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Preface

Cancer is a complex and heterogeneous disease that exhibits high levels of
robustness against various therapeutic interventions. It is a constellation of
diverse and evolving disorders that are manifested by the uncontrolled pro-
liferation of cells that may eventually lead to fatal dysfunction of the host
system. Although some of the cancer subtypes can be cured by early diag-
nosis and specific treatment, no effective treatment is yet established for a
significant portion of cancer subtypes. In industrial countries where the aver-
age life expectancy is high, cancer is one of the major causes of death. Any
contribution to an in-depth understanding of cancer shall eventually lead to
better care and treatment for patients. Due to the complex, heterogeneous,
and evolving nature of cancer, it is essential for a system-oriented view to be
adopted for an in-depth understanding.

The question is how to achieve an in-depth yet realistic understanding of
cancer dynamics. Although large-scale experiments are now being deployed,
there are practical limitations of how much they do to convey the reality of
cancer pathology and progression within the patient’s body. Computational
approaches with system-oriented thinking may complement the limitations of
an experimental approach. Computational studies not only provide us with
new insights from large-scale experimental data, but also enable us to perceive
what are the conceivable characteristics of cancer under certain assumptions.
It is an engine of thoughts and proving grounds of various hypotheses on how
cancer may behave as well as how molecular mechanisms work within anoma-
lous conditions. It is not just computing that helps us fight against cancer,
but a computational approach has to be combined with a proper theoretical
framework that enables us to perceive “cancer” as complex dynamical and
evolvable systems that entail a robust yet fragile nature. This recognition
shifts our attention from the magic bullet approach of anti-cancer drugs to
a more systematic control of cancer as complex dynamical phenomena. This
leads to the view that a complex system has to be controlled by complex inter-
ventions. To understand such a system and design complex interventions, it is
essential that we combine experimental and computational approaches. Thus,
computational systems biology of cancer is an essential discipline for cancer
biology and is expected to have major impacts for clinical decision-making.
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xxviii Preface

This is the first book specifically focused on computational systems biology
of cancer with a coherent and proper vision on how to tackle this formidable
challenge. I would like to congratulate the authors for their vision and dedi-
cation.

Hiroaki Kitano
President, The Systems Biology Institute
President and Chief Operating Officer, Sony Computer
Science Laboratories, Inc.
Professor, Okinawa Institute of Science and Technology
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Chapter 1

Introduction: Why systems biology of
cancer?

Cancer is probably as old as life, but remains a widespread and devastating
disease. Generations of scientists and physicians have dedicated their life to
improve patient care and eradicate it. They have contributed to monumental
accomplishments in the fight against cancer. Cancer nevertheless remains the
second-leading cause of death and disability in the world, behind only heart
disease. Further progress is urgently needed to beat it.

Cancer genesis and development are intimately related to the dysfunction
of genes. The sequencing of the human genome and subsequent genomic rev-
olution have drastically impacted cancer research, allowing the dissection of
cancer at the molecular level. In parallel, the last decade has witnessed the
emergence of systems biology, a new field of research aiming at capturing
the complexity of biological phenomena involving complex interactions with
mathematical and computational tools.

In this book, we hope to enlighten the reader on the computational systems
biology approaches applied to cancer research. These approaches offer new
promising insights to defeat cancer. This first chapter sets the general context
of the book by giving definitions of cancer and systems biology. We introduce
the scientific and technological aspects of cancer research including their link
with clinics. The chapter also describes the spirit of the book and provides
reading guidelines.

1.1 Cancer is a major health issue

1.1.1 Bit of history

Cancer is probably as old as life. Evidence of metastatic∗ cancer was
reported in Edmontosaurus fossils (Cretaceous) and neoplasms∗ were re-
ported in a Neanderthal skull (35 000 BC), Egyptian and Incan mummies
(David and Zimmerman, 2010). The oldest description of cancer in humans
was found in Egyptian papyri written between 3000–1500 BC. Among them,
the Georg Ebers papyrus, the Edwin Smith papyrus (circa 1600 BC) and the
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2 Computational Systems Biology of Cancer

Kahun papyri (circa 1825 BC) contain details of conditions which are con-
sistent with modern descriptions of cancer. In Greece, Hippocrates de Cos
(460–370 BC), the father of medicine, described cancer in detail in the Cor-
pus Hippocraticum1 and used the Greek terms carcinos and carcinoma to refer
to chronic ulcers or growths which seemed to be malignant tumours and scir-
rhus to refer to a type of cancer with a hard consistency. In Greek, carcinos
means crayfish, canker, cancer, tumour, while skirros means solid tumour as
a noun and hard, hardened as an adjective. Celsus (28 BC–50 AD), a Roman
doctor, translated the Greek word carcinos into the word cancer, a Latin word
meaning crab, crayfish, dunce and cancer, canker. It was inspired by some can-
cerous lesions whose form recalls a crab. Galien (131–201) used the Greek term
oncos, meaning mass, to refer to a growth or a tumour which looked malig-
nant. In art history, testimonies of this disease can also be found. Rubens and
Rembrandt were major baroque painters who practised realism (they painted
whatever their eyes captured). This has allowed physicians to discover alter-
ations which suggest tumour in the breast of the models they painted. One of
the most famous paintings which depicts breast tumour is the oil-on-canvas
piece by Rembrandt, Bathsheba at Her Bath (see Figure 1.1): an Italian sur-
geon first suggested that Rembrandt might have depicted a breast tumour in
his painting, accurately showing the clinical signs (the dark shadow on her left
breast) of the fatal disease from which his model, Hendrickje Stoffels, was suf-
fering (Vaidya, 2007). Cancer is not a modern disease but has passed through
the ages and likely from the origin of life.

1.1.2 Definition of cancer

Cancer is a pathology that can affect most of the tissues in the human
body. It is generally defined by uncontrolled cell growth and, in the case of solid
tumour, invasion of underlying tissues. As an additional feature, many cancers,
but not all, can also experience migration of tumour cells from the primary site
(i.e. the primary tumour∗) to a distant one where they settle, a phenomenon
called metastasis∗ which is responsible for most cases (around 90%) of lethal
issue. This first definition of cancer covers so-called malignant tumours. To be
complete, we should also include in that definition leukaemia∗, which gives
rise not to tumours but to circulating tumour cells in blood, originating from
hematopoietic tissues. A second and broader definition also includes benign
tumours, that show uncontrolled cell growth but no invasion, and in most
cases do not threaten the patient life. The first definition is often used in
clinical oncology∗, whereas in cancer biology the second is usually preferred.
This second definition will be used in this book. More details about cancers,
their classification and biology will be given in Chapter 2.

1The authorship of the text is unproven.



Introduction: Why systems biology of cancer? 3

c ©
2
0
1
2

P
h
il
ip

p
e

H
u
p
é

FIGURE 1.1 Bathsheba at Her Bath. Rembrandt Harmenszoon van Rijn (1606-
1669), 1654, oil on canvas, 142 x 142 cm, Musée du Louvre, Paris, France.

1.1.3 Few facts about a killer

Although an old disease, cancer still remains a major health issue. Can-
cer is one of the major killers worldwide carrying responsibility for 7.6 mil-
lion deaths in 2008 and 12.7 million new cases (source: IARC, GLOBOCAN
database, http://globocan.iarc.fr). It accounts for one out of every eight deaths
annually, killing more people than AIDS, malaria and tuberculosis combined.
In many occidental countries, it is now the leading cause of death, before car-
diovascular diseases. Some cancers occur with a high prevalence like breast
cancers which affect 1 woman out of 9 during a lifespan. In developing coun-
tries the incidence rate is lower, but survival rates are much worse mainly
because of late detection and lower quality or inexistent healthcare. Addi-
tionally in China, India and many developing countries, cancer deaths are
increasing, largely because of smoking and diet habits. It is anticipated that
the global yearly number of deaths should reach 17 millions in 2030.

1.1.4 Progress in cancer treatment is real, but insufficient

As a consequence of the importance of cancer in public health, consider-
able efforts are invested each year to extend and deepen our understanding
of tumour progression∗, to develop new therapeutic molecules and to ame-
liorate cancer medical care. Patient treatments have improved substantially
during the last decades and many new therapeutic molecules have been devel-



4 Computational Systems Biology of Cancer

oped. Overall, we now manage to cure more than one cancer case out of two.
Incidence and mortality rates are also globally decreasing, and the 2003–2007
period has shown a decline of 1% per year in incidence and 1.6% in mortality
by cancer in the USA.

Nevertheless, this encouraging picture requires some deeper examination.
First, decrease is largely due to prevention, at least for some cancers. Epi-
demiological studies have shown the role of environmental factors in the risk
of developing cancer (like tobacco exposure in lung cancer), and identifying
this cause enabled prevention programs that bear fruits a few years if not
decades later. Second, this global reduction in mortality by cancer masks
marked differences across geographical areas because of different life habits or
risk exposure (e.g. oral and lung cancers are progressing in India and China).
Third, mortality and therapeutic success vary largely across cancer types, pa-
tient age and sex. Altogether this situation calls for improvements in cancer
prevention, but also of course in cancer treatment, and in particular the de-
velopment of new drugs. Early detection of tumours is also a crucial factor
impacting the chances of successful treatment. But developing new drugs is
now more and more difficult, and more and more expensive. The reasons why
the pipeline for drug discovery is not so fruitful are multiple, but in particu-
lar many drugs in development show limited efficacy, and present off-target
effects∗ and toxicity to other cells. In the context of cancer, it is also often
the case that a large proportion of the patients do not respond to treatment,
or may relapse∗ after initial response. Therefore, the one-treatment-fits-all
strategy is most of the time unsuccessful. Finding specific targets, and pre-
dicting which patient will benefit from a given treatment would therefore be
of utmost value.

1.1.5 Progress in cancer drug development needs a qualita-
tive evolution

Historically, the first therapeutic molecules for cancer treatment were tar-
geting fast replicating cells with no specificity to a particular target gene or
protein, exerting their action on DNA like nitrogen mustards. The discov-
ery of the so-called oncogenes∗ and tumour suppressor genes∗ (genes
involved in tumour progression, see Chapter 2) in the 1980s, followed by
the identification of their signalling pathways∗ revived an old theory of
magic bullets (see Strebhardt and Ullrich, 2008, for an historical perspective).
According to this paradigm proposed by Paul Ehrlich in 1900 it should be pos-
sible to identify specific receptors associated to cancer cells, which can then
be targeted specifically with a drug binding to the receptor. As a consequence
cancer cells can be killed. The first implementations of this concept were the
development of trastuzumab for treating breast tumours overexpressing the
HER2 gene, and of imatinib for treating Chronic Myeloid Leukaemia (CML)
in the late 1990s. In both cases, a humanised monoclonal antibody was de-
signed for targeting a specific oncogene (HER2 in the case of trastuzumab,
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and the BCR-ABL1 fusion protein in the case of imatinib), with substantial
clinical success. Amplification∗ of HER2 in the genome of breast tumours,
and translocation∗ of chromosomes 9 and 22 in CML cells (i.e. the Philadel-
phia chromosome) brought immediate attention to the oncogene driving these
tumours and designated them as natural targets. But other efficient interven-
tion points might be more difficult to identify and require adequate modelling
approaches, which are presented in Chapter 7 and Chapter 8.

In addition, in many cases, patients treated with these novel drugs ulti-
mately develop resistance and need second-line treatment∗. This resistance
can be explained by the multidimensional nature of cancer, which involves
many molecular players (genes, proteins, small molecules, etc.) interacting in
interconnected pathways that can be thought of as a large and complex net-
work. Targeting only one player is likely to let many bypass roads open in the
regulation network and feedback loops which will compensate for the effects
of the therapeutic molecule. This advocates the use of combination of spe-
cific drugs (or an appropriate sequence in time), or of multi-target inhibitors
(e.g. muti-kinase inhibitors). Even for one single patient, the magic bullet ap-
proach often requires several bullets. But here the mere intuition is of course
not sufficient to figure out which points in the network should be targeted.
The behaviour of complex networks with many crosstalks and feedback loops
is not linear and escapes immediate understanding. Again adequate modelling
is essential for rationalising the search of targets (see Chapters 7 and 8) and
for designing new drugs (a domain of research not covered by this book).

In this book we present how computational systems biology can help in
these three essential compartments of the fight against cancer: categorising
tumours, finding new targets and designing improved and tailored therapeuti-
cal strategies. The question of prevention can also be approached by systems
biology, but is out of the scope of this book.

1.2 From genome to genes to network

1.2.1 Accumulation of alterations

Cancer onset is characterised by an accumulation of genetic and epigenetic
alterations that can be caused by different stresses, like tobacco, chemical
agents, radiations and viruses. These alterations typically modify the struc-
ture of DNA and chromatin∗, and consequently the gene products or the
regulation of gene expression. They can take different forms (reviewed in
Chapter 2), like chromosome rearrangements and translocations (formation
of chimeric chromosomes), small or large deletions or amplifications of DNA
regions (whose copy number will be 0 or 1, i.e. a deletion, instead of the nor-
mal 2, or 3 or more, up to several dozens, i.e. an amplification), variation
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in ploidy (chromosome number), or point (single nucleotide) mutations∗.
In 1971, a model of retinoblastoma∗ occurrence was proposed by Knudson
(1971), based on mortality statistics, and became the canonical Knudson two-
hit model. In this model, occurrence of retinoblastoma was shown to be in
agreement with the progressive accumulation of two mutations, each affect-
ing one allele of the RB gene. This model is also applicable to other cancers
with a larger number of stages such as colon, stomach and pancreas cancers
(Nordling, 1953; Armitage and Doll, 1954), but not to all of them.

Among all alterations that affect a tumour genome, some are causative of
the disease (i.e. the driver genes), whereas others may not play any particular
role (i.e. the passenger genes which are neighbouring driver genes and are
altered concomitantly). Causality can be assessed in different ways. A classical
way is to assess it at the genotype level in model animals (mainly mice) where
fully controlled comparative experiments can be carried out. The recent use
of antagonist drugs∗ or on the contrary mimetic drugs∗ to palliate the
deficiency of a protein is another element of proof of causality in the context
of human cells.

It is commonly accepted now that cancer development proceeds in a mul-
tistep way controlled by Darwinian principles: random genetic changes create
a diversity of cells with differences in terms of proliferation and survival rate;
both processes are under tight genetic control; time selects the cells with higher
propensity to multiply.

1.2.2 Cancer is a gene disease

“The revolution in cancer research can be summed up in a single sentence:
cancer is, in essence, a genetic disease.” This statement is quoted from a
Nature Medicine review by Vogelstein and Kinzler (2004) who are pioneers in
cancer molecular biology research.

The genetic nature of cancer may seem obvious today but it took long to
be established. The first oncogenes (as BCR-ABL1, SRC) were discovered in
the 1970s, and tumour suppressor genes in the following decade (RB, TP53,
etc.). In the last two decades, biologists have shown that these genes were
arranged into signalling pathways. These pathways have been characterised
progressively. At first glance, they appeared to have more or less a linear
structure, transducing a signal from a sensor protein (e.g. membrane recep-
tor) to an effector protein through a cascade of transducer proteins. Many
screening assays for finding new cancer genes were conducted, and as a result
many cancer-related genes are identified today: the Catalogue of Somatic Mu-
tations in Cancer (COSMIC) database (v59, June 2012), contains 487 genes
implicated in cancer, i.e. the Cancer Gene Census (Futreal et al., 2004).

Evidence of the genetic nature of cancer came also from familial studies.
Only about 10% of cancers fall in the category of familial syndrome, where the
inheritance of some gene allele is associated with an increased risk of develop-
ing cancer. A compelling evidence is the RB gene (where carriers of mutated
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alleles have a 90% risk of developing a retinoblastoma, to be compared with
the frequency of the pathology in the general population: 1/15000 to 1/20000),
and the BRCA1 and BRCA2 genes (where carriers of deleterious alleles have
10 to 20-fold increased risk of breast cancer).

Though there are cases of genetic inheritance, we should emphasise that
cancer, contrary to most well-known genetic diseases like dystrophies, results
mainly from alterations acquired over a lifetime and are not transmitted from
parents to offspring.

1.2.3 Cancer is a network disease

At the end of the 20th century, the number of genes whose involvement in
cancer was established had increased significantly. It became therefore appar-
ent that they could be organised in a limited number of biological functions,
named hallmarks of cancer as described in two landmark papers by Hanahan
and Weinberg (2000, 2011). The six, then eight hallmarks are related to cell
survival, proliferation and metastatic dissemination and are presented in detail
in Chapter 2. Originally, it seemed that each function or sub-function had its
own, almost independent pathway. As more and more genes controlling these
functions were identified and arranged into signalling pathways, it appeared
that these pathways are interconnected and present crossroads, talking to each
other at different levels. In other words, the hallmarks of cancer should be un-
derstood as different ways of looking at a unique process, tumour progression,
and are by no means independent. Of course these interconnections obliterate
the linearity of the pathways and turn them into a web of interactions between
genes, RNAs, proteins and other molecules. Today, it is well established that
if cancer is a disease of genes, it is first of all the consequence of a deregulation
of the gene networks that control cell growth and dissemination. As a result,
methods for modelling gene networks are central to any modern approach of
the molecular biology of cancer (see Chapters 7 and 8).

1.3 Cancer research as a big science

1.3.1 Cancer research is technology-driven

The origin of the incredibly swift evolution of biological research during
the last two decades lies probably in the revolution brought by biotechnolo-
gies. Miniaturisation and automation have expanded much faster than anyone
anticipated the experimental possibilities for investigating life at the molecu-
lar and cellular levels. We can explore many molecular facets of the biological
systems that were previously out of reach. In addition we are also capable of
building very rapidly a (almost) complete description of one particular level
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of the system (e.g. its genome, or its transcriptome; see Chapter 3 for details
about the technologies used). The first step of this revolution has been the se-
quencing of the human genome, which was completed in 2001 by contributions
from many laboratories in a joint 13 year effort which cost almost 2.7 billion
dollars. Though at that time the human genome sequence was in fact only
completed at 90%, its availability has opened the road to other large-scale
biotechnological approaches (not to mention its crucial interest for biological
research), as exemplified in the two following subsections.

1.3.2 Microarray era

The advent of microarrays∗ around 1995 enabled, for the first time, to
interrogate expression of many genes simultaneously. After some versions of
microarrays addressing a few thousands genes, it has rapidly become the rule
to assess the expression of virtually all genes on a microarray. The microar-
ray technology has blossomed in different flavours: genome microarrays (array
Comparative Genomic Hybridisation (aCGH) or Single Nucleotide Polymor-
phism (SNP) arrays) which investigate genome alterations like gain, dele-
tion and point mutations (for SNP arrays); transcriptome arrays for quanti-
fying RNA expression at the transcript or at the exon level, or microRNA
(miRNA) expression; proteome arrays which interrogate protein expression
and activities; Chromatin Immunoprecipitation (ChIP) arrays for localising
on the genome protein-DNA interactions or investigating nucleosome modi-
fications. These technologies and others will be introduced in more detail in
Chapter 3.

1.3.3 Next-generation sequencing era

Since 2004, a new technology has dramatically accelerated our possibilities
in terms of molecular investigation of the cell. The so-called next-generation
sequencing technologies (NGS∗) enable parallel sequencing of hundreds of
millions of short sequences in parallel (up to one billion per run as of 2012).
Besides covering the application of genome, transcriptome and ChIP arrays,
this technique also offers new possibilities like the investigation of short mu-
tations, genome rearrangement, fusion transcripts and RNA trans-editing or
trans-interactions in the genome. A detailed introduction to these techniques
is given in Chapter 3. One microarray typically provides today a few hun-
dreds of thousands measurements in a few hours (it grew from a few thousands
to 1000 times more within five years). In comparison a NGS experiment out-
puts up to one billion sequence reads in less than a week, and generates a few
hundreds of gigabytes of data (sequence calls and qualities), not to mention
the terabytes2 of raw data (images) and analysis results (alignment and in-

2mega (106), giga (109), tera (1012), peta (1015), etc. are prefixes to multiply any unit.
To illustrate the idea, one terabyte of mp3 music corresponds to two years of listening.
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terpretation). Even more striking, the acceleration of the trend is not over,
and single molecule techniques and laser-free sequencing chips are promising
yet higher throughputs and lower costs of sequencing devices and consumables
(see Chapter 3). In a near future, one can anticipate that genome sequencing
will be routinely used in medical practice, pushing biology in the petabyte era
and accentuating the demand for high performance storage and computing,
bioinformatics and computational systems biology algorithms and tools (see
Chapter 4 for informatics and bioinformatics aspects).

1.3.4 Cancer research and international data provider con-
sortia

Cancer research has inevitably been impacted by the revolution of biotech-
nologies. Two major efforts illustrate this phenomenon. In 2006, the National
Cancer Institute (NCI) and the National Human Genome Research Institute
(NHGRI), two institutes from the National Institutes of Health (NIH) in the
USA, launched The Cancer Genome Atlas (TCGA), a program aiming at de-
ciphering the genomic and epigenomic modifications of tumours in more than
20 different cancers. In 2008, the International Cancer Genome Consortium
(ICGC) was set up as a joint action of USA, Canada, Europe (France, Ger-
many, Great Britain, Italy, Spain), China, India, Japan and Australia with the
goal of establishing the molecular profiles of 25,000 tumours from 50 different
cancers. In both efforts, samples are characterised with the relevant clinical
features, constitutional genome should also be sequenced, and tumour profil-
ing will cover genome, transcriptome and epigenetic aspects (DNA methyla-
tion). Both consortia have agreed to make their data available to the scientific
community as rapidly as possible.

1.4 Cancer is a heterogeneous disease

1.4.1 Cancer heterogeneity

Most tissues of the human body can be affected by cancer. Nevertheless
the word cancer designates in fact a myriad of different diseases. Cancer from
distinct localisations are of course very different, but even for a given organ
the heterogeneity is often the rule, and this at several levels.

The first level of heterogeneity is morphological: for example pathologists∗,
the physicians who examine tumour samples under the microscope before any
treatment is defined, classify breast tumours in eighteen different types (De-
Vita et al., 2008).

The second level is the clinical heterogeneity: within a tumour type, clinical
characteristics, and in particular disease evolution and therapeutic answer,
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vary largely among patients. There are of course marked differences between
tumour types, but when examining the clinical case at the individual level it
is often very difficult if not impossible to conclude and give a prognosis∗.

The third level of heterogeneity is molecular: the many portraits of cancer
that have been drawn during the last decade with molecular profiling, using
microarrays and now NGS, have shown that there are no two tumours iden-
tical from a genetic and epigenetic perspective. Of course, tumours from the
same type share common traits, like recurrent mutations, deletions, amplifica-
tions, rearrangements, and resembling gene expression, but they also display
many genetic differences. These molecular differences also concern the tumour
microenvironment, which plays a crucial role in tumour progression, and the
host of the tumour, the patient, with his personal genetic makeup.

A fourth level of heterogeneity concerns the tumour itself. Although it is
often considered as the clonal expansion of the best fit cells, many tumours
present internal heterogeneity: several subclones coexist in a dynamic equilib-
rium, each of them constitutes a specific disease, and drugs active on some of
them might be inefficient on others, thus explaining resistance of the tumour
to treatment.

In conclusion, if normal tissues are all alike, every tumour tissue is abnor-
mal in its own way.

1.4.2 Sorting out tumour heterogeneity: Classifying tumours

It is tempting to speculate that the molecular heterogeneity can explain the
diversity of morphological and clinical phenotypes. Having drafted the molec-
ular profile of tumours at the genetic and epigenetic levels should give us the
basic elements that cause or accompany tumour progression, and should pro-
vide the necessary information for defining tumour subtypes in a rational way.
What was so far mainly defined by morphological observation could also be
approached, hopefully better, with full molecular characterisation. This infor-
mation could maybe not replace, but certainly complements the microscope.
This question is much more than the intellectual exercise of ordering our ob-
servations. Conceptually, it provides a map of the pathology, and facilitates
reasoning and drawing hypotheses that will lead to understanding the nature
of the pathology and the biological principles that govern it. In practice, it has
of course huge implications for the therapeutic treatment of patients and the
atlas of tumour types constitutes a daily tool for the oncologist∗. Chapter 5
examines how such classification of tumours is carried out.
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1.5 Cancer requires personalised medicine

1.5.1 Definition of personalised medicine

Personalised medicine can be defined as a model of medical practice where
healthcare of a patient is tailored to his/her personal characteristics. Stated
this way, one can argue that traditional medical practice is also considering
the patient characteristics, but the difference resides in the philosophy of the
approach; personalised medicine is opposed to traditional medicine which is
mainly based on reference treatments. The reference treatments have been
established on large series of patients and once validated are considered as
the universal solution for treating any new patient affected by the disease.
Personalised medicine acknowledges that the patient pathology is unique and
this unicity is driving the choice of the treatment. There exists no one-fits-all
treatment for cancer. Personalised medicine is often (but not always) based on
the genetic background of the patient. In the context of cancer, it may be based
on this patient’s constitutional genetic background, or also on the tumour’s
genetic and epigenetic landscape, or on the life environment. Personalised
medicine may concern preventative as well as curative medicine.

The goal of preventative medicine is to prevent occurrence of diseases or to
carry out surveillance to detect the disease at the earliest stage. Surveillance
can be adapted as a function of the patient’s personal features, like lifestyle
(exposure to risk factors) or family history for genetic diseases. This is the
case, for example, in breast cancer where BRCA1 and BRCA2 genes are used
for assessing individual risk and adapting surveillance.

Curative medicine applies when the disease has broken out and been di-
agnosed. It aims at avoiding treatments that are not beneficial to the patient
and optimising strategy in terms of therapeutic response and patient comfort.
In particular, avoiding or limiting side effects that one patient may be at risk
of, because of his genetic background, is one major goal of cancer curative
personalised medicine.

1.5.2 Choosing the adequate treatment: Prediction and
prognosis

Many cancer drugs show only limited efficacy in fighting the tumour. In
many cases, the therapeutic molecule is not adapted to a significant propor-
tion of patients but oncologists have no means of distinguishing in advance
responders from nonresponders. If initial treatment fails, a second-line treat-
ment with another molecule has to be tested. Predicting which therapeutical
strategy is the most likely to be effective is still difficult if not impossible to-
day. This situation entails a loss of time in providing the adequate treatment,
patient suffering, possibly death from adverse effects of inefficient molecules,
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and economical waste. The conclusion about cancer treatment is very clear:
one cannot expect that a given therapeutic treatment would fit all patients
affected by a particular type of cancer. Again, the reason for this clinical het-
erogeneity is more or less known. To a large extent, it resides in the underlying
biological heterogeneity of the cancer, no two tumours being ever identical.
Of course, this heterogeneity is, for a large part, genetically determined: the
modalities of tumour progression are for a large part rooted in the molecular
profile of the tumour. Designing a procedure to classify new tumour cases per
type is in general addressed using cases with known outcome, building a pre-
diction rule, estimating its performance and applying it to new tumours. Of
course, there are many obstacles to this simple scheme: methodological (e.g.
how to build a robust procedure, that will perform efficiently on new cases?),
technical (how to standardise sample preparation from bedside to analysis?)
and also biological (one given tumour is often not genetically homogeneous,
but may contain different subclones whose mixture may blur the overall mea-
surements used for prognosis).

Nevertheless, relating the tumour genetic characteristics to the resulting
clinical phenotype provides a way for predicting the response to a certain ther-
apeutic molecule and proposing the best treatment to a patient. This idea has
been made achievable since the availability of the microarray technology. It is
the rationale behind the numerous attempts of deriving from the molecular
profiling of tumours (mainly at the transcriptome, but also at the genome and
epigenome level) decision rules to help the clinical oncologist in the design of
the optimal and individualised treatment. These so-called gene signatures are
now proposed as clinical tools for some types of breast cancer, for example
Agendia’s 70-gene Agilent-based MammaPrint R©, i.e. the Amsterdam Signa-
ture (van’t Veer et al., 2002; van de Vijver et al., 2002), Veridex’s 76-gene
signature, i.e. the Rotterdam Signature (Wang et al., 2005; Foekens et al.,
2006), Genomic Health’s 21-gene RT-PCR-based Oncotype DXTM(Cobleigh
et al., 2005; Hornberger et al., 2005) and a 41-gene expression set (Ahr et al.,
2001, 2002). It is not known yet whether these tests are announcing the rise of
a new strategy for personalised medicine. It is possible that the limited infor-
mation present in the gene expression profiles they are based on will simply
be insufficient. These questions are the subject of Chapter 6.

1.5.3 Designing a personalised treatment

The advent of the high-throughput technologies is changing drastically
the landscape of cancer medicine. Microarrays are now in clinical use for
cancer prognosis. NGS, proteome and metabolite profiling are also opening
new possibilities for clinical applications. These technologies are reviewed in
Chapter 3.

NGS now enables one to sequence the genome of tumours and patients for
a moderate cost (a few thousands of euros in 2012), and to use this informa-
tion to inform decisions about patient care. Many applications are envisaged;
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some of them are already being experienced in clinical trials. For example, the
choice of a therapeutic molecule like a protein kinase inhibitor can be fully
rationalised from the mutation profile of the tumour, following these steps:
listing all mutations that affect a tumour, selecting those that may have dele-
terious consequences and prescribing therapeutic molecules on this basis. This
approach has already been tested and encouraging results have been obtained
in terms of survival gain (Hoff et al., 2010). It can be anticipated in the
near future that patients will be more systematically included in clinical trials
proposing the adequate molecule among the expanding list of protein kinase
antagonists or other targeted molecules available. Other applications of NGS
are the detection of fusion transcripts, genome rearrangements, methylation
profiles within the tumour, or the search for Circulating Tumour Cells (CTC)
in blood or lymph, thus facilitating prognosis and therapeutic choices without
biopsies.

Proposing therapeutic molecules targeting the defective gene products of
a patient is undoubtedly a promising approach, which has already borne some
fruits. But these molecular targeted therapeutics also have their limitations
and failures (Gonzalez-Angulo et al., 2010). The robustness of cancer, whether
it is based on crosstalks, compensatory pathways, feedback mechanisms (ei-
ther present in the normal cell, or acquired by the tumour cell), or tumour
heterogeneity often lead to lack of response of patients. Off-target effects and
high toxicities of some treatments are another cause for failure. Another fun-
damental aspect concerns the representativity of the molecular data on which
to base a strategy: if it comes from a biopsy of the primary tumour, it may
be inadequate for treating metastasis, or new mutations may have appeared
that compromises the strategy.

Modelling the functioning of signalling networks and their specificities in
a given patient is therefore the next step to achieve fully informed and ratio-
nalised personalised treatment of tumours. This should aim at predicting the
impact on tumour cell proliferation, migration and death, identifying reasons
for relapsing and proposing concomitant complementary treatment or second
line strategies, and anticipating adverse effects of drugs on normal cells.

1.6 What is systems biology?

Defining a new field of science is always a difficult task. Young disciplines
have fuzzy borders, rapidly evolving topics. Existing scientific communities
join the new field, exert various influences and shape it in sometimes unex-
pected ways. Systems biology does not escape this rule: it is now used in so
many contexts, that it seems difficult to give it one simple definition. The at-
tempt below summarises the main features that are generally associated with
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systems biology approaches. It then retains two main families of definitions
that have emerged and survived the first ten years of the discipline.

1.6.1 Operational definition for systems biology

Scientific fields can be defined by their scope and by their method. As to
systems biology, the scope is biology, as a whole. We should acknowledge that
many definitions of systems biology attach the discipline to molecular biology,
though some others have wider definitions, or have even rooted the approach
in early attempts to describe biological phenomenon at a higher level, like
the movement of the heart and the blood in animals (Auffray and Noble,
2009). But even when attached to molecular biology, systems biology aims
at explaining higher level features, like for example cell fate, organ function
or individual phenotype. Here comes one essential feature of the discipline: it
achieves modelling of a biological phenomenon on multiple layers of descrip-
tion to explain high-level properties. This often means modelling of biological
networks like signalling pathways or metabolic pathways. These networks are
typically composed of dozens to thousands of nodes (genes, proteins, small
molecules, etc.) and interactions. Some of these nodes might play a particular
role: for example hubs∗ are directly connected to many other nodes and have
a coordination mission to answer to stimuli; another example is routers∗,
which are bottlenecks controlling many roads from one part of the network to
another. Nevertheless the understanding of the network properties cannot be
reduced to the study of individual elements, but requires a global approach.
Only then will it be possible to predict the behaviour of the network (Will
it drive the cell to proliferation? To death? And how?). In other words, the
reductionist gene-per-gene approach that prevailed in the last decades of bi-
ological research is no longer fruitful in the context of biological networks.
These features of networks that are not accessible at the gene level, but only
at the global level, are often referred to as emergent properties∗. One typi-
cal example is also the robustness of the normal or tumour cells (the fact that
the cells maintain their functions despite a fluctuating environment), which is
discussed in Chapter 9.

Whatever definition of systems biology we retain, one constant aspect of
systems biology is the interdisciplinary nature of the approach, which gathers
mathematicians, biologists and clinicians about a biomedical question. This
is even a crucial feature of any systems biology group to be built on such a
polymorphism of skills, and to achieve coordinated efforts both at the exper-
imental and theoretical levels. This combination is rooted in the remarkable
and unparallelled efficacy of mathematics in bringing the necessary support
to other sciences, and in particular physics and chemistry, in explaining the
universe, and the fecundity of the use of mathematical laws in achieving con-
crete realisations that impact every day life or overcome limits we thought
absolute.

It has been objected that mathematical modelling in biology can only
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bring little understanding because biology is in essence too complex. One could
easily revert the argument: it is because biology is complex that mere intuition
does not suffice and the abstraction and rigour of mathematical modelling are
required. Complexity also means that the reductionist approach is not fruitful
enough to understand the object of study, and another approach should be
adopted. Systems biology can precisely be defined as an attempt to decipher
the complexity of the cell and higher level biological systems.

The huge volume of data to analyse is then another reason why mod-
elling should complement and in many cases replace intuition. The expression
systems biology is born concomitantly with the deciphering of the human
genome sequence, and a large part (but not all) of the discipline incorporates
high-throughput molecular and cellular biology data at some level in its ap-
proach. Indeed high-throughput technologies enable the complete description
of biological systems at some level (e.g. genome or transcriptome). These data
inventories, and how complete they could be, are not yet biological knowledge,
and are not enough per se to explain and interpret biological systems. Math-
ematical modelling is then required to extract coherent and useful knowledge
out of these heaps of observations and overcome a purely phenomenologi-
cal representation. The purpose here is three-fold: organising these facts into
categories, explaining the functioning of the system, and predicting new be-
haviours of the systems. Thus the systems biology approach is defined as the
classical scientific method in biology (Ayala, 1968).

But one should also be aware of all that mathematical modelling can offer:
first it provides a formal language to describe knowledge in an unambiguous
way; second it enables organisation, classification of the large sets of data
that biology is now producing, achieving a first step toward understanding;
third it provides a framework for reasoning about the biological system, and
eventually it enables drawing of hypotheses and designing experiments for
validating them. After iterative cycles of experimental validations and model
improvements the model may become predictive and also may even identify
explanations of the system behaviour. These aspects are described in detail in
Chapter 7 and Chapter 8. Finally, mathematical tools can also introduce
new concepts or give formal substance to concepts that intuition had proposed.
In the context of cancer systems biology, robustness is one of the main concepts
that illustrate this function of mathematics. Chapter 9 describes in detail
this subject.

1.6.2 Systems biology: Is it data-driven or model-driven?

Several definitions of systems biology have been proposed, which can be
broken down into two main categories: data-driven approaches, and model-
driven approaches.

The past of computational molecular biology research has been dominated
by data-mining approaches, which aim at finding regularities in large datasets
like genome sequences. A typical example could be deciphering the structure of
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genes and of all elements that constitute a genome (introns, exons, promoters,
enhancers, insulators and other regulatory sequences). These approaches make
use of sophisticated statistical approaches like Hidden Markov Model (HMM)
and Support Vector Machine (SVM). The models they produced are heuristics,
make in general little assumptions about the knowledge of internal mechanisms
of the system, and are well suited precisely in these situations of uncertainty.

The second type of approaches is based on models which simulate the
dynamics of the biological system, which is typically described as a network of
interacting nodes (e.g. genes, proteins, small molecules, complexes). Nodes and
edges in this network reflect our knowledge of the biological mechanisms that
locally control the functioning of parts of the systems. The global modelling of
the network enables to simulate the behaviour of the system. Note that there
are many different types of networks, depending on the system modelled and
the level of precision required or achievable.

This separation of systems biology approaches in two categories, one statis-
tical and one dynamical, is of course a simplification of reality, and ignores in-
termediary approaches, like prior knowledge integration into statistical learn-
ing, as presented in Chapter 6. These two parts can also be presented from a
historical perspective. Systems biology as a scientific discipline, was proposed
in the beginning of the millennium and defined independently by two schools:

1. On the one hand, Leroy Hood and co-workers defined systems biology as
a pragmatic approach which consists of four steps (Ideker et al., 2001):
first, large-scale data are collected to describe all the components of the
system (e.g. at DNA level, RNA level, etc.); second, the components of
the system are systematically perturbed (by genetic means, or drugs, or
control of the environment) and monitored, if possible on a global scale
(typically all genes are assayed); third, a model is built and iteratively
refined so that its predictions fit experimental observations; finally spe-
cific perturbations are designed and performed to test the model and
distinguish between competing hypotheses.

2. On the other hand, another school which can be represented by Hi-
roaki Kitano (Kitano, 2002b) defines systems biology as a science which
studies dynamical behaviours of biological systems, by focusing on the
interactions of their components. The idea is that these behaviours, and
in particular biological functions, are intrinsic properties of the systems
that emerge from the interactions between components and cannot be
revealed by the study of individual components. The robustness of bi-
ological systems, the fact that biological systems maintain their states
and functions despite external perturbations, is a typical example of
such a property.

The first approach can be envisaged as a bottom-up, data-driven approach
of pragmatic biologists where models are built from data. Mathematical tools
are heuristics which integrate observations. The risk is to stay at the phe-
nomenological level, and achieve little prediction beyond the observed cases.
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The second one is rather a top-down, model-driven approach of mathemati-
cians which captures knowledge in a model and then challenges it with reality.
Here the trap could be to build elegant mathematical abstractions without bi-
ological impact.

1.6.3 Systems biology: Yet another definition

To the authors of this book it seems that computational systems biol-
ogy should be defined as an attempt to reconcile the two schools introduced
above, which can be historically related to the long-standing split between
experimental biologists and theoretical biologists. The availability of close-to-
exhaustive descriptions of biological systems should make this reconciliation
possible in a near future.

Finally scientific disciplines can also be defined from the ultimate goal they
pursue, even or in particular if this goal seems out of reach in a foreseeable
future: systems biology aims at constructing a virtual model of any biological
organism, or even ecosystem, on which in silico experiments could be con-
ducted, thus accelerating hypotheses testing and avoiding all limitations of
in vivo and in vitro experiments. One appealing application in medicine is of
course a virtual patient, on which innovative therapeutic strategies could be
designed and tested in silico before experimental validation.

A first move in that direction was done in 2008 by Japanese and British re-
searchers during a joint meeting held under the auspices of two major funding
agencies (JST and BBSRC). A declaration, the Tokyo declaration, was issued.
It states that progress in the field of systems biology is now such that it consti-
tutes a new paradigm in biology. This paradigm shift is needed to make sense
out of all the results of molecular biology, which though impressive fall short
in extending our understanding of life, and converting this knowledge to prac-
tical realisations in health, environment or agriculture domains. Establishing
a road map of systems biology should therefore be a priority. They propose
an effort to “generating a comprehensive molecules-based computational repre-
sentation of human physiology,” with a scaling approach on pathway, organs,
and then organisms, starting with animal models and aiming at building a
silicon human: “Recent advances in systems biology indicate that the time is
now ripe to initiate a grand challenge project to create over the next thirty
years a comprehensive, molecules-based, multiscale, computational model of
the human (the virtual human), capable of simulating and predicting, with a
reasonable degree of accuracy, the consequences of most of the perturbations
that are relevant to healthcare.”

Another example is the virtual physiological human program, a European
initiative which funded fifteen projects in diverse domains of human health
(http://www.vph-noe.eu/): “The concept of a virtual physical human is a so-
phisticated computer modelling tool, which compares observations of an indi-
vidual patient and relates them to a vast dataset of observations of others with
similar symptoms and known conditions. By processing all this information,
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the model can simulate the likely reaction of the individual patient to possi-
ble treatments or interventions. Such tools will not only improve the quality
of treatment offered to patients who are already ill or injured, but could also
be used in preventive medicine, to predict occurrence or worsening of specific
diseases in people at risk, for example through family history.”

1.6.4 Systems biology of cancer

How can we define systems biology of cancer? Several authors have given
definitions, in general emphasising a data-driven approach, or a model-driven
one (Kitano, 2003, 2004b; Khalil and Hill, 2005; Hornberg et al., 2006;
Gonzalez-Angulo et al., 2010; Kreeger and Lauffenburger, 2010; Sonnenschein
and Soto, 2011). In this book both cancer and systems biology have been de-
fined above, and application of systems biology approach in cancer research is
very natural, since cancer is a disease of interactions: interactions within sig-
nalling pathways, and between signalling pathways (Hanahan and Weinberg,
2011), interactions between cells, and with the microenvironment (Sonnen-
schein and Soto, 2011). But are there some other features specific to cancer
systems biology?

The first feature is undoubtedly the objective of cancer systems biology:
finding intervention points and therapeutic strategies for curing the disease.
Also we already underlined the relative failure of the reductionist approach in
providing full understanding of cancer biology and defeating the pathology.
Both from a cognitive and from an applicative point of view systems biology
is required.

A concept from systems biology that has shown its strong pertinence in
studying both biological and clinical aspects of cancer is the notion of robust-
ness (Kitano, 2003, 2004b). Any definition of cancer systems biology should
mention this contribution.

Another characteristic of cancer systems biology, and the reason why can-
cer research requires systems biology more than any other biological system, is
linked to the very nature of the pathology. No two tumours are identical. The
genetic and epigenetic profile of any tumour has its own specificities which
makes any extrapolation (e.g. assuming that treatment should be equally effi-
cient) from one situation to another a risky bet. The rewiring of the biological
networks in pathological conditions, though not yet precisely documented, is
probably specific to any tumour. In these conditions, building a model of the
patient, considering his genetic makeup, would solely allow us to simulate the
action of potential drugs, thus assessing efficiency and anticipating possible
negative effects in the specific context of the patient body and environment.
This could save a lot of time and effort in the development of drugs, in clinical
trials (e.g. by selecting in silico the patient to include in a trial or to exclude)
and in the design of innovative, multidrug therapeutic strategies.

Cancer systems biology has then a flavour of cancer systems medicine.
One of the early visions of this idea was developed at the Institute of Systems
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Biology in Seattle by Leroy Hood, and termed P4 medicine (P4 stands for
predictive, preventive, personalised and participatory). The ingredients of the
approach are the same as other visions: high-throughput technologies for char-
acterising samples, computational and mathematical tools for making sense
out of the data, modelling of biological regulatory networks and identification
of therapeutic intervention points. As mentioned earlier, they develop a data-
driven, pragmatic approach based on heuristics. Another characteristic of this
proposition lies in the fundamental change in the practice of medicine that
they anticipate. The practice of medicine is mainly reactive today, in the sense
that the physician mainly reacts to the diseased state of the patient and little
is done to prevent occurrence of disease. In comparison the systems medicine
will become predictive, based on the genetic makeup of an individual and his
environment; this will allow preventive actions, like adapting lifestyle, taking
preventive drugs, to avoid diseases for which the individual will be at high
risk. This idea was of course older, and the term predictive medicine was first
introduced by Jean Dausset (Nobel prize in medicine, 1980). There are two
consequences to this new practice: first the medicine has become personalised,
tailored to the unique genetic feature of the individual; second it will become
participatory, as it opens a incredibly wide variety of options about personal
healthcare, and requires in-depth exchanges between the individual and his
physicians.

Finally the most famous vision of cancer systems biology came from Hana-
han and Weinberg (2000). In a landmark paper in 2000, they recapitulated
a quarter century of molecular oncology research, and anticipated a major
change in our paradigm of cancer research. They made the following prophecy:

“Two decades from now, having fully charted the wiring diagrams of every
cellular signalling pathway, it will be possible to lay out the complete inte-
grated circuit of the cell upon its current outline. We will then be able to apply
the tools of mathematical modelling to explain how specific genetic lesions
serve to reprogram this integrated circuit in each of the constituent cell types
so as to manifest cancer. With holistic clarity of mechanism, cancer progno-
sis and treatment will become a rational science, unrecognisable by current
practitioners. It will be possible to understand with precision how and why
treatment regimens and specific antitumour drugs succeed or fail. We envision
anticancer drugs targeted to each of the hallmark capabilities of cancer; some,
used in appropriate combinations and in concert with sophisticated technolo-
gies to detect and identify all stages of disease progression, will be able to
prevent incipient cancers from developing, while others will cure preexisting
cancers, elusive goals at present. One day, we imagine that cancer biology and
treatment - at present, a patchwork quilt of cell biology, genetics, histopathol-
ogy, biochemistry, immunology, and pharmacology - will become a science with
a conceptual structure and logical coherence that rivals that of chemistry or
physics.”

It is stunning to realise that they described quite precisely the coming rise
of cancer systems biology, which at that time had not yet hatched.
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1.7 About this book

1.7.1 What does this book try to achieve?

Authors of this book are members of a cancer computational systems bi-
ology laboratory in Institut Curie, Paris, a centre for cancer research and
cure. This book arose from our experience during one decade as computa-
tional biologists working in close collaboration with experimental biologists
and clinicians. Our daily practice led us to observe and take part in many
aspects of cancer research, that this book tries to summarise. We have expe-
rienced the exciting progression of cancer research toward a big science, and
would like to share this experience with the reader. Over the years, we have
developed a conviction that the future of cancer research and the develop-
ment of new therapeutic strategies rely on our ability to capture biological
and clinical questions and convert them into mathematical models, integrat-
ing both our knowledge of tumour progression mechanisms and the tsunami
of information brought by high-throughput technologies like microarrays and
NGS. There are of course many excellent books presenting the computational
aspects of cancer research. This book combines the following:

• Offers a comprehensive overview of concepts and methods in computa-
tional systems biology of cancer

• Dissects the computational and design principles behind some of the
existing tools

• Provides listings of additional available bioinformatics resources relevant
for a computational systems biology approach to cancer

• Illustrates with biological applications

• Presents dynamic modelling of cancer related networks and data mining
approaches

• Deals in-depth with clinical aspects and biological questions

Finally it is a self-consistent monograph written by colleagues from differ-
ent fields of computational biology working door-to-door for several years on
common projects.

1.7.2 Who should read this book?

The main audience of this book is the increasing number of graduate stu-
dents, engineers and researchers involved in cancer bioinformatics and systems
biology research, both in academia and in the pharmaceutical and biotechno-
logical industries. Our goal is to provide a textbook and a guide for students
and bioinformatics professionals from both computational and life sciences
backgrounds. Moreover, we expect to provide an entry point to the field of
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cancer research for students and researchers in mathematics and computer sci-
ence, and conversely an entry point to the use of computational and modelling
approaches for students and researchers in biology and oncology.

This book and accompanying web site can also be used as a central resource
for teaching systems biology and bioinformatics. It comes with a summary of
main messages for each chapter, a series of exercises with data and algorithms,
example of applications, and it offers links to other materials for deepening
the subject if needed.

To ensure such a wide audience, we have tried to make the book as self-
contained as possible, and assume very limited knowledge in biology, math-
ematics or computer science from the reader. The readers with good knowl-
edge of the biology of cancer may skip Chapter 2, those familiar with high-
throughput technologies could skip Chapter 3. Some parts of Chapter 5
to Chapter 11 introduce some mathematical aspects and might be out of
reach to the reader with no background in mathematics, but skipping the
most technical parts does not prevent understanding of the rest of the book.

1.7.3 How is this book organised?

This book presents concepts, algorithmic methods, bioinformatics tools
and biological applications, with accompanying tables and illustrations. It
introduces theoretical elements, and illustrates them with applications on real
data.

Each chapter contains:

• An overview of the problem

• A presentation of the main concepts (which are also highlighted in boxes)
and state-of-the-art methods; some chapters end with a list of key con-
cepts

• A description of existing tools

• An application to concrete cases

• A listing and brief description of publicly available resources (data and
software)

• References to further reading and to more advanced material

• A set of knowledge-testing exercises for several chapters

This chapter, Chapter 1, presents the subject and the rationale of the
book. It defines systems biology in general and its application to cancer study.
A short historical perspective is given.

Chapter 2 introduces the basic principles of the molecular biology of can-
cer. It assumes that the reader is familiar with the biology of the cell which
is nevertheless described in the appendices. This chapter describes the series
of events that transform a normal cell into a cancer cell during the tumour
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progression. The traits common in all cancers and referred to as hallmarks are
presented in turn.

Chapter 3 presents the main Experimental high-throughput technologies
for investigating cancer : microarrays, NGS, mass spectrometry and cellular
phenotyping. These omics technologies appeared during the last two decades
and have enabled an unprecedented high-throughput description of normal
and tumour cells, thus opening the way to the systems biology of cancer.

Chapter 4 provides an overview of the bioinformatics tools and standards
for systems biology which are necessary to any systems biology project, as
enabling resources. This includes experimental design, data normalisation and
quality control.This chapter also introduces a series of resources that are used
in computational systems biology: raw data repositories, pathway and network
databases, and standards for describing data and models.

Chapter 5 Exploring the diversity of cancers, examines how exploratory
analysis of large amounts of cancer omics data can unveil the heterogene-
ity of cancers at the molecular level, and shed light on biological processes
underpinning this diversity.

Chapter 6, Prognosis and prediction: Towards individualised treatments,
focuses on the problem of predicting the evolution of cancer (prognosis) and
response to therapies (prediction). It deals in particular with gene signatures,
the statistics behind the construction of biomarkers, the supervised classifi-
cation setting, the methods for feature selection, the problems of validation,
and the possibility to include prior knowledge in predictive models.

Chapter 7, Mathematical modelling applied to cancer cell biology, exposes
our motivation, goals and methods of modelling biological systems using for-
mal mathematical tools. Two examples of mathematical models of cell cycle
using both chemical kinetics and logical formalisms are presented. Motifs of
feedback loops are also studied.

Chapter 8, Mathematical modelling of cancer processes, presents a review
of the current status of knowledge around some of these hallmarks with a
mathematical perspective and focus on some specific aspects of each hallmark
and characteristics as an example.

Chapter 9, Cancer robustness, introduces the notion of robustness, one
typical property whose study requires a computational systems biology ap-
proach. It provides a general review of relevant existing ideas in this rapidly
evolving field. It describes the general mechanisms leading to robustness in
biological systems in general and robustness of cancer in particular, and the
use of the notion of robustness in cancer treatment strategies. Then in Chap-
ter 10, the mathematical principles of biological and cancer robustness will
be reviewed.

In Chapter 11, Finding targets, presents mathematical techniques for
finding perturbations that should be applied to the cancer cell in order to
disrupt some of its tumorigenic properties and achieve either reversal of the
tumorigenic phenotype or pushing the cancer cell further on the way to cell
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death. Data-driven approaches based on application of statistical techniques
are exposed. Techniques based on network analysis are then presented.

Chapter 12, the conclusion, tries to examine what the perspectives and
challenges ahead in computational systems biology of cancer are, and also
mention connected fields of research that we intentionally left out of the scope
of this book.

In the Appendices, a reminder of the basic principles of molecular biol-
ogy of the cell is provided and serves as a prerequisite to read Chapter 2.
Moreover, the tools, software, databases and important genes mentioned in
this book are compiled.

This book also contain a glossary; words which are defined therein appear
as follows in the text: tumour progression∗.

The reader will find accompanying materials available on the website
http://www.cancer-systems-biology.net:

• Most of the figures in the book are distributed under the Creative Com-
mons license CC-BY-SA. Anybody is free to copy, distribute, transmit
and adapt the figure under the following conditions: she/he must at-
tribute the figure citing the present book, and if she/he alters, trans-
forms the figures, she/he may distribute the resulting work only under
the license CC-BY-SA.

• A tutorial provides an overview of an analysis scenario which can be
performed on high-throughput data. As an illustration, the characteri-
sation of gene expression patterns and DNA copy number alteration is
presented on breast cancer data. Scripts and data are provided such that
the reader can reproduce the analysis on her/his computer.
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Chapter 2

Basic principles of the molecular
biology of cancer

The human body consists of billions of different cells and thousands of cell
types organised in many tissues. These cells complete their specific func-
tion according to a program using an information flow proposed by Crick
(1970) in the central dogma of molecular biology (see Appendices). Can-
cer cells arise from these normal cells. Cancers are classified into four large
groups according to the normal cell from which they originate. The majority
of cancers (80%) arise from ephitelial normal cells and forms the first group
called carcinomas∗ (e.g. breast, ovary, cervix, prostate, lung, pancreas, colon,
etc.). All the other cancers arise from nonepithelial normal cells. The second
group contains sarcomas∗ which derive from connective or supportive tissue
(e.g. bone, cartilage, fat, muscle, blood vessels) and soft tissues. The third
group arises from hematopoetic tissues (i.e. blood-forming cells) and includes
lymphomas∗ and leukaemias∗. The last group consists of tumours arising
from the central and peripheral nervous system and includes glioblastomas∗,
neuroblastomas∗, schwannomas∗ and medulloblastomas∗. All cancers
form solid tumours except in the case of leukaemias which generate circulat-
ing tumoral cells in the blood. Cancer is a heterogeneous disease in terms of
morphological, clinical and molecular characteristics (see Section 1.4).

Despite this heterogeneity, cancers share many characteristics. They are
described throughout this chapter which presents the series of events that
transform a normal cell into a cancer cell during tumour progression∗.
The molecular alterations which affect gene regulation and signal transduc-
tion mechanisms are detailed. The traits common in all cancers referred to
as hallmarks, are enumerated in turn with a particular focus on chromosome
aberrations. A brief overview of basic principles that are essential to under-
stand the biology of cancer is proposed here. Comprehensive and excellent
books such as Weinberg (2007) and Alberts et al. (2002) as well as the semi-
nal reviews by Hanahan and Weinberg (2000, 2011) deserve to be studied for
more details. This chapter assumes that the reader is familiar with the basic
principles of molecular biology of the cell which are nevertheless reviewed in
the Appendices.

25
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2.1 Progressive accumulation of mutations

During a lifetime, cells die and have to be replaced to maintain the in-
tegrity of the organism. Therefore, cells reproduce during the cell cycle (see
Box 2.1). In a normal human body, about 1016 cell divisions take place in the
course of a lifetime. During cell division, there are fundamental limitations on
the accuracy of DNA replication and repair so that mutations∗ occur spon-
taneously with a rate around 10−7 mutations per gene per cell division (Ko-
marova, 2005). Main alterations are point mutations (i.e. modification of one
nucleotide), insertion, deletion, or amplification∗ of DNA sequences. Muta-
tion in the gene sequence can alter the structure and function of the gene
product. However, in some case the mutation is neutral, (i.e. it results in a
different but chemically similar amino acid) or even silent (i.e. it does not
change the amino acid). In the context of cancer, a mutation is referred to
as a genetic change and corresponds to a modification of the DNA sequence
followed by modifications of gene products and related cellular mechanism.
Mutations can also occur due to exposure to mutagenic agents such as chem-
ical agents (e.g. tobacco smoke), physical agents (e.g. UV light) or biological
agents (e.g. viruses). As a result, in a lifetime, each gene may have undergone a
mutation on about 109 separate occasions. Among the resulting mutant cells,
there will be many having perturbed mechanisms which cause disturbances in
gene regulation. As a consequence, the harmonious behaviour of the cell with
respect to its neighbours will be affected too. These changes are transmit-
ted to the cell offspring. Inheritable nongenetic changes can also occur during
the cell cycle. They correspond to epigenetic characteristic modifications (see
Section 2.4) and are called epimutations∗. Thus, the number of mutations,
including genetic mutations and epimutations is likely to be greater than 109

per gene. According to the aforementioned figures, the question about cancer
does not seem to be “why it occurs?” but “why it occurs so infrequently?”.
Clearly, if a single mutation is enough to convert a typical healthy cell into
a cancer cell which proliferates without restraint, humans and animals would
not be viable organisms. Hopefully, protective mechanisms such as apoptosis
can eradicate abnormal cells from the organisms. Therefore, many mutations
are needed to transform a normal cell into a cancer cell which can bypass
these control mechanisms.

Why are so many mutations needed? One explanation is that cellular pro-
cesses are controlled in complex and interconnected ways: cells use redundant
regulatory mechanisms to help them to maintain tight and precise control
over their behaviour and integrity. Thus, many different regulatory systems
have to be disrupted before a cell can throw off its normal restraints and be-
have defiantly as a malignant cancer cell. In addition, tumour cells may meet
new barriers to further expand at each stage of the evolutionary process and
therefore need to acquire additional mutations. Therefore cancer is a multi-
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step process which requires an accumulation of several mutations (Vogelstein
and Kinzler, 1993). This explains why its prevalence increases with the age
of individuals. However, some cancers, such as paediatric cancers, involve less
complex mechanisms of tumorigenesis∗, when only one driving mutation is
able to trigger tumor growth.

o BOX 2.1: Cell cycle
The cell cycle can be divided in four successive phases: G1, S, G2 and
M. During G1, the cell grows and prepares itself for S phase, dur-
ing which DNA replication occurs. From one double-stranded DNA
molecule (chromosome), two identical double-stranded DNA molecules
(called sister chromatids) are formed and held together by cohesion
proteins. The G2 phase is the temporal gap between the end of repli-
cation and the beginning of mitosis. During the M phase, replicated
DNA molecules are segregated to daughter cells. The sister chromatids
separate so that the daughter cells receive one copy of each chromo-
some. The cell cycle is the progression through these four phases.

In essence, cancer is a genetic disease but is caused by somatic
mutations∗ while other genetic diseases are caused by germ-line mutations.
However, familial forms of cancer exist. In these cases, mutations which have
been inherited from parents can be already present in all the cells of the body
and transmitted from one generation to another. In breast cancer, we consider
that about 15% of cancer cases can be attributed to inherited predisposition
due to the presence of gene mutations. The well-known examples in breast
cancer are the mutations of BRCA1 and BRCA2 genes which are involved in
DNA repair during the cell cycle. These two genes account for about 16% of
the familial risk of breast cancer. Since a mutation is constitutively present in
the cells, the normal function of BRCA genes relies only on the remaining wild
type allele. Therefore, a patient who carries BRCA1 or BRCA2 mutations has
a 10- to 20-fold higher risk of developing breast cancer (Stratton and Rahman,
2008). Whatever the cancer, the identification of new susceptibility alleles has
direct application in the implementation of cancer prevention strategies.

2.2 Cancer-critical genes

Cancer is a disease of genes caused by the accumulation of several muta-
tions. The most important genes whose alterations are causal in tumour pro-
gression are named cancer-critical genes (Alberts et al., 2002) and most of the
known ones are reported in Vogelstein and Kinzler (2004), Bunz (2008) and in
the Catalogue of Somatic Mutations in Cancer (COSMIC) (Forbes et al., 2008,
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FIGURE 2.1 Oncogene and tumour suppressor gene. (A) Oncogenes are
dominant: a gain-of-function in one copy of a gene can induce cancer. (B) Tumour
suppressor genes are generally recessive: both alleles of the gene must be lost to in-
duce cancer. Exceptions to this rule exist and are detailed in Figure 2.3. Activating
and inactivating mutations are represented by black and white boxes respectively.
Image and legend adapted from Alberts et al. (2002).

2011). They are grouped into two categories, according to whether cancer risk
is increased due to a high or little activity of the gene product.

2.2.1 Oncogenes

The first category contains genes for which a gain-of-function mutation
increases cancer risk. They are called proto-oncogenes and their mutant
and overactive forms are called oncogenes (see Figure 2.1A). Oncogenes
encode proteins which control cell proliferation, apoptosis, or both. They
can be activated by structural alterations resulting from mutation (see Fig-
ure 2.2A), amplification (see Figure 2.2B) and chromosome rearrangements
causing a juxtaposition to enhancer elements (see Figure 2.2C1) or a fusion
gene (see Figure 2.2C2) (Croce, 2008; Alberts et al., 2002). Mutations and
translocations∗ can occur as initiating events or during tumour progression,
whereas amplification usually occurs during tumour progression. The products
of oncogenes can be classified in six broad groups: transcription factors (e.g.
amplification of MYCN in neuroblastoma), chromatin remodelers (e.g. fusion
gene with MLL in leukaemia), growth factors (e.g. amplification of FGF4 in
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FIGURE 2.2 From proto-oncogene to oncogene. Three mechanisms can trans-
form a proto-oncogene into an oncogene: (A) mutations, (B) gene amplification and
(C) chromosome rearrangements. Image adapted from Alberts et al. (2002).

Kaposi’s1 sarcoma), growth factor receptors (e.g. mutation of FGFR3 in blad-
der cancer, see Section 5.5.5), signal transducers (e.g. mutation of KRAS
in colon cancer), and apoptosis regulators (e.g. fusion gene with BCL2 in
lymphoma).

The example of the MYC oncogene family. In neuroblastoma an
amplification of MYCN which overproduces this protein is frequently observed
(see Figure 2.2B). Other mechanisms involving translocation and the fusion
gene also play an important role (Mitelman et al., 2007). For example, if a
proto-oncogene is translocated near a DNA domain which normally regulates
the constitutional expression of a gene at a high-level, then the proto-oncogene
will be highly transcribed and becomes an oncogene (see Figure 2.2C1).
This occurs in Burkitt’s lymphoma where MYC is juxtaposed with regulatory
elements of the immunoglobulin heavy chain IGH gene. The MYC gene is
constitutively activated because its expression is driven by immunoglobulin
regulatory elements. In this case the translocation leads to an upregulation of
the proto-oncogene.

The example of the EWS/FLI1 oncogene. Translocation can also
create a new gene called a chimeric gene or the fusion gene (see Figure 2.2C2)
by fusion of two existing genes. This phenomenon occurs in Ewing’s sarcoma2

where a translocation between chromosomes 11 and 22 merges a portion of
the EWS gene and the FLI1 gene into the chimeric oncogenic transcription
factor gene EWS/FLI1. In these tumours, the fusion gene often involves EWS
mainly with FLI1 and less frequently with other genes.

1Kaposi’s sarcoma is a tumour caused by a human herpesvirus.
2Ewing’s sarcoma is a paediatric cancer in which tumours are found in the bone or in

soft tissue.
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FIGURE 2.3 Models of tumour suppression. For different models, the severity
of the disease is explained as a function of the expression level of the gene. (A) In
the Knudson two-hit model, two mutations are required to inactivate the tumour
suppressor gene and promote tumorigenesis. This is the case in retinoblastoma with
the RB gene. (B) In the case of haploinsufficiency, a monoallelic inactivation of the
tumour suppressor gene can form cancer. A biallelic inactivation enhances tumour
progression and metastasis. This mechanism occurs for TP53. (C) In the continuum
model for the tumour suppressor gene, decreasing slightly the expression level or the
protein activity increases the severity of the disease. (D) The continuum model can
be applied to oncogenes too; increasing the expression level of the oncogene increases
the severity of the disease. Image adapted from Berger et al. (2011)

2.2.2 Tumour suppressor genes

The second category contains genes for which a loss-of-function mutation
creates the danger. They are called tumour suppressor genes and have
cancer-preventive effects which usually require the presence of only a single
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functional gene. To give rise to cancer these genes have generally to undergo
biallellic inactivation in tumours; this is known as the Knudson two-hit model
(see Figure 2.1B, Figure 2.3A and Knudson, 1971). Inheritance of a single
mutant allele increases tumour susceptibility, because only one additional mu-
tation is required for complete loss of gene function. This is why some tumour
suppressor genes have been identified in familial forms of cancer such as RB
in retinoblastoma∗ (Knudson, 1971). RB encodes a protein involved in the
control of the cell cycle and its activity is deregulated in virtually all types
of cancers (Weinberg, 2007), including both familial and sporadic∗ forms
(osteosarcomas∗, breast carcinomas∗, small cell lung carcinomas, bladder
carcinomas, melanomas∗, etc.). As for oncogenes, tumour suppressor genes
are involved in many functions (Sherr, 2004). Among tumour suppressor genes
let us mention TP53 which encodes a transcription factor involved in genome
integrity maintenance, ATM which encodes a protein kinase involved in DNA
damage signal transduction (see Figure A.6), BRCA1 and BRCA2 which
encode proteins involved in DNA repair during the cell cycle.

The example of the RB tumour suppressor gene. If a mutation
inherited from one parent or arisen spontaneously in one allele during repli-
cation occurs in RB, the protein coded by the allele is nonfunctional. Then,
a second event occurs. For example, the duplication of the chromosome car-
rying the mutation is followed by the loss of the chromosome carrying the
functional gene (i.e. the Loss of Heterozygosity (LOH) event depicted in Fig-
ure 2.13B). A a result, RB is present in two copies of nonfunctional forms
and will no longer be able to control the cell cycle. This is the Knudson two-hit
model. From the different aberration configurations depicted in Figure 2.13
we can imagine other combinations of alterations which also lead to the same
effect.

The Knudson two-hit model implies the inactivation of both alleles to ini-
tiate tumorigenesis (see Figure 2.1B and Figure 2.3A). However, there is
evidence that not only biallelic inactivation but also monoallelic inactivation
of tumour suppressor genes can cause cancer. The main mechanisms are called
negative dominance∗ and haploinsufficiency∗ (Berger and Pandolfi, 2011;
Berger et al., 2011). For example, in the case of haploinsufficiency (see Fig-
ure 2.3B), a single-copy loss of TP53 is sufficient for the development of
cancer, but the complete loss of TP53 further enhances and promotes tumour
progression and metastasis (Berger and Pandolfi, 2011). The Knudson two-hit
model and the haploinsufficiency model are discrete models in the sense that
the successive mutations fully inactivate each allele in a step-wise fashion.
Berger and Pandolfi (2011) proposed a continuum model which assumes that
even subtle decreases in gene expression level or protein activity of the tumour
suppressor gene can be relevant to cancer formation. The severity of cancer is
related to a continuum of decreasing tumour suppressor gene expression level,
rather than to discrete changes in DNA copy number (see Figure 2.3C). The
continuum model holds for the case of an oncogene too. Increasing its expres-
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sion level will generally be positively correlated with the severity of the disease
(see Figure 2.3D). This continuum model theory is still under debate.
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FIGURE 2.4 Role of miRNA in a cancer cell. Any defects in microRNA
(miRNA) biogenesis (indicated by question marks) can lead to inappropriate levels
of the target proteins. (A) The reduction or deletion of a miRNA which acts as a
tumour suppressor leads to an unexpected high level of the target oncoprotein. (B)
The amplification or overexpression of a miRNA which acts as an oncogene leads to
the elimination of the target tumour suppressor protein. Image and legend adapted
from Esquela-Kerscher and Slack (2006).
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2.2.3 Non-protein-coding cancer-critical genes

Besides protein-coding genes, noncoding RNA (ncRNA) and especially
microRNAs (miRNA) can act as either an oncogene or a tumour suppressor
gene (Esquela-Kerscher and Slack, 2006; Fabbri et al., 2008). A defect in
miRNA gene regulation leading to a loss or an amplification of miRNAs has
been reported in a variety of cancers (Calin and Croce, 2006). Typically, an
underexpression of a miRNA which targets an oncogene or an overexpression
of a miRNA which targets a tumour suppressor gene will have an impact on
cancer development (see Figure 2.4).

2.3 Evolution of tumour cell populations

2.3.1 Clonal origin

The clonal evolution of tumour cell populations was proposed by Nowell
(1976) and claims that tumour cells originate from a single cell which has
acquired an accumulation of mutations as described previously. The model
argues that tumour development proceeds via a process similar to Darwinian
evolution, in which a series of random genetic changes, each conferring one
or another type of growth advantage, are selected and lead to the progres-
sive transformation of normal cells into cancer cells (Hanahan and Weinberg,
2000). From an initial population of slightly abnormal cells, descendants of a
single mutant ancestor evolve from bad to worse through successive cycles of
mutation and natural selection. At each stage, one cell acquires an additional
mutation which gives it a selective advantage over its neighbours, making
it better able to thrive in its environment which, inside a tumour, may be
harsh, with low levels of oxygen and scarce nutrients. The progeny of this
well-adapted cell will continue to divide, eventually becoming the dominant
clone in the developing cancer. Thus, tumours grow in fits and starts, as ad-
ditional advantageous mutations occur and the cells bearing them proliferate.
Tumour progession usually takes many years.

2.3.2 Stemness of cancer cells

Normal stem cells have the capacity to self-renew, meaning undergo divi-
sions which allow their number to remain constant and give rise to a variety of
differentiated cells. By analogy to stem cells, Cancer Stem Cells (CSC)∗

have the same properties. In the CSC model, the tumour is viewed as an
abnormal organ with stem cells driving the growth (see Figure 2.5). This
model implies that, in a cancer with a defined set of genetic alterations, a
mixture of cell types with a different malignant potential are present. In a
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FIGURE 2.5 Hierarchical organisation of a tumour according to the
CSC model. CSCs acquire additional genetic alterations during tumour progres-
sion which can be beneficial for the tumour. These additional alterations form new
subpopulations within the tumour. Each CSC has the ability to self-renew and to
produce more differentiated cells. In this model, selection pressure is predicted to
act on the CSC level. The dotted arrow indicates the possibility for differentiated
cells to be converted back to stem cells due to the accumulation of mutation. Image
and legend adapted from Vermeulen et al. (2008).

tumour both differentiated cells which have lost the capacity to propagate
a tumour, and cells which retain a clonogenic capacity exist. The proposed
hierarchical organisation of a tumour could be easily integrated into the clas-
sical clonal selection proposed in Nowell’s theory. As explained before, this
theory views a tumour as a clonally-derived cell population, which acquires
new potentially advantageous mutations and gives rise to new more rapidly
proliferating clones. When one integrates the CSC theory into this model, the
selection pressure is predicted to act at the level of the CSC compartment.
This does not mean, however, that certain features present only in more dif-
ferentiated cells in the tumour could not be subject to selection, especially
if they increase the growth rate of the CSCs from which they are derived
(Vermeulen et al., 2008).

The CSC model is still under debate and the question is whether the cell
of origin of the CSC has to be a stem cell or whether the accumulation of
mutations converts differentiated cells back into stem cells. In this theory, the
only cells capable of initiating and driving tumour growth are CSCs and it is
logical to assume that a metastasis∗ arises from CSCs.
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2.4 Alterations of gene regulation and signal transduc-
tion mechanisms

In normal cells, the gene regulation and signal transduction held in the
central dogma of molecular biology involve different mechanisms (see Sec-
tion A.1.2). Here we give some examples of the alterations of these mecha-
nisms occuring in cancer cells due to the progressive accumulation of muta-
tions.

2.4.1 Modification of transcription factor activity

In cancer, many transcription factors are involved in the tumour progres-
sion mechanism. The most famous one is incontestably the tumour suppressor
gene TP53, also known as the guardian of the genome; it plays a key role in
preserving the integrity of the genome (see Section A.1.2). TP53 is directly
involved in many cancers due to the presence of mutations in the gene which
encodes this protein (30 to 50% of common human cancers have a TP53 muta-
tion — figures from Weinberg, 2007). As a consequence, mutated TP53 loses
a part of its transcription factor functions since it can no longer bind to all
its target genes which can also no longer be transcribed into messenger RNA
(mRNA) (Vogelstein and Kinzler, 2004). Therefore, when mutated, TP53 can
no longer play its guardian’s role efficiently.

altered histone modification pattern

5mC

CpG-island methylation

normal tissue hyperplasia

invasion

neoplasia

basement membrane

FIGURE 2.6 Epigenetic alterations during tumour progression in carci-
nomas. During the tumour progression normal cells undergo transformation and
progress through different stages including hyperplasia∗, neoplasia∗ and inva-
sion. In this process, there is a progressive loss of total DNA methylation content,
an increased frequency of hypermethylated CpG islands, and an increased histone-
modification imbalance. 5mC stands for 5-methylcytosine which is the result of the
DNA methylation. Image adapted from Esteller (2008).
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FIGURE 2.7 Epigenetics patterns in a normal and cancer cells. The figure
describes the DNA methylation and histone modification patterns observed in cancer
cells (dotted boxes) with respect to their normal-tissue counterparts. (upper part)
Repetitive sequences are silenced by DNA methylation (A1) and histone methylation
(B1). These modifications prevent chromosomal instability, translocations and gene
disruption through the reactivation of endoparasitic sequences. In cancer cells, there
is a loss of DNA methylation (A2) and a loss of histone methylation (B2). (bottom
part) For transcriptionally active genes their CpG islands in the promoter region are
unmethylated (C1). However, methylation in the gene body facilitates transcription
and prevents spurious transcription start sites. The histone acetylation (D1) allows
the acessibility of transcription factors and polymerase in order to initiate tanscrip-
tion. In cancer cells, modifications of methylation and acetylation marks in histones
impact the gene regulation (B2 and D2). Image and legend adapted from Portela and
Esteller (2010); Rodŕıguez-Paredes and Esteller (2011); Gibney and Nolan (2010);
Taby and Issa (2010); Schones and Zhao (2008).



