large number of
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features that can be extracted from a color skin lesion image. However, not all
of them are useful for discrimination. Thus, there is a feature-selection step to
choose the set of features that constitutes the signature of a melanoma. The
final step is to perform classification based on the feature model built using
the identified set of features. A training stage is required to train the feature
model, which is then used for making prediction on a new skin lesion image.

Figure 7.2 Functional flowchart of automated melanoma screening and early detection
system.
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The performance of such a system is the same as the predictive performance
of the built feature model. It is evaluated by the receiver operator curve (ROC),
which measures sensitivity (maximize true positives), specificity (minimize false
positives), and accuracy.

7.1.3 Review of representative skin cancer detection systems

Even though much research has been done to develop new algorithms for each
function shown in Fig. 7.2, few commercial systems are available. Table 7.1
summarizes three commercial systems that have successfully transitioned from
research projects according to the five functional steps shown in Fig. 7.2 with
their overall predictive performance (sensitivity and specificity).

Similar to reflectance spectrophotometry, multispectral ELM can measure
reflectance at different wavelengths in the visual and infrared spectra.
Melafind®,12 a FDA approved device for melanoma detection, uses
multispectral ELM and captures ten individual pigmented skin lesion images
at wavelengths ranging from 430 nm to 950 nm as input. It then performs
thresholding-based segmentation on the 430 nm (blue) lesion image, and
extracts features from all ten images for classification. After calculating
features such as wavelet-based texture pattern, lesion asymmetry, border
smoothness, color distribution, and lesion diameter (size), Melafind® uses a

Figure 7.3 Examples of pigmented skin lesion images.
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greedy forward-feature-selection approach to choose thirteen to fifteen
features. Features extracted from infrared images and wavelet transformation
(i.e., texture) were found to be significant for melanoma detection. Using
leave-one-out learning on 246 images with a linear classifier, it can achieve
100% sensitivity and 84% specificity. A recent retrospective study on
Melafind®13 with 1,831 skin lesion images demonstrates that the system has
a sensitivity of 98% and an average specificity of 9.9%, which is still superior
to that of clinicians (3.7%) (P ¼ 0.2). Note that a successful screening system
should have high specificity. That is, when the system decides that the lesion is
benign, it should not be malignant!

SolarScan® reads pigmented skin lesions acquired from ELM and uses
MoleMap to record changes in lesion morphology over time.14 It uses a semi-
automated segmentation procedure and selects a set of features from texture
pattern, color, andgeometry.Trainedona set of 1,644 skin lesion images and tested
onan independent setof786 images, it achieved91%sensitivityand68%specificity.

MoleView15 uses spectrophotometric intracutaneous analysis (SIA) for
melanoma recognition. Its camera, SIAscope, generates eight images of the
skin lesion with radiation ranging from 400–1000 nm. Two clinicians identify
clinical features (Section 7.1.4) on the acquired images, and logistic regression
is used for classification afterwards. The system achieves 80.1% sensitivity and
82.7% specificity.

7.1.4 Overview of skin lesions and commonly used criteria
by clinicians

As with many biomedical systems, the main challenge in developing an
automated melanoma screening and early detection system lies in the fact that

Table 7.1 Comparison of a sample of melanoma detection systems.

Systems Imaging
Modality

Segmentation Feature
Calculation

Feature
Selection

Classification

Melafind®,
MELA
Sciences, USA

Multispectral
ELM, 10
spectral bands,
1024 grayscale

Threshold:
420 nm (blue)

10 images for
each lesion,
132 ABCD
features,
690 wavelet
(texture) features

13 15 features;
Trained on 246
lesions;
Infrared and
wavelets

Linear and non
linear classifiers:
95% sensitivity,
70% specificity

SolarScan®,
Polartechnics
Ltd, Australia

ELM with
calibration &
artifact removal
photomaps

Healthy skin
image is used as
the baseline,
Semi automated

80 features:
color, pattern,
and geometry

Trained on 1644
lesions,
Multiple models,
<12 features

Non automated
research results:
92% sensitivity,
62% specificity

MoleView,
Astron Clinica
UK

ELM and
spectro
photometry
SIAscope
(2 mm below
skin)

Non automated,
Uses diagnostic
protocol

Color (ELM),
total melanin,
blood, collagen,
and dermal
melanin

Non automated,
348 lesions,
2 3 feature
combinations

Non automated
protocol:
94% sensitivity,
87% specificity
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skin lesions vary in size, color, shape, and texture pattern, with diagnostic
severity ranging from completely benign to aggressive and lethal melanoma,
resulting in numerous possible diagnostic possibilities. The Consensus
Netmeeting on Dermoscopy, held in 2001 in Rome (http://www.deroscopyl.
org), was the first international meeting to investigate the usage of
dermoscopy in preoperative diagnosis of pigmented skin lesions. The Board
of the Consensus Netmeeting agreed on a two-step procedure for pigmented
skin lesion classification:16 first identify whether it is melanocytic or
nonmelanocytic, and then differentiate benign and malignant melanocytic
lesions. Nonmelanocytic lesions are all benign skin growth including basal cell
carcinoma, seborrheic keratosis, vascular lesions, and dermatofibroma. The
melanocytic skin lesions can be further divided into the following ten
categories:44

• Melanoma is a malignant proliferation of melanocytes that has the
potential to metastasize. Though the incidence of melanoma has
increased significantly over the last few decades, the prognosis has
continued to improve because it was detected at an earlier stage with
smaller and thinner, potentially curable, lesions.17 In fact, the best
treatment for melanoma is still early diagnosis and prompt surgical
excision of the primary cancer despite progress made in the treatment of
metastatic melanoma.18,19

• Clark nevi are lesions that have different shades of brown coloration.
They are regarded as the most-relevant precursor lesions of melanoma.
In dermoscopic skin lesion images, Clark nevi can be classified into
three types: reticular, globular, and homogeneous. Combinations of
these three types are also observed in some lesions. Differentiation of
Clark nevi from melanoma in situ and early invasive melanoma is the
major challenge due to its protean variants.

• Dermal nevi include Unna and Miescher nevi,20 both of which are
benign melanocytic nevi. Clinically, both types show distinct features
that result in straightforward diagnosis. An Unna nevus is a soft
polypoid or sessile, usually papillomatous lesion frequently located on
the trunk, arms, and neck. It usually shows a globule or cobblestone
pattern with globular structures regularly distributed in the lesion area.
Miescher nevi are firm, brownish to nearly skin-colored, dome-shaped
papules, with many round and equally sized openings.

• Reed and Spitz nevi are well-known simulators of cutaneous melanoma
from clinical, dermoscopic, and histopathology perspectives. About
75% of Spitz nevi (SN) demonstrate a symmetric starburst or globular
pattern. The remaining cases of SN have an irregular gray-blue
pigmentation that is similar to a blue-whitish veil, which is a signature
for melanoma. In these cases, differentiation can be made by monitoring
the growth of the lesion. If the lesion shows no history of growth, it has a
higher chance of being benign.
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• Recurrent nevi are usually observed after incomplete excision by
superficial shaving techniques of dermal or Clark nevi. Recurrent nevi
usually appear as asymmetric, bizarrely outlined and poorly circum-
scribed patches with a dark-brown to black pigmentation resembling a
superficial melanoma. As a result, they are commonly misdiagnosed as
superficial melanoma or melanoma in situ.

• Blue nevi are considered as congenital lesions with clearly defined
clinical and dermoscopic features that allow clinical diagnosis with a
high degree of certainty. They usually demonstrate a homogenous
pattern without any local features and have well-defined borders
without streaks. However, in rare instances, differentiating blue nevi
from nodular melanoma is difficult.

• Congenital nevi are benign melanocytic skin neoplasms already present
at birth or arising during the first few months of life. They generally
appear as flat or elevated light-brown to dark-brown lesions, and are
well-known precursor lesions of melanoma. Typical pigmented net-
works, cobblestone, multi-component patterns, and various-sized dots
and globules are all observed in congenial nevi. Small congenital nevi
are usually indistinguishable from Clark nevi in dermoscopic images.

• Combined nevi are combinations of blue nevi with Clark or Spitz nevi.
All these types of nevi could be precursor lesions of melanoma. As a
result, when combined nevi are diagnosed, excision is usually
recommended unless a very definite diagnosis of benign is presented
clinically.

• Lentigo refers to a small, brownish macule. In dermoscopic examination
of pigmented skin lesions, three types of lentigines are studied: lentigo
simplex, reticulated lentigo, and solar lentigo. Lentigo simplex is a
common benign melanocytic skin lesion that appears as small and
sharply demarcated macules with a uniform light-brown or dark-brown
color. Solar lentigo is a circumscribed brownish macule occurring on
chronically sun-damaged skin. It typically has markedly irregular
outlines with various shades of coloration ranging from light brown to
dark brown. Reticulated lentigo has been used to describe a darkly
pigmented type of solar lentigo. Dermoscopically, reticulated lentigo is
distinctively characterized by a bizarre and asymmetric reticular pattern
with a markedly thickened pigment network showing irregular and wide
meshes.

• Labial and genital melanosis are melanosis of oral and genital mucosae.
They are benign melanotic macules characterized by a diffuse
pigmentation with a distinct parallel pattern of linear plus curvilinear
light-brown to dark-brown streaks.

There are many publications on differential diagnosis using pigmented
skin lesion images acquired from dermoscopy. The five most-commonly used
algorithms by clinicians are: the ABCD rule,24,25 the 7-point checklist,16,26,27
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the Menzies method,28 30 pattern analysis,21 23 and revised pattern analysis.31

Table 7.2 summarizes the first three algorithms. Many of the patterns listed in
the table, such as pigment network, globules, streaks, and blue/gray dots, are
also used in the (revised) pattern analysis methods.

As shown in Table 7.2, various global and local features are used in these
algorithms for the morphologic diagnosis of pigmented skin lesions. In fact,
these global and local features are identified and categorized based on their
significance in melanoma diagnosis by clinicians32 and serve as the backbone
for melanoma diagnosis. Representative global features include reticular,
globular, cobblestone, homogeneous, starburst, parallel, multicomponent,
lacunar, and unspecific patterns. Representative local features include a
pigment network, dots and globules, streaks, a blue-whitish veil, vascular
structure, pigmentation, and hypopigmentation.

It is clear that differentiating pigmented skin lesions is challenging due to
their protean variants. Many published skin-lesion-classification systems
focus on separating melanoma and benign lesions because of this.

7.1.5 Pigmented skin lesion datasets

Throughout our study in developing automated melanoma screening and an
early detection system, several datasets collected from different imaging
modalities were used, partly because the imaging technology to acquire
pigmented skin lesion images has advanced tremendously over the past
decade.

Set 1: The XLM and TLM skin lesion image datasets were acquired with
two Nevoscopes33,34 that use 5� magnify optical lenses (manufactured
by Nikon).35 An Olympus C2500 digital camera attached to each
Nevoscope was used to capture the digitized images. Fifty-one XLM
images and sixty TLM images with resolution of 1712 � 1368 were used

Table 7.2 Melanocytic detection algorithms.

Algorithms ABCD Rule 7-Point Checklist Menzies Method

Criteria Asymmetry
Complete symmetry
Asymmetry in 1 or
2 axes

Border:
Smooth to rugged

Color:
More color means
more severe

Differential structural:
Pigment network
Dots
Globules
Streaks
Structureless areas

Major criteria (2 points):
Atypical pigment network
Blue white veil
Atypical vascular pattern

Minor criteria (1 point):
Irregular streaks
Irregular pigmentation
Irregular dots/globules
Regression structures

Negative features:
Point and axial symmetry
Presence of a single color

Positive features:
Blue white veil
Multiple brown dots
Pseudopods
Radial streaming
Scar like depigmentation
Peripheral black dots/
globules

Multiple colors (5þ)
Multiple blue/gray dots
Broadened network
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in our study, with the true region of interest (ROI) manually identified
by dermatologists. The remaining lesion images of the 68 XLM–TLM
pairs do not show pigmentations and cannot even be segmented by a
dermatologist.36 Thus, they are discarded.

Set 2: One hundred ELM skin lesion images were acquired using an oil
immersion technique and studied,37 of which thirty were melanoma and
seventy were benign skin lesions. Three dermatologists performed
segmentation on the original image scale, and the average contour was
used as the true segmentation in our study.

Set 3: The Consensus Netmeeting on Dermoscopy in 2001 resulted in an
international collaboration and a collection of numerous pigmented
skin lesion images acquired via dermatoscopy at several medical
institutions with full annotations for the ABCD rule and 7-point
checklists. 1,009 ELM images were obtained from the CD, of which 252
images were benign skin lesions and 757 were melanoma. Among them,
385 images were identified as having low difficulty for differentiating
between melanoma and benign by dermatologists.

Set 4: 1,505 ELM skin lesion images from Set 3 and those Menzies29 used
were selected, of which 1,098 were benign lesions and 407 were
melanoma. The image resolution ranged from 712 � 454 to 1,024 � 768
pixels, and the lesion size ranged from 7,662 to 804,527 pixels.

Set 5: Based on Set 4, images from Set 2 were included to create a dataset
with 1,797 skin lesion images that vary in resolution, size, and quality.
This is the most-challenging dataset.

In summary, Sets 3 and 4 are publically available datasets that provide a
benchmark for future research and development efforts in melanoma
screening and early detection.

7.2 AutoScan: Automated Melanoma Screening and
Early Detection

Figure 7.4 shows the architecture of the proposed automated melanoma
screening and early detection system, AutoScan. It is similar to traditional
skin lesion classification systems, as shown in Fig. 7.2, except for the feature
extraction and selection blocks. In AutoScan, after low-level features are

Figure 7.4 The architecture of Autoscan, an automated melanoma screening and early
detection system.
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extracted from computer algorithms, they are mapped to high-level concepts
that the clinician used, as detailed in Section 7.1.3. Afterwards, an optimum
set of features (including both low- and high-level features) is selected based
on their contribution to the final decision making: melanoma or not. This
section briefly reviews functions supported in AutoScan for image preproces-
sing, ROI identification, and feature extraction before describing in detail how
to map the computer-generated low-level features with high-level concepts
used by clinicians; the chapter closes with how to select the optimal set of
features for the final decision making.

7.2.1 AutoScan preprocessing

In ELM, a halogen light is projected onto an object, rendering its surface
translucent.47 The two modes of ELM in clinical usage are oil immersion87

and cross-polarization.14 The cross-polarization mode (XLM) was developed
to reduce light reflection from epidermis. In side-transillumination ELM
(TLM), a bright ring of light directed at the periphery of a lesion is projected
to the lesion center at 45 deg, forming a virtual light source at the focal points
approximately 1 cm below the skin surface. Hence, both the surface and
subsurface of the skin are translucent.

Common artifacts and distortions in skin lesion dermoscopy images, as
shown in Fig. 7.5, include hair, the oil bubble and light ring, and the marks
drawn by clinicians indicating the gross lesion location. All of these pose
challenges for lesion segmentation, i.e., ROI identification. Thus, the
preprocessing steps are used to remove the artifacts and the light ring around
the lesion and to remove unnecessary background (e.g., black frames), color
space conversion, and noise smoothing to even out the difference of light
illumination.As shown inFig. 7.3,when the imagequality is bad, such aswhen
the lesion is covered with heavy hair, it is preferable to obtain a new image.

7.2.2 AutoScan: region-of-interest identification

Extracting the lesion area from the background is an essential step in all
computer-aided skin-lesion-classification systems that has continually
attracted research efforts. To improve the efficiency of the ROI algorithms,

Figure 7.5 Examples of XLM and TLM skin lesion images.
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the ELM skin lesion images are usually downsized, especially if they were
taken with a very high resolution.

Thresholding38 42 and region growing are two simple and widely used
image segmentation methods in the literature. They produce satisfactory
segmentation when skin lesions have clear boundaries. To account for noise
and unclear boundaries, several clustering-based methods were developed
that demonstrated improved robustness.37,42,43 Another popular segmenta-
tion method is active contour (or snake),44 46 in which a curve based on the
partial differential equation evolves toward the local optima with respect to
an objective function. The objective functions chosen to identify the ROI are
mostly edge-based or region-based. Edge-based active contours have been
applied47,48 to segment skin lesion images. Similar to thresholding and
region growing, these contours can segment skin lesions with clear
boundaries from their background. However, leakage occurs in the presence
of weak edges. They are also sensitive to initial conditions. The region-based
active contour proposed by Chan and Vese49 models nonoverlapping
homogeneous regions with Gaussian distribution. It performs well for
images with two distinctive regions. However, when there are more than two
interesting regions in the image, it suffers under-segmentation. In a
pigmented skin lesion image, there is only one object of interest. However,
many skin lesions are not distributed symmetrically. In fact, the asymmetry
and “bubbles” are important structural properties that dermatologists use
for diagnostic purposes, as shown in Fig. 7.6.

An active-contour-based region-fusion method was proposed for skin
lesion ROI identification50 to take advantage of region-based active
contour while addressing its limitation with a hierarchical approach. In
essence, it first segments the lesions into small regions using stricter
constraints on homogeneity and a strong edge using a region-based active

Figure 7.6 Region-of-interest identification results from a region-based active contour (top
row) and narrow band graph partitioning (bottom row).
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contour before merging them based on a centroid criterion and gradient
information. To further improve the robustness and the computational
efficiency, a narrowband graphpartitioning (NBGP)method50was developed
with identifiedROIs closelymatching thosemanually segmented by clinicians.
Figure 7.6 clearly demonstrates the success of NBGP in identifying the ROI,
i.e., skin lesion, for those images with a highly asymmetric lesion, weak and/
or false edges, and strong hair and bubble artifacts. DullRazor11 is used to
remove hair.

Figure 7.7 illustrates a manually segmented TLM skin lesion image
created by a dermatologist. Note that TLM captures both surface
pigmentation and subsurface blood flow. It is generally agreed that cancerous
cells need more nutrition to grow, resulting in an intense angiogenesis process.
However, Fig. 7.7 clearly shows that not all blood flow activity captured by
TLM contributes to melanoma from a dermatologist’s perspective. The
rationale behind the manual tracing is that the blush outside the contour
(indicated by arrow in the figure) shows blood volume delivered by underlying
larger vessels that does not directly contribute to the lesion. Inside the
contour, however, angiogenesis occurs at the capillary level and hence is
considered a lesionous body. As shown in the figure, there is no clearly defined
boundary between the two. Instead, the red color fades gradually. To address
such a challenge, an evolution-strategy-based (ES-based) ROI identification
algorithm was developed.51,52 Evolution strategy53,54 is a real-number
function optimization method that is not affected by uncertainties introduced
by quantization errors such as the binary coding for genetic algorithms. The
ROI identification problem was formed as an optimization problem with a
special objective function designed to deal with skin lesion images based on
clustering. Figure 7.8 shows examples of ROI results for three challenging
skin lesion images using the ES-based method, manual segmentation by a
dermatologist, and the edge-based method. The ES-based method outper-
forms the edge-based method and closely matches the clinician’s manual
segmentations.

Figure 7.7 A manual segmentation example.
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In the next two sections, unless otherwise noted, “skin lesion” refers to the
ROI identified and segmented from acquired ELM images of the lesion.
Section 7.3 details the feature extraction function and how the extracted low-
level features are mapped to high-level concepts clinicians used for melanoma
diagnosis. Section 7.4 integrates feature selection with the final decision
making in a multitask learning framework.

7.3 Mapping Computer-Generated Features to High-Level
Concepts Used by Dermatologists

When dermatologists examine dermoscopy skin lesion images, they make
diagnostic decisions based on a set of high-level concepts (Table 7.2).
However, it is not easy for a computer to capture such high-level concepts
directly. Hence, these high-level concepts are rarely used in automated skin
lesion classification systems. This section details efforts to map computer-
generated low-level features to these high-level concepts and use them in the
final decision making. Because these high-level concepts are usually annotated
weakly (i.e., a lesion is known to exist in the image, but its location and other

Figure 7.8 Region-of-interest identification results for three challenging skin-lesion images
using (column 1) the ES-based method, (column 2) a dermatologist, and (column 3) the
edge-based method.
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details are unknown), the problem of mapping the computer-generated low-
level features to each high-level concept is converted into a multiple-instance
learning paradigm. The following section describes a multitask learning
framework that integrates feature selection with the final decision making in
melanoma detection.

7.3.1 Computer-generated low-level features

Many existing efforts55 57 to develop a skin lesion classification system have
focused on using global features. Computer-generated low-level features are
extracted from the skin lesion to represent global features. However, this
approach can hardly capture local features, the cumulative effect of which
may well determine whether the lesion is benign or malignant. Global features
such as the size and border smoothness of the skin lesion are derived directly
after the ROI is identified. AutoScan uses a color histogram, color moments,
and the color scale invariant feature transform (SIFT) as low-level color
features, and the output from a three-level discrete wavelet transform (DWT)
as a low-level texture feature.

Low-level intensity features: Instead of using the intensity value of each
pixel, the SIFT is used to represent the variation of the intensity pattern
within a skin lesion. This transform is a powerful descriptor for natural-
scene image classification wherein objects usually have clear edges. Its
output is invariant to shift, scale, and rotation,58 and thus it can capture
the intensity pattern. AutoScan uses a 128-dimensional histogram of
quantized edge orientation and magnitude of intensity for each lesion.

Low-level color features: One color histogram is extracted from each
channel of RGB color space for each skin lesion and then quantized
into 15 even bins. These histograms are combined into one color
histogram vector with 45 elements for each lesion. The RGB color
values at each pixel can be viewed as three functions of pixel location.
Thus, the moments of the product of these three functions can be
calculated and these color moments59 used as descriptors with 27
elements. Applying SIFT in each of the RBG color channel, i.e., color
SIFT, produces a feature vector with 128 � 3 elements. To avoid the
dimensionality problem, principal component analysis (PCA) is used to
reduce its dimension: the first 20 major principal components from the
color SIFT are used.

Low-level texture features: Computer-generated low-level texture features,
such as the filter response coefficients from the DWT, have been shown
to be important when making decision on melanoma or benign
lesions.57,60 AutoScan applies a three-level discrete Haar DWT to
capture its global texture pattern. For each of the ten filter channels,
energy and standard deviation of the DWT filter response coefficients
are used, resulting in a texture feature vector with 20 elements.
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7.3.2 Mapping high-level dermoscopic concepts with
multiple-instance learning

High-level dermoscopic concepts identified in a dermoscopy skin lesion image
are usually categorized into two groups: global features and local features.
Global features generally appear in the whole lesion, whereas local features
may appear only in part of the lesion. Their difference is illustrated in Fig. 7.9:
The lesion in Fig. 7.9(a) has a global feature—a globular pattern—that
appears in the whole lesion. The lesion shown in Fig. 7.9(b), however, has a
local feature—dots/globules—that only appears inside the red boundary. The
global feature in this case is denoted as multicomponent. Local features are
important because many rules used by dermatologists (Table 7.2) rely on
them. As described in Section 7.3.1, most of the existing efforts in melanoma
detection are based on the global features of skin lesions.

The high-level concept annotation in a skin lesion database is typically
weak labeled, i.e., we know whether a certain local feature exists but do not
know its location or how many times it appears. This is mainly because weak
labels are more practical to obtain given that drawing a precise contour
around a local feature is not only time consuming, but sometimes difficult as
well. To utilize these weak labeled skin lesion images, AutoScan first segments
the lesion into small homogeneous regions and considers each of these regions
as an instance. Thus the local feature detection problem is converted into a
standard multi-instance learning (MIL) problem:64 a lesion is melanoma
(positive) if and only if at least one of its instances is melanoma (positive).
Figure 7.10 shows an example of AutoScan using the graph cut method61 63

to segment the skin lesion into layers of small homogenous regions. For each
region, i.e., instance, computer-generated low-level features are extracted.
Then standard deviations and entropies are computed based on the five
histograms described in Section 7.3.1: intensity pattern, color histogram,
moments, SIFT, and wavelet-based texture, assembling a multicomponent
descriptor with ten elements.

Figure 7.9 Illustrating the difference between global and local features: (a) a lesion with a
global feature (a globular pattern), and (b) a lesion with a local feature inside the blue
contour (dots/globules), whose global feature is called multicomponent.
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In the MIL paradigm, if any of the instances is positive, then the whole
skin lesion is positive. The major challenge is that during the training phase,
even though the label of the whole lesion is known, the label of each instance
(region) is not. AutoScan uses a diverse density (DD) function65 to identify
instance prototypes (IPs): instances with a high probability of being melanoma
(positive). The principle of the DD function is that given any chosen distance
function between instances, if an instance is close to at least one instance from
positive lesion images and far from all instances from negative lesion images,
then its DD function will output a high value. After identifying IPs, MIL can
be converted to the traditional (single) instance-based learning problem and
solved easily.66 To improve the performance of MIL, AutoScan extends the
traditional DD function with boosting67 when selecting the IPs. In each round
of boosting, the weights of misclassified data are increased, updating the
output of the weighted DD function. The following sections describe the
details of the enhanced DD function with boosting used in AutoScan.

Suppose there are nþ positive training lesion images fBþ
1 ,B

þ
2 , :::,B

þ
nþg and

n negative training lesion images. Bþ
ijk is used to represent the kth feature of

the jth instance in the ith positive lesion images, and similarly Bijk is used to
represent the same in negative lesion images.

7.3.2.1 Diverse density function and evidence confidence function

The DD function is developed to evaluate the probability of an instance
being positive [68]. Given any instance c (which can be any possible values in
the instance space, not necessarily in the training set), the DD function is
defined as

DDðcÞ ¼
Ynþ

i 1
Pr ðcjBþ

i Þ
Yn

i 1
Pr ðcjBi Þ, ð7:1Þ

Figure 7.10 Using a graph cut to detect homogeneous regions within a skin lesion.
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where
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, ð7:2Þ
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, ð7:3Þ
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ðck BijkÞ2
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=s2

h i
: ð7:4Þ

Equation (7.4) shows that if c is closer to Bij, then [1 – Pr(c|Bij)] will be
smaller; if c is far from Bij, then [1 – Pr(c|Bij)] will be larger. Substituting
Eq. (7.4) into (7.2), the probability that the instance c is positive becomes
higher if it is closer to at least one instance of Bþ

i . Similarly, substituting
Eq. (7.4) into Eq. (7.3), the probability that the instance c is negative
decreases if it is far from all instances of Bi .

By maximizing Eq. (7.1) for all possible instances c, we can obtain all
instance prototypes (IPs) needed to solve the MIL problem. However, since
it is not a convex function with respect to c in instance space, numerical
optimization is difficult. To address such difficulty, an evidence confidence
(EC) function,67 a modified DD function, is adopted in AutoScan by
considering only instances that appear in positive lesion images when
optimizing c. To further improve the optimization efficiency, for each of the
positively labeled lesion images (i.e., identified melanoma image), only a
fixed number of instances with highest evidence confidence are selected as
instance prototypes.

7.3.2.2 Boosting enhanced-instance prototype selection

In boosting,67 the weights of each incorrectly classified example are increased,
and the weights of those correctly classified examples are decreased, so that
the new model focuses more on the examples that have evaded correct
classification. For melanoma detection, let the weights for the training lesion
images be wþ

1 ,w
þ
2 , :::,w

þ
nþ and w1 ,w2 , :::wn ; the weighted diverse density

(W DD) function can then be defined as

W DDðcÞ ¼
Ynþ

i 1
Pr ðcjBþ

i Þw
þ
i

Yn

i 1
Pr ðcjBi Þwi : ð7:5Þ

When c is restricted to include only instances from positive training images,
Eq. (7.5) becomes the weighted evidence confidence (W EC) function.

Algorithm 1 shows the boosting enhanced instance prototype selection
algorithm using a support vector machine (SVM). The algorithm adopts
the weight updating scheme used in Adaboost67 and the SVM as the base
learner. The algorithm boosts both the IP selection and the classifier
(SVM). Specifically, in each round of boosting, it changes the set of IPs
selected by the W DD function according to the updated weights from the
previous iteration.
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Algorithm 1 Adaboost Enhanced Instance Prototype Selection
Initialize the weights wþ

1 ,w
þ
2 , :::w

þ
nþ andw1 ,w2 , :::,wn and the number of

iterations T;

\\ Boosting loop;
for iter ¼ 1 to T do

Identify IPs with Eq. (7.5) by maximizing either DD or EC;
Transform each training lesion into a single descriptor vector with the

current set of IPs;
Train with a SVM using the current set of weights;
Add the new support vectors to the classifier, as in Adaboost;
Update the weights, as in Adaboost;

end for

7.2.3 Transforming a lesion image into a descriptor vector

Suppose the selected IPs are {c1, c2, . . ., cn}; we can then represent a skin
lesion image Bi with many instances using a single descriptor vector71 based
on the distances between each instance and the current set of IPs: w(Bi) ¼
[d(Bi, c1),d(Bi, c2), . . ., d(Bi,cn)], in which d(Bi,c) ¼ minj(||Bij – c||2) is the
closest distance between any instances in the lesion image Bi to c. As shown in
Algorithm 1, after transforming each training lesion image to a single
descriptor vector, any well-developed classifier (such as SVMs) can be used to
solve the MIL problem and identify the model to map the computer-generated
low-level features with high-level concepts used by clinicians.

7.2.4 Experiment setups and results

360 ELM skin lesion images were chosen from Set 3 (Section 7.1.5), of
which 270 were benign and 90 were melanoma, and all of which were
annotated by the dermatologists with weak labels of the local features used
by clinicians. Among these 360 skin lesion images, 120 were multicomponent,
whereas the remaining 240 generally had a single dominant dermoscopic
global feature. Two typical lesion images are shown in Fig. 7.11. The typical
resolution of the images was 500 � 700. Ten local dermoscopic features from
the database were considered, as listed in Table 7.3. Only the true lesion area
was used to ensure that performance was not influenced by incorrect
automated ROI identification.

Five-fold cross-validation is used on all three methods applied to the
dataset, and their performance on detecting the ten local features is compared.
Given that the dataset is imbalanced, the accuracy alone cannot serve as an
effective performance measure. Thus, the area under the receiver operating
characteristic curve (AUC) was chosen as the performance metric.

Baseline: The baseline method treats the local dermoscopic features the
same as those global features. It trains a SVM with a Gaussian kernel in
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the form of exp(–gkx – yk2) (in which x and y are two vectors, and g is
the kernel parameter) with the computer-generated low-level features
extracted from the whole skin lesion. The “C” parameter of SVMs and
the Gaussian kernel parameter g are chosen from the set {10 2, 10 1, 1,
10, 102, 103, 104, 105}. The performance from the best setting is
reported in Table 7.3.