Basic principles of the molecular biology of cancer 37

2.4.2 Epigenetic modifications

In normal cells, epigenetic patterns serve as mechanisms to regulate gene
transcription and are also involved in the genomic stability (see Appendices).
In cancer, these patterns are altered according to three types of modifications
which occur during tumour progression (see Figure 2.6 and Figure 2.7).

First, hypomethylation of DNA in tumours (see Figure 2.7A2) as com-
pared to the level of DNA methylation in their normal-tissue counterparts
(see Figure 2.7A1) was one of the first epigenetic alteration found in hu-
man cancers. Cancer cells are characterised by a massive global loss of DNA
methylation with about 20–60% less overall 5-methyl-cytosine (Portela and
Esteller, 2010, for a review, see). The loss of methylation is mainly due to
hypomethylation of repetitive DNA sequences and extensive hypomethylated
genomic regions in gene-poor areas. During the development of the disease, the
degree of hypomethylation of genomic DNA increases as the lesion progresses
from a benign proliferation of cells to an invasive cancer. This hypomethyla-
tion increases chromosome instability leading to deletion, translocations and
chromosome rearrangements (see Section 2.8). This was observed by Shann
et al. (2008) in breast cancer cell lines. They have also shown that genes with
intragenic hypomethylation had a low level of expression. The loss of methyl
group from DNA can also cause loss of genomic imprinting∗ and can con-
tribute to gene activation in some types of cancers. This is the case for IGF2,
which increases the risk factor for colorectal cancer (Esteller, 2008).

Then, hypermethylation of promoter CpG island is a key process in
tumour progression and leads to the transcriptional silencing of tumour sup-
pressor genes (see Figure 2.7C2). In a normal cell, the promoter is generally
not methylated to allow the transcription (see Figure 2.7C1). Within the
promoter CpG islands, the hypermethylation of specific locations (i.e. the core
regions) have a crucial role in gene silencing (van Vlodrop et al., 2011). The
profiles of hypermethylation of the CpG islands in tumour suppressor genes
are specific to the type of cancer. Hypermethylation can be one of the lesions
in the Knudson two-hit model.

Finally, global alterations of histone modification patterns have the
potential to affect the structure and the integrity of the genome, and to disrupt
normal patterns of gene expression. According to its transcriptional state,
the human genome can be divided into actively transcribed euchromatin and
transcriptionally inactive heterochromatin. In normal cells, heterochromatin
is characterised by low levels of acetylation and high levels of certain types
of methylation (see Figure 2.7B1) while euchromatin is characterised by
high levels of acetylation (see Figure 2.7D1). In cancer cells, methylation
and acetylation marks are altered and impact on the gene transcription (see
Figure 2.7B2 and Figure 2.7D2). As alterations in DNA methylation, these
modifications may be causal factors in cancer. In bladder cancer, Stransky
et al. (2006) have shown that certain types of histone methylation can occur
in large genomic regions and lead to the loss of expression of neighbouring
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genes inside this region. This phenomenon is known as long-range epigenetic
silencing. In colorectal cancer, Frigola et al. (2006) have found that this long-
range epigenetic silencing at the level of histone methylation could also be
associated with DNA methylation.

In breast cancer, the distribution of aberrantly methylated regions across
the genome was also found to be nonrandom and tended to concentrate in
relatively small genomic regions spanning up to several hundred kilobases
(Novak et al., 2006, 2008). All the aforementioned epimutations can be one of
the lesions of the Knudson two-hit model as they can silence one allele (or even
both) of tumour suppressor genes. The understanding of all these epigenetic
changes and their contribution to tumour progression is very important for
further progress in the field of diagnosis, prognosis∗ and therapy as reported
by Jovanovic et al. (2010).

2.4.3 Modification of the post-transcriptional regulations

After transcription, a RNA transcript can be processed into different mR-
NAs to increase the diversity of proteins in a process called alternative splicing
(see Figure A.4). In cancer cells, there are aberrant alternative splice forms
which are not found in normal cells (Venables, 2004; Srebrow and Kornblihtt,
2006; Kim et al., 2008). They provide the cell with new functions. Moreover,
as mentioned in Section 2.2, miRNAs can act either as oncogenes or tumour
suppressors. Indeed, any alteration which affects its biogenesis and its ability
to bind target genes will prevent its important role in protein-coding gene
regulation (Calin and Croce, 2006).

2.4.4 Disruption of signal transduction

Disruptions in signalling pathways∗ caused by any alteration which
modifies the signal transmission are involved in cancer development. For ex-
ample, an inactivation of the tumour suppressor kinase gene ATM will prevent
TP53 from being activated and will impact the integrity of the cell in case of
DNA damage. Another example is the overexpression of the HER2 oncogene
(also known as ERBB2). HER2 is membrane surface-bound receptor tyrosine
kinase and is normally involved in the signal transduction pathways leading
to cell growth and differentiation. In about 20% of breast cancers, the HER2
kinase is overexpressed3 due to an amplification (see Section 2.8) and in-
duces an extensive activation of the signal transduction cascade, which causes
very aggressive cancers with high metastatic risk.

In the general case, the alteration of the signal transduction can be either
an absence of the signal amplification while the signal should be amplified or
an overamplification of the signal while it should not. Protein kinases are key

3A normal cell has 20,000 HER2 receptors while there are about 1.5 million in a HER2
positive cancer cell.
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FIGURE 2.8 Signalling pathways in the cell. Many different and inter-
connected signalling pathways allow the cell to integrate environmental stim-
uli. This complex network mediates commands such that the cell can live, re-
produce or die. Image adapted from Hanahan and Weinberg (2000), source:
http://commons.wikimedia.org/wiki/File:Signal transduction pathways.svg.

players which control the signal transduction cascade and are often altered in
cancers. Therefore, they represent therapeutic targets for drugs. For example,
drugs such as imatinib and gefitinib are small-molecule kinase inhibitors, and
trastuzumab4 is an antibody which targets the HER2 kinase receptor.

2.5 Cancer is a network disease

In the cell, many different signalling pathways and gene regulatory net-
works regulate specific cellular processes (see Figure 2.8 and Box 4.3). Al-
though each pathway and network are involved in a specific function they

4Trastuzumab is an antibody which interferes with the kinase activity of HER2 and
recruits immune effector cells which are responsible for antibody-dependent cytotoxicity.
Trastuzumab can also induce complement-dependent cytolysis and enhance phagocytosis
by Fc-receptors bearing antigen-presenting cells (Hudis, 2007).
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are not independent but intertwined with complex crosstalks. As discussed
previously, cancer is a gene disease but requires a multistep accumulation of
mutations and defects during the lifetime. This can be easily understood as
the huge and complex interconnections between regulators aims at making the
cell robust with respect to perturbations (see Chapter 9). Therefore tumour
progression cannot only be viewed as a gene disease but a network disease
too. As a result the systems biology approach offers a natural framework for
modelling tumour progression.

2.6 Tumour microenvironment

Solid tumours consist of a mixture of cancerous cells and noncancerous
cells. The latter include fibroblasts, immune cells, pericytes and endothelial
cells, and are referred to as stromal cells. This makes a tumour a very complex
system, as many different cell types are present simultaneously. Moreover, as
each cell releases many different biomolecules, the medium in which the tu-
mour lives is very complex too. Clearly, the biology of tumours can no longer
be understood simply by enumerating the traits of the cancer cells but instead
must take into account the contributions of the tumour microenvironment to
tumour progression. A major component of the microenvironment is the Ex-
tracellular Matrix (ECM)∗. In cancer the ECM is commonly deregulated,
becomes disorganised and affects tumour progression (Lu et al., 2012). Un-
derstanding the role of tumour microenvironment is a huge challenge and will
require sophisticated integrative approaches. Mathematical models integrating
the role of the tumour microenvironment will be reviewed in Section 8.1.3.

The microenvironment not only plays a role in tumorigenesis but is also
involved in drug response and the resistance of tumours to treatment. Indeed,
for an anticancer drug to kill cancer cells, it must be distributed throughout
the tumour vasculature, cross blood vessel walls, and diffuse in the tumour
tissue (Trédan et al., 2007). Moreover, the efficiency of the drug transport, ab-
sorption and metabolism depends on the genetic background of the patient,
as Single Nucleotide Polymorphism (SNP) can affect pharmacokinetics and
pharmacodynamics (Wiechec and Hansen, 2009). Taking into account the ge-
netic variability at the level of drug response will be an essential component
of personalised treatment of cancer.
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2.7 Hallmarks of cancer

The progressive accumulation of mutations in cancer-critical genes alters
gene regulation and signal transduction mechanisms. Although a large variety
of mutations can occur, all cancers have traits in common. Indeed, to lead
successfully to a tumour, a cell must acquire a whole range of aberrant prop-
erties and subversive new skills as it evolves. Different cancers require different
combinations of properties. Nevertheless, we can draw up a short list of the
key typical behaviours of cancer cells.

2.7.1 Hallmark capabilities

Hanahan and Weinberg (2000) suggest that the vast catalog of cancer
cell genotypes is a manifestation of six acquired capabilities which alter cell
physiology and dictate malignant growth (see Figure 2.11). They are the
following:

sustaining proliferative signalling: cancer cells can become independent
of exogenous growth signals to proliferate.

evading growth suppressors: cancer cells are insensitive to signals which
block cell proliferation.

activating invasion and metastasis: a tumour can invade adjacent tis-
sues. It can spawn pioneer cells out of the primary tumour∗ site and
become metastatic.

enabling replicative immortality: cancer cells become immortal because
they are able to pass through an unlimited number of successive cell
cycle divisions5.

inducing angiogenesis: a tumour can induce the formation of new blood
vessels such that it can be supplied with nutrients and evacuate wastes.

resisting cell death: the cell death machinery is inefficient.

These six capabilities’ hallmarks can be merged into the three main fol-
lowing properties which allow the cancer cells to proliferate, survive and dis-
seminate.

The first property is the defective control of the cell cycle (i.e. sus-
taining proliferative signalling and evading growth suppressors hallmarks).
The cell cycle normally ensures that the number of cells within the organism
remains constant so that when a cell dies a new one is born. Therefore, the
cell cycle must be precisely controlled. In cancer, this control is inefficient and

5Normal cells can divide between 40 and 60 times at most which is called the Hayflick
limit.
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FIGURE 2.9 Simplified representation of the mechanism regulating RB
activity. External signals such as mitogens trigger the activation of the Cy-
clinD/CDK protein complex which in turn starts phosphorylating and inhibiting
RB, thereby freeing E2F which can then activate the transcription of cell cycle
genes. More realistic and comprehensive representation is shown in Figure 4.5.

the cells are continuously reproducing. Many mechanisms are involved in the
cell cycle. We will only mention here the key role of RB, which controls the
initiation of the cell cycle. When RB is active, it functions as a cell cycle brake
by inhibiting transcription. This inhibition is done by sequestering a family
of transcription factors, the E2F, responsible for the transcription of genes
involved in cell cycle regulation, DNA replication and apoptosis. The brake
or checkpoint is lifted when the cell receives the appropriate external signals,
such as growth factors. The cell can then enter the replicative phase. RB is ac-
tive when hypophosphorylated and loses its grip on the E2F family members
when phosphorylated, first by G1 cyclin-dependent kinases, sensors of growth
(CDK4/CCND1 or CyclinD1), and then by other cyclin-dependent complexes
later in the cycle (CDK2/CCNE (CyclinE) and CDK2/CCNA (CyclinA), not
shown) (see Figure 2.9). The deficiency of the RB pathway is observed in
cancers when (1) the external signals are constant (e.g. when cell growth fac-
tors are always present or when their receptors are mutated and as a result
the cell believes that the signal is always on) (see Section 8.1.1 for a review
of mathematical models), (2) the cell is insensitive to anti-growth factors (e.g.
TGFβ) (see Section 8.1.2 for a review of mathematical models), or (3) when
processes that control the passage through the restriction point (see Box 2.2)
are perturbed by mutations or cellular dysfunctions (Sherr, 1996) (see Chap-
ter 7). More precisely, in many cancers, alterations of RB activity itself arise
from the deletion of the gene, promoter hypermethylation, the presence of
viral oncoproteins, LOH or as a result of a deregulation of kinases or kinase
inhibitors.

The second property is the defective control of cell death (i.e. enabling
replicative immortality and resisting cell death hallmarks). The cell death pro-
cess is the process of cell destruction. First, this mechanism occurs when cells
have reached a limited number of cell cycles; this process is called senescence
and is caused by the telomere shortening which occurs during each cell cy-
cle. Second, it happens when the genome integrity is compromised during the
cell cycle and the cell commits suicide; this process is called apoptosis. In the
apoptosis process, the machinery can be broadly divided into two classes of
components: sensors and effectors. The sensors (i.e. the proteins involved in
the signal transduction) are responsible for monitoring the extracellular and
intracellular environment for conditions of normality or abnormality leading
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o BOX 2.2: Restriction point
The restriction point is an irreversible transition occurring in the late
G1 phase after which the cell commits to DNA replication and cell
cycle progression. In the absence of growth factors, the cell enters a
G0 (or quiescent) state. In the presence of growth factors, growth is
stimulated and the cell advances through the G1 phase. During the
time preceding the restriction point transition, the cell is responsive to
both positive and negative external factors (Pardee, 1974). However,
when it passes through the restriction point in late G1, the cell com-
mits to cell cycle events and proceeds to DNA synthesis. After that
point, even if the growth factors are removed, and in the absence of
other cell dysfunctions, the cell completes its cycle before stopping at
the following round.

to life or death of a cell (see Section A.1.2). These signals regulate the sec-
ond class of components, which function as effectors of apoptotic death. One
of the major players among effectors is TP53 which can trigger apoptosis in
case of DNA damage during replication. Defective apoptosis can be due to a
mutation of both TP53 and the sensors like ATM (see Section 8.1.5 for a
review of mathematical models).

The last property is the invasiveness and metastatic potentials (i.e.
activating invasion and metastasis and inducing angiogenesis hallmarks). The
uncontrolled proliferation of cells leads to damage of the organ in which the
cancer cell originates. In addition, if adjacent tissues are invaded, it may also
damage neighbouring organs (see Section 8.1.3 for a review of mathemat-
ical models). Moreover, the tumour has the ability to induce the formation
of new blood vessels. This process is called angiogenesis (see Section 8.1.4
for a review of mathematical models). Therefore the tumour has the possibil-
ity to spawn cancer cells in the blood. As a result, Circulating Tumour Cells
(CTC) are generally observed in the blood of patients with advanced pri-
mary carcinomas. These cells constitute a reservoir to seed metastases able to
colonise distant tissues. By spreading throughout the body, a cancer becomes
almost impossible to eradicate surgically or by localised irradiation, and thus
can become deadly. Metastases are the cause of 90% of human cancer deaths
(Hanahan and Weinberg, 2000). Chaffer and Weinberg (2011) proposed that
the complex metastasis process can be divided into two major phases. The
first phase consists of the translocation of a cancer cell from the primary tu-
mour to the distant tissue and the second phase consists of the colonisation.
The concept of Epithelial-to-Mesenchymal Transition (EMT)∗ used in
the field of developmental biology to explain early embryogenesis morphology
and the reverse process (MET) may provide the basis to decipher the mecha-
nism of the mestastatic process (Chaffer and Weinberg, 2011; Thompson and
Haviv, 2011).
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FIGURE 2.10 Tumour progression and invasion in cervix cancer. (A) In the
severe dysplasia state, cells with abnormal morphology are present. (B) In invasive
cancer, the cancer cells infiltrate adjacent tissues as a close analogy with a water
drop. The dashed line separates the cancer cells (upper part) from the adjacent
tissue (lower part). Image courtesy of Dr. Xavier Sastre-Garau, Institut Curie. c©
2012 Institut Curie. (See colour insert.)

Besides developmental biology, fluid mechanics theory provides an inter-
esting framework to model the tumoral invasion (Guiot et al., 2007b,a; Shieh
and Swartz, 2011; Shieh et al., 2011; Wirtz et al., 2011). Indeed, the tumoral
tissue and the normal tissue on which it lies can be regarded as two different
fluids with their own rheological properties such as viscosity and elasticity. As
long as these properties remain stable during tumour progression, both fluids
are one above the other and the tumour remains in situ. However, biophysical
and biochemical modifications occur during tumour progression. They can af-
fect the rheological properties within the tumoral microenvironment and the
surrounding tissues. As a result, the equilibrium state can be broken and both
fluids can mix together thus allowing the tumour to invade adjacent tissues,
as a close analogy with a water drop (see Figure 2.10).

2.7.2 Emerging hallmarks

Hanahan and Weinberg (2011) proposed two other hallmarks called emerg-
ing hallmarks which are also involved in tumorigenesis:

reprogramming energy metabolism: cancer cells have developed adjust-
ments of energy metabolism in order to fuel cell growth and division and
therefore sustain uncontrolled cell proliferation.
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evading immune destruction: tumours manage to avoid detection by the
immune system or are capable of limiting the extent of immunological
killing, thereby evading destruction.

Regarding the energy metabolism, Section 8.1.8 will review the mathe-
matical models which have been proposed.

2.7.3 Enabling characteristics

Distinct mechanisms allow the normal cells to acquire the capabilities at
different stages during the tumour progression. Hanahan and Weinberg (2011)
proposed that this acquisition is made possible by the two following enabling
characteristics:

genome instability and mutation: the genome instability generates mu-
tations (see Section 2.1) including chromosome aberrations (see Sec-
tion 2.8), thus providing the cancer cells with selective advantage. This
enabling characteristic is causally associated with the acquisition of hall-
mark capabilities.

tumour-promoting inflammation: immune cells are normally expected to
eradicate abnormal cells in the organism. However, the inflammatory re-
sponse has a paradoxical effect of enhancing tumorigenesis and progres-
sion. Indeed, inflammation can contribute to multiple hallmark capa-
bilities by supplying bioactive molecules useful to the tumour microen-
vironment (e.g. growth factor for the tumour cells and blood vessels,
proteases which facilitate invasion).

Sections 8.1.6 and 8.1.7 will review the mathematical models which have
been proposed.

In total, Hanahan and Weinberg (2000, 2011) proposed eight different hall-
marks and two enabling characteristics which are common to almost every
cancer. Chapter 8 will describe different mathematical models based on sys-
tems biology approaches addressing these hallmarks.

2.8 Chromosome aberrations in cancer

The genome instability and mutation hallmark described in Figure 2.11
leads to chromosome aberrations. They are detailed in this section as they
have largely been studied in particular using high-throughput technologies
described in Chapter 3.
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FIGURE 2.11 Hallmarks of cancer. Most if not all cancers have acquired the
same set of six functional capabilities during their development, albeit through var-
ious mechanistic strategies. This acquisition has been made possible due to en-
abling characteristics. Moreover, tumours show common emerging hallmarks. Image
adapted from Hanahan and Weinberg (2000, 2011).

2.8.1 Abnormal karyotype in cancer

The normal configuration of chromosomes is often termed the euploid
karyotype state. Euploidy implies that each of the chromosomes is present
in normally structured pairs. Deviation from the euploid karyotype is ane-
uploidy and is observed in many cancers (see Figure 2.12). Often, this
aneuploidy is merely a consequence of the general chaos which reigns within
a cancer cell due to the progressive accumulation of mutations. Indeed, once
a critical number of mutations is reached, the cell cannot correctly perform
the duplication and the segregation of the chromosomes because of defects in
DNA repair and cell cycle checkpoints leading to a genome instability (Aguil-
era and Gómez-González, 2008). This instability occurs at both nucleotidic
(i.e. imperfect copy of the DNA sequence) and/or chromosomal levels (i.e.
improper number of chromosomes). As a result, the daughter cells will have
pertubated functionalities. In 1914, Theodor Boveri proposed the hypothesis
that cancer cells derive from cells with an irreparable defect within the chro-
mosomes. This hypothesis of a chromosomal or genetic cause of cancer was
only reconsidered in recent decades in the light of new findings on genomic
rearrangements and cancer genetics (Satzinger, 2008). Rearrangements occur
due to DNA breaks and fusions, and lead to an abnormal karyotype of the
daughter cells. In neuroblastoma, such breaks have been shown to occur prefer-
entially within early replicating regions during the S phase (Janoueix-Lerosey
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FIGURE 2.12 Karyotype of the T47D breast cancer cell line. The kary-
otype shows that the cell line has undergone various chromosome aberrations due
to genome instability. The letter t indicates a translocation involving the two chro-
mosomes in brackets. Only some alterations are indicated on the figure. Figure 3.8
and Figure 3.15 show application of high-throughput technologies in order to char-
acterise the chromosome aberrations within this cell line. Data from Roschke et al.
(2003), source: http://www.ncbi.nlm.nih.gov/sky. (See colour insert.)

et al., 2005). Typical chromosomal aberrations which produce an abnormal
karyotype are illustrated in Figure 2.13 and explained below:

polyploidy: each chromosome is present in p copies where p > 2 represents
the ploidy (p = 2 is normal ploidy).

aneuploidy: extra or missing copies of some chromosomes.

translocation: chromosome abnormality caused by exchange of parts be-
tween homologous or nonhomologous chromosomes. The translocation
can be reciprocal (or balanced, i.e. exchange of two extremities of chro-
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FIGURE 2.13 Schematic illustration of chromosomal aberrations. (A)
Common aberrations include gain, loss and translocations. Amplifications may be
visible as double minutes, chromosomes with Homogeneously Stained Region (HSR)
or the amplified DNA may be distributed at multiple sites. Two different chro-
mosomes are represented in grey and white. (B) LOH without DNA copy number
change leave the chromosome apparently intact while either the whole chromosome
or part of the chromosome is lost for one parental origin. The grey chromosome
comes from the mother (M) and the white chromosome from the father (F). Image
adapted from Albertson et al. (2003).

mosomes) or nonreciprocal (or imbalanced, i.e. one extremity is gained
and/or lost during the exchange).

amplification: one part of a chromosome (as a gene or a group of a few con-
tiguous genes) is present in a high number of copies (from 4 to more than
50 copies). These numerous copies are either incorporated into chro-
mosomes in nearly contiguous Homogeneously Stained Regions (HSR),
interspersed in the genome or form acentric fragments (double minute).

The following terms can be also associated to the copy number for a given
region of the chromosome: deletion (no copy is present anymore), monosomy
(one copy is present), trisomy (three copies are present), tetrasomy (four copies
are present), etc. These rearrangements can be either complete (i.e. the whole
chromosome is concerned) or partial (i.e. only a region of the chromosome is
concerned).

Some chromosome aberrations do not produce an abnormal karyotype and
chromosomes appear to be present with the expected number of two copies
(see Figure 2.13B). In a normal genome, chromosomes are heterozygous:
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there is one copy from the father and one copy from the mother. In can-
cer, some chromosomes come from the same parental origin. In this case, the
two copies of the chromosome are the same and therefore the chromosomes
are homozygote. This phenomenon is termed LOH without any DNA copy
number change since one parental chromosome (or only a portion) has been
lost in a first event and the missing chromosome (or only the missing por-
tion) has been duplicated from the remaining parental chromosome. When
the LOH rearrangement concerns the whole chromosome this duplication is
called uniparental disomy (or isodisomy). When it concerns only a portion of
the chromosome it is called somatic recombination or partial isodisomy.

Both mutations and chromosome aberrations accumulate during tumour
progression lasting several years. However, Stephens et al. (2011) demon-
strated that a single cellular catastrophe can lead to tens to hundreds of
genomic rearrangements at once. During this catastrophic event named chro-
mothripsis, DNA is fragmented, its subsequent repair is not precise and leads
to chromosomal aberrations, as well as the loss of chromosomal regions (see
Figure 2.14). This phenomenon can occur in at least 2%–3% of all cancers.

Different types of chromosome aberrations occur in cancer. Some of them
modify the copy number of entire or small portions of chromosomes and are
called DNA copy number alterations. Others do not modify the number of
chromosomes. Many high-throughput technologies including microarrays∗

and NGS∗ have been used to characterise these aberrations genome-wide
and they are presented in Chapter 3.

2.8.2 Impact of chromosome aberrations on cancer-critical
genes

Why are these chromosomal aberrations so important in cancer? In many
cases they cause tumour progression because they can directly affect the crit-
ical genes involved in cancer. More generally, oncogenes are expected to be
found in gain or amplification regions, or in fusion genes, while tumour sup-
pressor genes are expected to be found in loss regions or LOH regions without
DNA copy number change. Therefore, the characterisation of chromosome
aberrations should help to find new candidates for cancer-critical genes.

2.9 Conclusion

In this chapter, we have shown that a multistep accumulation of events
transform a normal cell into a cancer cell, causing defects in the gene regulation
and signal transduction mechanisms. Many alterations arise during tumour
progression including point mutations, epigenetics modifications, chromosome
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FIGURE 2.14 Chromothripsis. During a catastrophic event, the DNA is frag-
mented. Some of the fragments are then randomly ordered and merged while other
fragments are lost. The plot in the upper left corner represents the expected DNA
copy number profile (DNA copy number profile is explained in Figure 3.8). Image
adapted from Tubio and Estivill (2011).

aberrations, etc. Whatever their nature, these alterations can be classified
into drivers or passengers according to their causality on cancer development
(Stratton et al., 2009). Driver alteration is causally involved in the develop-
ment of cancer. Such an alteration has been positively selected according to
Darwinian selection because it conferred a growth advantage on cancer cells
at some step during the tumour progression. The passenger alteration has
not been selected nor conferred growth advantage and has therefore not con-
tributed to tumour progression. Passenger alterations have merely occurred
during the growth of the cancer. Among the vast variety of alterations which
are observed in cancer a small minority are drivers. Therefore, it is essential
we can distinguish the drivers from the passengers on the road to cancer de-
velopment. Genome-wide characterisation of molecular alterations occuring
in cancer, in particular using high-throughput technologies (see Chapter 3),
combined with computational systems biology approaches (see Chapter 4 to
Chapter 11) offer insights into the discovery of drivers and the understanding
of their causality in cancer-related cellular processes. These approaches will
not only allow the identification of new biomarkers∗ in order to help clini-
cians in their prognostic and predictive decisions but also the discovery of new
drug targets and the better understanding of tumour progression mechanisms.
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. Exercises

• Using the possible chromosome aberrations listed in Fig-
ure 2.13, enumerate those which can be observed in the kary-
otype of the T47D breast cancer cell line provided in Fig-
ure 2.12.

• In a cell, an abnormal karyotype is observed showing an Ho-
mogeneously Stained Region (HSR) (see Figure 2.13). Further
investigations indicate that the miRNA miR-21 is present in the
amplified region. The tumour suppressor gene PTEN is targeted
by the miR-21. What could be the effect of this amplification on
PTEN expression and its impact for the cell?

é Key notes of Chapter 2

• Cancer is caused by an accumulation of mutations during the
lifetime of the organism.

• Cancer is a genetic disease due to the deregulation of gene ex-
pression involving tumour suppressor genes and oncogenes.

• Cancer is a network disease.

• A tumour is a complex and heterogeneous system which encom-
passes different cancer cell types and normal cell types.

• The tumour microenvironment plays an important role in tu-
mour progression.

• The tumours have common characteristics called hallmarks.

• Abnormal karyotypes are very frequently observed in cancer
cells.
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Chapter 3

Experimental high-throughput
technologies for cancer research

Chapter 2 described a series of dysregulations that occurs at different molec-
ular levels when a normal cell becomes a cancer cell. The sequential accumula-
tion of mutations∗ and events occurring during tumour progression∗ can
disrupt the normal behaviour of the cell (see Figure 3.1) at the level of:

1. DNA, including:

• Mutations of the DNA sequence

• Changes in DNA copy number

• Loss of Heterozygosity (LOH)

• Translocations∗

2. Noncoding RNA expression including microRNA (miRNA).

3. Messenger RNA (mRNA) expression, including:

• Modifications in alternative splicing

4. Protein and particularly:

• Their quantity

• Their modification including phosphorylation of protein kinases
which play a key role in signal transduction

5. Epigenetic characteristics, including:

• DNA Methylation

• Histone modifications (methylation, acetylation, etc.)

6. Interactions between the different molecules, such as:

• Interactions between transcription factors and DNA

• Interactions between proteins

7. As a consequence, these alterations lead to change in the phenotypic
characteristics of the cell.

8. Interactions of cancer cells with their environment:

• Blood supply

• Immune response

• Interaction with the Extracellular Matrix (ECM)∗

53
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Understanding tumour progression and improving the classification of tu-
mours require to unravel the alterations which have occured at these different
molecular levels. Current biotechnologies allow us to accurately characterise
the molecular profiles of each tumour sample and the information retrieval
must be as exhaustive as possible. For instance, we aim at determining the
DNA copy number of as many loci as possible over each chromosome, quan-
tifying the messenger RNA (mRNA) expression of all known genes, detecting
what alternative splice forms are present, etc. This exhaustive search might
be reachable for some molecular profiles but in some cases, especially for pro-
teins, it is intractable for both complexity and technological reasons (see Sec-
tion 3.4). Since the quantification of the molecular profiles is supposed to be
as exhaustive as possible, the techniques which allow their measurement are
often referred to as genome-wide techniques. More generally, the name of the
technology which studies a particular type of molecular profile is the concate-
nation of the molecular entities or the biological functions under investigation
with the -omics suffix. For example, as illustrated in Figure 3.1, genomics
investigates the DNA alterations (mutation, copy number, etc.), miRNomics
the microRNA (miRNA) expression, transcriptomics the mRNA expression,
spliceosomics the different alternative splice forms, proteomics the different
proteins, kinomics the phosphorylation state of protein kinases, epigenomics
the epigenetic modifications, interactomics the interactions between different
molecular entities and phenomics the observable traits of the cells. The -omics
suffix comes from the Greek stem omes, which stands for all, every, whole or
complete, reminding us of the fact that these techniques aim at achieving
an exhaustive search. These techniques are also called high-throughput tech-
nologies because they produce a huge amount of information within a short
time. It is important to pinpoint that besides high-throughput technologies,
there exist other approaches or technologies but they will not be addressed
in this book. In this chapter, technical details will be given regarding omics
technologies.

3.1 Microarrays

3.1.1 General principles and microarray design

The better understanding of biological molecular processes combined with
the improvement in DNA technologies have allowed researchers to use in vitro
some chemical reactions which happen in vivo. The discovery of restric-
tion enzymes∗ and reverse transcriptase∗ in 1970, DNA sequencing in
1977, Polymerase Chain Reaction (PCR)∗ in 1985 (for a history of DNA
technologies, see the milestones timeline in Nature Publishing Group, 2007)
have been main revolutions in biotechnology. The improvements in chemistry,
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FIGURE 3.1 Omics technologies in oncology. The main omics technologies
used in cancer research are listed in this illustration. Note that others omics ap-
proaches exist.

physics, optics, robotics, software engineering and molecular biology have al-
lowed the development of new tools for genome-wide quantification; the mi-
croarray technology also called biochip or chip has provided miniaturised sen-
sor tools such that it is possible to quantify the mRNA expression of the whole
genome on a slide glass smaller than two square-centimetres. Microarrays ap-
peared in 1995 and can be considered as one of the major biotechnological
revolutions of the last 15 years. Originally, microarrays emerged in the field
of transcriptomics and they have been widely transposed for all the omics ap-
proaches mentioned in Figure 3.1. As a result, a large variety of microarray
techniques have been developed for various applications as reported in Ho-
heisel (2006) and also in the Chipping Forecast supplement series published
by Nature Genetics in 1999, 2002 and 2005. However, all microarray technolo-
gies rely on similar characteristics presented below.

The basic principles in microarray technology are the following: probes
(DNA, RNA or protein) are tethered to a solid support (i.e. the chip) such as
glass, plastic or silicon (Southern et al., 1999). They act as a specific reporter
either to quantify the DNA copy number at a known locus on the genome, the
expression of a known gene or the amount of a protein. Probes are supposed
to be chosen specifically in order to report the quantification of their expected
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target. In the case of DNA or RNA probes, the specificity is guaranteed by the
choice of a unique base-paired complementarity between the probe sequence
and the target sequence, and by the choice of an appropriate antibody in case
of proteins. Probes are deposited on a microscopic area of the chip called spot
or feature. Then, either DNA, RNA or proteins are extracted from a tumour
sample and hybridised on the chip. If present within the sample, a given DNA
sequence, RNA sequence or protein will be hybridised on its matching probes.
In a microarray, thousands or even millions of such spots are present which
makes it a very powerful tool for genome-wide screening.

o BOX 3.1: Fluorochrome
A fluorochrome is a molecule which has the following interesting prop-
erty: when excited by a light with the appropriate wavelength, it has
the ability to fluoresce at another wavelength (n.b. the absorption-
emission spectrum is known for the fluorochrome). For example, the
cyanine 5 (Cy5) fluorochrome is excited at 650 nm and fluoresces max-
imally at 670 nm. Once the targets hybridise on their matching probes,
a scanner allows the Cy5 to be excited using a laser at 650 nm wave-
length and the measurement of the emitted fluorescence at 670 nm.
Cy5 and Cy3 emit maximally in infra-red and orange and absorb max-
imally in red and green respectively.

Another characteristic of the microarray is the use of fluorescent markers
called fluorochromes (see Box 3.1) in order to measure DNA, RNA or protein
quantities. Indeed, a measurement strategy is required to quantify what is the
amount of each target attached to their respective probe since the direct quan-
tification of the target is not possible on the microarray. That is the reason
why a fluorochrome is used to overcome this limitation. During the prepara-
tion of the sample, specific chemical reactions allow the fluorochrome to be
incorporated in the nucleotide sequence or in the protein. The signal intensity
of the fluorescence light is quantified and directly related to the amount of
target which attached to the probe. Different fluorochromes emitting at differ-
ent wavelengths (or colours) can be used simultaneously in some microarray
platforms. Such microarrays offer the possibility to label and analyse two dif-
ferent samples at the same time. For example, a common reference can be
used across different experiments. These microarrays are referred to as two-
colour or two-channel microarrays. For proteomic microarrays, the reporter
antibody is generally coupled with a fluorochrome. Since protein studies re-
quire techniques that take into account the chemical properties of the protein,
Section 3.4 will be specifically devoted to proteomics.

In genomics, transcriptomics and miRNomics studies, the Affymetrix
GeneChip R© has been widely used and measures about 6.5 million features
in a single experiment (see Figure 3.2A and Dalma-Weiszhausz et al. (2006)
for a review on this technology). The number of features (on a given surface)
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FIGURE 3.2 Affymetrix GeneChip R© and Illumina BeadChip designs. (A)
The chip consists of a 1.28×1.28 square-centimetre modified quartz wafer. This
surface carries about 6.5 millions of 5 µm × 5 µm features. Each feature, in turn,
is composed of millions of identical oligonucleotide∗ probes. The oligonucleotide
is a 25-base long single-strand sequence and acts as a specific reporter of a known
locus on the genome. Image adapted from Dalma-Weiszhausz et al. (2006). (B)
Silica beads, each 3 µm in diameter, self-assemble randomly into micro-wells with
5 µm centre-to-centre spacing. Each probe is represented with an average of 30-
fold beads on each array. Each bead contains a probe sequence of interest and an
address sequence which allows its identification according to a decoding system
described in Gunderson et al. (2004). Both the address and the probe represent a
specific oligonucleotide sequence for each bead. Each bead is covered with hundreds
of thousands copies of that specific oligonucleotide sequence. Image adapted from
Fan et al. (2006) and http://www.illumina.com.

is continuously increasing due to improvements in the fabrication process al-
lowing the reduction of feature size. Other microarrays provided by Agilent,
Nimblegen or Illumina companies have been widely used as well. For example,
the Illumina company proposed a chip named BeadChip. While the principles
of probes and target sequence still hold, probes are not deposited on the mi-
croarray slide surface anymore; probe sequences are attached to silica beads
(see Figure 3.2B). These beads self-assemble in the micro-wells that cover
the chip (Fan et al., 2006). Since the self-assembly of the beads in micro-wells
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FIGURE 3.3 Array-CGH protocol. The protocol includes the extraction and
labelling of the DNA, the hybridisation on the chip, the scanning and image analysis
to quantify the signal. (See colour insert.)

is a random process, each bead contains a probe sequence for the target of
interest and an address sequence which permits its identification according to
a decoding system described in Gunderson et al. (2004). In addition to com-
mercial platforms, many in-house microarrays have been produced. All these
microarray technologies have been widely applied in oncology∗ as reported
by Cowell and Hawthorn (2007).

3.1.2 DNA copy number study based on microarray experi-
ment

The study of genome-wide characterisation of DNA copy number changes
was originally performed using the Comparative Genomic Hybridisation
(CGH) technique developed in the early 1990s. In the first version of this tech-
nique, total genomic DNA is isolated from a tumour and normal control cells,
labelled with different fluorochromes and hybridised to normal metaphase
chromosomes (Kallioniemi et al., 1992). This technique is therefore termed
chromosomal CGH. Differences in the tumour fluorescence with respect to
the normal fluorescence along the metaphase chromosomes are then quanti-
fied and reflect changes in the DNA copy number in the tumour genome.

Subsequently, array Comparative Genomic Hybridisation (aCGH) was es-
tablished (Solinas-Toldo et al., 1997; Pinkel et al., 1998). In this technique, mi-
croarrays with genomic sequences inserted into Bacterial Artificial Chro-
mosome (BAC)∗ replace the metaphase chromosomes as hybridisation re-
porters. aCGH solved many of the technical difficulties and problems caused
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by working with cytogenetic chromosome preparations. The main advantage
of aCGH is the ability to perform copy number analyses with much higher
resolution than was ever possible using chromosomal CGH. aCGH has al-
ready been widely used in oncology for many purposes such as global analysis
of copy number aberrations, identification of putative target genes, tumour
classification or assessment of clinical significance of copy number changes
(Kallioniemi, 2008). A typical aCGH microarray experiment works as follows
(see Figure 3.3 and Pinkel and Albertson, 2005):

• Total genomic DNA is isolated from a tumour sample (i.e. the test DNA)
and from a normal sample (i.e. the reference DNA). Genomic DNA is
then generally digested with a restriction enzyme and the DNA frag-
ments are differentially labelled: the tumoral DNA is labelled with a red
fluorochrome (e.g. Cy5) and the normal DNA with a green fluorochrome
(e.g. Cy3).

• Equal amounts of tumoral and normal DNA are combined.

• The mixture of both tumoral and normal DNA fragments is hybridised
on the chip. Within each spot, there is a competitive hybridisation be-
tween the tumoral DNA target sequences and the normal DNA target
sequences.

• A scanning step quantifies the signal intensity for the red and green
channels. An image file is created in which each pixel is given a red and
green intensity.

• Image analysis software accurately reconstructs the signal intensity for
each spot from the image.

Once this protocol has been performed, how do we expect the signal to
vary with respect to the DNA copy number of each sample? For each spot, a
competitive hybridisation takes place between the tumoral and normal DNA.
The relative hybridisation intensity of the test signal over the reference signal
at a given location is (ideally) proportional to the relative DNA copy number
of those sequences in the test and reference genomes. If the tumoral DNA
copy number is greater than the normal DNA copy number, then the signal
will be shifted towards red. On the contrary, if the tumoral DNA copy number
is lower than the normal DNA copy number, then the signal will be shifted
towards green. Therefore, the DNA copy number of the tumoral DNA is di-
rectly proportional to the red/green ratio and its theoretical value is given
in Figure 3.4. For statistical reasons, we generally do not use the ratio of
red/green but the log2 of this ratio, therefore named log2-ratio1. In practice,
due to technical variability, there is a fluctuation of the signal around its ex-
pected value and statistical methods are necessary to retrieve the true signal.

1The log transformation allows the distribution of the values to be closer to the normality,
which is generally preferred in statistics.
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FIGURE 3.4 Theoretical array-CGH quantification. The theoretical ratios
and log2-ratios are given for different DNA copy number alterations occurring in the
tumoral DNA.

Moreover, the quantified signal is generally less than expected for three rea-
sons. First, the quantification made with the technology is not perfect and
the signal is often less than proportional with respect to the true DNA copy
number (Pinkel et al., 1998; Pollack et al., 1999). Then, the tumoral DNA
generally contains contamination by normal cells coming from adjacent nor-
mal tissue; they can represent a significant proportion within the sample and
reduce the signal from the cancer cells. Finally, the tumour might be hetero-
geneous since it can derive from different clonal populations (see Figure 2.5)
which share different patterns of DNA copy number alterations.

The aCGH technology relies on the assumption that the reference DNA
is diploid. In practice, this is not the case since DNA copy number variations
exist even in normal individuals: some parts of the DNA sequence can be
present in many copies inside the genome. Such a part of the genome is called
Copy Number Variant (CNV) (Iafrate et al., 2004; Freeman et al., 2006; Redon
et al., 2006) and the Database of Genomic Variants provides a catalog of such
variations. For instance, Perry et al. (2007) found that the copy number of the
salivary amylase gene (AMY1) is correlated positively with salivary amylase
protein levels, and that individuals from populations with high-starch diets
have on average more AMY1 copies than those with traditionally low-starch
diets. This was the first example of positive natural selection on a copy number
variable gene in the human genome. Ideally, to avoid the identification of DNA
copy number changes due to CNVs between the test DNA and the reference
DNA the two DNAs used in the aCGH protocol should come from the same
patient (in this case the DNAs are referred to paired). However, normal DNA
from the patient is not always available and a normal reference DNA from
a normal standard individual is generally used. Importantly, CNV may have
some impact on cancer risk and using paired DNAs can be a drawback as it
prevents the identification of CNV for the patient under study.

The typical graphical representation of a DNA copy number molecular
profile is depicted in Figure 3.5: the x-axis represents the probe location
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1p loss 17q gain

X

FIGURE 3.5 aCGH profile of the IMR32 neuroblastoma cell line. The log2-
ratios for each probe ordered along the genome from chromosome 1 to 22 and X are
represented. Vertical black lines indicate separation between chromosomes. Vertical
dashed black lines indicate centromere position. The imbalanced translocation 1p-
17q and the 1q gain are identified by aCGH. An alteration of small size like MYCN
amplification can be detected thanks to the high resolution of the aCGH technology.
Data from Janoueix-Lerosey et al. (2005). (See colour insert.)

ordered along the genome from chromosome 1 to 22 and X; the y-axis rep-
resents the log2-ratio value of the DNA copy number. In the profile of the
IMR32 neuroblastoma∗ cell line, a loss of chromosome 1p2 and a gain of
chromosome 1q and 17q due to an imbalanced translocation clearly appear.
Alterations of small size like that of MYCN amplification∗ on chromosome
2 can be detected thanks to the high resolution of the aCGH technology with
respect to chromosomal CGH.

The recent advances in microarray technologies has shifted from BAC
aCGH to oligonucleotide∗ aCGH allowing an increase in the number of
loci per chip (Davies et al., 2005; Ylstra et al., 2006). BAC arrays are mainly
in-house microarrays while oligonucleotide microarrays are from commercial
companies. Among the widely used commercial technologies, let us mention
Agilent Human Genome CGH Microarray, Nimblegen Human Whole Genome
Tiling arrays, Illumina BeadChip and Affymetrix GeneChip R© (note that for
Affymetrix and Illumina technologies, no normal DNA is needed in the protocol
and they are one-colour microarrays in contrast to the other technologies that
use both normal and tumoral DNA and are two-colour microarrays). At the
early period of BAC array, the number of loci investigated was around 1,000-

2p and q define the short and long chromosome arm respectively.
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2,000 and never exceeded 32,000 loci3 (Ishkanian et al., 2004). The use of
oligonucleotide arrays has allowed a huge increase in the number of loci inves-
tigated on a single chip. At the time of the writing of the present chapter, the
number of loci quantified in the human genome with a single oligonucleotide
array ranges from 1 million to 2.5 millions allowing a maximum theoretical
resolution of 1.2Kb. This number is very likely to increase. Although the most
recent chips cover more exhaustively the genome, their exact resolution does
not only depend on the number of loci but also on their sensitivity. Coe et al.
(2007) has proposed a definition of resolution for aCGH technology, termed
functional resolution, which incorporates the uniformity of loci spacing on the
genome, as well as the sensitivity of each platform to single-copy alteration
detection. From their study, the current commercial platforms allow a single-
copy detection of the order of 35-55Kb while it was 10Mb for chromosomal
CGH and 1Mb for BAC aCGH (at the time of the study by Coe et al. (2007),
the highest number of loci in a single chip was offered by Nimblegen Human
CNV arrays and allowed the quantification of 385,000 loci over the whole hu-
man genome). The oligonucleotide chips that permit to scan the genome for
more than 50,000 loci are often termed high-density or high-resolution chips.
Haraksingh et al. (2011) compared the performance of these technologies. Be-
sides the huge increase in resolution offered by these oligonucleotide arrays,
Illumina and Affymetrix incorporated in their design polymorphic probes to
measure Loss of Heterozygosity (LOH) in addition to DNA copy number, as
we will see in the next section.

3.1.3 LOH study based on microarray experiment

Though two individuals are genetically very similar, their DNA sequences
still differ enough to explain a large part of the variability of phenotypes,
including the susceptibility to develop many diseases. This makes determina-
tion of polymorphism profiles very helpful in biomedical sciences. In 2002, the
International HapMap Project started with the goal to determine the com-
mon patterns of DNA sequence variation in the human genome and to make
this information freely available in the public domain (International HapMap
Consortium, 2003). For this purpose, 270 samples of individuals originated
from Asia, Africa and Europe were used. More recently, The 1000 Genomes
Project was initiated in 2008 in order to obtain the most detailed catalogue
of human genetic variation (1000 Genomes Project Consortium, 2010). Single
Nucleotide Polymorphisms (SNP) are the most important source of genetic
variability between individuals (see Box 3.2). Therefore, they represent very
valuable probes to be considered in a microarray design to study the genomic
variation across different individuals or population. Moreover, in cancer stud-
ies SNP probes can assess LOH as we will explain in the next paragraph. Both

3A BAC generally contains a human DNA sequence of 100Kb; 32,000 BACs allow the
coverage of the whole human genome.
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Affymetrix and Illumina companies offer microarray designs which incorporate
one specific probe for each SNP allele. Such microarrays are generally referred
to as SNP arrays.

o BOX 3.2: Single Nucleotide Polymorphism (SNP)
A SNP (SNP, pronounced snip) is a DNA sequence variation occurring
when a single nucleotide (A, T, C, or G) in the genome differs at the
same genomic position between two individuals (Sachidanandam et al.,
2001; Bunz, 2008). Here is an example of SNP (C/G) for which two
alleles (arbitrary named A and B) exist:

A allele: gtcacccatccctc c gtgctggtaatcaga

B allele: gtcacccatccctc t gtgctggtaatcaga

SNPs occur once every 1,000–2,000 nucleotides and this variation is
only called a polymorphism if it occurs in 1% or more of the popu-
lation. About 10 millions of these variants have been indexed in the
dbSNP database hosted in the NCBI (Sherry et al., 2001). About
96% of SNPs occur outside protein-coding regions: some of them can
be phenotypically silent while others can have a functional impact
(e.g. if a SNP is in a regulatory sequence, in an alternative splice
site, etc.). Other SNPs called nonsynonymous affect protein sequences.
Both types of SNPs can serve as landmarks in the search for genes as-
sociated with diseases, drug responses and complex phenotypes.

To illustrate how SNP probes can be used in order to evaluate LOH in
a tumour, let us consider the normal cell in Figure 3.6A. In this case, one
chromosome comes from the mother (M) and one chromosome from the father
(F). Along the chromosome, there are different SNPs. Without loss of gener-
ality, let us assume that four SNPs are present on the chromosome, each one
having two alleles (either A or B). For each locus, B Allele Frequency (BAF)
can be computed as follows:

BAF =
nB

nB + nA
,

where nA and nB represent the number of alleles A and B respectively.
For the normal cell, in the case of a heterozygous locus (SNP2 and SNP3),

the BAF is equal to 0.5 while for a homozygous locus (SNP1 and SNP4) it
is equal to either 0 if the allele A is present or 1 if the allele B is present.
A SNP is called informative if it is heterozygote. Let us consider a cancer
cell which has experienced a loss of the paternal chromosome followed by a
duplication of the maternal chromosome (see Figure 3.6B). These correspond
to the copy neutral LOH case (i.e. there are two copies of the chromosome
as in a normal cell but the two chromosomes have the same parental origin).
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FIGURE 3.6 Illustration of BAF values. The paternal chromosome F chro-
mosome is depicted in white and the maternal M chromosome in black. From the
normal cell state (A), five different possible alterations occuring in a cancer call are
represented (B to F). The BAF value for each SNP is computed.

In this case, the BAF values for heterozygous loci SNP2 and SNP3 switch
from 0.5 to 1 and 0 respectively. In the case of a single loss of the paternal
chromosome, the BAF values are the same as in the copy neutral LOH case
(see Figure 3.6D). In the three copies case in which there is an additional
maternal chromosome, the BAF value for heterozygous loci SNP2 and SNP3
switch from 0.5 to 0.66 and 0.33 respectively (see Figure 3.6E). In the four
copies case, two situations can occur. The first case (FFMM) corresponds
to a duplication of both paternal and maternal chromosomes and leads to
BAF values like in the normal cell case (see Figure 3.6C). In the second case
(FFFM) in which there are three copies of the paternal chromosomes, the BAF
values for heterozygous loci SNP2 and SNP3 switch from 0.5 to 0.75 and 0.25
respectively (see Figure 3.6F). It is important to notice that the BAF values
for homozygous loci (SNP1 and SNP4) remain the same whatever the case
considered and thus are called noninformative loci. Moreover, the BAF values
are symmetric with respect to 0.5 (e.g. 0.33 and 0.66 in the three copies case).

The examples given in Figure 3.6 are not exhaustive and many other
situations can be imagined. Importantly, it must be pointed out that the
BAF values computed from tumoral samples can differ from the theoretical
value due to the contamination by normal cells. Indeed, the theoretical BAF
values can be formulated as follows:

BAF =
(1− p).ncB + p.nnB

(1− p).(ncB + ncA) + 2p
,

where p is the normal DNA proportion due to contamination, ncA and
ncB correspond to the number of A and B alleles in the tumour, nnA and
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nnB correspond to the number of A and B alleles in the normal sample. We
expect nnA + nnB to be equal to 2 since the normal DNA is diploid. In prac-
tice, the proportion p is generally unknown. It can be estimated based on
the pathologist∗’s expertise from histological sections∗ or using dedicated
biostatistics approaches (Popova et al., 2009).

In a microarray experiment, the BAF value will be computed as follows:

BAF =
SB

SA + SB
,

where SA and SB are the signal intensities quantified on the chip for both
A and B alleles using the intensity values from their respective probes.

As we already mentioned in the previous section, the DNA copy number
can be assessed using this type of microarray technology. In the case of poly-
morphic probes, the DNA copy number (CN) can be obtained by summing
the number of each allele as follows:

CN = (1− p).(ncB + ncA) + p.(nnB + nnA) .

The signal obtained from a microarray experiment is an intensity value
that needs to be transformed into a more comprehensible value. Even for a
one-colour microarray, the signal measurement from a normal DNA sample
obtained on another microarray experiment (either a paired normal sample
or a pool of normal samples not related to the tumour sample under inves-
tigation) is used in order to compute a log-ratio as in aCGH experiment.
In the case where no normal reference DNA is available, individuals from the
HapMap project can be used since the microarray experiments have been done
on different SNP microarray platforms including both Illumina and Affymetrix.
The Log Reference Ratio (LRR) with a reference normal sample is computed
as follows:

LRR = log2

(
SA + SB

SrefA + SrefB

)
,

where SA and SB are the signal intensities quantified on the chip for both
A and B alleles in the tumour sample, and SrefA and SrefB are the signal
intensities quantified on the chip for both A and B alleles in the reference
normal sample.

Both the BAF and LRR values provide complementary information and
help to characterise DNA alterations in tumoral samples. For example, both
values will discriminate between the normal cell case and the copy neutral
LOH case depicted in Figure 3.6. Indeed, in the normal cell, while the LRR
values are equal to 1, the BAF values are equal to 0.5 in the normal cell
case for informative SNPs and either 0 or 1 in the copy neutral LOH case.
Similarly, the combination of both values helps to distinguish between the four
copies case FFMM and the four copies case FFFM. In these two cases, while
the LRR values will be equal to 2, the BAF values will be equal to 0.5 for
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FIGURE 3.7 Theoretical BAF and LRR values. For different possible alter-
ations, both the theoretical BAF and LRR values are represented. F and M stand
for paternal and maternal chromosomes respectively.

informative SNPs and either 0.75 or 0.25 in the FFFM case. The Figure 3.7
illustrates different possibilities for both LRR and BAF values in a situation
where there are 0 to 7 copies of the same chromosome. Note that, the 0
copy state is very particular in the sense that neither LRR nor BAF can be
computed for mathematical reasons. In practice, the signal intensities SA and
SB are generally never equal to zero due to background noise and the possible
contamination by normal cells. Therefore, the LRR will have a very low value
(e.g. -2 or even lower) and the BAF will be equal to 0.5 for informative SNPs.

The Figure 3.8 shows the LRR and BAF profiles (each containing about
50 thousand loci) of a real experiment using Affymetrix GeneChip R© SNP mi-
croarray technology on the breast cancer cell line T47D (data from Hu et al.,
2009). Let us describe a few chromosomal alterations in this tumour cell line:
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Chromosome 1 The LRR shows that the 1p chromosome arm is present in
2 copies while the 1q chromosome arm is present in 4 copies. This is
confirmed from the karyotype (see Figure 2.12) which also provides
the additional information that the 2 additional copies of the 1q chro-
mosome arm have been merged and fused to chromosome 16 due to a
translocation. The BAF indicates that the 1p chromosome arm comes
from the same parental origin as the BAF values are near 0 or 1, while
there are 2 copies from the paternal 1q chromosome arm and 2 copies
from the maternal 1q chromosome as the BAF values equal 0.5 for in-
formative SNPs.

Chromosome 12 The LRR profile shows a single loss of the p12-pter (i.e.
a sub-region of chromosome 12 which goes until the terminal extremity
of its p arm) of chromosome 12 which is confirmed on both the BAF
profile and the karyotype.

Chromosome 15 The LRR profile shows that there are 3 copies of the chro-
mosome 15. The karyotype indicates that two copies of the chromosome
15 have been each fused to two different chromosomes 7 and one chro-
mosome 15 remains alone. The BAF profile indicates that there are two
copies from one parent and one copy from the other as the BAF values
are either around 0.33 or 0.66 for informative SNPs.

Note that, neither the LRR profile nor the BAF profile can indicate what
translocations are involved in the alterations while the karyotype can pro-
vide this information. Moreover, balanced alteration will never be observed
from the LRR profile as the copy number remains unchanged in that case.
We will see that NGS technologies can help to unravel this information (see
Section 3.2).

DNA copy number alterations can impact the modification of gene expres-
sion and the following part describes how to perform microarray studies at
the level of RNA.

3.1.4 RNA study based on microarray experiment

As already mentioned, the development of microarray technology was first
initiated in the field of transcriptomics and it has been largely addressed in
the literature. Initially, the experimental protocol was quite similar to the
aCGH protocol described in Figure 3.3 except that mRNA is used instead of
genomic DNA. New technologies developed by the Affymetrix company have
appeared, which changed the chip building and the protocol in such a way that
the reference sample is not needed anymore. The Affymetrix GeneChip R© (see
Figure 3.2) thus provides an approach to have a semi-quantitative level of
mRNA instead of a relative value with respect to a reference. Recently, a new
probe design has been proposed in order to identify alternative splice forms
from a gene expression microarray experiment. Such microarrays are called
exon-arrays. For each gene, different probes targeting the different exons of
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FIGURE 3.8 LRR and BAF profiles for the T47D breast cancer cell line.
For each probe ordered along the genome from chromosome 1 to 22 and X, the LRR
values (top profile) and the BAF values (bottom profile) are represented. Vertical
black lines indicate separations between chromosomes. Vertical dashed black lines
indicate centromere position. In the LRR profile, the piecewise black line corresponds
to the mean copy number for each genomic region; Green = 1 copy, Yellow = 2 copies,
Red = 3 copies and Blue = 4 copies. The Affymetrix Human Mapping 100K Xba chip
for the T47D cell line has been retrieved from the NCBI GEO database. We have
analysed the data using CRMAv2 (Bengtsson et al., 2009) and GLAD (Hupé et al.,
2004) for the LRR profiles, and ACNE (Ortiz-Estevez et al., 2010) for the the BAF
profile. The profiles can be compared with the karyotype of the breast cancer cell
T47D provided in Figure 2.12 and the results obtained with NGS in Figure 3.15.
Data from Hu et al. (2009). (See colour insert.)

the genes are deposited on the chip. However, such a design allows the iden-
tification of exons which are differentially expressed between two conditions
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for example, but makes it very difficult to pinpoint precisely which isoform
is expressed. To overcome this limitation, probes overlapping two consecutive
exons have been added (this chip is therefore termed exon-junction microar-
ray). Besides mRNA, chips to study miRNA have also been developed and
rely exactly on the same principles.

3.1.5 DNA–protein interaction study

In the cell, interactions between DNA and proteins are essential for many
biological processes such as DNA replication, recombination, DNA repair and
the regulation of transcription. For example, in response to environmental
stresses, transcription factors bind to their DNA-binding site and regulate the
transcription of their target genes (see Figure A.6). A transcription factor
can regulate many different genes which are not alway easy to predict by se-
quence analysis or in vitro studies. Therefore, the identification of all potential
target genes of transcription factors is a challenge. For that, a high-resolution
genome-wide approach based on a combination of Chromatin Immunoprecip-
itation (ChIP) and DNA microarrays (chip) can be used. This technology is
referred to as ChIP-on-chip. The protocol for a typical ChIP-on-chip experi-
ment is the following (see Figure 3.9 Bulyk, 2006; Buck and Lieb, 2004):

• Cells are grown in culture under the desired experimental condition.

• In the cell culture, the proteins are cross-linked to DNA, generally us-
ing formaldehyde. This step forms reversible bonds between the DNA-
associated proteins and the DNA.

• After cross-linking, the cells are lysed and the chromatin∗ is sheared
into fragments of 1Kb size or smaller.

• The DNA fragments cross-linked to the Protein of Interest (POI) are
enriched by immunoprecipitation using an antibody which recognises
specifically the POI.

• The formaldehyde cross-links are then reversed and the DNA is purified.

• A DNA amplification step is generally required since the immunopre-
cipitation yields low DNA quantity.

• Enriched DNA is then labelled with a fluorescent molecule such as Cy5.
This is referred to as the ImmunoPrecipitation (IP) fraction.

• In two-colour microarray platforms, an aliquot of the lysate before im-
munoprecipitation is kept, from which DNA is purified. This serves as
a reference and is similarly amplified and labelled with a different fluo-
rochrome, such as Cy3. This is referred to as the input fraction.

• Both the IP and the input fractions are combined and hybridised to
a single DNA microarray in the same way as the aCGH protocol (see
Figure 3.3). The IP signal and the input signal are quantified for each
probe on the microarray using a scanner.
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FIGURE 3.9 ChIP-on-chip protocol. From a cell culture, the interactions be-
tween the Protein of Interest (POI) and the DNA are isolated by immunoprecipi-
tation. Both the ImmunoPrecipitation (IP) fraction and the input fraction are hy-
bridised on a microarray. Image adapted from Buck and Lieb (2004).

Ideally, to provide a comprehensive and high-resolution survey of DNA-
protein interactions, the ChIP-on-chip must contain probes which cover the
entire genome for both coding and noncoding regions. For this purpose,
oligonucleotide tiling arrays are used. In this design, the probes are selected to
cover the entire genome or contiguous regions of the genome. The probes are
either partially overlapping or contiguous. Since the precise location of the
selected probes is known, a genome-wide map of the protein–DNA interac-
tions is built as shown in Figure 3.10. For each genomic locus, the log2-ratio
between the ImmunoPrecipitation (IP) signal and the input signal is com-
puted. The regions which are bound by the Protein of Interest (POI) have a
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binding region

FIGURE 3.10 ChIP-on-chip profile. The log2-ratios between IP signal and
input signal is represented along the genome. The DNA binding region of the POI
appears as a peak in the genomic profile.

high log2-ratio value and appear as a peak in the genomic profile. The resolu-
tion of the method depends mainly on two factors: the length of the sheared
chromatin and the length and spacing of the probes on the microarray.

Besides the identification of DNA protein binding sites, the ChIP-on-chip
approach has been widely used to investigate the chromatin structure such
as the nucleosome position map and the location of histone modifications.
For the latter, an antibody which is specific for the modification of interest
is used, thus allowing the histone code to be deciphered (Schones and Zhao,
2008). Indeed, epigenetic modifications are very important in cancer both at
the histone and DNA levels. The next section will present how to investigate
the epigenetic modifications at the DNA level.

3.1.6 DNA methylation

DNA methylation is an epigenetic modification which plays an impor-
tant role in gene regulation and genome stability (see Section A.1 in the
Appendices for an introduction to the epigenetics mechanisms). As the ge-
nomic sequence remains the same for both methylated and unmethylated
states, hybridisation-based microarray experiments cannot be applied as such
to query the methylation state of CpG dinucleotides. Therefore, almost all
sequence-specific DNA methylation analysis techniques rely on a methylation-
dependent treatment of the DNA before amplification and hybridisation on a
DNA microarray. Three main approaches are used and reviewed in Schones
and Zhao (2008) and Laird (2010).

The first technique is based on a restriction enzyme which can specifi-
cally differentiate methylated and unmethylated CpG. The restriction enzyme
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cleaves unmethylated CpG while methylated CpG remains uncleaved, allow-
ing the distinction between both methylation states after hybridisation on the
microarray (Schumacher et al., 2006).

The second technique is based on affinity enrichment using an antibody
which specifically recognises methylated cytosine. The protocol is very similar
to the protocol described in the ChIP-on-chip experiment. These techniques
are known as methylated-DNA IP (MeDIP, mDIP, mCIP).

The third technique is based on a bisulfite conversion (Reinders et al.,
2008). The analysis of bisulfite-treated DNA using oligonucleotide arrays
utilises the fact that after bisulfite treatment, unmethylated DNA contains
uracil (analogous to thymine) in place of cytosine and hybridises poorly to
array oligonucleotides that contain guanine. Methylated DNA, however, will
hybridise on a probe corresponding to its complementary strand. Therefore,
to detect the methylation state at a given genomic locus, two different probes
are designed in order to discriminate between the methylation states as shown
in Figure 3.11.

  

ACATTCG CAG TA CATG ACATTCG CAG TA CATG

Me
bisulfite treatment

AUATTCG UAG TA UATGAUATTUG UAG TA UATG

C is conserved after treatmentC are converted to U after treatment

Methylated caseUnmethylated case

Unmethylated
probe

Methylated
probe

AUATTCG UAG TA UATG

TATAAAC TTC AT TTAC
AUATTUG UAG TA UATG

light

light

TATAAAC TTC AT TTAC

TATAAGC TTC AT TTAC TTAAGC TTC AT TTACA

FIGURE 3.11 DNA methylation probe design. In a bisulfite treatment based
approach, two different probes are designed for each locus in order to investigate its
methylation state. While the probe pairs its target locus for the methylated state,
all the G nucleotides are replaced by A in the unmethylated probe. Depending on
the methylation state of the locus under investigation, a fluorescent light is emitted
or not.
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3.2 Emerging sequencing technologies

In 1977, a revolution in the era of genetic engineering was the develop-
ment of technologies to sequence DNA. The same year, Maxam and Gilbert,
and Sanger and Coulson proposed methods to sequence genomes (Gilbert and
Sanger were awarded the Nobel prize in 1980 for their contribution to DNA se-
quencing). Sanger’s method has been widely used for almost two decades and
has led to a number of monumental accomplishments, including the comple-
tion of the first human genome sequence. In 1990, the Human Genome Project
was launched as an international consortium aiming at sequencing with the
Sanger’s method (also called first-generation sequencing) a complete human
genome. In 2001, the consortium (International Human Genome Sequencing
Consortium, 2001) and Celera Genomics (Venter et al., 2001) each reported
draft sequences providing a first overall view of the human genome. In 2003,
the sequencing of the human genome was completed (Collins et al., 2003) and
the international collaboration worked to convert the first draft into a genome
sequence with high accuracy and nearly complete coverage (International Hu-
man Genome Sequencing Consortium, 2004). Therefore, the Human Genome
Project took 13 years, involved about 3,000 scientists worldwide and cost 2.7
billion dollars to obtain the first human genome sequence (Wadman, 2008).
Sanger’s method was further improved and used by Levy et al. (2007) to pub-
lish the second human genome sequence (J. Craig Venter’s genome). It took 4
years to be completed, involved 30 scientists and cost 100 million dollars. In
spite of the improvement, Sanger’s method was still not suitable in order to
sequence genomes either in a reasonable time or at a reasonable price.

To overcome these limitations, a second-generation sequencing (also called
next-generation sequencing) appeared in 2004, providing a dramatic increase
in the throughput capacity with a lower cost. The main companies offering
next-generation sequencing platforms are Illumina (Genome AnalyzerTM, HiSeq
2000TM and MiSeq platforms), Life technologies / Applied biosystems (SOLiDTM

platform), Life technologies / Ion Torrent (Personal Genome Machine PGMTM

and Ion ProtonTM platforms) and Roche Applied Science (The 454 Genome
Sequencer FLX platform) (Rusk and Kiermer, 2008; Chi, 2008; Niedringhaus
et al., 2011; Rothberg et al., 2011). The latter platform was used to sequence
James Watson’s genome (Wheeler et al., 2008). It took 4.5 months to be
completed, involved about 30 scientists and cost less than 1.5 million dol-
lars. High-throughput sequencing technologies are a very competitive field and
third-generation sequencing already appeared in 2008 (called next-next gener-
ation sequencing). This last generation sequencing is based on single-molecule
analysis. The main companies are Helicos BioSciences (HeliScope platform) and
Pacific Biosciences (PacBio RS platform) (Blow, 2008; Niedringhaus et al., 2011;
Thompson and Milos, 2011). The HeliScope platform was used by Pushkarev
et al. (2009) to sequence a human genome in several days, involving three
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scientists and costing about 50 thousand dollars. Fourth-generation sequenc-
ing combined single-molecule and nanopore sequencing technologies, Oxford
NANOPORE Technologies (GridION platform) being the main competitor. As
the sequencing cost is dramatically decreasing while the throughput capac-
ity is increasing, these new technologies should sequence a human genome in
several minutes for 1,000 dollars or even less before 2014 (Netterwald, 2010).
Box 3.3 defines the key concepts used in the sequencing field. Note that we
will use the acronym NGS∗ which stands for next-generation sequencing to
refer to any high-throughput sequencing techniques from second-generation
until the most recent.

3.2.1 General principles of high-throughput sequencing

The different NGS platforms rely on high-level technologies including enzy-
mology, chemistry, high-resolution optics, hardware, and software engineering.
Although each platform has its own specificities (see Table 3.1), they gener-
ally share the following common steps that last between several hours to 10
days depending on the platform (see Mardis, 2008b; Metzker, 2010; Glenn,
2011):

• From the genome under investigation (here genome means any kind of
nucleotide sequence of DNA or RNA), small fragments are prepared
generally using a random shearing of the sequence. The small fragments
obtained are referred to as the template and this step is called the library
preparation. Depending on the application and the type of nucleotide
sequence under investigation, specific library preparation protocols are
used.

• The templates are amplified using PCR in order to provide a sufficient
signal (this step is not required for single-molecule sequencing). To start
the reaction, primers∗ are used.

• A glass slide or a chip encompasses all the different templates obtained
from the genome under investigation allowing thousands to billions of
sequencing reactions simultaneously.

Most sequencing machines rely on an optical detection in order to detect
each nucleotide being sequenced which implies:

• The use of modified oligonucleotides labelled by fluorochromes. During
the sequencing process, light is emitted by the fluorochrome and regis-
tered by the optics after laser excitation.

• An image analysis step allowing the quantification of the signal. For each
template, a read which corresponds to the sequence of the template (or
at least a subpart of it) is obtained.

Nevertheless, we will see that alternative detection methods without optics
(i.e. laser-free) appeared in the most recent sequencers.
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3.2.2 Principles of high-throughput sequencing based on am-
plification

High-throughput sequencing based on amplification requires a PCR step
to amplify the amount of DNA for each template. This way, sufficient material

o BOX 3.3: Key concepts in sequencing

template: it is the true nucleic sequence which has to be read by the
sequencer.

read: it corresponds to the sequence of the template which has been
read by the sequencer. It consists of tens to hundreds bases de-
pending on the technology used. Current techniques produce sev-
eral millions up to billions of such reads in a single experiment.

sequencing error: it is a base in the read which does not correspond
to the true base in the template.

depth of coverage: it represents the number n of reads which over-
lap a given position in the genome and is noted nX. The depth
of coverage can be summarised by its average over all the po-
sitions within the genome. As sequencing errors are made by
the sequencer, increasing the depth of coverage will improve the
accuracy of the sequence obtained after alignment or assembly.

coverage: it represents the percentage of the genome which has been
covered at least by one read.

reference genome: it is the nucleic sequences for each of the chro-
mosomes from a sample which is considered as representative of
a given species. A reference genome is obtained using de novo
sequencing. The Human Genome Project has lead to the first
human reference genome.

alignment: it is the process of mapping (i.e to obtain the position
on the chromosome they belong to) the reads on the reference
genome. As sequencing errors generally occur in the read, mis-
match is allowed between the read and the reference genome.

sequence assembly: process which consists in merging reads into
much longer DNA fragments in order to reconstruct the sequence
of the sample under study.

de novo sequencing: it is the process of assembling reads together
so that they form a new and previously unknown sequence.

run: set of steps which are performed by a sequencer in order to
generate the reads.

GC-content it is the percentage of bases on a DNA sequence that is
either a G or a C.
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Platform ST AM DM Description

454 S ePCR OD First second-generation
sequencer with long reads

Genome Analyzer S bPCR OD First second-generation
sequencer with short reads

SOLiDTM L ePCR OD Second second-generation
sequencer with short reads

Ion PGM S ePCR H First post-fluorescence sequencer

HeliScope S N OD First single-molecule sequencer
PacBio RS S N OD First real-time single-molecule

sequencer
GridION S N CD First nanopore real-time single-

molecule sequencer

TABLE 3.1 Sequencing platform characteristics. The table indicates the se-
quencing technique (ST), amplification method (AM), detection method (DM) and
the description of different high-throughput sequencers. S = Synthesis; L = Liga-
tion; OD = Optical detection with fluorescence; H = Hydrogen ion; CD = Current
Disruption; N = none; ePCR = emulsion PCR; bPCR = bridge PCR.

is provided for a reliable detection of the signal. We propose to take as ex-
ample the Sequencing by Oligonucleotide Ligation and Detection (SOLiDTM)
platform. After DNA shearing (see Figure 3.12A), the templates are sep-
arated into single strands and captured onto beads under conditions which
favour one DNA molecule per bead (see Figure 3.12B). The templates (with
a length ranging from 150 to 180bp) are amplified using emulsion PCR in
order to provide a sufficient signal during the sequencing reactions. In an oil
phase, aqueous droplets encompass one bead and form micro-reactors for the
PCR reaction to take place. The beads contain an adaptor P1 which is ligated
to the DNA template in the 5′ end and a second P2 adaptor ligated in the
3′ end. These two adaptors are known as DNA sequences and are essential
to initiate the PCR. The same P1 and P2 adaptors are used whatever the
template. The beads are then deposited on a glass slide.