MIL EC: This method treats local dermoscopic feature detection as an
MIL problem and uses the EC function to select the IPs. The number of
IPs selected from one positive image is set to be 1. It uses the same
underlying classifier: a SVM with a Gaussian kernel. The “C”
parameter of SVM, the Gaussian kernel parameter g, and the EC
parameter s [Eq. (7.4)] are chosen from the same set used in the
baseline method.

BIPEC: This method uses Algorithm 1 to boost the IP selection and the
base learner (SVM). The number of boosting rounds is set to five based

Table 7.3 Ten local features, the number of lesion images with weak labels, and the
performance (AUC %) of three methods. The bold values are the best results among the
three methods for each local feature. An asterisk indicates that the performance difference
between the method and the best performance is not significant by a paired t-test (a ¼ 0.05),
i.e., the method produces results comparable to that of the best result.

High-Level Local Features Number of Images
with Weak Label

Baseline MIL EC BIPEC

Pigment Network 178 84.93 75.06 78.10
Irregular Pigment Network 84 70.93 70.55 72.60
Dots/Globules 287 79.16 75.80 78.67*
Irregular Dots/Globules 169 64.18 65.84* 66.07
Streaks 178 77.31 63.82 66.78
Blue Whitish Veil 93 80.37 82.67* 82.99
Pigmentation 145 78.58* 78.91 78.54*
Hypopigmentation 65 69.38 62.66 64.99
Regression Structure 86 65.21 67.06* 68.70
Vascular Structure 39 82.08 72.83 72.83

Figure 7.11 Two examples of skin lesion images from 360 lesion images used to map low-
level features with high-level concepts.
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on empirical observation of the performance. During each boosting
round, different training samples used to train the SVM can have
different weights. Quasi-random weighted sampling (QWS) is used to
sample the training set for each round according to the weights
obtained by Adaboost.

Table 7.3 clearly shows that the boosted multi-instance learning (BIPEC)
method achieves either the best or comparable-to-best results in six out of ten
local dermoscopic features (shaded boxes in Table 7.3): irregular pigment
network, irregular dots/globules, blue-whitish veil, regression structure,
regular dots/globules, and pigmentation. The first four features are used in
the 7-point checklist as important indicators of melanoma, in which the
irregular pigment network and blue-whitish veil are two of the three major
criteria. The blue-whitish veil is also considered a positive feature for
melanoma in the Menzies method. The ability to identify the first four local
features is critical in an automated melanoma screening and early detection
system. In addition, BIPEC performs better than MIL EC in eight out of ten
local features. This is expected because boosting has been shown to be
effective when used to enhance the performance of a weak learner, in this case,
MIL EC.

Even though the baseline method produces the best results in five out of
ten local features (with its performance on regular dots/globules comparable
to that of BIPEC), these features indicate a benign lesion: regular pigment
network, regular dots/globules, streaks, hypopigmentation, vascular struc-
ture. In addition, note that the majority of the lesion image dataset (240 out
of 360) used in the experiment exhibits one dominant global dermoscopic
feature.

7.4 Integrating Feature Selection with Feature-Model Learning

After computer-generated low-level features are mapped to the high-level
concepts that clinicians use to make diagnostic decisions regarding
melanoma, the natural question is which features should be used in the
automated system? One obvious solution is to combine all of the
heterogeneous features into one big feature vector. However, such an
approach increases the dimension of the feature vector, thus increasing the
computational complexity unnecessarily and possibly inducing the potential
problem of the “curse of dimensionality,” with which most learning methods
are not designed to cope. As a result, feature selection (FS) has become a
critical step in many learning applications.64,69 71 Although a NP-hard
problem, the benefits of FS are undeniable: in addition to faster and more
cost-effective model building, it helps avoid the overfitting pitfall and
improve the predictive performance (i.e., accuracy, sensitivity, and specific-
ity) of the learned model.
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7.4.1 Feature selection and combination

Figure 7.12(a) illustrates the basic procedure of feature selection. Given the
original feature set S, a FS algorithm chooses a subset S0 ⊆ S with which a
model is trained. In an automated melanoma screening and early detection
system, the computer-generated low-level features can be categorized based
on the distinct aspect they represent, such as color, texture, and asymmetry.75

A feature-combination mechanism, as shown in Fig. 7.12(b), can leverage
such “natural splitting” in the feature space. The figure shows that three
models are learned from three “natural” views of a lesion: asymmetry (A) fA,
texture (T) fT, and color (C) fC. The final model f is a linear combination of
these individual models:

f ¼ dA � fA þ dT � fT þ dC � fC :
The high-level concepts that clinicians rely on can also be used as another

categorization method to split (or group) computer-generated low-level
features, with models learned for each of them before they are combined
linearly.

There are two major types of feature-selection approaches that have been
employed to learn decision models:110 (1) wrapper methods73 76 that select
features based on the predictive performance of the learned model (efficient
searching strategies have been developed69,77 80 to reduce the computational
cost), and (2) filter methods81 that use ranking criteria to select features
without considering the underlying distribution of the data. Though
computationally efficient, the resulting feature subset from the filter method
could be suboptimal. RELIEF82 and FOCUS83 are two well-known filter
methods. In summary, an embedded approach84 (such as filter methods)
incorporates feature selection into the training stage, thus achieving similar
performance much faster than that of the wrapper methods. Research has
shown that there is often not a single universally optimal feature-selection
technique,85 and sometimes multiple subsets of features may discriminate the
data equally well.86 In fact, the optimal model learned from data with a full

Figure 7.12 Feature selection and combination mechanisms: (a) A typical feature-
selection mechanism, where S is a set of features, S0 ⊆ S, and fs0 is the classifier built based
on the feature subsets S0. (b) A feature combination mechanism featuring a final classifer
f with feature set S as a mixture of the three classifiers learned from three feature subsets
A, T, and C: f ¼ dA * fA þ dT * fT þ dC * fC.
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feature set is usually different than the model learned using the optimal subset
of features.30

Our motivation to investigate a feature combination mechanism for
automated melanoma screening and an early detection system is twofold.
First, when human subjects recognize atypical lesions based on texture, the
effect of color is minimal;87 hence, it is reasonable to build an automated
system that processes texture and color information separately, and then
combines them at a later stage.88 Second, model combination has long been
adopted to improve the robustness and stability of the discriminative
model.89,90 Gehler and Nowozin94 recently evaluated the effect of
combining heterogeneous features using multiple-kernel learning
(MKL)92 94 (a multitask learning method) and linear programming
boosting (LPBoost),95,96 and their superior results were shown over other
object-detection methods on several benchmark datasets. The following
sections describe our multitask learning framework to integrate feature
selection and the final feature model learning.

7.4.2 Multiple auxiliary kernel learning (MAKL): learning from
heterogeneous feature spaces

Multitask learning97 is a machine learning method that learns the model for a
“main” task together with those learned for other related tasks, using a shared
representation, which often leads to a better model for the “main” task. It
usually assumes that all (main and auxiliary) tasks have the same (i.e.,
homogeneous) input space,98,99 which is satisfied when the models learned for
all tasks are similar to their average.100 103 In an automated melanoma
screening and early detection system, however, such an assumption cannot be
satisfied because different high-level anatomical concepts are typically learned
from different sets of low-level features [Fig. 7.12(b)], such as texture,57

geometry,42 or color.104 Figure 7.13 shows an example of the main task and

Figure 7.13 An example of the main task and auxiliary tasks in melanoma screening and
early detection based on ELM lesions.
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auxiliary tasks defined based on high-level concepts. Hence, traditional
multitask learning methods, such as MKL, need to be extended to
accommodate heterogeneous feature input spaces, in order to benefit skin
lesion classification. One possible solution is to map each of the different input
spaces into one common space.101 However, choosing a common feature
space is not a straightforward process in general, and it is sometimes
infeasible. In addition, transforming between spaces with different dimensions
is computationally intensive.

To handle the heterogeneous feature input space, MAKL has been
developed to integrate feature combination and feature model building
by learning the model of the main task as a weighted average of the
output from models learned for auxiliary tasks. It is important to note
that we use the weighted average of the output from those auxiliary task
models, not averaging their parameters (such as the weight for each
feature). In addition, to allow auxiliary task models to adapt to the main
task during the learning phase, a small term is added to each auxiliary
task model in the weighted sum. Note that each model learned for an
individual task (main or auxiliary) could have its own heterogeneous
feature set.

Assume that there is a set of T auxiliary tasks P ¼ {P1,P2, . . .PT}, and
the main task is represented as PTþ1. Each task can be represented by a set
of features Kl ¼ fkl1,kl2, :::,klmg, where m is the number of features for task
Pl. The number of features m could be different for different tasks and
m þ 1 is the number of features used to learn the main task model. Let
Xl ¼ fxl1,xl2, :::,xlng be a set of n samples for task Pl, and xl ¼ [m

t 1k
l
t. The

goal is to choose a decision function (i.e., feature model) h from a given
hypothesis class such that h achieves the best prediction performance for
the main task (i.e., melonoma or not?).

Following the generic empirical risk minimization approach in kernel
learning, let the model learned for auxiliary task Pl be h ¼ dlðwl þ vlÞTl 1 with
wl 2Xl, vl 2Xl,||w0|| ¼ 0, d l � 0 for 1 � l � T, and kdkpp � 1 for some p � 1,
where d denotes the vector (d0, d1, . . ., dl). Note that the relationship between
the main task PTþ1 and a specific auxiliary task Pl is captured by ||vl||, 1 � l �
T. A smaller ||vl|| indicates that the main and auxiliary tasks are more-closely
related. In the special case where ||vl|| ¼ 0, 1 � l � T, the prediction from the

main task model for a sample ðxlÞTl 1 becomes
XT

l 1
dlw0

lxl, which is a
weighted sum of the output from models learned for auxiliary tasks.

Without loss of generality, assume that there are n independent and
identically distributed (i.i.d.) training samples in the form of Xi ¼
ðxliÞTþ1

l 1 , ðyliÞTþ1
l 1 , 1 � i � n, drawn from a distribution D defined by X �

{–1,1}0, a domain that represents both the input feature space and the
output hypothesis space for the main task PTþ1; and user-defined
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parameters B > 0 and Cl, 1 � l � T þ 1, the main-task model space HTþ1

is defined as

HTþ1ðB,X ,ClÞ ¼ ðxlÞmþ1
l 1 !

Xmþ1

l 1
½dlðwl þ vlÞ�T

n
xljwl, vl 2 Xl, 1 � l � mþ 1;wmþ1 ¼ 0 ; kdkpp � 1, d � 0; ð7:6aÞ

o
and

1
2

Xmþ1

l 1
dlkvlk2 ð7:6bÞ

þ 1
2

Xm

l 1
Cldlkwlk2 ð7:6cÞ

þ 1
2

Xm

l 1

Xn

i 1
dl
�
wT
l x

l
i yli

�
2 � B: ð7:6dÞ

The main task model is ðdlðwl þ vlÞÞTþ1
l 1 , and wl is the lth auxiliary task

model with 1 � l � T. Equation (7.6a) restricts the p-norm of the weight
vector kdkpp to be smaller than 1, similar to that of the nonsparse MKL.110

Equation (7.6b) regularizes the relation between the main task and the specific
auxiliary task. Equation (7.6c) regularizes the norm of auxiliary task model
using a weighted sum formulation similar to that used in MKL,106 intuitive
MKL,107 and the group lasso.108 Equation (7.6d) stipulates that all of the
auxiliary task models have a small total quadratic error. If an auxiliary task
has a higher impact on the main task (i.e., dl is high), its error will be penalized
more. If dl ¼ 0, there will be no restriction on the error of the lth auxiliary task
because it has no effect on the main task model. Using the weighted error term
also leads to easier convex optimization. Note that the parameter Cl serves a
similar function as the regularization parameter “C” in a SVM. When taking
out all of the terms related to wl in Eqs. (7.6c) and (7.6d) for a fixed l, i.e., a
specific learning task,

dl
1
2
Clkwlk2 þ 1

2

Xn

i 1
ðwT

l x
l
i yliÞ2

� �
, ð7:7Þ

which is exactly the same formulation as that of a SVM with the quadratic
loss.

7.4.3 Experiment setup and results

For melanoma screening and early detection, the main task is to learn a model
that can make the correct decision about whether the incoming ELM skin
lesion image is melanoma or benign. As shown in Fig. 7.13, auxiliary tasks
include recognizing global and local dermoscopic features. Instead of learning
all ten high-level concepts, three local dermoscopic features are considered
as auxiliary tasks: irregular dots/ globules, irregular pigment network, and
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blue-whitish veil. In addition, all global features shown in Fig. 7.13 are
grouped as one auxiliary task: multicomponent or not. The input feature sets
for learning auxiliary task models are the same as those detailed in
Section 7.3.1.

The same dataset used in Section 7.3 is used here: A total of 360 ELM
skin lesion images each with a resolution of 500 � 700. There are 90
melanoma and 270 benign images, with 120 ELM images annotated by
clinicians as being multicomponent. Fivefold cross-validation is used on all of
the methods, and their performance is compared to the AUC.

Simple: Learn a main task model by concatenating all features of all
auxiliary tasks, and train with the main task label using a SVM.

Baseline: A single kernel learned from the feature set of the main task and
trained with the main task label using a SVM.

MTK: Use a traditional MTK [XY50] algorithm and concatenate all
features of all auxiliary tasks, as in the simple method, to accommodate
its requirement for a homogeneous input feature space.

MKL: This method was designed to combine heterogeneous data
sources.109 The nonsparse MKL105 and 2-norm are used here in the
constraint for the weight variables. MKL uses different feature spaces
for different auxiliary tasks, but it still uses the main task label to learn.

LPBoost: Linear programming boosting95 was not designed in a multitask
setting. However, it is straightforward to generalize LPB to learn
models for multiple tasks. The n-LPBoost formulation91 is used here
because it has been shown to be more effective than MKL in combining
heterogeneous features. In the experiments, v-LPBoost first trains T
SVMs for T auxiliary tasks and one for the main task, each with its own
feature set. It then builds a linear weighted combination of the Tþ1
models for the main task. This method is the closest to the proposed
learning framework. The only difference between the LPBoost and
MAKL is that LPBoost performs learning in two steps, whereas
MAKL learns all tasks simultaneously.

MAKL: The proposed MAKL method uses a weak label and the
individual feature set for auxiliary task model learning. In the
experiment, p ¼ 2, i.e., the Euclidean norm is used.

To determine the effect of weak annotation (used as auxiliary task labels),
all auxiliary task labels are replaced with the main task labels of the lesion in
LPBoost and MAKL experiments, while still using their individual feature
sets in training. The methods are denoted as LPBoost-main and MAKL-main.
In addition, to determine the effect of the weight variable d of the auxiliary
tasks, it is set to be the same for MKL and MAKL, resulting in MKL-ave and
MAKL-ave.

Exhaustive experiments have been performed to identify the set of
optimum parameters used in all these learning methods and the best results
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are reported in Table 7.4. Based on a paired t-test at 95% confidence level, the
performance difference is significant between all methods and MAKL, except
for the MAKL-ave (marked in bold in the table).

Table 7.4 clearly shows that the simple and MTK methods perform
significantly weaker than other methods (paired t-test at 90% confidence
level), confirming the cognitive research result87 that the “natural splitting” of
the feature set should be taken into consideration when developing automated
melanoma screening and early detection systems. In addition, all MAKL-
based methods outperform those based on MKL, demonstrating the benefit of
accommodating heterogeneous feature space for the main and auxiliary tasks,
a norm in real-world applications. The MAKL-based methods also
significantly outperform LPBoost-based methods, confirming the benefit of
learning all task models simultaneously and allowing auxiliary task models to
adapt to that of the main task.

From Table 7.4, it appears that the difference between the weighted
scheme MAKL and the average scheme MAKL-ave is not significant. To
show the advantage of MAKL over that of its average MAKL-ave, some
randomly generated auxiliary tasks in the training phase were added, and the
same experimental setting as before was applied. Figure 7.14(a) clearly shows
that the performance of MAKL is more robust than that of MAKL-ave when

Figure 7.14 Comparison between MAKL and MAKL-ave with the introduction of unrelated
auxiliary tasks: (a) AUC vs. the number of unrelated tasks, and (b) the weight learned by
MAKL for auxiliary tasks. Tasks 6–10 are randomly generated unrelated tasks.

Table 7.4 AUC of different methods minus the AUC of the baseline (diff. AUC).

Methods Simple MTK MKL

Diff. AUC (%) (std %) 0.39 (3.34) 0.09 (5.16) 1.73 (3.50)
Methods MKL-ave LPBoost LPBoost-main

Diff. AUC (%) (std %) 3.51 (4.13) 6.17 (6.27) 7.28 (6.70)
Methods MAKL MAKL-ave MAKL-main

Diff. AUC (%) (std %) 9.42 (5.32) 9.39 (5.70) 6.91 (5.77)
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unrelated auxiliary tasks are present. Figure 7.14(b) shows the weights (i.e., d,
indicating how much the auxiliary task contributes to the main task) learned
by MAKL (averaged over fivefold cross-validation) when five unrelated
auxiliary tasks were introduced. MAKL successfully excluded these unrelated
auxiliary tasks while learning the model for the main task (melanoma or not?).

7.5 Conclusions and Future Directions

Although AutoScan shows reasonably good results compared with some
existing methods, we hope it will serve as the benchmark for future systems.
The natural next step for the current AutoScan is to extend the auxiliary tasks
from five to include all ten local and global features listed in Table 7.3.
Furthermore, given that clinicians are used to utilizing diagnosis criteria such
as the ABCD rule, the 7-point checklist, or the Menzies method for melanoma
diagnosis, AutoScan can be extended by building a decision support system
based on specific criteria selected by dermatologists because it can identify all
ten high-level concepts from pigmented skin lesion images already. Perhaps it
is possible to develop a generic framework that incorporates and automati-
cally chooses different types of features (intensity, color, texture, and shapes)
in information forms (region and edge) while performing ROI identification.
Another direction would be to explicitly incorporate the spatial relationship
between pixels (either their intensity pattern or texture pattern) in the image,
which has been used by clinicians for melanoma diagnosis.
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Chapter 8

A Complex Wavelet-Based
Feature Extraction System
for Microcalcification Detection
in Digital Mammograms*

Ping Zhang
Department of Mathematical and Computer Science, Alcorn State University,
Alcorn, MS, USA

Kwabena Agyepong
Department of Advanced Technologies, Alcorn State University, Alcorn, MS, USA

8.1 Introduction

Breast cancer is one of the leading causes of death among women worldwide.
In the United States, it is the most-common form of cancer among women.
Women in the U. S. have about a one-in-eight lifetime risk of developing
invasive breast cancer. Early detection can increase the survival rate and
treatment options.

Regular mammographic screening programs for women at certain ages or
in high-risk groups are necessary. Mammography is the most common and
convenient procedure for detecting nonpalpable cancers. It is an inexpensive

* The Digital Database for Screening Mammography (DDSM) belongs to the
University of South Florida, and the authors would like to thank the professors and
scientists of USF for providing the data for this research. This project is partially
supported by the Research Project of Department of Defense, USA: Development
of a Knowledge Base to Support Detection and Diagnosis and Research in
Mammography.
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practice that is highly effective even when the size of the breast abnormality is
minimal. Breast cancer can be divided into three categories: microcalcifica-
tions, masses, and architectural distortions. One of the early signs of breast
cancer is the presence of microcalcification clusters (MCCs) in the
mammogram. Because MCCs have small size, irregular shape, and low
contrast, they are often missed or misinterpreted by physicians. Therefore, an
automatic and reliable computer-aided diagnosis (CADx) system can be very
useful in helping radiologists analyze mammographic lesions that may
indicate the presence of cancer. The CADx system can detect and verify those
mammogram images where possible cancer evidences have been developed;
the images will then be sent to radiologists for final evaluation.

Microcalcifications are tiny deposits of calcium, which appear as small
bright spots in the mammogram. Microcalcifications are characterized by
clusters, type, and distribution properties. Figure 8.1 shows two images of
MCCs (a, b) and two images of a normal mammogram (c, d).

Microcalcification image analysis and detection is an extremely challeng-
ing task for the following three reasons: First of all, there is a large variability
in the appearance of abnormalities. Likewise, abnormalities are often
occluded or hidden in dense breast tissue. Perhaps most importantly, a
CADx system for MCC detection is used in serious human disease detection;
therefore, a need for near-perfect accuracy is required.

Concerning calcification detection in the regions of interest (ROIs), many
methods have been proposed. In a survey paper,1 mammogram enhancement
and segmentation algorithms, and mammographic features, classifiers, and
their performances were reviewed and compared. Remaining challenges were
also discussed. In another paper,2 the detection performances of different
classifiers, such as support vector machines (SVMs), kernel Fisher discrimi-
nant (KFD), relevance vector machine (RVM), and committee machines
(ensemble averaging and AdaBoost) were compared, and the test results were
reported. Neural networks have been used in many calcification systems. Two
automatic microcalcification detection systems were proposed based on the
hybrid neural network classifier.3,4 SVMs were reported in the mammogram
detection systems.5,6 Unsupervised detection of mammogram ROIs was

Figure 8.1 Four mammograms: (a, b) calcification images and (c, d) normal images.
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introduced.7 Segmentation of ROIs in mammograms using a topographic
approach was introduced in recent literature.8

Feature extraction is one of the most important components in
mammogram detection. A local feature extraction has been developed.9 For
example, the application of shape analysis to mammographic calcification
was introduced.10 Statistical textural feature for detection of microcalcifica-
tion was described elsewhere.11 Wavelets have been widely used in the feature
extraction and segmentation in mammogram detection.12 16 Combining
mathematical morphology and neural networks was also proposed in the
literature17 and multifractal analysis has been used in the medical image
detection and classification.18 20

In order to increase detection rate, a multiple expert system was provided
to the detection system.21 A fuzzy logic was then introduced to detect
calcification.22 A microcalcifications detection algorithm by fitting a model to
every location in the mammogram was proposed.23

A complex wavelet transform (CWT) is developed in order to keep the
attractive attributions of a discrete wavelet transform (DWT) such as
approximate half-sample delay property, PR (orthogonal or biorthogo-
nal), finite support (FIR filters), vanishing moments/good stopband,
linear-phase filters, etc.24 In addition, a CWT adds some new merits,25,26

including approximate shift invariance, good directional selectivity for 2D
images, and efficient order-N computation and limited redundancy. The
computational complexity of a CWT requires only twice that of a DWT
for 1D (2 m times for m-D signal). These good properties have made the
CWT successful in many image processing applications recently, including
pattern feature extraction and recognition. The dual-tree CWT has shown
to be a suitable solution to CWT algorithm implementation.27 29

However, to our knowledge, the application of Two-Dimensional CWT
(2D-CWT) to calcification detection in digital mammograms is a new and
challenging research topic.

In this chapter, a microcalcification detection system with a novel hybrid
feature extraction scheme is proposed. A system diagram is drawn in
Section 8.2. Section 8.3 presents a hybrid feature extraction method, which
consists of a texture-based feature and 2D complex wavelet-based multifractal
features. Classifier design and system implementation are explained in
Section 8.4. The experimental comparisons for calcification detection on four
SVM classifiers trained by four feature sets used in this paper are conducted in
Section 8.5.

8.2 System Design

The schematic diagram of the proposed system is shown in Fig. 8.2. The
system includes five parts: Mammography image input, image preprocessing,
hybrid feature extraction, SVM classifier design, and detection output.
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surrounding region, respectively. w1, w2, and w3 denote the size of the three
square windows.

In the following calculations, n is the maximal pixel number of R1 (inner
region), and m is the maximal pixel number of R2 (outer region):

aði, jÞ ¼ #fðx,yÞjcR1ðx, yÞ ¼ i, cR2ðx,yÞ ¼ j, ðx,yÞ 2 Lx � Lyg,
cR1ðx,yÞ ¼ #fðk, lÞjðk, lÞ 2 R1, ½Sðx,yÞ Sðk, lÞ� > qg,
cR2ðx,yÞ ¼ #fðk, lÞjðk, lÞ 2 R2, ½Sðx,yÞ Sðk, lÞ� > qg,

where S(x, y) is the image intensity of the current pixel (x, y), parameter q is a
constant, and # equals the number of pixels. r(i, j) is the reciprocal of the
element, which is calculated as follows:

rði, jÞ ¼
1

aði, jÞ if aði, jÞ > 0

0 otherwise:
ð8:1Þ

8<
:

The following features are extracted:

Horizontal-weighted sum (HWS)

HWS ¼ 1
N

Xm
i 0

Xn
j 0

j2rði, jÞ: ð8:2Þ

Vertical-weighted sum (VWS)

VWS ¼ 1
N

Xm
i 0

Xn
j 0

i2rði, jÞ: ð8:3Þ

Diagonal-weighted sum (DWS)

DWS ¼ 1
N

Xmþn

k 0

k2
Xm

i 0iþj k

Xn
j 0

rði, jÞ: ð8:4Þ

Grid-weighted sum (GWS)

GWS ¼ 1
N

Xm
i 0

Xn
j 0

ijrði, jÞ, ð8:5Þ

where N is the total sum of elements in the surrounding region, which is
defined as

N ¼
Xm
i 0

Xn
j 0

aði, jÞ: ð8:6Þ
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Except for these four features, an additional four new features are added in
our system:31

Variance sum (VS)

VS ¼
XNx 1

i 0

XNy 1

j 0

ðSði, jÞ SÞ2: ð8:7Þ

Discrete Laplacian sum (DLS)

DLS ¼
XNx 1

i 0

XNy 1

j 0

1
4

@2Sði, jÞ
@i2

þ @2Sði, jÞ
@j2

� �
: ð8:8Þ

Entropy (E)

E ¼
XNx 1

i 0

XNy 1

j 0

Pði, jÞlog2Pði, jÞ: ð8:9Þ

Mean grey level (MGL)

MGL ¼ 1
Nx �Ny

XNx 1

i 0

XNy 1

j 0

Sði, jÞ, ð8:10Þ

where Nx, Ny is the size of selected mammogram. In total, eight features are
extracted as texture features.

8.3.2 Wavelet transform

The definition of a CWT is as follows: for a continuous function f(x), it is
projected at each step j on the subset Vj, (. . . . . .� V 1 � V0 � V1 � V2 �. . .).
The scalar project cj,k is defined by the dot product of f(x) with the scaling
function fðxÞ, which is dilated and translated:

cj,k ¼ hf ðxÞ,fj, kðxÞi,
fj,kðxÞ ¼ 2j=2fð2jx kÞ: ð8:11Þ

The difference between cjþ1,k and cj,k is contained in the detailed component
belonging to the space Wj, which is orthogonal to Vj. The following equations
exist:

W�Vj ¼ Vjþ1,

Vj \Wj ¼ f0g, j 2 Z:
ð8:12Þ

Suppose c(x) is a wavelet function; the wavelet coefficients can be obtained
by

wj,k ¼ h f ðxÞ, 2j=2cð2jx kÞi: ð8:13Þ
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Some relationships between fðxÞ and c(x) are as follows:

1
2
f

x
2

� �
¼

X
n
hðnÞfðx nÞ,

1
2
c

x
2

� �
¼

X
n
gðnÞfðx nÞ,

ð8:14Þ

where h(n) and g(n) represent unit impulse functions of low-pass and high-pass
filters respectively, which are related to the scaling function fðxÞ and the
wavelet function c(x).

According to wavelet theory, a conventional two-dimensional wavelet
discrete transform (2D-DWT) can be regarded as equivalent to filtering the input
image with a bank of filters whose impulse responses are all approximately given
by scaled versions of a mother wavelet. The output of each level consists of four
subimages—LL, LH, HL, and HH—with 2:1 downsampling.

Mathematically, this recursive algorithm can be expressed in the following
equation:

cðx, yÞLL ¼ fðxÞfðyÞ,
cðx, yÞLH ¼ fðxÞcðyÞ,
cðx, yÞHL ¼ cðxÞfðyÞ,
cðx, yÞHH ¼ cðxÞcðyÞ:

ð8:15Þ

For example, the LL wavelet is the product of the low-pass function fðxÞ
along both the first and second dimension. The LH wavelet is the product of
the low-pass function fðxÞ along the first dimension and the high-pass
function cðyÞ along the second dimension.

If the wavelet filters are real, then Mallat’s dyadic wavelet decomposition
fast algorithm can be used.24 However, 2D-DWT has two drawbacks: lack of
shift invariance and poor directional selectivity.

8.3.3 Complex wavelet transform for feature extraction

2D-CWT provides true directional selectivity and pixel-shifting insensitivity.
The six subband images of 2D-CWT can be represented by the following
wavelet core functions:25

c1ðx, yÞ ¼ cðxÞcðyÞ,
c2ðx, yÞ ¼ cðxÞcðyÞ,
c3ðx, yÞ ¼ fðxÞcðyÞ,
c4ðx, yÞ ¼ cðxÞfðyÞ,
c5ðx, yÞ ¼ fðxÞcðyÞ,
c6ðx, yÞ ¼ cðxÞfðyÞ,

ð8:16Þ

where fðxÞ ¼ fhðxÞ þ jfgðxÞ, and cðxÞ ¼ ch þ jcgðxÞ; both are complex
functions. ciðx,yÞ, (i ¼ 1, . . ., 6) are six subbands of complex coefficients

217A Complex Wavelet-Based Feature Extraction System...



at each level, which are oriented at angles of �75 deg, �45 deg, and
�15 deg.

2D-CWT can be implemented using a dual-tree structure.26 For each
tree, its structure is similar to 2D-DWT. It has two decomposition
operations on each level, namely row decomposition and column
decomposition, except that the different filters are applied for perfect
reconstruction, and the output of the subband images is congregated into
complex wavelet coefficients. Figure 8.4 shows our proposed 2D-CWT
feature extraction scheme.

The dual-tree complex wavelet decomposition consists of two trees, A and
B, both of which have the same structure. In order to realize perfect
reconstruction from decomposed subimages, a low-pass filter and a high-pass
filter at the first level need to be specially designed and denoted as h00, g00 for
tree A and h10, g10 for tree B, which are called prefilters. The other complex
filters in the higher levels are set to h01 and g01 for tree A, and h11 and g11
for tree B.

A calcification image of size N � N is decomposed into four subband
images—LL, LH, HL, and HH—at the first level of each tree. Each
of the subband images has a size of N/2 � N/2. At the higher levels,
the decompositions are based on an LL subband image from the
previous level. For example, if a 128 � 128 block of ROI submammo-
grams is decomposed into the fourth level, the final size of each subband
image is 16 � 16. The complex wavelet coefficients will be used as
features.

Level 1 Level 2 Level N

ROI
Image

Tree A

Tree B

h00
g00

h01
g01

h10
g10

h11
g11

h11
g11

h01
g01LL

LL
LH

LH
HL

HL

HH
HH

LL

LH

HL

HH

LL

LH

HL

HH

LL

LH

HL

HH

LL

LH

HL

HH

…...

Figure 8.4 The schematic diagram of 2D-CWT for feature extraction.
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8.3.4 2D-CWT multifractal feature

Wavelet coefficients have been used for features in many pattern recognition
systems because wavelet transformation explores the detailed information on
different decomposition layers and different orientations. Due to the fact that
the shape and size of the small light spots in the calcification ROI image are
changeable case-by-case, improvements to a 2D-complex-wavelet-based
feature are needed in order to keep more stable features.

The multifractal application to image classification and recognition has
received a lot of attention. The term “multifractal” was coined by Mandelbrot
in 1975 to describe the irregular structure of many natural objects and
phenomena. Central to multifractal geometry is the concept of self-similarity.
Considering a bounded set R in Euclidean n-space, the set is said to be self-
similar when R is the union of Nr distinct (non-overlapping) copies of itself,
each of which has been scaled down by a ratio r < 1 in all coordinates. The
similarity dimension Ds is given by

Nr 	 rDs ¼ 1, where Ds ¼ log ðNrÞ=log ð1=rÞ: ð8:17Þ
The ranges in the value of Ds characterize the type of multifractal.

A few methods to compute the multifractal dimension have been proposed
in the literature, such as the walking-divider, box counting, prism counting,
epsilon-blanket, perimeter-area relationship, fractional Brownian motion,
power spectrum, and hybrid methods.32

A novel 2D-CWT-based multifractal feature extraction scheme is
proposed in this chapter. Four subimages of LL, LH, HL, and HH in the
fourth layer of 2D-CWT for each tree of the ROI (128 � 128) are used to
calculate multifractal number as follows:

dðkÞ ¼
XM�1

x 0

XN�k�1

y 0

ðIreðx, yÞ � Ireðx, yþ kÞÞ2 þ ðIimgðx, yÞ � Iimgðx,yþ kÞÞ2
q

=ðM � ðN � kÞÞ

þ
XN�1

y 0

XN�k�1

x 0

ðIreðx, yÞ� Ireðxþ k,yÞÞ2 þ ðIimgðx, yÞ� Iimgðxþ k,yÞÞ2
q

=ðN � ðM� kÞÞ,

ð8:18Þ

FðkÞ ¼ log ðdðk þ 1ÞÞ log ðdð1ÞÞ, ð8:19Þ
where k ¼ 1, 2, . . ., l, and l is number of features extracted. A vector
of [F(1), F(2), . . ., F(l)] will be fed into a SVM classifier for training and
testing. As 2D-CWT is implemented using a dual-tree structure (shown in
Fig. 8.4), there are two sets of LL, LH, HL, HH subimages: Ireðx, yÞ is the
real part of 2D-CWT intensity value at the fourth layer, whereas Iimgðx, yÞ is
the imagery part of the 2D-CWT intensity at the same layer with Ireðx, yÞ:
In Eq. (8.19), if only six features are extracted from each subimage at the
fourth layer of each tree, then there are in total 6 � 8 ¼ 48 features
extracted.
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8.4 Classifier Design

Support vector machines34 rely on representing original features to a higher
dimension by an appropriate nonlinear mapping f( ). Data from two
categories can be separated by a hyperplane.

In this chapter, the kernel function is a Gaussian radial basis kernel:

Kðx, zÞ ¼ exp ð jjx zjj2=s2Þ: ð8:20Þ
Training a SVM for a pattern recognition problem leads to the following

quadratic optimization problem:

Minimize: WðaÞ ¼
Xl

i 1

ai þ 1
2

Xl

i 1

Xl

j 1

yiyjaiajkðxi,xjÞ; ð8:21Þ

Subject to:

Xl

i 1

yiai ¼ 0,

;i : 0 
 ai 
 C,

ð8:22Þ

where the number of training examples is denoted by l, and a is a vector of
l variables. Each component ai corresponds to a training example (xi, yi). xi is
the feature vector of the ith training sample, whereas yi is its label. The
solution is the vector a, for which Eq. (8.21) is minimized and the constraints
in Eq. (8.22) are fulfilled. A SVM classifier is especially used for two-class
problems, the layout of which is as follows:

8.5 Experiment Results

In order to test the microcalcification detection performance of the proposed
feature extraction algorithm and system, 72 cancer mammograms and 100
normal mammograms from the well-known mammogram DDSM database33

are used in the experiments, from which 22 cancer mammograms and 30
normal mammograms are chosen for testing. Other mammograms are used
for training. In the DDSM database, the boundary of clustered MCs is given
in the overlay information, which is based on the radiologists’ knowledge and
used to verify the correctness of the proposed algorithm and system.

As mentioned in Section 8.3.1, the image of a mammogram is divided into
different overlapping 128 � 128 subimages. In total, 1,000 subimages of
microcalcification ROIs and another 1,000 subimages of noncancerous areas
are created for training. 400 microcalcification subareas (128 � 128) and 400
normal subareas are selected from the testing set.

A comparison of the calcification-detection performance of four different
feature sets has been conducted. Four sets of features introduced in this

Number of nodes in the input layer: Number of features
Value in the output layer: [ 1, 1] (normal case and calcification cancer)
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chapter are employed to train four SVM classifiers with the same
configuration except for the number of input features. Table 8.1 lists the
number of features in each of the four feature sets.

In the first feature set, eight features were introduced in Section 8.3.1. In
the second feature set, the multifractal feature set is directly extracted from
original mammography images; therefore, Eq. (8.18) is adopted as follows:

dreðkÞ ¼
XM 1

x 0

XN k 1

y 0

ðIorgðx,yÞ Iorgðx,yþ kÞÞ2
q

=ðM � ðN kÞÞ

þ
XN 1

y 0

XN k 1

x 0

ðIorgðx, yÞ Iorgðxþ k, yÞÞ2
q

=ðN � ðM kÞÞ, ð8:23Þ

where Iorg(x, y) is the image density at pixel (x, y) of the original mammogram.
30 features are extracted based on Eq. (8.23). Therefore, the number of
features in the SRDM þ multifractal feature set is 38.

The third feature set consists of eight SRDM features and a 2D-CWT
feature set. The 2D-CWT feature set is extracted based on original
mammography images and by the following means: The amplitude coefficients
for three high-frequency components and both the amplitude and phase
information for the low-frequency component at the fifth layer (with subimage
size of 4 � 4) are extracted as features. The number of features ¼ 4 � 4 (for
each subband image) � 3 (high-frequency subband images for each tree) � 2
(trees) þ 4 � 4 (for each subband image) � 2 (trees) � 2 (parts: real and
imaginary) ¼ 160. In total, 168 features are extracted.

In order to suppress the large number of dimensionality in the third
feature set, the fourth feature set is formed as a SRDM þ 2D-CWT-based
multifractal feature set. As shown in Section 8.3.4, the 2D-CWT-based
multifractal feature set has 48 components. By adding eight SRMD texture-
based features, 56 features are extracted.

Experiments show that four classifiers trained by the four feature sets have
different detection rates. The SVM classifier trained by the fourth feature set
(hybrid feature set: SRDM þ 2D-CWT-based multifractal feature set) can
achieve over 83% correct detection rate on the testing set. The detection
performances are listed in Table 8.2.

The receiver operating characteristic (ROC) curves are plotted in Fig. 8.5
as the ratio of the true positive fraction against the false positive fraction.

Table 8.1 Four feature sets and dimensions.

Feature Set Feature Dimension

SRDM feature set 8
SRDM þ multifractal feature set 38
SRDM þ 2D CWT feature set 168
SRDM þ 2D CWT based multifractal feature set 56
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From the comparison of the ROC curves, it can be concluded that our
proposed hybrid feature set (the fourth feature set in Table 8.2) has the best
discriminant ability among the four feature sets.

Among the four feature sets, the SRDM (texture-based feature) has a
minimum of 8 features; however, it has the lowest detection rate and the
lowest ROC performance. The second feature set combines the SRDM with
multifractal feature. Both detection rate and the ROC performance have been
increased. The third feature set consists of the SRDM and the 2D-CWT
feature set. The detection performance was improved slightly; however, the
number of the feature set is too large (168). According to a rule of thumb, if
the third feature set is used to train an SVM classifier, much more training
samples are needed. In the fourth feature set, the merit of the 2D-CWT is
kept. Furthermore, the multifractal feature set keeps a steady feature
attribution for the irregular shape of calcification spots in the mammograms.
As a result, both detection rate and the ROC performance are significantly
improved.

Figure 8.5 ROC curves with different feature sets.

Table 8.2 Four feature sets and their detection performances on the test set. Note that a
true positive rate (TP) is a percentage made by the classifier system that correctly
corresponds to the lesion test images, whereas a true negative rate (TN) is a percentage
made by the classifier system that correctly corresponds to the nonlesion testing images.

Feature Set TP TN Detection Rate

SRDM feature set 76% 77% 76.50%
SRDM þ multifractal feature set 79% 80% 79.50%
SRDM þ 2D CWT feature set 80% 82% 80%
SRDM þ 2D CWT based multifractal feature set 82% 84% 83%
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Figure 8.6 shows some examples of calcification areas that have been
correctly detected by some classifiers trained with the four feature sets. The
proposed MCC algorithm has been applied to whole mammogram images.
Figure 8.7 shows three calcification areas that have been correctly detected in
digital mammograms.

The proposed hybrid feature extraction method (SRDM þ 2D-CWT-
based multifractal feature set) is a new scheme based on SRDM. In this newly
proposed feature set, the textual information, wavelet-oriented information,
and multifractal information of the mammogram are congregated to form a
new hybrid feature. From Table 8.2 and Fig. 8.6, it can easily be concluded
that the proposed hybrid feature method has achieved a better detection rate
and a better ROC curve than the SRDM-based feature set, which has been
published in the literature.11,31

Figure 8.6 Detected MCC areas by classifiers with different feature sets listed in
Table 8.2: (a) all four classifiers trained by the four feature sets, (b) only the last three
classifiers trained by the last three feature sets, and (c) only the classifier trained by the
fourth feature set.
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8.6 Conclusion

A novel hybrid feature method is proposed and successfully applied to
microcalcification detection in digital mammograms. The hybrid features
combine texture-based features and 2D complex wavelet-based multifractal
features. 2D-CWT can decomposite a ROI area into different subimages with
different frequency bands and directional orientations, which provides true
directional selectivity and pixel-shifting insensitivity. Furthermore, the 2D-
CWT-based multifractal feature set can suppress the drawback of the 2D-CWT
feature’s sensitivity to the irregularity of microcalcification in the mammogram.
Experiments demonstrated that the proposed scheme has improved micro-
calcification detection performance compared to other feature extraction
methods previously published. Future work will focus on constructing a
classification system in the ensemble classifiers with hybrid features in order to
increase the system’s reliability and detection rate at the same time in one system.
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9.1 Introduction

Over the next few years, a dramatic increase in the number of people developing
different types of cancer is expected. It is estimated from global statistics that
10 million new cancer patients are diagnosed each year, and this number will
double by the year 2020. Although several billions of dollars are spent on cancer
research, there is still no definitive cure for this disease.3 Meanwhile, various
techniques have been developed to be used in all phases of cancer diagnosis and
management with the aim of helping doctors define an appropriate treatment
plan for patients and monitor treatment efficacy. Imaging forms an essential
part of cancer clinical protocols and can provide morphological, structural,

* This work has been partially supported by NSF Grant (RD-0932339) and by CTRC
P30 Cancer Center Support Grant (CA054174) from the National Cancer Institute.
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metabolic, and functional information. As a result, cancer diagnosis is
becoming increasingly image-based. There are three main objectives of using
imaging with respect to cancer management: (1) the earliest possible detection
of benign or malignant lesions or tumors, which is probably the strongest factor
in reducing mortality for certain cancers; (2) correlation of imaging results with
other clinical parameters; and (3) accurate staging and follow-up after
treatment. In order to aid radiologists and pathologists in cancer diagnosis,
various computer-based methods have been developed to detect, classify, and
grade the malignancy of tumors by using certain visual criteria.4

Due to the importance of imaging in cancer diagnosis and treatment,
computer-aided diagnosis (CAD) has become one of the major research
subjects in medical imaging and diagnostic radiology and pathology. The goal
of CAD is to increase the productivity of radiologists/pathologists by improving
the accuracy and consistency of diagnoses, reducing image reading time, and
providing computer-based tools for image visualization and annotation. The
general approach for CAD development is to find the location of a lesion
(detection) and also to estimate the probability of the presence of disease
(differential diagnosis). Ultimately, a CAD system may become an integrated
tool in all areas of medical imaging. An important benefit of using computers to
diagnose disease is the reproducibility and consistency of the diagnostic
methods because the performance of computers is not affected by fatigue,
perceptual errors, or variability in classification criteria. The use of computers
to assist clinical diagnosis is well established in radiology.2 In 1998, the U. S.
Food and Drug Administration (FDA) approved the clinical use of the first
CAD system for mammography developed for detection of breast cancer.5

Since then, other systems for disease detection have been used. For instance,
several CAD systems have been employed in breast screening6 10 or have been
prospectively analyzed in order to be used in clinical practice for breast cancer
detection.11,12 Support tools for skin cancer13,14 and leukemia15 have been also
presented. In addition, several CAD systems for prostate cancer diagnosis have
been developed with the aim of providing diagnostic information obtained from
quantitative image analysis. The information provided by accurate CAD
systems regarding cancer localization and grade may be used by doctors as a
“second opinion” in order to make final diagnosis decisions.

Prostate cancer is one of the most diagnosed cancers in the United
States.16 Cells that have the appearance of prostate cancer can be found in the
prostate gland of nearly 50% of men over the age of 50.17 Prostate cancer is
considered to be the second significant cause of cancer behind skin cancer, and
the second leading cause of cancer death behind lung cancer among American
men.16,18 Statistics for 2013 from the American Cancer Society show that
about 238,590 new cases will be diagnosed this year, and 29,720 men will die
of prostate cancer.16 The lifetime risk of a man being diagnosed with clinically
apparent prostate cancer is around 11%, and the lifetime risk of dying of
prostate cancer is 3.6%.17 However, strategies based on early and accurate
diagnosis that distinguishes the harmless (indolent) cancers from the
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potentially lethal ones plays a key role in therapy selection and consequently
in patient survival.17 Today, microscopic analysis of needle biopsy tissue
sections remains the gold-standard method for cancer detection and grading.

Currently, pathologists visually evaluate histopathology images and grade
them according to the Gleason grading system, which was endorsed as a
standard for prostate carcinoma in 2003 by the World Health Organization
(WHO),19 and it is widely used by pathologists around the world in clinical
practice. The system proposed by Dr. Donald Gleason assigns a grade from
1 to 5 depending on the architectural pattern of the glands of the prostate
tumor,20,21 as shown in Table 9.1. Gleason grade 1 refers to well-differentiated

Table 9.1 Characteristics of Gleason patterns and examples.

Grades 1 and 2: These patterns consist of well differentiated, uniform, single glands that grow close
together. The main difference between pattern 1 and pattern 2 is that the latter presents more variable single
glands slightly spaced apart, and boundaries of the tumor are less well circumscribed.31 Gleason pattern 1
and pattern 2 glands tend to be larger than intermediate grade carcinomas.28 These two grades are rare and
closely resemble normal prostatic tissue.

Grade 3: This pattern is composed of moderately differentiated glands that show marked variations in size and
shape. The neoplastic gland size is usually smaller than that seen in low grade tumors.28 Grade 3 tumors
infiltrate non neoplastic prostate acini and may show papillary or cribriform patterns. In 2005, it was decided
by the International Society of Urological Pathology (ISUP)32 that cribriform glands would be considered
pattern 3 only if they are well circumscribed, ovoid to round, and of similar size to normal glands.31

Grade 4: This pattern consists of large, irregular cribriform glands or fused glands with poorly formed
glandular lumina. In grade 4 tumors, there are no individual or separated gland units, as seen in grades 1 3.28

Cribriform glands larger than benign glands are also included in this pattern.31

Grade 5: This pattern includes anaplastic carcinoma with minimal glandular differentiation and diffusely
infiltrating prostatic stroma. Tumors showing comedocarcinoma and solid sheets, cords, and individual
cells without acinar formation were included in this group by the ISUP.31,32
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glands that resemble normal tissue, whereas Gleason grade 5 represents
poorly or nondifferentiated glands. Therefore, high grades (grade 4 and 5)
are closely related to a more-aggressive disease, whereas low grades
correlate with a more-favorable patient outcome. In contemporary clinical
practice, prostate-tumor grading starts with pattern 3.22 24 Gleason
patterns 1 and 2 are often incidental findings in the peripheral zone.
Recent studies have argued that the inclusion of grades 1 and 2 could
produce diagnostic confusion and potential errors (i.e., reporting these
grades usually reflects undergrading and does not correlate with radical
prostatectomy).25 27 In prostate cancer staging, special importance is given
to the recognition of Gleason grades 3 and 4 because there is a significant
prognostic difference between them; thus, cases with these grades must be
properly diagnosed. Table 9.1 summarizes the important characteristics of
each Gleason pattern and provides sample images. Moreover, the sum
of the primary (predominant) and secondary (second-most prevalent)
Gleason grades found in a histopathology image is reported as a Gleason
score. When a tumor has only one histologic pattern, the primary and
secondary pattern are given the same number. The Gleason score on a
biopsy is a powerful indicator for prostate cancer prognosis that correlates
with all of the important pathologic parameters at radical prostatectomy,
prognosis after radical prostatectomy, patient outcome radiotherapy, and
many molecular markers.28

Today, the characterization of prostatic tissue specimens by
pathologists is a decisive step in the diagnosis of prostate cancer.1

However, the grading process is time consuming and subjective. The
results of microscopic evaluation of tissue are influenced by pathologist
experience and fatigue, variability in the interpretation and application
of the grading criteria, and complexity of tissue samples. The combina-
tion of subjectivity and level of expertise of pathologists leads to high
intra- and interobserver variations, affecting the accuracy of pathology
reports. It has been reported in recent studies that intra- and
interobserver reproducibility of the Gleason grading system ranges from
60–90%, and comparisons between the assigned grade in the needle
biopsy and the grade of the matched whole prostate gland reflects
undergrading of the needle biopsy specimen in 42% of the cases and
overgrading in 15% of the cases.29 Undergrading is a serious problem in
circumstances where the treatment of a low-Gleason-grade tumor
(containing grades 1 and 2) would vary from a treatment of a Gleason
score 5 or 6.30 These issues create the need for a reproducible grading
system based on quantitative characterization of histopathology images
using appropriate features that would likely result in significantly
improved accuracy in cancer diagnosis.

Recently, several prostate cancer CAD systems using different approaches
have been proposed to classify/grade prostate cancer histopathology images.
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Practically, prostate-cancer computerized grading systems can be divided into
two main classes: tissue-structure-based systems and textural-based systems.

Tissue-structure-based systems employ the characteristics of glands and
their components (lumen, epithelial cytoplasm, and epithelial nuclei)
along with the nuclei cells’ spatial arrangement and density to detect
prostatic tumors and to identify the Gleason grade of biopsy
specimens.33 39

Textural-based systems use algorithms for image analysis in spatial and
transform domains to characterize the pattern of Gleason grades.
Spatial domain algorithms include co-occurrence matrix analysis,
fractal dimension, and run-length features, among others, whereas
transform domain features include wavelet energy of detail coefficients
and low-resolution images.40 50

Each approach has advantages and limitations. Several studies have
shown that CAD systems utilizing morphometric features correlate well with
cancer prognosis.51 56 However, in high-grade prostatic tumors character-
ized by the lack of individual or separated gland units, some basic elements
of the tissue, such as lumen, are absent or can be occluded by mucin or
cytoplasm;57 for these cases glandular features might be not as effective as
features resulting from textural analysis. Several combinations of morpho-
metric and textural parameters have been also proposed to distinguish
among Gleason patterns.

This chapter reviews recent developments in the field of detection and
grading of cancerous tissue from digitized microscopic histopathology
images, emphasizing both prostate cancer CAD technologies. Also
discussed are current developments in pattern recognition techniques to
classify whole slide images or smaller ROIs within prostatic tissue
samples. This chapter focuses on specific issues related to the developed
recognition systems that encompass image conditioning algorithms,
segmentation methods, feature vectors (used to characterize tumors),
classification methods, and system performance analysis. The following
sections describe the general components of CAD systems for prostate
cancer detection and diagnosis. Section 9.2 presents a brief overview of
the current clinical approach for detecting and grading prostate cancer
and the procedure for digitized histopathology image acquisition when a
biopsy is performed as part of the prostate cancer diagnosis protocol.
Section 9.3 describes the steps followed by computer-assisted prostate
cancer diagnosis systems. This section includes image processing
algorithms (used for noise filtering, color normalization, image segmenta-
tion, and others), feature vectors used for image classification, an
overview on learning algorithms, and methods for system performance
evaluation. Finally, concluding remarks and future directions in prostate
cancer CAD systems are discussed in Section 9.4.
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9.3.1 Image preprocessing

The role of preprocessing is to separate the pattern of interest to be classi-
fied from the background,70 remove noise,71 76 enhance details of the
pattern,77 101 detect edges or especial structures in the image,102 110 normalize
the size, magnification, orientation, and color of the image, and any other
operation that will contribute in defining a numerical representation of a given
pattern.70 Generic and specific algorithms for noise removal, image
enhancement, and edge detection may be applied to histopathology images.
Those algorithms have proven to have a positive incidence in cancer
recognition. This section describes several methods for image color
normalization that have been applied to histopathology images to deal with
issues related to color variability. In addition, we present a summary on
histology image segmentation often used as a preparation step before feature
extraction in tissue-structure-based classification systems.

9.3.1.1 Color normalization

Color is one of the most informative features of an image, and it plays a
central role in the development of image processing algorithms and
computer vision systems. However, the color of histopathology images
may be affected by several factors. Such factors include variations in staining
and scanning conditions due to image acquisition protocols, capturing-
device properties, and lighting conditions. Consequently, the performance of
color-based classification systems is degraded when the color of the images is
not standardized. Thus, color standardization is practically a necessary
condition for developing accurate color-based automatic recognition
systems. Standardization mainly consists of controlling the settings of a
set of images such that their original device-dependent color space is
transformed into some device-independent color space. Several studies have
been carried out to reduce color variations in histopathology images coming
from different sources. One approach111 uses standard color filters selected
for histology H&E stained slides (i.e., color chart) in order to calibrate and
profile imaging devices. The color produced by a particular scanner is
mapped to the reference colors by means of a polynomial transformation, in
which the color transformation matrix is constructed according to the
parameters of a specific scanner or imaging device. After the polynomial
transformation is done, the resulting image is gamma corrected in order to
produce the final result.

Another approach to color normalization of histopathology images is
based on local color transference.112 The algorithm uses fuzzy c-means to
segment the reference and input images in meaningful regions and generates a
weighting function based on the pixels’ fuzzy membership index, which
modulates the color transference operations. Examples of the application of
this normalization method on images from different sources are presented in
Figure 9.5.
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Another approach maps the color distribution of an over/understained
image to that of a well-stained target image. Magee et al.113 used a
multimodal extension to linear normalization in lab color space, which
generates several transforms depending on the image composition (one for
each segmented tissue structure present in the image), and the distribution of
each class is then mapped to each class of the image being processed. The
results of this algorithm are illustrated in Figs. 9.6(d)–(f).

Another path followed by several researchers to accomplish color
normalization is based on color deconvolution. Specific color deconvolution
vectors are estimated113 to separate the stains composing a color histology
image [Figs. 9.6(g)–(i)]. The image corresponding to each stain is processed
using filters to eliminate undesirable effects and residual stains or to highlight
tissue details, such that the color attributes of the final histology image are
improved and normalized.

9.3.1.2 Histopathology image segmentation

Segmentation of certain histological structures is a required step for systems
that take morphometric information of the tissue as feature vectors. The
presence, extent, shape, size, and other morphological features of cancer nuclei
and glands provide important clues in prostate cancer detection and grading.
For example, the size of glands in prostatic carcinoma tends to reduce as the
Gleason grade of the tumor is higher.1 Also, the density and distribution of
cancer cells in a specific area of the tissue are important indicators used for
grading of prostatic tumors. Therefore, automated detection and segmentation
of tissue structures are imperative steps in many modern CAD systems. In this
section, we discuss several proposed methods for segmentation of prostate
glands and other histological structures of the tissue.

Figure 9.5 Color standardization results: (top) original images and (bottom) color-
standardized images.

239Computer-Aided Prostate Cancer Diagnosis



A. Nuclear segmentation

Several works have been conducted on nuclear segmentation. Clustering
algorithms such as thresholding,68 k-means, and fuzzy c-means1,114 (as well as
Bayesian classification,37 color region mapping,115 watershed transform, and
novel edge detection algorithms) have been employed to separate nuclear
information from other structures in histopathology images. Because nuclei
appear with a dark-blue color in histopathology images, they can be
segmented using pixel-level analysis. However, a recent study by Nguyen
et al.57 proposes a maximum-object-likelihood binarization algorithm. The
nucleus objects are initially separated from the background by thresholding
the blue channel of the histology image; the area and circularity of each blob
is then used as a feature vector to refine the segmentation. Moreover,
knowledge about the appearance of nuclei in cancerous glands (light blue with
prominent nucleoli or dark spots) and normal glands (uniform dark or light
blue without nucleoli spots) is used to classify the segmented nuclei into

Figure 9.6 Color standardization results: (a)–(c): original images; (d)–(f) color-standard-
ized images using color distribution mapping; and (g)–(i) color-standardized images using
the color deconvolution approach.
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normal or cancerous nuclei. This study showed that the accuracy of detecting
cancerous regions in whole-slide biopsy images is improved with the
introduction of cytological features related to nuclear classification. More
details about the features used for cancer detection and the reported accuracy
of this study are described in Section 9.3.2.

B. Gland segmentation

Segmenting glands from a microscopic image is a challenging problem, even
manually, because of the variety and irregularity in size and shape, and their
poor differentiation in high-grade cancerous images.115 Various segmentation
methods have been proposed to achieve accurate gland segmentation. Naik
et al.116 introduced a gland segmentation method based on the fact that each
gland has three main components arranged in a particular fashion: the lumen
area is surrounded by epithelial cell cytoplasm, with a ring of nuclei defining
the outer boundary of the gland region. In order to detect pixels
corresponding to the structures of interest, a Bayesian classifier is trained
on the image pixel values. After lumen candidate areas are determined, gland
size constraints are incorporated as well as structure-based constraints (i.e., a
lumen region should be immediately surrounded by cytoplasm, and cytoplasm
is bordered by a ring of nuclei). Next, gland boundary segmentation is
performed using level sets defined mathematically as follows:117

@w

@t
¼ F jrwj ¼ 0, ð9:1Þ

where the function F defines the speed of evolution. The curve evolution is
controlled by the nuclei likelihood image and the initial contour is initialized
using the segmented lumen areas. The curve is evolved outward until the
difference between the boundaries of two consecutive iterations is less than a
predetermined value. Once the gland contour has been delineated, additional
gland size constraints are applied to discard regions that are too large to be
considered glands. An example of the gland segmentation results of the
algorithm is shown in Fig. 9.7. In this figure, blue contours correspond to

Figure 9.7 Gland segmentation results in a prostate tissue image by using level sets.
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lumen regions, and red boundaries define the segmented prostate glands.
As can be observed from the figure, the segmented glands consist solely of
lumen and internal cytoplasm regions, and in most cases the nucleus
boundaries are not included,118 enlarged true glands are removed probably
due to the size constraints applied during the lumen candidates selection and
final adjustments.

A high-throughput computer-aided system was developed by Xu et al.119

The system comprises three modules: a hierarchical-frequency-weighted
mean shift normalized cut (HNCut) for initial detection of glands, a geodesic
active contour (GAC) model for gland segmentation; and a diffeomorphic-
based similarity (DBS) feature extraction for classification of glands as
benign or cancerous. The proposed approach can rapidly detect, segment,
and classify prostatic glands. However, in several presented cases, the
boundaries of glands do not include cytoplasm and nuclei structures as part
of the gland. Figure 9.8 shows a representative example of the gland
segmentation results.

Another method for complete gland segmentation (including nucleus
boundaries) was presented by Nguyen et al.118 They used a color space
transformation from RGB to CIELAB in order to label tissue structures
(lumen, blue mucin, cytoplasm, nuclei, and stroma) according to their color
composition. Once the pixels have been classified, a two-stage algorithm is
used for gland boundary generation. In the first step, nucleus objects are
enlarged by combining them with cytoplasm pixels. In the second step,
enlarged nuclei are grouped to form gland boundary segments. In order to
reconstruct a complete gland, previously labeled lumen structures are unified
with boundary segments through a lumen boundary expansion procedure.
The lumen expansion algorithm runs until the gland has the estimated gland
size or the stroma pixels are reached.

Mosquera Lopez et al.115 developed another approach for prostate gland
reconstruction. In order to segment gland units, the components of glands are

Figure 9.8 Gland segmentation results in a prostate tissue image using HNCut and GAC.
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identified by decomposing the histopathology image using color region
mapping. After applying lumen size constraints to avoid the presence of noise,
selected lumen structures are unified with epithelial cytoplasm pixels to
conform to the interior part of each gland. Next, morphological operations
are performed on epithelial nuclei and stroma pixels to define the inner
boundary of the gland and to separate glands using stroma pixels. The
described procedure is illustrated in Fig. 9.9.

9.3.2 Feature extraction

The type of features extracted for image representation defines the
classification of the CAD system for prostate cancer detection and grading.
As mentioned previously, research on CAD systems for prostate cancer
diagnosis can be categorized into tissue structure-based and textural-based
systems depending on the analysis methods used to get information from the
histology images. Some of the features used in prostate cancer and other types
of cancer classification are inspired in the way pathologists evaluate the tissue
under the microscope. In this section a summary of the feature vectors used in
the major studies on prostate cancer recognition is presented along with the
reported accuracy of the systems utilizing those features.