The main limitation of this sequencing technology is the read size that
can be obtained. Indeed, the probability of detecting the right base generally
decreases with its position on the read. As a result, reads longer than 75 bases
are the maximum so far allowed by the SOLiDTM platform. Longer reads would
not be reliable for quality reasons. In order to obtain longer reads, the company
progressively increases the number of cycles while preserving the quality of the
sequence. However, using a modified enzymology and chemistry, it is possible
to perform a second sequencing from the position n′ which represents the
start of the P2 adaptor (see Figure 3.12A). This time, the sequencing moves
from the 3′ end towards the 5′ end. This approach is called Paired-End Tag
(PET) sequencing. Sequencing both ends of a given template is useful for
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FIGURE 3.12 Library preparation for the SOLiD platform. (A) For both
single-end and paired-end sequencing, the DNA is sheared into fragments (the frag-
ment or template with the extremities T1 and T2 ranges from 150 to 180bp). One
sequencing step is performed for single-end (from position n) and two for paired-end
(from position n and n′). (B) An oil-aqueous emulsion is created to encapsulate 1-µm
bead with P1 and P2 adaptors and a single template. After emulsion PCR within the
droplet, the bead contains several thousand copies of the initial template sequence.
(C) In the mate-pair library, the DNA fragments are first selected according to the
desired size (for example, the fragment with the extremities T1 and T2 is chosen to
be 3Kb). Then an internal adaptor is ligated at both ends of the fragments, the DNA
is circularised and cut at both sides of the internal adaptor such that both resulting
templates are 50 bases long. Two sequencing steps are performed. Adapted from
Sequencing by Oligonucleotide Ligation and Detection (SOLiDTM) documentation.

understanding the structure of the genome and de novo sequencing (Fullwood
et al., 2009a). Using PET, the current 5500 XL SOLiDTM is theoretically able
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to generate in seven days 300Gb of sequences corresponding to 4.8 billions of
reads having 75 bases (P1 side) and 35 bases (P2 side) in length. An alternative
to PET is mate-pair library sequencing (see Figure 3.12C). It enables the
generation of DNA fragments with a desired size ranging from 2 to 10Kb. After
DNA shearing, a ligation with an internal adaptor enables the circularisation
of the DNA fragment. The circularised DNA is cut on both sides of the internal
adaptor and ligated to usual P1 and P2 adaptors. The PCR can take place as
described previously. Two sequencing steps are performed in the same manner
as in PET. The first sequencing starts at position n with a primer that can
pair with the P1 adaptor and the second sequencing starts at position n′ with
a primer that can pair with the internal adaptor. Combining data generated
from mate-pair library sequencing with data from PET provides a powerful
combination of read lengths for maximal genomic sequencing coverage across
the genome. The Figure 3.13 illustrates how genome rearrangements can be
identified using a mate-pair sequencing with 5500 XL SOLiDTM.

As we have previously mentioned, a recent platform called post-
fluorescence (i.e. laser-free) sequencers does not require fluorochromes any-
more thus avoiding scanner, cameras and laser. Among sequencers based on
amplification, the Ion Torrent PGM (Rothberg et al., 2011) replaced the optical
detection by semiconductor technology (see Figure 3.14A). In that case, the
well lies under an ion-sensitive layer. As the polymerisation reaction releases
a hydrogen ion as a byproduct, the charge from that ion can be detected by
the ion-sensitive layer. In the homopolymer region, the intensity of the voltage
detected indicates how many nucleotides have been incorporated. All the Ion
Torrent system is encapsulated into a chip. The chip version 318 contains 12
million wells which generate roughly 1Gb of sequence in about 2 hours with
an average read length of 200 bases.

3.2.3 Principles of single-molecule sequencing

In contrast to second-generation sequencing where the signal is registered
for a template population, third-generation sequencing registers the signal
from a single template DNA molecule (Metzker, 2010; Efcavitch and Thomp-
son, 2010; Hohlbein et al., 2010). In this case, no PCR amplification is needed
anymore as the sequence can be directly obtained from a single-strand DNA
template placed into a well. Such a method avoids both the costs and errors
related to the PCR step. Single-molecule sequencing can be separated into
two main categories.

The first one consists of sequencing the DNA template by a cycling pro-
cess. For each cycle, only one nucleotide is added, incorporated by a DNA
polymerase if its complementary nucleotide is met at the position being se-
quenced, and then, the remaining nucleotides are washed out (in the same
manner as Ion Torrent PGM does). The HeliScope platform was the first one
to propose such an approach (Harris et al., 2008). During each cycle, the fluo-
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FIGURE 3.13 Identification of genome rearrangements using mate-pair
sequencing. After mate-pair sequencing of the tumour genome (with SOLiDTM

sequencer), the mate-pair reads are aligned on the reference genome. As the expected
distance between mate-pairs is known (for example, d = 3Kb), deletion or insertion
can be identified based on variation of the observed distance dr between mate-pairs
once aligned on the reference genome. Balanced and unbalanced translocations can
be identified too. Tools like SVDetect (Zeitouni et al., 2010) allow the identification of
these rearrangements. See Figure 3.15 for an application of translocation detection.
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rescence of the labelled nucleotide is quantified by the platform and indicates
whether a given nucleotide has been incorporated or not.

The second category consists of sequencing in real time. Such platforms
are referred to as Single Molecule Real Time (SMRT) sequencing. In SMRT,
the polymerisation reactions performed by the DNA polymerase can be reg-
istered continuously in real time and the process happens as it would in vivo
during the DNA replication process. Pacific bioscience has developed such a
technology, and the principles are the following (Eid et al., 2009). A glass slide
contains millions of holes called Zero-Mode Waveguide (ZMW) each with 70
nm in diameter and 100 nm in depth providing a reaction volume of 1.5 zep-
toliter (10–21 litre). Within each ZMW, a single DNA polymerase molecule is
anchored to the bottom glass surface. Nucleotides, each type labelled with a
different coloured fluorochrome, are then flooded above an array of ZMWs at
the required concentration. At the bottom of each ZMW lies an immobilised
DNA polymerase enzyme which can replicate the complementary strand from
a single-strand DNA template. The ZMW nanostructure allows the polymeri-
sation reaction to take place. After laser excitation below the glass slide, the
emitted fluorescence light indicates what nucleotide has been incorporated as
far as the polymerase goes along the DNA sequence (see Figure 3.14B).
The current technology allows 75,000 ZMWs to sequence in parallel. Inter-
estingly, Flusberg et al. (2010) noticed that the methylation state of a given
nucleotide impacts the DNA polymerase kinetics. During the polymerisation
process, the fluorescence pulses in SMRT sequencing are characterised not
only by their emission spectra but also by their duration and by the interval
between successive pulses. Both pulse duration and interval between pulses
are affected by the epigenetic modification of DNA, allowing the methylated
and unmethylated cytosines to be discriminated. As a result, the principal
challenge for single-molecule sequencing based on fluorescence detection was
to avoid unwanted background noise created by the labelled nucleotides. The
ZMW was especially designed for this. McCarthy (2010) reported that the
company claims to obtain reads up to 10,000 bases (10 times longer than
Sanger sequencing), with a sequencing speed 10,000–20,000 faster than the
current second-generation sequencing technology (1–3 nucleotides per second
can be incorporated by the polymerase).

Other strategies based on single-molecule DNA analysis use nanopore
structures which consist of an orifice slightly larger than the width of a double-
stranded DNA molecule (Stoddart et al., 2010). The nanopores are inserted
into a lipid bilayer biomembrane. The base detection is possible through the
measurement of conductivity through a membrane via the pore. The chemical
differences of each base result in different magnitudes of current disruption
which differentiate the four bases. Interestingly, the magnitudes of current
disruption also depend on the methylation of the bases which allows the detec-
tion of epigenetic modification at the DNA level (Wallace et al., 2010). Oxford
NANOPORE Technologies currently uses a bionanopore combined with an ex-
onuclease bound to the inside of a protein nanopore. The exonuclease serves
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as a DNA binding site and cleaves individual bases from the DNA strand.
Each cleaved base passes through the pore and the detected current allows its
identification. The exonuclease regulates the motion of the DNA; otherwise it
would move too fast for an accurate detection (see Figure 3.14C). Assuming
a steady 1 ms per base sequencing rate, a single pore would require 69 days to
process 6 billion bases. One hundred thousands pores operating perfectly at
that rate could theoretically sequence a genome with 30X depth of coverage
in 30 minutes. For faster and more accurate sequencing, Oxford NANOPORE
Technologies is working toward the development of a strand sequencing tech-
nology in which a single-stranded DNA fragment is passed through the pore
and the identification of single bases is achieved as they pass through it (see
Figure 3.14D). A future generation of nanopore technology is solid-state
nanopores. These are man-made holes in synthetic materials such as graphene
sheet (Garaj et al., 2010). The use of these synthetic nanopores alleviates the
difficulties of biomembrane stability and protein nanopore positioning used
in both previous methods but requires control of the motion of the DNA
strand (Luan et al., 2011). Fourth-generation sequencing allows sequencing
in real time, avoids optical detection like Ion Torrent and does not require
synchronous reagent wash steps, which makes it a very promising approach.

3.2.4 Targeted sequencing

Although the cost for genome sequencing is dramatically decreasing, it still
remains an expensive technology. Therefore, it is not yet feasible to sequence
many different whole human genomes. Consequently, different protocols have
been developed to narrow the scope of investigation such that genomic regions
of interest (i.e. the targeted sequences) can be selectively sequenced after
enrichment. The first approach consists of the amplification of the regions of
interest using PCR followed by NGS. The second approach is based on capture
sequencing. In this case, the genomic DNA of interest are first captured using
probes tethered to either a microarray or beads in a solution (Mamanova
et al., 2010). The main limitation of the method is that probes are designed to
target a priori known regions. From the sample under investigation, the DNA
is extracted, sheared and hybridised on the probes. The targeted fragments
attach to their respective probes while the nontargeted fragments are washed
away. Subsequently, the targeted DNA fragments can be sequenced by NGS.

Targeted sequencing is generally combined with barcode multiplexing such
that different samples can be processed simultaneouly in the same run. A dif-
ferent barcode (i.e. a short and known DNA sequence, for example a four
base-pair barcode, allows theoretically to sequence 256 samples in the same
time) is merged to the templates of each sample. Each sample is uniquely
identified by its barcode. The sequences from all the samples are then pooled
and sequenced. The barcode is sequenced during the run and allows the as-
signment of the template to its sample.

A typical application of target-enrichment followed by NGS is the exome
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FIGURE 3.14 From second- to fourth-generation sequencing, illustration
on TAGGCT template. (A) Second-generation sequencing. In Ion Torrent PGM,
each base is sequentially added and washed. The voltage shift due to hydrogen ion
emission indicates how many bases have been incorporated. (B) Third-generation
sequencing. In PacBio RS, the four labelled nucleotides are flooded above the array.
The light intensity for each colour indicates what nucleotide has been incorporated
as far as the polymerase goes along the DNA sequence. (C) Fourth-generation se-
quencing. In GridION with exonuclease sequencing, the exonuclease attached to the
nanopore cleaves each base from the template. As the base passes through the pore,
it transiently binds to an adaptor molecule which causes a characteristic current
disruption. (D) Fourth-generation sequencing. In GridION with strand sequencing,
the template is threaded through the nanopore due to the polymerisation reaction.
As long as the template moves through the pore, each base causes a characteristic
current disruption as in the exonuclease sequencing. (See colour insert.)
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FIGURE 3.15 Characterisation of DNA copy number and identification
of inter-chromosomal translocations in T47D using mate-pair sequencing.

Chromosomes (black = p arm, grey = centromere, white = q arm) are
represented around a circle. Black links in the inner part represent inter-
chromosomal translocations. The translocations indicated in Figure 2.12 are
also identified in this experiment. The outer part represents the DNA copy
number profile which looks very similar to the profile in Figure 3.8. We have
analysed the data with the following algorithms: reads have been aligned with
the bowtie algorithm (Langmead et al., 2009), DNA copy number estimated
with FREEC (Boeva et al., 2011a) and translocations identified with SVDetect
(Zeitouni et al., 2010). Circos has been used to plot the results (Krzywinski
et al., 2009). Figure 3.13 explains how translocations are identified. Data
from Hillmer et al. (2011).

sequencing (Teer and Mullikin, 2010). This application aims at sequencing all
exons corresponding to the protein-coding regions (the human genome con-
tains about 180,000 exons covering 30Mb, i.e. about 1% of the human genome
sequence). This will allow the identification of mutations which affect gene
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functions. Importantly, annealing conditions (i.e. the conditions in which two
DNA strands bind together) allow mismatches in pairing during the capture
such that SNPs and mutations can be detected.

3.2.5 Application of high-throughput sequencing in oncology

Why is it important to mention these NGS technologies? Among the differ-
ent molecular levels, many include nucleotide sequences, either DNA or RNA
(see Figure 3.1). Microarrays have been considered so far as the favourite tool
for genomics, transcriptomics or miRNomics. NGS technologies appear as a
very suitable tool to perform comprehensive experiments in tumoral genomes
in order for molecular profiling at the level of DNA, mRNA and miRNA.
Therefore, this is a cutting-edge technology which is very likely to replace
microarray experiments in a near future. Moreover, these new platforms can
explore new areas of biological inquiry, including the investigation of ancient
genomes, the characterisation of ecological diversity, and the identification of
unknown etiologic agents. NGS offers many applications, especially in the field
of medical science (Schuster, 2007; Mardis, 2008a) and particularly in oncology
in order to (note that points 9 to 13 were not possible with microarrays):

1. Quantify mRNA expression (this is called RNA-seq)

2. Quantify miRNA expression

3. Identify alternative splice forms

4. Quantify DNA copy number (see Figure 3.13, Figure 3.15)

5. Identify LOH

6. Identify protein-DNA interactions using ChIP-seq, i.e., ChIP followed
by sequencing (Farnham, 2009)

7. Map nucleosome position with respect to the DNA sequence

8. Study epigenomic modifications

9. Discover mutations

10. Discover polymorphism

11. Map chromosomal rearrangements (translocation, fusion gene, deletion,
amplification, etc.) at a resolution of one base (Chen et al., 2008; Camp-
bell et al., 2008) (see Figure 3.15)

12. Discover noncoding RNAs (ncRNA)

13. Study the spatial organisation of the chromatin

While most second-generation sequencing relies on alignment on a refer-
ence genome, the longer reads obtained by third and fourth generation se-
quencing will allow assembly (Martin and Wang, 2011) of tumoral genomes.
This gives new insights to investigate genome rearrangements in a tumour.
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Note that as all the sequencing technologies have different characteristics,
some sequencers are more adapted to a given application (Thompson and Mi-
los, 2011). For daily routine diagnosis using targeted sequencing Ion Torrent
PGM is well adapted, while other sequencers might be more appropriate for
research purposes.

3.2.6 Towards single-cell sequencing

A tumour consists of a complex mixture of cancer cells and normal cells
(see Section 2.6). Normal cells can represent a significant proportion within
the sample and mask the signal from the cancer cells. Moreover, tumours are
heterogeneous as they often consist of different clonal subpopulations (see Sec-
tion 2.3). Omics experiments generally require sufficient material extracted
from several thousands of cells in order to obtain detectable signals. There-
fore, molecular profiling with NGS provides an average overview across the
different cell populations from the tumour sample. A deeper characterisation
of tumours at the level of subpopulations or even at the level of single cells of-
fers a more accurate picture of its complexity and its heterogeneity. Typically,
comparing the tumour heterogeneity with respect to survival on one hand, and
to resistance to treatment on the other hand, would be very valuable from a
clinical perspective and that of personalised medicine. Indeed, the higher the
heterogeneity, the higher the probability to have some cell subpopulation sur-
viving when exposed to treatment.

Single-cell sequencing gives insights to answer the question of whether
pre-existing rare cells in the primary tumour∗ can escape the treatment
or whether resistant cells emerge in response to treatment by acquiring de
novo mutations (Navin and Hicks, 2011; Navin et al., 2011). Another applica-
tion of single-cell sequencing is the identification of Circulating Tumour Cells
(CTC) and characterisation of their genomic alterations as the presence of
these cells can be correlated with patient survival. The feasibility of single-
cell sequencing relies on single-cell isolation techniques such as flow cytometry
using Fluorescence-Activated Cell Sorting (FACS) or Laser-Capture Microdis-
section (LCM). Obviously, single-cell sequencing could enter clinical practice,
as both cost and time of sequencing are decreasing.

3.3 Chromosome conformation capture

Microarray and NGS technologies help to reconstruct the structure of a
tumoral genome as a one-dimensional linear succession of genetic elements
(translocations, gain regions, loss regions, SNPs, mutations, etc.). However,
in the cell nucleus, the genome is organised into a complex tridimensional
structure. For example, chromatin loops and bridges bring distant elements of
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the chromosome into close physical proximity. As a result, these chromosomal
interactions between distant genetic elements can contribute to the silencing
or activation of genes. Among these elements, there are enhancers and pro-
moters involved in the transcription regulation (see Section A.1.1). While it
is more likely that a genetic element interacts with its neighbours in the same
chromosome, it may be that the transcription of co-regulated genes on dif-
ferent chromosomes occur in the same spatial localisation inside the nucleus.
Such models are referred to as transcription factories (Sutherland and Bick-
more, 2009; Cook, 2010). Technical advances in detecting these interactions
contribute to our understanding of the functional organisation of the genome,
as well as its adaptive plasticity in response to environmental changes dur-
ing development and disease (Göndör and Ohlsson, 2009). As the interaction
between different DNA elements mainly occurs via protein complex, all the
protocols used to investigate the chromosome conformation use formaldehyde
to fix cells. As a result, it cross-links proteins to other proteins and to DNA
elements which are in close proximity in the nuclear space such that interact-
ing DNA elements are linked together. Four different approaches are used to
unravel DNA-DNA interactions (see Figure 3.16 and Simonis et al., 2007;
Tanizawa and Noma, 2011).

Chromosome Conformation Capture (3C). For two loci of interest
chosen in advance, the 3C technology (Dekker et al., 2002) quantifies the
frequency of interactions between them (see Figure 3.16A). After cross-
linking, chromatin is digested with a restriction enzyme. DNA ends are ligated
under conditions that favour junctions between cross-linked DNA fragments.
Cross-links are then reversed. Finally, a real-time quantitative PCR amplifies
and quantifies the ligation product using primers designed to pair the two loci
of interest. The main limitation of this technology is that only two loci can
be investigated during the experiment.

Circularised Chromosome Conformation Capture (4C). To over-
come the limitation of 3C, an alternative protocol based on the 3C approach
has been developed to screen physical interactions between chromosomes with-
out a preconceived idea of the interacting partners (see Figure 3.16B). The
technique is termed 4C (Göndör et al., 2008). A circularisation step permits
the identification of interacting sequences using two primers positioned on
the sequence of interest but close to the junction between the sequence of
interest and the interacting sequence. After PCR, high-throughput single-end
sequencing (or microarray) can detect DNA loci which interact with the locus
of interest.

Carbon-Copy Chromosome Conformation Capture (5C). Another
extension to 3C can investigate all potential interactions within a limited
region of interest (see Figure 3.16C). Basically, the technique performs many
3C experiments in parallel using a multiplex ligation-mediated amplification
(Dostie et al., 2006, 2007). The technique is termed 5C and requires one
to design as many primers as the number of loci to investigate within the
region of interest. Typically, a thousand primers can be used such that one
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interaction between two loci of interest, (B) 4C the interaction between one loci
of interest and the whole genome, (C) 5C between loci located inside a region of
interest and (D) Hi-C between all possible loci within the genome. Image adapted
from Simonis et al. (2007); Tanizawa and Noma (2011).

million interactions can be tested. Both ends of interacting loci are identified
with high-throughput PET sequencing. The size of the region which can be
studied is limited by the number of primers which can be used simultaneously.
Therefore the technology is not suitable for genome-wide scans.

Hi-C. The detection of chromosomal interactions using 3C and its subse-
quent adaptations requires the choice of a set of target loci of interest. As it
requires primers to be designed by the biologist, which is the most limiting
part, it makes genome-wide studies impossible. To overcome this limitation,
a protocol called Hi-C has been proposed to perform a genome-wide investi-
gation of the chromosome conformation (see Figure 3.16D and Lieberman-
Aiden et al., 2009; van Berkum et al., 2010). Hi-C allows the preparation of a
genome-wide library of ligation products corresponding to pairs of fragments
which were originally in close proximity to each other in the nucleus. After
cross-linking and digestion by the restriction enzyme, a reporter is added at the
junction of interacting DNA fragments. The reporter is a biotin-streptavidin
complex fixed to a magnetic bead. After shearing the library, only the frag-
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FIGURE 3.17 Schematic representation of the 3C-based approaches. In
the case of a Hi-C experiment, the data can be represented as a symmetric matrix in
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ment which contains a junction and thus having magnetic beads can be ex-
tracted using a magnet. The purified junctions can be subsequently analysed
using high-throughput PET sequencing, resulting in a catalog of interacting
elements.

Interestingly, 3C-based technologies can be combined with ChIP in order
to analyse interactions between specific protein-bound DNA sequences. This
approach is termed ChIP-loop (Simonis et al., 2007) or ChIA-PET (Fullwood
et al., 2010, 2009b) and works as follows. After cross-linking, the use of a
specific antibody allows the enrichment in DNA elements that contain the
POI. The other steps remain similar to the 3C protocol.

As the analysis is performed on a population of cells, 3C and 3C-based
technologies provide information about the frequency, but not the function-
ality, of DNA interactions. Thus, additional, often genetic, experiments are
required to address whether an interaction identified by 3C-based technolo-
gies is functionally meaningful for the cells. Moreover, it is important to note
that because of the flexibility of the chromatin fibre, DNA elements on the
same fibre are engaged in random collisions, with a frequency inversely propor-
tional to the genomic distance between them. Therefore, the mere detection
of a ligation product does not necessarily reveal a specific interaction.

Figure 3.17 represents the possibilities offered by the different 3C-based
approaches in order to investigate the DNA interactions within the genome.
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3.4 Large-scale proteomics

Proteomics investigates at a large-scale the various properties of the pro-
teins including their sequence, quantities, Post-Translational Modifications
(PTM), interactions between each other, cellular localisations and structures.
As the proteins are effectors inside the cell, proteomics studies are essential
to understand the function of the genes. Moreover, while messenger RNAs
(mRNA) can be detected inside the cell, they are not necessarily translated
into proteins. Even translated, the proteins might be present but inactive.
Thus, proteomics studies give a complementary knowledge in addition to ge-
nomics and transcriptomics.

A protein has specific functions that depend on four properties: (1) the
peptide sequence (the primary structure), (2) the local structure such as alpha
helix or beta sheet (the secondary structure), (3) the tri-dimensional shape
(the tertiary structure) and (4) its ability to form complexes with other pro-
teins (the quaternary structure). In addition, PTMs (phosphorylation, ubiq-
uitination, glycosylation, acylation, etc.) modify the secondary, tertiary or
quaternary structures of proteins changing their activity and properties.

Inside the cell, the concentration of the different proteins can range from
several pg/ml up to several mg/ml. This implies the use of highly sensitive
techniques in order to identify and quantify the less abundant ones. In con-
trast to nucleotide-based experiments in which the Polymerase Chain Reaction
(PCR) can produce enough material (for hybridisation in a microarray or for
NGS), no amplification method exists for proteins. As a result, the sensitivity
of the technique is all the more required in order to obtain sufficient signal
for a reliable measurement. Moreover, the complementarity property in nu-
cleotide sequences does not exist in proteins. Finally, proteomics requires the
extraction and purification of proteins which is a difficult step. The aforemen-
tioned reasons make the complexity of the proteome huge and its analysis very
challenging.

In this section, we will focus on techniques to identify, quantify the pro-
teins, detect their PTMs and characterise their interactions while the study of
their structure will not be addressed. The main approaches used to decipher
the proteome are microarrays, mass spectrometry and two-hybrid systems
(Johnson and Hunter, 2005).

3.4.1 Microarray-based proteomics

To tackle the complexity of the proteome, investigation methods based
on immunoassay experiments have been largely developed. In that case, pro-
teomics studies rely on antibodies which are naturally used by the immune
system to recognise specific antigens (e.g. proteins) from foreign organisms
(e.g. viruses, bacteria). The antibodies possess a specific, highly variable do-
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FIGURE 3.18 Protein arrays. (A) In a sandwich microarray, a specific primary
antibody is tethered on the slide to capture the Protein of Interest (POI) which is
then detected using a specific secondary antibody coupled with a fluorochrome. (B)
In an antigen capture assay, the POI is similarly captured by tethered antibodies, but
the captured proteins are detected directly (after chemically labelling the complex
mixture of proteins). (C) In the Reverse-Phase Protein Array (RPPA), the mixture
of proteins itself is tethered on the slide. The POI can be recognised by a primary an-
tibody coupled with a fluorochrome or (D) with a primary antibody which recognises
the protein and a secondary antibody coupled with a fluorochrome which targets
the primary antibody. AB = antibody. Image adapted from (MacBeath, 2002).

main which can be adapted to recognise any potential antigen encountered
during the life of the host organism. Biotechnological approaches exist to
prepare antibodies capable of targeting a Protein of Interest (POI) but it is
a delicate task to ensure both their specificity and sensitivity. As a conse-
quence, only a few thousands of antibodies can target some proteins among
the several millions of protein forms (including their PTMs) which may exist
in humans. Microarray-based approaches have been combined with immunoas-
say methods in order to perform high-throughput quantification of proteins in
biological samples. However, the throughput still remains lower than those ob-
tained with nucleotide-based microarrays due to difficulty to prepare and use
antibodies. Three microarray approaches allowing a relative quantification of
protein levels exist and are described below (MacBeath, 2002; Tomizaki et al.,
2010; LaBaer and Ramachandran, 2005; Spurrier et al., 2008).

Sandwich immunoassay. This technique is based on the Enzyme-Linked
ImmunoSorbent Assay (ELISA) widely used as a diagnostic tool in medicine.
First, specific antibodies are tethered on the slide and capture the POI which
is then detected using a second specific antibody coupled with a fluorochrome
(see Figure 3.18A). This technique requires that two specific antibodies are
available to recognise the POI. For a single biological sample, several tens
of proteins can be quantified simultaneously provided that no cross-reactions
exist between the antibodies and the POIs.

Antigen capture immunoassay. The proteins from the sample are first
subjected to a labelling procedure which adds fluorochromes to every pro-
tein (see Figure 3.18B). The use of two different fluorochromes allows the
measurement of two different samples in one single experiment in the same
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way as the array Comparative Genomic Hybridisation (aCGH) protocol (see
Figure 3.3). The POI is captured by tethered antibodies as in the previous
technique and both fluorescences are measured. For a single sample, several
hundred proteins can be quantified simultaneously.

Reverse-phase protein array (RPPA). The proteins from the sam-
ple are directly tethered on the slide surface. The POI can be recognised
using either a specific primary antibody coupled with a fluorochrome (see
Figure 3.18C) or both a specific primary antibody and a secondary anti-
body coupled with a fluorochrome (see Figure 3.18D). The primary antibody
generally comes from another given species (e.g. rabbit when the proteome
under study is human) and the secondary antibody is able to recognise any
rabbit antibody. This strategy reduces the cost of primary antibody-coupled-
fluorochrome preparation. While the two previous techniques allow the mea-
surement of many different proteins for one or two samples in a single experi-
ment, the RPPA allows the quantification of a single POI in several hundreds
of samples in a single experiment. In this case, a spot on the microarray cor-
responds to the protein lysate from one sample.

o BOX 3.4: Mass spectrometry
A mass spectrometer consists of the following devices:

an ion source converts a gas, liquid or solid phase sample molecules
under investigation into ions.

a mass analyser sorts the ions by their mass-to-charge ratio (m/z)
by applying electromagnetic fields. Different technologies exist
like time-of-flight, ion trap, quadrupole, Fourier transform mass
spectrometry and orbitrap. They have their own specificities and
are used for different applications.

a detector registers the number of ions at each m/z value.

The output result from a Mass Spectrometry (MS) or a Mass Spec-
trometry/Mass Spectrometry (MS/MS) experiment is a spectrum
which consists of a series of peaks at given m/z values. The height
of each peak indicates the ion abundance. The height of each peak is
generally rescaled such that the highest peak is 100.

3.4.2 Mass spectrometry proteomics

Mass Spectrometry (MS) is an analytical technique to determine the com-
position of molecules or the list of compounds in mixture of many different
molecules (see Box 3.4). This technique has been widely used in different sci-
entific fields and particularly in biology for proteome study. While microarray-
based proteomics target proteins known in advance, MS can identify any pro-



92 Computational Systems Biology of Cancer

cells or tissue protein mixture digestion into peptides1DE

ion-peptide
(precursor ion)

fragmentation by collision

product ions

mass analyser mass analyser

signal
detection

neutral gas

peptide
mixture

ion-peptide

electrospray
ionisation

liquid chromatography
peptide separation

re
la

ti
v
e
 a

b
u

n
d

a
n

ce
 (

%
)

100

400 800 1200 m/z

MS spectrum

re
la

ti
v
e
 a

b
u

n
d

a
n

ce
 (

%
)

100

200 600 1000 m/z

MS/MS spectrum

4y

y2

y3

b

a2

2

LGA

peptide sequence

+

+ ++ +

+++

FIGURE 3.19 Mass spectrometry protocol. Proteins are extracted from cells
or tissues and a sub-proteome is selected after one-dimensional electrophoresis
(1DE). The proteins are digested into peptides, separated by Liquid Chromatog-
raphy (LC) and ionised. The Mass Spectrometry (MS) spectrum and Mass Spec-
trometry/Mass Spectrometry (MS/MS) spectrum are obtained. (See colour insert.)

tein without any a priori knowledge. At the very beginning, MS was more con-
venient for small molecules and the analysis of macromolecules such as proteins
was very challenging. In the 1980s soft ionisation techniques appeared such as
Electrospray Ionisation (ESI) or Matrix-Assisted Laser Desorption/Ionisation
(MALDI) allowing the production of ions from macromolecules without break-
ing their chemical bonds (John B. Fenn and Koichi Tanaka, Nobel prize chem-
istry 2002). This was a crucial step for the MS being used in biology especially
to study proteins. Interestingly, a two step mass spectrometry has been devel-
oped to better characterise the molecules under investigation. This technique,
called tandem mass spectrometry or Mass Spectrometry/Mass Spectrometry
(MS/MS), involves two mass analysers. The combination of both MS and
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MS/MS spectra ensures the identification of a protein. The investigation of
PTMs is possible using MS and MS/MS as the PTMs change the peptide mass
fingerprint. Figure 3.19 describes the typical workflow for a MS experiment
(see Aebersold and Mann, 2003; Patterson and Aebersold, 2003; Choudhary
and Mann, 2010; Domon and Aebersold, 2010):

• The proteins are extracted from cells or tissue. Since the mass spectrom-
eter cannot handle many proteins at the same time, a sub-proteome is ex-
tracted. This is generally done using a 1D or 2D gel electrophoresis∗.
Moreover, the MS of whole proteins is less sensitive than peptide MS,
a proteolysis reaction digests the proteins enzymatically by trypsin (or
other enzymes) to produce small peptides. As a result, each protein has
its own unique signature called peptide mass fingerprinting which is a
series of peaks at given m/z values.

• In order to improve both the sensitivity and specificity of the MS, a
Liquid Chromatography (LC) is used to separate the mixture of peptides
from the sample. Briefly, the analyte’s motion through the column is
slowed by specific chemical or physical interactions with the stationary
phase as it traverses the length of the column. How much the analyte is
slowed depends on the nature of the analyte such as its hydrophobicity
and on the compositions of the stationary and mobile phases. The time
at which a specific analyte elutes (comes out of the column) is called the
retention time. The retention time under specific conditions is considered
a reasonably unique identifying characteristic of a given analyte. When
the analyte comes out of the column, it is ionised by ESI and analysed
by MS and MS/MS.

• After ionisation, a mixture of ions enter the first mass analyser, are
sorted according to their m/z value and detected. A MS spectrum is
produced for the ions which entered the mass analyser during a fixed
time window called a survey scan.

• In MS/MS, the process continues as follows. From the MS spectrum,
the ions in a survey scan are either specifically selected (e.g. from an
ion list defined in advance by the user) or automatically selected (e.g.
the precursor ions from the highest peaks). The precursor ions gener-
ally correspond to a unique peptide but can be contaminated by other
peptides in some cases. Then, the precursor ions are fragmented into
product ions after collision with a neutral gas. The product ions are
termed ai, bi, ci if they contain the N-terminus and xi, yi, zi if they con-
tain the C-terminus where i represents how much amino acids are present
in the ion (see Figure 3.20). For stability, the cleavage preferentially
occurs at the peptide bond such that b and y product ions are mostly
observed. Finally, a second mass analyser sorts the product ions accord-
ing to their m/z values. A MS/MS spectrum is produced which permits
identification of the amino acid sequence.
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FIGURE 3.20 MS/MS peptide nomenclature. The nomenclature has been
proposed by Roepstorff and Fohlman (1984).

• The MS/MS spectrum allows the peptide identification, querying refer-
ence databases with bioinformatic tools such as MASCOT or SEQUEST
(Shadforth et al., 2005). The sequence of many genes have been identified
both by traditional biological approaches and bioinformatic prediction
models. As a result, about 25,000 genes are annotated in the human
reference genome. Applying the genetic code to the DNA followed by in
silico trypsin digestion permits to infer the exhaustive list of peptides
which could be obtained. Databases which contain the list of m/z val-
ues for each peptide are finally queried in order to retrieve the candidate
proteins which are very likely to be present in the sample.

Many biological or clinical questions require the comparison of two or even
more different conditions. Therefore, there is a need for the MS to compare
protein quantities or at least relative protein quantities between different con-
ditions. The substantial discrepancy between the number of peptides present
in a digest of a proteome and the analytical capacity of the LC-MS/MS system
(i.e. the number of components that can be separated, detected and identi-
fied) prevents a perfectly reproducible set of peptides from being identified
in repeated analyses of the same sample. As a consequence, quantitative pro-
teomics by MS is a particularly challenging task. Different approaches have
been developed to overcome these limitations (see Bantscheff et al., 2007; El-
liott et al., 2009). The first method is Stable Isotope Labelling with Amino
acids in Cell culture (SILAC) (see Figure 3.21A and Ong et al., 2002) and
relies on a metabolic labelling using either light or heavy4 arginine and lysine
for the two different conditions. As the trypsin cleaves the protein after ei-
ther arginine or lysine amino acids, it ensures that all the peptides obtained
after proteolysis carry at least one labelled amino acid. As a result, a mass
increment differentiates the same ions from both conditions. This technique
requires culture cells as the labelling occurs during cell growth. Since this
is not always possible, a second method called stable isotope incorporation
via enzyme reaction (Enzymatic labelling) allows the labelling of the peptide
C-terminus during proteolysis by trypsin as either light H2O or heavy H2O
is used for the reaction (see Figure 3.21D). A third method is the Isotope-
Coded Affinity Tag (ICAT) in which a reagent is added to cysteine residue (see

4light or heavy refer to the use of different isotopes.
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Figure 3.21B and Gygi et al., 1999). From the MS spectrum, a shift will be
observed and the ratio between peak heights represents the relative quantity
between both conditions. For more reliable results, the MS/MS spectrum can
be computed for validation. A fourth method was developed allowing more
than two conditions to be compared simultaneously. This is the isobaric Tag
for Relative and Absolute Quantitation (iTRAQ), which attaches a specific
tag for each condition at the N-terminus of all peptides (see Figure 3.21C
and Ross et al., 2004). Each tag consists of a reporter and a balance. As all
the tags have the same weight, a mass combination for the reporter and the
balance is chosen to be specific for each condition. The tags are cleaved into
reporter and balance product ions during the fragmentation step. Therefore,
from the MS/MS spectrum each condition can be identified by the reporter
peak at its corresponding m/z value and the relative protein quantities can
be inferred from the peak height ratio. As the sample preparation remains a
tedious task in the aforementioned methods, bioinformatics algorithms have
been proposed in order to correct inherent biases and sources of variations
such that quantitative proteomics can be used in classical MS and MS/MS
experiment (Griffin et al., 2010). Such approaches which rely on bioinformatics
algorithms are called label-free quantitative MS.

3.4.3 Protein–protein interactions

In the cell, proteins are essential molecules involved in all biological pro-
cesses, including the formation of macromolecular assemblies. Multiple pro-
teins interact which each other thus conferring the cell and organism with
specific functions and behaviours. The whole set of Protein–Protein Interac-
tions (PPI) of a given organism is referred to as the interactome. Disruption of
PPIs can result in the emergence of various diseases, including cancer. Besides,
drug-based disruption of PPIs can be used for combating diseases. There-
fore, the investigation of interacting partners and analysis of protein networks
formed by PPIs is expected to have major implications in the understanding
of diseases and the drug discovery. A number of high-throughput experimental
methods have been developed to investigate PPIs. Genetic methods based on
two-hybrid system were originally used by Fields and Song (1989) in yeast,
Saccharomyces cerevisiae, to monitor PPIs. Yeast Two-Hybrid (Y2H) allows
the determination of PPIs in vivo. It is based on the use of transcription factors
characterised by a modular structure which consists of physically and func-
tionally separable domains: a DNA-binding domain (DB) and a transcription
activation domain (AD). Physical separation of DB and AD domains results
in transcription factor inactivation (for a review, see Causier, 2004; Terentiev
et al., 2009). In Y2H, a bait protein X is fused to the DNA-binding domain
and a prey protein Y is fused to the activation domain resulting in two hybrid
proteins (X-DB and Y-AD). The functional transcription factor is reconsti-
tuted upon the physical interaction between the bait and the prey (Suter et al.,
2008). Physical association between the proteins X and Y in yeast cells genet-
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FIGURE 3.21 Quantitative mass spectrometry. Four different strategies allow
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(A) SILAC, (B) ICAT, (D) Enzymatic labelling or in the MS/MS spectrum for (C)
iTRAQ. The ratio between peak heights indicates the relative difference between
conditions.

ically engineered to express both hybrid proteins brings the DB and AD into
proximity, thereby reconstituting the yeast transcription factor (e.g. GAL4).
The DB of this functionally complemented transcription factor can bind a
recognition site in the reporter gene promoter region called Upstream specific
Activation Sequence (UAS). The AD interacts with the transcription machin-
ery including RNA polymerase II, driving transcription of one or more reporter
genes. The produced reporter proteins enable selection of those cells that har-



Experimental high-throughput technologies for cancer research 97

bour a pair of interacting proteins. Importantly, neither of these sub-domains
alone can induce transcription. Yeast cells are transfected by two plasmids,
the first one with X-DB protein and the second one with Y-AD protein such
that both POIs can be produced within the cells (see Figure 3.22A). A sys-
tem has been developed in order to improve the throughput (Jin et al., 2007).
It is important to mention that Y2H can lead to false negative interactions
(a steric hindrance can prevent the activation of the reporter gene) or false
positive interactions (an overexpression of both the bait and the prey lead
them to interact due to their high concentration; the bait can self-activate the
reporter). Moreover, pseudo-interactions can be detected but not happen in
native condition (interacting proteins can colocalise to cellular regions where
the endogenous proteins normally never exist, thus enabling non-native inter-
actions; the interacting proteins are coexpressed, whereas the corresponding
endogenous proteins might never be present simultaneously). Such high risk
of artifact is a real challenge to meaningful data interpretation.

Y2H generates mostly binary interactions. However, it has been extended
to Yeast Three-Hybrid (Y3H) such that the reporter gene activity can only
be detected if X and Y proteins interact with a third Z known protein (see
Figure 3.22C). The Y3H was adapted in order to screen for prey proteins
which interact with a small molecule displayed by the bait protein. Conversely,
it might be interesting in drug discovery to assess if a small molecule can
prevent two proteins from interacting. In this case, a counterselection marker is
used with a gene reporter allowing the production of a toxic metabolite which
leads to cell death. A small molecule which inhibits a bait-prey interaction is
expected to rescue the cell viability (see Figure 3.22B).

The Y2H have been used to characterise the interactome in bacteria and
metazoan model organisms (Drosophila melanogaster and Caenorhabditis ele-
gans) and malaria parasite (Plasmodium falciparum). Stelzl et al. (2005) and
Rual et al. (2005) used Y2H to investigate the human interactome. While the
Y2H is obviously suitable for studying interactions in yeast it is not fully ap-
propriate to study PPIs in mammals as the condition within the yeast might
not be representative of what happens in mammal’s cells. Indeed, yeast and
mammalian cells differ in patterns of PTMs, as well as in the intracellular
localisation of proteins. These types of protein modifications, as well as other
unique factors or modulators present in mammalian cells, may influence the
ability of proteins to interact. Therefore, it would be more reliable to inves-
tigate interactome in mammalian cells under the appropriate native cellular
conditions such that the proteins have undergone the proper modifications to
interact. Thus, not only should mammalian methods enable detection of a sub-
set of interactions which might remain hidden using yeast-based approaches,
they should also allow protein interactions to be tracked as a function of time,
space (subcellular distribution) and physiological context (activation or inac-
tivation of a cellular process induced by natural or synthetic stimuli). Whereas
Y2H methods will probably remain unsurpassed in throughput and coverage,
mammalian technologies could become essential tools for focused studies on
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the dynamics of (subsets of) the interactome. The Mammalian Two-Hybrids
(M2H) system relies upon three plasmids which are co-transfected into mam-
malian cells (Lievens et al., 2009). Each plasmid has unique features. As in
Y2H, the first plasmid contains the fused protein X-DD and the second one
the fused protein Y-AD. The third plasmid contains a DNA binding site up-
stream of a specific reporter gene (Luo et al., 1997) (see Figure 3.22D). Such
a technique was initially useful for a gene by gene validation thus limiting
the genome-wide analysis. To overcome this limitation, Fiebitz et al. (2008)
developed a cell array protein-protein interaction assay (CAPPIA). In the
assay, mixtures of bait and prey expression plasmids together with an auto-
fluorescent reporter are immobilised on glass slides in defined array formats.
Adherent cells which grow on top of the microarray will become fluorescent
only if the expressed proteins interact and subsequently trans-activate the
reporter. This allows high-throughput investigation of PPIs in native condi-
tion within mammalian cells. Determination of physically interacting protein
pairs makes it possible to design interactome map as graphs. Each node of the
graph corresponds to a protein and an edge between two nodes indicates an
interaction.

Two-hybrid approaches allow the investigation of a limited number of pro-
tein partners. However, in a cell, several different proteins can interact and
form complexes which need to be discovered. The main limiting step in protein
complex characterisation is the protein purification. To tackle this problem,
the Tandem Affinity Purification (TAP) procedure was developed (Rigaut
et al., 1999; Puig et al., 2001). It is an affinity purification technique based
on Co-Immunoprecipitation (Co-IP). TAP was originally developed in yeast
and enables the purification of protein complexes under close-to-physiological
conditions. Protein complex composition is then determined by MS. TAP is a
rapid and reliable technique which has been successfully applied in the analysis
of PPIs in prokaryotic and eukaryotic cells such as yeast (Gavin et al., 2002).
The method was improved in order to increase its sensitivity in mammalian
cells (Bürckstümmer et al., 2006). The technique is based on the use of an
affinity tag attached to a target protein. Genes which encode tag components
and a target protein are incorporated using retrovirus into a host cell capable
of maintaining the target protein expression at a level close to physiological.
The standard tag, used in yeast, consists of two immunoglobulin-G-binding
(IgG) fragments of Staphylococcus aureus protein A, a cleavage site for the
tobacco etch virus (TEV) protease and a calmodulin-binding peptide. The
target protein complex with the tag is isolated from the cell extract by a
two-step procedure of affinity purification. The first step is based on bind-
ing of protein A to IgG-Sepharose beads, after which the complex undergoes
action of the above-mentioned protease. The second step is based on partial
binding of calmodulin-binding peptide, to calmodulin-Sepharose beads in the
presence of calcium (see Figure 3.23). The use of affinity tags allows rather
rapid purification of protein complexes from a small number of cells without
preliminary elucidation of the protein composition of the complexes and func-
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FIGURE 3.22 Principles of yeast and mammalian two-hybrid systems. (A)
In the Yeast Two-Hybrid system, both prey and bait plasmids are transfected into
the yeast. If proteins X and Y physically interact, the reporter gene is transcribed.
(B) In the reverse Yeast Two-Hybrid system, the transcription of the reporter gene
is lethal for the yeast. In this example, the protein coded the URA3 gene transform
the molecule 5-FOA into a toxic metabolite. If proteins X and Y interact, the yeast
cells die in the presence of 5-FOA (top part) while if a drug prevents X and Y from
interacting the cell growth is observed in the presence of 5-FOA. (C) In the Yeast
Three-Hybrid system, the reporter gene is transcribed if both X and Y interact
with a third known protein Z. (D) In Mammalian Two-Hybrid system, both prey
and bait plasmids are transfected into the mammalian cells as in the Yeast Two-
Hybrid system. Moreover, a reporter plasmid which contains the UAS region and
the reporter gene which are naturally present in the yeast is also transfected. TM:
Transcription Machinery; UAS: Upstream specific Activation Sequence. Image and
Legend adapted from Suter et al. (2008); Causier (2004); Lievens et al. (2009); Luo
et al. (1997).

tions of individual proteins. In combination with MS, this method allows the
identification of proteins under study and their interactions. Many variations
in the original tag and modifications of this method were proposed (Xu et al.,
2010; Figeys, 2008) such that affinity purification combined with MS is widely
used to study PPIs. For example, Ewing et al. (2007) identified more than 24
thousand PPIs in humans.
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FIGURE 3.23 Principle of tandem affinity purification.

3.5 Cellular phenotyping

The phenotype corresponds to any observable characteristics of an organ-
ism and is the result of the interaction between the genotype and the envi-
ronment. Investigating the phenotype of living cells provides functional in-
formation regarding the biological processes involved under particular growth
conditions. For instance, let us consider that a cancer cell line is grown with
a potential anticancer chemical compound added within the culture medium.
The characterisation of simple phenotypic traits such as cell viability versus
cell death or growth rate indicate in vitro what could be the therapeutic effi-
ciency of the anticancer agent in vivo (see Figure 3.24).

Pharmaceutical and biotechnological companies have developed large com-
pound libraries which can exceed one million distinct chemical entities. The
compounds of a library are referred to as perturbators. In drug discovery ap-
proach, potentially active compounds (hits) are first selected among the com-
pound library and subsequently used in order to allow further development
of compounds for pre-clinical testing (leads). Because the compound library
is very large, a rapid and massive screening is required for the drug discovery
process to be efficient. Major technical advances such as lab automation for
sample preparation, assay miniaturisation, robotics, development of fast and
automated microscopes combined with automated extraction of quantitative
measurements from the acquired images have enabled microscopy to enter
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FIGURE 3.24 Characterisation of cell growth rate using cellular pheno-
typing. The cell nuclei appear in white or light grey. They are surrounded by the
cell membrane. Image courtesy of Dr. Jacques Camonis. c© 2012 Institut Curie.

the high-throughput era (Mayr and Bojanic, 2009; Mishra et al., 2008). As
a result, large-scale screening can be performed to test rapidly a compound
library in order to assess for each compound the phenotypic characteristics of
the cancer cell line or any cellular model. The assessment of each compound
activity is done by performing parallel assays in microtiter plates containing
96, 384, 1,536 or even 3,456 wells. In each well, cells are grown under the
presence of one compound among the library. Depending on the plate size, us-
ing tens to several hundreds of plates allows a large-scale screening including
control experiments.

The phenotypic traits which are considered generally correspond to an av-
erage biological response of thousands of cells present in the well. However,
under a given condition, some phenotypic characteristics can be observed only
for a subset of cells (for example, within heterogeneous or co-cultured cell cul-
tures, stem cell subpopulations, etc.). Therefore, the monitoring of phenotypic
characteristics at the level of each cell within a cell culture is essential to have
a more accurate understanding of the perturbator effect. For example, the
cell morphology, the spatial organisation of the organelles, their size and their
number, and the subcellular location of a POI are phenotypic features which
can be assessed (Zanella et al., 2010).
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Major high-throughput technologies for cellular phenotyping are High-
Throughput Screening (HTS) and High-Content Screening (HCS). HTS allows
the measurement of a single feature, while HCS can record many different fea-
tures simultaneously. HTS and HCS rely on the availability of fluorochrome
used as biosensors to indicate physiological changes in the cell or to label spe-
cific organelles, including the nucleus, cytosol, mitochondria, endoplasmatic
reticulum, Golgi apparatus and lysosomes. Typically, antibodies coupled to a
fluorochrome or genetically encoded fluorescent proteins are used. However,
the use of organic dyes in live cell imaging is often limited by their cytotoxicity
and photobleaching.

Besides drug discovery, HTS and HCS are very useful in systems biology
in order to decipher which genes and signalling pathways∗ are involved in
a biological process. In that case, small interfering RNAs (siRNA) are used to
specifically inactivate a gene of interest and figure out the resulting phenotype.
The limitation of such an approach is obviously the siRNA design to ensure
the most efficient depletion of its target gene. Therefore, each siRNA must
be accurately validated in order to rely on downstream analysis. Instead of
adding a chemical compound in each well, a siRNA is added. Interestingly, the
interaction between siRNAs can be assessed in an epistatic study by adding
siRNAs targeting two different genes.

3.6 Conclusion

The major high-throughput techniques used to characterise the molecular
profiles in cancer have been presented in this chapter. Among them, the mi-
croarray has already provided significant improvments on the understanding
of tumour progression and the classification of tumours. Today, NGS has dra-
matically increased our possibility to go deeper and deeper in the molecular
investigation of cancer and cancer cells. Moreover, MS and cellular phenotyp-
ing are very valuable techniques. All these techniques offer insights to unravel
the complexity and heterogeneity of cancer and are very likely to enter daily
clinical practice in a near future. However, data processing based on sophis-
ticated mathematical and statistical approaches is definitively required to ex-
tract the relevant biological and clinical information from the huge amount of
data generated by these biotechnologies. This will be raised from Chapter 4
to Chapter 6.
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. Exercises

• In Ewing’s sarcoma∗, you want to investigate what the possible
target genes for the chimeric oncogenic transcription factor gene
EWS/FLI1 are (see Page 29). What kind of high-throughput
technologies would you suggest for this purpose and which ex-
perimental design would you propose?

• Let us assume that you have sequenced the breast cancer cell
line T47D using mate-pair sequencing with the Sequencing
by Oligonucleotide Ligation and Detection (SOLiDTM)platform.
How could it be possible from these sequencing data to produce
the B Allele Frequency (BAF) profile as shown in Figure 3.8?

é Key notes of Chapter 3

• A large variety of high-throughput technologies exist to study
many different molecular levels.

• High-throughput technologies evolve very quickly.

• High-throughput technologies allow the identification and char-
acterisation of molecular components and their interactions
within biological systems.

• Microarrays can investigate oligonucleotide sequences or proteins
which have to be known a priori.

• NGS can decipher previously unknown characteristics of the
genome and improve the sensitivity with respect to microarrays.

• The study of proteins still remains complex thus limiting the
throughput.

• The improvement of technologies offers the possibility to zoom
in from cell population to single-cell behaviour and organisation.
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Chapter 4

Bioinformatics tools and standards for
systems biology

Systems biology relies heavily on a number of preliminary steps for prepar-
ing high-throughput experiments and making the results readily available for
biological analysis and modelling. Though these steps are not per se part of
what we commonly define as systems biology, they are essential for enabling
the systems biology approach (Ghosh et al., 2011). Therefore, this chapter
presents an overview of bioinformatics tools and standards used in a typi-
cal analysis workflow Figure 4.1 which includes the following steps. Once
the biological and/or clinical question is posed (Ê), an experimental design
is defined in order to efficiently answer the problem raised (Ë). Then, the
high-throughput experiments are performed (Ì). A scanner generally analyses
the microarray∗, sequencing slides or phenotyping screening, and produces
images which are processed using appropriate algorithms to quantify the raw
signal (Í). This step is followed by normalisation which aims at correcting the
systematic sources of variability in order to improve the signal-to-noise ratio
(Î). The quality of data is checked at the level of both the image analysis
and the normalisation steps (Ï). At this stage, the information provided after
normalisation is still rough. The meaningful biological information relevant for
biologists must be extracted from the data (Ð). Once the relevant information
is extracted, the data can be used in a transversal analysis to perform clinical
biostatistics, classification or systems biology approaches (Ñ). Finally, the re-
sults need to be validated, interpreted and can lead to new experiments (Ò).
The bioinformatics workflow and computational systems biology approach are
cyclical processes involving data acquisition and preprocessing, modelling and
analysis. The integration and sharing of knowledge help to sustain the capa-
bilities of this cycle to predict and explain the behaviour of biological systems.
Therefore, to be successful, the workflow strongly relies on enabling processes
to annotate (À), manage (Á) and compute (Â) the data. In this chapter, the
steps Ë, Î, Ï and the processes À, Á and Â will be described. Steps Ð and Ñ
will be raised from Chapter 5 to Chapter 12. The image analysis will not be
addressed in the present book but the reader can refer to Fraser et al. (2010)
and Novikov and Barillot (2007). Finally, this chapter illustrates how knowl-
edge from the literature and databases can be extracted, and visualised using
appropriate standards and software used in computational systems biology.

105
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Biological/clinical question1
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2
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informatic architecture
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FIGURE 4.1 Bioinformatics workflow to analyse high-throughput exper-
iments. A typical bioinformatics workflow generally includes steps Ê to Ò and
strongly relies on enabling processes À to Â.

4.1 Experimental design

Experimental design is an essential part of the scientific method. As such
it is also part of the systems biology approach, but many of the techniques
used are often considered out of the scope of systems biology, because they are
part of another body of knowledge and attached to classical statistics. Though
having a long tradition in industrial and agricultural trials since the last early
century, the experimental design step is still too often neglected. Sir Ronald
Aylmer Fisher, one of the pioneers in the field of experimental design, said in
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1938 during his presidential address to the First Indian Statistical Congress:
“To consult the statistician after an experiment is finished is often merely to
ask him to conduct a post-mortem examination. He can perhaps say what the
experiment died of.” As an essential preliminary step, experimental design
aims at two main objectives:

• Ensuring that the question of interest can be answered from a given set
of experiments.

• Ensuring that the answer will be the most accurate for a confident sta-
tistical inference.

4.1.1 Choosing the optimal set of experiments

In practical situations, the limited amount of available biological material,
the costs, etc. are strong constraints restricting the number of possible ex-
periments which can be carried out. Given this number of experiments, the
most efficient strategy has to be defined. In other words, the experimental
design selects the most appropriate set of experiments among all the finite
possibilities.

To illustrate this, let us assume that a gene expression study using two-
colour microarrays (see Section 3.1) has quantified the effect of two drug
treatments (factor with the two modalities D0 and D1) on two cancer cell lines
(factor with the two modalities C0 and C1). As a multiplicative error model
is generally assumed on the intensities, it is necessary to use a logarithmic
transformation of the data in order to have an homoscedastic model (i.e. each
observation is assumed to have the same variance). Let us consider Yij to be
the quantity for a given gene in a condition Sij which combines cell line i
and drug j (with i ∈ 0, 1, j ∈ 0, 1). For the statistical inference, a two-way
Analysis of Variance (ANOVA) model can be written as follows:

log(Yij) = µ+ γi + δj + (γδ)ij + εij ,with εij ∼ N (0, σ2) .

The terms γi and δj represent the effect of modality i (for the cell line
factor) and the effect of the modality j (for the drug factor). The term (γδ)ij
represents the interaction between the cell line and the drug factors. For the
model to be identifiable (i.e. all the parameters of the model can be estimated),
γ0, δ0 and γδ00 are set to 0. The expected Yij value for the four possible
conditions are given in Table 4.1.

In a typical two-colour microarray experiment, the relative difference be-
tween two conditions are compared. For example, let us consider the microar-
ray with the condition S11 compared with S10. For a given gene, the ob-
served log2-ratio L11 vs. 10 = log(Y11) − log(Y10) should be in average equal
to µ + γ1 + δ1 + (γδ)11 − µ + γ1 = δ1 + (γδ)11. Let us note θ the vector of
parameters as follows:

θ =
(
γ1 δ1 (γδ)11

)>
.
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drug
D0 D1

cell line
C0 µ µ+ δ1
C1 µ+ γ1 µ+ γ1 + δ1 + (γδ)11

TABLE 4.1 Expected values for the two-way ANOVA model.

Therefore, for one gene and one microarray, the expected L11 vs. 10 value
can be formulated as the vector product between a design vector and the
vector of parameters:

L11 vs. 10 =
(

0 1 1
)
θ = X11 vs. 10θ .

A given experimental design will exhaustively list the set of microarrays,
each of them corresponding to a comparison between two different conditions.
Since each microarray can be represented, as formulated previously, with a
vector product, an experimental design can be summarised by both an X
matrix and the vector of parameters θ. If we note L the vector which contains
the observed log2-ratio Lij vs. i′j′ and X the matrix in which the rows are the
corresponding Xij vs. i′j′ design vectors (with i, i′ ∈ 0, 1 and j, j′ ∈ 0, 1), we
have:

L = Xθ + ε,with ε ∼ N (0, 2σ2I) .

The ANOVA model implies that V (θ) = 2(X>X)−1σ2. As a result, dif-
ferent experimental designs can be compared based on the variance of the
parameters of interest, the lower being the better. For example, let us con-
sider design 1 in Figure 4.2. The top part of the figure indicates how the
conditions are combined on the microarray: an arrow represents a microarray
experiment and its direction defines which condition has been used as a test
and which one has been used as a reference (see Figure 3.3). S11 → S00

means that S11 is the test condition while S00 is the reference one. The mid-
dle part of the figure shows the corresponding X design matrix. The bottom
part indicates the variance for each parameter: for γ1, its variance is 1× 2σ2,
for (γδ)11, its variance is 3 × 2σ2, etc. If we compare design 1 and design 2,
we clearly see that design 2 must be avoided. Increasing the number of ex-
periments generally decreases the variance (for γ1, the variance is the same in
design 1 and design 4). The design 3 must be preferred over design 4.

4.1.2 Efficient statistical inference

In a design of experiments, the researcher investigates the effect of some
factors (e.g. drug treatment) on experimental units such as cell lines, tumour
patients, etc. in order to draw conclusions for the system under study. The pro-
cedure of statistical inference relies on the test of hypotheses, the estimation of
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graphical representation of the microarray design

X matrix

design 1: design 2:
L01 vs. 00 :
L10 vs. 00 :
L11 vs. 00 :

 1 0 0
0 1 0
1 1 1

 L11 vs. 10 :
L11 vs. 00 :
L11 vs. 01 :

 0 1 1
1 1 1
1 0 1


design 3: design 4:
L10 vs. 11 :
L11 vs. 01 :
L01 vs. 00 :
L00 vs. 10 :


0 −1 −1
1 0 1
0 1 0
−1 0 0


L01 vs. 10 :
L11 vs. 00 :
L00 vs. 01 :
L10 vs. 11 :


−1 1 0
1 1 1
0 −1 0
0 −1 −1


parameter variances

design 1 design 2 design 3 design 4

γ1 1 2 3/4 1

δ1 1 2 3/4 3/4

(γδ)11 3 3 1 2

FIGURE 4.2 Experimental design with a two-way ANOVA model. The top
part provides four possible experimental designs using three two-colour microarray
experiments. The middle part shows the design matrices for each design. The table
in the bottom part indicates the variance of each parameter used in the two-way
ANOVA model.

parameters of interest and the comparison of different mathematical models.
As the experimental units are selected among a global population, replica-
tion, blocking and randomisation are three fundamental statistical principles
to consider for an efficient and reliable statistical inference.

Replication consists of adding a number of replicates for each different con-
dition, to take into account the fact that a given measurement is subject to
variation. In the different experimental designs in Figure 4.2, we only had one
microarray for each condition. Following this first principle, replicates for each
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condition is definitively required. We generally distinguish technical replicates
from biological replicates. Technical replicates deal with the variability inher-
ent to the technology while biological replicates account for the variability
which exists within the population under study. Choosing whether techni-
cal or biological replicates (or both) should be preferred clearly depends on
which variability is the most important. For example, we will favour biological
replicates if the biological variability is greater than the technical variability.
In general, both variabilities cannot be known in advance. Therefore, a pilot
study is necessary in order to estimate these variabilities.

Since replicates are needed, the number of required microarrays can exceed
the maximal number of experiments which can be performed in a single day
by a single operator on the same laboratory. As a result, one possibility is
to process the samples on different days but the day of experiment generally
impacts on the signal measurement. Indeed, humidity, temperature, ozone
concentration vary from one day to another and modify the measurements
(Lander, 1999; Fare et al., 2003; Byerly et al., 2009). This effect is often
termed batch effect. Imagine you would like to compare samples treated with
drug D0 and samples treated with drug D1, then it would be a very bad idea
to process all D0 samples in a first batch (i.e. day 1) and all D1 samples in
a second batch (i.e. day 2). As the batch and drug are confounding effects,
you will not be able to conclude whether the difference you may observe is
due to the day of experiment or to the drug treatment. The same thing holds
if you decide that two different operators can prepare the samples, or that
the sample will be processed in different laboratories. Batch effect, operator
effect or laboratory effect must not be confounding with the effect of interest
in order to rely on the results. These factors are irrelevant with respect to the
question of interest but have an impact on the signal measurement. Taking
them into account is an essential consideration in experimental design and is
called blocking.

The last important concept is randomisation which consists of affecting
at random the experimental units between the different drug treatments in
order to avoid any bias in the results. For example, in the case of a clinical
trial which compares a new drug with respect to a standard drug, the patients
are affected to either the new drug or to the standard drug control at random.

An abundant literature about experimental design for microarray experi-
ments exists (Kerr and Churchill, 2001; Yang and Speed, 2002; Nguyen and
Williams, 2006; Churchill, 2002). Although the illustration described here is
devoted to two-colour microarray data, the same principles hold whatever the
high-throughput technology used. For example, Auer and Doerge (2010) and
Fang and Cui (2011) raised the problem of experimental design in NGS∗ ex-
periments (RNA-seq). Obviously, each technology has its own specificities but
the selection of the experiments, replication, blocking and randomisation are
four essential preliminary steps which will ensure the reliability of downstream
analysis.
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4.1.3 Specific aspects in systems biology

In systems biology, one goal is to build and evaluate mathematical models
taking into account the mechanistic and dynamic components of the biological
system under study (see Chapter 7). In addition to the essential statistical
principles we have previously introduced, other important aspects have to
be specifically considered in systems biology (Ideker et al., 2000; Kreutz and
Timmer, 2009). To be representative of the behaviour of the biological system
in various experimental conditions, the model must be in agreement with
observed measurements in real data. Therefore, the selection of a given set of
perturbations to be applied on real experiments is necessary to challenge the
model in real conditions. Defining the most relevant set of perturbations can
be addressed using various techniques. Moreover, choosing sampling times, i.e.
the times of consecutive measurements, is crucial as the dynamics of a system
is an important component. The last aspect deals with the parameter values
such as kinetics or affinity constants necessary in some mathematical models.
Among all the parameters, some are critical as they can strongly impact on
the model predictions. The identification of these critical parameters and their
correct measurement is required for reliable and robust predictions.

4.2 Normalisation

Normalisation (also called low-level analysis) aims at correcting the sys-
tematic sources of variability in order to improve the signal-to-noise ratio for
better biological and/or clinical interpretation. Historically, the normalisation
started in the field of messenger RNA (mRNA) expression microarrays (see
Quackenbush, 2002; Do and Choi, 2006; Irizarry et al., 2006; Stafford, 2007;
Wu et al., 2003; Irizarry et al., 2003, for a review). The first method was
the Lowess normalisation proposed for two-colour microarrays (Yang et al.,
2002), followed by RMA (Irizarry et al., 2003) and GC-RMA (Wu et al., 2003)
devoted to Affymetrix GeneChip R©. Normalisation remains a very active field
of research in any current high-throughput technologies.

As already mentioned in the previous section, there are inherent sources
of variability which have a direct impact on the signal measurement. In some
way, the blocking in an experimental design already integrates effects which
have to be corrected. Typically, the correction of the batch effect is generally
considered as part of the normalisation step. However, while necessary, block-
ing does not generally account for all possible sources of variability. Indeed,
each experiment is singular and shows a specific variability which needs to be
corrected. For example, spatial artefacts are frequently observed in microarray
experiments and many spatial normalisation methods have been developed to
correct them for gene expression (Workman et al., 2002), Comparative Ge-
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nomic Hybridisation (CGH) (Neuvial et al., 2006) and DNA methylation (Sab-
bah et al., 2011) microarrays. Figure 4.3 illustrates how the method called
MicroArray NORmalisation (MANOR) improves the signal-to-noise ratio on
array Comparative Genomic Hybridisation (aCGH) profile (Neuvial et al.,
2006). Koren et al. (2007) suggested that normalisation methods which cor-
rect for spatial biases, such as MANOR, should be routinely applied when
analysing microarray data.

Among other parameters, let us mention the GC-content (see Box 3.3)
which affects the signal measurement in technology based on nucleotide se-
quence requiring Polymerase Chain Reaction (PCR)∗ amplification (mi-
croarrays and NGS) (Metzker, 2010). Rigaill et al. (2008) proposed the ITer-
ative and Alternative normaLIsation and Copy number calling for affymetrix
Snp arrays (ITALICS) which is based on multiple regression to correct, among
other things, the effect of the GC-content which affects Affymetrix GeneChip R©

SNP arrays. Similarly, Boeva et al. (2011a) and Risso et al. (2011) proposed
methods to correct the effect of GC-content on read counts in NGS data (see
Figure 4.4).

While the effect of both spatial bias and GC-content can be clearly ob-
served, the shape of the bias can differ from one experiment to another. As a
result, the normalisation has to be adaptive, that means tailored for each ex-
periment. Importantly, the identification of all parameters which can bias the
signal has to be investigated and discussed with the platform provider and the
operator in charge of the platform, as they have a strong experience in all the
protocol steps affecting the signal measurement. The data normalisation is a
critical step which needs to be considered carefully, as it will affect reliability,
accuracy and validity of downstream analyses (Stafford, 2007).

4.3 Quality control

Any high-throughput technology, even if well standardised and carefully
carried out, suffers from experimental bias or uncontrolled variations as we
have discussed previously. Good laboratory practices require a quality control
to be performed on a regular basis, and if possible on each sample analysed. For
usage in clinical practice, the requirement for reliability of high-throughput
technologies is of course even higher. Therefore, adequate quality control pro-
cedures need to be defined. Assessing the efficiency of any measurement pro-
tocol is based on different metrics (see Box 4.1).

The Food and Drug Administration (FDA) has initiated a huge quality
control project called MicroArray Quality Control (MAQC). Initially devoted
to gene expression microarrays, the project was further extended to NGS. The
MAQC project is separated into three main phases (see Box 4.2). MAQC-I
(MAQC Consortium et al., 2006) demonstrated both an intra-platform con-
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FIGURE 4.3 Spatial bias in aCGH experiment. (A) The top part represents
the log-ratio values quantified on an aCGH. The experiment suffers from a spatial
gradient from top left corner (abnormal high log-ratio values) to bottom right corner
(abnormal low log-ratio values). As a result the DNA copy number profile plotted in
the bottom part is very noisy. (B) The top part represents the log-ratio values after
spatial normalisation with the MANOR algorithm which has removed the spatial
gradient. The normalisation improves the signal-to-noise ratio of the DNA copy
number profiles. Images from Neuvial et al. (2006).
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FIGURE 4.4 Effect of GC-content on the number of reads in NGS ex-
periments. For two different NGS experiments, the effect of GC-content on the
number of reads is plotted. The reference genome is split into contiguous windows
of 50Kb-size. The number of reads which align within a given window (y-axis) is
plotted as a function of the percentage of GC on the reference genome within this
window (x-axis). The black curves represent the three-order polynomial fits of the
data. As the patterns are very different in each experiment, an adaptive normali-
sation method such as control-FREE Copy number caller (FREEC) is required in
order to correct the GC-content effect. Image adapted from Boeva et al. (2011a).
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o BOX 4.1: Quality control metrics

precision: it evaluates the variance of repeated measurements un-
der the same conditions. Precision can be decomposed into two
variance components:

repeatability: it corresponds to the variance of the measure-
ments when the conditions remain identical (the same in-
strument, operator, etc.) and the measurements are re-
peated during a short time period.

reproducibility: it corresponds to the variance of the mea-
surements using the same measurement protocol but using
different conditions (different instruments, operators, etc.)
and the measurements are repeated during a long time pe-
riod.

accuracy: it evaluates the bias between the measurement of a quan-
tity to its true value.

sistency and inter-platform concordance in terms of genes identified as differ-
entially expressed (platform means the provider such as Affymetrix, Illumina,
etc.). MAQC-II (Shi et al., 2010) showed that the performance of predictive
models (see Chapter 6) depended largely on the question being addressed.
For example, in breast cancer data, predicting Oestrogen receptor status is a
much easier task than predicting a pre-operative treatment response. MAQC-
II showed that the lower the prediction performance, the lower the stability
of gene lists. The last phase on the project is still ongoing.

While some experiments can pass through quality control thresholds they
may present abnormal behaviour for unexplained reasons. Such experiments
are called outliers and represent an observation which is significantly different
from the rest of the data. Such experiments have to be discarded for reliable
downstream analyses. In order to identify such outlier experiments, statistical
methods are used, such as hierarchical clustering or Principal Component
Analysis (PCA) (see Section 5.3.2 and Section 5.4.2).

4.4 Quality management and reproducibility in compu-
tational systems biology workflow

The MAQC consortium pinpointed that not only the experiment but also
the data analysis must be reproducible as reported by Ioannidis et al. (2009).
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o BOX 4.2: The MAQC project

MAQC-I assesses the precision and comparability (intra/inter-
laboratory, intra/inter-platform) of microarrays and develops
guidelines for microarray data analysis.

MAQC-II assesses the capabilities and limitations of different data
analysis methods in building microarray-based predictive models
and provides best practices for development and validation of
predictive models.

MAQC-III, also called Sequencing Quality Control (SEQC), aims
at assessing the technical performance of NGS platforms and
evaluating advantages and limitations of various bioinformatics
strategies in RNA and DNA analyses.

To do so, Noble (2009) suggested that any bioinformatician must follow the
simple guiding principle: “Someone unfamiliar with your project should be able
to look at your computer files and understand in detail what you did and why.”
This requires practical guidelines such as the use of a standard folder tree (e.g.
script, data, results, reports), the code documentation, the use of a lab notebook
(possibly electronic) and the versioning of files. For example, tools such as
Apache Subversion, Mercurial or GIT may be used as a versioning file system
while the Sweave format (Leisch, 2002) can be used to produce reports which
embed the code used to generate the analysis (n.b. a Sweave file is supplied
in the accompanying materials). We strongly encourage bioinformaticians to
adopt these tools for better reproducible in silico research in bioinformatics
and computational systems biology.

4.5 Data annotations and ontologies

High-throughput technologies produce a huge amount of data which re-
quire reliable annotations (also termed metadata) in order to provide signifi-
cant biological and/or clinical interpretations and be used in systems biology
approaches. Therefore, for any experiment, the quality and availability of an-
notations is essential. The annotations can be separated into two categories:

sample annotations correspond to all the important information related to
the samples under consideration. In this category fall the clinical an-
notations such as the treatment, culture condition, type of pathology,
age of the patient etc. Moreover, all the characteristics related to the
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protocol which have been applied to prepare the samples need to be
recorded, such as the type of technology used, version of protocol, etc.
These annotations are generally stored in clinical databases and Labo-
ratory Information Management System (LIMS).

feature annotations correspond to the description of the entities which
are measured by the technology. Typically, on the microarray, differ-
ent probes are quantified but it is required to know which gene/protein
is targeted by the probe. Three levels of information are essential and
presented in the next section.