Jafari-Khouzani and Soltanian43 used amulti-wavelet transform to represent
cancerous images. The energy and entropy of multi-wavelet coefficients of each
resulting sub-matrix were computed along with textural features extracted from
a co-occurrence matrix to classify a data set of 100 images into Gleason grades
2–5. The maximum reported accuracy was 97%. Huang et al.45 developed a
system that analyzes the texture complexity of histological images using two
fractal measurements: (1) fractal dimension calculated by using a differential box
counting method, and (2) entropy-based fractal dimension. The accuracy of the
system using various classifiers (i.e., Bayesian classifier, k-NN and SVM), that is
around 95%, was estimated using cross-validation methods. Khurd et al.47

developed a texture classification system to differentiate between Gleason grade

Figure 9.9 Gland segmentation process: (a) unifying lumen and cytoplasm pixels,
(b) segmented gland units, and (c) inner boundaries of segmented gland units.
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3 and 4 cancerous images extracting texton features (i.e., basic texture elements),
which are clustered using random forests or k-means algorithms. The
classification results showed a maximum net accuracy of 94% when k-means is
the clustering algorithm and SVMwith a Radial Basis Function (RBF) kernel is
employed as classifier. Yoon et al.48 developed a computer-aided classification
system where textural features were extracted from a cardinal multiridgelet
transform (CMRT) to differentiate images of Gleason 3 from Gleason 4. SVM
with a Gaussian kernel was used for the classification task, and the accuracy
of the system is 93.75% using the leave-one-out cross-validation method.
Almuntashri et al.49 presented a method for automatic classification of prostate
cancer biopsy image by combining features fromwavelet transformandwavelet-
based fractals analysis in order to capture textural complexity of cancerous
images. Experimental results showed average classification accuracy (with one-
vs.-all SVMclassifiers) of 95% in a set of 45 images ofGleason grades 3, 4, and 5.
Mosquera-Lopez and Agaian50 presented a system for classification of prostatic
carcinomas of grades 3–5 by using statistics of the distribution of wavelet energy
within cancerous patches to join the probability of wavelet coefficients obtained
by wavelet decomposition of the channels of color images and measurements
of color fractal dimension. The average accuracy of the system was estimated
by cross-validation yielding a correct classification rate of 97%.

Although most of the research in prostate cancer CAD systems has been
done on cancer grading of selected regions of interest, there are several textural-
based systems whose main objective is cancer detection in whole slides. For
example, Doyle et al.42 developed a boosted Bayesian multi-resolution system
for prostate cancer detection using textural features including first-order
statistics, co-occurrence features and Gabor filter response in a pixel basis taken
a small neighborhood around the pixel under study. They reported classifica-
tion accuracies of 69%, 70%, and 68% for low-, medium-, and high-resolution,
respectively.57 Color fractals120 have recently been used along with probabilistic
pairwise Markov models to distinguish cancerous regions from benign tissue,
yielding an area under the ROC curve of 0.821.41

Other classification approaches consist of segmenting tissue structures and
extracting features based on individual properties of each one of them.
Mainly, nuclear and glandular features have been considered important
characteristics in the detection of prostate cancer and its severity. Tissue-
structure-based systems exploit the correlation between the size, shape and
arrangement of histological structures within the histology image with
Gleason grades. For example, Doyle et al.37 used centroids of segmented
nuclear structures to create Voronoi, Delaunay, and minimum spanning tree
graphs in order to capture the spatial arrangement of nuclei in pathological
images represented by the area and edge length features as well as the nuclear
density. They classified H&E stained images into cancer, non-cancer and
cancer confounders groups using statistics from the constructed graphs.
Wetzel et al.35 constructed a spanning tree graph to connect segmented cell
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nuclei over a tumor image and quantify the architectural arrangement of cells.
The proposed system was able to correctly match the grade value of
pathological image at 80%.

Nguyen, Jain, and Allen38 used glandular features to classify histology
image in benign, grade 3, and grade 4. Features include statistics related to
size and shape of luminal and glandular areas as well as nuclei density and
gland area covered by blue mucin. The best accuracies achieved by the system
are 97.75%, 94%, 87.3%, and 98.58% at differentiating benign vs. grade 3
tissues, benign vs. grade 3 tissues, grade 3 vs. grade 4, and benign vs.
carcinoma, respectively. Mosquera-Lopez et al.115 developed a system to
classify cancerous tissues belonging to Gleason grades 3–5 by using a
combination of morphology and architectural features of the tissue. The
extracted features include 2D color histograms in the HSV color space, size,
and shape of glandular structures, nuclei density, and nuclear arrangement
from graph characteristics. The average accuracy of the system is 97.63%,
96.57%, and 87.30% when distinguishing Gleason 3 vs. Gleason 4, Gleason 3
vs. Gleason 5, and Gleason 4 vs. Gleason 5, respectively.

Several combinations of feature vectors coming from morphometric and
textural image analysis are found in the literature. Roula et al.68 investigated
the accuracy of utilizing Haralick features,121 gland area and nuclear area
extracted from a multi-spectral microscopy image to separate stroma, benign
prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), and
prostatic carcinoma obtaining an average classification error of 5.57%.
Diamond et al.122 used morphometric and Haralick texture features to
identify stroma, normal, and cancerous regions in samples of prostatic tissue
from whole-mount radical prostatectomy. Classification of noncancerous
regions was performed using morphometric characteristics of the histology
image under the assumption that normal tissue exhibit larger areas of
associated lumen. On the other hand, classification of stroma and cancerous
tissue was done by looking at Haralick features. In this study, 79.3% of the
sub-regions of interest were correctly classified. Tabesh et al.123 integrated
object- and image-level features describing the color, texture, and morpho-
metric characteristics of histopathology images. Object-level features include
statistics of the intensity of the segmented tissue structures, whereas image-
level features consider color channel histograms, fractal measurements, and
statistics of wavelet coefficients. The developed system achieves an accuracy
of 96.7% classifying tumor and non-tumor images and a maximum accuracy
of 81% in Gleason grading classification tasks. In addition, a system for
cancer detection on whole slides was presented by Nguyen et al.57 in which
cytological features from segmented cancer nuclei are combined with textural
features derived from first-order statistics, second-order statistics, and Gabor
filter response. The accuracy of the system is reported by using TPR ¼ 78%
and FPR ¼ 6%. Table 9.2 further details the most used features in prostate
cancer CAD systems.
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Table 9.2 Features extracted from digitized images of prostate needle biopsy.

Feature
Categories

Features Description CAD System

Texture
features

Haralick features from co-occurrence matrix121

Co occurrence matrix can be defined as follows:68

Coði, j, d , uÞ a

a couples of pixels having i and j, respectively, as grey levels and
separated by a distance d in a direction angle u.

Co-ocurrence matrix features: Inertia, uniformity or energy, variance,
entropy, joint entropy, maximum probability, contrast, correlation,
measurements of correlation, sum average, sum variance, sum entropy,
difference average, difference variance, difference entropy, inverse
difference moment, cluster shade, cluster.

[57], [42], [68],
[43], [122], [44]

Gray level run-length matrix124,125

GLRLMði, jjuÞ b

b is the total number of occurrences of runs of length j at gray level i in
a given direction u.

Gray level run-length matrix features: Short run emphasis, long run
emphasis, gray level nonuniformity, run length nonuniformity, run
percentage.

[40], [126]

First-order statistics of pixel values: Average, median, variance, standard
deviation, range, maximum value, minimum value.

[57], [42], [68],

Texture moments: Texton histograms. [47]

Wavelet features: Energy and entropy of wavelet detail coefficients,
statistics of wavelet coefficients (mean, variance, standard deviation),
joint probability of wavelet coefficients obtained for each image
channel, low resolution images.

[43], [48], [49],
[50], [123]

Fractal features: Fractal dimension, color fractal dimension, fractal
code, entropy based fractal dimension, wavelet based fractal dimension.

[41], [45], [49],
[50], [46], [123]

Filter responses: Gabor features, Sobel, Kirsch, gradient, derivative. [42]

Lumen
features

Statistics of lumen area, perimeter, circularity, elliptic fit (major axis
length, minor axis length, orientation, eccentricity), ratio of average
to maximum of lumen area and lumen perimeter.

[35], [38], [36],
[34], [123], [115]

Glandular
features

Statistics of glandular area, perimeter, circularity/roundness, spatial
density of gland distribution, gland area covered by blue mucin,
statistics of the distances from the lumen center to the nuclei boundary
(gland radius), circularity, elliptic fit (major axis length, minor axis
length, orientation, eccentricity).

[35], [68], [37],
[38], [36], [123]
[122], [115]

Nucleus
features

Nucleus density, cancerous nucleus density, percentage of nucleus area
in glandular area, area, circularity.

[57], [68], [38],
[123], [122], [115]

Color
features

Color channel histograms, 2D color histograms, color channel
differences, channels ratio, entropy of color histograms.

[115], [123]

Graph
features1

Voronoi tessellation: number of nodes, number of edges, cyclomatic
number, number of triangles, number of k walks, spectral radius,
eigenexponent, Randic index, roundness factor, area, area disorder,
roundness factor homogeneity, network cycle features (non triangular
cycles, average network cycle length, maximum network cycle length).

[37], [39]

Delaunay triangulation:number of nodes, number of edges, number of triangles,
statistics of edge length and triangles’ area, degree, cyclomatic number, number
of k walks, spectral radius, eigenexponent, Wiener index, Randic index,
eccentricity, fractal dimension, network cycle features (non triangular cycles,
average network cycle length, maximum network cycle length).

[35], [37], [39],
[115]

Minimum spanning tree: number of nodes, edge length, degree, number
of neighbors, Wiener index, eccentricity, Randic index, Balaban index,
fractal dimension, network cycle features (non triangular cycles, average
network cycle length, maximum network cycle length).

[35], [37], [39]
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9.3.3 Classification

In general, detection and grading of prostate cancer using automated
systems is done by supervised pattern recognition. In the context of pattern
recognition, a pattern is a vector of features describing the properties of an
object or class. Supervised classification approaches require the use of
annotated samples (features with their respective class label) to train the
classifier to determine the decision boundaries (classes separation) in a given
feature space.127 Before classification, features selection and feature space
dimensionality reduction is a key step. The goal of features selection is to
choose the most discriminative features (features that contain more
information about patterns) to improve the class separation and conse-
quently the classification performance. On the other hand, dimensionality
reduction techniques, as indicated by its name, aim to reduce the dimension
of the feature space in general by mapping the feature vector onto a lower-
dimensional space through some coordinates transformation. Linear
methods for dimensionality reduction include principal component analysis
(PCA), linear discriminant analysis (LDA),128 and independent component
analysis (ICA).129 In contrast, an example of nonlinear dimensionality
reduction is manifold learning. This technique was employed in a system for
prostate cancer grading by Sparks and Madabhushi.130 The main goal of
using manifold regularization is to reduce the dimensionality of the feature
space, but preserving a nonlinear relationship between object instances.

Once an appropriate feature set is selected, several classification
methods can be used for prostate cancer diagnosis. Such classification
methods include k nearest neighbors (k-NN), Bayesian classifier, Support
Vector Machine (SVM), neural networks, Markov random field (MRF)
classifier, Gaussian classifier, and classical linear discrimination (CLD),
among others. Each classification approach has its own advantages and
disadvantages. Several studies38,45,123 have published comparisons among
the various procedures in order to demonstrate which one is better for
prostate cancer diagnosis under specific circumstances. A large compara-
tive study on machine learning techniques for prostate cancer diagnosis
was conducted by Alexandratou et al.131 In their work, 16 supervised
machine learning algorithms were compared based on their performance.
Classification problems regarding cancer detection (tumor vs. non-tumor),
low- vs. high-grade recognition; and the multiclass problem Gleason
grading were addressed. Thirteen Haralick texture characteristics were
calculated based on grey level co-occurrence matrix of microscopic
prostate tissue. For the best-performing algorithm in each case the
accuracy obtained was 97.9% for cancer detection, 80.8% for low–high
grade discrimination, and 77.8% for accomplishing both detection and
Gleason grading. Logistic regression and sequential minimal optimization
for training a support vector machine were among the top scoring
algorithms in each classification problem.
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Cascade systems have been also proposed for automatic prostate cancer
diagnosis. For instance, Doyle et al.132 presented a cascaded multi-class
pairwise classifier to grade regions of interest of prostate tissue biopsies. The
proposed classifier incorporates domain knowledge to partition the multi-
class problem into several binary-class tasks, reducing the intra-class
heterogeneity that causes errors in one-versus-all multi-class approaches. In
their cascaded approach, successive classifications are performed, beginning
with the most broad (i.e., cancer detection) and proceeding to increasingly
granular separations (pattern 3þ4 vs. pattern 5 and epithelium þ atrophy vs.
stroma, dark gray line), and finally classifying the most similar classes within
each group (pattern 3 vs. pattern 4 and epithelium vs. stroma, light gray line).
This reduces classification error by ensuring that the separations are
performed between dissimilar classes.

Another classification approach that has been used in prostate cancer
detection is adaptive boosting or AdaBoost. This algorithm combines various
weak classifiers to generate a strong classifier, which in most cases has a better
performance than individual classifiers. A boosted multi-resolution classifier
was presented by Doyle et al.42 in which Bayesian weak classifiers (one per
each extracted feature at three different magnifications) to divide images’
pixels into cancerous and noncancerous groups. The classification procedure
starts at the lower resolution and only detected cancerous areas are evaluated
in the next magnification level. This approach is based on a combination of
boosted and cascade classifiers.

Because several classification methods might be used in a complemen-
tary way, exploring cascade classification systems and other multiclassifier
combinations may be beneficial for computer-aided prostate cancer
diagnosis (detection and grading). In such a case, different decision rules
can be used and integrated in a system in order to improve the overall
labeling because some of classifiers are better at resolving one aspect of the
labeling problem, whereas another method may be superior in a different
respect.127

9.3.4 System accuracy assessment

Evaluating classification performance is important for several reasons:
(1) when building classifiers, the parameters used for classification can be
tuned. For example, at this point, several tests should be done in order to
choose predictor variables or features, to estimate parameters, to explore
data transformations, and so on. (2) When evaluating given classifiers, it
can be determined whether they are good enough for the purpose or
whether they provide sufficient improvement over an existing method
to merit switching.133 One of the most used methods for estimating
classification performance is cross-validation. Cross-validation can be done
by applying three different schemes, namely k-fold, hold-out, and leave-
one-out. The basic form of cross-validation is k-fold, and the other schemes
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are special cases derived from k-fold. Implementation of cross-validation
methods is done as follows:134

• k-fold validation: To implement this method, the data is randomly divided
into k equal (or nearly equal) folds. Next, k iterations of training and test
are carried out, such that at each iteration a different segment is held out
for validation and k–1 folds are used to fit the model.

• Hold-out validation: For this scheme, the dataset is split into two non-
overlapped segments: one for training and the other for testing. Hold-
out avoids some samples to be used for both learning and validation,
yielding a better estimation for the generalization performance of the
algorithm used for recognition.

• Leave-one-out validation: This is a special case of k-fold cross-validation,
where k is the number of data. In this scheme only one sample is held
out for testing. The results of leave-one-out cross-validation are
considered to be almost unbiased, but they have large variances.

In order to obtain reliable performance estimation of a given classifier, it
is recommended to have a large number of iterations.

9.3.4.1 Performance indicators

• Correct classification rate is the ratio of correct classified cases to the
total number of classified cases135

CCR ¼ TPþ TN
total samples

,

where TP and TN are true positive and true negative samples, respectively.
• Sensitivity is the proportion of cases belonging to a given class, which
are correctly classified as cases of that class. That is, the sensitivity is the
true positive rate (TPR)136

TPR ¼ TP
TPþ FN

,

where FN represents the false negative samples.
• Specificity is the proportion of non-cases of a specific class, which are
correctly classified as non-cases of that class. That is, the specificity is
the true negative rate (TNR)136

TNR ¼ TN
TN þ FP

,

where FN represents the false positive samples.
• Positive predictive value (PPV) is the proportion of those predicted to
belong to a class, which really belong to that class136

PPV ¼ TP
TPþ FP

:
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• Negative predictive value (NPV) is the proportion of those predicted
to be non-cases of a given class, which really do not belong to that
class136

NPV ¼ TN
TN þ FN

:

If sensitivity and specificity (which are both conditional probabilities) are
combined, weighted by the marginal probabilities of the classes, the
probability of correct classification is obtained.

Another accuracy indicator often used in prostate cancer detection is the
area under the ROC curve. A ROC curve is defined as a plot of the false
positive rate (FPR), on the vertical axis, against the TPR, on the horizontal
axis. A good classification rule is reflected by a ROC curve which lies in the
upper left triangle of the square.137 The area under the ROC curve (AUC)
measures classifier discrimination capability; that is, the ability of the classifier
to correctly separate classes. An AUC of 1 represents a perfect classifier, and
an AUC of 0.5 represents a worthless test.

Finally, with all classification tasks described using some examples, a
summary of the developed systems for computer-assisted prostate
cancer detection and grading is presented chronologically (sorted by
publication year) in Tables 9.3 and 9.4, respectively. The main character-
istics of each system are described briefly. The tables include the systems
that have been described hereinbefore and other systems found in the
literature.

Table 9.3 Computer-aided systems for prostate cancer detection.

Author(s) Features Dataset Classification
method

Accuracy System
category

Farjam et al.
(2007)33

Variance of size of
glandular objects,
roundness of glands,
and cancer index

Two data sets
containing 91 and
199 pathological
samples at different
magnifications
and illumination
conditions

k NN 95 98% Tissue
structure
based system

Sun et al.
(2009)40

Run length matrix
features: low gray
level run emphasis,
high gray level run
emphasis, run per
centage, mean and
standard deviation

Nine subimages of
a tissue sample
from a radical
prostatectomy at
50� magnification

Multilayer per
ceptron (MLP)

89.5% Texture based
system

Monaco et al.
(2009)34

Gland area 20 prostate
histological sections

Bayesian and
Markov random
field (MRF)
classifier

AUC: 0.87 Tissue
structure
based system

Yu et al.
(2011)41

Color fractal dimen
sion and probabilis
tic pairwise Markov
Model (PPMM)

27 radical prostatec
tomy specimens
digitized at 40�
magnification

Markov random
field (MRF)
classifier

AUC:
0.831

Texture based
system

(Continued)
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Table 9.3 (Continued).

Author(s) Features Dataset Classification
method

Accuracy System
category

Bouatmane
et al. (2011)138

Haralick features,
glandular area,
and nuclear area

592 textures
multi spectral
images of size
128 � 128
examined at
40� magnification

k NN one vs. all
binary classifiers
plus round robin
(RR) sequential
forward feature
selection

99.83% Multifeature
system

Nguyen et al.
(2011)57

Combination of
cytological features
and texture features
including first order
statistics, second
order statistics and
Gabor features

17 whole slide
images digitized at
20� magnification.
6 images were used
for training, and 11
for testing

SVM with RBF
kernel

TPR: 78%
FPR: 6%

Multifeature
system

Doyle et al.
(2012)42

First order statistics,
filter response
(Sobel, Kirsch,
gradient, derivative),
co occurrence
features, and
Gabor features

100 whole slide
images at 40�
optical
magnification

Boosted
Bayesian
classifier

AUC: 0.84,
0.83, and
0.76 for the
lowest,
medium,
and highest
image
resolution,
respectively

Texture based
system

Table 9.4 Computer-aided systems for prostate cancer grading.

Author(s) Features Dataset Classification
method

Accuracy System
category

Wetzel et al.
(1999)35

Glandular features
and nuclear based
spanning tree and
Delaunay features

54 prostate cases
digitized at 10�
magnification

Content based
image retrieval
(CBIR) system

80% Tissue
structure
based system

Roula et al.
(2002)68

Haralick features,
global variance of
pixels, glandular area,
and nuclear area.

10 multispectral
imagesofwholemount
sections from radical
prostatectomy

Supervised
Classical Linear
Discrimination
(CLD)

94% Multifeature
system

Jafari
Khouzani et al.
(2003)43

Energy and entropy
features calculated
from multiwavelet,
and co occurrence
matrix features

100 images at mag
nification 100�
belonging to Gleason
patterns 2 5

k NN 97% Texture based
system

Diamond et al.
(2004)122

Glandular and
nuclear area as well
as Haralick features

Images of size
100 � 100 digitized
at 40� magnification

Not specified 79.3% Multifeature
system

Tabesh et al.
(2007)123

Color channel histo
grams, fractal
dimension, fractal
code, wavelets along
with color, texture,
and morphometric
properties of the his
tological objects from
theMAGIC139 system

367 images digitized
at 20� magnification
for cancer detection,
and 268 images of
Gleason grades 2 5
for cancer grading

Linear and
quadratic
Gaussian,
k NN, and
SVM

96.7%
81%

Multifeature
system

(Continued)
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Table 9.4 (Continued).

Author(s) Features Dataset Classification
method

Accuracy System
category

Wittke et al.
(2007)36

Area fraction, specific
line length, specific
Euler number, and the
quotient of specific line
length to area fraction
of epithelium, lumina,
and epithelium plus
lumina

78 grayscale digital
images of prostatic
adenocarcinoma

Graph based
classification

Training
set: 92.31%
Test set:
64.10%

Tissue
structure
based system

Naik et al.
(2008)37

Glandular shape
and size features as
well as Voronoi,
Delaunay, and mini
mum spanning tree
graph features

44 subimages of
benign tissue (17),
grade 3 carcinoma
(16), and grade 4
carcinoma (11)

SVM 91.48% Tissue
structure
based system

Alexandratou
et al. (2008)44

Haralick features 50 samples of
histopathological
data belonging to
Gleason grades 2 5

Multiparameter
statistical
method of
multiple logistic
discrimination
analysis

87% Texture based
system

Huang et al.
(2009)45

Differential box
counting fractal
dimension and
entropy based fractal
dimension

205 images Bayesian,
k NN, and
SVM

94.6% Texture based
system

Nguyen et al.
(2010)38

Statistics of size and
shape of lumen,
glands, as well as
nuclei density and blue
mucin area

78 subimages of size
501� 52 of benign
tissue (30), grade 3
carcinoma (28), and
grade 4 carcinoma
(20)

SVM, multilayer
Perceptron, and
k NN

88.4% Tissue
structure
based system

Tai et al.
(2010)46

Wavelet based fractal
dimension. Classical
fractal dimension and
entropy based fractal
dimension are com
puted from each wave
let subband

1000 pathological
images

SVM 86.3% Texture based
system

Khurd et al.
(2010)47

Basic texture elements 75 images at magni
fication 10� of size
1392 � 1040 of
grade 3 carcinoma
(25) and grade 4
carcinoma (50)

Random forest
with SVM

94% Texture based
system

Yoon et al.
(2011)48

Variance and entropy
of cardinal multiridge
let transform (CMRT)
coefficients

42 images of size
768 � 768 of grade 3
carcinoma (16) and
grade 4 carcinoma
(26)

Gaussian kernel
SVM

93.75% Texture based
system

Almuntashri
et al. (2011)49

Haar wavelet energy
and wavelet based
fractal dimension

45 images of size
512 � 512 of Gleason
grades 3 (15), 4 (15),
and 5 (15)

SVM 95% Texture based
system

(Continued)
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9.4 Conclusions, Future Directions, and Potential
New Strategies

Computer-aided prostate cancer diagnosis has become an exciting area of
research in the past last years. Several efforts have been made in the
development of accurate systems for automated detection and grading of
prostatic disease from digitized biopsy images. Most of the systems use
textural features, spatial arrangement characteristics of tissue structures,
and morphometric properties of glands to detect prostatic carcinomas and
to grade them using the Gleason grading system. The features used to
characterize Gleason patterns are inspired in how pathologists assess tissue
samples. However, doctors frequently use a complex set of features that
are often difficult to formulate in computational forms. The capabilities of
the existing systems can be easily extended to properly assign Gleason
scores to each studied slide, and to produce localized cancer maps that
show the distribution of all Gleason grades found within each histopa-
thology image.

Researchers in automated prostate-cancer diagnosis still face several
challenges. For instance, the large amount of data in pathology requires fast
systems for image analysis that can assist pathologists in real clinical
applications such as real-time cancer detection and surgery quality control.
On the other hand, prostate cancer diagnosis based on 3D tissue evaluation
is an investigation field almost unexplored until now. 3D systems will allow
pathologists to have more information about prostatic tissue structures as

Table 9.4 (Continued).

Author(s) Features Dataset Classification
method

Accuracy System
category

Khurd et al.
(2011)39

Network cycle
features and graph
features

25 images of
Gleason grade 3 and
50 images of Gleason
grade 4. Images are
size 1392 � 1040 and
were acquired at 10�
magnification

SVM AUC:
0.995

Tissue
structure
based system

Mosquera
Lopez et al.
(2012)110

HSV color features,
glandular and
nuclear features,
and architectural
features from
Delaunay
triangulation

71 images of size
512 � 512 of
Gleason grades
3 (30), 4 (30), and
5 (11)

SVM linear
kernel

95% Multifeature
system

Mosquera
Lopez et al.
(2013)50

Wavelet energy
distribution, joint
probability of wave
let coefficients, and
color ratio based
fractal dimension

71 images of size
512 � 512 of
Gleason grades 3
(30), 4 (30), and 5
(11)

SVM linear
kernel

97% Texture based
system
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well as the volumetric characteristic of the detected carcinomas. A migration
from electronic files of 2D CAD systems to 3D CAD systems may create
new opportunities for the future prostate cancer diagnosis and prediction
systems.

Moreover, a system evaluation framework should be created in order to
assess the accuracy and other statistical parameters of the developed
recognition systems. Today, as indicated by Gurcan et al.,1 it is so difficult to
compare computer-assisted prostate cancer diagnosis systems in a systematic
and objective manner, because each system is built and tested under different
conditions (e.g., different datasets and ground truth annotations). In
addition, the reported performance is done using different metrics. In order
to compare several CAD systems for prostate cancer diagnosis or for
another purpose, it is not enough to have a better indicator measured on a
test set, or in a cross-validation or other comparison based on sample data.
It is necessary to carry out statistical tests, so that we can be confident that
any differences represent genuine underlying differences in performance, and
are not mere random sampling effects.133 One resource that might help in the
generation of the mentioned evaluation framework is a standardized
annotated database that contains histopathology images of different
prostate cancer cases. This dataset will help researchers not only to train
their CAD systems, but also will allow comparison of performance among
developed systems.

Once the performance of the CAD system can be validated, the
quantitative information obtained from the analysis of histopathology
images can be integrated into prostate cancer risk assessment methodolo-
gies140 that result in risk stratification using predictive models. This field
of study offers the possibility of combining information from prostate
specific antigen (PSA) screening, prostate cancer family history, and
biopsy pathology reports to analyze a patient’s cancer risk using learning
algorithms. A combination of several predictors, including those used in
risk analysis, might be also used to predict prostate cancer in young men,
clinically significant cancers in all men, and aggressive cancers in older
men while limiting unnecessary biopsies and overdetection of certain
cancers. New predictive models should attempt to diagnose only those
cancers that will affect a patient’s life using all of the patient’s available
information.

Another problem related to prostate cancer diagnosis and prediction
involves studying the relationship between human prostate and breast cancer.
A study of evolution indicates that the prostate and breast appeared at the
same time 65 million years ago with the development of mammals17 and some
other studies have shown a high correlation (correlation coefficient 0.81)
between the incidence and age-adjusted rates for prostate cancer and breast
cancer. Other types of cancers such us endometrium cancer and ovary cancer
are also correlated with prostate cancer. This may implicate the study of
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estrogenic factors, because the breast, endometrium, and ovary are estrogen-
responsive tissues, and estrogen exposure has been shown to affect
carcinogenesis.141 These factors can also be included into intelligent CAD
systems to refine their diagnosis and prediction capabilities.

On the other hand, progress in computer networking and digital
pathology allows for the expansion of several medical services offered using
communication networks such as the Internet. Complete information of
patients and their clinical history may be available everywhere; thus, new
services may be developed, such as online facilities for second opinions and
consultation about cancer prediction and risk assessment based on available
and shared patient information. For instance, telepathology applications
will link smaller centers with expert consultants in order to better diagnose
cancer cases. The use of communication networks brings new problems.
First, it will be necessary to develop secure network-based CAD systems that
combine information of patients from several sources to analyze prostate
cancer cases. Second, developed systems should be suitable for deployment
as a cloud service. Third, there is a challenge in constructing intelligent
interfaces to integrate all available resources. The designed interfaces should
satisfy several interrelated criteria: They should be integrated, expressive,
secure, capable of sharing information quickly, client-oriented, cooperative,
easy to use, easy to access, and customizable. Finally, it would be important
to design strategies for secure retrieval, delivery, and storage of complex,
digital prostate-imaging data.

Because there are many different devices with networking capabilities and
acceptable computation resources (less expensive devices) these days, such as
smartphones, tablets, and portable computers, the design of CAD systems
should be optimized for all of these devices. A key limitation of existing CAD
systems is that most of them require workstations or computers due to the
computational complexity of their analysis algorithms. This fact makes it
expensive to use those systems and creates the need to develop prostate-cancer
diagnosis and prediction systems that are compatible with less-expensive
devices.

Lastly, it is important to point out that all developments in
computer-aided prostate cancer diagnosis should be done in constant
collaboration between computer vision investigators and clinical and
research pathologists to ensure that the resulting work has the potential
to be applied to real medical problems. It is a pathologist who can
provide objective feedback about the performance of the developed
systems and give insights to improve the CAD results.1 Opinions from
oncologists and radiologists during the research process are also
important because they are potential users of the systems. All of the
tools discussed in this review may be expensive to implement, but a well-
planned deployment will decrease cost and improve the quality of
medical care.
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10.1 Introduction

The practical utility of computational biology is far-reaching, and it involves
various aspects concerned with understanding biological phenomena in
general, and gaining insights in the areas of health, biotechnology, and the
environment, among others.1 3 In recent years, several research projects have
been directed toward the health sector, with many of them studying
mathematical and computational methods for computer-aided detection or
diagnosis (CAD) of various diseases. At present, an effective screening
technique for breast cancer is mammography, which helps to identify
significant variations in the glandular tissue and appearance of tumoral
lesions in the breast.4 Several CAD systems have been developed to support
radiologists in the area of mammography;5 7 such systems can identify
anomalous regions and masses with unusual morphological structure and
abnormal density patterns.

When assessing an opacity in a mammogram, the following character-
istics are taken into consideration: shape, definition or sharpness of the
edges, roughness of the contour, variations in density or texture, and size.
The regularity of the contour of a mass is the first parameter assessed:
benign masses are often smooth, rounded, well-circumscribed, and
surrounded by a halo of fairly low-density fat, whereas opacities with
irregular contours and ill-defined edges are more likely to be malignant
tumors.4,8 A malignant tumor is often characterized by the presence of
spicules (a stellate lesion typical of infiltrating ductal carcinoma, for
example) and by a poorly defined irregular contour, one that could be
considered to be a fractal pattern. The term carcinoma, from the Greek
word “karkiyo§” (crab), was coined by Hippocrates; it indicates the
infiltrative characteristics of a tumor as well as its ability to attack
neighboring structures. Regardless, there are cases of malignant tumors with
regular contours and benign masses with fractal-like contours; such cases
are challenging for a physician to diagnose and make it difficult to build a
classification model, leading to false negatives and false positives.9 These
observations have led to the idea of applying the concept of fractal
dimension (FD) to analyze the contours of breast lesions.8,10 12 As will be
demonstrated in this chapter, fractal analysis can characterize the degree of
complexity of a contour or shape, and can provide parameters to
discriminate between benign masses and malignant tumors.13

Based on the differences observed in the forms of benign masses and
malignant tumors, shape factors such as compactness (cf ), fractional
concavity ( fcc), spiculation index (SI), and a Fourier-descriptor-based factor
( ff ) have been proposed for their classification.8,9,14 Guliato et al.15,16 defined
several shape factors based on the turning-angle function of a contour and
demonstrated their usefulness in the classification of breast masses. Subtle
textural differences have also been observed between benign masses and
malignant tumors, with the former being mostly homogeneous, and the latter
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showing heterogeneous texture. Several studies have proposed measures of
texture and edge sharpness to discriminate between benign masses and
malignant tumors.8,11,14,17 19 Sahiner et al.20 and Alto et al.19 explored several
combinations of morphological and texture measures to classify breast
masses. The notion of fractal analysis21,22 is useful in studying the complexity
of 1D functions, 2D contours, as well as grayscale or color images. A few
studies have examined the application of fractals to classify breast masses
based on the irregularity exhibited in their contours.10 12 Matsubara et al.23

reported 100% accuracy in the classification of 13 benign masses and
malignant tumors using FD; their method involved computing a series of FD
values for several contours of a given mass obtained by thresholding the mass
at many levels; the variation in the FD of the given mass was used to
categorize it as benign or malignant.

A study by Pohlman et al.24 obtained greater than 80% classification
accuracy with fractal analysis of signatures of contours of breast masses.
However, the signature of a contour was derived as a function of the
radial distance from the centroid to the contour versus the angle of the
radial line over the range [08, 3608], which could lead to a multivalued
function in the case of an irregular or spiculated contour; the signature
computed in this manner would also have ranges of undefined values in
the case of a contour for which the centroid falls outside the region
enclosed by the contour.

Dey and Mohanty25 used fractal geometry to study breast lesions on
cytology smears and found that the FD may be useful in discriminating
between benign and malignant cells.

Fractal analysis can also be used to characterize the complexity of
grayscale variations associated with texture. Zheng and Chan26 used fractal
analysis in a preprocessing step to select abnormal regions in mammo-
grams. Guo et al.27 computed the FD to characterize the complexity of
regions of interest (ROIs) in mammograms, and used a support vector
machine for the detection of abnormal regions related to breast masses.
Guo et al.28 also studied the Hausdorff FD to characterize architectural
distortion.

Tourassi et al.29 investigated the use of FD to distinguish between
normal tissue patterns and architectural distortion in mammographic ROIs.
The FD was estimated using the circular average power spectrum
technique.30,31 The method was applied to a dataset of 1,500 ROIs,
including 112 ROIs with architectural distortion and 1,388 ROIs exhibiting
normal tissue patterns. The best performance achieved was 0.89, in terms of
the area (AUC) under the receiver operating characteristic (ROC) curve.
Tourassi et al. observed that the presence of architectural distortion disrupts
the self-similarity properties of breast parenchyma and that the average FD
of the ROIs with architectural distortion was significantly lower than that of
normal ROIs.
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Eltonsy et al.32 developed a method to detect masses and architectural
distortion by locating points surrounded by concentric layers of image
activity. A set of 80 images was used to evaluate the technique, including 13
masses, 38 masses with architectural distortion, and 29 images with only
architectural distortion. An overall sensitivity of 91.3% with 9.1 false positives
per image was obtained. A sensitivity of 93.1% was obtained in the detection
of architectural distortion at the same rate of false positives.

Rangayyan et al.33 used Gabor filters, phase portraits, FD, and texture
features for the detection of architectural distortion in prior mammograms of
screen-detected cancer and achieved a sensitivity of 79% at 8.4 false positives
per image with a set of 14 prior mammograms. The methods were extended
for the detection of architectural distortion in mammograms of interval-
cancer cases taken prior to the detection of breast cancer;34,35 a sensitivity of
80% was obtained at 5.8 false positives per image using the FD in
combination with a number of measures of texture and angular spread of
power, derived from a set of 106 prior mammograms of interval-cancer cases
and 52 normal mammograms.35

Caldwell et al.36 and Byng et al.37 computed the FD of breast tumors by
applying a modified box-counting method that represents grayscale values of
the surfaces of the tumors as boxes of variable height. Such a fractal measure
can be used to represent the complexity of density variations and texture in
breast tissue. Byng et al.37 showed that a grayscale-based fractal measure may
be used to complement histogram skewness to relate breast density to the risk
of development of breast cancer.

Other works have reported on the use of FD as a feature for the
classification of tumors in magnetic resonance images of the brain,38

ultrasonographic images of the liver,39 and images related to colonic cancer.40

Lee et al.41 compared several shape factors, including the FD, in a study on
the irregularity of the borders of melanocytic lesions. Kikuchi et al.42

investigated the change in FD at different stages of ovarian tumor growth.
Nam and Choi43 computed the FD of regions in mammograms by using
the box-counting method, and found that regions with higher FD indicated
the presence of calcification.

Klonowski et al.44 applied Higuchi’s method for fractal analysis of the
texture in histological images and for the analysis of the shape of breast
masses. Tambasco et al.45 applied fractal analysis for quantitative analysis of
the pattern complexity seen in microscopic images of histological specimens of
prostate and breast cancer; the FD demonstrated statistically highly
significant differences between specimens of normal and cancerous tissue.

Li et al.46 studied four approaches to estimate FD, including conventional
and modified box counting, box counting using linear discriminant analysis
(LDA), global Minkowski dimension, and a modified Minkowski technique
using LDA. FD-based texture features were computed to characterize breast
tissue patterns seen in mammograms. It was shown that the features could
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yield radiographic markers to assess the risk of development of breast cancer.
Li et al.47 derived a parameter via power spectral analysis that demonstrated a
statistically significant difference between the high-risk and low-risk groups of
women in the study.

Rangayyan and Nguyen10 presented a study of four methods to
compute the FD of the contours of breast masses, including the ruler
method and the box-counting method applied to 1D and 2D representa-
tions of the contours; see also Cabral and Rangayyan.11 The methods were
applied to a dataset comprising 111 contours of breast masses in
mammograms, including 65 contours of benign masses and 46 contours
of malignant tumors. The FD was observed to complement other shape
factors, in particular fcc, in the representation of the complexity of the
contours. The combination of FD with fcc yielded the highest AUC value
of 0.93; the two measures, on their own, resulted in AUC values of 0.89
and 0.88, respectively.

The aim of the present study is to employ fractal analysis and several
shape factors for the classification of breast masses by using only their
contours.13 Even though fractal analysis has been widely used in the analysis
of biomedical images, only a few studies have specifically applied the method
to study and classify mammographic masses (as reviewed above). The FD
may be used as a quantitative measure of the complexity of the contour or
boundary of an object. Benign masses and malignant tumors differ
significantly in shape complexity, and therefore, it should be possible to
differentiate between them by using the FD in combination with shape
factors.

The present work is an extended investigation based on our related initial
work,13 and it represents a thorough follow-up study and further evaluation of
the methods proposed by Rangayyan and Nguyen.10 This work presents the
results of extensive comparative analysis and evaluation of several methods
for shape analysis, and the results of classification experiments including
cross-validation with three different datasets of breast-mass contours from
multiple sources and patient populations, with the contours drawn by four
radiologists. The results demonstrate strong performance of fractal analysis
and shape factors in the classification of breast masses based on their
contours.

10.2 Methods

10.2.1 Fractal analysis

The term fractal comes from the Latin word fractus, meaning fractionated,
broken, irregular, or chaotic. In his pioneering work on The Fractal Geometry
of Nature,21 the mathematician Benoît Mandelbrot states that “the world
around us is full of fractals.” The genius of Mandelbrot lies in his
understanding that many natural objects can consist of portions similar to
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the object itself; and therefore, “the whole is similar to one or more of the
parts,” a phenomenon known as self-similarity. Fractals are capable of
representing a wide variety of objects and phenomena in nature: not only a
stretch of coastline, the branches or roots of a tree, and clouds, but also the
ramifications of a lightning bolt, the bronchial and vascular systems, and, we
believe, the contours of breast masses and tumors.

Fractal geometry is, as Mandelbrot says, the “geometry of nature,”
because it is suitable for describing the complexity and variety of shapes in the
world around us. Fractal geometry investigates the morphology of the
amorphous. The correspondence between fractals and chaos is by no means
accidental—rather, it is the sign of a profound relationship: fractal geometry is
the geometry of chaos. The most-important fractals include the Cantor set, the
Von Koch curve, the Sierpinski triangle, the Mandelbrot set, and the Lorenz
attractor.11,21,48

Fractals are irregular figures that can be generated by the iteration of
linear or nonlinear functions (Julia and Mandelbrot sets).21,48 They are
sometimes self-similar and have a fine structure that reveals new details at
every level of magnification.21 In order to measure the degree of complexity or
irregularity of a fractal, the concept of FD was introduced; this concept is
derived from the more-general notion of the Hausdorff dimension.49 For a
subset F of the plane, the s-dimensional Hausdorff measure is defined as
follows:

HsðFÞ ¼ lim
d!0

Hs
d ð10:1Þ

with

Hs
d ¼ inffX1

j 1

dsjg, ð10:2Þ

where s, d, and dj are positive real numbers, and dj � d are the diameters of a
family of circles that makes up a d-cover (countable) of F . The Hausdorff
dimension of F is the number D such that

HsðFÞ ¼ f1, if s < D;

0; if s > D:

The measure of F depends on the dimension of the space in which F is
imagined to be immersed, whereas its dimension is a number, even
a fraction, intrinsic to F . Such a definition can be applied to a fractal
figure, and hence the Hausdorff dimension is also called the fractal
dimension.

Now consider the self-similarity dimension and its relationship with the
Hausdorff dimension. Without entering into the mathematical complexities, it
is commonly asserted that the (topological) dimension of a point is 0, that of a
line is 1, that of a rectangle is 2, and that of a parallelepiped is 3. If we
consider, therefore, a rectangle made up of m copies of itself, reduced by a
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scale factor of 1
s, the power law that links the dimension Dð¼ 2Þ of the figure

with the number of its parts mð¼ 9Þ and the scale factor 1
s ð¼ 3Þ is

m ¼ 1
s

� �D

: ð10:3Þ

Therefore, in agreement with the above, it is reasonable to define the self-
similarity dimension Dsim

49 of a self-similar figure consisting of m copies of
itself reduced by a scale factor 1

s as

Dsim ¼ logm
log 1

s

: ð10:4Þ

When s varies (and therefore, so does m), the set of points on the plane,
on a log–log scale, is approximated by the regression straight line with a
slope that provides an estimate of Dsim via Eq. (10.4). For self-similar
figures, the self-similarity dimension coincides with the Hausdorff
dimension.

The Hausdorff dimension generalizes the concept of the self-similarity
dimension in the sense that it is applicable to any set of the plane and,
therefore, to a fractal set that is not strictly self-similar. The difficulties
involved in defining the Hausdorff dimension have led many authors to find
alternative methods to estimate the FD. The common alternatives are the
box-counting method and the ruler method, which have been extensively
described in the literature.10,11,49 The box-counting method consists of
partitioning the plane and, therefore, the object into square boxes of side s;
counting the minimum number NðsÞ of the boxes that have at least one point
(image pixel) in common with the object; and representing the values on a
log–log scale of points [logNðsÞ, log 1

s] for the variations (decreasing) in s. An
estimate of the FD of the object is given by the slope of the regression straight
line (best fit), i.e.,

D ¼ logNðsÞ
log 1

s

: ð10:5Þ

The ruler method, also known as the compass or divider method, consists
of providing the approximate length of the contour using a segment or ruler of
length s. The smaller the value of s, the better the approximation. Once the
length of the contour has been described as a function uðsÞ, the power law, in
this case, is given by

uðsÞ ¼ c
1
sd
, ð10:6Þ

where c is the proportionality constant, and the exponent d is linked to the FD
by the relation

D ¼ 1þ d: ð10:7Þ
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Applying the logarithm to Eq. (10.6), we obtain

log uðsÞ ¼ log cþ d log
1
s

� �
, ð10:8Þ

in which d coincides with the slope of the straight line in the plane [log uðsÞ,
log 1

s]; thus, D ¼ 1þ d is an estimate of the FD. The self-similarity dimension,
the box-counting dimension, and the ruler dimension are particular forms of
Mandelbrot’s FD.49

10.2.2 Shape factors

Each point p of a contour or curve C can be represented, in the plane, either
with its Cartesian coordinate pair ðx, yÞ or by indexing the points as pairs
½p, f ðpÞ�, in which f is a function defined on the indices of the contour point p.
An example of f ðpÞ is the Euclidean distance between the point, p, under
consideration and a reference, such as the centroid of the object enclosed by
the contour. The first representation of C mentioned above is 2D, whereas the
second representation is 1D and is known as a signature of C. These two
representations are shown in Figs. 10.1 and 10.2.

In the present work, estimates of the FD were calculated using four
methods: the ruler and box-counting methods applied to each 2D contour and
its 1D signature. In the rest of this chapter, these features are referred to as
FD-ruler 2D, FD-ruler 1D, FD-box 2D, and FD-box 1D.

Various measures can be associated with a contour or curve: these are the
so-called shape factors, which have proven to be effective in describing shapes
in many research fields, in particular in the medical field.8,10,11 In general, it is
desirable that a shape factor is invariant to translation, rotation, starting point,
and contour size; in the present application, it is also desirable for a shape factor
to increase in value as the shape of a contour gets to be more complex and
rough. The shape factors used in the present work are cf , fcc, SI, ff , and four
estimates of the FD (mentioned earlier); these measures have been proven to be
effective in the classification of breast masses.8 11,14 In addition, a measure of
shape known as convex deficiency (CD) is used, defined as the difference
between the areas of a given contour and its convex hull, expressed as a fraction
of the area of the contour. See Rangayyan8 for details on the shape factors.

Compactness is defined as8

cf ¼ 1
4pA
P2 , ð10:9Þ

where P and A are the perimeter and the area of the contour, respectively.
A high compactness value indicates a long perimeter enclosing a small area.

Fractional concavity is defined as8,9

fcc ¼ CC
L

, ð10:10Þ
where CC represents the sum of the concave segment lengths of the contour,
and L is the total length of the contour. Malignant tumors with significant
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concavities in their contours are expected to have higher values of fcc (as well
as CD) than benign masses with smooth and oval shapes.

In order to define the spiculation index (SI), it is necessary to consider the
notion of the length and narrowness angle of a spicule. Consider a spicule
(a strongly concave or convex arc) of a contour, and suppose that,
upon applying a polygonal modeling method, the polygon obtained contains
M segments si that define M 1 angles yi:

8,9,16 The narrowness angle y of the
spicule y, is defined as the arithmetic mean of those angles yj that are less than
or equal to the mean of all the angles yi for i ¼ 1; 2; . . . ,M 1: The length of
the spicule is defined as

S ¼
XM
i 1

si: ð10:11Þ

(a)

(b)

Figure 10.1 (a) The contour of a benign breast mass (the dot represents the centroid of
the contour) and (b) the corresponding signature. The contour and signature have been
normalized. FD-ruler 1D ¼ 1:1643, FD-ruler 2D ¼ 1:0107, FD-box 1D ¼ 1:0349, FD-box
2D ¼ 1:0480, cf ¼ 0:1493, CD ¼ 0:0155, fcc ¼ 0:1478, SI¼ 0:0277, and ff ¼ 0:1490:
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For reasons of simplicity, si indicates both the segment and its length. Let N
be the number of significant spicules in the contour, and let yn and Sn

(n ¼ 1; 2; . . . ,N) be the narrowness angle and the spicule length, respectively.
The value of SI of the contour is defined as8,9,16

SI ¼

XN
n 1

ð1þ cos ynÞSn

XN
n 1

Sn

: ð10:12Þ

The shape factor ff based on Fourier descriptors is a measure related to the
presence of roughness or high-frequency components in contours.8,50,51 The
measure is derived by taking the sum of the normalized Fourier descriptors of
the coordinates of the contour pixels divided by the corresponding indices,

(a)

(b)

Figure 10.2 (a) The contour of a malignant tumor (the dot represents the centroid of the
contour) and (b) the corresponding signature. The contour and signature have
been normalized. FD-ruler 1D ¼ 1:2698, FD-ruler 2D ¼ 1:1658, FD-box 1D ¼ 1:1580, FD-
box 2D ¼ 1:1612, cf ¼ 0:7914, CD ¼ 0:5872, fcc ¼ 0:5952, SI¼ 0:4883, and ff ¼ 0:4602:
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dividing it by the sum of the normalized Fourier descriptors, and subtracting
the result from unity, as follows:8,50

ff ¼ 1

XN=2

k N=2þ1

jZoðkÞj=jkj

XN=2

k N=2þ1

jZoðkÞj
: ð10:13Þ

Here, ZoðkÞ are the normalized Fourier descriptors, defined as

ZoðkÞ ¼
0; k ¼ 0;
ZðkÞ
Zð1Þ , otherwise:

8<
:

The Fourier descriptors themselves are defined as

ZðkÞ ¼ 1
N

XN 1

n 0

zðnÞ exp j
2p
N

nk
� �

, ð10:14Þ

k ¼ N
2 , . . . , 1, 0, 1, 2, . . . , N

2 1, where zðnÞ ¼ xðnÞ þ jyðnÞ, n ¼ 0, 1, . . . ,
N 1, represents the sequence of contour pixel coordinates. Contours of
malignant tumors are expected to be more rough with increased high-
frequency content, in general, than the contours of benign masses; hence, the
value of ff is expected to be higher for the former than the latter.8,9,14,20

Rangayyan and Oloumi12 applied the approach of power spectral analysis
to signatures of contours of breast masses to estimate the FD. The approach is
based on fractional Brownian motion and processes with their power spectra
varying in proportion to 1=f b, where f is the frequency, and b, known as the
spectral exponent, is related to the FD. The results were comparable to those
provided by other estimates of the FD obtained using the box-counting and
ruler methods. This method is not included in this chapter.

10.2.3 Feature analysis, selection, and classification

In the present study, nine features (shape factors) were extracted for each
contour, as described in Section 10.2.2; each feature or shape factor is a
single-valued quantity. The dimension of the feature set or vector for each
breast mass, at the initial stage of analysis, is Nf ¼ 9. The capability of each
feature to discriminate between benign masses and malignant tumors was
assessed by analyzing the associated ROC curve.52 The ROC curve shows the
variation in the sensitivity versus the false-positive rate (complement of
the specificity) for various values of the decision threshold. The area under the
curve (AUC) serves as a measure of the performance of the decision-making
system or classifier.
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Feature analysis and selection53 56 was performed by evaluating the
performance of each feature or combinations of several features based on their
p-values,57 AUC values,52 and other measures of performance. In the present
work, the stepwise logistic regression procedure was used, which includes
regression models in which the choice of the predictive variables is performed
by an automatic procedure.58 Each step consists of one step of forward
selection and one step of backward elimination. These two tasks were
repeated until no features were added or removed. Feature selection was also
performed using stepwise regression, which iteratively varies the number of
features used in the classification step by entering features into or removing
features from the group of selected features based on a selection criterion
using the F-statistic.54

Classification was performed using the selected sets of features with LDA,
quadratic discriminant analysis (QDA),53 and an artificial neural network
with radial basis functions (RBFs).59 The leave-one-out (LOO) procedure was
used in the feature-selection step as well as the training and testing steps of
each classifier. The inclusion of the feature selection step within the LOO
procedure reduces the bias introduced by the training sample; however, the
number of selected features varies for each trial (for each mass being tested).
ROC curves were obtained based on the discriminant values derived from
each classifier for each contour.

For further cross-validation of the features and the classification
procedures, feature selection and training of each of the classifiers
mentioned above were performed with one of the three datasets of contours
used in the present work, and the classifier so obtained was tested on the
remaining two datasets. In this case, the number of features selected depends
upon the training dataset and remains constant for all masses in the test
datasets.

10.3 Datasets of Contours of Breast Masses

Dataset A: Mammograms of 20 cases with breast masses were obtained from
Screen Test: the Alberta Program for the Early Detection of Breast
Cancer.19,60 Ethics approval of the project was obtained from the Conjoint
Health Research Ethics Board, Office of Medical Bioethics, University of
Calgary, and the Calgary Regional Health Authority. The mammograms
were digitized using the Lumiscan 85 scanner at a resolution of 50mm with
12 bits/pixel. The dataset includes 57 images, 37 of which contain benign masses
and 20 of which contain malignant tumors.19 The diagnostic classification of
the masses was based upon biopsy. The areas of the benign masses vary from
39 to 423 mm2, with an average and standard deviation of 163� 87 mm2. The
areas of the malignant tumors vary from 34 to 1122 mm2, with an average and
standard deviation of 265� 283 mm2. The contour of each mass was manually
drawn on the corresponding mammographic image by an expert radiologist
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specialized in mammography and verified independently by another radiologist.
Contours were drawn meticulously so as to include fine details related to
microlobulations and spicules. Most of the benign masses in this dataset are
well circumscribed (circumscribed benign or CB), whereas most of the
malignant tumors are spiculated (spiculated malignant or SM), as typically
encountered in mammographic images. BI-RADS ranking61 was not used in
the Screen Test program.

Dataset B: In an earlier study, a set of 54 mammographic images
containing masses was obtained from the original Mammographic Image
Analysis Society (MIAS) database62 and the teaching library of the Foothills
Hospital in Calgary.9 The original MIAS images were digitized at a
resolution of 50mm, whereas the Foothills Hospital images were digitized at
a resolution of 62mm. The diagnostic classification of the masses was based
upon biopsy. The areas of the benign masses vary from 32 to 1207 mm2, with
an average and standard deviation of 281� 288 mm2. The areas of the
malignant tumors vary from 46 to 1244 mm2, with an average and standard
deviation of 286� 292 mm2. The contours of the masses in the
mammographic dataset were drawn manually on the digitized images by
an expert radiologist specialized in mammography.9,10,19 Contours were
drawn meticulously so as to include fine details related to microlobulations
and spicules. This dataset includes circumscribed and spiculated cases in
both the benign and malignant categories. Spiculated benign (SB) masses
and circumscribed malignant (CM) tumors are unusual, and they tend to
cause difficulties in pattern-classification studies.9 This dataset has a total of
54 contours, including 16 CB, 12 SB, 19 SM, and seven CM types. BI-RADS
ranking61 is not provided by the MIAS database and was not used at the
time of preparation of the Foothills Hospital cases.

Dataset C: A set of 192 mammograms was obtained from 192 patients at
the Senology Unit, San Paolo Hospital, Bari, Italy, ASL Ba/4 (medical
group). The study was approved by the San Paolo Hospital, and informed
consent was obtained from patients for anonymous use of mammographic
and related data for scientific purposes. The patients were diagnosed to have
breast disease via screen-film mammography and confirmed histologically;
163 of the cases were malignant, and 29 were benign. The most-useful
mammographic projections were selected to analyze the contours of the
lesions. The areas of the benign masses vary from 13 to 927 mm2, with an
average and standard deviation of 249� 233 mm2. The areas of the malignant
tumors vary from 13 to 1263 mm2, with an average and standard deviation of
333� 244 mm2.

During an initial phase, contours of the lesions present on the film
images were manually traced by a team of three radiologists specialized
in mammography, using a colored grease pencil. The contoured image
was then placed on a Wacom Intuos3 A4 graphic tablet, and using an
optical pen, the part of interest was retraced so as to obtain a digital
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representation of the contour. Each contour was saved in a text file as a list
of points, corresponding to the ðx, yÞ coordinates of the points on the
contour. The contour was then resampled so as to achieve a uniform
distribution of points.

In the second phase, a custom CAD environment was implemented in
MATLAB®, with a graphical user interface consisting of a full-screen window
and a drop-down menu for draw and save commands. The commands
available in the menu were also activated by the optical pen to make the
process of manual drawing of the contours and the related data acquisition
simpler and faster.

10.4 Results and Discussion

Figure 10.3 shows the ROC curves for the four estimates of the FD listed in
Table 10.1 with Dataset A; Figure 10.4 shows the ROC curves for the shape
factor cf with the three datasets. Table 10.1 shows the AUC values obtained
for each of the shape factors studied with each of the datasets used in the
present work. Several of the shape factors have provided high classification
performance across the highly variable datasets of contours of breast masses,
with an AUC in the range of ½0:7308, 0:9973�. All of the shape factors have
performed very well with Dataset A, with an AUC in the range of
½0:9135, 0:9973�, due to the fact that most of the benign masses in the dataset
have smooth contours whereas most of the malignant tumors have spiculated
contours. The performance of the shape factors is not as high with Dataset B,
albeit good, being in the range of ½0:7308, 0:8448�, due to the presence of a
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Figure 10.3 ROC curves indicating the classification performance of FDs obtained with the
ruler method and the box-counting method with Dataset C. The values of the area AUC
under the ROC curves are listed in Table 10.1. TPF: true-positive fraction; FPF: false-
positive fraction.
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large number of SB and CM cases. The results with Dataset C are very good,
with an AUC in the range of ½0:8367, 0:9175�:

By selecting the point closest to the upper-left corner with the coordinates
½0:0, 1:0� in the ROC curve shown in Fig. 10.4 for the shape factor cf , a high
performance is achieved by using Dataset A with a sensitivity of 95:2% at a
specificity of 94:4%. The performance of the same feature with Dataset C is
slightly poorer, with a sensitivity of 84:4% at a specificity of 83%. Other values
of sensitivity and specificity may be obtained by choosing other operating
points on the various ROC curves obtained in the study.

The results of feature selection with the stepwise logistic regression
procedure and the stepwise regression procedure with the F-statistic are shown
in Table 10.2 for the three datasets used in the study and their combinations.
The set of selected features varies in each step of the LOO procedure (for each
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Figure 10.4 ROC curves representing the classification performance of cf with the three
datasets used in the study. The values of the area under the ROC curves are listed in
Table 10.1.

Table 10.1 List of the nine shape factors and their individual AUC values for each dataset
used in the present study.

Shape Factor Dataset A Dataset B Dataset C

FD ruler 1D 0.9419 0.8228 0.8794
FD ruler 2D 0.9743 0.8448 0.9084
FD box 1D 0.9230 0.8173 0.8752
FD box 2D 0.9135 0.7761 0.8695
cf 0.9851 0.7967 0.9175
CD 0.9824 0.7308 0.9135
fcc 0.9973 0.7527 0.8367
SI 0.9662 0.8118 0.8887
ff 0.9878 0.8173 0.9040
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mass being tested). The features selected most often with the two procedures
and various datasets are listed in Table 10.2; these features may be considered
to be stronger than the other features that were not selected as often. The
AUC values obtained with the three classifiers used in the study indicate that
some combinations of the shape factors can lead to slightly higher
classification performance than the individual features (compare the AUC
values in Table 10.2 with those in Table 10.1).

Table 10.3 summarizes the results of cross-validation of the selected
features and classifiers with the various datasets used in the study. The results
indicate the importance of training a classifier with a large dataset including a
collection of diverse cases. The best results have been obtained by training the

Table 10.3 Results of cross-validation of the selected features and classifiers with various
datasets (in terms of AUC). The list of selected features in each case was obtained using the
stepwise regression procedure with the F-statistic. The dimension of the feature vector (Nf )
is equal to the number of features selected. The initial set of features has a dimension of 9.

Training Set Selected Features Test Set LDA QDA RBF

A Nf 2: fcc, SI B 0.7816 0.8063 0.7971
A Nf 2: fcc, SI C 0.8864 0.8551 0.8866
B Nf 2: FD ruler 2D, FD box 2D A 0.9487 0.9487 0.9608
B Nf 2: FD ruler 2D, FD box 2D C 0.8718 0.8788 0.8972

{A, B} Nf 3: fcc, SI, CD C 0.8877 0.8132 0.8540
C Nf 3: FD ruler 1D, cf, fcc A 0.9932 0.9932 0.9978
C Nf 3: FD ruler 1D, cf, fcc B 0.8049 0.8338 0.8387
C Nf 3: FD ruler 1D, cf, fcc {A, B} 0.9127 0.9234 0.9170

Table 10.2 List of the shape factors selected and the AUC values with various classifiers
for the datasets used in the present study and combinations thereof. The rows indicated with
an asterisk represent the features selected most often in the LOO procedure for
each dataset listed. The set of selected features and the dimension of the feature vector
(Nf ) varies in each step of the LOO procedure (for each mass being tested). The initial set of
features has a dimension of 9.

Feature
Selection

Classifier Dataset A Dataset B Dataset
{A, B}

Dataset C Dataset
{A, B, C}

All LDA 0.9797 0.7390 0.9117 0.8877 0.9267
features QDA 0.9797 0.7885 0.9154 0.8500 0.9084
in Table 10.1 RBF 0.9919 0.7981 0.9348 0.9162 0.9309

Logistic * fcc FD ruler 2D, fcc, FD ruler 1D, FD ruler 1D,
regression FD box 2D SI, CD CD fcc

LDA 0.9973 0.8448 0.9247 0.9243 0.9327
QDA 0.9973 0.8393 0.9177 0.8982 0.9283
RBF 0.9973 0.8599 0.9324 0.9264 0.9393

Stepwise * fcc, SI FD ruler 2D, fcc, FD ruler 1D, FD ruler 1D,
regression FD box 2D SI, CD cf , fcc cf , fcc, SI, CD

LDA 0.9919 0.8448 0.9247 0.9076 0.9297
QDA 0.9920 0.8393 0.9177 0.8944 0.9044
RBF 0.9973 0.8599 0.9324 0.9156 0.9362

284 Chapter 10



classifiers with Dataset C and testing on Datasets A and B. Whereas the
results with the LOO procedure listed in Table 10.2 may be biased to some
extent, the results in Table 10.3 are more reliable due to the complete
independence between the training and testing datasets. The results with high
AUC values in Table 10.3 indicate the robustness of the shape factors used in
the present study to variations in the datasets, feature selection methods,
pattern classification techniques, and cross-validation methods.