4.5.1 A priori biological knowledge

Three levels of prior biological knowledge exist for the feature annotations
and are available in different databases:

gene and protein sequences are generally based on the human genome se-
quence which is regularly updated as long as improvement in the human
genome assembly is obtained by a continuous effort. The sequences are
available from NCBI and UCSC Genome Browser databases. The major
repositories include NCBI Nucleotide (formerly GenBank), DNA Data
Bank of Japan (DDBJ), EMBL which are part of the International Nu-
cleotide Sequence Database Collaboration (http://www.insdc.org/).

gene and protein biological information contains cellular localisations,
biological processes, molecular functions, link between genes and dis-
eases, etc. They are available in databases such as Gene Ontology (GO),
Online Mendelian Inheritance in Man (OMIM), NCBI Gene, and Uni-
versal Protein Resource Knowledgebase (UniProtKB).

molecular interactions correspond to information about Protein–Protein
Interactions (PPI), metabolic pathways, signalling pathways, gene reg-
ulatory networks, etc. (see Box 4.3). Among the main public databases
are Database of Interacting Proteins (DIP), IntAct, Molecular INTer-
action database (MINT), Human Protein Reference Database (HPRD),
MIPS Mammalian Protein-Protein Interaction database (MPPI), Kyoto
Encyclopaedia of Genes and Genomes (KEGG), BioCarta, Reactome,
the Cancer Cell Map and Wikipathways. A large variety of pathway
databases exists and the Pathguide resource provides a good overview
(Bader et al., 2006). Besides the public databases, commercial tools
propose comprehensive collections of information regarding molecular
interactions such as Ingenuity R©, TRANSFAC R© and TRANSPATH R©

from BIOBASE (Krull et al., 2003, 2006) and ResNet R© from ARIADNE
(Nikitin et al., 2003).

While the first two levels are important, the third one is obviously the most
valuable information to consider and serves as an important a priori biological



Bioinformatics tools and standards for systems biology 117

knowledge in systems biology approaches. The identification and character-
isation of components involved in regulation mechanisms on one hand, and
the discovery of their interactions on the other hand have been permitted
not only by classical biomolecular techniques but also by the advent of high-
throughput technologies such as Chromatin Immunoprecipitation (ChIP) ap-
proaches, Yeast Two-Hybrid (Y2H), affinity purification combined with Mass
Spectrometry (MS) and transcriptomics (see Chapter 3). As a result, many
articles have yielded thousands of molecular interactions for human and for
model organisms. Huge efforts have been devoted to build pathway databases
which serve as repositories of current knowledge (Bauer-Mehren et al., 2009;
Tsui et al., 2007). Importantly, one must distinguish between predicted inter-
actions (which are deduced from computational studies) and those which have
been experimentally established. Within the latter group, it must be indicated
whether a single direct experiment or a high-throughput experiment has been
used to identify the interactions.

o BOX 4.3: Molecular interactions

gene regulatory network: It is a set of DNA regions (coding and
noncoding genes) which interact with each other either through
their RNA or the coded protein. Transcription factors are the
main players in this network. These interactions drive the gene
transcription within the cell.

metabolic pathway: It is a set of biochemical reactions catalysed
by enzymes that are connected by their intermediates. The re-
actants of one reaction are the products of the previous one,
and so on. For example, the Krebs cycle is a major metabolic
pathway in cellular respiration.

signalling pathway: It is set of molecules which control a cellular
function (e.g. apoptosis). Once the first molecule in the path-
way is activated in response to a stimulus, it activates another
molecule. This process is repeated in an activation cascade until
the last molecule is activated and the cell function involved is
carried out. For a given cellular function, many different cascades
can be connected with crosstalks.

Protein–Protein Interaction (PPI) network: It provides the in-
dication whether two or more proteins are able to bind together
within the cell.

protein-compound network: For a set of protein and chemical
compounds (e.g. drugs), it indicates which compound can in-
teract with a protein.
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Molecular interactions available in databases allow the mathematical anal-
yses of the emergent properties∗ of the network and the formulation of
hypotheses that can be tested in the laboratory. Iterative cycles of predic-
tion and experimental validation will result in the refinement of our knowl-
edge in regulation mechanisms (such as as feedback loops or architectural
features, see Chapter 7) and understanding of the robustness of the sys-
tem (see Chapter 9). Molecular interactions will be a very valuable a priori
biological knowledge to explore the diversity of cancer (see Chapter 5), to
improve prognosis∗ and prediction (see Chapter 6) and to find new drug
targets (see Chapter 11).

4.5.2 Standards for data and knowledge sharing

The reader would easily understand that all the annotations encompass a
large amount of heterogeneous data types, both regarding the content and the
source. This heterogeneity hampered the exchange and comparison of data,
and the use of data analysis software, slowing down research. Offering the
most efficient use of software and data resources will facilitate an in-depth
understanding of biological systems. Beyond productivity improvements in
each research group, common standards could potentially connect research
groups globally. It is therefore crucial that the scientific community agrees on
knowledge representation, data format standards and unique identifiers used
to share information. The definition and the use of standards are still very
challenging and this practice must be promoted.

In order to formalise knowledge representation, one has first to answer one
question: what information needs to be recorded for an experiment? With this
question in mind, the Functional GEnomics Data (FGED) Society (formerly
known as the MGED Society) initiated different projects in order to define
guidelines and minimal information standards to describe the high-throughput
data to enable the unambiguous reproduction and interpretation of an exper-
iment. Among others let us mention Minimum Information About a Microar-
ray Experiment (MIAME) (Brazma et al., 2001), and Minimum Information
About a Proteomics Experiment (MIAPE) (Taylor et al., 2007, 2008). This
principle of minimal information does not hold only for high-throughput data
but also for mathematical models published by researchers. For this reason,
Minimum Information Required in the Annotation of Models (MIRIAM) has
been proposed in systems biology to define the rules for model annotation (Le
Novère et al., 2005). However, information about a model alone is not sufficient
to enable its efficient reuse in other computational studies. Indeed, the minimal
set of information regarding the description of a simulation experiment based
on a mathematical model must be provided. Minimum Information About a
Simulation Experiment (MIASE) (Waltemath et al., 2011a) defines the rules
in order to reproduce numerical simulations.

Controlled vocabularies also called ontologies are required to describe this
minimal information. An ontology is a formal representation of knowledge
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with definitions of the relevant semantic attributes, their hierarchy and their
relationship using a well-defined logic. It includes a single identifier for each
attribute and the terminology is augmented with synonyms, abbreviations
and acronyms. Initiatives such as Open Biological and biomedical Ontolo-
gies (OBO) and BioPortal have produced controlled ontologies for shared use
across different biological and medical domains. Gene Ontology (GO) and
Biological Pathway Exchange (BioPAX) are widely-used ontologies that rep-
resent biological knowledge. GO provides terms to describe genes and their
products, each entity being annotated according to three properties: the cel-
lular localisation, the molecular function and the biological process. BioPAX
is the ontology used to represent molecular interactions. While these ontolo-
gies are required to describe the biology, they are not sufficient in systems
biology approaches. Indeed, information related to mathematical models need
a formal representation too. Therefore, efforts have been initiated to develop
ontologies in order to encode the semantics for models and simulations in
systems biology (Courtot et al., 2011). Among them, Systems Biology Ontol-
ogy (SBO) provides information about the components of the model, Kinetic
Simulation Algorithm Ontology (KiSAO) describes existing simulation algo-
rithms and their inter-relationships through their characteristics and param-
eters, and TErminology for the Description of Dynamics (TEDDY) supplies
information about dynamical behaviours, observable dynamical phenomena,
and control elements of the models. While not an ontology as such, it is im-
portant to mention that unique gene symbols and names are necessary and a
gene nomenclature has been proposed by the HUman Genome Organisation
(HUGO).

Formats allowing exchange between different software platforms and fur-
ther processing by network analysis, visualisation and modelling tools have
been proposed. In bioinformatics, eXtensible Markup Language (XML) has
been widely used for storing information (Achard et al., 2001). The Web On-
tology Language (OWL) is a family of knowledge representation languages for
authoring ontologies based on XML syntax and Resource Description Frame-
work (RDF) data model (Gedela, 2011). Among the most used formats in sys-
tems biology there are Proteomics Standards Initiative Molecular Interaction
(PSI-MI), Systems Biology Markup Language (SBML), Simulation Experi-
ment Description Markup Language (SED-ML) and Systems Biology Graph-
ical notation (SBGN) (Le Novère et al., 2009; Waltemath et al., 2011b).

4.6 Data management and integration

Systems biology and integrative analysis approaches require the combina-
tion and comparison of different levels of information from heterogeneous data
sources. Therefore, an essential prerequisite is that all the data can be acces-
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sible and queried using unified tools. Typically, a unified data management
system which allows the user to access, browse and retrieve heterogeneous
data would be ideal because the different pieces of knowledge required in
analysis and modelling are scattered across many databases and repositories.
Having a seamless computational tool platform is very challenging and even
unrealistic. However, attempts have been proposed to facilitate data access
and query for end-users. For example, BioMart provides a data integration
system which involves the following four steps: (1) with querying, the user
can filter the data according to criteria of interest; (2) a configuration step
ensures the compliance between heterogeneous data in order to support the
same structured and unified query system; (3) a transformation step prepares
the data from the source in the expected XML format; and (4) source data
contain available datasets in Structured Query Language (SQL) databases.

Data management and integration system are generally implemented as a
three tier client-server architecture. The first tier corresponds to the databases
storing the information in a structured form (e.g. SQL databases). The second
tier embeds an Application Programming Interface (API) which is a program
library using the set of configurations and the databases. The third tier pro-
vides a user-friendly query interface which uses the API.

4.7 Public repositories for high-throughput data

Bioinformatics standards and tools for data integration provide means to
enhance cross-software interoperability and data exchange between laborato-
ries. In addition to these prerequisites, gathering high-throughput data into
public repositories is necessary to offer an access to this huge prospect of in-
formation to the scientific community. Researchers can, this way, reuse the
data and reproduce the analysis, compare their results, and test and validate
new hypotheses. Moreover, it provides a unique opportunity for integrative
approaches and meta-analysis∗ across different datasets (see Section 5.6
and Section 6.6).

Major public repositories are the Gene Expression Omnibus (GEO) (Edgar
et al., 2002; Barrett et al., 2011) from NCBI and ArrayExpress (Brazma et al.,
2003) from the European Bioinformatics Institute (EBI). In the context of
cancer study, specific initiatives such as the cancer Biomedical Informatics
Grid (caBIG), The Cancer Genome Atlas (TCGA) (Collins and Barker, 2007),
the International Cancer Genome Consortium (ICGC) (International Cancer
Genome Consortium et al., 2010) or Oncomine (Rhodes et al., 2004b) gather
an important variety of molecular profiles (gene expression, DNA methylation,
DNA copy number, etc.) using various technologies (microarrays, NGS) across
many different cancers. These public data are available through web portals
which are listed in the Appendices.
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4.8 Informatics architecture and data processing

Today, high-throughput technologies enable data to be generated at un-
precedented scales and transform life science research into big data science.
This is particularly true for NGS which can produce terabytes of data within a
few days or even less in a near future (Richter and Sexton, 2009; Baker, 2010).
In all life science research institutes worldwide, bioinformatics core facilities
are overwhelmed by this data tsunami. According to Moore’s law, Kryder’s
law and Butter’s law, costs are halved every 18, 12 and 9 months for processor,
storage and data transfer respectively while 5 months is the rule for sequenc-
ing costs (Stein, 2010). These figures give an idea of how big the challenge
is. Many years ago, high energy particle physics had to tackle the big data
challenge and it is now the turn of life sciences. High-Computing Performance
(HPC) infrastructure is definitely required for data storage, data transfer,
data computation and access control. Typical needs are hundreds of CPUs, a
few perabytes of storage, and 10 Gigabit networks. Different HPC solutions
exist such as cluster, cloud or grid computing. Such massively parallel infras-
tructure allows many tasks to be run simultaneously in order to reduce the
effective computation time. Efficient bioinformatics definitely relies on strong
Information and Technology support.

Moreover, skills in low-level programming languages such as C or C++,
parallel programming such as Message Passing Interface (MPI), Open Multi-
Processing (OpenMP) or MapReduce (Dean and Ghemawat, 2008) and al-
gorithm analysis are required to improve the efficiency of software used in
downstream analyses. This is really important as integration of many layers
of molecular information is necessary to understand the complexity of living
systems.

Finally, the informatics architecture has to fulfil the requirement for end-
users such as biostatisticians, systems biologists and biologists. As they have
not necessarily skills in low-level programming, graphical tools are needed in
order to manipulate and analyse the data (Gehlenborg et al., 2010; Nielsen
et al., 2010). Among others, let us mention workflow management systems
such as Konstanz Information Miner (KNIME), Taverna (Hull et al., 2006)
or Galaxy (Goecks et al., 2010) which make it possible to design and execute
scientific workflows and aid in silico experimentation. Among others, let us
mention the R software (R Development Core Team, 2011) and Bioconduc-
tor (Gentleman et al., 2004) which have been widely used by the scientific
community to process high-throughput data.
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4.9 Knowledge extraction and network visualisation

As we previously mentioned, a lot of a priori biological knowledge has
been gathered in various and heterogeneous databases. Although this infor-
mation is based on experimental results obtained from published data, some
valuable information still remains in numerous available scientific articles and
has not been integrated into databases yet. The extraction of knowledge from
this large number of valuable articles is very challenging. While text mining
algorithms are very useful tools to query the literature, human reading, vi-
sual inspection and manual curation by experts are still needed to extract
and formalise these pieces of information from articles. In order to tackle this
challenge, knowledge representation is an essential requirement to describe
and structure the information. The representation of biological knowledge as
what we refer to as maps of knowledge offers a simple but efficient way to
visualise the data. In this section, we detail the tools and standards useful for
researchers involved in computational systems biology to represent biological
knowledge.

4.9.1 Charting a map of knowledge

The databases listed in Section 4.5.1, such as Reactome, DIP, MINT,
etc., partly support the building of any type of map. Protein–Protein Inter-
actions (PPI) networks, metabolic pathways, signalling pathways, gene reg-
ulatory networks, etc. are referenced with the standards in which they are
provided (see Box 4.3). The ontologies and formats in which the pathways
are provided are BioPAX, SBML, PSI-MI and SBGN (see Section 4.5.2).

More particularly, the goal of SBGN is the standardisation of pathway
notation in a human-readable format. The notation defines the graphical rep-
resentation of any network such that users can interpret it consistently. Three
types of representations, called diagrams, (see Box 4.4) were proposed in
SBGN: the process description diagram, the entity relationship diagram and
the activity flow diagram (Le Novère et al., 2009). Process description dia-
grams are bipartite graphs and are often used to represent biochemical reac-
tion networks specifying states and locations of proteins. Nodes are biochem-
ical species (proteins, complexes, metabolites, etc.) and reactions. Arcs are
molecular interactions. Entity relationship diagrams show the influences that
an entity can have on a process (e.g. transport). Nodes can be species and arcs
transformations. Activity flow diagrams are best suited for cascades of activity
and concentrate on the influences between entities. Nodes can be entities and
arcs influences. According to the diagram and what we wish to do with it, some
software will be more appropriate than others. For instance, there exists an
editor of SBGN, SBGN-ED (Czauderna et al., 2010) used with Vanted (Junker
et al., 2006). CellDesigner is also widely used for drawing process diagrams
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(Kitano et al., 2005). Public BioUML and commercial geneXplainTM plat-
forms support SBGN standard. Some plugins of Cytoscape (Shannon et al.,
2003) are developed by the community to answer other specific graphical and
data management issues, such as BiNoM (Zinovyev et al., 2008), best suited
for manipulating, analysing and working on any type of diagrams.

o BOX 4.4: Diagrams
A diagram is a graphical and schematic representation aiming at
demonstrating and explaining the relationships between parts of a
whole. The parts are referred to as nodes and their relationships as
edges. In our context, a network, a chart, a map, or a graph will be
used as synonyms even though they have slightly different meanings.
All of them refer to a more general term, a map of knowledge.

A considerable effort has been made in the construction of comprehensive
maps of knowledge, either based on the description of biochemical reactions
(Oda et al., 2005; Oda and Kitano, 2006; Calzone et al., 2008; Kohn, 1999) or
on the description of influences of one species on the others (Schlatter et al.,
2009). Both types of networks provide some valuable information, even with-
out the dynamical mathematical model description. Using maps of knowledge
developed by experts who spend months studying a pathway strengthens the
relevance of mathematical models used in systems biology.

4.9.2 Example of a map of knowledge: RB pathway

In this section, an example of such maps of knowledge is presented. It de-
scribes the comprehensive map built around the RB gene (also referred to as
RB), a tumour suppressor gene playing a major role in cell cycle entry (see
Section 2.2.2, Section 2.7.1 and Box 2.1). A reaction network (or process
diagram) has been constructed to summarise published data around RB activ-
ity. The resulting map encompasses 78 proteins, 208 species, 165 biochemical
reactions, and is based on more than 350 publications (Calzone et al., 2008). It
describes the molecular players and the biochemical reactions that participate
in RB phosphorylation and, more generally, in the G1 to S transition of the cell
cycle. For more information on the biochemical information summarised in this
reaction network, an interactive clickable and zoomable version is available at
the following address: http://bioinfo.curie.fr/projects/rbpathway/. The map
was built using CellDesigner software (Kitano et al., 2005).

It is possible to improve the readability of the map by proposing a modular
view of the comprehensive RB pathway. Using BiNoM, the reaction network
is translated into an influence network in which each node corresponds to
a set of proteins or of genes closely related in the comprehensive map, and
grouped into what we refer to as a module whereas each edge corresponds
to the influence of one module onto another. The method of modularisation
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FIGURE 4.5 Comprehensive map of RB pathway. Lower part of the graph:
the genes regulated by the E2F family genes (E2F1 to 8) are represented as rect-
angular boxes; the corresponding mRNAs are represented as parallelograms. Upper
part of the graph: a network of proteins linked by the biochemical reactions that are
involved in the regulation of RB activity. A readable and interactive version of the
map can be found at: http://bioinfo.curie.fr/projects/rbpathway/ (Calzone et al.,
2008).
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allows an abstraction of the initial complex and detailed map and is explained
in details in Calzone et al. (2008). In Chapter 5 we illustrate the use of this
modular maps of knowledge (see Figure 5.8) in the context of bladder cancer
and explain how it can help in the interpretation of omics data.

. Exercises

• Using the same ANOVA model as described in Section 4.1,
compute the parameter variances for γ1, δ1 and (γδ)11 as shown
in Figure 4.2 when 6 different microarray experiments are per-
formed.

• Import and visualise in Cytoscape the RB/E2 pathway of Sec-
tion 4.9.2 (MODEL 4132046015 in Biomodels database). For
that, on the Biomodels webpage, download the model in SBML
L2 V1 (with Identifiers.org URLs), open Cytoscape and import
the file using Cytoscape import function: Import → Network
from Multiple file types.

é Key notes of Chapter 4

• Experimental design is a prerequisite in any scientific approach
and in particular in systems biology.

• Many parameters impact the measurement in high-throughput
experiments. Normalisation procedures must correct these ef-
fects for a reliable downstream interpretation.

• Simple guidelines allow in silico research to be reproducible.

• Ontology and standard formats exist and must be promoted to
share data and knowledge within the scientific community.

• Systems biology and bioinformatics rely on a substantial com-
putation infrastructure.

• Molecular interactions can be visualised with maps of knowledge.
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Chapter 5

Exploring the diversity of cancers

Cancer is not one disease, but a multitude of different diseases. Cancers can
arise in different organs and cell types, and have different visual aspects un-
der the microscope. They have different epidemiological risk factors, different
patterns of progression, they respond to different treatments, and are associ-
ated to different risks of relapse∗. In a sense, each cancer is unique since it is
intimately associated to the unique genetic background and somatic evolution
of each individual (see Section 2.1).

The diversity of cancers has been recognised for a long time, and is a central
issue in cancer clinical management since different cancers can be associated
to different risks and be best treated by different treatments. Understand-
ing and classifying the diversity of the disease is therefore a prerequisite not
only to better understand the disease, but also to allow a more rational and
personalised approach to cancer management and treatment.

In this chapter we quickly review how cancers are currently classified, and
investigate how the omics revolution (see Chapter 3) has confirmed and ex-
panded our understanding of cancer diversity and heterogeneity. We illustrate
how new insight can emerge from the systematic analysis of large quanti-
ties of cancer molecular data. We discuss in particular the emergence of new
molecular classifications of cancers, and how they can be related to particular
biological processes. The computational and mathematical tools required to
perform such analysis are numerous, and we provide a short introduction to
some of them. The medical implications of this new molecular view of cancer
diversity in terms of clinical management are postponed to Chapter 6.

5.1 Traditional classification of cancer

More than 200 types of cancers are commonly defined, based on the organ
and cell type in which they start (National Cancer Institute, 2012). Within
each cancer type, such as breast carcinoma∗ (breast cancer), patients are
usually further stratified into sub-categories based on clinical information
gathered from the patient, such as his/her age and possible previous cases
of cancers in his/her family, and about the tumour, such as its location, size,
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Type ER/PR HER2 Prolif Recommended treatment

Luminal A + - - E
Luminal B + +/- + E+C (+H)

HER2 positive - + C+H
Basal-like - - C

TABLE 5.1 Systemic treatment recommendation for breast cancer sub-
types. The four main subtypes of breast cancers are defined from the expression of
marker proteins (ER, PR, HER2) and the tumour proliferation (usually quantified
from Ki-67 assessment or grade). To each subtype corresponds a default recom-
mended choice of systemic treatments, among endocrine therapy (E), cytotoxics (C)
and anti-HER2 agents (H). Table adapted from Goldhirsch et al. (2011).

or histological type under the microscope. These informations are usually
collectively referred to as clinicopathological∗ parameters. They are partic-
ularly useful for clinical management, and for most cancers guidelines exist to
suggest the best therapeutic choices based on these parameters.

To be more precise, let us take as an example the case of breast cancer
(Lønning, 2007; Cianfrocca and Goldstein, 2004), which is not restrictive as
the principles we describe below can be extended to other types of cancer
(Sawyers, 2008). The precise characterisation of a tumour is based on the
observation by a pathologist∗ of a thin slice of tumour (i.e. a histological
section∗), taken either from a biopsy or after surgery, through the microscope.
Very different sorts of cancers can be identified visually (see Figure 5.1). The
detailed characterisation of the histological section by the pathologist includes
the assessment of parameters such as the appearance of the cells, the size and
the shape of the cancer cell nuclei, the number of mitoses in the slice, or
the invasiveness of adjacent tissues. These observations allow the determina-
tion of the so-called histological type of the tumour. In addition, the size of
the tumour, the presence of cancerous cells in axillary lymph nodes, and the
presence of a metastasis∗ elsewhere in the body are combined to define the
stage∗ of the cancer, which quantifies its extension and size. The grade∗ of
the tumour, which quantifies how abnormal the cancer cells look and how
quickly the tumour is likely to grow and spread, is also assessed from the size
of the nuclei, the proliferative activity within the tumour evaluated on ten high
power field images, and the differentiation of the tumour (Ellis et al., 1992).
In addition to these histological parameters, the presence of specific markers,
such as oestrogen (ER), progesterone (PR) and human epidermal growth fac-
tor (HER2) receptors, is evaluated by immunohistochemical methods. Other
clinical parameters such as the age of the patient can also be used. Taken
together, these clinicopathological parameters currently determine the choice
of the therapy proposed to the patient. For example, early breast cancers with
no lymph node invasion can be spared surgery with axillary dissection (Gold-
hirsch et al., 2011), and the choice of systemic treatment options depends on
the cancer subtype (see Table 5.1).
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Although of tremendous help for patient management, the traditional clas-
sification of cancers based on clinicopathological criteria is not without draw-
backs. First, the objective and consistent assessment of some clinicopatho-
logical factors is difficult to ensure. It may not only vary with the particular
histological section studied, but also depend on the expert analysing the sam-
ple. For example, Billerey and Boccon-Gibod (1996) have shown on bladder
cancer that the concordance for the grade and stage assessment between dif-
ferent pathologists is no more than 70%, a level which varies with cancers but
can be even worse for example for gliomas. Second, this coarse classification
lets unveiled many differences between patients that are important for ther-
apeutic treatment and surveillance. Tumours with similar clinicopathological
parameters frequently follow different clinical courses or respond differently
to therapies, suggesting that a further level of variability exists within clini-
copathological subtypes and calling for finer classifications.

5.2 Towards a molecular classification of cancers

The genomic revolution and subsequent development of several high-
throughput omics technologies (see Chapter 3) have started to revolutionise

canalar canalar lobular tubular

mucinouslobular micropapillary medullary

invasivein situ

FIGURE 5.1 Histological sections of breast cancer. The histological sections
are used by the pathologist to classify the tumours into histological types (Ellis
et al., 1992) and to determine the stage and grade of the tumour. In situ tumours
do not spread to the surrounding tissues while invasive tumours have started to
break through normal breast tissue barriers and invade surrounding areas. Image
courtesy of Dr. Anne Vincent-Salomon, Institut Curie. c© 2012 Institut Curie. (See
colour insert.)



130 Computational Systems Biology of Cancer

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

ER score

H
E

R
2
 s

c
o
re

l ER−/HER2−

ER+/HER2− High Prolif

ER+/HER2− Low Prolif

HER2+

FIGURE 5.2 Breast cancer diversity in 2 dimensions. Global view of the 286
tumours in the Wang dataset, organised in terms of ER and HER2 status. The scores
and subtype assignments were computed from gene expression data with the genefu
R package (Haibe-Kains et al., 2011), mimicking the traditional histopathological
analysis.

the way we apprehend cancer diversity. They now allow us to contemplate
cancer cells at the molecular level, and to detect phenomena unobservable
through the microscope. Furthermore, many omics technologies such as DNA
microarrays∗ or NGS∗ ensure an unbiased and systematic collection of data,
potentially paving the way to new discoveries in hitherto unexplored domains.
Not surprisingly, the systematic profiling of various cancer types has been
among the first applications of microarray-based transcriptomic studies in the
late 1990s (e.g. Golub et al., 1999; Alizadeh et al., 2000; Perou et al., 2000),
and has since remained at the forefront of applications targeted by new omics
technologies.

Many questions related to cancer diversity can potentially be addressed
when molecular omics data are collected on different tissues and patients.
Can we observe at the molecular level the diversity we are familiar with at
the macroscopic level or under the microscope? Can we define new, robust
classification schemes based on molecular biomarkers∗? What biological in-
sight can we get from comparing the molecular portraits of diverse samples?

As a preliminary answer to some of these questions, let us notice that sev-
eral clinicopathological parameters such as the dosage of protein markers are
directly related to measures that we can perform at the molecular level, such
as the expression level of the corresponding or related genes. Let us illustrate
this on a standard breast cancer dataset made public by Wang et al. (2005),
which we use as a running example throughout the chapter and simply refer
to as the Wang dataset. Note that the reader can reproduce most of the illus-
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trations of this chapter using the Sweave file supplied online on the book web
site. The Wang dataset consists of a cohort of n = 286 lymph node-negative
primary tumours∗ of the breast, not treated by systemic chemotherapy∗,
for which genome-wide gene expression data have been measured with the
Affymetrix GeneChip R© technology (see Section 3.1.1). Desmedt et al. (2008)
showed that the ER and HER2 status usually measured by pathologists in the
clinics can be recovered, with good accuracy, from the expression level of a
few genes, allowing in principle the automatic classification of each tumour in
one of the four classical subtypes (see Table 5.1). Figure 5.2 shows the set
of all tumours, as a function of their ER and HER2 status, together with their
subtypes. We instantly see that the well-known diversity of breast cancers is
confirmed in this simple plot, and that in spite of some overlap between the
categories there are indeed well-defined subtypes easily detectable. We also
see that the boundaries between subtypes do not seem to be clearly marked,
and that the simplified binary scheme of Table 5.1 hides a certainly more
complex reality.

To go further in the analysis of cancer diversity, we need to go beyond
these two-dimensional representations and investigate more finely how cancers
vary in light of the thousands of molecular measures we have access to. This
requires the use of various mathematical and computational models, which
would be too long to exhaustively present here. Instead, we present a small
selection of such tools in the next sections, illustrating on real data how they
can contribute to the investigation of high-dimensional omics data. For the
sake of clarity, we try to use a common language and constant notations to
refer to the data we manipulate, as summarised in Box 5.1.

5.3 Clustering for class discovery

Capturing and understanding the diversity of cancers from omics data can
be investigated from a variety of viewpoints, and with different computational
tools. In this section, we investigate the possibility to automatically discover
homogeneous subtypes within a collection of tumours characterised by high-
dimensional measures, such as whole-genome expression profiling with DNA
microarrays. Finding subgroups from molecular characterisation of tumours
could indeed pave the way to new, robust and unbiased taxonomies of cancers,
which could parallel and refine the classical classification schemes based on
clinicopathological factors (see Section 5.1). It could also reveal new molec-
ular factors underlying the classification, such as the activation of particular
signalling pathways∗ or the deletion of specific genomic regions, increasing
our understanding of the molecular biology of cancers.

Anticipating the description of how algorithms for subtype discovery work,
let us first look at what they do. Figure 5.3 shows a snapshot of the expression
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o BOX 5.1: Terminology and notations.

We consider n samples, which correspond to patients, cell lines, or
any biological sample analysed.

For each sample, we measure p features, which are quantitative
properties of the sample. This can include, for example, clinical
parameters, gene expression levels, DNA copy numbers, genomic
or epigenetic markers.

We represent the set of p features measured on a sample by a p-
dimensional vector x ∈ Rp, and store the n vectors of features
for all samples in a n× p data matrix X. With omics data the
number of features used to characterise each sample is typically
much larger than the number of samples available, i.e. n � p,
as suggested in the following picture.

p features

n
 s

a
m

p
le

s

A marker is a feature, represented by its index i ∈ [1, p], selected
because it is interesting for some application. Typically a marker
is selected because it is found to be associated to some properties
of the sample, such as some phenotype of the sample or the risk
of relapse of a patient.

A signature M ⊂ [1, p] is a collection of markers, of size |M | = q,
which have been selected because they allow together to predict
a property of the sample. With omics data, we often look for
small signatures, i.e. q � p.

data of the Wang breast cancer dataset. In this picture, each row corresponds
to a gene, each column to a sample, and the intensity varies with the level of
expression. We display the n = 286 samples, but only 400 genes among the
12, 065 for which we have expression measures, taking those which vary the
most across samples. The columns and rows have been reordered in such a
way that rows (and columns) near each other tend to have similar patterns,
making the visualisation more intuitive. In fact, they have been organised into
a tree-like structure known as a dendrogram, which allows to visually capture
the presence of homogeneous subtypes of cancers, and groups of genes. The
dendrograms were obtained by Ward’s hierarchical agglomerative clustering
with correlation distance, explained in Section 5.3.2. This way to visualise
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a large data matrix is known as a heatmap and was popularised in biology by
Eisen et al. (1998).

Interestingly, when we consider the structure organisation of samples in
the dendrogram of Figure 5.3, and compare it to the subtypes based only on
ER, HER2 and proliferation status (see Figure 5.2), we see that the classical
categorisation in subtype is largely, although not perfectly, recovered: if we cut
the branches of the dendrogram at a depth corresponding to 4 clusters, we
see a strong enrichment, from left to right, in samples of subtypes basal-like,
HER2+, luminal B and luminal A, respectively. This suggests that a new,
completely automatic and biologically relevant classification of cancers from
automatic analysis of omics data is possible.

Before discussing the biological and medical implications of cancer subtype
discovery from omics data in Section 5.3.6, let us first focus on the algorith-
mic aspects of finding clusters in a dataset. Automatically finding subgroups
within a collection of samples is the domain of clustering or unsupervised
classification methods. There exist many such methods, which vary in their
underlying hypothesis and algorithmic strategies, and which we briefly discuss
below. We refer the interested reader to the many publications and textbooks
on clustering for an in-depth coverage of this class of algorithms, (e.g. Jain
et al., 1999; Gordon, 1999; Chipman et al., 2003), and only provide a brief
account of how they work below.

5.3.1 Choosing a distance between samples

The starting point of any clustering method is the n × p data matrix X,
which contains p features such as p gene expression measured in n samples (see
Box 5.1). We assume that data have been pre-processed to remove technical
artefacts and batch effects (see Section 4.2), and, for simplicity, that missing
values have been imputed (although some clustering methods can also directly
work with missing values in X).

Clustering methods attempt to organise samples into a small number of
groups, also called clusters, in such a way that samples within a group tend
to be similar to each other, while samples from different groups tend to be
different from each other. A notion of similarity, or equivalently of dissimilar-
ity or distance, between samples is therefore required to start any clustering
analysis. Popular distances between samples x, x′ ∈ Rp are the `q distances:

‖x− x′ ‖q =

(
p∑
i=1

|xi − x′i |
q

) 1
q

,

in particular the `2 Euclidean distance and the `1 Manhattan distance. Alter-
natively, when we wish to compare samples not in terms of absolute values
of their measures, but more in terms of relative values within the samples, it
can be advantageous to prefer a similarity based on the Pearson’s correlation
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FIGURE 5.3 Molecular classification of breast cancer from mRNA ex-
pression profiles. This heatmap allows us to visualise a small part of the tran-
scriptome of the 286 samples in the Wang breast cancer dataset. Dendrograms au-
tomatically cluster samples (and features) in a hierarchy of groups. We note a good,
although not perfect correspondence between this clustering and the standard clas-
sification of breast cancers in four subtypes based on ER, HER2 and proliferation.
(See colour insert.)
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coefficient :

r(x, x′) =

∑p
i=1 (xi − x̄)

(
x′i − x̄′

)√∑p
i=1 (xi − x̄)

2∑p
i=1

(
x′i − x̄′

)2 ,
where x̄ = (

∑p
i=1 xi) /p is the mean value of the measures for sample x. The

Pearson’s correlation coefficient ranges between +1 for identical samples (up
to a global translation and scaling of the measures) and−1 for completely anti-
correlated samples. It can be transformed into a dissimilarity measure for the
purpose of clustering by considering 1 − r(x, x′) or 1 − | r(x, x′) |, depending
on how negatively correlated samples should be treated. When a similarity up
to a nonlinear transform of the data is expected, other measures can be used:
the Spearman’s rank correlation coefficient, which is similar to the Pearson’s
correlation coefficient when the exact values of the measures are replaced by
their rank in the list of p measures sorted by decreasing value for a sample;
or more general notions of mutual information which capture more general
relationships between the measures of two samples (Priness et al., 2007).

This short presentation of some of the most popular measures of similarity
for clustering in bioinformatics is by no mean exhaustive, and defining a notion
of similarity between samples is a research topic in itself. Indeed, the choice
of similarity measure has a very strong influence on the result of clustering
(Steuer et al., 2002; D’haeseleer et al., 2000), and few generic guidelines exist
to guide its choice in practice. The choice of a particular similarity measure is
often driven by prior knowledge we may have about the data considered, or can
be optimised to reach some criterion, e.g. ensuring that biological replicates are
similar to each other. For example, studying a set of gene expression profiles of
breast cancer samples, Perou et al. (2000) defined a distance between samples
based on only 496 genes (termed the intrinsic gene subset) out of 8,102 genes
analysed. These genes were selected because they had significantly greater
variation in expression between different tumours than between paired samples
from the same tumours, and the resulting clustering consequently grouped
together paired samples. This strategy to optimise a distance in order to fulfil
constraints of similarity or dissimilarity between particular pairs of samples is
even amenable to automatisation with the help of metric learning algorithms
(Xing et al., 2003; Weinberger et al., 2006).

5.3.2 Hierarchical clustering methods

Once a distance or similarity measure between samples is chosen, a clus-
tering method can be used to automatically organise the data into coherent
groups according to the distance. By far, the most popular method for data
clustering in bioinformatics is hierarchical clustering, which was in particular
popularised among biologists and bioinformaticians by the seminal work of
Eisen et al. (1998). Hierarchical clustering was, for example, applied to pro-
duce the dendrogram in Figure 5.3. It provides not only a clustering into K
groups for a fixed K, if we cut the dendrogram at a particular depth, but also
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a full hierarchical organisation of the data into nested clusters with individual
samples at the bottom leaves of the dendrogram and clusters of increasing size
when we go up the tree toward the root. The length of a branch in the tree is
related to how strong the separation at the upper part of the branch is, e.g.
the long branches just below the root in Figure 5.3 suggest that there is a
clear separation of the full dataset into two large subgroups, corresponding to
the separation between basal-like tumours and the rest. Cutting the tree at a
given depth defines a clustering of the data into a finite number of groups.

There exist several algorithms to perform a hierarchical clustering, leading
to different dendrograms. Hierarchical methods can be agglomerative, when
groups are formed by a bottom-up strategy, iteratively joining the most simi-
lar groups into larger groups, or divisive, when groups are split in a top-down
strategy, starting from a single group with all instances and iteratively split-
ting groups into two subgroups as separated as possible. In addition to a
(dis-)similarity between individual samples, hierarchical clustering algorithms
therefore depend on a linkage function, which defines how the distance be-
tween two groups is computed from the distances between the samples they
contain (see Box 5.2).

o BOX 5.2: Linkage criteria for hierarchical clustering
In addition to a distance d(x, x′) between any two samples (see Sec-

tion 5.3.1), hierarchical clustering algorithms depend on a linkage
criterion in order to decide which clusters should be combined (for
agglomerative clustering), or where a cluster should be split (for divi-
sive clustering). The linkage criterion determines the distance between
sets of observations and as a function of the pairwise distances between
observations. Common linkage criterion L(A,B) between two sets of
observations A and B include:

• Maximum or complete linkage: L(A,B) = maxa∈A,b∈B d(a, b).

• Minimum or single linkage: L(A,B) = mina∈A,b∈B d(a, b).

• Average linkage: L(A,B) = 1
|A||B|

∑
a∈A

∑
b∈B d(a, b).

• Centroid linkage: L(A,B) = d
(

1
|A|
∑
a∈A a,

1
|B|
∑
b∈B b

)
.

• Ward’s linkage: L(A,B) = ESS(A ∪B)− [ESS(A) + ESS(B)]
where the Error Sum of Squares (ESS) is ESS(A) =

1
|A|
∑
a∈A

(
a− 1

|A|
∑
b∈A b

)2

.

As illustrated in Figure 5.3, hierarchical clustering methods have the
advantage that they provide a visually appealing organisation of data, pro-
viding a multi-resolution view of groups within data and possibly suggesting
biological interpretations. A drawback is that they will always output a nice
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dendrogram, even when samples have no reason to be organised into a tree
hierarchy. A good way to assess the statistical significance of a clustering is to
assess its stability, a problem related to the problem of choosing the number
clusters which we briefly discuss in Section 5.3.4. They are also sensitive to
possible errors made in the construction of the tree, since a wrong split or
merge decision in the construction of the tree cannot be undone.

5.3.3 Partitioning methods

Although slightly less popular in bioinformatics than hierarchical cluster-
ing methods, partitioning methods try to solve more directly the problem of
splitting a given set of samples into K groups, for a given number K. Roughly
speaking, they directly try to optimise a partitioning of all samples into K
groups, such that the similarity between samples tends to be large within each
group, and small between different groups. Partitioning methods include in
particular K-means, K-medoids, mixture of Gaussians, and Self-Organising
Map (SOM).

Let us consider for example K-means. If we denote by CK the set of all
partitions of the n samples into K groups, it is therefore tempting to try
to find the partition C which minimises the within-group sum of squares
W (C), or equivalently maximises the between-group sum of squares B(C)
(see Box 5.3), i.e. to solve:

WK = min
C∈CK

W (C) . (5.1)

Unfortunately, Equation 5.1 is a NP-hard problem which in practice
cannot be solved exactly with more than a few tens of samples (Aloise et al.,
2009). K-means is a computationally efficient algorithm which attempts to
solve Equation 5.1 approximately, i.e. to find a partition C with a small
W (C), although not the best one (MacQueen, 1967). It iteratively alternates
between computing the centroid x̄k of each cluster Ck for a fixed partition C,
on one hand, and finding a new partition by minimising W (C) over C with the
centroids x̄k fixed, on the other hand. The later minimisation is easily obtained
assigning to cluster Ck all samples which are closer to x̄k than to any other
centroid x̄i, for i 6= k. The iterations are repeated until no change occurs from
one iteration to the other. Although K-means does not in general converge
to the global minimum, it always converges at least to a local minimum. In
practice, it is useful to restart K-means several times with different initial
conditions, and keep only the local minimum with the lowest score.

Many other partitioning methods have been proposed. The mixture of
Gaussian model assumes that the data are random points generated by a
mixture of Gaussian distributions, each Gaussian corresponding to a differ-
ent cluster. When the covariance matrices of all Gaussians are all equal and
spherical, the algorithm to fit the model to the data, called Expectation Max-
imisation (EM), is very similar to a version of K-means with soft assignment
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of each sample to all clusters. The K-medoids method is similar to K-means
but replaces the centroid of a cluster, i.e. the vector which minimises the sum
of squared Euclidean distances to the samples in the cluster, by its medoid,
i.e.the sample of the cluster which has the minimal total sum of distances to
the other samples in the cluster (Kaufman and Rousseeuw, 1990). K-medoids
is usually more robust to outliers than K-means. SOMs is another variant
where different clusters are organised into a user-defined grid, in such a way
that samples in neighbouring clusters on the grid are forced to be more simi-
lar than samples in clusters far from each other on the grid (Kohonen, 1990).
They have also been found useful to interpret gene expression data (Tamayo
et al., 1999).

An advantage of partitioning methods over hierarchical methods is that
they do not make strong assumption about the nature of the organisation of
samples in the high-dimensional sample space, beyond being clustered into

o BOX 5.3: Within- and between-group sum of squares
For a given partitioning of the n points into K non-overlapping groups
C = (C1, . . . , CK), of sizes n1 + . . . + nK = n, the within-group sum
of squares is by definition:

W (C) =

K∑
k=1

∑
i∈Ck

‖xi − x̄k ‖2 ,

where x̄k =
(∑

i∈Ck
xi
)
/nk is the centroid of samples in the k-th

cluster. It measures how concentrated the samples are within each
group, and should therefore be small for a good clustering. Another
interesting measure is the between-group sum of squares:

B(C) =

K∑
k=1

nk‖ x̄k − x̄ ‖2 ,

where x̄ = (
∑n
i=1 xi) /n is the global centroid of all samples. It mea-

sures how similar the cluster centres are to each other, and should
therefore be large for a good clustering. In fact, both quantities are
related by the simple equality

W (C) +B(C) =

n∑
i=1

‖xi − x̄ ‖2 = T ,

where T denotes the total sum of squares, which is independent of
C. This shows in particular that decreasing W (C) is equivalent to
increasing B(C).
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subgroups. On the other hand, they explicitly or implicitly make assumptions
that should be kept in mind, such as the idea that data form clusters well mod-
elled by spherical Gaussian distributions for K-means. A general drawback of
partitioning methods is that the optimisation problem they try to solve to
find the best partition is usually intractable, and the solution found by these
methods generally depends on the initialisation of the algorithm. In practice,
it is common to run these methods several times with different initialisation,
and keep the best solution found.

5.3.4 Choosing the number of groups

A generic problem with clustering methods is to choose the number of
groups K. In an ideal situation in which samples would be well partitioned
into a finite number of clusters and each cluster would correspond to the var-
ious hypothesis made by a clustering method (e.g. being a spherical Gaussian
distribution), statistical criteria such as the Bayesian Information Criterion
(BIC) can be used to select the optimal K consistently (Kass and Wasserman,
1995; Pelleg and Moore, 2000). On real data, the assumptions underlying such
criteria are rarely met, and a variety of more or less heuristic criteria have been
proposed to select a good number of clusters K (Milligan and Cooper, 1985;
Gordon, 1999). For example, given a sequence of partitions C1, C2, . . . with
k = 1, 2, ... groups, a useful and simple method is to monitor the decrease in
W (Ck) (see Box 5.3) with k, and try to detect an elbow in the curve, i.e. a
transition between sharp and slow decrease (see Figure 5.4, upper left). Al-
ternatively, several statistics have been proposed to precisely detect a change
of regime in this curve (see Box 5.4). For hierarchical clustering methods, the
selection of clusters is often performed by searching the branches of dendro-
grams which are stable with respect to within- and between-group distance
(Jain et al., 1999; Bertoni and Valentini, 2008).

In Figure 5.4, we illustrate two of these methods, the elbow method
and the CH index, on a toy clustering example with three well-separated
groups of points in two dimensions. Both methods easily identify the correct
number of clusters. However, running the same techniques to estimate the
number of groups in the Wang dataset does not lead to a clear conclusion
(see Figure 5.5). This suggests that common techniques to estimate the
number of groups are not well adapted to real omics data, and that probably
the intuition that the space of cancers can be well represented by a limited
number of homogeneous subgroups may not be very accurate.

5.3.5 Clustering features and biclustering

While clustering samples allows investigation of the presence of subtypes
of cancers within a heterogeneous collection of samples, it is mathematically
possible to perform exactly the same analysis after reversing the rows and
columns of the data matrix X in order to cluster features. This is what was
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FIGURE 5.4 Choosing the number of groups. The K-means method was run
on this toy example (right) for different values of K. The elbow method (upper
left), based on the detection of a change of slope in the within-group sum of squares
(WGSS), and the CH index of Calinski and Harabasz (1974) (bottom left), both
easily identify that K = 3 groups is the best choice.
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FIGURE 5.5 Number of groups in the Wang dataset. Compared to the toy
clustering example (see Figure 5.4), no clear elbow is visible (left), and the CH
index (right) does not clearly identify a clustering structure in the Wang breast
cancer dataset.
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o BOX 5.4: Statistics for choosing the number of groups
The CH index of Calinski and Harabasz (1974) is defined by:

CH(k) =
B(Ck)/(k − 1)

W (Ck)/(n− k)
,

It was shown by Milligan and Cooper (1985) to be the best among 30
other methods.
Another heuristics is the Hartigan’s index (Hartigan, 1975):

Har(k) =

(
W (Ck)

W (Ck+1)
− 1

)
/ (n− k − 1) ,

The gap statistics which compares the observed decrease in the curve
W (Ck) to the expected from an appropriate null model is another
possibility (Tibshirani et al., 2001).

performed in Figure 5.3, where both samples and genes are clustered. Clus-
tering features allows the discovery of groups of genes which behave similarly
across samples, suggesting that they may work together or at least be involved
in the same biological processes. In fact, early work on gene expression data
analysis mostly focused on gene coexpression clustering in order to help in-
fer the function of poorly characterised or novel genes (Eisen et al., 1998).
Inspecting gene clusters highly expressed or inhibited in particular samples
clusters can also help the interpretation of the sample subtypes discovered:
for example, Perou et al. (2000) identified groups of coexpressed genes which
showed substantial variations in expression among the tumours, and which
could be associated to specific signalling and regulatory systems, such as the
interferon pathway or the activity of HER2.

An interesting variant of clustering samples and/or features is the notion
of biclustering, where one wishes to capture subsets of samples which are sim-
ilar on subsets of features only. In other words, a bicluster is a pair (I, J)
where I ⊂ [1, n] is a subset of samples and J ⊂ [1, p] is a subset of fea-
tures, such as the samples in I exhibit highly correlated values for the feature
in J . Biclustering has been introduced for gene expression data analysis by
Cheng and Church (2000), and has been investigated by many researchers (see
Madeira and Oliveira, 2004, for a survey). The computational complexity of
biclustering depends on the exact problem formulation, but most interesting
variants are NP-complete, requiring either large computational effort or the
use of heuristics to short-circuit the calculation (Madeira and Oliveira, 2004).
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5.3.6 Applications: New molecular classifications of cancers

The possibility to define cancer subtypes by unbiased and systematic anal-
ysis of large quantities of omics data has been investigated by many re-
searchers, and already has had a profound impact on our understanding of
cancer heterogeneity. For some cancers such as acute leukaemia∗ , known
subtypes were automatically recovered from automatic analysis of gene ex-
pression data (Golub et al., 1999), paving the way to automatic and repro-
ducible classification of patients. For many other cancers such as diffuse large
B-cell lymphomas∗ (Alizadeh et al., 2000), melanomas∗ (Bittner et al.,
2000), lung cancers (Bhattacharjee et al., 2001; Garber et al., 2001) or breast
cancers (Perou et al., 2000; Sørlie et al., 2001), new molecular classifications
were proposed.

The case of breast cancers is perhaps the most illustrative in terms of how
molecular subtypes have emerged as gold standards for cancer classification
during the last decade. Perou et al. (2000) proposed in their seminal work a
classification of invasive breast cancers into four subtypes, from the automatic
clustering of gene expression for 39 invasive breast cancers and 2 normal tis-
sues: there was one ER-positive subtype (luminal-like), and three ER-negative
subtypes (basal-like, HER2+ and normal-like). The basal-like samples were
characterised by high expression of keratins 5/6 and 17, while the oncoprotein
HER2 was relatively overexpressed in the HER2+ group. The normal-breast-
like resembled normal breast tissue samples, while the luminal-like samples
expressed ER and had breast luminal cell markers relatively overexpressed.
The luminal subtype was later subdivided into two subclasses (luminal A
and B), as more samples were analysed (Sørlie et al., 2001); a third luminal
subgroup was also proposed (luminal C), but was not supported by the sub-
sequent analysis of an expanded dataset (Sørlie et al., 2003), leading to the
classification mentioned in Table 5.1. This molecular classification of breast
cancer on the basis of gene expression was validated on large meta-analysis
involving thousands of patients (Wirapati et al., 2008), and validated on more
recent technological platforms (Hu et al., 2006; Parker et al., 2009). Despite
criticisms related to the instability of the subtypes defined, in particular their
dependence on the original set of samples and genes used for the analysis
(Kapp et al., 2006; Weigelt et al., 2010), this molecular classification has en-
tered the common language in breast cancer research. It allowed reconsidering
cancer classification based on immunohistochemical markers as surrogates of
molecular classification (Blows et al., 2010; Voduc et al., 2010). As more data
are available, more detailed and robust subtypes are starting to emerge (Guedj
et al., 2011).

The success of these attempts to define new molecular classification of can-
cers should not hide the fact that clustering high-dimensional data remains
a challenging task from a methodological viewpoint. In particular, we have
seen that many parameters influence the classification obtained by cluster-
ing methods, including the features and metric used to compare samples, the
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clustering algorithm itself, and the procedure to select the number of clus-
ters. Notwithstanding these limitations, it is fair to say that the new molecu-
lar classifications of cancers obtained by automatic clustering of omics data,
in particular gene expression profiles, have started to revolutionise the way
we apprehend cancer heterogeneity. As larger collections of samples are be-
ing analysed, it is likely that finer classifications into well-specified and ro-
bust subtypes will emerge from clustering methods, and allow a more precise
stratification of patients into subcategories which would not be captured by
clinicopathological parameters only. As different subgroups can have different
prognosis or respond differently to different treatments, a more precise and
robust classification of patients can improve clinical management, a question
further addressed in Chapter 6.

5.4 Discovering latent processes with matrix factorisa-
tion

Classifying cancers into several distinct subgroups is useful for human un-
derstanding, but may however, be too limited to capture the intrinsic nature
of cancer heterogeneity. On the one hand, the observation of omics cancer data
does not obviously call for an organisation into well-separated subgroups (as
suggested by Figure 5.2 and Figure 5.5), and is not well adapted to describe
continuously varying parameters such as the progressive activation of a path-
way. On the other hand, it is likely that samples in different clusters may share
common features, such as the high activity of the ER proteins in the luminal
A and B subtypes commonly accepted in breast cancer classification (see Fig-
ure 5.2). It may then be more pertinent to describe a sample not by a cluster
assignment, but as a superposition of a few well-defined molecular properties,
just like classical clinical parameters, to unravel the inherent complexity of
variations between tumours. In this section we discuss several computational
strategies to automatically detect and quantify such decompositions, using in
particular the concept of matrix factorisation.

5.4.1 From clustering to matrix factorisation

Clustering can be thought of as discretising and quantising the complex
high-dimensional space where we represent tumours with thousands or mil-
lions of molecular parameters, into a finite number of K groups. The underly-
ing motivation is that there may exist K basic subtypes of cancers, sufficient
to describe the diversity of cancers. Mathematically, if we denote by C the
n × K binary matrix which indicates the cluster assignment of each sample
(Cij = 1 if sample i is in cluster j, 0 otherwise) and by M the K×p matrix of
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cluster centroids (i.e. the k-th row of M is the p-dimensional centroid x̄>k of
cluster k), then the n× p matrix CM has in each row the cluster centroid of
each sample. Consequently, denoting by ‖A ‖22 =

∑
i,j A

2
ij the classical Frobe-

nius norm for matrices, we see that the within-group sum of squares W (C)
(see Box 5.3) can be expressed in matrix form as follows:

W (C) = ‖X − CM ‖22 ,

and that the objective function of partitioning methods (see Equation 5.1)
becomes:

min
C∈C(n,k),M∈Rk×p

‖X − CM ‖22 , (5.2)

where C(n, k) is the set of n × k binary matrices with exactly one 1 in each
row. This matrix formulation shows that clustering by partitioning methods,
in particular K-means, can be thought of as attempting to factorise the data
matrix X as a product X ≈ CM , with particular constraints on C and M .

In this section we explore other popular matrix factorisation methods,
which also attempt to approximately factorise the data matrix X as a prod-
uct X ≈ CM , although with different constraints on C and M . A constraint
common to all methods we will discuss is the size of the matrices C and M ,
respectively n × K and K × p, implying that the rank of the approximate
matrix CM is at most K. The general motivation behind such low-rank ma-
trix factorisation methods is to decompose any p-dimensional sample xi as a
superposition of K basic processes (sometimes called atoms, dictionary ele-
ments, or metagenes in the context of biological data). Indeed, by denoting
µj the j-th row of M (for j = 1, . . . ,K), the factorisation X ≈ CM means in
particular that the i-th sample xi located in the i-th row of X is approximated
by

xi ≈
K∑
j=1

Cijµj . (5.3)

In other words, the µi’s serve as a set of K basis vectors, optimised to rep-
resent the collection of biological samples. The matrix C (often called the
score matrix) contains the mapping of each sample as a linear combination
of these basis vectors. A low-rank matrix factorisation therefore provides a
K-dimensional representation of each sample, attempting to capture as much
as possible the variations among samples in this low-dimensional representa-
tion. This is particularly attractive to reduce complex biological data into a
small combination of basic factors, which may then pinpoint basic biological
processes underlying the diversity of cancers.

As we have seen, clustering by partitioning methods such as K-means is
a form of matrix factorisation, albeit a particular one where each sample is
only represented by a single basis element (its cluster’s centroid). In the rest
of this section, we discuss more matrix factorisation techniques, obtained by
varying the objective function and the constraints in Equation 5.2. From a
computational viewpoint, it should be pointed out that the objective function
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of Equation 5.2 is convex in C for M fixed, and also in M for C fixed.
However, it is not jointly convex in C and M , meaning that except in very
particular cases, the exact optimisation of the objective function in matrix
factorisation is intractable, and many techniques find only a local minimum
by alternating the minimisation over C and M , just like K-means.

5.4.2 Principal and independent component analysis

Principal Component Analysis (PCA) (Pearson, 1901; Jolliffe, 1996) is a
very popular statistical technique used to visualise and capture variations be-
tween multi-dimensional samples, by projecting them to a low-dimensional
space where most variations are retained. PCA is particularly useful for visu-
alisation of high-dimensional data, by plotting the projection of the samples
to the 2- or 3-dimensional subspace which captures the largest amount of vari-
ations, and for data understanding, by highlighting the key factors responsible
for the diversity of samples. Unsurprisingly, PCA is a popular technique in
bioinformatics to visualise high-dimensional biological data such as microarray
data (Raychaudhuri et al., 2000; Alter et al., 2000; Misra et al., 2002). For ex-
ample, Figure 5.6A shows the projection of the Wang breast cancers dataset
onto the 2-dimensional subspace which captures the largest amount of varia-
tions. We observe that the first axis (the first principal component) separates
the samples based on the activity of ER. The second direction is less obvious
to interpret at first sight. Comparing to Figure 5.2, we recover the clear sep-
aration between the basal-like samples and the rest of the samples along the
first axis, which captures the largest amount of variance. This confirms that
the ER+/ER− split is predominant and responsible for global differences of
transcriptome, explaining also why the basal-like samples are easily separated
from the other ones by clustering (see Figure 5.3). On the other hand, the
clear separation of HER2+ samples from the rest when we look specifically
at the expression of HER2 (see Figure 5.2) disappears when we only look at
the two main directions of variability among samples, as captured by PCA.
This suggests other major sources of variations between samples on top of the
four major subtypes discussed earlier.

Mathematically, PCA starts by centering each column of the data matrix
X to obtain a centred matrix X̄ where on average each feature is 0, and
factorises the centred matrix by solving the following optimisation problem:

min
C∈Rn×K ,M∈RK×p

‖ X̄ − CM ‖22 . (5.4)

Although nonconvex, this problem is easily solved with a singular value decom-
position of X̄. The optimal matrix M contains a metagene in each row, which
defines the directions of projections, while the optimal C matrix contains the
coordinates of the samples in the subspace defined by the K metagenes. For
example, Figure 5.6A was obtained by solving Equation 5.4 for K = 2 and
plotting the 2-dimensional coordinates of each sample stored in the C matrix.
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FIGURE 5.6 Breast cancer diversity in 2 dimensions. The 286 tumour sam-
ples of the Wang dataset are visualised in 2D using various matrix factorisation and
projection methods: (A) PCA, (B) ICA, (C) NMF and (D) ISOMAP. (See colour
insert.)

The biological interpretation of PCA metagenes is not always easy, since
it requires analysing p-dimensional vectors which can often not be easily vi-
sualised (e.g. a 20,000-dimensional vector of gene expression). Furthermore,
a mathematical property of the singular value decomposition which solves
Equation 5.4 implies that the successive columns of C are orthogonal to each
other, and similarly the successive rows of M (metagenes) found by PCA are
orthogonal to each other. If biological samples are linear combinations of basic
processes which are not orthogonal to each other (we can think of different
pathways, activated independently from each other, but which may share some
genes), then PCA will fail to identify them and instead force them to merge
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into the same super-metagenes which will be difficult to deconvolve into inde-
pendent components. Some variants of PCA, such as Independent Component
Analysis (ICA) (Hyvärinen et al., 2001), try to overcome this limitation by
decomposing the data onto a series of statistically independent processes. Al-
though less popular than PCA among bioinformaticians, ICA has successfully
been applied to the analysis of genomic data (Liebermeister, 2002; Lee and
Batzoglou, 2003). For illustration, we plot on Figure 5.6B the projection of
the Wang dataset onto the first two independent components computed by
ICA. In spite of its overall similarity to PCA (see Figure 5.6A), the second
component of ICA seems to better capture the difference between low and
high proliferation luminal samples.

5.4.3 Nonnegative, sparse and structured matrix factorisa-
tions

PCA and ICA decompose each sample as a linear combination of meta-
genes, with positive and negative weights. This strategy to decompose a data
matrix as a linear combination of basic signals is generic and does not incor-
porate any information specific to the genomic data analysed. In some cases,
in can be useful to integrate specific prior knowledge we have about the data,
in order to capture metagenes and decomposition with more biological rele-
vance. The general framework of matrix factorisation is well adapted for that
purpose, by keeping the objective to find a factorisation of the form X ≈ CM
but modifying the constraints we put on C and M , i.e. by solving the problem:

min
C∈C,M∈M

‖X − CM ‖22 , (5.5)

where particular choices for C and M induce various constraints on the solu-
tion. Unfortunately, this problem is usually not jointly convex in C and M ,
meaning that we usually can not find its global minimum in general. In prac-
tice, many approaches ensure that C and M are convex sets, so that at least
an optimisation strategy based on alternatively minimising Equation 5.5 in
C and M is tractable (because it is then a convex optimisation problem in
each variable), leading to a local optimum. A limitation of this strategy is that
it can be very dependent on the initial choice of C and M .

A first example of such a strategy is Nonnegative Matrix Factorization
(NMF), which enforces a decomposition as a superposition of metagenes as-
sumed to have nonnegative weights (Paatero and Tapper, 1994; Lee and Seung,
1999). For example, if a pathway needs to be activated then the correspond-
ing genes may get positively expressed. However, when the pathway is not
activated, the corresponding genes may get silenced (no expression), but will
certainly not be negatively expressed. This asymmetry may suggest that a
more realistic model for a sample expression profile could be to express it as a
nonnegative linear combination of metagenes with nonlinear loadings. Mathe-
matically, NMF solves Equation 5.5 with C (resp. M) representing the sets
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of nonnegative n×K (resp. K× p) matrices. Both C andM are then convex,
and an optimisation strategy is to alternatively optimise in C and M (Lee and
Seung, 1999). NMF was popularised in bioinformatics by Brunet et al. (2004)
to construct metagenes from a gene expression matrix. In Figure 5.6C we
show the result of NMF applied to the Wang dataset, where we have fixed
K = 4 metagenes to decompose the samples and visualise the coefficients of
the first two metagenes for each sample. We see that the first metagene (hor-
izontal axis) is mostly characteristic of basal-like samples, while the second
metagene (vertical axis) is more difficult to associate to a unique subtype.

Interestingly, the NMF solution usually produces a sparse representation
of the data, in the sense that both C and M are not only nonnegative, but
also contain many zeros. Intuitively, this is due to the fact that the nonnega-
tivity constraint blocks to 0 the coefficients that would improve the objective
function if they were allowed to be negative. This sparsity can be helpful to
interpret the data and the metagenes, since only nonzero coefficients need to
be analysed. However, the number of nonzero components is not easily con-
trolled by NMF, and we may end up with too many nonzero components to
easily interpret the metagenes. For example, the first NMF component of Fig-
ure 5.6(C), characteristic of the basal-like subtype, has no more than 10% of
the genes with zero weight.

In order to improve the control of the sparsity, and increase the inter-
pretability of metagenes at the expense of their ability to trustfully approx-
imate the data, several authors have proposed to further constrain the sets
C and/or M in Equation 5.5. A popular way to increase the sparsity of a
vector or matrix is to constrain its `1 norm, i.e. to consider the sets:

Cλ =
{
C ∈ Rn×K : ‖C ‖1 ≤ λ

}
, Mµ =

{
M ∈ RK×p : ‖M ‖1 ≤ µ

}
,

where the `1 norm of a matrix is the sum of absolute values of its elements:

‖A ‖1 =
∑
i,j

|Aij | . (5.6)

Intuitively, reducing λ (resp. µ) shrinks the entries of C and M towards 0, and
leads to sparser solutions. When such constraints are used in Equation 5.5,
we can enforce more 0 in C (resp. in M) by decreasing λ (resp. µ) and obtain a
form of sparse PCA (Zou et al., 2006; Witten et al., 2009; Mairal et al., 2010).
When in addition we constrain the values of C and M to be nonnegative, we
obtain a sparse version of NMF, which was shown by several studies to be
an efficient way to capture biologically relevant and robust metagenes (Hoyer,
2004; Gao and Church, 2005; Kim and Park, 2007).

Instead of promoting the presence of zeros anywhere in the C and M ma-
trices, in order to improve their interpretability, one may sometimes know in
advance which coefficients should be zero, and let the algorithm only optimise
the nonzero coefficients. This is, for example, the case in Network Component
Analysis (NCA) (Liao et al., 2003), where each row of M is constrained to
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have only nonzero coefficients on a subset of the genes, corresponding typically
to the targets of particular transcription factors or the elements of particular
pathways. Enforcing zero coefficients at particular positions in C or M leads
to particular constraint sets C and M, which can again be plugged into the
general Equation 5.5. After optimisation, the nonzero weights of each row
of M can be thought of as the contribution of each feature in the biological
process considered (typically, activity level of a given transcription factor),
and the coefficients in the C matrix quantify the activity of the process in
each sample.

Let us conclude this section by mentioning that the general idea to include
prior knowledge in matrix factorisation by choosing particular sets C and M
can also be exploited to derive specific methods when the data analysed have
particular structures. For example, when the data analysed for each sample
are DNA copy number profiles (see Section 3.1.2), there is an obvious linear
structure along each chromosome that can be exploited in matrix factorisation
(see Figure 3.5 and Figure 3.8 for examples of such profiles). In order to
capture metagenes which are not only sparse but also piecewise constant along
each chromosome, several authors have proposed to consider the following
constraint set for metagenes (Witten et al., 2009; Mairal et al., 2010):

Mµ,ν =
{
M ∈ RK×p : ‖M ‖1 ≤ µ , ‖M ‖TV ≤ ν

}
,

where the Total Variation (TV) semi-norm is given by:

‖M ‖TV =

K∑
i=1

p−1∑
j=1

|Mi,j+1 −Mi,j |

 . (5.7)

Similarly to the `1 norm which promotes sparsity, the TV semi-norm pro-
motes piecewise constant profiles and is therefore well adapted to regularise
metagenes which have a one-dimensional sequential structure (Rudin et al.,
1992; Tibshirani et al., 2005).

5.4.4 Nonlinear methods and manifold learning

Matrix factorisation methods are by essence linear, in the sense that the
factorisation X ≈ CM directly implies that each sample is represented by a
linear combination of metagenes (see Equation 5.3). Although such linear
methods are widely used in exploratory analysis of cancer data, in some situ-
ations the distribution of samples may be better approximated by nonlinear
rather than linear objects. The objective of nonlinear data approximation is to
construct such an approximation, typically a manifold embedded in the middle
of the cloud of samples and which possesses some regularity properties. There
exist a number of approaches that can construct such nonlinear approxima-
tions. Methods of data approximation constructing manifolds embedded in
the multidimensional data space are collectively called manifold learning. To-
gether with manifolds, other types of data approximations are suggested such
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as principal graphs or principal trees for branching data distributions. Review
of the methods themselves and application of these methods to analysis of
high-throughput data, in particular in cancer bioinformatics, can be found in
Gorban et al. (2008); Lee and Verleysen (2007); Gorban and Zinovyev (2009).

Nonlinear methods of data approximation can be classified accordingly to
three criteria:

• Those methods that assume the existence of a global probability distri-
bution from which the data sample is generated, such as self-consistent
principal curves and manifolds, and those who do not require it, such as
elastic principal manifolds suggested by Gorban et al. (2008).

• Those methods that construct the nonlinear approximators as explicit
objects, such as SOM, and those who do not construct them explicitly,
such as methods of multidimensional scaling or kernel PCA (Schölkopf
et al., 1999).

• Those methods that are most suited to the situation when the data
points are located in close vicinity of some hidden intrinsic low-
dimensional manifold, such as ISOMAP (Tenenbaum et al., 2000) and
Locally Linear Embedding (LLE) (Roweis and Saul, 2000), and those
methods that do not assume this.

Figure 5.6D illustrates the nonlinear mapping in 2D of the Wang dataset
by the ISOMAP method. The mapping was performed in such a way that
distances between each sample and its three most similar other samples in the
original sample space (represented by light grey edges) tend to be conserved.
Because long-range distances are not conserved, it is potentially possible to
unfold any manifold structure that would describe the density of samples
in the original p-dimensional space. Here we see that, again, the basal-like
samples have been recognised as very different from the rest, while all ER+
luminal samples tend to overlap in the same region.

Each nonlinear method can be more or less suitable to analyse a given
dataset. For example, methods requiring estimating probability distribution
from data sample usually require a large number of samples. The methods
which assume that the points are located on a low-dimensional manifold with
little noise can be unsuitable to noisy microarray data.

When complex data are approximated by a nonlinear object, a usual prob-
lem of avoiding overfitting arises. In principle, a sufficiently flexible nonlinear
object can approximate data with zero approximation error; it can simply
pass through all data points. However, such an approximant is usually of lit-
tle practical use; it can be as complex as data itself. Therefore, any nonlinear
method, implicitly or explicitly, contains a parameter whose meaning is the
trade-off between approximation accuracy and regularity properties. Tuning
this parameter allows to switch between approximations with very regular
properties (for example, close to the linear ones) and very irregular (for ex-
ample, non-smooth) approximations.



Exploring the diversity of cancers 151

One of the first nonlinear methods of data approximation which was ap-
plied to interpreting microarray data was SOM (Tamayo et al., 1999), a clus-
tering method (see Section 5.3.3) which can also be considered as a nonlinear
data approximation approach (because the clusters can be organised into a 2D
or 3D grid). The benefits of application of nonlinear methods for cancer data
analysis were explicitly shown and quantified (Gorban and Zinovyev, 2010). It
was shown that constructing nonlinear principal manifolds for cancer-related
microarray data can better reproduce the structure of distances between data
points after projection onto the manifold. As a result, visualisation of multidi-
mensional data based on such a projection sometimes gives more information
about data clusters and classes.

5.5 Interpreting cancer diversity in terms of biological
processes

Purely data-driven analytical methods such as clustering (see Section 5.3)
and matrix factorisation (see Section 5.4) are very useful to quantify and
visualise the relative similarity between samples, and investigate their diver-
sity. What biological insight can we get from such analysis? Which biological
processes underpin the large diversity of tumours at the molecular level? As
often with omics data, extracting such biological information from raw high-
dimensional data is not always obvious and requires automatic computational
methods. In this section, we focus particularly on samples represented by gene
expression data, and discuss several possible directions put forward recently to
capture important biological processes underpinning the diversity of cancers.

5.5.1 From individual genes and proteins to higher-order bi-
ological functions

Most biological functions involve the coordinated actions of many genes
and proteins, and can impact the activity of an even larger number of other
genes. For example, the map of knowledge which summarises the molecular
players involved in RB phosphorylation and G1 to S phase transition contains
78 proteins (see Section 4.9.2), and similarly all hallmarks of cancers involve
the coordinated action of many genes (see Chapter 8). On a global scale, each
protein can be seen as a node in several strongly interconnected networks
(see Box 4.3): it forms complexes with other proteins, interacts with various
ligands, transmits signals, etc.

Concretely, the scientific community has already collected large amounts
of information about the functions and interactions of genes and proteins, and
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made them easily available on various databases (see Section 4.5.1). In this
section we focus primarily on two types of knowledge we would like to exploit:

• On one hand, collections of gene sets (or modules) which group together
genes sharing the same functional annotations or regulatory motifs, be-
longing to the same pathway, localised in the same subcellular compart-
ment, or forming a modules of systematically coexpressed genes. For ex-
ample, as of March, 2012, the v3.0 release of the MSigDB database (Sub-
ramanian et al., 2005) contains a heterogeneous collection of G = 6, 769
sets of human gene groups by various functional annotations.

• On the other hand, networks of genes/proteins which may be directed or
undirected graphs, and describe various physical, functional or genetic
interactions among genes and proteins (see Box 4.3).

Exploiting this existing information in the analysis of high-dimensional
omics data offers an exciting opportunity to unravel the biological phenomena
involved in cancer biology and underlying its diversity. We discuss in the next
section a few computational methods to perform such analysis. For simplicity,
we first only consider the case where our prior knowledge is represented as a
collections of G groups of genes g1, . . . , gG, where each group is a subset of
the genes, i.e. gi ⊂ [1, p].

5.5.2 Detecting biological functions in metagenes

Both clustering (see Section 5.3) and matrix factorisation (see Sec-
tion 5.4) can be seen as low-dimensional projections of biological samples
represented by high-dimensional omics data. We use the term metagenes, in
a rather broad sense, to designate the basis vectors µ1, . . . , µK defining this
projection, be they the cluster centroids or the rows of the projection matrix
M in matrix factorisation. Mathematically, each metagene µ is therefore a p-
dimensional vector which assigns a weight to each gene. In order to interpret
the variations among samples in terms of biological functions, it is therefore
natural to first exploit the metagenes themselves and try to capture biological
meaning from the weights they assign to each gene.

For example, one may look at gene weights one by one, and further in-
spect the genes with the largest absolute weights in a metagene. Except if a
metagene has only a very small number of nonzero weight (e.g. using sparse
matrix factorisation techniques as discussed in Section 5.4.3), this is how-
ever, likely to be a painful task missing the real biological phenomena underly-
ing the metagene. Indeed, the real strength of working with high-dimensional
genomic data is to capture signals hidden in tens or hundreds of individual
genes, corresponding to biological functions involving the coordinated actions
of many individual genes or more generally to phenomena impacting many
genes.