The present study has performed comparative analysis and extensive
evaluation of several measures of shape for the purpose of classification of
breast masses based on the roughness of their contours. Although
most typical benign masses have smooth contours and most malignant
tumors have rough or spiculated contours, such a distinction may not be
present always. It is desirable to use a combination of several measures of
shape that characterize various notions of shape roughness. The following
points are noteworthy regarding the several measures of shape used in the
present study:

• Fractal dimension characterizes the complexity of a contour’s shape in
terms of the presence of nesting patterns with self-similarity and its
space-filling nature; this helps distinguish between macrolobulated
benign masses and microlobulated malignant tumors.

• Compactness captures the relationship between the perimeter of a
contour and the area contained, and helps identify contours with narrow
or oblong parts; this helps discriminate between benign masses with oval
contours and malignant tumors with finger-like protrusions or
excursions.

• Fractional concavity and convex deficiency help recognize contours
with several concave parts, indentations, or incursions; they help
separate well-circumscribed benign masses from malignant tumors with
ill-defined and undulating contours.

• The Fourier factor quantifies the relative amount of high-frequency
power associated with rapid fluctuations in a contour, and helps classify
benign masses with smooth contours as being distinct from malignant
tumors with rough contours.

• Spiculation index yields a large value in the presence of long and narrow
spicules with small internal angles that are expected in malignant
tumors; its value will be small for benign masses with round contours
and no spicules.

The results of the present study demonstrate the effectiveness of the
proposed shape factors in the classification of breast masses and tumors. The
various shape factors proposed capture different distinguishing characteristics
of benign masses and malignant tumors. The multiple notions of shape
roughness described above and captured by the different shape factors may
find other applications in computer vision and image analysis.

285Analysis of Breast Masses in Mammograms Using the Fractal Dimension...



10.5 Conclusion

The results obtained in the present study support the hypothesis that
contours of breast masses possess fractal properties and that the FD can help
discriminate benign masses from malignant tumors. The results also indicate
that several other shape factors, such as cf , CD, fcc, ff, and SI, can provide
comparable performance and also augment the performance of the FD.
The variations in the performance of the features across the datasets used in
the study may be related to the specifics of the datasets, in terms of the
smooth-versus-rough nature of the benign masses and malignant tumors.
Regardless, the results of cross-validation across three different sets of
contours from different sources and with annotations by multiple
radiologists indicate that shape analysis can make substantial contributions
to the analysis of breast masses in mammograms. Further studies are in
progress on detailed evaluation of the shape features with contours of breast
masses in mammograms obtained with digital mammographic imaging
systems. It is desirable to evaluate the shape features with automatically
detected contours of breast masses20 and a large database. Given the
difficulty in obtaining accurate contours of masses in mammograms, it is
also desirable to evaluate the classification performance of combinations of
shape factors with other features related to texture and edge sharpness.20

The methods described in the present work are expected to make important
contributions to CAD of breast cancer.
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Chapter 11

Another Step towards
Successful Tomographic
Imaging in Cancer: Solving
the Problem of Image
Reconstruction

Artyom M. Grigoryan
Department of Electrical and Computer Engineering, University of Texas
at San Antonio, USA

11.1 Introduction

The problem of image reconstruction from a finite number of projections is
important in computed tomography (CT), which is used in diagnostic
medicine1 and electron microscopy.2,3 The technology of CT scanners is
advancing, and new scanner generations provide high-quality pictures, e.g.,
third-generation scanners wherein the detector array covers the entire FOV,
and fan-beam geometry is used instead of parallel-beam geometry.4,5

Computed tomography, which is also called computerized axial tomography
(CAT), is a diagnostic procedure that uses special x-ray equipment to obtain
cross-sectional pictures of the human body.

CT images are called tomograms; they show structures inside the body,
including internal organs (such as the kidneys, liver, or spleen), blood vessels,
bones, tumors, and other tissues. Tomograms are used to detect or confirm
the presence of a tumor (including brain tumors); to provide information
about the size and location of the tumor, and whether it has spread; to guide a
biopsy (the removal of cells or tissues for examination under a microscope);
and to help plan radiation therapy or surgery.

295



11.1.1 CT images and lung cancer

A wide variety of medical conditions that are not visible in conventional
radiographs can be seen in CT images. According to the American College of
Radiology, CT can be used for lung-cancer screening, and recent results from
the National Lung Screening Trial have shown that CT lung-cancer screening
can significantly reduce the number of people who die each year from lung
cancer when CT is performed in the context of careful patient selection and
follow-up. Also, new research published in the January issue of The Journal of
Nuclear Medicine shows that CT and positron emission tomography (PET)
imaging offer significant prognostic stratification information during initial
staging for patients with locally advanced breast cancer. When compared to
conventional imaging, 18F-FDG PET/CT more-accurately showed lesions in
the chest, abdomen, and bones. The study by Iagaru et al.6 suggests that
18F-FDG PET/CT should be considered as complimentary imaging tools in
the pre- and postoperative work-up of patients diagnosed with breast cancer.

11.1.2 CT images and breast cancer

As reported by Pettigrew and Berry,7 breast cancer is a pathology that causes
40,000 deaths each year in the United States, and it is the second leading cause
of death in women.8,9 Early detection is necessary to treat patients and
improve their chances for survival. Over the last 15 years, the number of
breast-cancer-related deaths has been drastically reduced (by 30–50%) because
of technological advancements in mammography. Recent studies show the
potential benefits of the use of computed tomography technology for breast
imaging. The breast CT becomes another alternative to mammography and
magnetic resonance imaging for use in breast cancer screening. There are a
few complications in mammography, and the major one is the lack of
sensitivity with mammography, which makes it impossible to detect some
abnormalities, for instance, breast lesions and breast cancer.10,11 Studies show
that 30% of cancers are not detected by mammography, and 70–90% of
biopsies conducted as a result of suspicious mammograms are negative,
driving up medical costs and causing patients unnecessary stress. Other
complications include not being able to visualize the breast in a 3D view and
how the superimposition of breast tissues with mammography makes it harder
to detect abnormalities.12,13 It is currently recognized that CT may potentially
play a major role in breast imaging by providing advanced treatment options
for patients. Experimental and research studies have addressed using
breast CT as another diagnostic tool for breast cancer.14 Studies indicate
that breast CT can be as valuable as mammography, if not more so.

Using cone-beam technology for breast CT has been shown to benefit
image quality. A simulation study conducted by Chen and Ning13 showed the
feasibility of cone-beam dedicated breast CT systems in identifying lesions
only a few millimeters in size and calcifications 100 micrometers in size. The
breast CT can produce better low-contrast images that aid in detecting breast
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masses. A precise measurement of the location and volume visualization of
lesions is possible, as well as optimal resolution for calcification with high
contrast. This is an important aspect of breast CT because physicians can now
localize the lesions, which will lead to advanced treatment options with CT,
such as using breast CT for biopsies.

11.1.3 Breast cancer with CT, mammography, and MRI

The breast CT may become another alternative to magnetic resonance
imaging (MRI) for screening women who are high at risk for breast cancer
and for estimating the extent of their disease.15 17 The cost of breast CT will
be less expensive than MRI, and the potential interpretation time for CT may
be shorter than that for MRI. The potential advantages of breast CT systems
far outweigh the disadvantages. These advantages include the ability to image
the entire volume of the breast, the high spatial resolution, the superior
contrast resolution, the elimination of superimposed breast tissues and
structures (resulting in improved tumor detection), and the fine anatomical
detail produced with breast CT. Although dedicated breast CT utilizes
ionizing radiation, the radiation dose is equal to or less than the dose used for
mammography. Also, unlike mammography, breast CT does not need to use
breast compression, which is a significant benefit for patients.

Although breast CT systems are still in development, the study of breast
CT is moving in a positive direction, and it has the potential to gradually
change the field of breast imaging. If breast CT becomes commercially
available in the future, it will likely play an important role in screening and
early diagnosis. Will breast CT replace mammography or MRI? Breast CT
may have a vital role in evaluating women with dense breasts, implants, and
small cancers in dense breasts. Translational research should help provide
evidence-based guidelines for clinical implementation of breast CT. Lowering
patient dose while increasing the resolution needed to detect angiogenesis at
the ductal level will help increase survival rates among women.

11.1.4 Algorithms in CT

With new and still-developing generations of CT scanners and their effective
implementation in tomographic imaging, the complexity of the mathematical
methods and approaches for image reconstruction from projections increases.
The problem solved by Radon in 191718,19 for reconstructing a function from
its projections has not yet been solved for practical applications because an
infinite set of line integrals (measurements) is not available. Many of the
existing methods of image reconstruction from a finite number of projections
process the projection data on the polar grid of coordinates and then
transform the data into the Cartesian lattice without fully covering it, which
results in low-quality reconstructions. This is the traditional way to calculate
the approximation of the reconstructed image, which is shown by the Fourier
slice theorem.1,2

297Another Step towards Successful Tomographic Imaging in Cancer



This chapter presents a new approach for solving the problem of image
reconstruction, which differs from the known methods of back-projection,
iterative reconstruction, Fourier filtering, Radon filtering, and convolution
filtering.20 28 The reconstruction is performed by calculating the tensor or
paired transform29 33 of the image from the projection data. In the tensor
representation, a 2D discrete image is considered as the sum of direction
images, each of which is determined by the corresponding signal. These
signals are called the splitting-signals; they also carry the spectral information
of the image at frequency points of different subsets that cover the whole
domain of frequencies. The discrete image can be reconstructed by its
splitting-signals by calculating the 2D DFT or by directly performing the
inverse 2D tensor transform. In addition, the tensor representation possesses
the following important property. This transform is in the discrete space, and
all components of the transform are defined as the ray sums of the discrete
image in the Cartesian lattice. However, it is very important to note that these
sum rays can be exactly calculated from the ray integrals. In other words, the
splitting-signals of the discrete image fn,m can be calculated from the
projection of the image f ðx,yÞ. Each projection is processed by a system of
linear equations or linear convolutions to calculate the corresponding part of
the 2D tensor or paired representation of the image,33,45,49 and then the
inverse transform is calculated to obtain the discrete image. The model
described for image reconstruction is simple, and the reconstruction is exact.
The proposed method was implemented in MATLAB and Cþþ, and the
experimental results of image reconstruction are illustrated. Preliminary results
also show high-quality images when applying the proposed method with an
incomplete set of projections for the angular range scanned down to 10 deg.

11.2 Model of the Image

Consider the simple discrete model of image reconstruction when the parallel
scanning scheme is used (although the proposed algorithms can be generalized
to the fan scanning scheme, too). Figure 11.1 illustrates the problem of image

Figure 11.1 The image and two sets of parallel rays.
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reconstruction when assuming that the radiation source and detector represent
themselves—the points and the rays spreading between them are straight.

To simplify the calculations, consider the 2D image f ðx, yÞ to be
reconstructed in the unit square ½0, 1� � ½0, 1� with the Cartesian lattice N �N
on it. The integer N > 1 is the size of the lattice. The lattice is denoted by
X ¼ XN,N ¼ fðn,mÞ; n,m ¼ 0 : ðN 1Þg. The square is divided by small pieces
or image elements (IE) of size Dx ¼ Dy ¼ 1=N each, and the knots of the lattice
are in the centers of IE. Image elements are numbered by (n,m). In each image
element, the value of the image is considered to be constant:

fdðx, yÞ ¼ 1

ðDxÞ2
Z
IE
f ðx, yÞdxdy, if ðx,yÞ 2 IE:

Thus, the image f ðx, yÞ is represented by fdðx, yÞ, and the discrete image to be
reconstructed on the lattice from fdðx, yÞ is fn,m. The values of the discrete
image are defined by

fn,m ¼
Z
ðn,mÞth2IE

f ðx, yÞdxdy ¼ ðDxÞ2fdðx, yÞ, ;ðx0, y0Þ 2 ðn,mÞth IE,

and they are placed in the centers of the corresponding (n,m)th IE. When N is
large and the image f ðx, yÞ is presented by its small elements, the earlier
equations describe a good model of the image on the Cartesian lattice. Such a
model is considered in the well-known series-expansion methods for solving
the system of line integrals in the discrete case.20 25

11.2.1 Line integrals and ray sums

The sum of the discrete image along a ray l passing through the knots of the
Cartesian lattice is denoted by vl, and they are called ray sums:

vl ¼
X

ðn,mÞ2l fn,m: ð11:1Þ
In Eq. (11.1), the line integral along a ray l in the (n,m)th IE is defined as
follows:

wn,m
l ¼

Z
ðn,mÞth2IE

f ðx, yÞdl ¼ ðDlÞfdðx0,y0Þ ¼ Dl
1

ðDxÞ2 fn,m ¼ ðDlÞN2fn,m,

ð11:2Þ
where (x0, y0) is a point in the (n,m)th IE, and Dl ¼ Dln,m denotes the length of
the ray l in the (n,m)th IE. The ray is referred to as the line, i.e., the ray with
zero width. The line integral along the ray l can be written as

wl ¼
Z

f ðx, yÞdl ¼
X

ðn,mÞ2lw
ðn,mÞ
l ¼ N2

X
ðn,mÞ2lðDln,mÞfn,m, ð11:3Þ

where the summation is performed by the image elements through which
the ray l passes. Thus, there is a large system of linear equations describing
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the relationship between the line integrals wl and the values fn,m of the
discrete image. The solution of this system is unknown; it is difficult to find
this solution because the values of (Dln,m) are generally different even for the
parallel rays of the same projection. However, it is important to say that
there exist sets of parallel rays with the same value of length in each IE
through which the rays pass (these rays are described in a moment).
The rays l of such a set may differ from the rays defined by the ray sums in
Eq. (11.1) depending on the projection, but in all cases the ray sums can be
uniquely calculated from line integrals.

11.2.2 Two types of parallel rays

This section describes the rays that pass the unit square and the rays that pass
through the knots of the Cartesian lattice. Therefore, two coordinate systems
on the plane are considered. The first system of coordinates (x, y) is for the
image f ðx,yÞ on the square ½0, 1� � ½0, 1�, as shown in Fig. 11.2(a), for
the image with 13 ellipses, each with constant intensity. The second coordinate
system (n,m), where n and m are integers, is for the lattice XN,N in the square.
This system is used for the discrete image fn,m, as shown in Fig. 11.2(b).
Parameters x and n run from left to right, and parameters y and m run from
top to bottom.

Consider the parallel lines on the unit square and lattice, which are
parameterized by coordinates of the frequency points. Given the frequency
point ðp, sÞ � XN,N , such that g.c.d. ðp, sÞ ¼ 1, consider the lines

lðtÞ ¼ lp,sðtÞ ¼ fðn,mÞ; pnþ sm ¼ tg, t ¼ 0 : ðpþ sÞðN 1Þ
on the square lattice XN,N . These lines are referred to as the arithmetical
rays.

Figure 11.2 Two coordinate systems for images f ðx, y) and fn,m.
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The equations of these lines on the square ½0, 1� � ½0, 1� are
lðtÞ ¼ lp,sðtÞ ¼ ðx,yÞ; pxþ sy ¼ t

N
þ pþ s

2N

n o
, t ¼ 0 : ðpþ sÞðN 1Þ:

These lines are referred to as the geometrical rays to distinguish the discrete
and continuous cases. These two types of rays are denoted by lðt), and the
same set of t is considered for the rays, t ¼ 0 : ðpþ sÞðN 1Þ. The generator
(p, s) defines the slope tan 1ðp=sÞ of these rays. The set of line integrals

W ¼ Wp,s ¼ wlðtÞ; lðtÞ ¼ lp,sðtÞ, t ¼ 0 : ðpþ sÞðN 1Þ� �
is called the (p, s)-projection of the image. One should consider other sets of
ðpþ sÞðN 1Þ þ 1 shifted lines that are parallel to lðtÞ and call them the
geometric rays, too.

11.3 The Image and the Set of Splitting-Signals

This section describes the images and their 2D discrete Fourier transforms
(2D DFTs) by the unique sets of 1D signals and 1D DFTs, respectively. The
images are considered in the tensor and paired representations, which are the
2D frequency and 1D time representations of the image.29 35 These
representations are unique and invertible, and fast algorithms exist for them.
Both tensor and paired transforms of images can be used effectively to
calculate the 2D DFT and other transforms, including 2D Hartley,
Hadamard, and cosine transforms.34 36,48 The tensor transform can be used
in image enhancement,40 42 image denoising,43,49,50 and discrete image
reconstruction.44,45

In the tensor representation, the discrete image fn,m is the set of 1D
splitting-signals:

�: f fn,mg ! f fTp,s ¼ f fp,s,t; t ¼ 0 : ðN 1Þggðp,sÞ2JN,N : ð11:4Þ
Here, JN,N is a set of frequency points (p, s) or generators of the splitting-
signals that are selected in a way to cover the lattice XN,N of frequency points
(p, s) with a minimum number of the following subsets:

Tp,s ¼ fðkmod N,ks modNÞ; k ¼ 0 : ðN 1Þg:
These sets are cyclic groups with generators (p, s). When N is a power of two,
N ¼ 2r, r > 1, the set of generators (p, s) contains 3N=2 elements and can be
defined as

JN,N ¼ fðp, 1Þ; p ¼ 0 : ðN 1Þg [ fð1, 2sÞ; s ¼ 0 : ðN=2 1Þg: ð11:5Þ
The components fp,s,t of the splitting-signals fTp,s are the sums of the image
fn,m along the parallel lines on the lattice

fp,s,t ¼ �p,s,t8f ¼
X

ðn,mÞ2Xf fn,m; npþms ¼ t mod Ng, t ¼ 0 : ðN � 1Þ: ð11:6Þ

301Another Step towards Successful Tomographic Imaging in Cancer



The binary function �p,s,tðn,mÞ takes value 1, when npþms ¼ t mod N and
0, otherwise. Given (p, s), the components fp,s,t are periodic by t, i.e., fp,s,tþN ¼
fp,s,t for t ¼ 0 : ðN 1Þ.

Figure 11.3(a) shows the image, and 11.3(b) shows the tensor transform.
The tensor transform is redundant, and the set of all splitting-signals can be
divided by two parts, or matrices. The first part is with the generators
fðp, 1Þ; p ¼ 0 : ðN 1Þg, and the second part is for the splitting-signals with
the remaining generators fð1, 2sÞ; s ¼ 0 : ðN=2 1Þg of the set J256;256. The
splitting-signals are written along the rows in these two matrices.

Figure 11.4 shows the splitting-signal of the image, which is generated by
the frequency point (4,1) in (a). This splitting-signal is written in row number 5
in the first part of the tensor transform in Fig. 11.3.

The splitting-signal fTp,s carries the spectral information of the 2D DFT at
N frequency points of the set Tp,s, i.e., the following holds:

Fkp modN, ks modN ¼
XN 1

t 0

fp,s,tW
kt, k ¼ 0 : ðN 1Þ, ð11:7Þ

where W ¼ WN ¼ expð 2pj=NÞ.

Figure 11.3 (a) Imageof size256� 256 and (b) twoparts of the tensor transformof the image.

Figure 11.4 (a) Splitting-signal ff4, 1, t ; t ¼ 0 : 255g of the image and (b) its direction image.
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As an example, Figure 11.5 illustrates the 256� 256 case. The
splitting-signal or image-signal fT2,1 of length 256 is shown in (a), along
with the magnitude of the 1D DFT of the signal in (c) and the spectrum of
the image in (d). Two bright parallel lines on the spectrum show
the samples at points of the set T2,1 at which the 2DFT of the image
is the 1DFT of the image signal. The 2D DFT at frequency points of this
set has been amplified in order to see the location of the group and
the directions of the projection along which the components of the tensor
are calculated as ray sums. The image after amplifying the 2DFT at
frequency points of the set T2,1 is shown in Fig. 11.5(b). The effect of
amplifying those spectral components shows the contribution of the
direction image. The projections are calculated at angle c ¼ 63:4349 deg,
and the 1D DFT is filled by the 2D DFT along three lines at angle
u ¼ 90 c ¼ 26:5651 deg.

Figure 11.5 (a) The image signal corresponding to the set T2,1. (b) The image after
amplifying the 2DFT at frequency points of T2,1. (c) Magnitude of the 1D DFT of the image
signal (the zero component is shifted to the center and truncated). (d) The 2D DFT of the
image with amplified samples of the set T2,1.
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To remove the redundancy of the tensor transform, the paired
representation of the image is used when the set of splitting-signals is defined
as30,31,33

�0 : f fn,mg ! f fT 0
p,s

¼ f f 0
p,s,t; t ¼ 0 : ðN=2k 1Þ, g:c:d:ðp, sÞ ¼ 2kggðp,sÞ2J 0N,N

ð11:8Þ
Here, J 0

N,N is a set of 3N 2 frequency points (p, s) or generators, and it is
defined as J 0

N,N [ 2J 0
N=2,N=2 [ 4J 0

N=4,N=4 [ . . . [ fðN=2,N=2Þg [ fð0, 0Þg. The
components of the paired splitting-signals are defined from the tensor
transforms as f 0p,s,t ¼ fp,s,t fp,s,tþN=2, when t ¼ 0 : ðN=2k 1Þ. The splitting-
signals carry information of the 2D DFT of the image at frequency points of
the subset T 0

p,s ¼ fð2mþ 1Þðp, sÞ;m ¼ 0 : ðN=2k 1Þg of Tp,s. The 2D paired
transform for the general case—when N is a power of a prime—is defined
similarly to the case when such a prime is 2.32,49,50

The family of subsets Tp,s occurs when ðp, sÞ 2 JN,N covers the entire
lattice XN,N and 3N=2 1D DFTs of splitting-signals fTp,s define completely the
2D DFT of the image. The tensor representation is unique, and the image can
be defined through the 2D DFT calculated by Eq. (11.7) or directly from the
tensor transform. Indeed, according to the principle of superposition,33,46 48

the image fn,m can be composed from splitting-signals as follows:

fn,m ¼ 1
2N

Xr 1

k 0

1

2k
X

ðp,sÞ2JN=2k,N=2k

f2kp,2ks,t f2kp,2ks,tþN
2

h i
þ 1
N2 f0,0,0, ð11:9Þ

where t ¼ tð2kp, 2ks; n,mÞ ¼ ðn2kpþm2ksÞ mod N. All components f2kp,2ks,t in
this equation are defined by Eq. (11.6), but they can also be calculated by
using the following recursive formula:

f2kp,2ks,2kt1 ¼ f2k 1p,2k 1s,2k 1t1
þ f2k 1p,2k 1s,2k 1t1þN=2, k ¼ 1, 2, . . . , r 1, ð11:10Þ

where p or s equals 1, and t1 ¼ 0 : ðN=2k þ 1 1Þ. In other words, these
components can be calculated from 3N=2 splitting-signals fTp,s generated
by the frequencies ðp, sÞ 2 JN,N . Each image dn,m ¼ fp,s,ðnpþmsÞmod N , n,m ¼
0 : ðN 1Þ is the direction image with N values that are located along the
parallel lines (npþms) mod N that pass through the knots of the lattice. For
the case when ðp, sÞ ¼ ð3, 1Þ, Fig. 11.4(b) shows the direction image that
corresponds to the splitting-signal in (a).

Thus, the image fn,m is the linear combination of direction images. This
composition of the image can be used to reconstruct the image from 3N=2
projections or an incomplete set of projections. It should be mentioned that the
inverse formula in Eq. (11.9) can also be used for other sets of 3N=2 generators
(p, s) when the covering of the lattice N �N by the groups Tp,s is irreducible.
For instance, fð2p, 1Þ; p ¼ 0 : ðN=2 1Þg [ fð1, sÞ; s ¼ 0 : ðN 1Þg.
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In the case where N is prime, the inverse tensor transform of the N �N
image fn,m can be composed from (N þ 1) tensor splitting-signals, as follows:

fn,m ¼ 1
N

XN 1

s 0

f1,s,ðnþmsÞmod N f0,1,m
� �

NE½ f �, n,m ¼ 0 : ðN 1Þ: ð11:11Þ

The set of generators (p, s) for cyclic groups Tp,s is defined as

JN,N ¼ fð1, 0Þ, ð1, 1Þ, ð1, 2Þ, ð1, 3Þ, � � � , ð1,N 1Þg [ fð0, 1Þg: ð11:12Þ
This set contains (N þ 1) frequency generators, and this number shows the
number of splitting-signals in the tensor representation of the image.

11.4 Geometry of the Projections on the Lattice

This section describes the method of transferring the geometry from the image
plane to the Cartesian lattice, i.e., a way to calculate the ray sums of the
discrete image from the line integrals of the image f ðx, yÞ. The sets of rays for
these two geometries, i.e., the sets of arithmetical and geometrical rays, may
be the same or different, and that will depend on the angle of projections.
Consider a few examples of projections in the case when N is a prime.

Example 1 (7 � 7)
Consider the (1,2)-projection and the N ¼ 7 case. Figure 11.6 shows three
parallel lines lð2Þ, lð9Þ, and lð16Þ in the unit square with the Cartesian

Figure 11.6 Parallel rays on the square ½0,1� � ½0,1� and the 7� 7 lattice.
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lattice 7� 7. The generator (p, s) is (1,2); it determines the slope,
arctan(p/s), of the lines. The equations of these three lines on the ½0, 1� �
½0, 1� square are

lð2Þ ¼ l1,2ð2Þ ¼ ðx,yÞ; xþ 2y ¼ 2
7
þ 3
14

¼ 7
14

� �
,

lð9Þ ¼ l1,2ð9Þ ¼ ðx,yÞ; xþ 2y ¼ 9
7
þ 3
14

¼ 21
14

� �
,

lð16Þ ¼ l1,2ð16Þ ¼ ðx,yÞ; xþ 2y ¼ 16
7
þ 3
14

¼ 35
14

� �
:

In the discrete lattice 7� 7, these lines are described by lð2Þ ¼ l1,2ð2Þ ¼
fðn,mÞ; nþ 2m ¼ 2g, lð9Þ ¼ l1,2ð9Þ ¼ fðn,mÞ; nþ 2m ¼ 9g, and lð16Þ ¼
l1,2 ð16Þ ¼ fðn,mÞ; nþ 2m ¼ 16g. The sums of the image along arithmetical
rays are denoted by

vp,sðtÞ ¼ vlðtÞ ¼
X

ðn,mÞ2lp,sðtÞ
fn,m:

The set of 19 geometrical rays that coincide with these arithmetical rays is
defined as

lðtÞ ¼ l1,2ðtÞ ¼ fðx, yÞ; xþ 2y ¼ t
7
þ 3
14
g, t ¼ 0 : 18,

where ðx, yÞ 2 ½0, 1� � ½0, 1�. The parallel rays nþ 2m ¼ t, where
t ¼ 0 : 18, are shown in Figure 11.7 on the left. The number of rays is
calculated as ðpþ sÞðN 1Þ þ 1 ¼ 3 � 6þ 1 ¼ 19. To number these rays,
the set of control points that are also shown on the right are used.

Figure 11.7 19 arithmetical rays for the (1,2)-projection and the corresponding numbered
control points.
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Nineteen arithmetical rays of this projection are used to determine the
components f f1,2,t; t ¼ 0 : 6g of the tensor transforms. The masks of the
basic functions �1,2,tðn,mÞ have coefficients equaling 1 on these parallel
lines. Consider the masks of the first two basic functions:

½�1, 2, 0� ¼

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 1 0 0 0 0

2
666666666664

3
777777777775
, ½�1, 2, 1� ¼

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

2
666666666664

3
777777777775

These masks and the parallel rays passing through coefficients 1 are
shown in Fig. 11.8.

It is not difficult to see that seven components f1,2,t, t ¼ 0 : 6 of the
tensor transform are calculated as

f1,2,0 ¼ v0 þ v7 þ v14,

f1,2,1 ¼ v1 þ v8 þ v15,
f1,2,2 ¼ v2 þ v9 þ v16,
f1,2,3 ¼ v3 þ v10 þ v17,
f1,2,4 ¼ v4 þ v11 þ v18,
f1,2,5 ¼ v5 þ v12,
f1,2,6 ¼ v6 þ v13, ð11:13Þ

where the variables vt ¼ v1,2ðtÞ denote the sums of the discrete image
along the arithmetical rays lðtÞ, t ¼ 0 : 18. This system of equations can be

Figure 11.8 Masks of functions �1, 2, 0ðn,mÞ and �1, 2, 1ðn,mÞ with the parallel rays.
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written as f1,2,t ¼ vt þ vtþ7 þ vtþ14, t ¼ 0 : 6, where vt ¼ 0 if t > 18. To
calculate the signal f1,2,t from the projection data, we will derive and then
simplify the formula describing the linear relation between the integrals
wðtÞ and sums vðtÞ, t ¼ 0 : 18. First, consider the mask of the tensor
function �1,2,tðn,mÞ with coefficients 1 of the rays lð0Þ, lð7Þ, and lð14Þ, as
shown in Fig. 11.9.

It is not difficult to see that the line integral along the ray l ¼ lð6Þ in
image elements can be written as

wð0,3Þ
l ¼ Dl0,3

Dx
7f0,3, wð1,3Þ

l ¼ Dl1,3
Dx

7f1,3, wð1,2Þ
l ¼ Dl1,2

Dx
7f1,2,

wð2,2Þ
l ¼ Dl2,2

Dx
7f2,2, wð3,2Þ

l ¼ Dl3,2
Dx

7f3,2, wð3,1Þ
l ¼ Dl3,1

Dx
7f3,1,

wð4,1Þ
l ¼ Dl4,1

Dx
7f4,1, wð5,1Þ

l ¼ Dl5,1
Dx

7f5,1, wð5,0Þ
l ¼ Dl5,0

Dx
7f5,0,

wð6,0Þ
l ¼ Dl6,0

Dx
7f6,0:

The lengths of intersection of the rays with image elements equal Dl0,3 ¼
Dl2,2 ¼ Dl4,1 ¼ Dl6,0 ¼ ð 5

p
=7Þ=2 and Dl1,3 ¼ Dl1,2 ¼ Dl3,2 ¼ Dl3,1 ¼

Dl5,1 ¼ Dl5,0 ¼ ð 5
p

=7Þ=4. Therefore, the line integral wlð6Þ can be
written as

Figure 11.9 A few parallel rays for calculating line integrals of the (1, 2)-projection.
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wlð6Þ ¼
X

Dlðn,mÞ6 0

wðn,mÞ
l

¼ wð0,3Þ
l þ wð2,2Þ

l þ wð4,1Þ
l þ wð6,0Þ

l

h i
þ wð1,3Þ

l þ wð3,2Þ
l þ wð5,1Þ

l

h i
þ wð1,2Þ

l þ wð3,1Þ
l þ wð5,0Þ

l

h i
¼ 7 5

p

2
f0,3 þ f2,2 þ f4,1 þ f6,0½ � þ 7 5

p

4
f1,3 þ f3,2 þ f5,1½ �

þ 7 5
p

4
½ f1,2 þ f3,1 þ f5,0�

¼ 7 5
p

2
v1,2ð6Þ þ 1

2
v1,2ð5Þ þ 1

2
v1,2ð7Þ

	 

:

A similar equation holds for other line integrals w1,2ðtÞ, as well. For
instance,

wlð7Þ ¼ 7 5
p

2
v1,2ð7Þ þ 1

2
v1,2ð6Þ þ 1

2
v1,2ð8Þ

	 

:

Different coefficients at the line sums v1,2ðtÞ, v1,2ðt 1Þ, and v1,2ðtþ 1Þ
complicate the solution of the system of these equations with respect to
v1,2ðtÞ. To simplify the calculation of the sums v1,2ðtÞ, a system of
equations, wherein all coefficients at the sums are equal, is described.
First, consider the geometrical ray ~l that is located between the rays lð6Þ
and lð7Þ; this ray is denoted as ~lð7Þ in the figure. One can notice that this
ray equally intersects all image elements with numbers (0,3), (1,3), (2,2),
(3,2), (4,1), (5,1), and (6,0). Therefore, the integral of the image along the
geometrical ray ~l can be calculated from the sums of the discrete image
along two arithmetical rays by

w~l ¼
X

D
~lðn,mÞ6 0

wðn,mÞ
l
~

¼ wð0,3Þ
l þ wð1,3Þ

l þ wð2,2Þ
l þ wð3,2Þ

l þ wð4,1Þ
l þ wð5,1Þ

l þ wð6,0Þ
l

¼ wð0,3Þ
l þ wð2,2Þ

l þ wð4,1Þ
l þ wð6,1Þ

l

h i
þ wð1,3Þ

l þ wð3,2Þ
l þ wð5,1Þ

l

h i

¼ 7 5
p

2
½ f0,3 þ f2,2 þ f4,1 þ f6,0� þ 7 5

p

2
½ f1,3 þ f3,2 þ f5,1�

¼ 7 5
p

2
½v1,2ð6Þ þ v1,2ð7Þ�:

A simple equation for the line integral along the geometrical ray ~l is
obtained. This ray is considered as the ray number 7 in the new set of
parallel geometrical rays that are defined as
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~lðtÞ ¼ l1,2ðt 0:5Þ ¼ ðx,yÞ; xþ 2y ¼ t
7
þ 1
7

� �
, t ¼ 0 : 18

and illustrated in Fig. 11.10.
The relationship between the integrals along the geometrical rays ~lðtÞ

and the sums along the arithmetical rays lðt) is described by the following
system of linear equations:

w1,2ðtÞ ¼ wð~lðtÞÞ ¼ 7 5
p

2
½v1,2ðt 1Þ þ v1,2ðtÞ�, t ¼ 0 : 18,

where v1,2ð 1Þ ¼ 0. These equations can be written in matrix form as

w ¼

w1,2ð0Þ
w1,2ð1Þ
w1,2ð2Þ
w1,2ð3Þ
w1,2ð4Þ

..

.

w1,2ð17Þ
w1,2ð18Þ

2
666666666666664

3
777777777777775

¼ 7 5
p

2
Av ¼ 7 5

p

2

1 0 0 0 0 � � � 0 0

1 1 0 0 0 � � � 0 0

0 1 1 0 0 � � � 0 0

0 0 1 1 0 � � � 0 0

0 0 0 1 1 � � � 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 0 0 � � � 1 0

0 0 0 0 0 � � � 1 1

2
666666666666664

3
777777777777775

v1,2ð0Þ
v1,2ð1Þ
v1,2ð2Þ
v1,2ð3Þ
v1,2ð4Þ

..

.

v1,2ð17Þ
v1,2ð18Þ

2
666666666666664

3
777777777777775

:

Figure 11.10 The set of shifted geometrical rays for calculating 19 line integrals of the
(1,2)-projection.
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The above Toeplitz matrix A of size 19� 19 has the triangle inverse
matrix, and all sums along the arithmetical rays are calculated by

v1,2ð0Þ
v1,2ð1Þ
v1,2ð2Þ
v1,2ð3Þ
v1,2ð4Þ

..

.

v1,2ð17Þ
v1,2ð18Þ

2
666666666666664

3
777777777777775

¼ 2

7 5
p

1 0 0 0 0 � � � 0 0

1 1 0 0 0 � � � 0 0

1 1 1 0 0 � � � 0 0

1 1 1 1 0 � � � 0 0

1 1 1 1 1 � � � 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

1 1 1 1 1 � � � 1 0

1 1 1 1 1 � � � 1 1

2
666666666666664

3
777777777777775

:

The required sums vðtÞ of the discrete image fn,m can be calculated directly
by v ¼ 2=ð7 5

p ÞA 1w or by the method of direct substitution in the
following recursive form:

b0 ¼ wð0Þ,
b1 ¼ wð1Þ b0,
bt ¼ wðtÞ bt 1, t ¼ 2, 3, . . . , 18, ð11:14Þ

and, then, vðtÞ ¼ 2=ð7 5
p Þ bt, where t ¼ 0 : 18. Substituting these values in

(11.13), we obtain all components of the splitting-signal {f1,2,t; t ¼ 0 : 7}.

Example 2 (7 � 7)
Consider the N ¼ 7 case and ðp, sÞ ¼ ð1, 5Þ. The masks of matrices of the
tensor functions �1,5,tðn,mÞ with the first two triplet numbers of the subset
fð1, 5, tÞ; t ¼ 0 : 6g are

½�1,5,0� ¼

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 1 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

2
666666666664

3
777777777775
, ½�1,5,1� ¼

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

2
666666666664

3
777777777775
:

The direction of parallel rays in these masks are defined by the angle
arctan(5), as shown in Fig. 11.11(a) for the first mask. There are six such
parallel rays that pass through the ones in the mask. Instead of parallel rays
of the (1,5)-projection, consider that the (1, 2)-projection also defines the
same set of masks as the tensor functions. Indeed, the equation 1nþ 5m ¼ t
mod 7 can be written as 1nþ ð7 2Þm ¼ t mod 7 or 1n 2m ¼ t mod 7.
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The same mask with two parallel rays of the (1, 2)-projection is illustrated
in Fig. 11.11(b).

The set of all rays for the (1, 2)-projection is shown in Fig. 11.12
together with the control points numbering these rays.

Such a change of projection allows one to reduce the number of rays
from ð1þ 5Þ6þ 1 ¼ 37 to ð1þ j 2jÞ6þ 1 ¼ 19. The set of 19 arithmeti-
cal rays of this projection is described as

lðtÞ ¼ l1, 2ðtÞ ¼ fðx, yÞ; x 2y ¼ t
7

1
14
g, t ¼ 6 : 1 : 12, ð11:15Þ

where (x, y) 2 ½0, 1� � ½0, 1�.

Figure 11.11 The mask [�1,5,0] with two different sets of parallel rays.

Figure 11.12 The set of 19 arithmetical rays for the (1, 2)-projection and control points.
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The masks for the tensor functions �1,5,0ðn,mÞ and �1,5,1ðn,mÞ are
shown in Fig. 11.13.

It is not difficult to see that the components of the tensor transform
f1,5,t are calculated by

f1,5,0 ¼ v0 þ v 7, f1,5,1 ¼ v1 þ v 6, f1,5,2 ¼ v2 þ v 5 þ v 12,

f1,5,3 ¼ v3 þ v 4 þ v 11, f1,5,4 ¼ v4 þ v 3 þ v 10,
f1,5,5 ¼ v5 þ v 2 þ v 9, f1,5,6 ¼ v6 þ v 1 þ v 8, ð11:16Þ
where the sums of the discrete image along the rays are denoted by
vðtÞ ¼ v1, 2ðtÞ, t ¼ 6 : 1 : 12.

The system of linear equations in Eq. (11.16) can also be written as
follows:

f1,5,t ¼
X2
m 0

vt 7m ¼
X2
m 0

v1, 2,t 7m, t ¼ 0 : 6,

where vt ¼ 0 if t < 7. Consider the shifted set of the rays, lðtÞ ! lðt 0:5Þ,
as the set of 19 geometrical rays:

~lðtÞ ¼ l1, 2ðt 0:5Þ ¼ ðx, yÞ; x 2y ¼ t
7

1
7

� �
, t ¼ 6 : 1 : 12:

The set of these geometrical rays is shown in Fig. 11.14.
For this set of geometrical rays, the system of equations for the line

integrals is defined as

wðtÞ ¼ wð~lðtÞÞ ¼ 7 5
p

2
½vðtÞ þ vðt 1Þ�, t ¼ 6 : 1 : 12, ð11:17Þ

where vð 13Þ ¼ 0. This system can be written in matrix form with the
same Toeplitz matrix described for the (1,2)-projection. Therefore, the

Figure 11.13 Two masks with parallel rays for the (1, 2)-projection.
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sums vðtÞ of the discrete image fn,m can be determined by
vðtÞ ¼ bt=ð7 5

p
=2Þ, where the components bt are calculated recursively by

b 12 ¼ wð 12Þ, b 11 ¼ wð 11Þ b 12, b 10 ¼ wð 10Þ b 11,

bt ¼ wðtÞ bt 1, t ¼ 9, 8, 7, . . . 6: ð11:18Þ
It should be noted that the numbering of the control points can be
changed by the transform t ! 6 t. The set of 19 geometrical rays of this
projection in Eq. (11.15) will then be written as

lðtÞ ¼ l1, 2ð6 tÞ ¼ fðx, yÞ; x 2y ¼ 1
7
þ 11
14
g,

and the system of equations in Eq. (11.17) can be written as
wðtÞ ¼ wð~lðtÞÞ ¼ 7 5

p
=2½vðtÞ þ vðtþ 1Þ�, t ¼ 0 : 18, where vð19Þ ¼ 0.

Equation (11.18) for the coefficients bt ¼ 7 5
p

=2vðtÞ is considered as

b18 ¼ wð18Þ,
b17 ¼ wð17Þ b18,

b16 ¼ wð16Þ b17,

bt ¼ wðtÞ btþ1, t ¼ 15, 14, . . . , 0:

Therefore, the components of the splitting signal f1,5,t in Eq. (11.16) can
be calculated as follows:

f1,5,t ¼
X2
m 0

v6 tþ7m, t ¼ 0 : 6, ðvt ¼ 0, t > 18Þ:

Figure 11.14 The set of geometrical rays for the (1, 2)-projection.
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11.4.1 Main equations for geometrical rays when N is prime

Generally, when N is prime, the image reconstruction from N þ 1
projections is described like the N ¼ 7 case. Table 11.1 provides the
general equations for rays and for calculating the sums vðtÞ from the line
integrals wðtÞ for all projections. Two subsets of generators (p, s)
are considered separately. The first subset contains generators (1, s), where
s � ðN 1Þ=2. The generators (1, s), where s > ðN 1Þ=2, compose the second
subset. For each generators (1, s) of the second subset, the (1, s)-projection is
substituted by the (1, s N)-projection. In other words, the splitting-signal
{f1,s,t; t ¼ 0 : ðN 1Þ} is calculated from the line integrals of the
(1, s N)-projection, similar to the (1,5)-projection described earlier for the
N ¼ 7 case. Each such “substitution” saves the number of line integrals used in
the reconstruction.

Table 11. 1 General equations of rays lðtÞ, linear integrals wðtÞ, sums vðtÞ, and splitting-
signals fp,s,t.

Equations t

lðtÞ xpþ ys
t
N

þ 1
N
, where s � N 1

2
0 : ðpþ sÞðN 1Þ 1

xpþ yðs NÞ t
N

þ sþ 1 N
N

,

where s >
N 1

2

N 1 : 1 : ðs NÞðN 1Þ

wðtÞ wðtÞ NvðtÞ, where s 0 or p 0, 0 : N 1

wðtÞ K½vðtÞ þ vðt 1Þ þ . . .þ vðt ðs 1ÞÞ�,
where s � N 1

2
and K

N
s

p2 þ s2
p 0 : ðpþ sÞðN 1Þ 1

wðtÞ K½vðtÞ þ vðt 1Þ þ . . .þ vðt ðs 1ÞÞ�,
where s >

N 1
2

, and K
N

N s
p2 þ ðN sÞ2

q ðN sÞðN 1Þ : N 1

bðtÞ bð0Þ wð0Þ,bt wðtÞ ðbt þ þ bt�ðN�s�1ÞÞ,
where s � N 1

2

0 : ðpþ sÞðN 1Þ 1

bð0Þ wð0Þ,bt wðtÞ ðbt þ þ bt�ðN�s�1ÞÞ,

where s >
N 1

2

ðN sÞðN 1Þ : N 1

vðtÞ vðtÞ bt
K
,

where s � N 1
2

and K
N
8

p2 þ s2
p 0 : ðpþ sÞðN 1Þ 1

vðtÞ bt
K
,

where s
N 1

2
, and K

N
N s

p2 þ ðN sÞ2
q ðs NÞðN 1Þ : N 1

fp,s,t
X

m
vtþ7m, where s � N 1

2
0 : N 1

X
m
vt 7m, where s >

N 1
2

0 : N 1
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The number of parallel geometrical rays used in each projection is defined
as

nð1, sÞ ¼ ð1þ sÞðN 1Þ þ 1 ¼ N þ sðN 1Þ, s ¼ 0 : ðN 1Þ=2,
nð1, sÞ ¼ nð1,N sÞ ¼ N2 sðN 1Þ, s ¼ ðN þ 1Þ=2 : N 1,

nð0, 1Þ ¼ nð1, 0Þ ¼ N: ð11:19Þ
11.4.2 Simulation results for modeled images

The proposed method of reconstruction is implemented in MATLAB and
Cþ. For prime N, the block diagram of the reconstruction of the image
on the Cartesian grid N �N from N þ 1 projections is shown in
Fig. 11.15.

The following steps describe the proposed method of image reconstruction.

1. An image N �N is composed (for instance, from a few random rectangles
or ellipses) on the square ½0, 1� � ½0, 1�.

2. The set JN,N of generators (p, s) is calculated to define N þ 1 projections.
The considered set is JN,N ¼ fð1, sÞ; s ¼ 0 : ðN 1Þg [ fð0, 1Þg.

3. Given the frequency point (p, s), the (p, s)-projection is calculated, i.e., all
line integrals wðtÞ along the set of geometrical rays ~lp, sðtÞ.

4. The geometry of the geometrical rays of the (p, s)-projection is transformed
to arithmetical rays, i.e., the set of sums vðtÞ of the discrete image fn,m is
calculated from the integrals wðtÞ by solving the system of linear equations
with the Toeplitz matrix (M �M), where M ¼ ðpþ s 1ÞðN 1Þ þ 1, if
s � ðN 1Þ=2, and M ¼ ðpþ ðN sÞ 1ÞðN 1Þ þ 1, if s > ðN 1Þ=2.
The Toeplitz matrix is triangular, and the transform of geometry of
geometrical rays to arithmetical rays is fast.

Figure 11.15 Block diagram of the reconstruction of the image f ðx,yÞ ¼ fdðx,yÞ composed
of image elements with constant intensity each on the Cartesian grid N � N placed in the
square ½0,1� � ½0,1�.
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5. The splitting-signal {fp,s,0, fp,s,1, :::, fp,s,N 1} is calculated from vðtÞ. This
signal is written into the corresponding row of the matrix N � ðN þ 1Þ of
the 2D discrete tensor transform.

6. The inverse 2D tensor transform is calculated, which is the reconstructed
discrete image fn,m.

Figure 11.16 shows the image f ðx, y) on the square ½0, 1� � ½0, 1�, which is
generated by the random rectangles with coordinates on the lattice
131� 131. The reconstruction fn,m of the image by 132 projections is also
shown.

One can see from the reconstructed image that the reconstruction is exact.
The experiments were simulated on the computer with an Intel® CoreTM

2Duo E8400 3.00 GHz and 3.21 GB of RAM. The time for image
reconstruction is 32.16 seconds. For the (1, 4)-projection, Fig. 11.17 shows

Figure 11.16 (a) Image with 13 rectangles on the lattice 131� 131 and (b) its reconstruction.

Figure 11.17 Line integrals wðtÞ, ray sums vðtÞ, and splitting-signal for the (1,4)-projection.
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the line-integrals wðtÞ on the left, the sums v(t) in the middle, and the splitting-
signal { f1,4,0, f1,4,1, :::, f1,4,130} on the right.

Consider the 257� 257 example, where 258 projections are required for
the image reconstruction. Figure 11.18(a) presents the image, and 11.18(b)
shows the exact reconstruction.

Table 11.2 shows the total time of image processing, when the program
was implemented in Ciþ. The tested image f ðx, yÞ was composed of 15
random rectangles on the square ½0, 1� � ½0, 1�. The time includes the
calculation of all line integrals wðtÞ, line sums vðtÞ, and the calculation of
the direct and inverse tensor transforms.

11.5 Geometry for the Lattice N3N when N is a Power of Two

When reconstructing the image f ðx,yÞ from its projections on the Cartesian
lattice of size N �N, when N ¼ 2r, r > 1 is a power of two, components of
the tensor transform of the image from the line integrals can be defined in a
way similar to that when N is a prime. Effective reconstruction involves the
2D paired transform because it removes the redundancy of the tensor
transform. Therefore, this section considers the image in paired representation
and describes the method of calculating the paired splitting-signals from line
integrals.

Figure 11.18 Image with ten rectangles on the lattice 257� 257 and its reconstruction.

Table 11.2 Time for the Ci-based program (the first version).

N � N Projection Data Processing and Reconstruction

67� 67 00 : 00 : 00.08
127� 127 00 : 00 : 00.50
257� 257 00 : 00 : 04.21
521� 521 00 : 00 : 37.24

1031� 1031 00 : 04 : 55.69
2053� 2053 00 : 39 : 40.44
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Given generator ðp, sÞ2 J
0
N,N , the integer k is defined by 2k ¼ g:c:d: ðp, sÞ,

and k ¼ r 1 when ðp, sÞ ¼ ð0, 0Þ. The components of the 2D paired
transform

f
0
p,s,2kt ¼ �0

p,s,2kt
8f ¼ fp,s,2kt fp,s,2ktþN=2, t ¼ 0 : ðN=2kþ1 1Þ

are calculated by the system of orthogonal paired functions that are defined as

�0
p,s,2kt

ðn,mÞ ¼
1 if npþms ¼ 2kt mod N

1 if npþms ¼ ð2ktþN=2Þ mod N

0 otherwise,

8><
>:

where (n,m) 2 XN,N . The set of N2 triplet-numbers of the paired functions is
taken as

UN,N ¼ [r 1

k 0
fðp,s,2ktÞ; ðp, sÞ 2 2kJN=2k ,N=2k , t ¼ 0 : ðN=2kþ1 1Þg [ fð0, 0, 0Þg:

To describe the method of the transferring geometry from the image plane
to the Cartesian lattice, consider the N ¼ 8 case in the following example.

Example 3 (8 � 8)
Consider the N ¼ 8 case and ðp, sÞ ¼ ð4, 1Þ. Four masks of the paired
functions �0

1,4,tðn,mÞ with the triplet-numbers (1, 4, t), t ¼ 0: 3 are

½�0
1,4,0� ¼

1 0 0 0 �1 0 0 0

�1 0 0 0 1 0 0 0

1 0 0 0 �1 0 0 0

�1 0 0 0 1 0 0 0

1 0 0 0 �1 0 0 0

�1 0 0 0 1 0 0 0

1 0 0 0 �1 0 0 0

�1 0 0 0 1 0 0 0

2
66666666666664

3
77777777777775
, ½�0

1,4,1� ¼

0 1 0 0 0 �1 0 0

0 �1 0 0 0 1 0 0

0 1 0 0 0 �1 0 0

0 �1 0 0 0 1 0 0

0 1 0 0 0 �1 0 0

0 �1 0 0 0 1 0 0

0 1 0 0 0 �1 0 0

0 �1 0 0 0 1 0 0

2
66666666666664

3
77777777777775
,

½�0
1, 4, 2� ¼

0 0 1 0 0 0 �1 0
0 0 �1 0 0 0 1 0
0 0 1 0 0 0 �1 0
0 0 �1 0 0 0 1 0
0 0 1 0 0 0 �1 0
0 0 �1 0 0 0 1 0
0 0 1 0 0 0 �1 0
0 0 �1 0 0 0 1 0

2
66666666664

3
77777777775
, ½�0

1,4,3� ¼

0 0 0 1 0 0 0 �1
0 0 0 �1 0 0 0 1
0 0 0 1 0 0 0 �1
0 0 0 �1 0 0 0 1
0 0 0 1 0 0 0 �1
0 0 0 �1 0 0 0 1
0 0 0 1 0 0 0 �1
0 0 0 �1 0 0 0 1

2
66666666664

3
77777777775
:

The set of the 36 parallel rays of this projection is shown in Fig. 11.19:

lðtÞ ¼ l1,4ðtÞ ¼ fðx, yÞ; xþ 4y ¼ t
8
þ 5
16g, t ¼ 0 : 35, ðx,yÞ 2 ½0, 1� � ½0, 1�:
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ð1þ 4Þ7þ 1 ¼ 36 parallel rays are considered for the (1,4)-projection.
The control points of the set of rays are defined as follows:

0� 1� 2� 3� 4� 5� 6� 7�
� � � � 8� 9� 10� 11�
� � � � 12� 13� 14� 15�
� � � � 16� 17� 18� 19�
� � � � 20� 21� 22� 23�
� � � � 24� 25� 26� 27�
� � � � 28� 29� 30� 31�
� � � � 32� 33� 34� 35�

2
66666666666664

3
77777777777775
ðangle of rays is� tan 1ð1=4Þ ¼ �14:0368Þ:

The rays are shown separately on the masks of the paired functions
�

0
1,4,tðn,mÞ, t ¼ 0:3, in Fig. 11.20.
We denote by vt ¼ v1, 4ðtÞ, where t ¼ 0 : 35, the sums of the discrete

image fn,m along these rays. The components of the paired transform with
the triplet-numbers (1, 4, t) can be calculated as follows:

Figure 11.19 The sets of parallel rays for the (1,4)-projection.
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f
0
1,4,0 ¼ v0 v4 þ v8 v12 þ v16 v20 þ v24 v28 þ v32,

f
0
1,4,1 ¼ v1 v5 þ v9 v13 þ v17 v21 þ v25 v29 þ v33,

f
0
1,4,2 ¼ v2 v6 þ v10 v14 þ v18 v22 þ v26 v30 þ v34,

f
0
1,4,3 ¼ v3 v7 þ v11 v15 þ v19 v23 þ v27 v31 þ v35: ð11:20Þ

As follows from Eq. (11.10), from the ray sums of the (1,4)-projection,
the components f

0
2,0,0, f

0
2,0,2, f

0
4,0,0, and f

0
0,0,0 can also be calculated. Two

masks with rays for the paired functions �0
2,0,t, t ¼ 0, 2 are shown in

Fig. 11.21.
The corresponding components of the 2D paired transform are

calculated by

f
0
2,0,0 ¼ ðv0 þ v4 þ v8 þ v12 þ v16 þ v20 þ v24 þ v28 þ v32Þ

ðv2 þ v6 þ v10 þ v14 þ v18 þ v22 þ v26 þ v30 þ v34Þ,
f

0
2,0,2 ¼ ðv1 þ v5 þ v9 þ v13 þ v17 þ v21 þ v25 þ v29 þ v33Þ

ðv3 þ v7 þ v11 þ v15 þ v19 þ v23 þ v27 þ v31 þ v35Þ: ð11:21Þ

Figure 11.20 Four masks with the set of arithmetical rays for the paired functions with
triplet numbers (1,4, t), t ¼ 0 : 3.
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Similarly, for the remaining two components, there is the following:
f
0
4,0,0 ¼ v0 v1 þ v2 v3 þ . . .þ v34 v35 and f

0
0,0,0 ¼ v0 þ v1 þ v2þ

v3 þ . . .þ v34 þ v35.
We consider the following set of triplet numbers:

Uð1, 4Þ ¼ fð1, 4, 0Þ, ð1, 4, 1Þ, ð1, 4, 2Þ, ð1, 4, 3Þ, ð2, 0, 0Þ, ð2, 0, 2Þ, ð4, 0, 0Þ, ð0, 0, 0Þg,
and define by Pð1, 4Þ ¼ ff 0

p1,s1,t; ðp1, s1, tÞ 2 Uð1, 4Þg the components of
the 2D paired transforms with these triplets. Introducing the new variables

an ¼
X4
m 0

vnþ8m ¼
X4
m 0

v1,4,nþ8m, n ¼ 0 : 7,

where vk ¼ 0 if k > 35, the complete system of linear equations for
the eight components f

0
p1,s1, t 2 Pð1, 4Þ can be written as follows:

f
0
1,4,0 ¼ a0 a4,

f
0
1,4,1 ¼ a1 a5,

f
0
1,4,2 ¼ a2 a6,

f
0
1,4,3 ¼ a3 a7,

f
0
2,0,0 ¼ ða0 þ a4Þ ða2 þ a6Þ,
f
0
2,0,2 ¼ ða1 þ a5Þ ða3 þ a7Þ,
f
0
4,0,0 ¼ ða0 þ a4Þ ða1 þ a5Þ þ ða2 þ a6Þ ða3 þ a7Þ,
f
0
0,0,0 ¼ ða0 þ a4Þ þ ða1 þ a5Þ þ ða2 þ a6Þ þ ða3 þ a7Þ: ð11:22Þ

Figure 11.21 Two masks with the set of arithmetical rays for the paired functions with
triplet numbers (2,0, t), t ¼ 0, 1.

322 Chapter 11



These calculations correspond to the fast 8-point discrete paired
transform (DPT)33,34,50 of the vector a ¼ ða0,a1, a2, . . . , a7Þ

0
, i.e.,

Pð1, 4Þ ¼ ½�0
8�a.

To express the sums vðtÞ of the discrete image fn,m through the line
integrals wðtÞ ¼ w1,4ðtÞ, consider the part of the mask of the paired function
with number (1,4,0), which is shown in Fig. 11.22. The geometrical ray
l(29) between two points of the discrete image, (0,7) and (5,6), passes
through six image elements of numbers (0,7), (1,7), (2,7), (3,7), (3,6), and
(4,6). The length of the intersection Dl0,7 of the ray with the IE of number
(0,7) is twice the length of the intersection with each IE of number (3,7) and
(3,6), but it is equal to the length of intersection with the IE of numbers (1,7)
and (2,7). Because Dl0,7 ¼ 17

p
=4Dx, the following can be written:

wð29Þ ¼ w1,4ð29Þ ¼ Dl0,7
ðDxÞ2 vð28Þ þ vð29Þ þ vð30Þ þ 1

2
vð31Þ þ 1

2
vð27Þ

	 

:

Similar equations can be used to calculate other integrals wðtÞ, t ¼ 0 : 35,
and then the sums vðtÞ can be found. Now consider the geometrical rays l1

Figure 11.22 Set of geometrical rays for calculating line-integrals when ðp, sÞ ¼ ð1,4Þ.
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and l2 between rays 28, 29 and 29, 30, respectively. The length of the
intersection of ray l1 with the image elements of numbers (0,7), (1,7), (2,7),
and (3,6) is the same: 17

p
=4Dx. The length of the intersection of ray l2

with each image element of number (0,7), (1,7), (2,7), and (3,7) is also
17

p
=4Dx.
Therefore, the integrals w1 and w2 of the image along the shifted rays

l1 and l2, respectively, can be written as follows:

w1 ¼ 17
p

=4Dx

ðDxÞ2 ½vð27Þ þ vð28Þ þ vð29Þ þ vð30Þ� ¼ 2 17
p

½vð27Þ þ vð28Þ þ vð29Þ þ vð30Þ�,

w2 ¼ 2 17
p

½vð28Þ þ vð29Þ þ vð30Þ þ vð31Þ�:
These equations can be generalized if the integral w1 is denoted by w(30),
and w2 by w(31). [Integral w1 can also be denoted by w(27) and w2 by
w(28).] In this case, a simple solution for sums v(t) can be obtained.
Indeed, consider a new set of parallel rays defined by the shifting
t ! t 3=2,

~lðtÞ ¼ l1,4ðt 3=2Þ ¼ fðx,yÞ; xþ 4y ¼ t
8
þ 1
8
g, t ¼ 0 : 35,

which is shown in Fig. 11.23.
For the integrals along the set of geometrical rays, we can write the

following equations:

wðtÞ ¼ 2 17
p

½vðtÞ þ vðt 1Þ þ vðt 2Þ þ vðt 3Þ�, t ¼ 0 : 35:

where vð 1Þ ¼ vð 2Þ ¼ vð 3Þ ¼ 0. This system of linear equations can be
written in matrix form as

w ¼ 2 17
p

Av ¼ 2 17
p

1 0 0 0 0 0 . . . 0 0 0 0 0

1 1 0 0 0 0 . . . 0 0 0 0 0

1 1 1 0 0 0 . . . 0 0 0 0 0

1 1 1 1 0 0 . . . 0 0 0 0 0

0 1 1 1 1 0 . . . 0 0 0 0 0

0 0 1 1 1 1 . . . 0 0 0 0 0

� � � � � � . . . � � � � �
� � � � � � . . . � � � 0 0

0 0 0 0 0 0 . . . 1 1 1 1 0

0 0 0 0 0 0 . . . 0 1 1 1 1

2
6666666666666666664

3
7777777777777777775

v, ð11:23Þ
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where w ¼ ðw0,w1, . . . ,w35Þ
0
, and v ¼ ðv0, v1, . . . , v35Þ

0
. The above Toeplitz

matrix 36� 36 has the following inverse lower-triangle Toeplitz matrix:

A 1 ¼

1 0 0 0 0 0 0 . . . 0 0 0 0

1 1 0 0 0 0 0 . . . 0 0 0 0

0 1 1 0 0 0 0 . . . 0 0 0 0

0 0 1 1 0 0 0 . . . 0 0 0 0

1 0 0 1 1 0 0 . . . 0 0 0 0

1 1 0 0 1 1 0 . . . 0 0 0 0

0 1 1 0 0 1 1 . . . 0 0 0 0

0 0 1 1 0 0 1 . . . 0 0 0 0

� � � � � � � . . . � � � �
1 0 0 1 1 0 0 . . . 1 0 0 0

1 1 0 0 1 1 0 . . . 1 1 0 0

0 1 1 0 0 1 1 . . . 0 1 1 0

0 0 1 1 0 0 1 . . . 0 0 1 1

2
666666666666666666666666664

3
777777777777777777777777775

ð11:24Þ

Figure 11.23 The set of geometrical rays for the (1, 4)-projection.