An alternative to per-gene analysis of metagenes is to interrogate them
in the light of known gene sets and gene networks, e.g. to see if particular
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gene sets or collections of interacting genes are particularly overrepresented
among genes with large weights in a metagene, or collectively tend to have
more important weights than what would be expected by chance. Technically,
this functional analysis of metagenes is similar to the functional analysis of
molecular signatures that will be discussed in more detail in Section 6.4.2.

5.5.3 Quantifying biological processes

Section 5.5.2 discusses the possibility to extract biological information
from the metagene weights, after a first clustering or projection of the samples
to a low-dimensional space. An alternative strategy is to first quantify the
activity of each gene set in which we are interested in each sample, before
carrying out further clustering or projection tasks. Indeed, as discussed in
Section 5.3.1, the choice of features used to describe the samples can have a
strong influence on the later processing of data, and one may conjecture that
representing a sample as a G-dimensional vector of gene set activity is a better
starting point than as a p-dimensional vector of gene expression. Conceptually,
this means that if can be better to exploit our prior knowledge early rather
that late in the analysis pipeline.

Given a sample x = (x1, . . . , xp) ∈ Rp with the activity of p genes, this
raises the question of how we can quantify the activity of a biological function
represented by a set of gene g ⊂ [1, p] of size | g |. Arguably, the simplest idea is
to average the expression of individual genes, i.e. to define the activity ag ∈ R
of g as:

ag =
1

| g |
∑
i∈g

xi . (5.8)

Such quantification of gene set activity was for example performed by Breslin
et al. (2005), who called it the group sample score, in order to assess whether
each of 29 cancer relevant pathways was significantly active or inactive in each
sample of a collection of breast cancers and leukaemias. Guo et al. (2005) also
averaged the expression levels of genes sharing the same Gene Ontology (GO)
annotation to define the activity level of each GO term in a collection of cancer
cell lines and lymphomas.

While the arithmetic mean (see Equation 5.8) is a natural choice when
the different genes in a group all contribute similarly to the activity of the
group, it may be too simplistic to capture more realistic phenomena such as
the fact that some genes may be more important than others to define the
activity of the group, or that some genes may even be negatively correlated to
the activity of the group (e.g. genes negatively regulated in a given pathway).
An alternative is to consider a more general linear combination of individual
gene activity to define the activity of the group:

ag =
∑
i∈g

wixi , (5.9)

where the weight wi may be nonuniform and even have different signs. For
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example, Tomfohr et al. (2005) propose to take for weights the first principal
component of the expression matrix restricted to the genes of the group (after
normalising each gene to zero mean and unit variance across samples). In-
tuitively, the first principal component defines a metagene that captures the
largest amount of variations across samples (see Section 5.4.2); restricted
to the genes of the group, this can correspond to the major variation in the
biological activity of the group. In particular, a strength of this approach is
that genes can contribute either positively or negatively to the activity of a
group. Bild et al. (2006) follow a similar strategy to define the activity of 5
important pathways for cancer on several large collections of human cancers:
MYC , RASA1 (i.e. RAS), SRC , Wnt/β-catenin and loss of RB function. An
interesting byproduct of this approach is to identify “hot spot” genes within
a group of genes as the ones which contribute the most to the group activity.

Another promising approach is the use of Multiple Factor Analysis (MFA)
(Escofier and Pages, 1994; de Tayrac et al., 2009) which can be viewed as a
generalisation of the PCA. Instead of considering each feature individually as
the PCA does, MFA works on groups of features (e.g. gene sets). For example,
features can be grouped according to different pathways of interest. This way,
it permits one to assess the contribution to each gene set with respect to the
overall structure of the data. In the Wang dataset, the Figure 5.7 shows the
results of the MFA where RB pathway (i.e. the cell cycle), NFkB pathway (i.e.
the inflammation) and TGFβ pathway (i.e. the immune response) have been
considered as gene sets in addition to all the other genes. The overall structure
of the data in Figure 5.7A is as expected very similar to the PCA results in
Figure 5.6A. Regarding the contribution of the RB pathway, Figure 5.7B
suggests an elongated cloud, which indicates that the tumours can be ranked
according to linear score representing very likely the level of activation of the
cell cycle. The NFkB pathway (see Figure 5.7C) and the TGFβ pathway
(see Figure 5.7D) show qualitatively a similar behaviour with respect to the
overall structure (see Figure 5.7A) while the RB pathway (see Figure 5.7A)
definitively shows a peculiar behaviour with respect to other gene sets.

5.5.4 Detecting important gene sets and pathways

Instead of quantifying the activity of thousands of pre-defined groups of
genes for each sample, another line of thought to get biological insight from a
collection of samples is to try to directly detect which groups are important in
the observed samples. While the notion of importance is vague and subjective
in general, a fruitful definition is to assess the importance of a group of genes
by their level of coexpression across samples (Gerstein and Jansen, 2000).
The underlying assumption is that high expression correlation between genes
implies some form of interaction between the proteins they code under the
investigated conditions.

Following this idea, Jansen et al. (2002) measure for example the coex-
pression of a group of genes as the mean correlation coefficient between all
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FIGURE 5.7 Multiple factor analysis on breast cancer data. (A) The 286
tumour samples of the Wang dataset are visualised in the first two components of
the MFA when all the genes have been used. The tumour samples are projected
on the same two components using only the genes in (B) the RB pathway (C) the
NFkB pathway or (D) the TGFβ pathway. (See colour insert.)

pairs of genes in the group. Interestingly, when they analyse groups of genes
whose products form a protein complex, they observe a difference between
permanent complexes, such as the ribosome∗ and proteasome∗ which have
a particularly strong coexpression, while transient complexes have not. Follow-
ing a similar line of thoughts, Pavlidis et al. (2002a) also proposed to compute
the mean average correlation between genes of a group, and derived a p-value
for each group (called the correlation score) to assess how significant the mean
correlation is by comparing it to the mean correlation among random groups.
Similarly, Breslin et al. (2005) assessed the mean correlation between all pairs
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of genes downstream of a signalling pathway, as a hint for the fact that the
pathway could be a functional unit.

An interesting variant of this problem of detecting important gene sets
is the situation where, instead of a collection of groups of genes, one has
a collection of gene networks representing different pathways (such as, e.g.
the RB map of Section 4.9.2 or the networks representing the hallmarks of
cancer discussed in Chapter 8), or even a global network connecting all or
most of genes (see Box 4.3). How can we then assess the importance of a
particular network taking into account its particular structure, or even detect
important “subnetworks” within a given large network?

Several ideas have been proposed in the literature to exploit the network
structure. A first approach, proposed by Han et al. (2004), is to measure
for each node in a protein network the average correlation coefficients it has
with interacting partners. A large average correlation may suggest that the
node somehow controls the expression of its local interactome. Focusing on
hubs∗, they observe a clear bimodal distribution, suggesting that hubs can
be divided into party hubs, which have a large average correlation with their
neighbours, and date hubs, which have not. A second approach, proposed by
Rahnenführer et al. (2004), tries to generalise the mean correlation score used
to assess the importance of a group when the group is itself a network, typically
a signalling or metabolic pathway. They propose to quantify the importance of
the subnetwork by computing a weighted average of the correlation coefficient
between all pairs of genes of the pathways, where the weight decreases with
the shortest-path distance between the genes on the graph. This is a way to
focus only on the important correlations within the pathway.

Finally, let us mention the work of Guo et al. (2007) who proposed a
method to detect subnetworks within a large given network, responsive to
some investigated gene expression data. They define the score of a connected
subnetwork with k edges as the sum over the edges of the covariance of the
connected genes; the score is then normalised as a Z-score by comparing it
to the scores of random sets of k edges. Since finding the highest-scoring
subnetwork in the entire network is a NP-hard problem (Ideker et al., 2002),
Guo et al. (2007) implement a strategy based on simulated annealing to find
a high-scoring subnetwork. This approach was tested on a prostate cancer
dataset, and was able to select a subnetwork containing many genes known to
be important in prostate cancer, in particular many genes of the NFkB and
MAPK signalling cascades.

5.5.5 Example: Analysing RB pathway activity in bladder
cancer

To illustrate the possibility to exploit pathway information in the analysis
of gene expression data, let us take the example of a collection of 55 bladder
cancers comprising noninvasive (Ta, T1 stages) and invasive (stages above T2)
tumours, as well as 5 normal urothelium samples (Stransky et al., 2006). Since
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FIGURE 5.8 Modular map of RB pathway. Coloured modular map of RB
pathway : (A) Module activity for noninvasive cancers; (B) module activity for in-
vasive cancers. Red modules show global upregulation for the genes that compose
each module. Green modules show global downregulation. (See colour insert.)
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alterations in the RB pathway are frequent in bladder cancer (Mitra et al.,
2007), we wish to analyse the difference between noninvasive and invasive
tumours in the light of the RB pathway.

As explained in Section 4.9.2, the detailed description of the RB pathway
is a complex network involving 78 proteins, which can be simplified by group-
ing together subsets of proteins into modules. The simplified version of the RB
pathway we use, shown in Figure 5.8, contains 24 modules. We estimate the
activity of a module in each sample using the first principal component of the
expression matrix restricted to the genes of the module and identify hot spot
genes within each module, as explained in Section 5.5.3. As expected, many
of the hot spot genes correspond to genes known to have modified expression
in cancers, including cyclins and cyclin-dependent kinase inhibitor genes.

Figure 5.8 shows the mean module activity of noninvasive (top) and
invasive (bottom) tumours, and provides a general overview of differences in
the pathway activity amenable to biological interpretation. The results are
consistent with our understanding of the molecular mechanisms of bladder
cancer progression. There are three modules of transcription factors: E2F1-
3, the activating ones that are sequestered by RB and that play a role in
apoptosis entry; E2F4-5, the inhibiting ones that are too sequestered by RB;
and E2F6-8 that do not interact with RB at all. RB is inhibited through
phosphorylation by CycC/CDK3, CycD1/CDK4,6 and CycE1/CDK2. There
are two modules of cyclin-dependent kinase inhibitors: p16/p15 and p27/p21
that specifically bind to some of the Cyclin/CDK complexes. CycA2/CDK2
and especially CycB1/CDC2 are intervening in late phases of the cell cycle.
CycB1/CDC2 activity is controlled by the kinase Wee1 and the phosphatase
Cdc25 but both CycA2/CDC2 and CycB1/CDC2 are negatively regulated by
the complex Anaphase Promoting Complex (APC). CycH/CDK7 is necessary
for the activation of all Cyclin/CDK complexes. Finally, eight modules regroup
all the gene targets of the E2F transcription factors.

Red modules correspond to overexpressed modules and green modules to
underexpressed modules. The modules in black are close to the expression
of normal samples. Cyclin expressions seem to play an active role in inva-
sive cancers (activation of four cyclin modules: CycC/CDK3, CycE1/CDK2,
CycA2/CDK2, CycB1/CDC2) as well as the activation of the E2F1-3 tar-
gets, even though the activity of E2F1-3 module at the transcriptional level
is not strongly manifested. Figure 5.8 also shows a particular behaviour of
CycD1/CDK4/6 module, which is, in average, less activated in invasive than
in noninvasive tumours, in agreement with the literature (Tut et al., 2001).
Amplification (and overexpression) of CCND1 (referred to as CyclinD1) can
occur in invasive tumours but is a rare event (3 out of 30 tumours in this
series).

Remarkably, all but one module that inhibit cell cycle progression (RB,
E2F4-5, E2F6-8, p27/p21, Wee1, APC and Apoptosis entry) were downreg-
ulated in invasive tumours compared to noninvasive tumours. These results
were already known for some genes (RB, p27KIP1) and point out new genes
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cluster). Alterations of genes of the network and for each sample are annotated on
the graph: “+” means that the gene is amplified, “−” means that the gene is lost.
(See colour insert.)

or mechanisms likely to be involved in bladder tumour progression. Downregu-
lation of E2F4-5 and E2F6-8 modules is consistent with observed upregulation
of their target gene modules. It should be underlined that a downregulation in
the activity of a module, for example E2F4-5, does not necessarily correspond
to a significant change of E2F4 or E2F5 expression itself, but rather to that
of some components involved in the module.

Another way to look at these data is to consider the PCA plot of the
modules in terms of their expression level. In the 24-dimensional space of
the module activities (see Figure 5.9), tumours form two distinctive clusters
separated along the first principal component. This separation is completely
consistent with the two progression pathways which exist in bladder cancer:
the Ta low-grade pathway (round shapes) and the carcinoma in situ/invasive
tumour pathway (squared shapes) (Stransky et al., 2006). The left cluster of
Figure 5.9 contains mainly low grade noninvasive tumours, with 5 invasive
tumours. Most of the invasive tumours belonging to this cluster (4/5) carry
FGFR3 mutations∗, a hallmark of the Ta pathway being FGFR3 mutations
(Billerey et al., 2001). Therefore, we can conclude that these tumours belong to
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the same progression pathway despite the difference in stage. The right cluster
contains only invasive tumours or high grade (G3) noninvasive tumours. Most
tumours of this cluster do not carry FGFR3 mutations (29/31, compared to
3/24 in the other group).

We also labelled some of the samples according to the most significant
genomic alterations (DNA copy number) in the regions of genes known to
be involved in cancer and participating in the RB pathway. Thus, one can
notice a higher frequency of genomic alterations in the aggressive tumours,
and an amplification of E2F3 transcription factor that drives module activities
towards the extremity of the right more aggressive cluster. Taken together,
all these observations give a consistent picture of the alterations of the RB
pathway in bladder cancers that seem to be different in the two pathways of
bladder tumour progression.

It is important to note that the analyses of array Comparative Genomic
Hybridisation (aCGH) and gene expression levels illustrate what could happen
at the protein level. However, it does not guarantee that the corresponding
proteins will be expressed, post-transcriptionally modified, active or inactive.
High-throughput techniques such as Reverse-Phase Protein Array (RPPA)
would make it possible to better assess the activation of pathways at the
protein level (see Chapter 3).

5.6 Integrative analysis of heterogeneous data

The strength of data-driven methods normally increases when more data
are analysed jointly. It becomes increasingly possible and easy to collect large
quantities of cancer omics data from a public online database, but their anal-
ysis raises several challenges in integrative analysis:

• because we would like to jointly analyse data of different natures, e.g.
gene expression data and DNA copy number profiles;

• because we could like to combine several datasets measuring the same
type of data, e.g. gene expression, but on different cohorts, and poten-
tially with different technologies.

In this section we briefly review a few computational strategies which have
been proposed to carry out such integrative analysis, in the context of ex-
ploratory data analysis. We postpone to Section 6.6 the presentation of
methods for integrative analysis in the context of predictive modelling.

5.6.1 Joint analysis of data from different molecular levels

It is increasingly frequent to collect several heterogeneous genomic data
about the same samples, such as gene expression data and genotype or DNA
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copy number profiles. It is then interesting to jointly analyse the different
datasets, in particular to try to capture relationships between processes at
different molecular levels such as the link between DNA amplification and
overexpression (Hyman et al., 2002; Pollack et al., 2002; Morley et al., 2004).

In order to directly answer questions such as detecting genes which are
differentially expressed in samples which exhibit a specific genomic alteration,
the most direct method is to stratify the samples based on the genomic alter-
ation and analyse the gene expression in relation to this stratification (Bungaro
et al., 2009; Hyman et al., 2002; Pollack et al., 2002). Another approach which
does not require explicit stratification is to compute the correlation between
each DNA copy number and each gene expression, or formulate the problem
as a regression problem, in order to detect genomic loci whose amplification
is strongly associated to variations in expression of some genes (Peng et al.,
2010).

Methods based on matrix factorisation can also be extended to capture
low dimensional representations of two heterogeneous datasets associated to
each other. For example, Canonical Correlation Analysis (CCA) searches for
projections maximally correlated to each other (Hotelling, 1936). In the high-
dimensional setting, CCA needs to be regularised to prevent overfitting, and
many forms of regularised CCA have been proposed in the context of hetero-
geneous genomic data comparisons (de Tayrac et al., 2009; González et al.,
2009). Like other matrix factorisation techniques discussed in Section 5.4.3,
CCA can also be modified to capture sparse or structured projections (Waai-
jenborg et al., 2008; Witten et al., 2009; Lê Cao et al., 2009; Parkhomenko
et al., 2009; Soneson et al., 2010).

5.6.2 Joint analysis of several datasets

The strength and robustness of statistical methods increase when the num-
ber of samples increases. Due to the practical limits of cost and access to large
numbers of fresh frozen tumour samples, most individual studies collecting
cancer omics data are limited in size from a few tens to a few hundreds of
samples. Since the data of many of these studies are publicly and easily avail-
able, an efficient strategy to increase the number of samples analysed jointly
is to pool several studies together and perform a meta-analysis∗. However,
this meta-analysis task is often challenging because the biological diversity
common to all studies is easily masked by batch effects, due in particular to
differences in experimental protocols, cohorts and technologies between stud-
ies.

Batch effects are inevitable with high-throughput technologies, like for ex-
ample expression microarrays which are very sensitive to many non-biological
factors including the technicians who performed the experiment and even the
atmospheric ozone level (see Section 4.1.2). Several methods have been pro-
posed to remove batch effects in microarray experiments, as recently reviewed
by Scherer (2009). For example, Distance-Weighted Discrimination (DWD)
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is a multivariate analysis technique to correct systematic differences between
two datasets by performing a global shift of each dataset to ensure an op-
timal overlap between the two sets of samples (Benito et al., 2004). DWD
was for example used by Hu et al. (2006) to show that the classification of
breast cancers proposed earlier by Sørlie et al. (2001) was reproducible and
conserved across different microarray platforms. In a recent benchmark of
six adjustment methods for removing batch effects in expression data, Chen
et al. (2011) concluded that an empirical Bayes method called Combating
Batch Effects When Combining Batches of Gene Expression Microarray Data
(ComBat) was particularly performant for this task (Johnson et al., 2007).

5.7 Heterogeneity within the tumour

Besides diversity of cancers across patients, another important source of
heterogeneity and variability in tumour samples characterised by omics tech-
nology is the heterogeneity of cells within the tumour itself. Indeed, as dis-
cussed in Sections 2.3, 2.6 and 3.2.6, we know that a tumour consists of
a variety of cells, including normal and cancer cells. Deciphering this hetero-
geneity within the tumour could rely on sophisticated biotechnological ap-
proaches, e.g. the ability to analyse samples at the single cell level. In parallel,
we briefly discuss in this section how dedicated computational approaches can
help capture this intra-tumoural diversity.

The characterisation of the heterogeneity within the tumour using high-
throughput combined with statistical methods was first carried out on a DNA
copy number profile using aCGH. Unravelling the DNA copy number pro-
file of the subpopulations and also estimating what the percentage of each
subpopulation is in a given tumour can be formulated straightforwardly as
in Wang et al. (2009). Consider a mixture of K + 1 clonal subpopulations,
with respective percentages in the full populations denoted by p0, p1, . . . , pK
with

∑K
k=0 pk = 1. We assume that first population, with percentage p0, is a

normal sample with 2 DNA copies along the genome. At a genomic position
i, the expected DNA copy number Ci can be expressed as

∑K
k=0 pkCik where

Cik is the DNA copy number of the kth subpopulation. A Bayesian framework
based on a mixture model was used to solve this problem and estimate the
most likely number of subpopulations. While very intuitive, this statistical
model may fail in practice to predict reality as, on one hand, contamination
by the normal tissue exists and on the other hand, the overall ploidy of the
tumour can be greater than two (e.g. some tumours are triploid, tetraploid,
etc.). With the advent of Single Nucleotide Polymorphism (SNP) arrays, the
availability of both DNA copy number and B Allele Frequency (BAF) profiles
(see Section 3.1.3) made it possible to refine the characterisation of tumour
complexity and heterogeneity. For example, Popova et al. (2009) proposed a
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pattern recognition algorithm in which the observed DNA copy number and
BAF profiles are fitted with respect to their expected values, shown in Fig-
ure 3.7. Their algorithm allows both the estimation of normal contamination
and ploidy and the detection of clonal subpopulations. To fully benefit SNP
arrays, Yau et al. (2010) extended the approach proposed by Wang et al.
(2009) in order to jointly consider DNA copy number and BAF information
as a set of different states in a unified statistical framework to better char-
acterise heterogeneity within the tumour. Though initially developed on SNP
arrays, these methods could also be applied on NGS data as DNA copy num-
bers and BAF profiles can be obtained from such technologies (Boeva et al.,
2011b).

5.8 Conclusion

The large heterogeneity of cancers has been known for a long time, and
has been a major focus of cancer research for decades. Is has direct bearing on
clinical management, since apparently similar cancers may be better treated
by different treatments. While stratification of patients based on clinicopatho-
logical parameters is well established in the clinics nowadays, it remains insuf-
ficient since patients in the same category can still have very different clinical
evolution.

The possibility to observe cancer diversity at the molecular level with
omics technologies has drastically changed and improved our understanding
of cancer heterogeneity in the last decade. Hundreds of studies have now col-
lected detailed molecular information about the genome, transcriptome and
epigenome of diverse collections of cancer samples and cell lines, and system-
atically investigated the biological underpinnings of cancer diversity at the
molecular level. New molecular classification of cancers have emerged and are
now widely accepted as the gold standard classification. The biological pro-
cesses underlying the diversity of cancers have also started to emerge from the
systematic analyses of these datasets.

Besides expected discoveries, such as the importance of ER and prolifera-
tion pathways in breast cancer diversity, or the division of acute leukaemias
into known subtypes, a multitude of other intriguing findings often emerge
from these analyses. The field is still in its infancy, both in terms of compu-
tational methods to translate the wealth of omics data into useful biological
findings, and in terms of capacity of the biological and medical community to
investigate and validate new findings. After almost 15 years since the early
work on genome-wide analysis of cancer samples, the analysis and modelling of
cancer heterogeneity at the molecular level remains a fast-moving field which
strongly benefits from technological developments. It will certainly benefit a
lot from the upcoming availability of even larger quantities of molecular can-
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cer data generated by large projects such as the International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas (TCGA). It also contin-
ues to raise important theoretical and computational questions regarding the
best way to analyse these data, classify them and extract useful information
from them.

. Exercises

• Compare the clusters obtained by different hierarchical or par-
titioning methods on the Wang breast cancer dataset. Which
methods lead to the most similar and the most different classi-
fications?

• Why do the `1 norm (see Equation 5.6) and TV semi-norm
(see Equation 5.7) lead to respectively sparse and piecewise
constant metagenes? Check it experimentally.

• Why do we assess the importance of a group of genes for a set
of samples by the average correlation between the genes across
the samples? What are we trying to quantify? Can you propose
other ways to quantify the importance of gene sets using PCA?

é Key notes of Chapter 5

• Cancer is a heterogeneous disease; cancer classification based on
clinicopathological data is not precise enough for good clinical
management.

• Automatic discovery of cancer subtypes by systematic analysis
of omics data with clustering methods has imposed itself as a
new gold standard taxonomy for several cancers, often referred
to as molecular classification of cancers.

• There exist, however, many computational techniques to derive
molecular classifications of cancers, which influence the results;
current classification schemes are likely to evolve as larger sam-
ple sets are analysed and more robust analytical methods are
developed.

• Automatic analysis of high-dimensional data with matrix factori-
sation or similar techniques allows to capture, to some extent,
the basic biological processes underpinning cancer diversity.

• Integrating omics data analysis with prior knowledge we have
about gene sets or gene networks can help understand the het-
erogeneity of cancers at the level of biological processes and path-
ways, and identify important pathways.



Chapter 6

Prognosis and prediction: Towards
individualised treatments

The heterogeneity of cancers discussed in Chapter 5 has immediate bearing
on cancer clinical management. The diversity of cancers at the molecular level
entails important differences at the clinical level, in particular in prognosis∗

(the risk of relapse∗ after an initial treatment) and in terms of responsiveness
to different treatments. It is therefore important to characterise as finely as
possible the disease in order to take the best therapeutic options for each
particular case. In practice, when confronted with a newly detected cancer,
physicians must first identify as precisely as possible the type and particular
characteristics of the disease, a problem called diagnosis. Then, when several
therapeutic options are available, they must choose the most suitable one
based on whatever information they have about the patient and cancer to
treat. Two important questions to be addressed when a treatment is available
are (see Figure 6.1):

• Does the patient need a treatment, and how aggressive should it be? Many
solid tumours can be removed by surgery and radiotherapy. However,
while some patients are definitively cured by such operations, others
will experience an often more aggressive relapse within a few years.
It is therefore tempting to systematically treat patients by adjuvant
therapy∗, aimed at preventing secondary tumour formation. Most ex-
isting adjuvant treatments for cancer, usually chemotherapy∗ with
cytotoxic drugs, have however, strong deleterious side effects. Limiting
aggressive treatments only to patients who would benefit from them is
therefore important. In many cases, such as the decision to give or not
give adjuvant chemotherapy for operable breast cancers, this decision
boils down to the problem of prognostication, i.e. to estimate the risk
of future relapse if no adjuvant treatment is given to the patient. This
cannot only spare the morbidity of a treatment that offers no bene-
fit to low-risk patients, but can also justify a more aggressive adjuvant
treatment to patients with a bad prognosis (Clark, 1994).

• Which treatment will work? Which treatment is the best among several
possible choices? For patients with poor prognosis, or with a tumour that
cannot be removed by surgery or radiation only, the second question is to
choose an adequate treatment. Since each treatment is typically effective
only on a subset of all cancers, this question boils down to the problem

165
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of predicting response, i.e. to assessing the probability that the cancer
will react to a specific treatment in order to select the best one. Factors
which influence the probability of response to a treatment are usually
simply called predictive factors.

In this chapter, we discuss current practices and new hopes generated by
the omics revolution (see Chapter 3) in the assessment and clinical manage-
ment of cancers through better prognosis and drug response prediction. This
is the occasion to discuss some of the popular statistical and machine learning
methodologies underlying biomarker∗ detection and predictive modelling,
and to highlight the increasingly important role played by systems biology
in this context. As in Chapter 5, we illustrate several of these techniques
on the Wang dataset for breast cancer prognosis from gene expression data,
and provide a vignette on the book’s companion website to help the reader
reproduce the analysis.

Therapeutic choices

Predictive factors
Determine which treatment is best

Prognostic factors
Determine who needs treatment

1. Avoid under and over treatment
2. Personalised treatment

FIGURE 6.1 Prognostic and predictive factors. This illustration from
Lønning (2007) highlights the clinical importance of prognostic and predictive fac-
tors in breast cancer.

6.1 Traditional prognostic and predictive factors

Many prognostic and predictive factors have been known for years. The
type and location of the tumour, and its clinicopathological∗ characteri-
sation including its stage∗ and grade∗, are currently the main prognostic
factors used in decision-making for clinical management. For example, it is
known that a high-grade breast cancer with cancer cells detected in lymph
nodes has in general a higher risk of relapse than a small tumour of low grade,
and requires a more aggressive adjuvant treatment to prevent relapse. Other
factors, such as the detection of the steroid hormone receptors ER and PR in
breast cancer, are both prognostic and predictive for the response to hormone
and endocrine therapies. Some decision support tools have been developed to



Prognosis and prediction: Towards individualised treatments 167

combine these factors, including the popular Adjuvant! Online∗ which is
widely used by physicians and patients to predict mortality and recurrence∗

risks, as well as the benefit of adjuvant therapy for women with early-stage
breast cancer (Ravdin et al., 2001). Adjuvant! Online makes these predictions
automatically from six inputs that are well established as powerful predictors
of mortality and recurrence: patient age, tumour size, grade, hormone receptor
status, number of positive lymph nodes, and comorbidity∗ level. It is based
on a statistical model that we present in Section 6.2.3 (logistic regression),
trained on thousands of cases.

However, the clinicopathological characterisation for prognostication re-
mains subject to several limitations. First, tumours with similar clinicopatho-
logical criteria may still have very different prognosis and respond differently
to different treatments. For example, recurrence is likely in 20–30% of young
women with early-stage (lymph node-negative) breast cancer who only un-
dergo surgery and localised radiation treatment (Van’t Veer and Bernards,
2008). Yet, in the United States, 85–95% of women with this type of cancer re-
ceive adjuvant chemotherapy, mostly because conventional clinicopathological
criteria fail to identify reliably those patients who are likely to relapse. There-
fore, 55–75% of women with early-stage breast cancer in the United States
undergo a toxic therapy from which they will not benefit but from which
they will experience the side effects, because the clinicopathological charac-
terisation of the tumour is not sufficient to differentiate them from those who
need the treatment. This problem could be explained by both the existence
of unknown cancer subtypes within clinicopathological categories, and by the
lack of efficient clinicopathological prognostic factors. As a consequence, we
need new prognostic factors in order to better stratify patients, and in partic-
ular identify more low-risk patients to spare them the deleterious effects of a
treatment that brings them no benefit (Clark, 1994).

Second, while the identification of reliable predictive factors has the po-
tential to spare patients ineffective treatment and unnecessary side effects,
the reverse (that a factor may guarantee therapeutic success) may be more
difficult to achieve. For example, while ER negativity is associated with lack
of response to endocrine treatment, not all patients with ER positive tu-
mours may benefit from such therapy. Similarly, while the absence of HER2
(ERBB2) overexpression has been established as a predictive factor for nonre-
sponsiveness to trastuzumab therapy, not all HER2-overexpressing tumours
are trastuzumab sensitive, reflecting the complexity of breast cancer genetics.

Third, the objective and consistent assessment of some clinicopathological
factors is sometimes difficult to ensure. As explained in Section 5.1, they
may not only vary with the particular histological section∗ studied, but
also depend on the expert analysing the sample. Therefore, depending on the
pathologist, the patient might not be given the same therapy and thus the
reproducibility for the clinicopathological parameter assessment, in particular
grade and stage, needs to be improved.

There is therefore a need for new prognostic and predictive factors, with
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better reproducibility and better discriminatory power between different prog-
nosis and drug responsiveness groups. Recent technologies to interrogate tu-
mours at the molecular level (see Chapter 3) offer extraordinary opportu-
nities to search for new biomarkers, and to build prognostic and predictive
models from these biomarkers. As millions of candidate markers can nowa-
days easily and robustly be collected from patients and tumours, including
genomic, epigenomic, transcriptomic and proteomic markers, major questions
to be addressed include (1) how to select good biomarkers among all candi-
dates, and (2) combine them into accurate predictive models. We start by
addressing the second question in the next section, before coming back to the
question of biomarker selection in Section 6.3

6.2 Predictive modelling by supervised statistical
inference

As no single factor is usually perfectly prognostic or predictive, accurate
models need to combine several factors for better risk assessment. In this
section, we present a few computational methods to combine several factors
into a single model, and postpone the question of how to select factors among
many candidates to Section 6.3. For the sake of coherence, we follow the
terminology of Box 5.1, calling samples the patients available to estimate a
model and features the different factors available for each patient which we
can use to build a predictive model.

6.2.1 Supervised statistical inference paradigm

Most prognostic and predictive factors have been found by empirical evi-
dence of association with the response of interest (respectively cancer relapse
and response to a treatment) over large populations of patients. Similarly, the
main statistical paradigm to combine several features into a single model for
risk prediction is to use empirical evidence: by observing both the features and
the response of interest in a population of patients, we try to infer a rule to
combine the features which is empirically associated to the response. Mathe-
matically, we formalise this paradigm by modelling the observed population as
a set of n pairs S = {(x1, y1) , . . . , (xn, yn)}, where the xi ∈ X denotes the i-th
sample and yi ∈ Y his/her response. We restrict ourselves to the case where we
have access to p features on each sample, meaning that xi can be represented
by a p-dimensional vector (X = Rp). The response can take different forms.
In many cases the response of interest is binary, such as good/bad prognosis
or response/no response to a drug, in which case we represent the two alter-
natives by the arbitrary numbers −1 and 1, i.e. Y = {−1, 1}. Other common
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settings include the cases where the response can be one among K > 2 classes,
such as different subtypes of cancers, a continuous value, such as a quantita-
tive measure of how a treatment works, or survival data, where we observe
the time until an event such as relapse or death occurs. These situations can
be modelled by different sets Y.

Based on the observation of the population S, the objective of the mod-
eller is to infer a function f : X → Y which can then be used to predict the
response y ∈ Y for any new sample x ∈ X by the value f(x). This inference
problem is often referred to as supervised learning in statistics, as opposed to
unsupervised learning problems where we only observe the samples x1, . . . , xn
without any response of interest; this was for example the case in Chapter 5
where we investigated the diversity among the xi’s without trying to predict
any particular property or response variable. The field of supervised learning is
a mature field in statistics and computer science, with many well-understood
and efficient methods and algorithms. It is however, also a field of active re-
search, triggered in particular in the last decade by the particular challenges
raised by genomic data. We present next a short selection of popular methods
for supervised learning, and refer the readers to a number of excellent text-
books on the topic for a more in-depth presentation of the statistical machine
learning (Devroye et al., 1996; Vapnik, 1998; Duda et al., 2001; Hastie et al.,
2001; Bishop, 2006).

6.2.2 Supervised inference by generative models

In the case where the phenotype of interest is discrete Y = {1, . . . ,K},
i.e. when we want to categorise the samples into K pre-defined categories,
a possible strategy to infer a classification function is to model the sample
and its phenotype as a random vector (X,Y ) with values in X × Y and to
learn the random distribution from the data. This approach, which is often
referred to as learning a generative model of the data, uses the observed pop-
ulation S in order to infer the distribution P (X,Y ). Using the chain rule
P (X,Y ) = P (Y ) × P (X |Y ), this is often done in practice by inferring the
class distribution P (Y ) on the one hand, and the class-conditional probabili-
ties P (X |Y ) on the other hand, assuming the observed samples are randomly
and independently sampled according to P . Once P is estimated from the ob-
served samples, we can predict the probability of each possible response Y ∈ Y
for a new sample X ∈ X using Bayes’ rule:

P (Y |X) =
P (X |Y )P (Y )

P (X)
,

and predict the response with largest probability:

f(X) = argmax
Y ∈Y

P (Y |X) = argmax
Y ∈Y

P (X |Y )P (Y ) . (6.1)

This generic modelling framework underlies several popular methods. The
class probabilities P (Y = y) for y ∈ Y are usually simply estimated as the
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fraction π̂y = ny/n of each response class in S, where ny denotes the number
of samples with response y in S. Different methods make different assump-
tions on the class-conditional distributions P (X |Y ). For example, when sam-
ples are multidimensional real vectors X = Rp, possible models for the class-
conditional distributions are Gaussian distributions N (µu,Σy) with densities:

p(x |Y = y) =
1

(2π)p/2|Σy|1/2
exp

(
−1

2
(x− µy)

>
Σ−1
y (x− µy)

)
,

where µy ∈ Rp and Σy ∈ Rp×p are respectively the mean and covariance
matrix of the distribution of samples in class y ∈ Y. In that case, inferring the
class-conditional distributions boils down to estimating µy and Σy from the
observed samples. The class-conditional mean µy is usually estimated by the
empirical average of samples with response class y, i.e. µ̂y =

∑
i:yi=y

xi/ny.
The covariance matrices Σy involve more parameters and can be estimated in
different ways:

• Quadratic Discriminant Analysis (QDA) estimates each covariance ma-
trix Σy independently from the others, as the empirical covariance ma-
trix of the samples of class y:

Σ̂y =
1

ny − 1

∑
i:yi=y

(xi − µ̂y) (xi − µ̂y)
>
.

The corresponding decision function (see Equation 6.1) for a new
sample x ∈ Rp predicts f(x) = argmax y∈Y gy(x), where gy(x) is the
quadratic function (hence the name QDA):

gy(x) = −1

2
log |Σ̂y| −

1

2
(x− µ̂y)

>
Σ̂−1
y (x− µ̂y) + log π̂y . (6.2)

• Linear Discriminant Analysis (LDA) assumes that all class-conditional
covariance matrices are equal and estimates them jointly from all sam-
ples:

Σ̂ =
1

n− |Y|
∑
y∈Y

∑
i:yi=y

(xi − µ̂y) (xi − µ̂y)
>
.

In that case, the quadratic terms in Equation 6.2 cancel and the deci-
sion function for a new sample x maximises over y linear functions:

gy(x) = x>Σ̂−1µ̂y −
1

2
µ̂>y Σ̂−1µ̂y + log π̂y .

• Naive Bayes (NB) assumes that the p different sample features are inde-
pendent given the response, i.e. that each covariance matrix is diagonal.
It boils down to a simplified version of LDA, sometimes called Diagonal
Linear Discriminant Analysis (DLDA), where the non diagonal entries
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of the estimated covariance matrix are set to zero. This method was
used for example in the seminal work of Golub et al. (1999), with a par-
ticular way to estimate the inverse covariance terms, in order to learn
a predictor to discriminate different subtypes of leukaemia from their
transcriptome; or by Hess et al. (2006) to develop a model to predict
breast cancer response to neoadjuvant chemotherapy from gene expres-
sion data.

Generative methods are very easy to implement, and frequently work sur-
prisingly well on real problems although the various assumptions they make
about the distributions of samples are often unrealistic. Simpler methods like
LDA or NB are often at least as good as QDA, in particular when the number
of descriptors p increases, since the loss in modelling power when we use a
simpler model can be compensated by the gain in statistical power when we
estimate less parameters.

6.2.3 Linear discriminative methods

Generative models necessarily make restrictive assumptions on the class
conditional sample distributions. However, our goal in predictive modelling is
not to model correctly the sample distributions P (X |Y ), but only to infer a
good rule to predict the response class Y given a sample X. In many cases, it
is therefore advantageous to focus our efforts on estimating P (Y |X) only. For
example, in the binary case Y = {−1, 1}, Logistic Regression (LR) assumes a
model for P (Y |X) of the form

P (Y = y |X = x) =
1

1 + exp(−yw>x)
, (6.3)

where the weight vector w ∈ Rp is estimated from the observed population S
by maximising the conditional log-likelihood:

ŵ = argmax
w∈Rp

n∑
i=1

logP (yi |xi) = argmin
w∈Rp

n∑
i=1

log
(
1 + exp(−yiw>xi)

)
. (6.4)

Once ŵ is estimated, the class of a new sample x is predicted based on the
value of the function f(x) = ŵ>x, using Equation 6.3 to estimate the prob-
ability of each response; the resulting decision function is therefore linear in
x. LR was for example used to estimate the predictive models of mortality
and relapse risks in Adjuvant! Online from six prognostic clinicopathological
factors (Ravdin et al., 2001).

LR is a well-established method for supervised classification, particularly
powerful when the number of samples n is large compared to the number
of features p. When this is not the case, which is often the rule rather than
the exception with omics data where p can easily range in the thousands or
more, it is recommended to regularise the maximisation of the conditional
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log-likelihood of Equation 6.4 to limit overfitting, i.e. to prevent the estima-
tion of weights w which fit very well the observed population but have little
generalisation power on unseen samples. The most common way to regularise
LR is to add a ridge term equal to the squared Euclidean norm of w in the
objective function of Equation 6.4, leading to the following minimisation
problem:

ŵ = argmin
w∈Rp

n∑
i=1

`logistic(yiw
>xi) + λ‖w ‖2 , (6.5)

where we use the shorthand

`logistic(u) = log(1 + e−u) (6.6)

for the logistic loss. The λ ≥ 0 parameter in Equation 6.5 controls the
amount of regularisation, and must be fixed by the user (see Section 6.2.5).
Intuitively, the larger the number of features p, the more we need to regularise
by increasing λ.

While the final objective function optimised by LR (see Equation 6.5)
was motivated by a probabilistic model of P (Y |X) (see Equation 6.3),
one can also interpret LR as a method that attempts to minimise the mean
logistic loss `logistic(yw

>x) over the training set of observations, up to the
regularisation terms. For a given sample x ∈ X with response y ∈ Y, the
value yw>x is called the margin of the sample with respect to the classifier w.
The margin is positive when w>x and y have the same sign, i.e. when the sign
of the prediction function f(x) = w>x is correct. The margin is large when the
prediction f(x) has not only the correct sign, but also a large absolute value
which can be thought of as a large confidence in the prediction. Because the
function `logistic(u) is decreasing in u, LR can be thought of as a large-margin
classifier , which focuses on finding a classifier f(x) = w>x with large margin
on the observed training set.

Other popular methods follow the same principle, although with technical
differences. The best-known large-margin classification method is probably
the linear Support Vector Machine (SVM), which also estimates a predictor
f(x) = w>x by minimising Equation 6.5, with the logistic loss replaced by
the so-called hinge loss:

`hinge(u) =

{
1− u for u ≤ 1,

0 otherwise.
(6.7)

Figure 6.2 illustrates the losses used by LR (see Equation 6.6) and
SVM (see Equation 6.7). Since both loss functions are convex, the problem
(see 6.5) has a unique minimum which can be found efficiently by various
optimisation algorithms.
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FIGURE 6.2 Losses of large-margin classifiers. LR and SVM both learn clas-
sifiers by enforcing large margins with different loss functions.

6.2.4 Nonlinear discriminative methods

Generative and linear methods are often sufficient to estimate good clas-
sifiers, in particular when we have many features. Nonlinear methods are also
commonly used in supervised statistical inference, and can be more power-
ful than linear methods when the function that relates the response to the
sample features is clearly nonlinear. However, one should keep in mind that
more realistic, nonlinear models are not always better since they can be more
difficult to infer from a limited number of observations.

One popular nonlinear discriminative method is the k-Nearest Neighbour
(k-NN) algorithm. k-NN estimates the probability of a response y for a sample
x as the frequency of samples with response y among the k training samples
most similar to x. The predicted response f(x) by k-NN is therefore the most
frequent response among the k nearest neighbours of x in S.

Alternatively, it is possible to extend the formalism of discriminative linear
models presented in Section 6.2.3 to nonlinear models by first performing
a nonlinear transformation of the data through a mapping Φ : X → Rq, and
then learning a linear function of the form w>Φ(x) which can be nonlinear
in x. A particularly ingenious instantiation of this idea is the set of kernel
methods, which consider mappings Φ such that the so-called kernel K(x, x′) =
Φ(x)>Φ(x′) is easily computed without the need for explicitly computing Φ(x)
for each x (Burges, 1998; Vapnik, 1998; Schölkopf and Smola, 2002; Schölkopf
et al., 2004; Shawe-Taylor and Cristianini, 2004). One can then show that LR
(see Equation 6.3) and SVM (see Equation 6.7) can be solved efficiently
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and lead to nonlinear functions of the form:

f(x) =

n∑
i=1

αiK(x, xi) ,

which can be arbitrarily nonlinear functions of x depending on the choice of
the kernel K. A popular kernel is for example the Gaussian kernel K(x, x′) =
exp

(
−γ‖x− x′ ‖2

)
.

We conclude this short and nonexhaustive description of methods for su-
pervised statistical learning by mentioning the Random Forest (RF) method
proposed by Breiman (2001), which is increasingly popular in bioinformatics
(Jensen and Bateman, 2011) for its good empirical performance on many dif-
ferent learning tasks. RFs are based on decision trees, which predict the label
of a sample by asking a succession of questions with binary answers (such as
“is the expression of gene X larger than a threshold T?”). A RF aggregates
hundreds or thousands of simple classification trees, each built from random
subsamples of S and restricted to asking questions among a random subset of
questions.

6.2.5 Estimating performance and setting parameters

It is useful to be able to estimate the generalisation performance of a
predictive model f : X → Y, i.e. how well it will predict the response of
future, unknown samples. Given a test set of samples, with observed responses,
several metrics can be used to assess how good the predictions made by f
are (see Box 6.1). However, whatever the metric used, when a predictor
is trained using information on some samples, it is important to assess its
performance on completely independent test data in order to consistently
estimate its generalisation ability.

Several strategies exist to assess the performance of a predictive model
from a set S of observed samples with their responses (MacLachlan, 1992;
Molinaro et al., 2005). A popular one is to split the set of annotated samples

S into two non-overlapping subsets Strain and Stest, to train a model f̂ using
only the samples in Strain, and to assess its performance on Stest using any
performance metric. Since the result depends on the particular train/test split
performed, it is recommended to repeat this procedure many times in order
to estimate not only the expected level of performance, but also its sensitivity
to the training set (usually measured by the average and standard deviation
of the performance on the test set across many train/test splits). k-fold cross-
validation is a particular strategy to create k train/test splits, by randomly
splitting the full set S into k non-overlapping subsets S1, . . . ,Sk, and consider
in turn Stest = Si and Strain = S\Si for i = 1, . . . , k.

Estimating the generalisation performance of a predictor is not only use-
ful per se, but also to compare different predictors. In particular, for machine
learning which depends on one or several parameters (e.g. the λ parameters in



Prognosis and prediction: Towards individualised treatments 175

Equation 6.5 for LR and SVM), it is often recommended to set the param-
eters as the ones with maximum estimated generalisation performance over a
grid of candidate parameter values.

6.2.6 Application: Breast cancer prognosis from gene expres-
sion data

Let us illustrate the use of the supervised machine learning technique on
the Wang breast cancer dataset, which we used several times already in the
previous chapter (see Chapter 5). It contains genome-wide gene expression
data for 286 early-stage breast cancers, together with follow-up and relapse
information. Among the 286 patients included in the study, 93 showed evidence
of relapse within 5 years, while 183 lived at least 5 years without relapse. The
remaining 10 patients had no evidence of relapse, but either were followed less

o BOX 6.1: How good is my predictor?
In order to assess how good a binary predictor f : X → {−1, 1} is, we

can consider a test set of examples x1, . . . , xN (not used to infer the
predictor f) and compare the predictions of f to the true binary labels
of the test cases to compute the number of good positive and negative
predictions, respectively called true positives (TP) and true negatives
(TN), and the number of wrong positive and negative predictions,
respectively called false positives (FP) and false negatives (FN). Note
that TP + TN +FP +FN = N . We can compute different measures
of performance:

• Accuracy: ACC = (TP + TN)/N ,

• True positive rate (sensitivity, recall, hit rate): TPR =
TP/(TP + FN)

• False positive rate (fall-out): FPR = FP/(FP + TN)

• Positive predictive value (precision) : PPV = TP/(TP + FP ),

• True negative rate (specificity): SPE = 1− FPR

When the predictor outputs a continuous score, typically an estimate
of the probability of the label being 1, we can furthermore construct
the receiver operating characteristic (ROC) curve which plots TPR as
a function of FPR when we vary the thresholds above which a label
1 is predicted, and summarise how good the ROC curve is by the
area under it (AUC). AUC ranges usually between 0.5 for a random
prediction to 1 for a perfect prediction (see for example Figure 6.3).
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than 5 years, or died within 5 years; we remove them from the subsequent
analysis.

The exploratory analysis of the Wang dataset (see Chapter 5) highlighted
the heterogeneity of breast cancers, and suggested that at least 4 well-defined
subtypes can be defined (see Table 5.1). Interestingly these different subtypes
have different average risks of relapse; on the Wang dataset, we can estimate
that the risk of relapse within 5 years increases from luminal A (19%) to
HER2+ (34%), basal-like (35%) and luminal B (40%) subtypes. Although the
precise number varies between studies, this observation has been recognised
many times, in particular the important risk difference between luminal A and
B subtypes (Sørlie et al., 2001). This suggests a first prognostication strategy:
given a new breast cancer sample, map it to one of the 4 subtypes and predict
its risk of relapse as the frequency of observed relapses in the subtype. Using
the genefu R package (Haibe-Kains et al., 2011) to predict the subtype of
any sample of the Wang dataset from its expression profile, we can estimate
the performance of this prognostication in terms of ROC curve in 5-fold cross-
validation. As shown on Figure 6.3, the ROC curve is clearly above diagonal,
with an AUC of 0.63±0.09, confirming that the subtype is a prognostic factor.
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FIGURE 6.3 Breast cancer prognosis performance. This shows the ROC
curves and AUC (in parenthesis) reached by different classification methods to pre-
dict 5-year metastasis in the Wang breast cancer dataset, in 5-folds cross-validation.

As an alternative to perform an unsupervised exploratory analysis of the
data in order to define subtypes, and checking a posteriori that different sub-
types have different prognoses, one can instead implement a supervised sta-
tistical learning strategy: given a training set of samples with known relapse
information, train a machine learning model to predict the risk of relapse
from gene expression data. Any of the methods discussed in Section 6.2.2–
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Section 6.2.4 can be used for that purpose. For illustration, Figure 6.3
shows the ROC curves reached in 5-fold cross-validation (repeated twice) by
the generative model Naive Bayes (NB), the regularised linear discriminative
models LR and SVM, and the nonlinear models k-NN and RF, trained on
the 1, 000 most varying genes. We observe that most models outperform the
subtype-based prognostic, with for example the regularised LR reaching an
AUC of 0.72± 0.06. This is significant improvement over the simple subtype-
based prediction, confirming the superiority of supervised statistical learning
strategy when the goal is to build a predictive model from examples.

This simple example also shows that, even though the performance of the
different methods is in the same range, there can be significant differences. We
observe in our case that regularised LR and RF are the best methods, but the
literature is not extremely consistent in this regard. For example, Dudoit et al.
(2002a) compared nine methods on three cancer type and subtype prediction
problems, and concluded that simple methods like Linear Discriminant Anal-
ysis (LDA) and k-NN performed remarkably well. Lee et al. (2005) found that
SVM was often the best method, while Haury et al. (2011) pointed out the
good performance of the Nearest Centroid (NC) method. Overall there is no
single method which outperforms all others, and the relative performance of
different methods depends on many factors including the data analysed, the
number of samples and of features, and the experience of the programmer.
For any particular application, it is therefore generally a good idea to test
and compare a few representative methods before choosing one in particular.

6.3 Biomarker discovery and molecular signatures

The predictive modelling framework discussed in Section 6.2 assumes
that we have already chosen a representation of all sample vectors of p features,
i.e. that we have decided which markers to use to build a predictive model.
These markers may be anything from classical clinicopathological parameters
(as used by Adjuvant! Online) to gene expression levels or DNA copy numbers,
as long as we can measure them on a patient for whom a prediction is needed.
In an era where we can easily measure thousands to millions of parameters
on a biological sample with various high-throughput technology, the question
of which features to use to design predictive models can be crucial. Indeed,
as many of these parameters are likely to be irrelevant for the inference task
considered, it may be a good idea to select only a few of them among the
millions of candidates in order to design a predictive model, for at least three
reasons:

1. From a statistical viewpoint, inferring a predictive model with many
parameters from a limited number of observed samples is difficult and
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may lead to poor models in terms of ability to predict the phenotype
of interest on future samples. Reducing the number of parameters to
describe each sample is a way to limit this difficulty, often referred to
as the curse of dimensionality, and may lead to more accurate models
(Donoho et al., 2000).

2. Reducing the number of markers used in a predictive model allows the
design of dedicated devices for cheaper and faster prediction. It is for
example still easier to measure the expression of a few genes than to
completely sequence an individual nowadays.

3. Finally, predictive models based on only a few markers can suggest bi-
ological interpretation, and potentially lead to better understanding of
the molecular underpinnings of prognosis or response to a treatment.

There is therefore an incentive to select a subset M ⊂ [1, p] of size q < p, which
we call a signature (see Box 5.1), to train a predictive model. Mathematically,
the selection of a signature in the context of supervised statistical inference
is called a problem of feature selection, which has deserved much attention in
the statistics and machine learning communities (Guyon and Elisseeff, 2003).
In this section, we briefly review some of the most popular feature selection
methods and discuss the challenges that remain to be solved in the context of
biomarker discovery from high-dimensional genomic data.

6.3.1 Feature ranking by univariate filter methods

The simplest way to select a signature M of q features among p candi-
dates is to compute a score for each candidate, which assesses how relevant
the candidate is for the response to predict, and to select the q candidate fea-
tures with the largest scores to form the signature. Various scores have been
proposed, depending particularly on the type of the response to be predicted
(categorial or continuous).

In the case of binary classification where we want to predict a binary re-
sponse, i.e. Y = {−1, 1}, the score of a feature typically measures how differ-
entially distributed the feature is between the two subpopulations of samples
S−1 and S1, of respective sizes n−1 and n1, with different responses. While a
simple procedure is to simply compute for each descriptor the difference be-
tween its mean on both populations ∆̄ = |µ̄1− µ̄−1|, such as the Fold Change
(FC) of each gene when we compare two populations by gene expression data,
this is usually not a good idea since it does not correct for the variability of
the score which may differ between different features (Allison et al., 2006).
Instead, it is recommended to use normalised scores of the form

t =
∆̄

S
, (6.8)
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where S is the variance of ∆̄. The classical estimate of S is

S1 = σ̄

√
1

n1
+

1

n−1
,

where σ̄ is an estimate of the class-conditional variance of the feature. In that
case Equation 6.8 boils down to a classical Student’s t-statistics, which is
directly related to the F -test used in ANOVA modelling (Kerr and Churchill,
2001). Since the simultaneous estimation of S for many candidate markers
from a limited number of samples is a difficult statistical task, many methods
have been proposed to borrow information across features by shrinking the
estimated variance St towards a predicted variance S0 through the combina-
tion S = αSt + (1 − α)S0. The predicted variance S0 is typically estimated
from all markers jointly, and the coefficient α differs between methods such as
Significance Analysis of Microarray (SAM) (Tusher et al., 2001), regularised
t-tests (Dobbin et al., 2003), the randomised variance model (RVM, Wright
and Simon, 2003), or limma (Smyth, 2004), to name just a few. Alternatively,
nonparametric statistics such as the AUC (see Box 6.1) reached by a fea-
ture when used alone to predict the phenotype (which is equivalent to the
U -statistics of the Mann-Whitney test) can be used, as well as other measures
of distances between conditional distributions (Guyon and Elisseeff, 2003).

When the output is continuous, i.e. Y = R, a simple ranking score is the
absolute value of Pearson’s correlation coefficient, given for the i-th feature
by

R(i) =

∑n
k=1 (xi,k − x̄i) (yk − ȳ)√∑n

k=1 (xi,k − x̄i)2∑n
k=1 (yk − ȳ)

2
, (6.9)

where x̄i = (
∑n
i=1 xi,k) /n and ȳ = (

∑n
i=1 yi) /n. Since Pearson’s correlation is

restricted to detecting linear relationships between the feature and the output,
it is sometimes advised to use instead Spearman’s correlation obtained by
replacing the xi,k values by their rank (from 1 to n) in Equation 6.9. Since
it is only based on the relative values between the feature value on different
samples, and not on their absolute values, Spearman’s correlation can capture
more general monotonic relationships between the feature and the response
than Pearson’s. In cases where a more complex relationship is expected, one
can also consider estimating the mutual information between the feature and
the output, defined by

I(i) =

∫
xi

∫
y

p(xi, y) log
p(xi, y)

p(xi)p(y)
dxdy ,

where p(xi), p(y) and p(xi, y) are respectively the densities of xi, y, and the
joint density of (xi, y). Estimating these densities needed empirically is how-
ever often not obvious, and again many methods have been proposed (e.g.
Battiti, 1994; Torkkola, 2003)
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6.3.2 Feature subset selection by wrapper methods

Univariate filter methods discussed in the previous section attempt to de-
tect features related in some way to the response of interest. It is, however,
not always a good idea to learn a predictive model using the top q features
according to this criterion, particularly in the presence of correlations among
features. Indeed, once a first feature is selected to enter a predictive model,
adding a second feature strongly correlated to the first one can be less inter-
esting than adding a third feature that adds complementary information to
the first one, even though its univariate association with the response is lower
than that of the second feature. In other words, instead of testing the features
one by one and then taking the top q among them to form a signature, it
seems more interesting to directly attempt to select a subset of k features
which, together, allow the inference of a good model. This is exactly what
feature subset selection methods try to achieve.

Feature subset selection is usually phrased in terms of a particular infer-
ence algorithm, able to estimate a model f : X → Y from a training set of
samples S (see Section 6.2). By varying the set M ⊂ [1, p] of features to
be used in the model, the learning algorithm can estimate different functions
which we denote by fM : X → Y, to insist on their dependencies on the subset
of features used. In order to compare different sets of features in the context
of predictive modelling, we need to be able to estimate how “good” the func-
tions fM are. Although the prediction accuracy on future samples cannot be
estimated directly, different proxies for it are commonly used, including the
performance on a validation set of observations left aside during inference, or
the value of the objective function on the training set when the inference al-
gorithm minimises an objective function. Denoting by R(fM ) this estimated
measure of goodness for a model estimated on the features in M , the best
subset selection problem consists in finding the subset M which leads to the
“best” model:

M̂ = argmin
M⊂[1,p]

R(fM ) . (6.10)

Unfortunately, the number of candidate subsets with q features increases ex-
ponentially with q, and even with the efficient leaps and bounds algorithm
(Furnival and Wilson, 1974), it is in general computationally impossible to
exhaustively search over subsets of more than a few features when p is larger
than 40. For example, there are more than 1012 ways to select only three genes
among 20, 000 candidate genes.

Instead of solving Equation 6.10 exactly, wrapper approaches usually
follow greedy optimisation procedures which find a “good” subset, but not
the best one. They start from an initial candidate set of features M0, which
could be the empty set or the full set of features, and iteratively add or remove
features that maximally decrease R(fM ), until it cannot improve any more by
simple addition or removal of features. Starting from no feature and iteratively
adding them one by one is referred to as forward stepwise selection, while
starting from the full set of features and iteratively removing them is called
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backward stepwise selection. For example, in bioinformatics, a popular back-
ward stepwise selection algorithm is the SVM recursive feature elimination
(RFE) method which starts from all features and iteratively removes features
with small weights estimated by a linear SVM (Guyon et al., 2002). Other
more complex schemes which alternate between feature addition and deletion
are obviously also possible, although the quest for more efficient methods to
find solutions closer to the best subset is questionable since the risk to overfit
M is difficult to control when we compare so many candidate subsets.

6.3.3 Embedded feature selection methods

Instead of using the statistical learning method only to assess the goodness
of a candidate signature M , as in wrapper methods, some machine learning
algorithms can directly both estimate a function f : X → Y and select fea-
tures. This is in particular the case of methods for sparse learning, which
estimate functions f(x) which only depend on x through a limited number of
features. For example, most linear methods estimated by minimising a regu-
larised empirical risk (see Equation 6.5) can be turned into sparse inference
models when the Euclidean norm ‖w ‖ is replaced by the so-called `1 norm
as a penalty:

‖w ‖1 =

p∑
i=1

|wi | .

This results in the following family of sparse linear discriminative methods:

ŵ = argmin
w∈Rp

1

n

n∑
i=1

`(fw(xi), yi) + λ‖w ‖1 , (6.11)

where ` is a loss function such as the logistic loss function (see Equation 6.6)
or the squared error. The most famous example of sparse linear method is the
lasso (Tibshirani, 1996; Chen et al., 1998), when the square loss l(t, y) = (t−
y)2 is used in Equation 6.11. Other variants using different loss functions in
Equation 6.11 include sparse logistic regression for categorial response data
(Roth, 2004; Shevade and Keerthi, 2003) or sparse Cox regression for survival
data (Tibshirani, 1997). Adding the `2 norm of w as a second additional
penalty in Equation 6.11 leads to the elastic net (Zou and Hastie, 2005),
which can be more robust than the lasso in case of high correlations between
features.

6.3.4 How many features should we select?

All feature selection methods discussed in Section 6.3.1–Section 6.3.3
allow the selection of a signature of q markers among the initial p candidate
features. The size of the signature is usually implicitly or explicitly controlled
by the user. For example, the filter methods discussed in Section 6.3.1 rank
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the features from the most interesting to the least interesting in terms of
association with the response, and a signature of q markers is obtained by
taking the top q features in this list. The wrapper methods discussed in Sec-
tion 6.3.2 can explicitly optimise greedily a set M of q features, where q is
user-defined, and the embedded methods (see Section 6.3.3) control q by
some other user-defined parameter, such as the regularisation parameter λ in
sparse linear discriminative methods (see Equation 6.11).

How should the user choose q, the size of the signature? There are roughly
two main types of procedures used to choose q, motivated by two different ob-
jectives: the discovery of markers significantly associated with the phenotype,
on the one hand, and the choice of a subset of descriptors that will lead to
optimal prediction of the response of interest, on the other hand.

In the case of marker discovery, we want to select all features which are
truly associated with the response, independently of their ability to form a
good predictor. q should then be the number of significantly associated fea-
tures, and its estimation is related to hypothesis testing in statistics. Indeed,
for each feature j, we need to test the hypothesis Hj that it is not statisti-
cally associated with the response, and q will be the total number of rejected
hypotheses (corresponding to features associated with the response). When a
single feature is tested, classical statistical procedures can be used to test its
association with the design. In the case of binary response, for example, a two-
sample t-test allows to control the probability of false positives (the so-called
type I errors) at a desired level, typically 5%. When many features are tested
simultaneously, one should, however, perform a correction for multiple testing
in order to control the number of false positives, otherwise we will strongly
overestimate the number of markers significantly associated with the response
(see Box 6.2).

In the case of predictive modelling, the goal is to choose a signature M
that leads to the most accurate model. If the size of the signature is too
small, the predictive model may be too poor to correctly estimate the response
of interest from the markers selected. But if it is too large, it may lead to
statistical difficulties to estimate a correct model, potentially leading to sub-
optimal performance. The size of the optimal signature is therefore often a
trade-off between these two alternatives. In practice, it is common to estimate
the performance of the predictive model for different values of q, using the
techniques discussed in Section 6.2.5, and select the size q which has the
best estimated performance. For example, Figure 6.4 shows the performance
of regularised LR to predict relapse on the Wang dataset, as a function of
signature size. To select genes in the signature, we compare a random selection
of genes to a selection by decreasing significance according to a two-sample t-
test performed on the training set. The performance is the mean AUC reached
in 5-fold cross-validation repeated 10 times. We see that, surprisingly, feature
selection only degrades performance, and the best performance is reached
when all genes are used (recovering the results already seen in Section 6.2.6).
We also see that gene selection by t-test is better than random selection when
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we have to select few genes, although both strategies obviously converge to
the same signature when we increase its size.

6.3.5 Molecular predictors in breast cancer

Many groups have applied the paradigm of supervised statistical inference
coupled with feature selection in order to propose predictive models based on
molecular signatures, particularly gene expression. In the particular case of
breast cancer, some models have for example been proposed to predict the
histological grade in breast cancer from gene expression data, defining a new

o BOX 6.2: Corrections for multiple testing
When a two-sample t-test is performed to assess whether a given gene
is differentially expressed between two conditions, the evidence for dif-
ferential expression is usually quantified by a p-value, the probability
to reach the same level of significance only by chance. If the p-value
is below a threshold, typically 5% the gene is considered significant,
meaning that we control the risk of false positives (type I error) at
5%. When 10,000 genes are tested simultaneously with the same pro-
cedure, 500 genes are expected to have a p-value below 5% by chance
alone. This represents too many false positives for many applications.
It is therefore important to correct the individual p-values to account
for multiple testing (Dudoit et al., 2002b; Slonim, 2002).

The Bonferroni correction multiplies the p-values of all genes by
the total number of genes tested. If the adjusted p-value is still below
the error rate, the gene is deemed significant. This correction allows
to control the Family-Wise Error Rate (FWER), i.e. the probability
to make one or more false discoveries. For 10,000 genes, this means
that a gene needs a p-value below 0.000005 to be considered differ-
entially expressed. A less stringent correction to control the FWER
is the Holm-Bonferroni correction, which ranks the genes by increas-
ing p-values and multiplies each p-value by the number of genes with
larger p-values (Holm, 1979). In genomics, it is often more interest-
ing to allow false positives, but to control the False Discovery Rate
(FDR), i.e. the proportion of false positives among selected genes
(Benjamini and Hochberg, 1995). For p genes tested with individual
p-values P1, . . . , Pp, the procedure of Benjamini and Hochberg (1995)
to control the FDR below a level α is to order the p-values in increas-
ing order P(1), . . . , P(p) and select the largest k such that P(k) ≤ kα/p.
If the genes tested are strongly dependent, these procedures have,
however, low power to detect true positives. The dependence between
tests can be taken into account by using permutation-based strategies
(Westfall and Young, 1993), such as SAM (Tusher et al., 2001).
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FIGURE 6.4 Influence of signature size on breast cancer prognosis per-
formance. A regularised LR classifier using a signature of varying size is trained
on the Wang expression dataset to predict relapse within 5 years. The genes in the
signatures are selected either randomly, or by decreasing significance according to
a t-test. The performance is estimated by 5-fold cross-validation, averaged over 10
repeats. In this example, it is better to keep all genes to train the classifier.

notion of genomic grade to quantify tumour differentiation (Sotiriou et al.,
2003; Loi et al., 2007). In addition to tumour differentiation assessment, this
genomic grade was shown to be prognostic. Several prognostic molecular pre-
dictors have also been proposed, including the 76-gene MammaPrint R© sig-
nature developed at the Netherlands Cancer Institute in Amsterdam (van’t
Veer et al., 2002) and the 76-gene Rotterdam signature of Wang et al. (2005).
Investigators from the University of Texas M. D. Anderson Cancer Center
developed DLD30, a 30-gene signature to predict the response of a tumour
to preoperative chemotherapies (Hess et al., 2006). The Oncotype DX R© assay
combines the expression of 21 genes to evaluate the risk of relapse and the
benefits of chemotherapy for patients with early-stage, lymph node-negative,
ER+/HER2- breast cancers (Paik et al., 2006; Paik, 2007). Several of these
molecular predictors have reached the level of clinical trials, and are now being
tested on large cohorts of patients. We can already foresee their routine use
in the clinics within few years.

6.3.6 Pitfalls and challenges in biomarker discovery

Although an attractive strategy to improve the performance of predictive
modelling in high-dimension and simultaneously identify biologically relevant
markers, the automatic data-driven identification of new markers remains
challenging for several reasons.
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First, it is rarely the case that feature selection leads to drastic improve-
ment in terms of prediction performance compared to methods using all p
descriptors to train a model, at least when we consider a model designed to
be able to learn in high-dimension such as SVM, RF or regularised LR. For ex-
ample, we observed in Section 6.3.4 (see Figure 6.4) that feature selection
is only detrimental to the performance of regularised LR for relapse prediction
in breast cancer from gene expression data, at least on the Wang dataset. The
assumption that a model based on only a few markers should better capture
the biological complexity of the prediction problem than a model based on
all features should therefore be taken with caution. It is often not obvious
that selecting markers from genomic data is the best way to infer the most
accurate models.

Second, the trust we can have in the biological value of the selected mark-
ers, for example to suggest new therapeutic targets (see Chapter 11), should
be taken with extreme caution. Indeed, the robust and consistent selection of
good biomarkers is extremely challenging from a statistical viewpoint when
the number of samples n is much smaller than the number of features p. This
difficulty was quickly noticed in cancer genomics data analysis, when the first
molecular signatures for operable early breast cancer prognosis were developed
by feature selection on gene expression data, and different groups proposed
independently lists of markers with barely any overlap. More precisely, only
3 genes are common in the now famous 70-gene signature of van’t Veer et al.
(2002) and the 76-gene signature of Wang et al. (2005). Although this in-
triguing lack of robustness could be attributed to differences in cohorts or
technology, it was quickly understood that the major reason is purely statis-
tical, and is related to the fact that many different sets of genes with little
overlap can collectively have the same predictive power (Ein-Dor et al., 2005).
Several studies analysed empirically (Michiels et al., 2005; Haury et al., 2011)
or theoretically (Ein-Dor et al., 2006) the difficulty to select robustness of
signatures, and overall concluded that unless we could gather a much larger
number of samples than we currently have, it is an illusion to believe that we
can robustly identify a unique set of a few markers to train good predictive
models. An unfortunate consequence is that the automatic discovery of key
markers which may, for example, lead to novel therapeutic targets as discussed
in Section 11.1, remains out of reach nowadays.

Finally, let us mention a frequent methodological error in biomarker dis-
covery, which can easily lead to overoptimistic opinions about the accuracy
and stability of feature selection. When we want to estimate the predictive
performance of a model involving feature selection by cross-validation of boot-
strap procedures (see Section 6.2.5), it is important to carry out both feature
selection and predictor learning on the training set only of each train/test
split of the data, as we did to produce Figure 6.4. Selecting features using
all data and then performing cross-validation to estimate the performance of
a prediction algorithm by cross-validation overestimates the performance of
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the method because it does not account for the difficulty to select features, a
problem known as selection bias (Ambroise and McLachlan, 2002).

6.4 Functional interpretation with group-level analysis

We saw in Section 6.3 that much hope and effort has been devoted to
the development of efficient methods for automatic biomarker identification
and the inference of predictive models. However, the construction of robust
and accurate models with direct biological interpretation remains challeng-
ing, in particular because of the relatively small number of samples analysed
compared to the large number of candidate markers. Instead of expecting to
overcome this challenge with a purely agnostic and data-driven approach, one
can alternatively try to include prior knowledge about the candidate markers
considered, such as the functions of the genes interrogated or their interac-
tions, in order to drive the data-driven approach to more biologically relevant
models — hopefully increasing their robustness and performance.

In this section we discuss different strategies to integrate in predictive mod-
elling some prior knowledge we have about the existence of groups of features.
We discussed a similar framework in Section 5.5.1 in the case of unsuper-
vised analysis. For example, we may know groups of genes sharing the same
function when we analyse gene expression data, or groups of loci localised in
the same genomic region when we analyse genotypes or DNA copy number
profiles. Working at the level of groups can help provide a biological interpre-
tation to the problem investigated, e.g. identify functional groups, signalling
pathways∗ or gene regulatory network perturbed in a given prediction or
predictive for a phenotype. Working at the group level may also be a way to
reduce the dimension of the statistical problem and increase the robustness of
signatures, in the sense that signatures with apparently different genes may
in fact correspond to similar functions or pathways.

To fix notations, we therefore model the prior knowledge as a set of G
groups G = {g1, . . . , gG}, where each gi ⊂ [1, p] is a subset of features. Note
that in general, some groups may overlap, e.g. a gene may belong to several
functional groups.

6.4.1 Detecting important groups in a signature

Once a small set of markers has been identified by any of the methods
discussed in Section 6.3, it can be useful to compare them to the predefined
groups G in order to capture overrepresented groups, resulting in potential
biological interpretation of the signature. For example, when a short list of
genes is selected from gene expression data analysis, it is helpful to detect
which biological functions they collectively represent by assessing which func-
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tional groups are overrepresented in the signature. Another example of in-
teresting grouping is the analysis of genes potentially regulated by the same
transcription factors, whose binding sites can be predicted by computational
approaches and experimentally characterised by technologies such as ChIP-
on-chip and ChIP-seq.

Different statistical tests can be performed to assess the evidence that a
group g ∈ G is overrepresented in the signature (see Box 6.3). When many
groups are tested simultaneously, a correction for multiple testing is required,
which is not without difficulty when groups overlap because the different tests
are dependent and the correlation structure between groups may bias the
significance of tests (Tian et al., 2005). Good discussions of such marker list
analysis, its variants and limitations, are available in Khatri and Drăghici
(2005); Rivals et al. (2007).

o BOX 6.3: Assessing the overrepresentation of a gene group
in a signature
Suppose that the signature contains q markers out of a total of p

possible features. Let now a predefined group g of k features, out of
which r ≤ k are in the signature. Under the null hypothesis that
the k features of the group are drawn randomly out of the p total
features, the probability to find r of them in the signature follows the
hypergeometric distribution:

Phyper(r) =

(
p
q

)(
k
r

)
(
p+ k
q + r

) ,

where

(
p
q

)
= p!

q!(p−q)! is the binomial coefficient. In order to assess

the evidence that r is larger than what would be expected by chance,
the one-tailed exact Fisher test computes the probability under the
null hypothesis that the number of features from the group selected
in the signature is at least r, i.e.

scoreFisher(g) =

p∑
k=r

Phyper(k) .

In practice, the hypergeometric distribution may be computationally
difficult to compute when p is large, and it can be approximated by the
simpler binomial distribution in this setting. Alternatively, a simple χ2

test for equality of proportions (q/p versus r/k) can be performed. In
most cases, the differences between the models will not be dramatic.
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Using this strategy, Rhodes et al. (2005a) assess which transcription fac-
tors are significantly enriched in the promoter regions of genes in molecular
signatures stored in the Oncomine database. They observe for example that
genes regulated by the archetypal cancer transcription factor, E2F, are dispro-
portionately overexpressed in a wide variety of cancers, whereas other tran-
scription factors such as Myc-Max have this property only in specific cancers.

6.4.2 Biomarker group analysis

The signature analysis discussed in Section 6.4.1 has several shortcom-
ings. First, in order to detect an overrepresented group in the signature,
enough individual markers of the group should be in the signature, i.e. should
be individually strongly predictive for the phenotype of interest to pass the
individual selection in the signature. This rules out the possibility to cap-
ture modest but consistent changes of markers within a group. Second, the
signature is considered as an unordered set of markers, although many signa-
tures construction methods score or rank the individual markers within the
signature (see Section 6.3). Taking into account the order of markers in the
signature may increase the power of the group detection method. Typically
a group of markers among the strongest in the signature should be more re-
warded than a group of markers of the same size among the weakest of the
signature. This is particularly important when large signatures are considered.

An alternative to overcome these limitations is to bypass the construction
of a signature and directly assess the importance of a group g ∈ G from a
scoring or ranking of all candidate markers. Such a scoring or ranking can be
obtained by various methods for signature inference (see Section 6.3), e.g.
by statistical tests to assess the association of each marker with the phenotype
of interest. Instead of selecting a signature from this list by choosing the top
q markers in the ranking (see Section 6.3.4) and then analysing each group
g ∈ G in light of these top q markers (see Section 6.4.1), we discuss in this
section, methods which directly score a group g from the scores or rankings
of its members. By inspecting them, one can typically assess whether the
markers in g tend to be ranked towards the top of all markers — although
not necessarily in the top q ones. This can allow, in particular, to detect small
but consistent changes between two conditions of groups of related markers.

A simple implementation of this approach was proposed by Pavlidis et al.
(2002a) when a p-value P (i) is computed for each feature i ∈ [1, p]. A group
of markers g ∈ G is then scored by the average of the negative log P values of
the markers within the group:

scoreP (g) = − 1

|g|
∑
i∈g

logP (i) .

The significance of the corresponding score can then be assessed empirically
by comparing it to the scores obtained on random groups of genes of the same
size.
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Another very popular method is the Gene Set Enrichment Analysis
(GSEA) tool (Subramanian et al., 2005). GSEA focuses mainly on the iden-
tification of known functionally related groups of genes tested at the level
of expression for different conditions or phenotypes. GSEA starts by rank-
ing all genes from the most to the least differentially expressed ones, using a
statistical score like those discussed in Section 6.3.11. For each predefined
set of genes g ∈ G, a one-sided Kolmogorov-Smirnov statistic is computed to
assess whether the ranks of set genes are significantly concentrated towards
the top (or the bottom of the list). The significance of this statistic, called
the Enrichment Score (ES), is then assessed by repeating the same process
after random permutation of the sample labels and comparing the ES ob-
tained for the top-ranking gene sets with those of the top-ranking gene sets
after random permutation. Alternatively, variants have been proposed to bet-
ter correct for correlations in the expression matrix (Tian et al., 2005). The
power of GSEA compared to classical signature analysis (see Section 6.4.1)
was demonstrated in particular in Mootha et al. (2003), who found that genes
involved in oxidative phosphorylation are coordinately downregulated in dia-
betic muscle while no individual gene shows significant deregulation.

6.4.3 Discriminative group analysis

Instead of scoring a group g ∈ G in terms of the scores or the ranking of
the individual markers in the group, it is sometimes more relevant to come
back to the original data and assess the relevance of a group by how well
it can contribute to discriminating the phenotypes investigated, typically by
combining together its markers in a predictive model. This is particularly im-
portant when individual markers are not or barely predictive for the response
of interest, while combinations of markers are.

For example, one may assume that only a subset of the features in a group
g should be used to discriminate between the phenotypes, leading to the no-
tion proposed by Lee et al. (2008) of Condition-Responsive Genes (CORG)
in the context of gene expression analysis. The CORG of a group g is defined
as the subset of genes in the group whose mean expression delivers optimal
discriminative power for the disease phenotype, measured with a t-test statis-
tic. A computational difficulty in this definition is that there is an exponential
number 2|g| − 1 of subsets for a group |g|. Instead of finding the best subset,
Lee et al. (2008) therefore propose a greedy search strategy starting from the
gene most associated with a phenotype (using a t-test), and adding one by
one other genes for as long as the association of the group activity (defined as
the mean activity of the selected genes) and the phenotype increases.

An alternative to the selection of a subset of markers within a group, and

1The original score used in GSEA is the signal to noise ratio (SNR), defined as the
difference in means of the two classes divided by the sum of the standard deviations of the
two classes (Subramanian et al., 2005). Other scoring such as nonparametric statistics has
also been proposed (Bayá et al., 2007).
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the scoring of the group based on the association of the selected markers,
is to directly assess the discriminatory power of each group by estimating
the classification error of a classifier restricted to the markers in each group.
In practice, any method for supervised classification may be used to learn a
discriminative function from a subset of the markers (see Section 6.2), and
the discriminatory power can be estimated by resampling and cross-validation
strategies (see Section 6.2.5). For example, Pavlidis et al. (2002a) define the
learnability of a gene set as the leave-one-out error or a 1-nearest neighbour
classifier restricted to the genes in the set. We note that the definition of
CORG may also be interpreted in this framework, where the predictive model
is defined as the mean level of a subset of markers to be optimised.

6.4.4 Discriminative group modelling

All methods discussed in Section 6.4.1–Section 6.4.3 score all groups
g ∈ G independently from each other. It is then possible to rank the groups
and identify the important groups by looking at the top of the list. Although
this may be interesting to provide a biological interpretation of the discrimina-
tion between phenotypes or of a discriminative signature, it does not directly
influence the predictive model estimated from individual markers, as discussed
in Section 6.2 and Section 6.3. In particular, no improvement in prediction
performance can be expected from such analysis.

In order to impact the classifier by exploiting the prior knowledge encoded
in the groups G, one must go back to the predictive model construction step
(see Section 6.2) and consider integrating the set of groups G in the inference
process itself. For example, one can define new features to summarise each
group, such as the mean activity of its members or of its CORG. This can
lead to a decrease in the number of features, from p to G.

Alternatively, one may stay at the level of individual markers, but use the
group information to drive the model inference towards models “coherent”
with the group structure. For example, if the groups form a partition of the
set of all markers, i.e. if all markers m ∈ [1, p] are in one and exactly one
group g ∈ G, one can generalise the sparse linear discriminative methods
Equation 6.11 by the following group-sparse linear discrimination:

ŵ = argmin
w∈Rp

1

n

n∑
i=1

`(fw(xi), yi) + λ
∑
g∈G
‖wg ‖2 , (6.12)

where wg denoted the |g|-dimension restriction of w to the features in group
g. The penalty ‖w ‖1,2 =

∑
g∈G ‖wg ‖2 is often referred to as the `1,2 norm,

or the group lasso penalty (Yuan and Lin, 2006). It boils down to the classical
`1 norm where all groups are singletons, resulting in sparse models involving
only a subset of markers when Equation 6.12 is solved (see Section 6.3.3).
For general groups G, one can show that solving Equation 6.12 again results
in sparse models, but at the level of groups: the weights of individual mark-
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ers within a group are shrunken to zero together, and the resulting selected
markers with nonzero weights also form groups. Equation 6.12 is therefore
an embedded feature selection that forces the selection of markers by group,
resulting directly in easily interpretable signatures.

This is, however, only true when the groups in G form a partition of all
markers, which is rarely the case in practice where gene sets often can overlap.
For example, many genes are likely to belong simultaneously to many func-
tional groups. If we solve Equation 6.12 for a set of groups G which is not a
partition of [1, p], then the markers will again be shrunken to zero by groups,
but consequently the selected markers will not form groups anymore (Jenatton
et al., 2011). In order to solve this issue, Jacob et al. (2009); Obozinski et al.
(2011) proposed a variant called the latent group lasso which is equivalent to
the group lasso (see Equation 6.12) when the groups form a partition, and
leads to the selection of markers which form unions of groups even when the
groups overlap.

6.5 Network-level analysis

Throughout Section 6.4 we discussed several analytical approaches which
can be followed to investigate a supervised inference problem with a large
number p of features, when in addition a set of groups of features G is available
as prior knowledge. We saw in particular how the knowledge of groups in G
can help in the biological interpretation of difference between the conditions
or responses considered, and potentially lead to more accurate predictors by
reducing the statistical complexity of the inference problem.

In this section we investigate similar questions when, instead of groups
of features, we want to exploit as prior knowledge a graph of features (see
Box 6.4 for graph formalism and terminology). This goal is particularly rel-
evant in the context of systems biology, which describes many complex rela-
tionships between molecules and biological processes as networks, including for
example Protein–Protein Interaction (PPI) networks, coexpression and regu-
latory networks, or signalling and metabolic pathways (see Box 4.3). It has
for example been observed that genes associated with similar disorders tend
to have physical interactions between their products, suggesting the presence
of “hot spots” of proteins on the PPI network (Ideker and Sharan, 2008).
Analysing cancer gene expression data in light of PPI network may therefore
not only reduce the complexity and instability of the task by using a specific
prior knowledge, but may also point out possible interacting complexes or
pathways related to the network dynamics of the disease

Since such networks are increasingly deciphered experimentally or compu-
tationally, and easily available through various databases (see Section 4.5.1),
it is not surprising that much work recently has been devoted to the question
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o BOX 6.4: Graph formalism and terminology
A graph is a mathematical representation of a network, i.e. a set

of objects (nodes or vertices) where some pairs of the objects are
connected by links (edges). Formally, a graph is represented by pair
G = (V,E) where V is the set of vertices and E the set of edges.
Each edge e ∈ E has two endpoints, and is said to connect or join the
two endpoints. A directed graph or digraph is a graph whose edges are
ordered pairs of vertices, called the head and tail of the edge. It differs
from an ordinary undirected graph, whose edges are unordered pairs
of vertices. The order of a graph |V | is the number of vertices, while
the size of a graph |E| is the number of edges. The degree of a vertex
is the number of edges that connect to it.
In a directed graph, if a is the head of an edge with tail b, a is said
to be a direct predecessor of b, and b a direct successor of b. A path is
a sequence of vertices such that from each of its vertices there is an
edge to the next vertex in the sequence. If a path leads from x to y,
then y is said to be a successor of x and reachable from x, and x is
said to be a predecessor of y.

of how these networks can help in the analysis of omics data, in particular in
the context of predictive modelling. In this section, we review several strate-
gies to perform such analysis, parallelising the organisation of the previous
section which focused on the use of groups instead of networks. To fix no-
tations, we assume as usual that each sample is characterised by p features
(e.g. the expression level of p genes), and that we know in addition an undi-
rected network with vertex set V = [1, p] (i.e. the vertices of the graph are
the features) and a set of edges E ⊂ V × V (see Box 6.4). Some networks
like influence networks or gene regulation networks are naturally captured as
a directed, valued graph, but they will not be considered here.

6.5.1 Network-level analysis of a signature

Following a differential or supervised inference analysis, it is common to
obtain a signature containing a small set of features selected because they are
different between the conditions investigated, or because they allow a good
prediction of a response of interest. Just like detecting overrepresented groups
in a signature allows to capture a biological meaning for the signature when a
set of groups of features is available (see Section 6.4.1), it can be interesting
to study a network-level interpretation of the signature when a network is
given. If for example, many features of the signature are near each other on
the graph, one would like to automatically detect and quantify this nonrandom
localisation and express it in terms of subnetworks or pathways.

A common approach to perform such an analysis is just to navigate on the
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network using various software for network visualisation and analysis, such as
Ingenuity’s IPA, GeneGo, Ariadne Genomics’ Pathway Studio. For example,
Rhodes et al. (2005b) maps a set of genes of interest to the large PPI network
from the Human Protein Reference Database (HPRD), in order to identify
deregulated subnetworks and key players within our outside of the signature.

Once the elements of a signature M ⊂ V are mapped to a network, there
exist different ways to automatise the network-level analysis of the signature.
For example, Franke et al. (2006) proposed to automatically identify impor-
tant vertices and prioritise them by computing for each vertex v ∈ V the
“density” of vertices of the signature in the neighbourhood through, e.g. a
kernel density estimator of the form

f(v) =
∑
i∈M

e−γd(v,i) ,

where d(v, i) represents the shortest-path distance between vertices v and i on
the network. Vertices can then be ranked by decreasing densities in order to
focus on the ones surrounded by many signature elements. Many other formu-
lations have also been proposed, such as Karni et al. (2009) who reformulates
the search for “central” genes as a combinatorial optimisation problem that
aims at finding a small number of nodes in the network which are within a
small distance of all genes in the signature. Scott et al. (2005) propose to find
a small set of vertices A ⊂ V to add to the genes in the signature in order to
obtain a connected subgraph which minimises:

D(A) =
∑
v∈A
− log(1− pv) , (6.13)

where pv is a p-value of vertex v to characterise how different it is between
the two conditions. Intuitively, D(A) is small when genes in A have small p-
values, i.e. tend to be differentially expressed. The search for the best A is an
instance of an NP-hard problem called node-weighted Steiner tree problem,
for which no efficient algorithm is known. While the optimal subset A can
be found when the size of the signature is small (typically less than 10),
only an approximate solution can be found for larger signatures. Note that a
variant of this approach is to try to connect all genes of the signature with as
few additional nodes as possible, i.e. to minimise D1(A) = |A|. Scott et al.
(2005) however, claim that taking into account the additional nodes’ p-values
through (see Equation 6.13) is more promising to detect biologically relevant
subnetworks such as regulatory subnetworks.

6.5.2 Finding differential subnetworks

Just like gene set analysis can be more sensitive than gene list analysis to
detect small but consistent variations in gene expression (see Section 6.4),
one may inspect globally which subnetwork seems to exhibit coordinated vari-
ations instead of first selecting a short list of interesting genes and mapping it
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on to the network. This idea was pioneered by Ideker et al. (2002) who assigned
a statistical Z-score zg to each gene g using expression data and searched for
subnetworks that display a statistically significant amount of differential ex-
pression. This is formally expressed as trying to detect subnetworks A with
large combined Z-scores defined by

zA =
1√
|A|

∑
g∈A

zg . (6.14)

Finding the networks which maximise the combined Z-score is, however, an in-
stance of the NP-hard problem called the maximum weight connected subgraph
problem, and only approximative optimisation methods such as simulated an-
nealing (Ideker et al., 2002) can be applied to find candidate subnetworks with
large combined score. Such subnetworks may correspond to small sets of pro-
teins participating in a common complex or metabolic pathway, for instance,
and may contain proteins with no significant individual differential expression
if they lie on a path that connects sets of differentially expressed genes.

This method has been used and extended by many authors (Nacu et al.,
2007; Cabusora et al., 2005). For example, Rajagopalan and Agarwal (2005)
propose a variant of the scoring function and of the optimisation method.
Patil and Nielsen (2005) apply it to a metabolic network, scoring both ver-
tices (when a differential expression score can be computed) and edges (when
correlation between gene expressions is computed). Liu et al. (2007) use the
method to identify differentially expressed subnetworks, and then test for as-
sociation of these subnetworks with predefined gene groups in the so-called
Gene Set Enrichment Analysis (GNEA). This allows them to find interesting
groups in diabetes. Similarly, Sohler et al. (2004) proposes a greedy heuristic
method (significant area search) to identify subnetworks that are significant
according to specified p-values, where individual p-values are combined using
Fisher’s inverse χ2 method. The algorithm starts with a set of seed genes ac-
cording to a specified threshold, and performs a greedy expansion by including
the most significant neighbouring gene in each step.

A simpler approach for finding significant differential subnetworks is im-
plemented in the BiNoM Cytoscape plugin (Zinovyev et al., 2008). Starting
from a ranked list of all genes, from the most to the least differentially ex-
pressed one, the genes are mapped one by one to the network used for the
analysis. When the top q genes are mapped on the network, the largest con-
nected component of the subgraph they induce is detected. The size C(q) ≤ q
of this largest connected component is compared to the mean size R(q) of
the largest component of the subgraph of q randomly chosen genes on the
network (with the same connectivity distribution as the q genes selected), to
form a the score S(q) = (C(q)−R(q)) /q. This score is constructed in such a
way that it can be compared across various values of q, allowing to choose the
number of differentially expressed genes q which optimise the significance of
the largest connected component among them. Figure 6.5 shows the result of
this analysis on the Wang breast cancer dataset, when differential expression
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between basal-like cancers and other subtypes (see Table 5.1) is investigated.
The most significant connected component on the HPRD network is obtained
with the top 600 genes. It includes several protein complexes such as a cluster
of overexpressed MCM proteins which play a role in DNA replication, or a
set of keratins also overexpressed in basal-like tumours.

6.5.3 Finding discriminative subnetworks

The methods presented in Section 6.5.1 and Section 6.5.2 are useful to
interpret at the network-level the result of a differential expression analysis.
However, they do not directly capture the coordinate dysregulation within a
pathway, since the network information is not used to score or rank the genes.
Instead of first computing a score of differential expression for each gene, and
subsequently searching subnetworks with large aggregated scores according to
Equation 6.14, an alternative proposed by Chuang et al. (2007) is to define
the activity ai,A of a subnetwork A in a given sample or patient i by the
aggregated expression levels of the corresponding genes in that patient. For
example, the subnetwork expression can be defined as

ai,A =
1√
|A|

∑
g∈A

zi,g ,

where zi,g is the expression level (raw level or normalised by transforming
it to a Z-score) of gene g in sample i. In a second step, one can score sub-
networks for the phenotype of interest by computing a statistical measure
of association between the subnetwork activity and the response across sam-
ples. Typically, one can estimate the mutual information between them (see
Section 6.3.1). The search for high-scoring subnetworks is, however, compli-
cated because the score of a subnetwork is a nonlinear function of all its genes.
Chuang et al. (2007) propose to search high-scoring subnetworks with a greedy
approach which starts from small candidate subnetworks and iteratively adds
new neighbouring genes which increase most the subnetwork score. Applying
this method on two breast cancer datasets to detect prognostic markers, they
find subnetworks enriched in functional annotations characteristic of the hall-
marks of cancer, observed that the corresponding gene lists are more robust
than lists obtained by single gene analysis across two different cohorts and
result in better prediction accuracies.

The objective function proposed by Chuang et al. (2007) is combinatorial
in nature, and the bottom-up greedy heuristic they propose may therefore
seriously lack global awareness. This motivated Chowdhury and Koyutürk
(2010) to reformulate the search for coordinately dysregulated subnetworks as
a discrete optimisation problem, a variant of the set-cover problem, solved by
state-of-the-art approximation algorithms. Expression data are first quantised
into binary expression levels, and the goal is to find subnetworks made of genes
that together cover all samples, i.e. complement each other to discriminate
samples with different phenotypes. An alternative formulation is proposed
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FIGURE 6.5 Detection of differentially expressed subnetworks with the
BiNoM Cytoscape plugin. (A) The largest connected component of the network
extracted from the PPI network of the HPRD database, among the 600 most differ-
entially expressed genes between basal-like tumours and other subtypes in the Wang
breast cancer dataset. The node sizes are proportional to the ratio between the local
node connectivity and the global node connectivity (node connectivity specific to
the network). The node colors visualise the level of under- or overexpression. (B)
Dependence of the score of the largest connected network component formed by
direct interactions between the most differentially expressed genes (note that using
600 genes gives a significantly high score value). (C) p-values for the score plotted
in (B). (See colour insert.)

by Ulitsky et al. (2010), who define dysregulated pathways as subnetworks
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composed of products of genes that are dysregulated in a large fraction of
samples and formalise it as an optimisation problem.

6.5.4 Network-driven predictive models

In addition to searching for important subnetworks, which may lead to
new biological interpretation, one may also want to incorporate the known
network in the predictive modelling step in the hope of improving the robust-
ness and the performance of the model. Different ideas have been proposed
for that purpose, which typically use the network to constrain the statisti-
cal inference procedures discussed in Section 6.2 in order to infer predictive
models “coherent” with the network.

For example, Rapaport et al. (2007) proposed linear discriminative meth-
ods where the classical Euclidean penalty in Equation 6.5 is replaced by a
penalty which enforces the weighs of connected vertices to be similar:

ŵ = argmin
w∈Rp

1

n

n∑
i=1

`(fw(xi), yi) + λ
∑
i∼j

(wi − wj)2 , (6.15)

where i ∼ j means that vertices i and j are connected on the network. The ra-
tional behind the penalty Ω(w) =

∑
i∼j(wi−wj)2 in Equation 6.15 is to en-

force weights which, once mapped to the network, do not vary too much along
edges and therefore easily lead to the identification of regions with positive or
negative weights, as shown on Figure 6.6. Interestingly Equation 6.15 is
equivalent to first smoothing the raw data on the graph, followed by a stan-
dard linear discrimination on the smoothed profiles, and can be extended to
a variety of smoothing strategies based on Fourier analysis on the graph; we
refer the interested reader to Rapaport et al. (2007) for further details and
discussion.

We note that the solution of Equation 6.15 is smooth on the graph, but is
not sparse, in the sense that all vertices have nonzero weights and contribute to
the discrimination. If one wants in addition to select a limited number vertices,
while still maintaining the smoothness of the network, a simple solution is to
combine the smoothing penalty with a sparsity inducing penalty such as the
`1 norm to obtain, for example, the following problem:

ŵ = argmin
w∈Rp

1

n

n∑
i=1

`(fw(xi), yi) + λ
∑
i∼j

(wi − wj)2 + µ

p∑
i=1

|wi | , (6.16)

where we now have two regularisation parameters λ and µ to adjust, which
control respectively the smoothness and the sparsity of the solution.

Jacob et al. (2009) considered a weaker form of network constraint. Instead
of constraining the weights of connected genes to be similar, as in Equa-
tion 6.15, they put no constraint on the gene weights but instead enforce the
selection of a few genes which tend to be connected to each other. In other
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FIGURE 6.6 Network-driven linear discriminative model. This picture com-
pares the weights of a linear classifier trained by a standard SVM (left) or a SVM
using the network-driven penalty (see Equation 6.15) (right). The network is the
metabolic network of the KEGG database. While interpreting the weights of the
standard SVM at the functional level is uneasy, the network-driven SVM highlights
networks areas with negative weights (e.g. kinases) or positive weights (e.g. TCA
cycle). Image from Rapaport et al. (2007). (See colour insert.)

words, they enforce the selection of a gene signature which is formed from a
limited number of connected components on the gene network used as prior
knowledge. The solution proposed by Jacob et al. (2009) is to adapt the latent
group lasso (see Section 6.4.4), which enforces the selection of features form-
ing unions of predefined groups, to the case of networks by defining as groups
all singletons or edges of the network. For example, Figure 6.7 illustrates a
gene signature trained to predict relapse in the Wang breast cancer dataset,
using the PPI from the HPRD database as prior knowledge. We clearly see
subnetworks pop out in this signature, suggesting the implication of func-
tional networks including a subnetwork of 20 proteins containing 9 ribosomal
proteins (RPS4X , RPS6, etc.) as well as the DNA repair genes RAD50 and
RAD51, and another subnetwork containing genes involved in cell cycle, such
as the transcription factor E2F1, cyclins CCNB2 and CCNE2 or cell division
cycle gene CDC25B (see Chapter 7).
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FIGURE 6.7 Network-driven feature selection. A prognostic signature esti-
mated from the Wang breast cancer dataset, using the graph-driven feature selection
method of Jacob et al. (2009). Image courtesy of Anne-Claire Haury.

6.6 Integrative data analysis

We have so far mostly discussed methods to analyse and infer predictive
models from a single series of experiment, such as gene expression data col-
lected on a cohort of samples with different prognoses. As high-throughput
genomic technologies such as microarrays∗ or NGS∗ (see Chapter 3) are
quickly becoming mature and widespread, it becomes possible to collect a
variety of measurements on each given sample, and to share this information
across different studies. Integrating such heterogeneous information is likely to
be key to increase the statistical power of inference methods, by increasing the
number of samples analysed jointly and combining evidence from different lev-
els of biological observations. In this section, we discuss different approaches
to carry out this data integration in the context of predictive analysis and
modelling.

6.6.1 Combining heterogeneous data in predictive models

Let us first discuss the possibility to jointly analyse and integrate in a
unique predictive model the different views of a sample including genome,
transcriptome, epigenome etc. Assuming that each view i = 1, . . . ,H char-
acterises the sample by pi features stored in a vector x(i) ∈ Rpi , the most
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obvious method to integrate the various views is to concatenate them in a
single vector x of dimension p =

∑H
i=1 pi, and to run any feature selection

and predictive modelling from the resulting p-dimensional vector.
When a linear model fw(x) = w>x is inferred on the concatenated vector

x ∈ Rp (see Section 6.2.3), and if we decompose w ∈ Rp as a concatenation
of w(i) ∈ Rpi for i = 1, . . . ,H, then a simple computation shows that the score
fw(x) can be rewritten as a sum of scores obtained from individual views:

fw(x) = w>x =

H∑
i=1

w(i)>x(i) =

H∑
i=1

fw(i)

(
x(i)
)
.

In other words, concatenating vectors with linear models can be thought of
as learning predictive models from each view, combined by addition to give
jointly the best prediction. Implementing this strategy in linear discriminative
methods discussed in Section 6.2.3 amounts to replacing Equation 6.5 by:

ŵ = argmin
w∈Rp

1

n

n∑
i=1

`(fw(xi), yi) + λ

H∑
i=1

‖w(i) ‖2 . (6.17)

This approach is popular in particular in the context of integrative analysis
with kernel methods (see Section 6.2.4). Indeed, the inner product is additive

under concatenation (x>1 x2 =
∑H
i=1 x

(i)>
1 x

(i)
2 ), so the equivalent operation

when a kernel Ki is defined for each view i = 1, . . . is to simply define a new
integrated kernel as the sum of individual kernels:

K =

H∑
i=1

Ki ,

and to run a kernel method with the integrated kernel K. The advantage of
the kernel formulation instead of the direct concatenation is that it allows the
combination of nonlinear functions of each view, or the integration of different
prior knowledge for each view if a specific kernel is defined for each view (such
as the network-driven analysis of gene expression discussed in Section 6.5.4).
This strategy was found very efficient in the context of gene function prediction
from heterogeneous characterisation of genes by Pavlidis et al. (2002b).

If many views are available, and/or if many kernels are defined for each
given view, and one assumes that only a few views are relevant for the predic-
tive problem to be solved, then a variant is to replace the linear discrimination
algorithm of Equation 6.17 by a group lasso penalty akin to Equation 6.12:

ŵ = argmin
w∈Rp

1

n

n∑
i=1

`(fw(xi), yi) + λ

H∑
i=1

‖w(i) ‖ . (6.18)

Just as for the simple concatenation, this group lasso formulation can be
extended to the combination of kernels, resulting in the so-called Multiple
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Kernel Learning (MKL) algorithm (Lanckriet et al., 2004a; Bach et al., 2004).
Lanckriet et al. (2004b) showed in particular the relevance of MKL for genomic
data fusion.

6.6.2 Meta-analysis of multiple datasets

A second important question in data integration is the problem of inte-
grating given information (such as gene expression data) over different stud-
ies, a problem usually referred to in statistics as meta-analysis∗. Hundreds
of large-scale cancer profiling experiments have been carried out in different
laboratories, and central repositories to collect these data have emerged (see
Section 4.7). This wealth of information by far exceeds what any single lab-
oratory could produce, and can be a useful resource for several purposes.

• It can serve to validate results found in one experiment on independent
experiments. For example, Ramaswamy et al. (2003) identified on a co-
hort of 76 samples a gene-expression molecular signature that was dif-
ferentially expressed in metastatic∗ tumours of diverse origins relative
to primary tumours∗. They were then able to show that, on several
other publicly available datasets spanning various solid cancer types,
their signature was associated with clinical outcome and metastatic dis-
ease.

• Alternatively, jointly analysing thousands of samples profiled in tens
or hundreds of experiments is a way to increase statistical power and
robustness by increasing the number of samples analysed, and to inves-
tigate biological phenomena that may be present across different cancers
of cell types. For example, Rhodes et al. (2004a) perform a meta-analysis
of 40 published cancer microarray datasets, comprising more that 3700
samples, in order to identify a signature related to neoplastic∗ transfor-
mation and tumour progression∗. For breast cancer, Wirapati et al.
(2008) performed a large meta-analysis of more than 2,800 tumours to
validate and consolidate signatures to classify breast cancers in terms of
ER signalling, HER2 amplification and proliferation.

Although jointly analysing thousands of samples from tens or hundreds of
datasets is tempting, it also raises several computational and statistical chal-
lenges. First, in spite of efforts to centralise and normalise data format (see
Section 4.5.2), collecting data and annotations remains often a tedious pro-
cess requiring manual data clean-up, reformatting, name standardisation and
normalisation. Fortunately, several efforts such as Oncomine (Rhodes et al.,
2007) and CleanEx (Praz et al., 2004), which collect and curate a large number
of datasets, can greatly help data collection. Second, jointly analysing multiple
datasets requires special care from a statistical point of view, in particular to
handle variations between datasets (Hedges and Olkin, 1985). Directly com-
bining raw data (after some form of normalisation within each dataset) is
arguably the simplest option since it allows one to treat multiple datasets as a
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single one and to directly use methods and software for single-dataset analysis.
However, it raises questions in terms of statistical validity, since samples are
intrinsically stratified by the different studies which may reduce the statistical
power of tests and sometimes leads to paradoxical conclusions (see Box 6.5).

o BOX 6.5: Simpson’s paradox
The Simpson’s paradox, also known as the Yule-Simpson effect, is
a paradox in statistics and decision making in which a correlation
present in several datasets is reversed when the datasets are combined.
For example, in the following picture, there exists a clear positive
correlation between x and y on each dataset (solid lines), but the
correlation is reversed when both sets are analysed jointly (dashed
line).
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Alternatively, one may first carry out statistical analysis within each study,
and a posteriori integrate the findings of each study. For example, Rhodes
et al. (2004a) identify a limited number of genes differentially expressed in
many studies, and then combine the different signatures by selecting genes
present in many signatures. An obvious limitation of this approach is that
a gene which is not strongly differentially expressed will be absent from the
individual molecular signatures, and therefore from the final one. In other
words, such a posteriori data integration suffers from a loss of power due to
premature thresholding. A more interesting approach is certainly to jointly
perform the statistical analysis on all studies simultaneously, in order to gain
statistical power, without directly combining the raw data (Hedges and Olkin,
1985). For example, Fisher’s combined probability test combines the p-values



Prognosis and prediction: Towards individualised treatments 203

p1, . . . , pK obtained in K different studies in a single statistic:

X2 = −2

K∑
i=1

log pi ,

which follows a χ2 distribution with 2K degrees of freedom when all the null
hypotheses are true and the tests are independent. A closely related technique
is the inverse normal method, which computes a Z-score for a meta-analysis
by combining the Z-scores Zi = Φ−1(1 − pi) of each study (where Φ is the
standard normal cumulative distribution) with the formula:

Z =

∑K
i=1 Zi√
K

. (6.19)

We refer the reader to Hedges and Olkin (1985) for more details on these and
other statistical techniques for meta-analysis. For example, Wirapati et al.
(2008) performs a meta-analysis of 18 breast cancer expression studies by
combining Z-scores with Equation 6.19. This allows to jointly analyse 2,833
expression profiles and consolidate signatures associated with ER signaling,
HER2 amplification, and proliferation.

6.7 Conclusion

The heterogeneity of tumours discussed in Chapter 5 has immediate bear-
ings on cancer clinical management. Since different cancers have different prog-
noses and respond differently to different treatments, it is important to predict
as precisely as possible the prognosis and drug responsiveness of each tumour
in order to be able to propose the most adapted treatment to each patient.
Although cancer subtypes defined by unsupervised clustering of tumours (see
Chapter 5) represent a first step towards cancer stratification with prognos-
tic and predictive value, more accurate prognosis and drug response prediction
are usually obtained by supervised statistical learning techniques.

The learning tasks to be solved are, however, particularly challenging from
a statistical viewpoint because the measured features by far outnumber the
samples available to train the model. We saw that simple models such as
NB sometimes compare favourably to more complex nonlinear models, sug-
gesting that improvement in prediction accuracy will not come from more
complex and realistic models, but from a better understanding of the trade-
off between modelling issues, which require realistic models, and statistical
issues, which call for simple models. We also saw that, despite its popularity,
the approach which consists in constructing a molecular signature using fea-
ture selection techniques suffers from instability, and is not always justified
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in terms of model performance. Regularisation with prior knowledge offers a
particularly promising avenue to integrate biological knowledge into the learn-
ing framework, allowing one to reduce the statistical estimation burden while
focusing on biologically relevant models.

It is likely that the performance of prognostic and predictive models will
increase as more data to train supervised models will be collected. In partic-
ular, current and future clinical trials to validate prognostic and predictive
molecular signatures will generate large datasets that will progressively allow
us to benefit more from complex machine learning strategies, paving the way
to more accurate prediction and more interpretable models. In parallel, better
molecular characterisation of tumours should enable defining subtypes with
better homogeneity (see Chapter 5), and integrating this knowledge into the
supervised inference paradigm should also be beneficial.

. Exercises

• When we evaluate the performance of a molecular predictor in-
volving feature selection in cross-validation, why is it important
to perform feature selection at each fold and not only once with
all data?

• Measure the performance of molecular predictors as a function of
the size of a signature, as in Figure 6.4, for different prediction
problems from gene expression data (diagnosis, prognosis, pre-
diction of drug response). When does feature selection improve
the performance of the model?

• On the Wang breast cancer dataset, or the gene expression
dataset of your choice, select differentially expressed subnet-
works between samples with good and bad prognosis with the
BiNoM Cytoscape plugin. Do you recover the most differentially
expressed genes in the selected subnetworks?



Prognosis and prediction: Towards individualised treatments 205

é Key notes of Chapter 6

• Molecular predictors have started to replace classical models
based on clinicopathological parameters for prognosis and pre-
diction of drug response.

• Molecular predictors can be learned by various linear or nonlin-
ear methods for supervised statistical inference.

• Feature selection can be used to learn a molecular predictor
based a small set of markers, called a molecular signature. The
gain of performance resulting from the selection of a few mark-
ers is however not always observed, and the robustness of genes
selected in signatures is often limited.

• Integrating prior knowledge such as gene sets or biological net-
work is useful to interpret molecular predictors and increase their
robustness and performance.

• Integrative data analysis such as meta-analysis and heteroge-
neous data fusion can be useful to increase the number of sam-
ples and the variety of data analysed.
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Chapter 7

Mathematical modelling applied to
cancer cell biology

Mathematical models are used to translate biological problems into a formal
language, to apply this language for formal reasoning and to provide new in-
sights on the problems. We propose, in this chapter, to study mathematical
models of problems related to cancer cell biology. After explaining our moti-
vation, goals and method of modelling biological systems using formal mathe-
matical tools, we will present two examples of mathematical models of the cell
cycle using both chemical kinetics and logical formalisms. From these models,
we will extract motifs of feedback loops and study them independently.

7.1 Mathematical modelling

7.1.1 Why construct mathematical models?

Biological systems are complex by nature (Kitano, 2002a). This complex-
ity arises not only from the enormous amount of elements that compose these
systems and their variety, but also from the difficulty to define their inter-
actions in a simple and linear way. These elements (or constituents, entities)
can be proteins, genes or, at a different scale: cells, tissues, organs and even
organisms.

The long-term goal of mathematical modelling is to construct a virtual ob-
ject that would mimic this object’s behaviour in real conditions, understand
and predict the behaviour of perturbations. However, we claim that this vir-
tual object does not need to contain all the possible pieces that compose the
real object. Some experimental groups have already tackled this ambitious
problem by trying to reconstruct synthetically an engineered cell capable of
surviving, proliferating, etc. with a minimal amount of genes (Tomita et al.,
1999). Similarly, Denis Noble, pioneer in systems biology, and colleagues have
proposed in the early 1960s, the construction of the first virtual organ, the
heart. Although the project seemed unfeasible at the time, they managed to
simulate the impact of a defect at the organ scale. With this modelling experi-
ence, Noble argued “if you tried to reconstruct everything - all of the molecules
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in all of the heart’s cells - no current computer could cope.” This could easily
be confirmed by the following numbers: there are between 20,000 and 25,000
genes in the human genome that would express from thousands to one million
proteins. Considering the high number of interactions among these proteins,
no computer would be able to treat this amount of data at present. But even
if such a computer existed, would we be able to understand the functioning
of the human body?

Even though it is impossible, as of today, to describe every protein and
every interaction implicated in cellular events, we can still get some insight
about particular cellular mechanisms, derive some hypotheses on how a signal
is transmitted from one cellular compartment to another and predict some
behaviours of the cell in diverse conditions with a systemic approach. Systems
biology aims at sketching the main traits of the cell, i.e. the major transitions,
the signalling pathways∗, or the interactions between key players involved
in a biological process. The amount of details to include in the model along
with the mathematical formalism used to describe a process should be led by
the biological question. Very often, the most complex model is not the most
instructive: a simple model may be as effective if not more, and its simplicity
may facilitate its interpretation.

7.1.2 Why construct a mathematical model of cancer?

As previously mentioned, the high numbers of proteins and associated
functions are not easily manageable. However, if, as of today, we are still lim-
ited by our technology on one side, we are overwhelmed by it on the other side.
Indeed, our knowledge of the nature of the interactions between these con-
stituents and their organisation in networks has also increased tremendously
over the past decades, due to the emergence of high-throughput approaches
(see Chapter 3) and our capability of analysing them (see Chapter 5 and
Chapter 6). As a result, when trying to understand the function of a gene, a
protein or even a process and its real role in a process, it can no longer solely
be based on intuitive reasoning.

Waddington (1957) assumed that cellular processes are based on complex
networks of interacting genes and proteins. More recently, cancer was referred
to as a systems biology or a network disease (Hornberg et al., 2006). Cancer
can indeed be seen as a pathology of the processes that govern differentiation,
proliferation, apoptosis, etc., that is to say, a deregulation of these networks.
As a result, modelling cancer starts with the study of possible deregulations
of a normal cell cycle. The questions that can be answered with systemic
approaches are of the following types: What are the cellular pathways involved
in a pathology? How to use these pathways to improve predictions? What
are the effects of a perturbation on a pathway? etc. Mathematical modelling
provides tools to apprehend some of these issues.
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7.1.3 What is a mathematical model?

In interdisciplinary fields, the choice and the meaning of words is very
important. A model can have different definitions according to the background
of the persons speaking. A general definition of a mathematical model could
be an abstract representation of reality, but more particularly here, we choose
to define it as follows.

A model, as we intend it in this chapter, is a set of biochemical laws, com-
posed of variables and of parameter values that describe a biological process. It
serves as a mean to formulate hypotheses; test the coherence of disseminated
and uncorrelated published data; identify misunderstood zones and contra-
dictory facts; propose a logical functioning of particular underlying biological
processes; establish predicting facts concerning the importance of some play-
ers or the outcome of perturbations; anticipate ways to compensate, rescue or
silence altered pathways; etc. A model needs to be comprehensive; the model
needs to be capable of reproducing all experiments related to the components
of the system. Finally, more importantly, a model needs to be falsifiable. In or-
der to be a good thinking tool, the model has to be challenged by unexpected
experiments for the purpose to be improved. To conclude, a model has to be
regarded as a transient object that assists the biologists. It is in the nature of
scientific models to become obsolete. Thus, a model is soon, and has to be,
superseded by more refined and more up-to-date models.

7.1.4 Different forms and formalisms of a model

There are different forms of mathematical models: data-driven models vs.
(prior) knowledge-based models. Data-driven models can be based on ma-
chine learning methods (see Chapter 6), where the structure of the model
is inferred from the biological data. Knowledge-driven models are based on
theoretical knowledge compiled and constructed by human expertise. Here,
we concentrate on the knowledge-based model.

Mathematical models are a translation of cellular phenomena in formal
terms. The models can be qualitative or quantitative, statistical or mechanis-
tic, static or dynamical, discrete or continuous, deterministic or stochastic.
There is no universal formalism that will answer all possible biological prob-
lems and some will be more appropriate to treat problems such as cases dealing
with a low number of entities (cells, proteins, etc.), with qualitative or quan-
titative inputs, with or without cellular compartments, with a certain level
of details, etc. All formalisms have advantages but also limitations. Without
entering into too many details, some of the formalisms used in systems biology
are described below. Note that the list is not exhaustive but highlights the
diversity of formalisms that are available in the field (for further readings and
references for these formalisms, read the detailed review of de Jong (2002) and
a more recent mini-review of Machado et al. (2011)):

• The chemical kinetics approach describes the change of concentrations
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of genes, messenger RNA (mRNA), proteins or metabolites over time.
However, the rates of synthesis, degradation, binding constants, or con-
centrations of proteins are not easy to deduce from experiments. To
cope with these issues, some approximations of the chemical kinetics
equations have been proposed (such as S-systems or Piecewise-Linear
Differential Equations (PLDE) mentioned below).

• The Power-Law models or the S-systems approximate polynomial equa-
tions by simpler linear combination of powers of species concentrations.

• In contrast, Boolean modelling provides a highly qualitative approach
with a coarse-grain description of the biological processes.

• If Petri nets relied on graphical representations to tackle discrete events
at first, they are now more widely used for continuous or stochastic
approaches.

• PLDEs combine a continuous description separated by discontinuous
events illustrating switch-like behaviours of genes.

• To include stochasticity or to treat noncontinuous or nondeterminis-
tic cases, Stochastic Differential Equations (SDE) or Stochastic Master
Equations (SME) are used.

• Directly applied from theoretical computer science, the Process Alge-
bra (PA) languages bring up the issue of stochastic communication and
competition for a particular event between agents or processes.

• The rule-based formalisms offer the possibility to describe relationships
among entities in (close to) natural language and deal with combinatorial
complexity (Kappa, etc.).

• To take space into account, diffusion-reaction based approaches using
Partial Differential Equations (PDE) are best suited.

• Finally, Flux Balance Analysis (FBA) is a formalism that assumes
steady state and homeostasis∗ and is often used to model metabolic
networks.

Using chemical kinetics, diffusion-reaction approaches (based on Ordi-
nary Differential Equations (ODE), Partial Differential Equations (PDE) re-
spectively) or Boolean approaches to model biological processes is suitable
when the major players and processes represent elementary physical entities
(molecules, fluxes, chemical reactions). However, applying these modelling
techniques when the players can themselves be complex objects with non-
trivial behaviours is difficult. In this case, an agent-based approach can be
used. In particular, it is appropriate to create multiscale models of cancer as
discussed below.
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7.1.5 Agent-based and multiscale modelling in cancer

Agent-based modelling is a powerful simulation modelling technique that
has seen a number of applications in the last few years, including cancer
biology (Zhang et al., 2009). It allows one to encapsulate complex patterns
of objects’ behaviour in the form of rules (Bonabeau, 2002). Agents interact
in a competitive and repetitive fashion. This approach relies on the power of
computers to explore the dynamics usually out of reach in pure mathematical
methods and takes its roots in cellular automata modelling.

In practical biological applications, an agent can be a biological species, an
organism, a cell, an organelle or other subcellular structure. An agent can also
be a protein or any other molecule when its behaviour can be described by a
decision-making process rather than regular physico-chemical laws. The agents
of different types, for instance cancer and stromal cells, are placed in space,
with some properties, with a particular interaction topology, such as a grid,
in some non agent environment. Agents can move, measure environmental
properties, self-replicate and interact with other agents according to some
state-dependent rules. As a result, the states of all agents can be changed and
each agent is able to influence the environment.

Agent rules can be purely phenomenological. However, in more advanced
agent-based techniques, agent rules can incorporate physical and chemical
laws. For example, in an agent-based model of liver lobule response to in-
toxication by paracetamol, the rules governing cell behaviour were based on
physical adhesive cellular properties and physical motion equations (Drasdo
et al., 2011).

The main idea of agent-based modelling is the emergence of complex system
behaviours from relatively simple internal agent rules and thus, suitable for
modelling self-organisation phenomena. Evolutionary problems can also be
treated in the agent-based modelling approach. A simple example of agent-
based modelling (forest-fire model) will be considered in Section 10.3.

CellSys is a modular software tool that simulates growth and organisation
processes in multi-cellular systems in two- and three dimensions (Hoehme and
Drasdo, 2010). It implements an agent-based model that approximates cells as
isotropic, elastic and adhesive objects. Cell migration is modelled by an equa-
tion of motion for each cell. The software includes many modules specifically
tailored to support the simulation and analysis of virtual tissues including
real-time three-dimensional visualisation and Virtual Reality Markup Lan-
guage (VRML) support.

Due to its flexibility, agent-based modelling is frequently used in construct-
ing multiscale models. Multiscale modelling takes into account multiple spatial,
temporal or structural scales. Multiscale modelling is of particular importance
in studying cancer. Let us imagine a comprehensive model of how ultraviolet
radiation causes skin cancer. The model should take into account the effect
of radiation in damaging DNA (in nano- and milliseconds time scale). As
a consequence, signalling cascades are rewired and the cell cycle is deregu-
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lated (seconds and minutes time scale). This leads to phenotypical changes
on macroscopic level (hours and days time scale). The cells form a tissue or-
ganised and remodelled in the course of tumorigenesis∗ (months and years
time scale). Spreading metastases is taking place at the level of the organism
and requires a description at a larger spatial scale.

In the description of tumorigenesis, at least two scales are considered: at
the intracellular level, describing functioning of signalling cascades regulating
cell death, cell survival and proliferation, and at the level of cell population
at which changes in the functioning of signalling cascades lead to macro-
scopic tumour growth (examples of modelling tumour invasion can be found
at Section 8.1.3). In practice, the types of models developed in the rest of
this chapter could be seen as models to simulate the intracellular behaviour,
and rules between cells (defined as agents) could be set to simulate the cell
population behaviour. For reading more about applications of the multiscale
modelling approach in cancer biology, see Deisboeck et al. (2011).

In this chapter, we propose to briefly treat two mathematical formalisms:
chemical kinetics based on nonlinear ODEs approach and the Boolean logic
approach.

7.1.6 Hallmarks of mathematical modelling

Mathematical models can provide the appropriate tools to interpret all
sorts of experimental observations in a rigorous and systematic manner. More
specifically, we propose four characteristics or hallmarks of a mathematical
model (see Figure 7.1):

• A model achieves formalisation of our knowledge: it aims at describing
biological phenomena in a formal and unambiguous way; it recapitulates
(integrates all facts) and summarises (provides concise description) what
is known about a biological process; it allows the identification and the
listing of the key players and mechanisms involved in a process; it also
provides a way to visualise biological data; etc.

• A model facilitates the generation and comparison of hypotheses: it en-
ables analyses and interpretation of biological data; this leads in turn to
the formulation of hypotheses on the network structure, on the plausible
molecular interactions behind a process; etc.

• A model proposes predictions: it can predict results such as mutant
phenotypes, response to drug treatments, identification of therapeutic
intervention points, behaviours in particular cellular contexts; it can
also test and rank predictions by performing in silico experiments; it
can anticipate side-effects of drugs or perturbations; etc.

• A model enables conceptualization: it can be used as an abstract think-
ing object and it allows introduction of new concepts in biology: in
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knowledge formalisation
and description

introducing
new concepts making

prediction

generating and
comparing hypothesis

FIGURE 7.1 Hallmarks of mathematical modelling. A model can be: a de-
scriptive object - knowledge formalisation and description; a hypothesis generator -
generating and comparing hypotheses; a predictive tool - making predictions; and a
conceptual tool - introducing new concepts.

particular it can give formal definition for a class of behaviours and cel-
lular observations (e.g. any dynamical behaviour of individual motifs,
see Section 7.4).

Note that, even though the two roles of hypothesis generator and predictive
tool seem very similar, they fulfil different functions. The first one derives
hypotheses based on how the pieces of the puzzle could fit together, whereas
the latter allows to perturb the system and to derive predictions on how it
would react and behave.

7.2 Mathematical modelling flowchart

In this section we present a multistep procedure that we use for building
mathematical models to answer a biological question. The purpose is not to
provide a universal recipe but rather to propose steps to follow when modelling
a biological question. We will focus on knowledge-based models, the data-
based approaches being the subject of Chapter 5 and Chapter 6. Examples
of network modelling will then follow.

1. Definition of the biological problem: A clear question or a list of questions
is formulated. It is crucial to take the time to carefully write down the
biological problem, clearly state the question, and delineate the purpose
of the modelling. This step needs to be done in close collaboration with
the modeller and the experimentalist.

2. Gathering of information: Any type of information related to the studied
processes are gathered (articles, discussions with experts, etc.).
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Formulation of predictions

Validation of prediction

Validation of the mathematical model on known data

Mathematical translation

Organisation of the information

Biological question

Definition of the problem

Gathering of the information

FIGURE 7.2 Flowchart of mathematical modelling.

3. Organisation of the information: The format used here is a diagram
recapitulating the collected information; in systems biology the diagram
is typically composed of nodes and edges (see Box 4.4). However, it can
be a database or anything most suited to the modeller. Whatever format
is used, each protein, entity, reaction, compartment, function, processes,
both observed and expected outputs, etc. are annotated with comments
and references.

4. Mathematical translation: Depending on the formalism used for mod-
elling, the diagram is translated into a mathematical object. Each node
of the diagram is assigned the dynamics that best describe its behaviour.

5. Validation of the mathematical model : The model (set of differential
equations, set of Boolean rules, etc.) is often integrated numerically.
The parameters of the model are tuned so as to fit the known physi-
ology (wild type behaviours, normal cellular context, etc.). The model
is then perturbed and the result of the simulations is confronted to the
corresponding experimental result. The perturbations correspond to the
conditions of mutants or drug treatments. The model should account for
all experimental variations considered in the initial set up.
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6. Formulation of predictions: Typically, phenotypes of alterations (mu-
tants or drug treatments) that have not been performed yet can be
proposed.

7. Validation of predictions: The hypotheses formulated by the model and
validated in silico are to be tested in a wet lab. The results can also
be verified in existing experimental data (gene expression microarrays,
high-throughput sequencing, etc.)

8. Feedback from experiment to model : The model can then be refined, as
long as it does not recapitulate satisfactorily the observations. Several
iterations from experiment to model to experiment may be needed to
achieve a good result. The feedback can be at different levels: the ini-
tial problem can be reformulated based on the results of the literature
search, the information can be organised differently, the level of details
adapted, the mathematical formalism chosen can evolve from discrete
to continuous and vice versa, from deterministic to stochastic and vice
versa. The model can be modified according to the experimental results.

7.3 Mathematical modelling of a generic cell cycle

7.3.1 Biology of the cell cycle

Cancer genes are genes whose mutations∗ or alterations could increase the
risk of cancer development and promote tumorigenesis (see Chapter 2). Many
of these cancer genes are involved in pathways related to the cell cycle. Cancer
cells often fail to respond to external signals that would halt proliferation of
normal cells, therefore, in cancer cells, cell cycle checkpoint mechanisms that
should stop the cycle in abnormal situations are altered. For all these reasons,
the study of a normal cell cycle seems to be a good starting point to the study
of cancer cell cycle (Sherr, 1996).

The cell cycle is often described as an alternation between two phases:
DNA replication (S phase) and Mitosis (M phases) separated by two gap
phases (G1 and G2). These gaps ensure that one phase has been completed
properly before the other one starts. The presence and activity of the Cyclin
Dependent Kinases (CDK) and their cyclin partners determine at which stage
of the cycle the cell lies. To ensure that everything is ready to advance in the
cell cycle, there exist safe mechanisms on which the cell relies. The transitions
from one phase to another are thus monitored by checkpoint controls. They
supervise the good progression of the cell cycle and halt it when problems
are encountered in order to give time to the cell to repair the damage. That
way, proper genetic material can be passed on to the next generation. Since



216 Computational Systems Biology of Cancer

cancer is a disease of uncontrolled and excessive proliferation, some of these
checkpoints malfunction in many different cancers.

The first mathematical models of the cell cycle were mainly developed for
yeasts and frogs. As early as 1962, one of the first mathematical interpretations
of cell cycle was published (Koch and Schaechter, 1962). Later, in the 1990s,
groups like Tyson’s, Novák’s or Goldbeter’s developed complex models of cell
cycle mechanisms. Since then, articles related to cell cycle modelling have
exploded (Csikász-Nagy, 2009). If modelling can help understand the various
importance of some proteins and complexes and their temporal organisation,
some questions remain: how is the cell cycle related to cancer and why is
mathematical modelling needed?

One of the checkpoints mentioned above concerns the tumour suppres-
sor gene RB (referred to as retinoblastoma or RB1). RB is altered in many
cancers. It is a key regulator of the G1/S transition. Its activity is linked to ex-
ternal cellular signals. In a normal cell and early in the cycle, RB is fully active
in its unphosphorylated form. In response to growth signals, a series of events
leads to the association and activation of the CDK4 and CDK6/CCND1,
where CCND1 refers to CyclinD1, and the consequent phosphorylation of
RB. This is the starting point for the progressive inactivation of RB and the
passage through the G1/S transition. In 1974, Pardee proposed the theory of
a restriction point (see Box 2.2). In many cancer cells, since the restriction
point is altered through RB mutation∗, loss or deregulation, proliferation
occurs independently of the presence or absence of mitogens. The cell behaves
as if it were constantly receiving positive growth signals.

Many models have explored the restriction point from a theoretical point
of view. Among them, Aguda and Tang (1999), studied the effect of varying
the concentration of the genes that have an influence on the restriction point;
Qu et al. (2003a), among others, characterised the molecular features of the
restriction point; (Novak and Tyson, 2004) reproduced the experiments done
by Zetterberg et al. (1995) that aimed at identifying the precise time of the
restriction point in late G1; and finally, (Conradie et al., 2010) measured the
importance of some cell cycle actors in the control of the positioning of the
restriction point.

Let us study one of these models with both chemical kinetics and Boolean
approaches (see Box 7.3 for differences between these two formalisms).

7.3.2 Chemical kinetics formalism

When the biological question requires quantified answers and when the
experimental data permit, a quantitative approach is recommended. One pop-
ular formalism used when modelling quantitative data is the use of chemical
kinetics (Guldberg and Waage, 1864), based on systems of nonlinear ordinary
differential equations (ODEs). Even though it is more detailed than the most
qualitative formalisms, ODE models remain a rough abstraction of reality for
which many assumptions are made: the cellular environment is considered to
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FIGURE 7.3 From an influence network to a reaction network. (A) In-
fluence network: X is activated by Y and inhibited by Z. (B) Biochemical network
interpretations of the influence network. Plain arrows are biochemical reactions and
dashed arrows are influences of a gene on a reaction. (B1) Y mediates the synthesis
of X and Z mediates the degradation of X. (B2) Y mediates the synthesis of X
while Z inhibits it. (B3) X can appear in two forms, either active (X∗) or inactive
(X). Its activation is promoted by Y and its inactivation by Z.

be homogeneous, well mixed, with a high probability that molecules meet,
and with fixed temperature and pressure.

In chemical kinetics, some well-established kinetic laws are used to for-
mulate reaction rate equations, among them, the law of mass action, Hill or
Michaelis-Menten kinetics. Each equation is deterministic and follows the rate
of concentration of the proteins or their activity state over time.

Network representation of biological knowledge is often represented as an
influence network in biological papers, where, for instance, a protein activates
or inhibits another protein without a detailed description of the type of activa-
tion or inhibition. The most appropriate type of networks for ODE modelling
being reaction networks, in this particular case, the influence networks should
be translated into reaction networks.

Note that some works have been proposed on the translation of Boolean
models to ODEs models (Wittmann et al., 2009) and that some methodologi-
cal works are currently done on the automatic translation of reaction networks
to influence networks. Both problems are not easily solvable.

Here are some examples of interpretations of an influence network as a
reaction network, when the biochemical details are not known. Let us consider
three variables X, Y and Z. If what is known from the literature is: X is
activated by Y and inhibited by Z, then there are several ways to interpret it
(see Figure 7.3).

In the case of mass action kinetics, the rate of a reaction (synthesis or
degradation, for instance) is proportional to the product of the concentrations
of its reactants. The rate of change of a variable X can be described as follows:

dX

dt
= Ẋ = k1 · Y − k2 · Z ·X , (7.1)

where Y is promoting the accumulation or the activation of X at a rate k1,
and Z is mediating the depletion or the inactivation of X at a rate k2 (see
Figure 7.3B1).

If the synthesis is governed by highly nonlinear dynamics (as it is often
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the case), a Hill function controlled by the Hill parameters, K and n, can be
used:

dX

dt
= Ẋ =

k1 · Y n

Kn + Y n
− k2 · Z ·X . (7.2)

There are many ways to write the differential equations that correspond to
an influence network. We just gave the example of the case where Y promotes
the activation of X and Z promotes the inactivation of X. However, the
inhibition of Z depicted in the influence network (see Figure 7.3A) could
also be interpreted as an inhibition of the synthesis of X (see Figure 7.3B2).
In this case, we would write:

dX

dt
= Ẋ =

k1 · Y
k1′ + k1′′ · Z

− k2 ·X . (7.3)

Finally, if both the activation and the inactivation of X are controlled by
Michaelis Menten kinetics, the switch (the successive ON and OFF states ofX)
with these two coupled Michaelis-Menten terms is referred to as a Goldbeter-
Koshland switch (Goldbeter and Koshland, 1984):

dX

dt
= Ẋ =

k1 · Y · (Xtot −X)

K1 + (Xtot −X)
− k2 · Z ·X

K2 +X
. (7.4)

where Xtot is a parameter for the total amount of X if we assume that the
total amount of X in the cell is the same all the time, i.e. the mass of X is
conserved. The time at which the switch occurs depends on the ratio of Y and
Z and the sharpness of the transition depends on the values of K1 and K2

(the smaller the values, the stiffest the switch) (see Figure 7.3B3).
As quickly shown here, the translation from an influence network to a bio-

chemical description is not unique. Note that all the three networks of Figures
7.3B1 to 7.3B3 could be written using mass action, Hill or Michaelis-Menten
kinetics. The nature of the biochemical reaction and the choice of the mathe-
matical representation for this reaction will depend not only on the properties
of the components catalysing the reaction (if they are kinases or phosphatases,
transcription factors, stoichiometric inhibitors or part of the proteasome∗

complex, etc.) but also on the availability of the knowledge provided by the
experimental results (inhibition by complexation, by degradation, etc.). In-
terpreting and transcribing the information found in the literature into a bio-
chemical reaction network is not as straightforward as it seems.

The identification of the parameter values is an even more difficult task.
Ideally, the parameters that control the speed or activity of the reactions would
be directly derived from the literature, found in databases such as SABIO-
RK or BRENDA or fit mathematically to experimental data by optimisation
methods. If none of these is possible, then they should be chosen manually so
as to fit the experimental data. Provided that the formats of the equations are
already chosen (as presented in Equations 7.1 to 7.4) and are not going to
be changed, this step is a difficult and tedious one. Even when the parameter
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values can be derived directly from the literature, one has to consider that all
the experiments are performed in different conditions, on different cell lines
with different technicians with different moods, different room temperature,
etc. and may not be appropriate for a model of a different cell line, or a generic
model. These values have to be handled carefully. Moreover, the number of
parameters has to be accurate in order to avoid overfitting. Indeed, the number
of these parameters and the choice of their values need to be constrained by
a reasonable amount of biological data that they need to reproduce.

The first requirement that the model must meet is to reproduce the con-
ditions of the system in a normal situation, when it is not — or very lightly
— perturbed. Once the wild type model fits the observed phenotypes and
behaves as expected, the model can be challenged by performing in silico ex-
periments. Let us imagine that the gene Z is deleted from the cell. In this
case, X will not be inhibited — or degraded. In order to simulate the deletion
of the gene in the mathematical model, k2, and only k2, will be set to 0 (or if
Z’s concentration varies over time, its synthesis term will be set to 0 as well
as its initial condition). The solution of the simulated perturbation will have
to show that X remains active at all times when Y is present.

7.3.3 Cell cycle as an ODE model: Application to the restric-
tion point

Novak and Tyson (2004) proposed a model of the dynamics and the role
of the restriction point. The model accurately reproduces experimental re-
sults published by Zetterberg et al. (1995), validating the choices made on
the topology of the network (see Figure 7.4) and on the dynamics of the
mathematical model (see Figure 7.5).

The network includes several modules: growth factors (with early and
delayed response genes), RB and its interaction with E2F, the antagonism
between the cyclins/CDK complexes (CycE/CDK2 and CycA/CDK2) and
their inhibitors (p27, referred to as KIP in the model), the antagonism be-
tween all the cyclins/CDK complexes (CycA/CDK2, and CycB/CDK1) and
their degradation machinery (CDC20 and CDH1). The characterisation of the
mathematical model uses mass action kinetics, Goldbeter-Koshland switches,
and Hill terms (equations of the model).

The authors have constructed the core of the mammalian cell cycle from
a model of the budding yeast cell cycle (Chen et al., 2000) arguing that even
a basic molecular network with little biochemical details such as that of the
budding yeast can explain the dynamics of the restriction point. The model is
also able to reproduce the cells’ behaviour after removal of growth factors and
re-entry into the cell cycle after the growth factors are added back. Zetterberg
et al. have measured the length of the cell cycle of individual cultivated mouse
fibroblast cells. They have explored the effect of transient growth factor de-
privation at different times throughout the cell cycle by treating the cell with
cycloheximide, a drug that blocks protein synthesis, and then washing it away
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FIGURE 7.4 Network of Novak and Tyson cell cycle. Continuous model cycle
of the restriction point developed. Figure adapted from Novak and Tyson (2004).
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FIGURE 7.5 Simulations of Novak and Tyson cell cycle model. Simulation
of the continuous model cycle of the restriction point developed by Novak and Tyson.
The concentrations of CycB, CDC20, IEP, and CDH1 are plotted as a function of
time.

after 1 hour. The different in vitro experiments show that (1) with constant
growth factors, the division time is about 14 hours with 7 hours spent in G1;
(2) when the cells are treated during the first 3 hours of the G1 phase, they
divide with an 8–9 hour delay for the first division following the treatment
and with no delay for the second division; (3) when the cells are treated after
the fourth hour of the beginning of the G1 phase, no delay is observed in the
first or the second division, setting the restriction point between the third and
the fourth hour of the G1 phase, (4) and when the cells are treated late in the
cycle, they show no delay at the first division but might show a delay in the
second division. Some more recent computational analyses have been further
performed on this model by Conradie et al. (2010). The model can be found
and simulated on the Biomodels webpage with the ID: BIOMD0000000265.

A similar computational model of the G1 to S transition (Qu et al., 2003b)
showed that, for this transition, bistability arises from a positive feedback loop
involving CycE/CDK2 and E2F, whereas the oscillatory behaviour is governed
by another positive feedback loop involving CycE/CDK2 and p27 but these
oscillations are born only when p27 is phosphorylated at multiple sites (ultra
sensitivity is required). The model is also available in the Biomodels database
with the ID: BIOMD0000000110.

Once the model is capable of reproducing experimental observations, it be-
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comes a tool to test other experiments in silico that have not been performed
yet, and can suggest quantitative results such as length of delays or cell cycle
times to diverse perturbations.

7.3.4 Boolean formalism

Boolean (logical) formalism offers a more qualitative approach to the dy-
namical analysis of a biological process that the ODE formalism. As a con-
sequence, less precise information is needed for building a Boolean model.
Because of their apparent simplicity, the extension and refinement of logical
models are more easily manageable than the extension of an ODE model. The
counterpart is that a qualitative model can only give qualitative, therefore
limited, insights. The activity — rather than the concentration — of the bio-
logical species is associated to each node of the regulatory graph. Moreover,
real time is not considered in this framework. Every step in the model cor-
responds to an event, but the time associated to an event is not explicitly
given.

To construct a Boolean model, first, the biological information needs to
be translated and summarised into a regulatory network where nodes are
biological species and edges are influences (see Box 7.1). Then, the conditions
for a node to turn ON or OFF are defined by a Boolean logic (see Box 7.2).
Finally, the updating strategy needs to be chosen: synchronous, asynchronous
or a mixture of both.

o BOX 7.1: Boolean models
They are composed of a set of variables and of logical update rules.
In our context, biological knowledge is represented as a graph (see
Box 6.4). We define two types of graphs:

Regulatory graphs are influence graphs. They are signed and di-
rected graphs, composed of nodes and edges. Nodes are vari-
ables and can be genes, proteins, complexes, processes, small
molecules, RNA, etc. Edges are directed arrows. They are rela-
tionships between two nodes and provide two types of informa-
tion: they can be activating (in this case, the sign of the interac-
tion is +), or inhibiting (in this case, the sign of the interaction
is –).

State transition graphs consist of nodes and arcs. Nodes are
states (composed of the value of each node). Arcs are transi-
tions between these nodes.

More specifically, a Boolean regulatory graph connects, with logical rules
(or logical functions), a set of discrete variables whose states depend on the
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state of the other variables. Each variable corresponds to a node in the graph.
A logical rule is assigned to each node of the graph, defining how the different
inputs (incoming arrows) combine to control its level of activation. From given
initial conditions and at each discrete time step or event, one or more vari-
ables will change according to the chosen updating strategy. If the strategy
is synchronous, then all the variables that can change are updated (in a de-
terministic fashion). If the strategy is asynchronous, then one of the variables
that can change will be updated at a time (in a non-deterministic fashion).
The different scenarios of all the possible changes are described in a graph
called the state transition graph (see Box 7.1). The state transition graphs
are usually different for the synchronous and the asynchronous cases.

There are two types of asymptotic solutions or attractors in a logical model:
stable states or limit cycles. If the successor state of one state is itself, it is
considered to be a stable steady state or point attractor. If a set of states is
visited more than once in a repeated order, it is considered to be a limit cycle
attractor.

o BOX 7.2: Boolean logic
It is a mathematical formalism for which a set of variables (a, b, c,
etc.) can only take two values: TRUE or FALSE; 1 or 0; present or
absent; active or inactive; expressed or not expressed. Each variable is
updated according to the logical rule that defines its activity. The state
of a variable is a function of its inputs or regulators. Some operands
connecting the variables are defined. The ones that are mainly used
in our study are the following:

• a AND b: is TRUE if only if the two variables are TRUE

• a OR b: is TRUE if at least one of the two variables is TRUE

• NOT a: is TRUE if only if the variable is FALSE

7.3.5 Cell cycle as a Boolean model: Application to the re-
striction point

With the purpose of translating the continuous model of the restriction
point presented by Novak and Tyson into a Boolean model, Faure et al. (2006)
transposed the biochemical reaction network into an influence network (see
Figure 7.6). The authors not only translated the model into a different for-
malism but they also extended it by adding a E2 ubiquitin enzyme, UbcH10
responsible for the CDH1-dependent degradation of CycA. They then derived
the logical rules.

To account for the sequential events of the cell cycle, they first proposed
to separate fast and slow processes. By doing so, they were able to group
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FIGURE 7.6 Boolean cell cycle of the restriction point developed by
Faure et al.. Figure adapted from Faure et al. (2006).

the variables of the model into two classes: fast and slow. They referred to
these classes as priority classes. Through thorough analysis of the obtained
asymptotic solutions with the asynchronous updating strategy, they realised
that some processes inside each of these classes were controlled by similar
mechanisms and therefore could be updated synchronously. They further sep-
arated the fast and slow classes into two classes updated with synchronous
and asynchronous strategies leading to four classes: fast synchronous, fast
asynchronous, slow synchronous, fast asynchronous.

By defining these four classes and introducing some biological considera-
tions in the updating choices, the authors were able to qualitatively reproduce
the behaviour of both wild type and of mutants.

7.4 Decomposition of the generic cell cycle into motifs

Even the simplest model can reveal interesting aspects of a biological pro-
cess. For the neophytes or the systems biologist skeptics, the use of mathe-
matics to apprehend a biological problem can be seen, at first, as mysterious
and somewhat magical. However, looking closely, there exists a link between
the physiology and the result of mathematical simulations. For instance, ev-
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o BOX 7.3: Boolean vs. Chemical kinetics
The differences of the Boolean and chemical kinetics approaches in
terms of formalism, type of associated diagrams, input, and output
are listed below:

Formalism Diagram Input Output

Boolean influence
network

Set of logical rules State transition
graph with stable
state solutions

Set of initial condi-
tions

Trajectories in the
state transition
space

Chemical
kinetics

reaction
network

Set of chemical
reactions, set of
kinetic laws, set
of parameter val-
ues, set of initial
conditions

Time series (con-
centration of vari-
ables)

ery time an oscillatory behaviour is observed, such as in the cell cycle or in
the circadian rhythms, the mathematician may look for a functional negative
feedback loop in the network coupled or not with a positive feedback loop
that could explain the process. Similarly, an abrupt transition will most cer-
tainly have a positive feedback or a feed-forward loop hidden somewhere in
the network. Theoretical works have explored some of these network motifs
(Alon, 2007b; Tyson et al., 2003; Csikász-Nagy et al., 2009). We propose to
study two motifs with both the ODE and the Boolean approaches. The motifs
are extracted from the models of Novak and Tyson and of Faure et al. pre-
sented previously. However, for each purpose, the kinetics are simplified and
the parameters slightly modified.

7.4.1 Positive feedback loop

To illustrate the positive feedback loop dynamics, we propose a two-node
network illustrating the transition from M phase to G1 phase. In M phase,
the cyclin-dependent kinase complex CycB/CDK1 is active and maintains
CDH1 inactive through phosphorylation. After a series of activation, CDH1
is dephosphorylated and turned on. CDH1 is an ancillary protein that brings
the CycB/CDK1 complex to the Anaphase Promoting Complex (APC) for
degradation. When the level of CycB drops, the cell exits mitosis.

For simplicity, several hypotheses have been made on the networks and on
the dynamics:
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1. Hiding implicit molecules: the complexes Cyc*/CDK* is often repre-
sented by Cyc* (CycD, CycE, CycA or CycB) only while the CDK*
(CDK1, CDK2, CDK4 or CDK6) partner is implicitly present. It is
absolutely required for the activation of the complex. The reader has
to assume in the rest of the chapter that Cyc* refers to the complex
Cyc*/CDK*;

2. Simplifying complex biochemical events (with a compact and phe-
nomenological mathematical formulation): in the continuous model, the
activation and inactivation of CDH1 are considered to be nonlinear
abrupt events. To model the switch between phosphorylated CDH1i (i
for inactive) and unphosphorylated CDH1a (a for active) forms, the
function representing a Goldbeter-Koshland switch is used;

3. Synchronicity of the population: the dynamics is that of one cell that
would mimic the behaviour of a synchronised population of cells, the
obvious stochasticity of cells is not taken in account here.

The corresponding equations of the positive feedback loop involving CycB
(recall CycB stands for CycB/CDK1) and CDH1 (see Figure 7.7A) are writ-
ten as follows:

dCycB

dt
= k1 − (k2a + k2 · CDH1a) · CycB (7.5)

dCDH1a

dt
=

k3 · CDH1i

J3 + CDH1i
− k4 · CycB · CDH1a

J4 + CDH1a
(7.6)

with the corresponding parameters used in the simulation of Figure 7.7B
and C: k1 = 0.15, k2a = 0.2, k2 = 1, k3 = 0.2, k4 = 1, J3 = 0.05, J4 = 0.05
and CDH1a+ CDH1i = 1.

As expressed in Equations 7.5 and 7.6, CDH1a activates and inactivates
abruptly. For CycB, both activation and inactivation are chosen to be governed
by mass action kinetics: it is synthesised at a constant rate (k1) and inactivated
by a constant term (k2a for background degradation and k2 for inactivation
by CDH1a).

Depending on the initial conditions: CycB=1, CDH1a=0 or CycB=0,
CDH1a=1, the system shows two possible outputs, either a M arrest where
CycB remains active all the time because CDH1a cannot activate (see Fig-
ure 7.7B), or a G1 state where CDH1a is active and keeps CycB from acti-
vating (see Figure 7.7C).

A change of behaviour can be observed by changing parameter values. For
instance, one can simulate exit from mitosis or the passage from M to G1
by varying the value of k1, the parameter controlling the synthesis of CycB.
The initial condition needs to be set to a G1-like state. Therefore, we let
CycB=0, and CDH1=1. We follow the variation of k1 as a function of the
activity of CycB (see Figure 7.7D). The system exhibits what is referred
to as a hysteresis: for specific starting conditions and for a certain range of
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FIGURE 7.7 ODE model of the positive feedback loop. (A) CycB is syn-
thesised (and implicitly here forms a complex with CDK1). Note that the variable
CycB/CDK1 taken from Novák and Tyson’s diagram corresponds to the variable
CycB of Equation 7.5). CycB then phosphorylates and inactivates CDH1 (CDH1i).
When CDH1 is in its unphosphorylated form (CDH1a), it is able to promote the
degradation of CycB. (B) Continuous simulation of the nonlinear differential equa-
tions with initial conditions CycB = 1 and CDH1a = 0 and for k1 = 0.15. (C)
Continuous simulation of the nonlinear differential equations with initial conditions
CycB = 0 and CDH1a = 1 and for k1 = 0.15. (D) Bifurcation diagram of the positive
feedback loop with SN1 = 0.085 and SN2 = 0.17.

k1 values, there exist two different coexistent stable solutions that depend on
the system history. The upper and the lower branches are stable, the middle
branch is unstable.