325Another Step towards Successful Tomographic Imaging in Cancer



From the solution of the equation b ¼ A 1w, the sums v ¼ b=ð2 17
p Þ are

obtained. The vector b can be calculated by using the following recurrent
procedure:

b0 ¼ wð0Þ,
b1 ¼ wð1Þ b0,
b2 ¼ wð2Þ ðb1 þ b0Þ,
b3 ¼ wð3Þ ðb2 þ b1 þ b0Þ,
b4 ¼ wð4Þ ðb3 þ b2 þ b1Þ,
bt ¼ wðtÞ ðbt 1 þ bt 2 þ bt 3Þ, t ¼ 5, 6 . . . , 35: ð11:25Þ

Similar calculations hold for other projections, and the ray sums can be
calculated from the line integrals by solving the system of linear equations
described by the triangle Toeplitz matrices (see Grigoryan and Grigoryan45

for more details).

11.5.1 Algorithm of image reconstruction

For the N ¼ 8 case, all 3N=2 ¼ 12 projections are required to reconstruct the
image N �N. The number of parallel geometrical rays used in the
(p, s)-projections is defined by Eq. (11.19). In the case where N is a power
of two, the line integrals are used to calculate the splitting-signals in the paired
or tensor representation of the discrete image. Therefore, the block diagram
given in Eq. (11.15) can be used for reconstructions by the tensor transform.
In order to reduce the complexity of calculations due to redundancy of the
tensor transform, the 2D paired transform can be calculated, as shown in
the above N ¼ 8 example, and then the reconstruction fn,m is calculated by the
inverse paired transform.

Each triplet number (p,s,t) of masks of the paired functions in this table
has the form 2kðp1,s1,t1Þ, where 2k ¼ g:c:dðp, sÞ, and t1 ¼ 0 : N=2kþ1 1, and
its multiplicity (i.e., the number of subsets U covering this triplet number)
equals 2k. Therefore, there are two ways to use this property in image
reconstruction.

1. One can use the complete 1D paired transforms over all vectors a, whose
components are defined as

an ¼
X
m

vn�Nm ¼
X
m

vp,s,n�Nm, n ¼ 0 : N 1:

The components f
0
p,s,t of the 2D paired transform, which have been

calculated by 1D paired transform Pðp, sÞ ¼ ½�0
N �a, are then normalized

by the factor of 2k ¼ g:c:d:ðp, sÞ, when ðp, sÞ 6¼ ð0, 0Þ, and N, when
ðp, sÞ ¼ ð0, 0Þ.

2. One can use the incomplete complete 1D paired transforms over vectors a
to avoid repeating the calculation of components of the 2D paired
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transform of the image. For instance, when N ¼ 8, the complete 1D
paired transform can be used for the first (1,0)-projection, but only six
outputs can be used for the transform when calculating Pð1, 2Þ ¼ ½�0

8�a for
the (1,2)-projection, only half of the calculations when calculating
Pð1, 4Þ ¼ ½�0

8�a for the (1,4)-projection, and so on. The use of incomplete
1D paired transforms reduces the time necessary to calculate the
reconstructed image, when compared with the first method.

In the general N ¼ 2r case, where r 	 2, the system of equations for the
geometrical rays is defined in the following way. First, consider the
arithmetical rays lðtÞ ¼ lp,sðtÞ, which are described by

lp,s,tðx, yÞ ¼ fðx, yÞ; xpþ ys ¼ t
N

þ pþ s
2N
g:

To reduce the number of line integrals, the set of all generators of JN,N can
be divided by four subsets. The first and second subsets contain all generators
(1, s), where s ¼ 0: N=2 and s ¼ N=2þ 1: N 1, respectively. The third and
fourth subsets contain all generators (p, 1), where p ¼ 2p1, and p1 ¼ 0: N=4
and p1 ¼ N=4þ 1: N=2 1, respectively. For each of these subsets, consider
the case when the arithmetical rays are shifted to the right to define the
corresponding geometrical rays. Another case involves geometrical rays that
are defined from arithmetical rays by shifting to the left. Thus, the geometrical
rays are defined from the arithmetical rays by shifting ~lðtÞ ¼ lðt t0Þ (or
~lðtÞ ¼ lðtþ t0ÞÞ. Here, the shift t0 is calculated by

t0 ¼

pþ s
2

1, when 0 < p, s � N=2,

pþ ðN sÞ
2

1, when p ¼ 1, s > N=2,

ðN pÞ þ s
2

1, when p > N=2, s ¼ 1:

ð11:26Þ

8>>>>>><
>>>>>>:

11.5.2 Convolution equations

For all generators (p, s) 2 JN,N , the relationships between the sums vðtÞ ¼
vp,sðtÞ of the discrete image fn,m and line integrals wðtÞ ¼ wp, sðtÞ of the original
unknown image f ðx,yÞ are described in matrix form by the Toeplitz matrices,
which are similar to the described N ¼ 8 example. Consider separately the
convolution equations of line integrals for different sets of (p, s)-projections.

Subset I: p ¼ 1 and s � N=2
When s 6¼ 0, the convolution equation w ¼ Av is described as

wðtÞ ¼ N
1þ s2

p

s
½vðtÞ þ vðt� 1Þ þ vðt� 2Þ þ . . .þ vðt� sþ 1Þ�, t ¼ 0 : ð1þ sÞðN � 1Þ,

ð11:27Þ
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where it is assumed that vð 1Þ ¼ vð 2Þ ¼ . . . ¼ vð sþ 1Þ ¼ 0. The inverse
transform b ¼ A 1w is calculated by the following recurrent form:

b0 ¼ wð0Þ,
b1 ¼ wð1Þ b0,
b2 ¼ wð2Þ ðb1 þ b0Þ,
b3 ¼ wð3Þ ðb2 þ b1 þ b0Þ,
. . .

bs 1 ¼ wðs 1Þ ðbs 2 þ bs 3 þ . . .þ b1 þ b0Þ,
bt ¼ wðtÞ ðbt 1 þ bt 2 þ . . .þ bt sþ2 þ bt sþ1Þ,
t ¼ s, sþ 1, . . . , ð1þ sÞðN 1Þ: ð11:28Þ

The required sums vðtÞ of the discrete image are calculated by

vðtÞ ¼ bt
s

N 1þ s2
p , t ¼ 0 : ð1þ sÞðN 1Þ: ð11:29Þ

In the s ¼ 0 case, there is the following simple solution: vðtÞ ¼ wðtÞ=N,
t ¼ 0 : (N 1).

Subset II: p ¼ 1 and s > N=2
The (1, s)-projection is described as the (1, s N)-projection, i.e., s is
considered as s N. Therefore, the following convolution equation w ¼ Av is
used:

wðtÞ ¼ N
1þ s2

p
s

½vðtÞ þ vðt� 1Þ þ vðt� 2Þ þ , . . . , þ vðt� s þ 1Þ�,

t ¼ ðN 1Þ : 1 : sðN 1Þ, ð11:30Þ
where s ¼ N s, and vð kÞ ¼ 0, when k > s (N 1).

M denotes the negative number s (N 1). The inverse transform
b ¼ A 1w can be calculated by the following recurrent form:

bM ¼ wðMÞ,
bMþ1 ¼ wðM þ 1Þ bM ,
bMþ2 ¼ wðM þ 2Þ ðbMþ1 þ bMÞ,
bMþ3 ¼ wðM þ 3Þ ðbMþ2 þ bMþ1 þ bMÞ,

. . .
bMþs 1 ¼ wðM þ s 1Þ ðbMþs 2 þ bMþs 3 þ . . .þ bMþ1 þ bMÞ,

bt ¼ wðtÞ ðbt 1 þ bt 2 þ . . .þ bt sþ2 þ bt sþ1Þ,
t ¼ M þ s,M þ s þ 1, . . . , ðN 1Þ: ð11:31Þ

The required sums vðtÞ of the discrete image are calculated by

vðtÞ ¼ bt
s

N 1þ s2
p , t ¼ ðN 1Þ : 1 : sðN 1Þ: ð11:32Þ
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The remaining two subsets of projections—Subset III, when p � N=2 and
s ¼ 1, and Subset IV, when p > N=2 and s ¼ 1—are described like Subset I
and Subset II, respectively.

11.5.3 Preliminary results

This section illustrates a few results of reconstructing the image f ðx,yÞ on the
lattice of size N �N, N ¼ 2r, from 3N=2 projections. As an example,
Fig. 11.24(a) shows the image, 11.24(b) shows the graph of all line integrals
wðtÞ of the (1,4)-projection, and 11.24(c) shows ray sums vðtÞ calculated from
line integrals.

The splitting-signal { f1,4,t; t ¼ 0 : 255} is shown in Fig. 11.25(a). This
signal is in the tensor representation, and it defines the set of paired splitting-
signals that are shown in Fig. 11.25(b). The first signal of length 128 is { f

0
1,4,t;

t ¼ 0 : 127}, the second signal of length 64 is { f
0
2,8,2t; t ¼ 0 : 63}, and so on.

The first four of these splitting-signals are separated in the figure by the
vertical dashed lines.

Figure 11.24 (a) Image, (b) line integrals, and (c) ray sums of the (1, 4)-projection.

Figure 11.25 Splitting-signals in (a) tensor and (b) paired representations.
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Figure 11.26(a) shows the MATLAB model of a modified Shepp–Logan
phantom image, 11.26(b) shows the graph of all line integrals wðtÞ of the
(1, 2)-projection, and 11.26(c) shows the ray sums vðtÞ calculated from line
integrals.

The tensor splitting-signal { f1,2,t; t ¼ 0 : 255} is shown in Fig. 11.27(a),
and 11.27(b) shows the corresponding set of eight paired splitting-signals
{ f

0
1,2,t; t ¼ 0 : 127}, { f

0
2,4,2t; t ¼ 0 : 63}, { f

0
4,8,4t; t ¼ 0 : 63},..., { f

0
64,64,0,

f
0
64,64,64}, { f

0
128,128,0}, and { f

0
0,0,0}. The first four splitting-signals are

separated by the vertical lines.
Now consider the results of image reconstruction on examples with random

rectangles in the square ½0, 1� � ½0, 1�, and the objects with sharp edges, in
particular. Figure 11.28 shows ten rectangles on the square with different
intensities on the left. These rectangles are on the grid 128� 128. The image
calculated from 192 projections is shown on the right. The reconstruction is

Figure 11.26 (a) Phantom image, (b) line integrals, and (c) ray sums of the (1, 2)-
projection.

Figure 11.27 (a) Splitting-signal {f1,2,t} and (b) eight paired splitting-signals.
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exact, and the main program required 24 s to calculate all projections, i.e., line
integrals wðtÞ, and reconstruct the image. Incomplete 1D DPTs have been used
in calculations. The CPU time is calculated as the average time for one
rectangle. The process of calculation is organized in such a way that for each
(p, s)-projection, the integrals are calculated for each rectangle separately, and
then the results are added. The inverse 2D 128� 128-point DPT requires
0.5304 s.

Figure 11.29 shows ten rectangles on the square ½0, 1� � ½0, 1� on the left;
the coordinates of these rectangles are on the grid 256� 256. The image
calculated from 384 projections is shown on the right. The reconstruction is
exact, and the main program required 4.56 min to calculate all projections
and reconstruct the image. Incomplete 1D DPT has been used in calculations.
The inverse 2D 256� 256-point DPT requires 4.4460 s.

Figure 11.29 Ten random rectangles (left) and the reconstructed image (right).

Figure 11.28 Ten random rectangles (left) and the reconstructed image (right).
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Time characteristics of calculation, when the proposed method was
implemented in MATLAB and Ci+, are given in Table 11.3. The time includes
the calculation of all line integrals wðtÞ and line sums vðtÞ, and the calculation of
the 2D direct and inverse paired transforms. Incomplete 1D DPTs are used.
The data in these tables is obtained by programs on a personal computer with
an Intel® Dual-CPU processor at 3.20-GHz speed. This is the first realization of
the method in MATLAB and Ci+, which can be improved in order to achieve a
fast reconstruction of images on large-size Cartesian lattices.

To achieve fast reconstruction of the image, each arithmetical ray, as well
as each geometrical ray, can be described as the unique set of IEs through
which the ray passes. This approach allows for the calculation of the line
integrals of the entire modeled image in one pass. As an example, Fig. 11.30
shows the image of 20 random rectangles with the reconstruction. The total
time of reconstruction is 4.98 min, which is ten times smaller than the time
given in Table 11.3.

Figure 11.31 shows the result of reconstructing an image composed of 13
ellipses and circles. The reconstruction is on the Cartesian lattice of size
256� 256.

The 256� 256 reconstruction of the modified Shepp–Logan phantom is
shown in Fig. 11.32. The reconstruction is exact, and all calculations that

Table 11.3 Time for scanning and reconstruction.

N � N in MATLAB in Ciþ
32� 32 00:48 s=rec 00.03 s
64� 64 02:58 s=rec 00.11 s
128� 128 23:80 s=rec 00.79 s
256� 256 04:63 min=rec 06.17 s
512� 512 49.76 s

Figure 11.30 20 random rectangles (left) and the reconstructed image (right).
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include the line integrals, solutions of the convolution equations, and the
inverse 2D paired transform, require about five minutes when running the
code in MATLAB.

11.6 Conclusion

The well-known model of image reconstruction has been analyzed when the
image is represented by a set of small image elements with constant intensities
each, and the rays are considered to have zero width. In the framework of the
considered model of the image f ðx, yÞ on the unit square, the solution to the
problem of image reconstruction from a finite number of projections is given.
The solution is based on the properties of the 2D tensor and paired

Figure 11.32 Image (left) and its reconstruction (right).

Figure 11.31 Image with 13 ellipses (left) and the reconstructed image (right).

333Another Step towards Successful Tomographic Imaging in Cancer



transforms, each basis function of which is binary and defined by a set of
parallel rays on the lattice. The main task in image reconstruction is the
transformation of the geometry from the image plane to the Cartesian lattice,
on which the reconstructed image is calculated. This problem is solved by
introducing the set of geometrical rays for each projection and the triangle
Toeplitz-matrix-based system of convolution equations. The cases where
image size is N �N, and N is a power of two and a prime, is described. The
proposed method can be used in tomographic imaging, and the main idea of
transferring geometry can be generalized for the parallel rays with nonzero
widths, as well as for the fan beam projections.

References

1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging, IEEE Press, New York (1987).

2. G. T. Herman, Image Reconstruction from Projections, Academic Press,
New York (1979).

3. D.E.Olins,A.L.Olins,H.A.Levy,R.C.Durfee, S.M.Margle,E. P.Tinnel,
and S. D. Dover, “Electron microscope tomography: transcription in three
dimensions,” Science 220, 498–500 (1983).

4. P. Suetens, Fundamentals of Medical Imaging, Cambridge University
Press, Cambridge, UK (2002).

5. B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility
study,” Med Phys. 29, 755–770 (2002).

6. A. Iagaru, R. Masamed, S. Keesara, and P. S. Conti, “Breast MRI and
18F FDG PET/CT in the management of breast cancer,” Annals Nuclear
Med. 21(1), 3338 (2007).

7. P. Pettigrew and J. L. Berry, “The Role of CT in Breast Imaging,” www.
eradimaging.com/site/article.cfm?ID=739.

8. S. Glick, “Breast CT,” Annu. Rev. Biomed. Eng. 9, 501–526 (2007).

9. C. Lai et al., “Comparison of slot scanning digital mammography system
with full-field digital mammography system,” Med. Phys. 35, 2339–2346
(2008).

10. T. R. Nelson, L. I. Cervina, and J. M. Boone, “Classification of breast
computed tomography data,” Med. Phys. 35, 1078–1086 (2008).

11. X. Gong et al., “A comparison simulation study comparing lesion
detection accuracy with digital mammography, breast tomosynthesis,
and cone-beam CT breast imaging,” Med. Phys. 33, 1041–1052
(2006).

12. Z. Chen and R. Ning, “Why should breast tumor detection go three
dimensional?” Phys. Med. Biol. 48, 2217–2228 (2003).

334 Chapter 11



13. B. Chen and R. Ning, “Cone-beam volume CT breast imaging: feasibility
study,” Med. Phys. 29, 755–770 (2002).

14. U. C. Davis Health System, “Breast CT reaches clinical testing: may
improve on mammography,” www.ucdmc.ucdavis.edu/newsroom/
releases/archives/cancer/2005/breast-ct5-2005.html, accessed September
26, 2009.

15. A. Shimauchi et al., “Comparison of MDCT and MRI for evaluating the
intraductal component of breast cancer, Am. J. Roentgenol. 187, 322–329
(2006).

16. M. Inoue et al., “Dynamic multidetector CT of breast tumors: diagnostic
features and comparison with conventional techniques,” Am. J. Roent-
genol. 181, 679–686 (2003).

17. K. K. Lindfors et al., “Dedicated breast CT: initial clinical experience,”
Radiology 246, 725–733 (2008).

18. J. Radon, “On the determination of function from their integrals along
certain manifolds,” Ber. Saechs. Akad. Wiss 69, 262–277 (1917).

19. S. Helgason, The Radon Transform, Progress in Mathematics 5,
Birkhauser, Boston, MA (1980).

20. R. Gordon, “A tutorial on ART (Algebraic reconstruction techniques),”
IEEE Trans. Nuclear Science 21, 78–93 (1974).

21. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction
techniques (ART) for three-dimensional electron microscopy and X-ray
photography,” J. Theor. Biol. 29, 471–481 (1970).

22. G. T. Herman and A. Lent, “Iterative reconstruction algorithms,”
Comput. Biol. Med. 6, 273–294 (1976).

23. Y. Censor, “Finite series-expansion reconstruction methods,” Proc. IEEE
71(3), 409–419 (1983).

24. R. H. T. Bates and M. J. McDonnell, Image Restoration and
Reconstruction, Charedon Press, Oxford, UK (1986).

25. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction
technique (SART): a superior implementation of the ART algorithm,”
Ultrasonic Imaging 6, 81–94 (1984).

26. The National Academies, Mathematics and Physics of Emerging
Biomedical Imaging, National Academic Press, Washington, DC (1996).

27. F. Natterer, Mathematical Methods in Image Reconstruction, SIAM,
Philadelphia, PA (2001).

28. Y. Lifeng and S. Leng, “Image Reconstruction Techniques,” www.
imagewisely.org/Imaging-Professionals/Medical-Physicists/Articles/Image-
Reconstruction-Techniques.aspx (2010).

29. A. M. Grigoryan, “An algorithm of the two-dimensional Fourier
transform,” Radioelectronica 27(10), 52–57, Izvestiya vuzov SSSR, Kiev,

335Another Step towards Successful Tomographic Imaging in Cancer



USSR (1984) [Translation available at fasttransforms.com/Art-USSR-
papers/Art-IzvuzovSSSR1984.pdf].

30. A. M. Grigoryan and M. M. Grigoryan, “Two-dimensional Fourier
transform in the tensor presentation and new orthogonal functions,”
Avtometria 1, AS USSR Siberian Section, pp. 2127 (1986).

31. A. M. Grigoryan, “New algorithms for calculating discrete Fourier
transforms,” Journal Vichislitelnoi Matematiki i Matematicheskoi
Fiziki, vol. 26, no 9, pp. 1407-1412, AS USSR, Moscow 1986.
(translated in http://fasttransforms.com/Art-USSR-papers/Art-JVMA-
TofASUSSR1986.pdf)

32. A. M. Grigoryan, “An algorithm for computing the two-dimensional
Fourier transform of equal orders,” Proceedings of the IX All-Union
Conference on Coding and Transmission of Information, Part 2, pp. 49–
52, USSR, Odessa 1988. (translated in http://fasttransforms.com/Art-
USSR-papers/Art-AllUnConf1988.pdf)

33. A. M. Grigoryan, “2D and 1D multi-paired transforms: Frequency-time
type wavelets,” IEEE Trans. Signal Process. 49(2), 344–353 (2001).

34. A. M. Grigoryan, and S. S. Agaian, “Split manageable efficient algorithm
for Fourier and Hadamard transforms,” IEEE Trans. Signal Process.
48(1), 172–183 (2000).

35. A. M. Grigoryan and S. S. Agaian, “Shifted Fourier transform based
tensor algorithms for 2D DCT,” IEEE Trans. Signal Process. 49(9),
2113–2126 (2001).

36. S. S. Agaian, “Hadamard matrices and their applications,” Lecture Notes
in Mathematics 1168, Springer–Verlag, Berlin (1985).

37. S. S. Agaian, “Advances and problems of the fast orthogonal transforms
for signal-images processing applications (part 1),” Pattern Recognition,
Classification, Forecasting 3, 146–215, The Russian Academy of Sciences,
Nauka, Moscow (1990) (in Russian).

38. S. S. Agaian, “Advances and problems of the fast orthogonal transforms
for signal-images processing applications (part 2),” Pattern Recognition,
Classification, Forecasting 4, 156–246, The Russian Academy of Sciences,
Nauka, Moscow (1991) (in Russian).

39. R. Kogan, S. S. Agaian, and K. A. Panetta, “Visualization using rational
morphology and zonal magnitude reduction,” Proc. SPIE 3304, 153–163
(1998) [doi: 10.1117/12.304595].

40. S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based
image enhancement algorithms,” IEEE Trans. Image Process. 10(3),
367–382 (2001).

41. S. S. Agaian, K. A. Panetta, and A. M. Grigoryan, “A new measure of
image enhancement,” SPPRA 2001, Rhodes, Greece (2001).

336 Chapter 11



42. A. M. Grigoryan and S. S. Agaian, “Transform-based image enhance-
ment algorithms with performance measure,” Advances in Imaging and
Electron Physics 130, Academic Press, New York, 165–242 (2004).

43. F. T. Arslan and A. M. Grigoryan, “Fast splitting -rooting method of
image enhancement: Tensor representation,” IEEE Trans. Image Process.
15(11), 3375–3384 (2006).

44. A.M.Grigoryan, “Methodof paired transforms for reconstruction of images
from projections: Discrete model,” IEEE Trans. Image Process. 12(9),
985–994 (2003).

45. A. M. Grigoryan and M. M. Grigoryan, Image Processing: Tensor
Transform and Discrete Tomography with MATLAB, CRC Press, Boca
Raton, FL (2012).

46. A. M. Grigoryan and N. Du, “Principle of superposition by direction
images,” IEEE Trans. Image Process. 20(9), 2531–2541 (2011).

47. A. M. Grigoryan and N. Du, “2D images in frequency-time representa-
tion: Direction images and resolution map,” J. Electron. Imaging 19(3),
1–14 (2010).

48. A. M. Grigoryan, “Multidimensional Discrete Unitary Transforms,”
Chapter 19 in The Transforms and Applications Handbook, 3rd ed., The
Electrical Engineering Handbook Series, A. Poularikas, Ed., CRC Press,
Boca Raton, FL (2010).

49. A. M. Grigoryan and S. S. Agaian, Multidimensional Discrete Unitary
Transforms: Representation, Partitioning, and Algorithms, Marcel Dekker,
New York (2003).

50. A. M. Grigoryan and M. M. Grigoryan, Brief Notes in Advanced
DSP: Fourier Analysis with MATLAB, CRC Press, Boca Raton, FL
(2009).

Artyom M. Grigoryan received M.S. degrees in Mathematics
from Yerevan State University (YSU), Armenia in 1978; in
Imaging Science from the Moscow Institute of Physics and
Technology in 1980; and in Electrical Engineering from
Texas A&M University in 1999. He received his Ph.D. in
Mathematics and Physics from YSU in 1990. From 1990–
1996, he was a senior researcher with the Department of
Signal and Image Processing at the Institute for Informatics

and Automation Problems (IAAP) at the National Academy of Sciences of the
Republic of Armenia (NAS RA). From 1996–2000, he was a Research Engineer
with the Department of Electrical Engineering at Texas A&M. In December
2000, he joined the Department of Electrical Engineering at the University of
Texas, San Antonio, where he is currently an Associate Professor. He holds two

337Another Step towards Successful Tomographic Imaging in Cancer



patents for developing an algorithm of automated 3D fluorescent in situ
hybridization spot counting, and one patent for fast calculation of cyclic
convolution. He is the author of three books, three book chapters, two patents,
and many journal papers and specializes in the theory and application of fast
one- and multidimensional Fourier transforms, elliptic Fourier transforms,
tensor and paired transforms, unitary heap transforms, design of robust linear
and nonlinear filters, image enhancement, encoding, computerized 2D and 3D
tomography, processing biomedical images, and image cryptography.

338 Chapter 11



Index

2D discrete Fourier transform, 25
2D paired transform, 319
2D tensor transform, 317
�-rooting, 24, 28
�-rooting image enhancement, 40,
42, 49

�-rooting method, 37

A
active contour algorithms, 85
adaptive threshold, 132
adaptive thresholding, 136
anatomical and functional imaging,
79, 82

arithmetical rays, 300, 311
AutoScan, 174

B
back-projection, 298
basis paired functions, 46
benign masses, 270
biophysical target, 81, 82
box-counting method, 275

C
cancer, 79
cancer diagnosis, 229
cancer localization, 237
capsule endoscopy (CE), 149
Cartesian lattice, 299
characteristic function, 31, 47
circular convolution, 40
clustering, 83

colonic polyps, 1, 9, 11
compactness, 276
complex wavelet transform (CWT),
213, 217

computed tomography (CT), 24, 80,
295

computer-aided detection or
diagnosis (CAD), 4, 5,
12, 14, 230

computer-aided skin cancer
diagnostic system, 174

contrast entropy, 24
control points, 320
convex hull, 153
convolution equations, 327
convolution filtering, 298
cosine transform, 301
CT colonography (CTC), 2
cyclic group, 31, 301

D
decryption, 65
delta symbol, 36
dermoscopy, 174
digital pathology, 236
direction image, 34, 47, 49, 60,
304

discrete cosine transform (DCT), 63
discrete Fourier transform (DFT),
301

discrete wavelet transform (DWT),
188

distance histogram, 133, 137

339



E
encryption, 65
energy, 37, 53
enhancement measure, 37
extreme point, 155

F
fan-beam geometry, 295
feature extraction, 184
feature model, 174
feature selection, 174, 176
fluorescence in situ hybridization
(FISH), 24

Fourier descriptors, 278
Fourier filtering, 298
Fourier slice theorem, 297
Fourier transform, 24
fractal, 273
fractal dimension, 270
fractional concavity, 276
fuzzy C-means (FCM) algorithm,
83

G
generators, 33, 39, 43
geometrical rays, 301, 309, 313, 327
gland segmentation, 241
Gleason grade maps, 237
Gleason grading, 231
graphics processing unit (GPU), 144

H
Hadamard transform, 301
Hartley transform, 301
Hausdorff dimension, 274
high-level concept, 184
high-level feature, 174
histological and textural features,
235

histology image segmentation, 238
histopathology image analysis, 235
histopathology images, 231
human visual system (HVS), 101,
115

hybrid imaging See multimodality
imaging, 79

I
image compression, 24, 61, 64
image cryptography, 24
image denoising, 301
image elements (IEs), 299
image enhancement, 24, 301
image reconstruction, 298, 326, 330
image signals, 26
impulse response, 43
iterative reconstruction, 298

K
kth series image, 53

L
level set approach, 86
line integral, 299, 308
linear programming boosting
(LPBoost), 196

log-�-rooting, 24
low-level feature, 184

M
machine learning, 196, 247
magnetic resonance (MR), 79
magnetic resonance imaging (MRI),
24, 297

magnitude, 42
malignant tumor, 270
mammogram calcification
detection, 212, 220

mammogram enhancement,
100, 101

mammography, 270
measure of enhancement, 29
medical imaging, 230
melanoma, 173
method of mapping, 72
MIASYS, 82
multifractal feature extraction, 214,
219

multimodality imaging, 79, 82

340 Index



multiple-kernel learning (MKL),
196

multitask learning, 196

N
Nevoscope, 182
nonlinear unsharp masking
(NLUM), 102, 106

nuclear segmentation, 240

O
optical imagining, 174

P
paired functions, 319
paired representation, 26, 304
paired splitting-signals, 55
paired transform, 42, 44, 46, 301,
327

parallel scanning, 298
parallel-beam geometry, 295
pattern recognition, 247
positron emission tomography
(PET), 80

principle of superposition, 37, 53,
304

prostate cancer, 230
prostate cancer staging, 232

Q
quantitative measure, 26

R
radiotherapy, 80
Radon filtering, 298
Radon transform, 30
ray sums, 299
redirected image, 73
reduced convex hull (RCH), 153
region of interest (ROI), 182
region of interest identification, 184
resolution, 57

resolution map, 56
ruler method, 275

S
scale-invariant feature transform
(SIFT), 188

series image, 56
series linear transformation, 57
shape factors, 276
skin lesion detection, 133
skin of a convex hull, 154
snake algorithms, 85
soft convex hull, 153
splitting-signals, 26, 33, 34, 40, 43,
301

support vector machine (SVM), 150,
212, 220

suspicious regions, 100, 113

T
telepathology, 255
tensor transform, 26, 34, 44, 301,
302, 304, 307

thresholding, 83
Toeplitz matrix, 311, 325
tomograms, 295
transferring the geometry, 305

U
ultrasound, 79
unsharp masking, 24, 28, 42

W
wavelet scaling, 39
wavelet thresholding, 39
wavelet transform, 24
weighted �-rooting, 28

Y
YUV color space, 134, 136,
141, 143

341Index