Let us start with CycB equal to 0 for low values of k1. CycB is inactive
(lower branch of the hysteresis). As k1 increases, it reaches a threshold value
(SN1 = 0.085, where SN stands for Saddle Node bifurcation point). The qual-
itative stability of the steady state does not change but two stable solutions
now coexist. The two stable states surround a middle unstable state (dashed
line). Because of where the system started from, CycB remains inactive. As k1

increases, it reaches the second threshold value (SN2 = 0.17). At this value,
the stability of the solution is lost and the system jumps to the higher stable
branch where the CycB turns on. For k1 above the threshold value of SN2,
CycB is considered to be activated and as a result starts to phosphorylate
and inactivate CDH1a. CycB switch is rather abrupt. If at this point, k1 is
decreased, the system remains on the higher branch until SN1 threshold value
is reached again and CycB can start to activate de novo. The resulting graph
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FIGURE 7.8 Boolean model of the positive feedback loop involving
CycB and CDH1. (A) Boolean positive feedback loop involving CycB and CDH1
(CDH1a). (B) Logical rules associated to each node CycB and CDH1. (C) Transition
graph of the Boolean model.

is called a bifurcation diagram (see Box 7.4) which follows the stability of
the differential system as a key parameter is changed.

The reaction network showed in Figure 7.7 can be simplified into an
influence network. All biochemical reactions of the graph are interpreted as
activations or inhibitions based on the biological meaning of these interactions.
Thus, in the reaction network, CycB phosphorylates and inactivates CDH1. In
the influence network, it is translated into: CycB inhibiting CDH1. Similarly,
CDH1 is mediating the degradation of CycB in the reaction network, therefore,
in the influence network, CDH1 inhibits CycB (see Figure 7.8A).

The logical rules (see Figure 7.8B) are derived from the influence network
and depend on the sign of the influences (positive for activation, negative
for inhibition). A feedback loop is positive if the product of the signs of all
the influences is positive. The logical rules determine the state of the nodes
at the following event. In asynchronous update strategy, only one node can
be updated at a time. Therefore if the initial condition is [CycB, CDH1]
= [0,0], then either CycB or CDH1 can turn ON. If the initial condition is
[CycB, CDH1] = [1,1], then either CycB or CDH1 can turn OFF. If the initial
condition is [CycB, CDH1] = [0,1], then the system is stable and if [CycB,
CDH1] = [1,0], the system is also stable.

The construction of the asynchronous transition graph (see Figure 7.8C)
shows the existence of two solutions or stable steady states: the first one,
[CycB, CDH1] = [0,1] which is equivalent to a G1 arrest where CDH1 keeps
CycB from accumulating, and the second one, [CycB, CDH1] = [1,0] which is
equivalent to the M phase state in which CycB level remains high.

7.4.2 Negative feedback loop

To illustrate the negative feedback loop, we consider a three-node loop ex-
tracted from Novak and Tyson’s model (see Figure 7.9A). The loop involves
CycB (noted CycB/CDK1 in the diagram) and its regulation in the M phase.
When CycB is synthesised (and implicitly forms a complex with CDK1), the
cell enters the M phase. CycB is known to switch on its own degradation path-
way creating a possible functional negative feedback loop. Many studies have
shown that in a continuous framework, there need to be at least three species
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o BOX 7.4: Bifurcation

bifurcation diagram is a diagram that shows solutions of the set of
differential equations as a parameter is varied. It highlights the
points at which the stability changes qualitatively (Kuznetsov,
2004). The solutions of the dynamical system can be steady
states, stable or unstable, and limit cycles.

bifurcation point is a sudden qualitative change in the solution of
the dynamical system for a small change in the parameter value.
These qualitative changes can be: a change of stability (from un-
stable to stable and vice versa), the apparition or disappearance
of a solution (limit cycle oscillations), etc.

in order to give rise to oscillations in a negative feedback context (Ferrell et al.,
2011). Between the activation of CycB and the activation of CDC20, which
is involved in the degradation of CycB, Novak and Tyson have proposed a
delay that could be imposed by the activation of a nonidentified intermediary
enzyme, IE, that would need to be phosphorylated to be activated, IEP (see
Figure 7.9A). The three-node network forms a negative feedback loop.

The ODEs are written with the hypothesis that CDC20 is governed by a
Goldbeter-Koshland switch whereas both CycB and IEP follow mass action
kinetics. IEP’s kinetics has been simplified from the initial model of Novak
and Tyson in which it was described as a Goldbeter-Koshland switch as well.
Note that other hypotheses in the choice of the format of the equations might
be appropriate as well. The translation of a reaction network into chemical
kinetics framework is not unique.

The corresponding equations are written as follows:

dCycB

dt
= k1 − (k2a + k2 · CDC20a) · CycB (7.7)

dCDC20a

dt
=
ka20 · IEP · (CDC20tot − CDC20a)

Ja20 + (CDC20tot − CDC20a)

− ki20 · CDC20a

Ji20 + CDC20a

(7.8)

dIEP

dt
= k1IP · CycB − k2IP · IEP (7.9)

with the corresponding parameters used in the simulation of Figure 7.9B:
ka20 = 1, ki20 = 0.7, Ja20 = 0.01, Ji20 = 0.01, CDC20tot = 1, k1 = 0.15,
k2a = 0.01, k2 = 1.5, k1IP = 1, k2IP = 0.3 and initial conditions CDC20a = 0,
IEP = 0, CycB = 0.

For the chosen initial conditions of Equations 7.7 to 7.9, the system
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FIGURE 7.9 Continuous model of the negative feedback loop. (A) Reaction
network of a negative feedback loop involving CycB (noted CycB/CDK1 in the
diagram), IE, and CDC20. (B) The 3 proteins exhibit sustained oscillations with
different amplitudes but with the same period (simulations with XPPAUT). (C)
the bifurcation diagram shows the qualitative change of CycB as a function of the
parameter k1, governing the synthesis of CycB. HB1 and HB2 correspond to the
Hopf bifurcation points. Plain lines correspond to stable steady states and stable
limit cycles, and dashed lines to unstable steady states.

shows one cycle before reaching a stable limit cycle oscillatory regime (see
Figure 7.9B). CycB is the first to rise (increasing concentration), followed
closely by IEP and then by CDC20a. When CDC20a reaches a critical value,
CycB starts to get degraded and inactivates (decreasing concentration). As
a consequence, IEP inactivates as well, leading to a more abrupt drop in
CDC20a activity. CDC20a being off, CycB has the possibility to rise again.
And another cycle starts.

We choose k1 as the varying parameter to explore the solutions of our
system of ODEs (see Figure 7.9C). For low values of k1, the system cannot
oscillate. It is stuck in a stable steady state. As k1 reaches a critical value
(HB1 = 0.0318, where HB stands for Hopf Bifurcation point), the stable state
becomes unstable and oscillations are born. The upper and lower values of the
amplitude of these oscillations are indicated on the graph. For values close to
the bifurcation point, the amplitudes are small and the system is sensitive to
perturbations. Indeed, for a small change in k1, it can easily move back to the
stable state. As we get away from the bifurcation point, the amplitudes become



Mathematical modelling applied to cancer cell biology 231

CDC20

CycB

CycB = ! CDC20
CDC20 = CycB

00

1110

01

(A) (B) (C)

FIGURE 7.10 Boolean model of the negative feedback loop involving
CycB and CDC20. (A) Influence network representing the negative feedback loop.
(B) Logical rules governing the negative feedback loop. (C) State transition graph
showing the solutions of the system.

more pronounced to finally die at the second bifurcation point (HB2 = 0.1608).
The unstable state becomes stable again. With the bifurcation diagram (see
Box 7.4), we have been able to prove the existence of oscillations and to
delimitate the range of possible values for k1 for which the system would
exhibit this oscillatory regime.

When the reaction network of the negative feedback loop is translated into
an influence network (see Figure 7.10A), the intermediary enzyme IE is no
longer needed. The three-node reaction network becomes a two-node influence
network. To each node is associated a logical rule (see Figure 7.10B). The
transition graph shows no stable steady state (see Figure 7.10C). From any
initial condition, the system is caught in the cycle solution, where each state
is visited in an ordered suite: [00, 01, 11, 10].

7.4.3 Positive and negative feedback loops

If we combine both positive and negative feedback loops into one single
model and if we choose the appropriate parameter values, the saddle node and
the Hopf bifurcations (see Figure 7.11A) are maintained in the full model.
With another set of parameters though, all bifurcation points may not have
been conserved.

The positive and negative feedback loops share one component: CycB. The
differential equations are then combined into one complete model from the
positive and negative feedback models previously translated. The equations
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are the following:

dCycB

dt
= k1 − (k2a + k2p · CDC20a+ k2pp · CDH1a) · CycB (7.10)

dCDH1a

dt
=

k3 · CDH1i

J3 + CDH1i
− k4 · CycB · CDH1a

J4 + CDH1a
(7.11)

dCDC20a

dt
=
ka20 · IEP · (CDC20tot − CDC20a)

Ja20 + (CDC20tot − CDC20a)

− ki20 · CDC20a

Ji20 + CDC20a

(7.12)

dIEP

dt
= k1IP · CycB − k2IP · IEP (7.13)

dCDH1a

dt
=

k3 · CDH1i

J3 + CDH1i
− k4 · CycB · CDH1a

J4 + CDH1a
(7.14)

with the corresponding parameters used in the simulation of Figure 7.11B:
k1 = 0.15, k2a = 0.02, k2p = 1, k2pp = 0.65, k3 = 0.2, k4 = 1, J3 = 0.01,
J4 = 0.01, ka20 = 1, ki20 = 0.7, Ja20 = 0.01, Ji20 = 0.01, CDC20tot = 1,
k1IP = 1, k2IP = 0.3, CDH1a + CDH1i = 1 and the initial conditions
CDC20a = 0, IEP = 0, CDH1 = 1, CycB = 0.

All simulations of the ODE models of this chapter, including Equations
7.10 to 7.14, are computed using XPPAUT. The system oscillates in an
ordered manner and with the same period (see Figure 7.11B). CDH1 is
turned off as CycB starts to be synthesised. As CycB rises, IEP, after reaching
a threshold, activates CDC20 which starts to turn off CycB. When CDH1 rises
again because CycB is starting to decrease, it degrades CycB enough to lead
to exit of mitosis and entry in G1 phase.

With this simple model, the separation between the four phases of the cell
cycle is not as obvious as it is in Novak and Tyson’s description of the cell
cycle. As more components and biochemical details are added, the description
becomes more and more refined and the phases better separated.

The bifurcation diagram shows that to maintain the oscillatory behaviour,
k1 must be between HB1 and HB2 values (see Figure 7.11C). The bifurca-
tion diagram confirms the existence of a hysteresis combined with a region of
oscillations. Adding the positive feedback to an oscillating system lengthens
the cell cycle time by introducing a G1 phase. The region for hysteresis is
very small (k1 between SN1 and SN2). In this model, for this specific set of
parameters, the transition G1 to S is not prevalent.

The combined positive and negative feedback loop model is translated
into Boolean formalism with CycB, CDH1, and CDC20 (see Figure 7.12A
and B). The state transition graph contains 8 states (23) leading to one stable
steady state (see Figure 7.12C) corresponding to a G1 arrest: [CycB, CDC20,
CDH1] = [0,0,1]. There exists also a cycle attractor which involves CycB and
CDC20 only, for which the state of CDH1 is not changing (equal to 0): [000,
010, 110, 100].
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FIGURE 7.11 Continuous model of the combined positive and negative
feedback loops. (A) Reaction network representing the positive and the negative
feedback loops. (B) Continuous simulation and bifurcation diagram of the feedback
loops using XPPAUT. (C) The bifurcation diagram shows the qualitative change of
CycB as a function of the parameter k1 with SN1 = 0.097, SN2 = 0.099, HB1 =
0.107, HB2 = 0.1624.

To study network motifs more in depth, some thorough reviews and de-
tailed articles from a biology, mathematics and physics point of view are avail-
able: Alon (2007b), Tyson et al. (2003), Prill et al. (2005), Ferrell et al. (2011),
Kholodenko (2000), Kashtan et al. (2004), Alm and Arkin (2003), Thomas
(1981), etc.

7.5 Conclusion

Mathematical models provide a systematic tool to investigate cell be-
haviours in various contexts and propose mechanisms under the form of a
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FIGURE 7.12 Boolean model of the combined positive and negative feed-
back loops. (A) Influence network representing the positive and the negative feed-
back loops. (B) Logical rules governing the model. (C) State transition graph.

network that recapitulates experimental observations. They translate biolog-
ical knowledge into mathematical terms. They aim at shedding some light on
some observed contradictions and paradoxes and summarising what is known
about particular biological processes. With a mathematical model, hypotheses
can be tested in silico before performing experiments in the wet lab. In the
next chapter, we will see how mathematical models are used to understand
the different hallmarks of cancer.
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. Exercises

• Using GINsim (or another software for Boolean modelling), build
the combined positive and negative feedback loop model and vi-
sualise the state transition graph. What happens to the stability
and the state transition graph when CDH1 is deleted? when
CDC20 is deleted?

• In a thorough study of Feed Forward Loop (FFL) (Csikász-Nagy
et al., 2009) presented the features of coherent and incoherent
feed forward loops. For 3 genes, A, B and C, a coherent loop links
A to C with two paths, one direct and another one indirect, going
through B. The signs of both paths ending in C are the same.
For example: A activates C and A activates B which activates
C. In an incoherent loop, the signs of both paths ending in C are
opposite. For example: A activates C and A activates B which
inhibits C. This design might present some advantages in certain
cases. Both paths may be able to account for different time scales
of concurrent or compensating signals.

Problem: In a Boolean framework, create a model of an inco-
herent feed forward loop including p27, an inhibitor of CycE.
CycE and p27 are both activated by E2F. E2F is considered as
an input here. Build the state transition graph corresponding to
the model. What are the expected two stable states?

• In the ODE model including both positive and negative feedback
loops (Section 7.4.3), simulate the temporal simulations and
the bifurcation diagram if the effect of CDC20 degradation on
CycB, k2 was reduced from 1.5 to 0.15 with the same initial
conditions of the model.

é Key notes of Chapter 7

• Mathematical models can be a descriptive object, a hypothesis
generator, a predictive tool and a conceptual tool.

• The biological questions determine which mathematical formal-
ism is the most appropriate to answer them.

• A complex model can be decomposed into feedback loops: posi-
tive, negative, feed forward, etc.

• Positive feedback loops can give rise to bistability.

• Negative feedback loops can give rise to oscillations.

• Saddle node bifurcations are associated to bistable behaviours.

• Hopf bifurcations are associated to oscillatory behaviours.
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Chapter 8

Mathematical modelling of cancer
hallmarks

As mentioned before, in 2000 Hanahan and Weinberg published a seminal
review on hallmarks of cancer (also presented Chapter 2) in which they
proposed six features for cancer formation:

1. Sustaining proliferative signalling

2. Evading growth suppressors

3. Activating invasion and metastasis∗

4. Enabling replicative immortality

5. Inducing angiogenesis

6. Resisting cell death

According to Merriam-Webster dictionary, a hallmark is a distinguishing
trait, characteristic or feature. Therefore, a hallmark of cancer is what defines
a cancerous cell (see Chapter 1). In 2010, Lazebnik questioned to some extent
the term hallmarks used by Hanahan and Weinberg in the sense that benign
and malignant cells share a lot of these hallmarks. According to him, among
the six hallmarks listed in the review of 2000, only one is really specific to
malignant tumours, i.e. invasiveness. The other five share common features
of benign cases. The question is then: Are these hallmarks appropriate to
characterise cancer as we intend it? Cancer is a combination of deregulations
of more than one feature, one can wonder how many of these cellular functions
need to be affected to cause malignancy? Is one hallmark safe? Are two or
three hallmarks sufficient to cause cancer? If so, which ones? Most of the
mathematical models on cancer concentrate on an individual hallmark but
some investigate the roles and the dynamics of these hallmarks put together.
Among them, Abbott et al. (2006) implement the six hallmarks in a model
based on a cellular automaton.

In 2011, Hanahan and Weinberg revised the list of hallmarks by adding
four more traits, two enabling characteristics and two emerging hallmarks:

7. Genome instability and mutation∗

8. Tumour-promoting inflammation

9. Reprogramming energy metabolism

10. Evading immune destruction

237
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In this chapter, we propose to review the current status of knowledge
around some of these hallmarks from a mathematical perspective and focus
on some specific aspects of each hallmark and characteristic as an example.

8.1 Modelling the hallmarks of cancer

Mathematical models related to the eight individual hallmarks and the
two enabling characteristics of Hanahan and Weinberg (2011) along with the
questions they raise are reviewed here. Note that, as of today, some of these
hallmarks have not been studied enough from a mathematical point of view
to provide a review for it.

8.1.1 Sustaining proliferative signals

Extracellular signals are passed on to the inside of the cell via the activation
of a complex network which ultimately leads to cell responses such as the
promotion or the inhibition of cell proliferation. Both the growth activation
and inhibition are monitored by signalling pathways∗ initiating from an
external signal to diverse checkpoints of the cell cycle.

The questions that motivated the mathematical modelling of these path-
ways are of different types. Among them:

1. How are the initial signals passed on to the cell? What is the molecular
mechanism involved in the cascade activation? What are the key com-
ponents of the cascade? What are the critical parameters that control
the activation of the cascade?

2. How is the signal amplified? How is the noise filtered? What is the shape
of the signal? What is the role of feedbacks in the propagation of the
signal?

3. What deregulations of the signalling cascade lead to cancer?

It is known that cancer cells drive their own proliferative signals and do
not rely on external stimuli to activate growth. In normal conditions, growth
signals (growth factors, mitogens, stress, heat shock, etc.) from the outside of
the cell are transmitted to the inside of the cell through the Mitogen-Activated
Protein Kinase (MAPK) cascade. The MAPK cascade is playing a role in gene
expression, cell cycle machinery, survival, apoptosis and differentiation. Many
mutations of the MAPK pathway have been associated with cancer (Dhillon
et al., 2007).

There are six groups of MAPKs: the extracellular signal-regulated kinases,
ERK1 (and ERK2), ERK5, ERK3 (and ERK4), ERK7 (or ERK8), JNK and



Mathematical modelling of cancer hallmarks 239

p38. Each cascade has the same format: there are three kinases that are se-
quentially activated through double phosphorylations (at serine and threonine
sites). At the top of the cascade, ligands bind to receptor tyrosine kinases that
lead to dimerisation and autophosphorylation of the receptors which then bind
to adapters (such as GRB2). The Mitogen-Activated Protein Kinase Kinase
Kinase (MAPKKK) are activated by phosphorylation or by RAS, a GTP
protein, itself activated by external stimuli. Consequently Mitogen-Activated
Protein Kinase Kinase (MAPKK) and MAPK are activated, very often in
the presence of scaffold proteins.∗ These successive activations lead to the
synthesis of genes including transcription factors. According to the transcrip-
tion factors that are transcribed, cells will enter the cell cycle, start apoptotic
events, differentiate, etc.

The constant activation of this pathway is often observed in cancers
(Downward, 2003). The constitutive growth signal might come from differ-
ent sources:

Constitutive ligand supply: The constant production of growth factor lig-
ands can result from the deregulation of paracrine (from one cell to its
neighbours within the same tissue but through diffusion) or autocrine
(within each cell) loops. There exist other ways for growth factors to
abnormally send signals to other cells: through the deregulation of jux-
tacrine loop (from one cell to adjacent cells after secretion) and of en-
docrine loop (from one cell to distant cells transported through the
bloodstream).

High levels of receptors: The amount of receptors is such that they are not
limited by ligand supply. The high concentration of receptor proteins at
the cell level can be the result of a mutational defect that leads to con-
stant production of the receptor or a structural alteration of the receptor
itself. Mutations leading to overexpression or upregulation of the EGF
receptor, a member of the ErbB family identified as an oncogene∗, are
often found in most carcinomas∗ and overexpression of HER2 is often
associated to breast cancer.

Constitutive activation of components of the pathway: Mutations of
any actor of the MAPK pathway such as RAS or BRAF, downstream
of the receptor activation, can overpass any incoming signals.

Amplification∗ of transcription factors: At the bottom of the MAPK
cascade, transcription factors such as MYC are activated. In many can-
cers, they are found to be amplified and therefore independent of the
MAPK activation.

The biochemical description of the pathway has raised a lot of inter-
est and many mathematical models, both descriptive and quantitative, have
proposed mechanistic explanations of the pathway functioning (Kholodenko,
2002; Schoeberl et al., 2002; Levchenko et al., 2000; Chen et al., 2009). More
particularly, the activation of this pathway has been associated with a bistable,



240 Computational Systems Biology of Cancer

ultrasensitive and irreversible switch in frogs (Huang and Ferrell, 1996) and
most probably in mammals as well. Mathematical models have shown that
the MAPK pathway is controlled by a hysteresis (Bhalla and Iyengar, 1999)
(see Section 7.4.1), and that the ultrasensitivity arises from the multiple
phosphorylations on the receptor sites. All these features of the switch allow
the filtering of noise and the activation of the pathway only when the signal
is frank.

As presented in a review on modelling of signalling pathways and more par-
ticularly that of the MAPK cascade (Klipp and Liebermeister, 2006), mathe-
matical models are used to model different aspects of the signalling pathway:
the relative amount of phosphatases and kinases (Hornberg et al., 2005; Bhalla
and Iyengar, 1999), signal amplification (Heinrich et al., 2002; Shibata and
Fujimoto, 2005; Mayawala et al., 2004), the effect of feedback loops (Kholo-
denko, 2000; Huang and Ferrell, 1996), the effect of scaffolding (Levchenko
et al., 2000), and the importance of crosstalks between the MAPK cascade
and other pathways (Schwartz and Baron, 1999). Heinrich et al. (2002) have
proposed a model that explored three key aspects of the cascade: the amplitude
of the signal, the time of the signal, and the duration of the signal. According
to the value and the kinetics associated to these variables, the output signal
will be different.

Note that in the cell cycle model presented in Section 7.3, in response
to growth factor activation, the MAPK cascade leads to the synthesis of
CyclinD1, the activation of the complex CyclinD1/CDK4 (referred to as
CycD/CDK4 in the model) and the inactivation of RB.

8.1.2 Evading growth suppressors

It is the role of tumour suppressor genes to negatively regulate cell pro-
liferation. Among these tumour suppressor genes, RB and its role in the cell
cycle has been mentioned in Chapter 2. Another important tumour sup-
pressor gene is TP53. TP53 plays a significant role in cell death and more
particularly the regulation of apoptosis in response to DNA damage (see Sec-
tion 8.1.5).

Similar to the MAPK kinase, there exist external negative signals that
activate inhibitors of the cell cycle when growth needs to be stopped. In normal
conditions, these signals are often ON when the cells have entered a post-
mitotic state, senescent or differentiated state. The same types of questions
that were posed for the growth activation pathways can be addressed for the
growth inhibitory pathways.

The transforming growth factors (TGFβ) pathway is one of these signalling
pathways that ultimately leads to the transcription of cell cycle inhibitors such
as p15INK4b and p21CIP1, blocking the cycle at G1/S or G2/M transitions.
It is also largely involved in loss of contact inhibition and cell evasion (see
Section 8.1.4)

Depending on the cell conditions, TGFβ is both a tumour suppressor
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gene∗ and a growth promoting gene. The TGFβ family members are cytokines
involved in anti-proliferation and evasion mechanisms. Depending on the cell
type, TGFβ can be involved in other pro-cancerous mechanisms. Indeed, it
can promote proliferation, apoptosis, angiogenesis, cell motility, differentiation
and survival.

TGF ligands bind to Type I and Type II receptors at the cell surface.
The newly-formed receptor unit phosphorylates cytoplasmic regulators, the
R-Smads. Once phosphorylated, the R-Smads recruit other Smad partners
and translocate to the nucleus, where genes are transcribed in a cell-type
dependent manner.

Some of the mathematical models developed around TGFβ concentrate
on the regulation at the receptor level (Vilar et al., 2006), others focus on
Smad phosphorylation (Clarke et al., 2006), or on the nuclear transport and
the transient activating signal coming from a negative feedback loop (Melke
et al., 2006). Some studies have been proposed on the different roles of TGFβ
such as its role in cancer and more particularly in cell motility (Wang et al.,
2007). More comprehensive models include aspects of TGFβ signalling (both
mechanistic and quantitative) that offer a more precise view of the possible
deregulations of this cascade in cancers (Zi and Klipp, 2007).

8.1.3 Activating invasion and metastasis and the role of tu-
mour microenvironment

Tumour expansion into adjacent tissues and the appearance of metastasis
are two important steps in tumorigenesis∗ converting a tumour into malig-
nant disease threatening the life of the organism. In this sense, the hallmark
of cancer connected to invasion is one of the most important from a clinical
perspective. Tissue invasion by tumour is usually associated with dissemina-
tion of cancer cells into adjacent tissues while metastasising is associated with
remote colonisation of distant tissues. A metastatic∗ colony is a result of a
continuous process starting from the early growth of the primary tumour∗,
and detachment of invasive tumour cells from the primary tumour leading to
the colonisation of other organs.

Genetic changes causing an imbalance of growth regulation lead to un-
controlled proliferation necessary for both primary tumour and metastasis
expansion. However, unrestrained growth does not, by itself, cause invasion
and metastasis. This phenotype may require additional genetic changes. Thus,
tumorigenicity and metastatic potential have both overlapping and separate
features. For example, it was demonstrated that in addition to loss of growth
control, an imbalanced regulation of motility and proteolysis appears to be re-
quired for invasion and metastasis (Liotta and Kohn, 2003). Therefore, inter-
action of cancer cells with surrounding tumour microenvironment is of extreme
importance for understanding the mechanisms of invasion.

One of the most important molecular mechanisms involved in tissue inva-
sion and metastasis is Epithelial-to-Mesenchymal Transition (EMT)∗.
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It is an important process during embryonic development, cancer dissemina-
tion and wound healing. In each of these events, cells are required to migrate
from one location to another. In order to achieve this, the cell must acquire
the capacity to infiltrate surrounding tissue and to ultimately migrate to a
distinct site. An overt feature of this process is a change of cell morphology
from a sedentary type to one that facilitates migration in the Extracellular
Matrix (ECM)∗ and settlement in an area involved in tissue growth and
repair (or cancer metastasis). EMT is characterised by loss of cell adhesion,
repression of E-cadherin, and increased cell mobility.

To establish a successful colony, a cancer cell must successfully bypass a
number of obstacles: leave the primary tumour, enter the lymphatic and blood
circulation, survive within the blood circulation, overcome host defences, ex-
travasate and grow as a vascularised metastatic colony. At each step, there
are big chances for a cancer cell to die. As a result, a very small percentage
(< 0.01%) of Circulating Tumour Cells (CTC) ultimately initiates successful
metastatic colonies. Interestingly, it was shown recently that not only tumoral
but also normal cells are capable to travel through the body and fix themselves
in distant organs (Podsypanina et al., 2008).

All these experimental facts posed a number of theoretical questions on
the process of metastasising and evolution of metastatic potential in tumours.
Below we list some of the most important of them:

1. Can metastatic potential of a cancer cell be a subject of Darwinian
natural selection, and in what sense?
Selection of a cancer cell for fitness with respect to use of nutrients and
survival inside a tumour is easy to understand. What kind of selection
could drive a cancer cell to evolve to metastatic phenotype is not yet
clear.

2. How early is the metastatic potential acquired by cancer cells in tumori-
genesis?

3. How is metastatic potential related to the tumour size?
It is known that the metastatic potential depends on the tumour size in
some cancers (i.e. breast adenocarcinoma) while in other cancers (i.e.
small cell lung cancer) even small tumours can metastasise very early.

4. Is metastatic potential a relatively rare trait in the population of cells
inside a primary tumour?
A related question is: do distant metastatic colonies possess the same
genetic alterations leading to cancer as in the primary tumour?

5. How to explain tissue preference for seeding metastasis in particular
cancers?
For example, prostate cancer usually metastasises to the bones and colon
cancer or uveal melanoma∗ have a tendency to metastasise to the liver.

Answering these questions is extremely important in developing successful
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strategies for treating malignant tumours. There are several aspects here. For
example, in clinical practice, many stage I solid tumours are treated according
to the worst-case scenario, namely that the tumour will metastasise. In reality,
however, only 10 − 20% of people with cancer will die from disseminated
cancer. However, if the metastatic potential appears very late in tumour
progression∗ (after the treatment) then the lethality prognosis∗ for the
treatment outcome might be very unreliable based on the biopsy taken before
the treatment. If the metastatic colonies are genetically very different from
the dominant clones of the primary tumour then it might make any targeted
therapy very questionable: the biopsy of the primary tumour might not be
able to give any information on what are the driving tumorigenic mutations
in metastasis.

Unfortunately, most of the important questions in this field do not have
yet a clear answer. Nowell (1976) proposed the clonal selection hypothesis
where the mutator phenotype results from sequential rounds of clonal selec-
tion. Accordingly to this hypothesis, within the primary tumour, there are
one or several tumour cell sub-populations able to complete the metastatic
process (Fidler and Kripke, 1977). Some later hypotheses on the process of
appearance of metastasis underlined several specific possible scenarios which
nevertheless can be considered as special cases in the process of clonal selec-
tion (Talmadge, 2007). Hypothesis of parallel evolution states that the seeds of
metastasis can be disseminated relatively early in tumour development such
that to the moment of clinical tumour detection the primary tumour and
metastasis can already have followed significantly different evolutionary his-
tory. Dynamic heterogeneity hypothesis states that the cells with metastatic
phenotype can be continuously generated and lost within the primary tumour,
and that the metastatic phenotype is a transient phenomenon. It suggests
that the frequency of such transitions plays a determinate role in metastasis-
ing. The dynamic heterogeneity model has also been suggested to incorporate
reversible EMT. Clonal dominance theory suggests that metastatic phenotype
is advantageous in clonal competition such that most of the cells in the pri-
mary tumour possess it to the moment of metastasis appearance. Finally, the
Cancer Stem Cell (CSC)∗ hypothesis states that only a small fraction of
stem-like cancer cells are able to spread in the organism and seed themselves
at distant sites.

Until so far, mathematical modelling has contributed to clarifying the
mechanisms of tumour invasion and metastasis in several relatively narrow
aspects. Firstly, machine learning techniques were applied to derive prognos-
tic molecular signatures of metastasis-free survival for cancer patients before
they are treated. More recent approaches aimed at using the current knowl-
edge on biological networks such as Protein–Protein Interactions (PPI) in
ameliorating these signatures. These methods were described in more detail
in Chapter 6.

Mechanistic modelling of tumour invasion and metastasis is based on using
spatial and multiscale modelling techniques and describes interaction between
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tumoral cells and tumoral microenvironment which can include several types
of normal cells (of the stroma or immune system) and various structures such
as ECM. Proliferation and death of tumoral cells coupled with their diffusion
through tissue is modelled by using diffusion-reaction equations, or by using
agent-based techniques with explicit rules on movement and transformation
of cancer cells in some (usually discrete) space. Multiscaleness of modelling
in this case is manifested in embedding more detailed intra-cellular models of
biological networks in the set of formal rules governing the cellular behaviour.

One of the simplest models of tumour invasion in a passive diffusion-like
fashion for describing invasion of a brain by glioma∗ was suggested by Swan-
son et al. (2003). The invasion is modelled by a standard diffusion equation
including the term responsible for local cell proliferation. In the case of glioma,
even this simple description is able to realistically model the tumour expan-
sion, taking into account the brain shape, effect of surgical resection∗ and
action of chemotherapy∗.

More elaborated models of tumour invasion include taking into account
active transformation of the surrounding environment by tumoral cells. In
this way, Anderson et al. (2006) developed a hybrid discrete-continuous model
of tumour invasion. The model represents a mix of cellular automata and
continuous modelling approaches, in which four components are considered:

1. The cancer cells, in the form of cellular automata, which are able to
move in a two-dimensional space

2. Nutrients necessary for a cancer cell to survive represented by local
oxygen concentration

3. ECM represented by the concentration of matrix macromolecules

4. The concentration of the Matrix Degrading Enzyme (MDE)

The model considers a possibility of clonal heterogeneity and natural selec-
tion by introducing mutational process in the rules governing the cancer cell
behaviour. The most interesting prediction from this model was that the harsh
microenvironment (characterised by hypoxia∗, heterogeneous ECM) can pro-
vide the conditions to select for more invasive clones and reduce the clonal
heterogeneity. This happens because those cells which acquired partial inde-
pendence in the tumour microenvironment might receive a selective advantage
in harsh conditions. The hypothesis that the tumour microenvironment in cer-
tain conditions might entrain cancer cells for invasion and metastasis has im-
portant clinical consequences. In particular, the model predicts that invasive
tumour properties are reversible under appropriate microenvironment condi-
tions and suggests that the therapy aimed at cancer-microenvironment inter-
actions may be more successful than making the microenvironment harsher
(e.g. chemotherapy or anti-angiogenic therapy).

One important aspect of interaction between tumour cells and tumoral
microenvironment and normal stroma consists in changing the acidity of the
environment by cancer cells. Recently, this acid-mediated tumour invasion
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model received a lot of attention from the point of view of mathematical
modelling. In Martin et al. (2010) a mathematical model of this phenomenon
was suggested extending an older acid-invasion reaction-diffusion model cre-
ated by Gatenby and Gawlinski (1996). The model includes five processes: (1)
tumour cells produce excess acid which diffuses into surrounding tissue; (2)
acidification of the environment causes death of untransformed normal cells;
(3) death of normal cells produces potential space into which the tumour cells
may proliferate; (4) in order to invade, the tumour cells must not only kill
the normal cells by environment acidification but also degrade the ECM; (5)
the ECM is remodelled by active Matrix MetalloProteinases (MMP) which
are formed only at the interface between tumour and normal cells. In a way,
the model states that for invasion, tumour cells must cooperate with normal
cells. As a result, two interesting predictions come from this modelling. First,
the model predicts that there is an optimal level of environment acidification
for invasion of cancer cells. This level represents a trade-off between excessive
killing of normal cells (and, as a result, failing to produce sufficient amounts of
MMPs) and insufficient killing of normal cells (losing competition for space).
Second, the model predicts that very aggressive cancers can be encapsulated
by creating a gap between the tumour and normal stroma, a feature observed
by clinicians in some cancers. Both predictions have potential for developing
cancer treatments by preventing tumour invasion, by increasing local acidity
of the environment in advanced cancers and decreasing local acidity in early
carcinomas.

The multiscale mathematical model developed in Ramis-Conde et al.
(2009) represents in greater detail the process of cell passage through ves-
sel walls. The model utilises a multiscale approach, modelling interaction
between β-catenins and N- and VE-cadherins and disruption of the bonds
between endothelial cells by tumoral cells travelling in the blood stream. The
intra-cellular mechanisms in this model are represented through the standard
reaction network approach and the inter-cellular interactions are modelled us-
ing a biophysical approach taking into account cell shapes. The model is able
to reproduce many experimental observations on the quantitative parameters
of extra- and intravasation∗.

The collection of above mentioned models represents the first attempt to
formally describe the complex and multistep process of tumour invasion and
metastasising. Further efforts will be needed to create new models representing
the missing steps of invasion (such as overcoming host defences by metastatic
cells travelling in the body) and integrate existing models in a single model
of tumour invasion. This future model recapitulating many scenarios of how
tumours invade the host organism will have a strong impact on developing
treatment strategies aimed at preventing the appearance of metastasis, hence,
saving patients’ lives. Also efforts should be made for closing gaps in under-
standing and formalising the process of tumour invasion. For example, cur-
rently there is no mathematical model to describe the molecular process of
EMT which apparently plays a crucial role in equipping cancer cells with en-
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vironment independence and motility. Together with this, in silico reconstruc-
tion of the tumoral microenvironment and the mechanisms of its functioning
and determining the cancer cell fates is another outmost important direction
in this field.

8.1.4 Inducing angiogenesis

Angiogenesis is the process by which cells grow new blood vessels from al-
ready formed vessels to supply nutrients and oxygen to the tissues. Angiogen-
esis is involved in wound healing and reproduction but also in tumorigenesis,
cardiovascular diseases, diabetic ulcers, etc. In healthy cells, angiogenesis is
controlled by a balance of pro-angiogenic vs. anti-angiogenic factors. In tu-
mour cells, this balance is perturbed and an abnormal proliferation of blood
vessels is observed.

Most of the models are built so as to test possible anti-angiogenic ther-
apies. More particularly, mathematical models have provided insights in the
understanding of the different processes of angiogenesis, in the reproduction
of the dynamics of angiogenesis and in exploring means to re-establish the lost
angiogenic balance by exploring possible targets for angiogenesis therapies.

There are major steps in angiogenesis presented schematically here. The
activation of quiescent endothelial cells lining the cell walls is triggered by
angiogenic signals. In response to these stimuli, the endothelial cells become
motile by losing cell-to-cell contact and start developing a capillary sprout.
This is made possible by the activation of the MMPs that degrade both the
basement membrane of the vessel and the close ECM surrounding the sprout.
The MMPs allow the endothelial cells to grow and to start sprouting in the
direction of the angiogenic stimulus. The growing and dividing endothelial cells
merge and form a hollow tube in their centre, the lumen. The maturation of
vessels insures that pericytes and smooth muscle cells surround and stabilise
the tube formed by endothelial cells towards the tumour. New branches and
loops form and eventually the tumour can receive the necessary nutrients and
oxygen to survive and spread.

The stimuli of angiogenesis are essentially composed of growth factors.
They trigger intracellular signalling pathways that control biological responses
such as proliferation, death, differentiation, senescence or survival. In tumours,
angiogenesis is induced by excessive secretion of these growth factors. The
main growth factors that play a role in angiogenesis are the following:

• The fibroblast growth factors (FGF family), which, once active by au-
tophosphorylation and dimerisation, activate cascades of events and
eventually lead to biological responses that favour growth of endothelial
cells, smooth muscle cells and fibroblasts.

• The vascular endothelial growth factors (VEGF), which drive the forma-
tion of new capillaries. When cells become oxygen-deficient, they start
to express VEGF which stimulates endothelial cells.
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• The transforming growth factors (TGFβ), which can either stimulate
proliferation in some cell types or block it in other cells.

• The epidermal growth factors (EGF), which activate cascades that lead
to proliferation, differentiation or apoptosis.

• The angiopoietins and Tie receptors, where the Tie receptors, Tie1 and
Tie2 are expressed in angiogenic cells and the angiopoietins Ang1 and
Ang2 participate in the formation of mature blood vessels and act as
ligands to the Tie receptors, and more particularly to the Tie2 receptors.

• The platelet-derived growth factors (PDGF).

• The insulin-like growth factor (IGF).

So far, most of anti-angiogenic therapies have concentrated on VEGF
and on how to inhibit it, being the main signalling molecule to angiogenesis.
Among the existing drugs, the angiogenesis inhibitor bevacizumac has been
used since 2004 to treat colon cancer and glioblastoma∗ with chemotherapy
treatment. Bevacizumac binds and inhibits VEGF (Shih and Lindley, 2006).
It has been proven to slow down tumour progression when used in combina-
tion with chemotherapy but not to cure these cancers. Other inhibitors such
as sorafenib and sunitinib block the angiogenesis signalling pathway at differ-
ent levels. The first one acts on hepatocellular carcinoma and kidney cancer
and the latter on both kidney cancer, gastrointestinal stromal tumours and
neuroendocrine tumours.

The formalisms used for modelling angiogenesis are essentially of two types:
continuum and discrete (see Section 7.1.4). Continuum models explore the
distribution in time and space of various variables (cell density, species, etc.).
They are described as continuous variables governed by reaction-diffusion
equations in one-space dimension (Balding and McElwain, 1985; Orme and
Chaplain, 1996), two-space dimension or/and three-space dimension (Orme
and Chaplain, 1997; Anderson and Chaplain, 1998; McDougall et al., 2006).
Most of the models use Partial Differential Equations (PDE), stochastic or
not (Merks and Glazier, 2006), and some models use nonlinear Ordinary Dif-
ferential Equations (ODE) to model tumour growth (Arakelyan et al., 2002).
Discrete models are of several types: Boolean models where model variables are
components of the signal transduction pathways activated during angiogenesis
(Bauer et al., 2010) and the second one where behaviour and interactions of
cell components of angiogenesis are described as lattice models such as agent-
based models (Stokes and Lauffenburger, 1991; Alarcon et al., 2003; Owen
et al., 2009). Both types of discrete models are often simulated stochastically.
Some mathematical models have included both types of formalisms to tackle
different features of angiogenesis and with a multiscale perspective (Macklin
et al., 2009; Perfahl et al., 2011; Wu et al., 2009). Very detailed reviews on
mathematical modelling of angiogenesis describe the different formalisms, the
purpose of the models and their findings (Peirce, 2008; Mantzaris et al., 2004).

On a more biological point of view, existing models have focused on par-
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ticular biological aspects of angiogenesis such as initiation of capillary growth
in response to angiogenic factors or initiation of buds from primary vessel
(Levine et al., 2000; Orme and Chaplain, 1996), interaction between endothe-
lial cells and the ECM (Anderson and Chaplain, 1998), cell movement and
interaction with the environment (Anderson and Chaplain, 1998; Stokes and
Lauffenburger, 1991), sprout branching with the addition of cell stochasticity
(Anderson and Chaplain, 1998), therapeutic discovery and combined use of
target components (Arakelyan et al., 2002; Mac Gabhann and Popel, 2006),
etc.

8.1.5 Resisting cell death

Resisting cell death or escaping apoptosis is one of the most frequent hall-
marks in cancer. The main questions that mathematical models of this hall-
mark have tried to answer focus on the biochemical details of apoptosis: what
is the machinery capable of activating different modalities of cell death and
what are the crosstalks between these modalities? As it is the case for an-
giogenesis, cell death is controlled by a balance between pro-apoptotic versus
anti-apoptotic factors. More generally, homeostasis∗ is maintained by the
equilibrium between death and proliferation of cells. The quantitative aspect
in modelling cell death is therefore important. It permits one to tackle ques-
tions such as: what molecular factors contribute to this balance? Is the decision
to enter cell death irreversible, and if not, when is the cell committed to die?

Over the past years, mathematical modelling of apoptosis has concentrated
on both the activation of mitochondrial-dependent apoptosis in response to
DNA damage via TP53, referred to as the intrinsic pathway, and on the
receptor-triggered apoptosis via death receptors such as Fas or TNFR, referred
to as the extrinsic pathway.

The intrinsic apoptotic pathway is initiated by TP53 in response to stimuli
such as DNA damage. The dynamics of TP53 activation has raised interest.
The focus was on how the cell knows when DNA cannot be repaired and how
apoptosis is turned on, or also how TP53 dynamics and activity are linked to
initiation of apoptosis. Periodic pulses of TP53 with varying amplitudes have
been observed by several experimental groups (Lahav et al., 2004; Lev Bar-Or
et al., 2000) and studied by theoretical groups (Ciliberto et al., 2005; Geva-
Zatorsky et al., 2006; Ma et al., 2005). These TP53 oscillations may be born
from the negative feedback involving MDM2 and TP53 but how this behaviour
really triggers apoptosis remains obscure. This part of the apoptotic pathway
needs more investigation both from an experimental and a theoretical point
of view.

The extrinsic apoptotic pathway is initiated at the level of the receptors.
Many studies have been proposed on the formation of the Death-Inducing
Signalling Complex (DISC) and its implication in cell fate decision between
death and survival (Bentele et al., 2004; Lavrik et al., 2007). The activation of
the receptors can lead to cell death, cell growth and differentiation depending
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on the concentration of crucial players such as cFLIP (Han et al., 2008).
Aguda and Algar (2003) proposed early in the history of cell fate modelling a
very qualitative model, which introduced some feedback loops in the decision
process and insisted on the need for nonlinearity to either enter the cell cycle
or to provoke apoptotic death. Since then, more models of cell fate decision
have been proposed (Gaudet et al., 2005; Lavrik et al., 2007; Philippi et al.,
2009; Calzone et al., 2010) but they mainly concentrate on early decisions.

Fussenegger et al. (2000) were the first to present a model that contained
both pathways in a great amount of detail. With a small model, Bhalla and
Iyengar (1999) were able to show some emerging properties of the system.
Among these emerging properties, the all-or-none response observed in cas-
pase activation (Eissing et al., 2004) and in BAX/BCL2 interaction (Cui
et al., 2008) is brought into relief in models of no more than 4 and 5 variables
respectively. Both bistability and irreversibility are shown at several levels and
appear to be a recurrent feature in apoptotic models.

There exist also two types of apoptosis: Type I and Type II. Type I apop-
tosis can be found in some cell types. It is the program that concerns the
positive feedback involving early caspases such as caspase-8 (CASP8) and
the effector caspases such as caspase-3 (CASP3). This apoptotic program has
been thoroughly studied by Eissing et al. (2004), as well as the perturbation
of this feedback by specific caspase inhibitors (Stucki and Simon, 2005). It has
been proven that the fight between caspases and their inhibitors can either
destabilise or enhance the bistable behaviour (Choi et al., 2007; Legewie et al.,
2006). Other bistable switches are involved in the type II cells. Type II cells
concern events regulating mitochondria permeabilisation (Choi et al., 2007;
Legewie et al., 2006) and consequential release of essential components lead-
ing to activation of effector caspases (Eissing et al., 2007; Nakabayashi and
Sasaki, 2006; Rehm et al., 2009). Mathematical models have also shown that
the amount of inhibitors could suppress the apoptotic phenotype. For instance,
BCL2 seems to have the capability to block type-II or intrinsic apoptosis (Hua
et al., 2005; O’Connor et al., 2006). In a very detailed model of the extrinsic
apoptosis, the switch-like behaviour brought about by the positive feedback
implicating CASP8 and CASP3 and the role of the permeabilisation of the
mitochondria membrane were deeply studied (Albeck et al., 2008). Similarly,
the role of the apoptotic inhibitor cFLIP in the regulation of type-I cell death
has been demonstrated by Bentele et al. (2004).

Most of the models of the apoptosis pathway use a continuous framework
based on ODEs in order to follow the rate of change of protein concentration.
Rehm et al. (2009) proposed the first spatio-temporal model of mitochondria
outer membrane permeabilisation using PDEs. Some other discrete formalisms
have also proved their validity and brought their contribution in the analysis
of apoptotic mechanisms such as Boolean (Tournier and Chaves, 2009) and
Petri Nets modelling (Heiner et al., 2004; Li et al., 2007). The review of models
describing apoptosis and cell fate decision is not exhaustive but illustrates the
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growing interest, over the past 10 years, of understanding the mechanisms of
cell death.

8.1.6 Genomic instability and mutation

Genomic instability, sometimes called genetic instability or genome insta-
bility or genome plasticity is believed to be characteristic of the majority of
tumours. Most generally it can be defined as the inability of a cell to repro-
duce intact genome, its exact sequence and separation in chromosomes, from
one cell generation to an other. This is a rather quantitative than qualitative
notion since the normal process of DNA replication is never guaranteed free
from errors. At average the rate of mutation with probability 10−7 per gene
per cell division is considered as physiological (Komarova, 2005). Significantly
higher mutation rates could be considered as genomic instability. To avoid
confusion, the process of genomic instability should not be mixed up with the
observation of a modified genome. Observations of genome abnormalities do
not automatically lead to the conclusion about the presence of genomic insta-
bility (for example, tetraploid genomes can be stably reproduced in human
cell lines). However, the presence of a large number of independent genomic
abnormalities usually evidences existence of a period of genomic instability at
some moment of the genome evolution.

Known mechanistic causes of genomic instability can be classified by the
scale of the resulting genome modifications. A genome modification of the
largest scale is the whole genome duplication which can lead, for example,
to frequent tetraploidisation. Genomic instability at the scale of chromo-
somes is called Chromosomal Instability (CIN) and is manifested by loss
and amplification of whole chromosomes or their large parts and inter- and
intra-chromosome translocations∗. Mechanistic causes leading to both whole
genome duplication and CIN remain obscure; however, some possible mech-
anisms leading to defective mitosis have been established. At smaller scale,
genomic instability is manifested, for example, by Microsatellite Instability
(MIN), associated with defective Mismatch Repair (MMR) or Homologous
Recombination (HR) mechanisms. Replication errors or problems with Base
Excision Repair (BER) can lead to base substitutions and micro-insertions
and micro-deletions. In this section we will denote all instabilities leading to
large-scale genome rearrangements as CIN, and all types of instabilities lead-
ing to smaller-scale genome modifications as MIN.

Increased rate of mutations can be induced by external factors leading to
DNA damage, such as UV light exposure or toxic stress. If disappearance of
the external source of DNA damage leads to genome stabilisation then this
is usually distinguished from genomic instability; however, this distinction is
rather subtle. A physiologically normal cell should be able to preserve its
genome by inducing various DNA repair mechanisms or apoptosis. However,
all these mechanisms can be leaky, especially at high rates of DNA damage,
therefore, the fact of increased mutation rate might not necessarily indicate
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the existence of defective cell cycle checkpoints or DNA repair. Hence, ge-
nomic instability and the presence of DNA damaging factors (such as radio-
or chemotherapy) create a nontrivial interplay which can be a subject of math-
ematical modelling.

At any scale, genomic instability is associated with genetic or epigenetic
defects in proteins with the function of genome caretakers. These genes are
usually considered as a special class of tumour suppressor genes with BRCA1,
BRCA2, ATM , and MLH1 being the most studied examples. Mutations in
caretaker genes can be recessive like for the classical tumour suppressor genes
or dominant-negative mutations (thus, requiring only single allele mutated
for compromising the gene’s caretaker function). Historically, the function of
many caretakers was discovered from familial genetic studies.

The phenomenon of genomic instability being practically omnipresent in
cancer cells led to formulation of two major theoretical questions:

1. Is genomic instability required for tumorigenesis or it is rather caused
by tumorigenesis?

2. How early does genomic instability appear in tumorigenesis?

Despite many experimental and theoretical studies, both questions remain
pending and hotly debated topics in current literature.

The multistep theory of tumorigenesis claims that most of the cancers
require many (more than two) genetic changes for a single cancerous cell to
appear. Taken simplistically, this leads to a conceptual problem, since the
normal physiological mutation rate does not explain accumulation of suffi-
cient number of genetic transformations in one cell during a typical human
lifespan (70 years). Hence, the mutation rate should be increased at some
point, and this is the essence of the mutator phenotype hypothesis suggested
by Loeb et al. (1974), which states that mutator (read caretaker) mutations
play a crucial role in tumorigenesis by accelerating the acquisition of oncogenic
mutations. In its stronger formulation, the mutator hypothesis also postulates
that a mutator phenotype should appear relatively early in the sequence of
accumulated oncogenic mutations.

Since then this simple suggestion has been criticised along two lines of
argument. The first objection states that genomic instability in most circum-
stances is deleterious for cancer cells and the cell clones possessing genomic
instability should be rapidly eliminated (negative clonal selection theory). The
second objection is known as clonal expansion theory, stating that each onco-
genic mutation leads to expansion of premalignant lineages, creating by this a
larger cell pool possessing the malignant mutation. Thus, the requirement of
appearance of two independent mutations in the same single cell is relieved.

Recent sequencing of a cohort of cancer genomes has shown the absence
of frequent (or total absence of) mutations in the known caretaker genes (Ne-
grini et al., 2010). With some reservations, this suggests the oncogene-induced
DNA replication stress model. According to this model, the malignant cell first



252 Computational Systems Biology of Cancer

should acquire a mutation in an oncogene leading to increased cell prolifera-
tion. After this, the activated oncogenes induce genomic instability through
DNA replication stress which in particular affects specific genomic sites, called
common fragile sites. This genomic instability leads to cell cycle arrest and
massive apoptosis unless in one of the damaged cells the function of TP53 is
compromised, which results in cells evading cell death and senescence. This
model is also different from the classical mutator hypothesis.

The last argument against the original mutator hypothesis is that appear-
ance of genomic instability can serve to reduce replication cost rather than
to increase mutability. The cells avoiding cell cycle delays connected with
maintaining and repairing the genome can have selective advantages simply
because they do not spend their resources on caring about genome integrity.
Of course, these cells will be characterised by higher mortality; however, some
of them will be able to occasionally survive.

Resolving these controversies crucially depend on the quantitative param-
eters of cancer cell evolution. Therefore, mathematical modelling traditionally
plays a very important role in interpreting experimental observations and its
role will only increase in the future.

The mathematical formalism largely used in this kind of study is based
on the classical discrete or continuous Markov chain modelling. The possi-
ble scenarios of cancer cell evolution are usually systematised using so-called
mutation-selection networks (Komarova, 2005). In these networks a state of a
cell is characterised by probabilities of transition into other states (including
transition in itself). For example, the simplest example of a mutation-selection
network is shown by Figure 8.1A. In this network, three genetically different
types of cells are presented: a wild type cell (state A), a cell with a mutation in
one copy of a tumour suppressor gene (state B), and a cell with mutations in
both copies of a tumour suppressor gene (state C). Transitions between these
states represent the probability to obtain a single mutation u, and the proba-
bility to obtain two mutated copies of a tumour suppressor gene in the same
cell from one mutated allele state. Using this diagram, differential equations
for continuous Markov chain modelling can be written down, and the proba-
bilities of tumour initiation can be computed. The model can reproduce two
major scenarios: 1) acquisition of malignant transformation through fixation
of a mutation in one allele and then a transformation to the state with two
mutated alleles and 2) a mutation tunnelling scenario when a double-mutation
phenotype appears more rapidly than a single-mutation phenotype is fixed in
the population. For understanding details of this approach, the reader should
refer to the excellent book written by Komarova (2005).

More complex example of a mutation-selection network is shown in Fig-
ure 8.1B. In this network, a simple Knudson two-hit model is extended by a
possibility of genomic instability. On this diagram, the letter signifies the type
of genomic instability phenotype (X for the state free of genomic instability,
Y for the state with the CIN instability and Z for the state with the MIN
instability), and the number signifies the number of mutated alleles in the
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tumour suppressor gene (0 for the wild type gene, 1 for one allele mutated,
2 for two alleles mutated). Thus, instead of obtaining a single-copy mutation
of a tumour suppressor gene, cells can obtain the mutator mutation, i.e. a
mutation leading to genomic instability, either of CIN type (one step below
from the wild type state) or of MIN type (two-steps mutations above from the
wild type). In this model, it is assumed that for obtaining the CIN phenotype,
only a single mutation in a caretaker gene is required (negative-dominant mu-
tation), and to obtain the MIN phenotype, two mutations in both caretaker
alleles are required. When a cell obtains the CIN mutator mutation, the prob-
ability of obtaining the first and the second mutation in the tumour suppressor
gene, is increased manifold. The model describes many possible scenarios of
coming from the wild type state X0 to one of the malignancy initiation states
(X2, Y2 or Z2). One possible scenario is depicted on the diagram by a series
of dashed arrows. In this scenario, mutation in one tumour suppressor allele is
fixed in the cell population, after which one of the cells acquires chromosomic
instability by a mutator mutation. This leads to a relatively fast inactivation
of the second allele.

A more complicated selection-mutation network (see Figure 8.1C) de-
scribes the appearance of the genomic instability in the presence of DNA
damage. There are five states on this diagram depicting (1) a normal cell, (2)
a damaged cell, (3) a cell in the state of DNA reparation and cell cycle arrest,
(4) cell acquired a tumorigenic mutation and (5) the cell following programmed
cell death (denoted apoptosis on this diagram, but it can be any other type of
cell death). The model that can be constructed from this diagram describes
the balance in how the damaged cell follows one of the three cell fates: being
repaired, going into apoptosis, and acquiring the mutated tumorigenic pheno-
type. The model can take into account the relative efficiency of DNA repair,
efficiency of apoptosis and the lethal consequences of tumorigenic mutations.
Thus, the effect of three types of mutations can be considered in this model:
those leading to tumorigenic transformation, those affecting DNA repair and
those affecting apoptosis.

Using the mutation-selection network formalism for systematic modelling
of sporadic∗ and hereditary cancer initiation with colorectal cancer as a
prototype example, the following theoretical predictions were obtained (we
do not aim here to give the exhaustive list of predictions) (Komarova, 2005,
2004):

1. Smaller-scale instabilities (such as MIN) and larger-scale instabilities
(such as CIN) might have different roles in tumorigenesis. CIN cells are
more likely to produce nonviable offspring than MIN. At the same time,
it may be possible that CIN is easier to trigger. Mathematical analysis
shows that if inactivation of MIN genes (genetic or epigenetic) occurs at
sufficiently fast rate, around 10−6 per cell division, then at least in the
case of colon cancer, MIN can precede mutation in the principal tumour
suppressor gene APC. To decide whether CIN can be also advantageous
for accelerating tumour development, several crucial parameters should
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FIGURE 8.1 Examples of mutation-selection diagrams used to compute
probabilities of cancer cell initiation for the simplest Knudson two-hit
model of tumour suppressor inactivation. (A) Two-hit tumour inactivation in
the presence of two types of genomic instability, MIN and CIN (B) Cell transforma-
tion in the presence of DNA damage, DNA repair and apoptosis. (C) Each node of
the network represents a sub-population of cells in a certain state, edges represent
transition probabilities. (B) In the network higher probabilities are indicated with
thicker arrows and one particular scenario is shown by dashed arrows. In this sce-
nario, mutation in one tumour suppressor allele is fixed in the cell population, after
which one of the cells acquires chromosomic instability by a mutator mutation. This
leads to a relatively fast inactivation of the second allele. Adapted from Komarova
(2005).

be specified such as the number of dominant CIN genes in the human
genome, the rate of CIN gene inactivation and the cost of having CIN
(because of increased lethality). Absence of reliable knowledge on these
parameters currently prevents us from having definite conclusions on
whether CIN plays a triggering role in colon cancer.

2. The fitness of cancer cells (i.e. probability to divide) is optimised if the
rate of chromosome loss is of the order of 10−3 − 10−2. This turned out
to be a robust result which coincides with experimental values obtained
for colon cancer cell lines (Lengauer et al., 1998). This rate can be a
subject of natural selection in cancer cell colonies, hence it is predicted
that it will be a characteristics for most of the cancers.

3. CIN mutation does not arise simply because it allows a faster accu-
mulation of tumorigenic mutations; instead, CIN must arise because of
alternative reasons such as environmental factors, oxidative stress or
tumorigenesis (for example, inactivation of a tumour suppressor gene).

4. If the tumour arises because of activation of oncogenes rather than inac-
tivation of a tumour suppressor then chromosomal instability is likely to
be detrimental to the cancer. It happens simply because to turn on an
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oncogene, a small scale mutation is needed whereas a chromosomal loss
event can lead to inactivation of a functioning oncogene. The situation
can become very complex if both oncogenes and tumour suppressors
play a role in tumorigenesis.

5. Genetic instability in cancer increases (by accelerating the mutation
rate) and decreases (by making many cells nonviable) the rate of cancer
progression. As cancer progresses, the balance of these two selective
pressures changes, and selection can switch cancer cells from unstable to
stable regimes. Mathematical modelling confirms that this might be the
most efficient strategy for cancer cell growth in terms of optimal control
theory (Komarova et al., 2008).

It should be understood that the predictions obtained from all of the mod-
els depicted above depend very strongly on the assumptions made for the
quantitative values of probabilities of state transitions. The most important
among these probabilities are the rate at which key mutations are acquired
and the rate of clonal expansion. Currently we have rather vague ideas about
their possible numerical values. These probabilities integrate very complex
biochemical mechanisms which are not presented on the diagrams explicitly.
In this sense, the presented models are rather phenomenological descriptions
that need to be detailed in the future.

Systems biology of cancer in its current state poses new challenges for mod-
elling genomic instability and its role in cancer. Sequencing cancer genomes
provides an unprecedented amount of data which can in principle shed light
on the processes of cancer genome evolution, implementations of CIN and
MIN mechanisms and the role of DNA repair defects in tumorigenesis. The
final goal of systems biology in this case will be to unravel the mechanistic
details of the most typical scenarios of acquisition of genomic changes leading
to tumorigenesis and explain the observed patterns of genome modifications
in concrete cancer types and subtypes. This remains a challenge for the next
decade of mathematical modelling of tumorigenesis.

8.1.7 Tumour-promoting inflammation

As early as 1863, Rudolf Virchow made a connection between inflammation
and cancer by noticing the presence of leucocytes in neoplastic∗ tissues.
He suggested that cancer originates at sites of chronic inflammation. In the
2000s, our understanding of the inflammatory microenvironment of malignant
tissues has supported Virchow’s hypothesis, and the links between cancer and
inflammation are starting to have implications for prevention and treatment.

It appears that the inflammatory response of a body to the presence of
neoplasia∗ is similar to the processes of wound healing since both create envi-
ronments in which excessive cell proliferation is taking place. Metaphorically
speaking, cancer was called a “wound that do not heal.” Also it was suggested
that if genetic damage is the “match that lights the fire” of cancer, some types
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of inflammation may provide the “fuel that feeds the flames” (Balkwill and
Mantovani, 2001).

Connection of tumorigenesis to inflammation is happening through two
major routes that can be called extrinsic and intrinsic. Roughly speaking,
inflammation can induce cancer (extrinsic route) and cancer can induce in-
flammation (intrinsic route).

The existence of the extrinsic route is proven by the fact that cellular
inflammatory conditions connected to presence of pathogens or chronic dis-
eases greatly increase cancer risk. Thus, the presence of Helicobacter pylori
in the stomach, papilloma virus, hepatitis virus, and various autoimmune dis-
eases connected to chronic inflammation and prostatitis∗ are important risk
factors for cancer in the organs where the inflammation is taking place. How-
ever, it remains unclear whether chronic inflammation per se is sufficient for
tumorigenesis. There is some emerging evidence that chronic inflammation
contributes to genetic destabilisation of cancer cells through either induc-
ing direct damage on DNA by elevated amount of reactive oxygen species or
through interfering with DNA repair pathways and cell cycle checkpoints.

The intrinsic route of inflammation-induced tumorigenesis is that many
known oncogenes have a crosstalk with pro-inflammatory pathways (such as
angiogenic switch, recruitment of inflammation-associated cells such as leuco-
cytes and macrophages). Due to this pre-existing crosstalk, activation of cell
growth automatically leads to construction of an inflammatory microenviron-
ment at neoplasia sites.

Among a large number of genes involved in inflammation one can distin-
guish several most important players which are the prime movers of the in-
flammatory response. Among them, NFkB and STAT3 transcription factors
and IL1B, IL6, TNF pro-inflammatory cytokines play the most important role
and their participation in tumorigenesis can be unequivocally demonstrated.
Moreover, the NFkB transcription factor is homologous to the retroviral on-
coprotein v-Rel.

For historical reasons, the process of induction of the NFkB transcription
factor by tumour necrosis factor (TNF) together with the interplay between
NFkB and apoptotic pathways were the subjects of intensive mathematical
modelling. As a matter of fact, the NFkB pathway is one of the most mathe-
matically modelled with more than 30 mathematical models devoted to various
aspects of this signalling (Cheong et al., 2008).

NFkB transcription factor was first characterised in the lab of Nobel Prize
laureate David Baltimore in 1986. Later it was found that NFkB is encoded
in genome by a family of 5 genes which can be subdivided in two classes: class
I - NFkB1 and NFkB2 and class II - RELA, RELB, REL. The products of
these genes perform their function in the form of homodimers (such as NFkB1,
RELA dimers) or heterodimers (such as p60:p65 dimer).

The core of NFkB signalling, the subject of mathematical modelling, con-
sists in a negative feedback architecture: NFkB is held in the cytoplasm by the
inhibitor of its transcriptional activity called IkB. Bound to IkB, the NFkB
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dimers cannot penetrate the nucleus. Inducers of NFkB activity destroy IkB
and releases NFkB which can then go to the nucleus and activate a number of
its transcription targets. Among these targets there is IkB itself, thus NFkB
shuts down its own activity with some delay which might give rise to damped
oscillatory behaviour of the NFkB signalling (periodic shuttling of NFkB in
and out of the nucleus) actually observed in experiments. Real implementa-
tion of this self-inhibitory schema is complicated by the presence of multiple
dimers of NFkB, existence of three forms of the IkB inhibitor: IkBα, IkBβ
and IkBε, presence of other feedback loops through, for example, A20 protein,
existence of noncanonical NFkB pathways.

The earliest attempt to capture the dynamics of NFkB signalling with
mathematical equations aimed at explaining how bothNFkB transport into
the nucleus and IkB rate of association/dissociation could keep most of NFkB
in an inactive state in resting cells (Carlotti et al., 2000). However, this numer-
ical model was of limited potential for experimental validation. Hoffmann et al.
(2002) published the first predictive mathematical model of NFkB. The main
focus of this modelling was on specific roles of IkB (NFkB inhibitor) isoforms
IkBα, IkBβ and IkBε. It was known that mice deficient in any of these isoforms
had distinct phenotypes. Thus, the model contained three inhibitor isoforms,
one single and most predominate representative of NFkB family, namely the
p65:p50 dimer and IkB kinase (IKK) as a molecule inducing NFkB signalling,
and described their synthesis/degradation and association/disassociation.

Exploration of the model with computational simulations resulted in two
major insights. First, it described how differential functions of the IkB isoforms
could give rise to strikingly different NFkB dynamics in genetically reduced
cells. The role of IkBα, whose expression is induced by NFkB, was to provide
a negative feedback. This was aptly demonstrated by pronounced oscillations
in NFkB activity in cells lacking the other isoforms. The role of IkBβ and IkBε
was to dampen these oscillations. When all three isoforms were present, the
NFkB response was biphasic, with an initial NFkB activity rising and falling
within approximatively 1h, followed by a late activation phase characterised
by a steady intermediate level of activity. Second, the temporal dose-response
characteristics of NFkB signalling module were explored by simulating NFkB
response duration for different stimulus durations. The model predicted that
the module would generate the initial phase of 60 min of NFkB activity even
with much shorter stimuli, while only for longer lasting stimuli (more than
1h) did the responses have durations proportional to the input duration.

Further mathematical modelling of the NFkB pathway went in several
directions with several theoretical and practical questions. First, the initial
study by Hoffmann already raised important conceptual questions: Can the
temporal activity of NFkB target genes be programmed by the dynamics of
the input signal? How complex can this programming be? This programming
can be performed by such properties of the input signal as amplitude, rate
of increase, duration, rate of decrease, or frequency. NFkB modelling became
a useful concrete example for validating these possibilities. For example, by
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experiments and mathematical modelling it has been shown that different
inflammatory stimuli generate distinct temporal profiles of the activity of the
central node kinase IKK or transcription factor NFkB and that temporal
regulation plays a key role in determining which subset of target genes are
activated (Werner et al., 2005).

Another direction in which the mathematical modelling was able to help is
understanding the possible role of additional feedbacks, present in the NFkB
circuitry. Thus, in Kearns et al. (2006), with a mathematical model, it was
shown that IkBε can provide delayed negative feedback in antiphasis with
IkBα, which can shutdown NFkB signalling more quickly. Extracellular feed-
back through autocrine signalling was also investigated with use of computa-
tional modelling (Cheong et al., 2008). Additional negative feedback through
the A20 protein was the subject of the study by Lipniacki et al. (2004). This
model predicted that A20-mediated negative feedback is sufficient to produce
the sharply peaked IKK activity profile resulting from persistent TNFalpha
stimulation. However, this was not possible to confirm experimentally. In fact,
mathematical modelling identified the importance of regulation of IKK for
NFkB signalling (Cheong et al., 2008), but its detailed understanding remains
an open direction.

A series of works were devoted to the study of a possible physiological
role of NFkB oscillations in individual cells and in the average of sets of in-
dividual cells. These oscillations are largely hidden in wild type cells by the
effects of IkBβ and IkBε (Hoffmann et al., 2002), and oscillations do not seem
to alter gene expression programs when compared to the wild type bipha-
sic response, raising doubts about their functional significance. Nevertheless,
several theoretical studies investigated parametric conditions on the existence
of oscillations and their properties. Thus, the NFkB pathway was studied
with respect to sensitivity of NFkB oscillations to the variation of individ-
ual pathway parameters (Ihekwaba et al., 2005). Different aspects of NFkB
oscillations, such as the timing and amplitude of peaks and low points are
sensitive to different parameters in the original model, as measured by sen-
sitivity coefficients. Some parameters are predicted to be broadly important
for nearly all aspects of oscillations, and they all relate to reactions involving
IkBα. The NFkB model served as an illustration for introducing new ideas on
the different types of biological robustness (see Chapter 9 and Gorban and
Radulescu, 2007).

Several attempts were made in order to develop a consensus combined
model of NFkB with little success to our knowledge so far. One of the ob-
stacles is incompatibility of various models on the level of their wiring, pa-
rameterisation and the level of complexity. In Radulescu et al. (2008), the
most detailed model of NFkB signalling was suggested containing 39 chemical
species and 65 reactions, and the way to systematically reduce its complex-
ity was suggested. This allowed one to compare the most detailed model to
several existing models in a uniform fashion.

Despite the extensive mathematical modelling of the NFkB signalling
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pathway, it remains difficult to obtain significant insights into the role of NFkB
signalling in tumorigenesis by modelling this pathway alone. More understand-
ing should come from studying its connection with other cancer pathways such
as apoptosis, MAPK pathway, hypoxia, angiogenesis, genetic instability and
chemo/radio-resistance. Large efforts have to be undertaken in order to math-
ematically describe the specific role of NFkB signalling in various cancers and
tissues, in the context of its interplay with other major signalling pathways.
Having this motivation, Oda and Kitano (2006) charted the comprehensive
map of molecular interactions in the toll-like receptor signalling network. This
comprehensive map describes intensive crosstalk between NFkB and MAPK
pathways, both regulated upstream by MyD88-dependent signalling as well as
multiple feedback and feed-forward controls. Further efforts in this direction
will be necessary.

8.1.8 Reprogramming energy metabolism

One of the first identified biochemical hallmarks of tumour cells was the
shift in glucose metabolism from oxidative phosphorylation to aerobic glycol-
ysis, referred to as the Warburg effect.

In oncology∗, the Warburg effect is the observation that most cancer cells
predominantly produce energy by glycolysis followed by lactic acid fermenta-
tion in the cytosol, and not by glycolysis followed by oxidation of pyruvate in
mitochondria like most normal cells do. The latter process is aerobic (uses oxy-
gen). Malignant rapidly-growing tumour cells typically have glycolytic rates
that are up to 200 times higher than those of their normal tissues of origin.
This occurs even if oxygen is present and despite the fact that production of
ATP via glycolysis is about 15 times less efficient through fermentation than
via oxidation of glucose.

Otto Warburg believed that this change in metabolism is the fundamental
cause of cancer, a claim now known as the Warburg hypothesis, which was not
supported by the cancer research community during the 20th century. Today
it is known that much of this metabolic conversion is controlled by specific
transcriptional programs activated in response to mutations of tumour sup-
pressor genes and oncogenes. Further study of mitogenic signalling pathways
has revealed a number of essential and conserved cellular functions that couple
the cell growth machinery to glucose and lipid metabolism, thereby coupling
proliferation of cells and organisms to the nutrient status of their environment.

It remains unclear, though, what the selective advantages of the War-
burg effect are. It was suggested that switching to anaerobic glycolysis can
increase acidification of the tumoral environment and actively promote death
of the normal cells of the stroma. Another hypothesis is that disabling the
functioning of mitochondria by cancer cells (hence, switching off use of ox-
idative phosphorylation) serves for protection against activation of apoptotic
programs.

Despite the fact that the Warburg effect seems to be a rather secondary
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event in tumorigenesis, there is a growing belief that the difference between
normal and cancer cells in terms of the type of their basic energy metabolism
can be the Achilles’ heel of cancer cells. Then a relevant question for developing
specific anticancer therapies is: can one utilise the Warburg effect in order to
selectively kill cancer cells? One drug, dichloroacetate, based on this idea, is
currently tested in clinical trials. Its action goes through restoring the original
normal cellular metabolism in cancer cells, and thus promoting their self-
destruction (Bonnet et al., 2007).

To improve the treatments that are based on the difference in energy
metabolism, a particular effort needs to be made in understanding the connec-
tion between mitochondrial metabolism, programs of cell death, survival and
other vital cellular functions. One way would be to suggest interventions that
would make the cells with glycolytic energy production nonviable. The objec-
tives in systems biology approaches related to metabolism can be summarised
as follows:

• Collecting information on metabolic networks from the literature and
assembling large reaction networks describing mechanisms of energy
metabolism regulation and the connection to other cellular functions.
Ideally, these representations should be in a standard computer-readable
format (such as SBML, SBGN, see Chapter 4) amenable to formal
analysis. Several large-scale efforts are already being made in this di-
rection. Homo sapiens RECON 1 is “a comprehensive literature-based
genome-scale metabolic reconstruction that accounts for the functions
of 2004 proteins and 2,766 metabolites participating in 3,311 reactions”
(Duarte et al., 2007). This network reconstruction was transformed into
an in silico model of human metabolism and validated through the simu-
lation of 288 known metabolic functions found in a variety of tissues and
cell types. The Edingburgh human metabolic network reconstruction
is made by integrating genome annotation information from different
databases and metabolic reaction information from the literature (Ma
et al., 2007). This network describes functions of nearly 3,000 metabolic
reactions which are organised into about 70 human-specific metabolic
pathways.

• Reconstructing metabolic networks using reverse engineering techniques
and from available high-throughput experiments such as gene expression
data, protein expression data, 13C-based metabolic flux data∗ or
high-performance liquid chromatography.
Currently, these reconstructions are mainly limited to model organisms
such as S. cerevisiae but human-related reconstructions of metabolic
networks are on their way (Oberhardt et al., 2009).

• Analysing these networks from the point of view of their structure and
dynamical behaviour.
The aim of these analyses is to predict the most sensitive control param-
eters to intervene to the cellular energy metabolism. Metabolism mod-
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elling methods of Metabolic Control Analysis (MCA) and Flux Balance
Analysis (FBA) are widely -used approaches (Fell, 1997; Palsson, 2006).
The advantage of the FBA approach is that it requires knowledge of the
stoichiometric matrix of the metabolic network rather than knowledge
of the kinetic parameters.

A simple mathematical model of Warburg effect was suggested by Cloutier
(2010). It includes a representation of glycolysis, a representation of mitochon-
drial oxidation of pyruvate, phosphocreatine buffering, exchanges of glucose,
lactose and oxygen with the blood flow and production of ATP. The model is
capable of reproducing the effect of damaging mitochondrial function leading
to reorganisation of metabolites and fluxes, and identifies the most critical
parameters that control the energy metabolism. One important conclusion
derived from this model is that the sensitivities of metabolism parameters are
very different in cancer and normal cells. This conclusion can orient the future
developments of specific anticancer drugs.

Another metabolic network containing 60 metabolites participating in 80
metabolic reactions was constructed including the central pathways involved
in Warburg effect: glycolysis, Tricarboxylic Acid Cycle (TCA) cycle, pentose
phosphate, glutaminolysis and oxidative phosphorylation (Resendis-Antonio
et al., 2010). The FBA approach was applied to model the growth curves of
HeLa cells∗. An objective function was suggested for quantifying the optimal
conditions for cancer cell growth. This function contains a linear combination
of concentrations of lactate, ATP, ribose 5-phosphate, oxaloacetate and cit-
rate, i.e. the components playing a central role in the production of energy
and the most important cellular building blocks. The model was validated by
experimental data and allowed the identification of some key enzymes con-
trolling cancer cell growth.

A multiscale spatio-temporal approach to modelling competition between
cells with normal function of mitochondria and cells switched to anaerobic
glycolysis was developed in Astanin and Preziosi (2009). The model describes
phenomenologically the irreversible transition of tumours from normal to gly-
colytic metabolism in the conditions of hypoxia. The model includes two pop-
ulations of cells with different types of metabolism, extracellular liquid and
ECM.

8.1.9 Other hallmarks

We have provided a set of mini-reviews related to mathematical modelling
of some aspects of most of the hallmarks of cancer. As of today, two hallmarks
(enabling replicative immortality and evading immune destruction) received
less attention from the modelling point of view. There are only a few papers
in which some aspects of these hallmarks are considered.

The question of telomere shortening and its connection to senescence and
apoptosis were the subject of mathematical modelling in a series of papers
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(Arino et al., 1995; Arkus, 2005; Rodriguez-Brenes and Peskin, 2010). In
Rodriguez-Brenes and Peskin (2010), the model accounts for two processes:
telomere length regulation for telomerase positive cells and senescence in so-
matic cells. The model can predict the length distribution for telomerase pos-
itive cells and describes both the time evolution of telomere length and the
life span of cell lines if the levels of TRF2 and the telomerase expression
are known. The effect of a drug inhibiting telomerase, pentacyclic acridinium
salt, RHPS4, at different stages of the cell cycle was analysed using simple
continuous model of the cell cycle (Hirt et al., 2012).

The process of how a tumour evades destruction by the innate immune re-
sponse was mathematically treated by de Pillis et al. (2005). In this work, an
ODE-based mathematical model describes tumour-immune interactions, fo-
cusing on the role of natural killer (NK) and CD8+ T-cells in tumour surveil-
lance. The model was parameterised from published mouse data and human
studies.

For further reading on modelling hallmarks of cancer, we suggest (Auffray
et al., 2011).

8.2 Discussion

8.2.1 Mathematical models of cancers

The amount of models mentioned in this chapter reveals the important
effort made in the field of cancer systems biology. However, the final goal of
cancer biology is to be able to realistically reproduce specific behaviour of in-
dividual types of cancers, and create mathematical models of tumours rather
than generic descriptions of individual pathways involved in tumorigenesis.
These models should describe specific interplay between the pathways most
implicated in the tumour development, predict how the functioning of these
pathways affects cell fates in the context of a particular tissue or tissue com-
partment, and predict the dynamics of tumour growth, including the invasion
scenarios with their probabilities. One particular aspect of this modelling is
to predict how a specific tumour would react to anticancer treatment. It is
briefly discussed further in Section 8.2.3.

Here, we mention several efforts made in trying to grasp the whole be-
haviour of particular cancers with their specificities and in modelling individ-
ual cancers. There are several driver questions:

1. How to predict the dynamics of a tumour growth and its invasion into
surrounding and distant tissues?
This is one of the oldest direction in mathematical modelling of cancer
(Byrne, 2010) with some recent contribution from machine learning and
statistical modelling of high-throughput data mentioned in Chapter 6.
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2. What are the specific networks involved in a tumorigenesis of a partic-
ular disease? This question received a lot of attention during the last
decade with the appearance of high-throughput datasets that allow the
identification of these networks.

3. How to combine the behaviour of intracellular pathways and the macro-
scopic cell behaviour in a multiscale mathematical model?
This question remains a big challenge in systems biology of cancer
for which several large-scale projects are already launched (see Sec-
tion 7.1.4)

4. How to properly quantify the incidence curves of a particular cancer
with respect to certain risk factors such as age?
This question which makes rather a subject of cancer epidemiology will
be very briefly discussed in Section 9.8.

We already mentioned spatial models of glioma invasion in the brain (see
Section 8.1.3) reviewed in Swanson et al. (2003). These models take into ac-
count real configuration of a patient’s brain from Magnetic Resonance Imaging
(MRI) images to predict the rate of invasion and reaction on tumour resection
or chemotherapy.

One of the most modelled individual cancers is the colorectal cancer, where
somatic evolution was modelled (Fearon and Vogelstein, 1990). It was sug-
gested that there exists a necessary set of events leading to the appearance of
malignant growth in colon cancer. The authors suggested that mutations in
at least four to five genes (APC , KRAS, TP53 and others) are necessary for
triggering tumour growth. Although there is a preferred sequence of genetic
events, the exact sequence does not play a dominant role; the total accumu-
lation of changes rather than their ordering is responsible for determining the
tumour’s fate. Since then, this model has been a basis for multiple mathe-
matical models in which a particular stress was made on the role of genomic
instability in cancer progression (Michor et al., 2005; Komarova, 2005) or on
the mutated cell dynamics in the colon crypt together with their birth and
death (van Leeuwen et al., 2006).

Growth of malignant cell populations in the breast has been a subject of
mathematical modelling for a long time. The story of modelling breast cancer
started from the question of realistic description of tumour size dynamics.
One of the first mathematical models in cancer research had this aim and
considered the growth of avascular multi-cellular tumour spheroids. These
models were further developed taking into account various factors such as
tumour angiogenesis (Byrne, 2010). Fluid mechanics approaches taking into
account cellular adhesion properties were applied to model the initial stages
of ductal carcinoma in situ (Franks et al., 2003).

There already exist large-scale European projects aiming at developing
multiscale models of individual cancers. One of the most visible projects is
CancerSys (http://www.ifado.de/cancersys/). Its goal is to establish a mul-
tiscale model for two major signalling pathways involved in the formation of
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hepatocellular carcinoma, the beta-catenin and RAS signalling pathways. The
impact of these pathways on proliferation, tissue organisation and formation
of hepatocellular carcinomas will be studied in the course of this project.

Network models of individual cancers started to appear recently. To give
two examples, for Ewing’s sarcoma∗, a network of specific molecular inter-
actions was produced from identifying pathways activated downstream of the
EWS/FLI1 oncogenic transcription factor and from literature mining (Bau-
muratova et al., 2010). In (Pujana et al., 2007), the authors constructed a
breast cancer-related network by taking four known breast cancer-associated
genes: BRCA1, BRCA2, ATM , and CHEK2. The proteins were linked us-
ing data on phenotypic similarity, coexpression and genetic or physical inter-
actions among orthologs of the proteins in other species. The network was
extended from the four disease genes which implicated additional factors im-
portant for breast cancer progression.

8.2.2 Interdependency of the cancer hallmarks

It has been discussed throughout the chapters of this book that cancer is
not the result of single mutations but rather a complex set of alterations in
a particular order that trigger phenotypical disturbances. Some of the major
actors of these alterations and the pathways leading to each hallmark or phe-
notype are represented as an influence network in Figure 8.2. The network
is not complete but shows how intertwined the pathways governing the hall-
marks of cancer are. As shown in the network, some data about certain of
these pathways are still lacking and little experimental facts are reported on
the influence that some genes may have on the various alterations of these
pathways.

In their seminal paper, Hanahan and Weinberg (2011) noted that some of
these hallmarks have influences on other hallmarks. As an example, telomeres
(involved in enabling replicative immortality hallmark) have been revealed
recently to be involved in the WNT pathway, to promote cell proliferation,
to reduce apoptosis, and play a role in DNA damage repair. The interaction
between the RB pathway (evading growth suppressors) and the TP53 pathway
(evading growth suppressor and resisting cell death) has been also known for a
long time. Moreover, crosstalk has been brought into relief in diverse cancers:
ER (oestrogen receptor) and HER2 (human epidermal growth factor receptor
2) through the MAPK pathway or TGFβ (Todorovic-Rakovic, 2005) in breast
cancers, etc.

As reported in Berasain et al. (2009), evidence of crosstalk has been found
in normal and cancer cells at the receptor level. The activation of EGFR can be
linked to the activation of other receptors through transactivation (a process
by which a protein or a ligand enhances the expression of other genes) such as
the ADAM family members of metalloproteases involved in angiogenesis, the
G-Protein Coupled Receptors (GPCR), the cytokine receptors, the integrins,
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the Receptor Tyrosine Kinases (RTK), or through physical interaction with
Platelet-Derived Growth Factor Receptors (PDGFR) and IGF1R.

In modelling the hallmarks of cancer, there are two main tendencies: the
modelling of individual hallmark pathway in detail and isolated from the in-
fluence of other pathways, and the modelling of the crosswalks between these
signalling pathways. We have proposed reviews on some of the individual mod-
els. Some groups have concentrated on the studies on the crosstalks. Abbott
et al. (2006) have proposed in an agent-based model to study the interactions
between the initial six cancer hallmarks of Hanahan and Weinberg (2000) and
showed the importance of sequences of events that lead to cancer. It becomes
obvious that understanding the deregulations observed in cancers from the
perspective of their signalling hallmark pathways requires one to consider their
interplay. Crosstalks are indeed inevitable as most of these cancer pathways
share a considerable number of genes. Levchenko et al. (2000) have identified
the role of scaffolds, both experimentally and theoretically, as a possible way
to reduce crosswalk between pathways.

From a different perspective, Cui et al. (2007) have provided a map of
human cancer signalling, putting the emphasis on genes that are altered ge-
netically and epigenetically. Putting together different types of diagrams from
various databases including BioCarta and Cancer Cell Map, they have built
a large network of 1,634 nodes and 5,089 links. Mapping datasets onto this
map, they have showed that “cancer mutated genes are enriched in positive
signalling regulatory loops, whereas the cancer-associated methylated genes are
enriched in negative signalling regulatory loops,” knowing that the members
of these loops are most probably involved in more than one single pathway.

Along with the multiscale aspect, modelling interdependencies and
crosstalk of the signalling pathways will most certainly be one of the main
challenges of cancer systems biology for the next decades.

8.2.3 Modelling and therapies

Functioning of cancer-related pathways and their crosstalk have been a
popular subject of mathematical modelling in cancer systems biology over the
past years and are of particular interest to improve therapeutical efficacy.

Models of cancer therapies can be roughly classified in two types. The first
type of models predicts a very general effect of a therapy on tumoral growth.
By their construction, these models are more phenomenological models. The
second type of models predicts the action of concrete therapeutic drugs on
cellular processes (such as angiogenesis or inflammation). These models are
more mechanistic as opposed to the first type.

Modelling the therapeutic effect of a drug or its combination allows re-
solving such an important problem in cancer therapy as optimisation of the
treatment protocol. This is of utmost importance for application of chemother-
apy, for example, because this type of therapy is connected with heavy toxic
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stress on the patient’s organism. Reducing this stress without decreasing the
therapeutic effect should improve survival.

One of the first theoretical approaches developed to help optimise can-
cer treatment using traditional chemotherapy was based on the mathematical
optimal control theory. The main metaphor of this theory is the following.
The tumorigenesis process is characterised by some parameters such as the
number of tumoral cells and the number normal cells (for example, the num-
ber of blasts∗ and healthy erythrocytes in blood). Left without treatment
(i.e. external control), tumorigenesis develops by itself following some intrin-
sic laws such as exponential growth, or other laws such as the Gompertzian
law (see Box 8.1) being one of the most popular descriptions. When treated,
the growth law starts to be modified by external controls and the initial un-
perturbed tumorigenesis trajectory starts to deviate from its intrinsically de-
termined route. The task of the optimal control (treatment) is to keep the
trajectory of tumorigenesis in a certain region of its phase space∗ or bring
it to some final stable point (for example, to the region where there are zero
tumour cells) in an optimal way. Historically, optimal control theory was first
applied to solve the problems of providing maximum height for a rocket by
switching on and off its engines in an optimal program. The corresponding
mathematical theory used to solve this problem is called the Pontryagin’s
Maximum Principle.

o BOX 8.1: Gompertzian law
According to the Gompertzian law, the cancer cell population grows

as
N(t) = N∞e

−be−ct

,

where N(t) is the number of tumoral cells at time t, b, and c are
some positive numbers and N∞ is the target size of the cancer cell
population.

Typically, treatment is described by a time-dependent vector of one or
several therapeutic interventions u(t) = {u1(t), ..., u2(t)}. For example, if a
single-drug chemotherapy is applied to the tumour in a periodic fashion (e.g.,
once in a day for a couple of hours) then u(t) contains a single component
which is a periodic step-wise function of time with the corresponding period.
The task of designing the optimal therapy is to suggest such a treatment plan
u(t) that will maximise or minimise an objective function. For example, Swan
and Vincent (1977) published the first paper on the effect of one single drug
which minimised the number of tumoral cells in multiple myeloma. Following
this article, more complicated scenarios were used, consisting of using several
drugs of different efficiency and specificity, describing the effect of surgery
(removal of a certain fraction of cancer cells) and using more complex objective
functions. Thus, in different papers, it was suggested to use as variants of
objective functions: the cumulative drug level, the maximum intermediate
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drug level, the lower limit on the normal cell population, the maximum host
survival time, and the maximum level of drug toxicity, avoiding drug resistance
(Shi et al., 2011). The treatment cost, which might be very different in the first
line (initial treatment) and of the second line (after resistance appearance), or
certain preferences in the form of the treatment plan u(t) (e.g. in a periodic
fashion) can also be included in the objective function for optimisation (Shi
et al., 2011).

So far, the impact of these studies on clinical practice has been very lim-
ited, though several papers become rather noticeable in the clinical domain.
Among them, the work of Goldie and Coldman (1979) suggested a treatment
plan that would avoid the appearance of drug resistant cells. This is of utmost
importance since the resistance problem is the main cause of treatment failure
in cancer (see also discussion of cancer robustness in Chapter 9). Day (1986)
extended this model and suggested the worst drug first rule for the multidrug
chemotherapies using drugs of various efficiency and activity spectrum. This
result was generalised by Katouli and Komarova (2011). They took into ac-
count cross-resistance and developed both optimal timing and drug order.
Some of these suggestions have already been introduced in small-scale clinical
trials.

One particular aspect of optimisation of treatment is related to use of
chronotherapeutics in cancer, i.e. administering drugs according to the Cir-
cadian Timing System (CTS). CTS represents cellular clocks coordinated
by a hypothalamic pacemaker that controls cellular proliferation and drug
metabolism. Therefore, it was suggested that taking into account circadian
rhythms (of 24 hours periodicity) can enhance anticancer therapy and reduce
the toxic load on the patient’s organism, since the toxic drugs can be adminis-
tered specifically in periods of active cancer cell division. Indeed, this strategy
was shown to be able to reduce 2 to 10-fold the extent of toxicity of 40 anti-
cancer drugs in mice or rats. These results can be extended to some degree to
human patients (Levi et al., 2011). To optimise the administration of drugs in
cancer chronotherapeutics, various models of cell cycle entrained by circadian
clocks can be used, starting from the simplest automaton model describing du-
rations of individual cell cycle phases to the detailed model of the mammalian
cell cycle coupled with circadian clocks through expression of WEE1 gene
(Altinok et al., 2007, 2009). For example, administration of 5-fluoro-uracile
DNA damaging agent can be incorporated in the simplest automaton model
by assuming that cells exposed to 5-fluoro-uracile while in S phase have an
enhanced propensity to quit the cycle at the next G2-M transition (Levi et al.,
2011, 2008).

Another important application of systems biology approach in improving
anticancer treatment is the creation of the whole-body physiologically-based
pharmacokinetic-pharmacodynamic (PK-PD) models for anticancer drugs.
Several attempts were already made in this direction (Karlsson et al., 2005),
attracting a lot of interest from the pharmaceutical companies.

The effect of therapies, other than chemotherapy, was studied using math-
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ematical modelling by defining a default model of tumorigenesis in both the
absence and presence of therapy. Although these studies do not necessarily
have the goal to optimise the described therapy, most of them have this po-
tential. The effect of radiotherapy for early breast cancer was investigated
with a mathematical model of growth and invasion of a solid tumour into
breast tissue (Enderling et al., 2006). Hormone therapy in the form of an-
drogen deprivation for treating advanced prostate cancer was treated math-
ematically in Tanaka et al. (2010). Mathematical modelling of trastuzumab
targeted therapy on chronic myeloid leukaemia was reviewed by Abbott and
Michor (2006). Response to trastuzumab in receptor tyrosine kinase inhibitor
therapies was modelled by Faratian et al. (2009) predicting the role of PTEN
protein in developing resistance. Finally, the effect of tumour therapy with
oncolytic viruses on intra-tumour heterogeneity and, hence, cancer evolution
and robustness was formally studied by Karev et al. (2006). This list is by no
means comprehensive.

Several multiscale models taking into account both molecular mechanisms
of anticancer drug action and the resulting net effect on the tumour growth
by cell population modelling appeared during the last decade in the literature.
For example, in Ribba et al. (2006) this type of approach was applied to study
the effect of irradiation therapy on colorectal cancer and the dependence of
sensitivity to irradiation on cell cycle phase.

é Key notes of Chapter 8

• Cancer systems biology aims at realistically reproducing specific
behaviour of individual types of cancers, and create mathemat-
ical models of tumours rather than generic descriptions of indi-
vidual pathways involved in tumorigenesis.

• There are two approaches to modelling cancer hallmarks: indi-
vidual hallmark description and interplay between hallmarks.

• Mathematical models of cancer are of particular interest to im-
prove therapeutical efficacy.

• The signalling pathways involved in cancer are interconnected,
and modelling crosstalk between them remains a challenge.
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Chapter 9

Cancer robustness: Facts and
hypotheses

Living organisms are complex systems characterised by emergent properties∗.
One of such ubiquitous emergent properties is robustness (Kitano, 2004a). In
a very general and intuitive form, robustness means that living organisms
are capable to continue performing their functions despite significant varia-
tions both in the environment and their physiological organisations including
their genetic backgrounds. This simple and intuitive view, however, needs to
be made more precise and constructive. We should decipher what is exactly
meant by variation and by capability to perform functions as well as to under-
stand how such a property as robustness happened to be a common feature
of living organisms.

From the point of view of mathematical modelling and computational sys-
tems biology, we could postulate the necessity of the robustness property and
make it a design principle in mathematical modelling (for example, see Alon,
2007a). This would allow us to distinguish mathematical models possessing
such a property and to claim that, among equally good models, a model
characterised by robust properties is more likely to better correspond to the
biological reality. To achieve this, one needs to introduce a definition of a bio-
logical robustness in mathematical terms and to provide tools to measure it.
This nontrivial problem attracted a lot of attention during recent years and
many attempts to define and classify various types of robustness were made.

In the cancer field the question of biological robustness becomes crucially
relevant. There are two important questions: How do tumour cells manage
to appear and invade normal tissues? and Why is cancer so difficult to treat?
Both questions are related to the problem of evolution of tumours, functioning
of biochemical networks, resistance to existing treatment strategies and, most
importantly, tumour relapse∗ after an initially-successful treatment.

Cancer as a disease is robust because it has a significant chance to appear
during the organism’s lifespan and it is able to withstand therapeutic interven-
tions including surgical tumour removal and application of various treatments.
Posed in this way, the question of cancer robustness is transformed from a the-
oretical to a practical issue. If one is able to manage cancer robustness, for
example, by finding well-targeted perturbations at some identified fragility
points, then it will be directly related to defining new treatment strategies.

271
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Arguably, this is the central objective of the systems biology of cancer, hence,
it deserves to be discussed in this book in some detail.

The theory of biological and cancer robustness is still in its infancy. In
this chapter, we provide a very general review of relevant existing ideas in
this rapidly evolving field. This chapter is devoted to the description of gen-
eral mechanisms leading to robustness in biological systems in general and
robustness of cancer in particular, and to the use of the notion of robustness
in cancer treatment strategies. In Chapter 10, the mathematical principles
of biological and cancer robustness will be reviewed.

It is important to have in mind two levels of biological organisation in
any discussion about cancer robustness. First, it is the robustness of cancer
cells, i.e. the intracellular molecular mechanisms making cancer cells robust.
Second, it is the robustness of cancer as a disease which is connected to evolu-
tionary processes taking place in cancer cell populations. In this chapter both
levels will be discussed.

Making a comprehensive review on the theoretical and experimental study
of the biological robustness would lead to the writing of several separate books.
Some of these books are already written (for example, see Wagner, 2005), but
most of the knowledge in this field is dispersed in thousands of publications
(PubMed contains 25 records with robustness within their title for the period
of 1980–1989, 108 records for the period of 1990–1999, and 740 records for the
period of 2000-2009, while the total number of PubMed records only doubled
in 2000-2009 with respect to 1980–1989). The goal here is not to summarise
the content of these books and articles but rather to formulate the meaningful
questions in any constructive discussion about biological robustness. Some of
the answers to the questions can be found in the above cited books, some of
the key elements will be mentioned here, without pretending to be exhaus-
tive. Sections 9.1–9.5 and 9.8 are devoted to the general questions about
robustness of living organisms while Sections 9.6 and 9.7 are more specific
to the cancer research field.

9.1 Biological systems are robust

We say that biological systems are robust; however, this statement needs
to be refined. The first guiding principle is that together with the word robust
we should always be ready to give an answer to two questions: what property
is robust? and with respect to what perturbations is the property robust?
Some well-documented examples of biological robustness are provided below
(Wagner, 2005):

• The DNA and RNA sequences are robust to replication errors.
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• The physicochemical properties of amino acids in a protein and the
function of the protein are robust to point mutations∗ in codons.

• The structure of RNA molecules is robust to changes of individual RNA
nucleotides.

• The three-dimensional structure and function of proteins are robust to
changes in the amino acid sequence.

• The structure and function of proteins are robust to recombination, that
is, swapping of contiguous stretches of amino acids among proteins.

• The expression pattern of a gene is robust to drastic changes in the
regulatory regions of the genes caused by mutations.

• The flux of matter through a metabolic pathway and the outputs of the
pathway are robust to drastic changes in enzyme activity.

• The flux of matter through a metabolic network and cell growth are ro-
bust to drastic decreases and increases in flux through individual chem-
ical reactions, and complete elimination of such reactions.

• The expression pattern of Drosophila melanogaster segment’s polarity
genes, and gene expression patterns in other gene regulatory networks
are robust to changes in regulatory interactions among network genes,
in gene copy number, and in the expression patterns of genes upstream
of the network.

• The developmental pathways that form phenotypic characters, and the
characters themselves are robust to variations in the genes of these path-
ways.

• The organism’s body plan is robust to both minor and massive changes
in embryonic development, which are ultimately caused by genetic
changes.

• The cell populations are robust to mutations appearing in individual
members of the population.

• The cancer cell populations are often robust to conventional cancer treat-
ments.

Note that we say that these are examples of biological robustness despite
the fact that it is known that some perturbations can drastically change the
properties of the systems presented in this list. Hence, the claim about robust-
ness usually concerns randomly occurring rather than targeted perturbations.

Robustness is a property which is applied at many levels of living matter
organisation and it can be seen as a ubiquitous multiscale organising principle.
For our purpose to study of robustness in cancer, we will mainly concentrate
on the robustness properties related to functioning of intracellular biological
networks of molecular interactions and cell populations, leaving other robust-
ness manifestations out of the scope of this chapter.
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Why are living systems robust? If a living system were not robust (i.e.
fragile) and not able to successfully withstand environmental and genetic per-
turbations, then it would quickly disappear in the history of life. Intuitively
and somehow tautologically, robust systems should exist longer, because they
are robust. As Wagner (2005) said “A system will spend most of its time in a
robust state, precisely because such a state is more robust. Put differently, if
the world is rife with robust systems, it is because fragile systems are fleeting.”

Another consideration concerns our limits in cognition of things. All sci-
ence is based on reproducibility of experiments, hence, the experimental sys-
tem should, at least in some aspects, be robust with respect to the inevitable
variability of experimental conditions. It would be very difficult to study sys-
tems which are hypersensitive to many factors. For a successful experiment,
one should be able to prepare the conditions of that experiment in such a
way that the system would be insensitive to almost all variabilities, in order
to neglect them, and sensitive to a few targeted perturbations for which the
effect is studied. Questions related to robustness and reproducibility of ex-
periments, experimental design and data processing issues were considered in
Chapter 4.

Thus, there is a certain bias in considering robust systems; they are selected
both by nature and experimentalists. This simple consideration is completely
relevant but as usual it explains only part of the complex reality. Principal
complications come from trying to apprehend the following important ques-
tions:

• What is persistent: A quantity, a state, a process, a structure
or a function? For example, some system parameters might even be
drifting and despite that, the system is perfectly able to perform its func-
tion. For example, cancer cells can proliferate and change their genomes
continuously or as a result of some large-scale events such as mitotic
catastrophe (see Chapter 2). Another important example is the fol-
lowing: functioning of many kinases and receptors in cell signalling rely
on certain conformational changes of the kinase molecules or complexes.
These changes are often driven by thermal fluctuations, hence, one can
say that for robust functioning of a kinase, a certain fragility of its struc-
ture with respect to thermal fluctuations is needed.

• Do we consider robustness of an individual biological entity or
a group of entities? For example, lethal fragility of individual cells
to certain perturbations, such as signals of the programmed cell death,
might increase robustness of cell populations to mutation invasions in
the long run.

• What is the time scale of robustness for a given property? Since
we claim that a property persists in time then we should define precisely
the time scale of this persistence. No property can persist forever. Some
properties are considered as robust only in the sense of an average be-
haviour for a large period of time.
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• What is the biological context of a robust entity? This question
is crucial in considering living systems, since no living systems exist in
isolation. A typical problem can be formulated as follows: under which
conditions is a gene considered as essential for viability?

Considering these questions, one can realise that robustness is inevitably
context-dependent. Changing the context might make robust properties fragile
and vice versa.

Another source of complication comes from the fact that all living systems
are replicating and inherit parental genetic programs. In a simple view, ro-
bustness of an organism as well as its fitness are phenotypic properties. These
properties are inherited from the parental genomes and also influenced by the
individual history of the phenotype development. An organism more robust
to the changes in the environment will have better chances to survive, hence,
higher fitness. However, one should also consider robustness with respect to
modifications of the organism’s genetic material (mutations), which makes
the notion of robustness different from that of fitness. Natural selection acts
on fitness differences: an organism characterised by better fitness has more
chances to survive. However, two organisms with the same fitness but dif-
ferent robustness to mutations will have identical chances to survive (their
genetic difference will be neutral), because mutations can affect only their
offspring but not themselves. Thus, differences in robustness to mutations are
selected indirectly and only when mutations occur. This simple consideration
shows that cancer robustness is impossible to consider without referring to all
complex questions of natural selection, population genetics and evolution of
cell populations. These questions will be briefly treated in this chapter.

In different aspects and concrete applications robustness has multiple syn-
onyms, such as stability, persistence, resistance, permanence, insensitivity,
survival, reliability, tolerance, homeostasis∗, buffering, resilience, canalisa-
tion, etc. Giving exact and consistent definitions for all these words would be
a daunting task, which we will try to avoid. Instead, we will talk here about
robustness, defining every time what we mean by that.

The types of perturbations that a living system withstands can be classified
as:

• Varying environment without violating the integrity of the system.

• Perturbations changing the internal organisation of the system,
causing internal damage without changing the genetic program which
will be passed to new generations.

• Changes in the genetic program that is, mutations. For this
chapter it is very important to say that in our current understanding of
tumorigenesis∗, cancer is mainly associated with this type of perturba-
tion. In a way, cancer appears when robustness of normal cell population
with respect to invasion of certain mutant cells is violated.
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This classification is inspired by the definition of the robustness given in
the beginning of this chapter. While being the starting point in many practical
studies, this classification, however, becomes very quickly too naive. In consid-
ering changing environment, it is often difficult to neglect the feedback of the
biological entity on the environment. Adaptation to environmental stress is of-
ten accompanied by internal reorganisation of a cell or a tissue. The processes
of mutagenesis can be triggered by environmental conditions, etc.

Another important question to be asked is: How do biological systems
achieve robustness? This is a complex issue and it would be better to decom-
pose it into simpler questions such as:

• Is robustness of a biological entity rather continuous or rather
discrete or rather binary quantity? Does it make sense to talk about
more robust entity? In other words, can we talk about ameliorating ro-
bustness by small gradual changes? If low robustness means lethality
then any gradual introduction of stabilising mechanisms is difficult, and
they should appear at once, a scenario, which requires a careful expla-
nation.

• Can robustness be a subject of natural selection? This is a non-
trivial question being a subject of hot and long debates. The answer to
this question depends crucially on what is meant by robustness.

• Can robustness be considered as an independently selected
property or is it coupled with other functions? In many situ-
ations, robustness is coupled with other properties selected by biological
evolution which might create either antagonism (leading to trade-off so-
lutions) or synergy between this function and robustness (leading to
robustness for free, Wagner, 2005).

• What are the concrete mechanisms for achieving robustness?
Robust properties are ubiquitously found in most of the biological phe-
nomena. The problem is that it would be difficult to distinguish the most
important ones from the auxiliary ones. This field is full of questions like
what is more important, natural selection or self-organisation, architec-
ture of biochemical networks or distribution of kinetic rate parameters,
structural stability or fine-tuned control? It is very unlikely that these
dilemmas will be resolved soon due to lack of knowledge. However, con-
structive discussions on these topics improve our understanding of the
general principles ruling the designs adopted by the biological systems
during the history of their evolution.
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9.2 Neutral space and neutral evolution

Wagner (2005) formulated the main principle of emergence of biological
robustness as “the same biological function can be implemented in billions of
different ways.” In other words, this principle is equivalent to the existence of
a large neutral space∗ (see Box 9.1).

o BOX 9.1: Neutral space and neutral evolution
Neutral space is a collection of equivalent implementations of the same
biological function. The notion of the neutral space appeared most nat-
urally in studies of sequence-structure or structure-function relations
of biological molecules but can be extended to many other types of
problems related to evolution and robustness. Neutral molecular evo-
lution theory states that the vast majority of evolutionary changes at
the molecular level are caused by neutral mutations, i.e. those that
do not change fitness (Kimura, 1983). The theory of neutral evolution
postulates the existence of vast neutral spaces and claims that the ab-
solute majority of systems’ genetic changes is neutral with respect to
natural selection. Hence the system is continuously drifting in a large
region of equivalent configurations.

To illustrate the notion, let us give several examples of neutral spaces. The
classical and the most studied one is the set of all RNA sequences leading to
an identical RNA structure (Wagner, 2005; Reidys et al., 1997). It was math-
ematically rigorously shown that an RNA structure, which is robust against
random mutations, typically has the biggest associated set of sequences that
is mapped in the same structure. The most natural representation of a neu-
tral space here is a graph containing multiple connected components. Another
example is the set of all possible enzyme concentrations leading to the same
optimal (or, nearly optimal) growth of a bacteria in a given environment. In
this case, the neutral space can be represented as a surface or a manifold
(with possibly a nontrivial structure) embedded in a multidimensional space
of enzyme concentrations. A third example is a set of all possible genome
modifications leading to the clinically identical tumorigenic cellular pheno-
type. This is the most complex example since the genotype-phenotype map-
ping here is extremely complicated, mediated by gene expression and various
epigenetic mechanisms which are poorly characterised. The exact sequence of
events leading to a genotype can be essential for having a particular tumour
phenotype, etc. It is not even completely clear what would be an appropriate
abstract mathematical representation of this type of neutral space. All these
complications make any mechanistic and explicit study of this kind of neutral
space difficult for the moment as opposed to the two previous ones.
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Intuitively it can be claimed that a large neutral space should be a char-
acteristics of a robust system’s state. Such large neutral spaces have more
chance to be met in the process of an evolutionary blind grope, as it was ex-
pressed by Wagner (2005). When such a neutral region is found, the state
can randomly drift inside it without affecting the related function. However,
different positions of a system inside the neutral space can be equivalent in
terms of a function or a fitness, but, nevertheless are not equivalent in terms
of robustness. Those regions of the neutral space which are at the maximal
distance from the neutral space border can be assumed to be more robust,
because more modifications of a system will be required to jump out of the
neutral space. Hence, one can ask the following question: even if any point in
the neutral space is equivalent from the point of view of a function or fitness,
can natural selection drive the biological system to that region of a neutral
space which is characterised by the largest robustness? In other words, do we
expect to find a biological system or mechanism closer to the centre of the
neutral space, or rather closer to its border? Evolution of robustness will be
briefly discussed in Section 9.5.

Random drift inside the neutral space of genetic programs can be char-
acterised by the Kimura’s theory of neutral evolution (Kimura, 1983). The
theory of neutral evolution clarified several important features of the neutral
drift in populations. Firstly, a connection between neutrality and population
size is established: the neutral evolution theory states that the natural se-
lection does not notice relative changes in the fitness which are much smaller
than 1/4Ne where Ne is an effective size of evolving population (it is a number
reflecting not only the number of individuals in the population but also vari-
ous features of their life style and history). Secondly, fixed neutral mutations
(i.e. mutations attained a frequency one in the whole population) appear on
average each 1/µ generations, where µ is the rate of mutations per allele per
individual per generation. The time in which such a neutral mutation will
be fixed is inversely proportional to the effective population size 1/Ne. As a
consequence, the population is likely to be genetically heterogeneous (poly-
morphic) with respect to the alleles characterised by Neµ� 1 condition, and
homogeneous (monomorphic) for the alleles for which Neµ� 1.

A warning should be made when the notion of neutral space is used to
illustrate the principles of robustness and evolution. First, most of the con-
clusions for the properties of neutral spaces are drawn from the studies of
mutations of genetic sequences and their impact on the structure of biological
molecules. Thus, it might be dangerous to extrapolate on more complex sit-
uations. The properties of the neutral space are often assumed to be simple
(such as connectivity, smoothness, ability of introducing a natural measure,
etc.) which is not guaranteed in complex cases. Since the neutral spaces are
typically multidimensional regions of high-dimensional spaces, their properties
can be counterintuitive and lead to misinterpretation (as shown in the con-
tinuing discussion on the multidimensional properties of adaptive landscapes;
Gavrilets, 2004). This especially concerns intuitive considerations about the
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distance to the border of the neutral space, since most of the volume of truly
multidimensional objects might be located near the borders and not near the
centre. Another source of difficulties in the above mentioned considerations is
that the different areas of the neutral space can have different mutation rates,
which can effectively freeze some populations in the regions of low mutability,
and, vice versa, diversify populations in the regions of high mutability. Also,
complex functions of an organism rarely depend on one single gene but rather
on relatively large sets of interacting genes (networks). Therefore, the notions
of neutrality, polymorphism and mutability should be applied not only at the
level of genes but also at the level of signalling pathways∗ and networks.

The above mentioned methodological difficulties complement the general
problem with the notion of neutrality itself. Wagner (2005) claims that a
puristic or essentialist point of view on neutral mutation as a genetic change,
which does not affect an organism’s fitness in any environment and genetic
background, is useless in any realistic consideration. First of all, most of the
biological molecules are multi-functional. Because of this it is rather naive to
measure the effect of a mutation with respect to, for example, a well-defined
enzyme’s activity, for it can affect other less-studied enzymes’ functions and
have an effect on fitness in some conditions. For example, a classical synony-
mous codon substitution does not change the structure of a protein but might
significantly affect the protein synthesis rate. In practice it is not possible to
prove independence of a mutation neutrality to an arbitrary change in the en-
vironment. On the contrary, cases when some basic environmental parameters,
such as concentration of oxygen, can affect the neutrality of some alleles, with
respect to a particular cancer incidence, for example, are well-documented
(Astrom et al., 2003).

9.3 Robustness, redundancy and degeneracy

One of the very general principles of evolving biological systems consists
in duplicating already working mechanisms (genes or networks or genomes
or even organs) and partially specialising them to new functions (Taylor and
Raes, 2004). To illustrate the generality of this phenomenon, one can mention
that from 25% to 50% of eukaryotic genes have paralogs∗. Studies of the
mechanism of evolution through duplication lead to a series of interesting
questions about the role of redundancy in explaining systems’ robustness and
structuring gene regulatory networks. Here we understand redundancy as a
repetition of a part of the system such that the copies perform very similar
functions in similar contexts.

Creating several copies of the same gene creates robustness for a system
with respect to a deletion of any of these copies. Thus redundancy increases
robustness. However, the process of partial specialisation of duplicated gene
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functions towards new and different functions, conserving partial functional
overlap, creates multiple crosstalk between functions, sometimes called degen-
eracy (Edelman and Gally, 2001; Whitacre and Bender, 2010). Two purely
redundant components have perfect overlap in the set of functions they sup-
port. Two degenerate components have only partial overlap in the set of their
functions, but besides this overlap, each of these components is specialised in
some qualitatively different functions.

If a set of degenerate components connects a large set of functions (or even
all functions of an organism), it serves as a basis for networked buffering∗

(Whitacre and Bender, 2010), which (1) efficiently redistributes resources in
a system when some of them are not available, and (2) compensates for the
loss of some of the components by recruiting agents (genes, proteins, com-
plexes, etc.) from other functions. In such systems where the functions are all
connected by a series of overlaps in the sets of agents capable to perform the
functions (with various efficiency, of course), one expects to observe a gradual
(not catastrophic) decrease in performance when a certain number of agents is
removed. This type of robustness is called distributed robustness∗ meaning
that the robust system performance cannot be attributed to any particular el-
ement of a system but rather to a general pattern of how the system’s elements
are connected to each other (Wagner, 2005).

It is believed that the role of pure redundancy in supporting robust fea-
tures of biological systems is relatively modest, unlike engineering solutions
(such as control systems of an airplane) where pure redundancy is abundant.
By contrast, the role of distributed robustness and degeneracy is more impor-
tant in biological systems and favoured by selection. This belief is supported
by studies of large-scale gene deletion experiments in yeast and studies on
functional divergence of paralog genes (Wagner, 2005).

The phenomenon of degeneracy is found at all levels of living matter or-
ganisation. At the protein function level, it is exemplified by various combi-
nations of specialised protein domains which couple certain protein functions.
At the level of biochemical networks, it is manifested by existence of multi-
ple crosstalks between biochemical cascades. At the organismal level, many
organs have overlapping functions, with production of red blood cells or im-
mune response being stereotypical examples.

9.4 Mechanisms of robustness in the structure of biolog-
ical networks

Cancer is thought to be a network disease (see Chapter 1), hence, one
of the most important issues is to understand a particular aspect of biologi-
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cal robustness related to the functioning of biological networks. Most of this
section will be devoted to this question.

During last decades, multiple studies of the structure and dynamics of
biological networks allowed identifying several universal emergent patterns;
many of them were already associated with appearance of robustness in var-
ious senses of this word. The most common patterns are scale-freeness, bow-
tieness, functional and structural redundancy, degeneracy, modularity, coopera-
tivity, network motifs and feedback controls. We list these patterns of network
robustness in the order of the scale of the network structures they shape,
starting from the most global such as scale-freeness and bowtie structure, and
ending with robust features of more local structures such as network motifs
(see Figure 9.1).

9.4.1 Scale-freeness

Barabási and Albert (1999) noticed that many biological networks as well
as other networks in engineering, computing and social sciences, follow a close
to power-law node degree distribution. Such networks were called scale-free
(see Box 9.2 and Figure 9.1A). These networks are characterised by more
frequent presence of highly connected hubs∗ than one would expect in ran-
domly wired graphs. It was suggested that a general feature of such networks is
robustness towards a random removal of a node, and extreme fragility towards
instructed removal of big hubs. This suggestion was supported by an observa-
tion that in large-scale yeast gene deletion studies, the most connected genes
have the tendency to be essential (knocking them out is lethal for the organ-
ism) (Jeong et al., 2001). Also, many genes traditionally associated with cancer
susceptibility belong to highly connected hubs in networks of Protein–Protein
Interactions (PPI), with TP53 being one of the most connected proteins.

o BOX 9.2: Scale-freeness
Scale-free graphs are graphs in which node connectivity degree distri-
bution follows a power law. Node connectivity degree is the number of
node neighbours. A graph with a power law node degree distribution
is a graph in which the number of nodes n having k neighbours is a
power function of k, i.e. n = αk−γ , where α and γ are real numbers.
For protein-protein interaction networks γ ≈ 2.

The question whether scale-freeness is a naturally selected mechanism in-
suring robustness, or rather a phenomenon of self-organisation, or even a re-
flection of a bias connected with our strategy of collecting information about
interaction between proteins, was largely discussed in the literature (for ex-
ample, see Lima-Mendez and van Helden, 2009). Nowadays, the fact of scale-
freeness of biological networks and the role of scale-freeness in insuring robust
network functioning remain attractive but arguable hypotheses.
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FIGURE 9.1 Network structures responsible for robust network proper-
ties. (A) An example of a scale-free network: the size of the node is proportional to
the node connectivity degree. (B) An example of a network having bowtie structure:
all connections between “in” and “out” nodes are processed through the core net-
work; the core network has two states. (C) An example of a modular network with
three modules: module 3 is connected to both module 1 and module 2 only through
edges, while module 1 is connected to module 2 through a node in the intersection;
(D) An example of redundancy and degeneracy: square nodes are fully redundant;
any of them can be removed without affecting connections between upper and bot-
tom nodes; rhomb nodes are degenerate: they share part of the connections, but
have their own specificities; the left rhomb has lost one connection and acquired a
new connection (shown by dashed line). (E) An example of feedback: thick arrows
show the principal cascade which is regulated by positive and negative feedback in-
teractions. (F) An example of a network constructed from the combination of three
motifs (elementary subnetworks): feed-forward (dashed lines) and feedback (solid
lines) loops and a fan (double lines). (G) An example of cooperativity: a transition
from bottom to upper state is possible only if three nodes shown on the left are
“active” simultaneously.

9.4.2 Bowtie structure

Bowtie structure is a special type of relatively large-scale organisation
of metabolic, regulatory and signalling biological networks, characterised by
converging a wide range of inputs to a synthetic core (also called a knot),
consisting of relatively few operational elements (see Figure 9.1B and Csete
and Doyle, 2004). After convergence, a variety of outputs propagate from the
core.



Cancer robustness: Facts and hypotheses 283

The nature of the core can be different in various contexts, but the general
principle of compressing the dimensionality of the input signals to a core
with a small number of degrees of freedom always applies. One of the sources
for appearance of the bowtie structure lies in the fact that the cell uses a
relatively small number of universal cell currencies such as energy carriers
(ATP, NADH, NADPH, etc.) and precursor metabolites (glucose 6-phosphate,
fructose 6-phosphate, pyruvate, etc.). In metabolism, a huge variety of nutrient
sources are catabolised first into a handful of such currencies with further
synthesis into a large number of structures used by the cell. Universal or close
to universal use of the polymerases, ribosomes∗, codon usage for most of the
genes also determine bowtie organisation of intracellular networks on a large-
scale. Signalling pathways are also commonly organised in bowtie structures
with the core often made from bistable proteins such as G-proteins (Polouliakh
et al., 2009; Oda and Kitano, 2006).

The advantages of bowtie organisation are the following. Firstly, it is the
facility of control. Central molecules of the core of the bowtie structure act
as master regulators of a large number of processes. In other words, there is
little democracy in the most critical decisions that the cell must be able to
make. Secondly, the bowtie network organisation is robust with respect to the
variations of the input sources of nutrients or signals, for example, an ability
of supporting lack of certain nutrients that can be compensated from other
sources. Thirdly, it is the facility of modifying the peripheral molecular pro-
cesses by plugging and unplugging them through commonly defined protocols
and interfaces. On the other hand, the danger of the bowtie organisation is
that it creates fragility against targeted damage of the core mechanism which
can be, and is, exploited by cancer cells (Csete and Doyle, 2004).

An alternative for the bowtie structure is ad hoc and independent process-
ing of signals and nutrients by parallel pathways without convergence to a
common core. In an exaggerated view, this would correspond to the situation
when for the transcription of any gene, a separately designed type of poly-
merase would be implemented. Parallel processing of information and mass
flows by independently implemented routes is indeed another pattern of organ-
isation of cellular networks (see discussion about redundancy below). Thus,
both parallel and convergent designs serve for solving various trade-offs be-
tween robustness, efficiency and adaptability and are preserved by evolution.
The most optimal (and favoured by nature) pattern seems to be the following
one: cellular networks contain a relatively small number of highly conserved
and optimised compact core mechanisms that solve some relatively simple
tasks (such as switching from one state to another). These core mechanisms,
just as a computer CPU, can be implemented using a parallel architecture
for providing better stability, but the number of their internal degrees of free-
dom should be much less than the number of input signals coming to the core
(Csete and Doyle, 2004).
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9.4.3 Modularity

Molecular biology established a while ago that cellular functions, such
as signal transmission, are carried out by modules (see Figure 9.1C and
Hartwell et al., 1999). Modularity is believed to occur at all levels of biological
organisation, from gene and protein sequences to body tissues and organs.
Modularity is found also at the level of biological network structures. Exact
definitions of a module are numerous and usually depend on the context or a
problem posed (for example, see Radulescu et al., 2006; Calzone et al., 2008,
and also examples of modular network analysis in the Section 4.9).

One of the ideas in this field relies on an analogy with engineering devices:
it consists of stating that, in a modular design, a random mutation or a mod-
ification of a network will affect and will be limited to one particular module,
and would not propagate to the whole network. This simple argument is, how-
ever, rather weak, because if an affected module is essential then the mutation
could still be lethal. On the other hand, modularity should promote a certain
degree of evolvability to a system by allowing specific features (i.e. subnet-
works) to undergo changes without substantially altering the functionality of
the entire system. Each module is free to evolve within itself, as long as the
interfaces between modules remain conserved. Modularity with conserved and
well-designed protocols also allows an organism to borrow and adapt modules
that perform some precise functions from other organisms by some kind of
horizontal transfer. One of the most striking examples of this phenomenon
is the existence of mitochondria in eukaryotic cells or horizontal transfer of
antibiotic resistance modules between bacteria, or even between bacteria and
higher organisms. Another advantage of modularity is an ability of duplicating
certain critical functions and creating redundant (and, further, degenerate, see
Section 9.3) backups of critical subnetworks (this requires that the network
components should be co-localised on the genome). Therefore, one can think
that modularity can enhance robustness of an organism on a long time scale,
connected to significant evolutionary changes.

The role of modularity in insuring robustness of biological networks re-
mains an open question. In some developmental and heat shock response stud-
ies, it was suggested that robust network topologies have to be modular (Ma
et al., 2006; Kurata et al., 2006). However, more theoretical and experimental
works are needed to confirm the universality of this relation.

9.4.4 Network redundancy and degeneracy

The above described general biological features of redundancy and degener-
acy (see Section 9.3) also shape the structure of biological networks to a large
degree and significantly contribute to their robustness (see Figure 9.1C).

Degenerate nodes of the network compensate for one another under condi-
tions where they are functionally redundant, thus providing robustness against
component or pathway failure. Because degenerate components are not identi-
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cal, they tend to harbour specific sensitivities so that a targeted attack such as
a specific inhibitor is less likely to present a risk to all components at once. For
instance, gene families can encode for diverse proteins with many distinctive
roles, yet sometimes these proteins can compensate for one another during
lost or suppressed gene expression.

One of the classical and the best studied examples of pathway degener-
acy associated with cancer robustness is a family of HER receptors which
comprises four homologous members HER1 (EGFR), HER2 (ERBB2), HER3
(ERBB3) and HER4 (ERBB4) (Citri and Yarden, 2006). This family demon-
strates highly degenerate complex many-to-many relations between the re-
ceptors and the ligands able to activate them. Nematodes contain only one
member of this family. It was suggested that two events of duplication and
partial specialisation of the receptors could be explained by natural selection
towards more robust signalling network design (Citri and Yarden, 2006). As a
consequence, therapies targeting EGFR are thwarted by the co-activation of
alternate receptor tyrosine kinases that have partial functional overlap with
EGFR , but are not targeted by the same specific EGFR inhibitor (Stommel
et al., 2007).

Another example of pathway degeneracy directly related to cancer is the
cell cycle regulation mechanism involving RB and E2F (see Calzone et al.
(2008) and Chapter 2). The RB protein belongs to a family of pocket pro-
teins (RB, p107, p130) with partially overlapping functions. There are eight
genes belonging to the E2F family of transcription factors (E2F1 to E2F8).
The E2F transcription factors are involved in many cellular functions includ-
ing regulation of cell cycle, apoptosis and DNA repair with various specialities
among the family members. Some members are known to be activators of the
cell cycle: E2F1, E2F2 and E2F3a, while other members are referred to as
inhibitors of the cell cycle: E2F3b, E2F4, E2F5, E2F6, E2F7, E2F8. Among
the cell cycle activating members, only E2F3 was clearly suggested to be asso-
ciated with invasiveness in bladder cancer and with poor survival in prostate
cancer, while the role of E2F1 is shown to be controversial and different from
one cancer to another. The E2F family members form a nontrivial network of
mutual regulation (see Section 4.9.2).

The degenerate nature of biological networks creates a specific type of dis-
tributed robustness, which can be a subject of mathematical modelling. Some
mathematical aspects of distributed robustness will be discussed in Chap-
ter 10.

9.4.5 Feedback control

We have already discussed the role of feedback loops in biological networks
in Section 7.4. Feedback is a common design principle in constructing most
of the engineering devices (see Figure 9.1E). The basic functions of the
feedbacks are to (1) insure the control of execution of a command, (2) maintain
optimal levels of some signals in the system, (3) amplify response to a signal,
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(4) discretise the system’s response, and (5) filter noise. It is a well-established
fact that the biological networks ubiquitously use feedback controls in insuring
robust performance (Kitano, 2004a).

Multiple layers of feedback loops and associated gene-regulatory events are
involved in the robustness characteristics of tumours at the levels of intracel-
lular and tumour-host interactions. At the cellular level, feedback controls can
give rise directly to robustness against chemotherapy∗. For example, tumour
cells that turn on the expression of the multi-drug-resistance 1 gene (MDR1)
acquire multidrug resistance by exporting drugs out of the cell through an
ATP-dependent efflux pump, P-glycoprotein (P-gp), encoded by MDR1. This
is a simple, but effective, feedback control mechanism to minimise cytotoxin
levels. Another example is tumour overexpression of MDM2, which causes
degradation of TP53, effectively blocking apoptosis. The MDM2-TP53 in-
teraction functions as a negative feedback loop to maintain optimal levels of
TP53, and creates certain dynamics (pulsed or oscillatory) of TP53 expression
levels (instead of sustained expression) after serious DNA damage.

9.4.6 Network motifs

Analysis of the structure of several types of biological networks and the
transcription regulatory networks in particular suggested that these networks
can be built from some elementary blocks called network motifs (see Fig-
ure 9.1F). Network motifs were discovered as recurrent regulatory patterns
from statistical analysis of certain subgraphs frequencies in the graphs rep-
resenting transcription networks. It was suggested that such regulatory units
might provide particular dynamical functions, including noise filtering, reduc-
tion of cell-cell variation of protein concentrations, acceleration of cellular re-
sponse, creation of sign-sensitive delays (Alon, 2007b; Shoval and Alon, 2010).

Experimental and theoretical studies have shown a connection between
motif dynamics and robustness in several aspects. Firstly, it was shown that
the dynamical function of a motif is often barely sensitive to variation of the
parameters of the interactions comprised in the regulatory motif (Prill et al.,
2005). This type of robustness is connected to the structural stability (briefly
discussed in Section 10.5.3). The motifs that have fewer loops have the
tendency to have more structurally stable dynamics, and this was suggested
as an arguable explanation for their overrepresentation in biological networks
(Prill et al., 2005).

Secondly, some types of motifs can create a buffering effect allowing the
biological system to deal with fluctuations in the environment (Alon, 2007b).
Thus, a negative auto-regulation motif permits to stabilise the expression of a
gene in variable conditions, while a coherent Feed Forward Loop (FFL) motif
permits to neutralise and filter out short and not-persistent fluctuations in
the concentrations of signal molecules. There is an interesting hypothesis that
a feed forward motif including a transcription factor, a microRNA (miRNA)
regulated by this factor, and their common target gene can play a fundamental
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role in buffering stochastic noise in protein synthesis (Osella et al., 2011).
We described functioning of some of the regulatory motifs in more details in
Chapter 7.

9.4.7 Cooperativity

The regulation of a molecule or a function cooperatively by one or more
regulatory molecules makes yet another very common pattern of biological
robustness (Wagner, 2005). Cooperation here means that the efficiency of
regulators mutually depends on their simultaneous presence, or combination of
regulators in some specific configurations (see Figure 9.1G). One of the basic
examples of cooperativity is given by transcriptional control with the presence
of multiple copies of binding sites for the same factor in the promoter region of
a gene. Cooperativity is created in the situation when the factor, being bound
to a site in the promoter, is able to facilitate binding of other molecules of
the same factor to nearby sites. As a result, the expression of a gene depends
very little on the concentration of the transcription factor in a wide range but
there exists some relatively small window of concentration values in which the
expression of a gene changes drastically, in a switch-like manner.

Strength of cooperation between regulators can provide a necessary de-
gree of digitalisation of the input signal. Very strong cooperativity provides
ON or OFF responses to a change of regulator concentrations, while absence
of cooperation provides a rather gradual response, when more proportional
system response is needed. Digitalisation is a characteristic of most of develop-
mental programs, whereas gradual response is more frequent in inflammation
(connected to NFkB transcription factor) and apoptosis signalling (such as a
response of TP53 transcription levels to UV radiation).

In addition, it can be shown by mathematical modelling that, if a biological
function is accompanied by a mechanism of regulation involving cooperative
behaviour of many regulators, then the robust properties of such networks can
evolve by stabilising selection (Wagner, 2005).

The structure of networks determines their dynamical properties only to
some extent. On top of the network structure, the distribution of kinetics-
related parameters plays an equal if not dominant role in determining the
robust features of the biological networks. For example, the multiscale nature
of kinetic parameter distribution guarantees some robust network dynamics
properties, and determines some very general design principles of the reaction
networks. In Chapter 10, we consider these aspects in more detail.

Together with network robustness, other universal molecular machineries
contribute enormously to sustaining the functioning of living cells in aggres-
sive and variable environments. These machineries include: DNA repair, RNA
editing, heat shock response and stabilisation of partially unfolded proteins,
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kinetic proofreading, multidrug resistance, immune response, polyploidy of the
genome where each gene is backed up with its copy, tissue organisation with
rarely dividing stem cells and rapidly dividing transient progenitor cells, and
many others. Some of them play a role of buffering and masking mutations,
and by this, serving as evolutionary capacitors (notion described in the next
section).

9.5 Robustness, evolution and evolvability

A large corpus of the literature is devoted to the discussion of the relation
between robustness and evolution (Masel and Trotter, 2010). How can a robust
system evolve? This question has been a subject of debate for at least the last
few decades. In fact, this question can be split in two different questions:

• Does robustness prevent biological systems’ potential for evolution, does
it reduce evolvability?

• Can robustness appear as a result of natural selection?

Both of these questions have a direct relation with the question of can-
cer robustness because it seems logical to assume that the process of natural
selection is continuously taking place during tumour progression∗. The
evolutionary-based approach is very important for the general understanding
of the principles of tumour appearance as a genetically heterogeneous cell pop-
ulation with rapid processes of natural selection for the best fitness (survival)
(see also Chapter 2).

Is there a contradiction to resolve between two statements: (1) a biological
system is robust and (2) a biological system can evolve?

9.5.1 Environmental robustness and mutational robustness

It happens that for the discussion, it is crucially important to distinguish
between environmental robustness as the ability of an organism to survive
environmental stress, and mutational robustness as the ability of an organism
to maintain a relatively invariant phenotype despite significant genetic varia-
tion (mutations). As already mentioned, this distinction is relative and is not
always possible, especially in the case of cancer cell populations where the
environmental stress can increase the genetic variation. However, we will keep
these definitions for clarity as a first approximation.

Having this in mind, the notion of environmental robustness represents
an advantageous trait that should be selected by natural evolution in stress-
ful and rapidly changing environments. However, robustness can consume so
much of the organism’s resources that this would make developing robustness



Cancer robustness: Facts and hypotheses 289

disadvantageous (a question of trade-offs, see Section 10.4). So, the first con-
clusion is that, in the simplest scenarios, the environmental robustness does
not and cannot preclude evolution.

9.5.2 Evolvability and mutational robustness

Probably, the most exciting and related to cancer questions arise from
considering the relation between mutational robustness and evolvability (see
Box 9.3). The first insights on mutational robustness were proposed by
Waddington (1957) in his book The Strategy of the Genes.

o BOX 9.3: Evolvability
Evolvability, just as robustness, is used in too many meanings. Among
them:

• Evolvability can be expressed as a synonym of adaptability, i.e.
the ability of modifying a property (for example, a regulatory
network) and adapting it to a changed or new environment.

• “Evolvability is the ability of a population to generate heritable
phenotypic variation that could be adaptive in some contexts” in
the middle evolutionary time scale (there are three such time
scales: (1) the short time scale of a single generation, (2) the
middle time scale of many generations, and (3) the long geolog-
ical time scale during which major morphological changes and
evolutionary innovations happen).

In the second definition of evolvability (see Box 9.3), evolution is distin-
guished from evolvability as variation (observed differences in a property) is
distinguished from variability (propensity of a property to vary, regardless the
fact that it varies or not). Most of the modern literature converges towards the
opinion that robustness to mutations reduces phenotypical variation but, as
a result, increases phenotypical variability by increasing cryptic genetic vari-
ations, accumulated by random and almost neutral genetic drift (Masel and
Trotter, 2010; Lesne, 2008; Draghi et al., 2010).

In the last years, discussions on the tension between robustness and evolv-
ability led to the notion of an evolutionary capacitor (see Box 9.4) as a
mutation buffer. The concrete details of the evolutionary capacitor implemen-
tation are not so important. For example, it can fire the genetic variation as a
response to stressful conditions, or it can do it without any particular reason,
randomly. An important aspect to consider, though, is the separation of time
scales. First of all, the average duration of the capacitor in the robust state
should be longer than the time needed for the appearance of a single mutation.
Then the duration of the capacitor in the non-robust state should be longer
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o BOX 9.4: Evolutionary capacitor
An evolutionary capacitor is a molecular mechanism that is charac-
terised by two properties:

• It provides mutational robustness by buffering mutations and
preventing them from causing phenotypic changes. Thus, if the
evolutionary capacitor is switched on, then genetic variation ac-
cumulates.

• It is capable of switching off and revealing the accumulated cryp-
tic genetic variation leading to a burst in phenotypic variation.

Thus, an evolutionary capacitor (and hence mutational robustness)
promotes evolvability.

than a typical time needed for assimilation of new phenotypes, i.e. relaxation
time, for the selection to happen.

Repeating stages of accumulating and releasing genetic variation help to
solve several common problems in evolutionary theory. In particular, it brings
at least one possible solution to the problem of jumping over low fitness valleys
separating regions of genotype space with high fitness. Such a jump requires
several mutations to happen simultaneously and not consequently.

The phenomenon of the evolutionary capacitor can also contribute to the
hypothesis on punctuated evolutionary equilibrium which is a model for dis-
continuous tempos of change in the process of speciation and the deployment
of species in geological time (see also a discussion on self-organised criticality
in the next section).

Several concrete molecular implementations of evolutionary capacitors are
known, the most famous being the heat shock protein HSP90. HSP90 acts as a
chaperone, i.e. a protein helping folding or unfolding and the assembly or dis-
assembly of other macromolecular structures. HSP90 is essential for activating
many signalling proteins in the eukaryotic cell. Experiments in Drosophila and
Arabidopsis have demonstrated three key properties of HSP90:

• It suppresses phenotypic variation under normal conditions and releases
this variation when functionally compromised.

• Its function can be saturated by extensive environmental stress, thus,
leading to its compromised behaviour.

• It exerts pleiotropic effects on key developmental processes. This func-
tion is assumed to be conserved in other organisms, potentially influenc-
ing the pace and nature of evolution (Bergman and Siegal, 2003).

The evolutionary capacitor mechanism seems to be very general. Experi-
mental results on systematic knock-out mutations in Saccharomyces cerevisiae
identified more than 300 gene products with exceptionally high capacities to
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stabilise morphological variation. Silencing any of these gene products will po-
tentially release the region of cryptic genetic variation it masked and allowed
to accumulate.

9.5.3 Evolvability and natural selection

There is a hot debate in the literature on how, and if, evolvability itself
can be a subject of natural selection. One of the main obstacles here is that
increasing evolvability does not seem to give an immediate benefit for fitness
of an organism but rather protects it from the future stresses. Note that the
same remark concerns robustness.

To illustrate this question, let us imagine a simple scenario when two hap-
loid subpopulations only differ by one gene. Let us assume that this difference
does not affect the function of the gene’s product but rather its robustness
to a random mutation. Similarly, let us call one subpopulation robust and the
other one fragile. Since the function of a gene’s product is not affected, both
robust and fragile individuals must have the same fitness during the periods
when the gene is not affected by a random mutation. These periods can last
for many generations during which the polymorphism of the population will
be neutral. When a random mutation in the gene of an individual happens, it
is more likely to be deleterious in the fragile individual, hence the frequency
of a robust allele has a chance to increase and to be fixed. Notice that the
scenario describes a polymorphic population (with respect to a neutral robust-
ness mutation) which can exist for long periods of time in the case Nµ � 1,
where N is the size of the population and µ is a mutation rate (see also Sec-
tion 9.2). In the case when the populations are monomorphic for most of the
time, selection for robustness is not possible.

Another topic on the relation between robustness and selection touches
rather delicate questions of the possibility of group selection (Okasha, 2001),
robustness of populations rather of the individuals (Lesne, 2008), congru-
ent evolution, properties of high-dimensional adaptive landscapes (Gavrilets,
2004), and others (see Box 9.5). Most of these studies allow concluding that
there are no unresolvable contradictions and paradoxes between robustness
and evolvability. On the contrary, mutational robustness often promotes evolv-
ability and vice versa, even though these processes can be separated in time.

All above mentioned considerations are directly connected to the question
of cancer robustness. There is a common point of view that cancer cells are
characterised by higher mutation rates (see Section 8.1.6) than normal cells
and represent growing cell populations (Weinberg, 2007). This means that
tumours must be characterised by clonal heterogeneity at least starting from
some sufficient tumour size. This heterogeneity will in turn promote selection
for robustness both with respect to mutagenesis and various stresses including
therapeutical actions on cancer cells (see Section 2.3). This concerns the
time scale of tumour development. On the other hand, considering longer
time scales of many organism generations, there should exist mechanisms of
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o BOX 9.5: Robustness evolution
In the theories describing evolution of robustness, several key terms
are frequently mentioned. Among them:

Group selection is a mechanism of evolution when a particular allele
becomes fixed because of the benefits it brings to the population
rather than to the fitness of individuals (for example, altruism).

Congruent evolution is a scenario when evolvability appears as a
byproduct of other evolutionary processes (for example, the Hal-
dane’s hypothesis that mutational robustness is a byproduct of
selection for environmental robustness).

Adaptive landscape or fitness landscape is a metaphor visualis-
ing relations between genotype and reproductive success (fit-
ness). It is assumed that one can introduce a distance between
genotypes and that each genotype is characterised by a fitness
value which is represented as a height of the landscape.

selection preventing normal cells from developing cancer, since high risk of
cancer can decrease the organism’s fitness. Therefore, some arguments about
group selection can also be applicable here. The coexistence of these multiple
time scales and their interplay should be taken into account in the future
evolutionary models of cancer cell populations.

9.6 Cancer cells are robust and fragile at the same time

9.6.1 Oncogene addiction

A naive question can be formulated: should we consider cancer cells more
robust than normal cells? To answer this question, we should specify features
and perturbations to compare them in terms of robustness.

One of these features is the survival of individual cells. On one hand, nor-
mal cells should be sensitive to the deprivation of growth signals and the
presence of anti-growth signals in the extracellular space, whereas the cancer
cells are free of such constraints (see Chapter 2). Cancer cells develop vari-
ous mechanisms to diminish growth control, in particular, by overexpressing
growth receptors and inducing autocrine signalling loops. However, in doing
so, they might create specific fragilities such as oncogene addiction, a term
coined in Weinstein (2002).

It is an experimental observation that cancer cells may be more depen-
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dent on the activity of specific oncogenes∗ and more sensitive to the growth
inhibitory effects of specific tumour suppressor genes∗ than normal cells
(Weinstein, 2002). One of the models explaining this phenomenon consists of
assuming that the activation of some oncogenes leads not only to accelerating
proliferation in cancer cells but also to induction of anti-growth and cell death
programs. The hypothesis is that these mechanisms were already activated in
cancer cells when adapting to the oncogenic signalling. When the oncogene is
active, it is able to compensate and overrun these programs. When the activ-
ity of the oncogene is abruptly stopped, cell death programs start to dominate
and eventually kill the cancer cells. One of the earliest convincing examples
of oncogene addiction comes from an experiment on genetically modified mice
with an implanted mechanism of MYC modulation. In a transgenic mouse
model, switching on the MYC oncogene in the hematopoietic cells led to the
development of T-cell and myeloid leukaemias∗. However, when this gene was
subsequently switched off, leukaemia cells stopped dividing and displayed dif-
ferentiation and apoptosis. Dependence on the continued expression of other
oncogenes (EGFR, HER2, KRAS) for the maintenance of the neoplastic∗

state has also been seen in other tissues in murine models and human cell
lines. Some evidence that the oncogene addiction can be the Achilles Heel in
specific cancers comes also from clinical trials (Felsher, 2008).

9.6.2 Robustness of individual cancer cells to various stresses

Another specific fragility induced by cancelling growth control is the repli-
cation and nutrient deprivation stress. Rapidly growing and dividing cells
are more fragile than the quiescent ones with respect to many environmental
stresses, because they are more dependent on availability of basic construc-
tion units, in particular, nucleotides and aminoacids. Cancelling checkpoint
mechanisms potentially leads to accumulation of errors in replicated DNA,
saturating the capacity of the DNA repair machinery, which in turn can lead
to genomic instability and radical genome reshuffling, for example, as a re-
sult of survival in the mitotic catastrophe. For each individual cancer cell, the
result of genomic instability is lethal with high probability.

Individual cancer cells can detach from the primary tumour∗. Travelling
through the body increases the risk of dying without the support of special
local ecosystems in which the cancer cells evolved. Individual cancer cells are
extremely fragile with respect to changing their native microenvironment to
completely different surroundings. Thus, for each individual cell, the detach-
ment from the primary tumour is lethal with high probability.

In order to cope with fragilities induced by stress, some cancer cells might
activate various defence mechanisms, increasing their capability to withstand
external perturbations. One example of this is the already-mentioned activa-
tion of multidrug resistance by inducing a MDR1 protein, which is a cellular
pump able to remove a variety of toxic chemicals from the cell including anti-
cancer drugs (Nooter and Herweijer, 1991). Another example of a very generic
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response of cancer cells to stress is overexpression of chaperones (Whitesell and
Lindquist, 2005).

Rapidly growing populations of cancer cells suffer from specific stresses,
hypoxia∗ being one of the most universal ones. To overcome this stress, the
cancer cell switches to production of ATP through upregulation of glycolysis
(referred to as the Warburg effect) and develops its own vascularisation very
early in tumorigenesis. Thus, cancer cells become dependent on the availability
of glucose and less dependent on the presence of oxygen. On the other hand,
hypoxia itself plays a protective role for cancer cells: hypoxic tumour cells
display increased resistance to radiation and drugs as well as an increased
incidence of both apoptosis-resistant and invasive clones.

9.6.3 Robustness of cancer cell populations and evolvability

Another feature is the survival of cell populations. For normal tissue func-
tioning, the control mechanisms activating events such as programmed cell
death should be considered as safety mechanisms, providing robustness to
normal cell populations with respect to invasion by a mutant population. In
this way, functioning of the TP53 gene clearly decreases the robustness of
individual normal cells with respect to mutations, but increases robustness of
the tissues and the whole organism. Normal cell populations have other active
defence mechanisms against mutant invaders, including triggering immune re-
sponses targeting cancer cells (cancer immunosurveillance mechanism) (Dunn
et al., 2002).

There are multiple evidences that cancer cells try to mask, switch off or
bypass these normal cell mechanisms which evolved in order to control muta-
bility. As a result, cancer cells become more robust with respect to individual
survival, but inevitably less robust against the invasion of mutations, i.e. they
are not as stable as genetically homogeneous populations.

Arguably, the most important difference in the way the normal and the
cancer cell populations function is in their ability to evolve. As a matter of fact,
cancer cells might achieve higher evolvability as a result of their own prob-
lems, such as increased number of mistakes during DNA replication caused
by uncontrolled cell division and deficit of basic cell building blocks. Let us
mention that in principle the mutagenesis can be also enhanced by deliber-
ate downregulation of DNA repair machinery, as it is the case in bacterial
populations. However, in many aggressive forms of cancer the DNA repair
machinery seems to be upregulated, which arguably means that cancer cells
do not explicitly exploit the bacterial strategy for adaptation but rather are
not able to satisfy the demand for DNA repair during the replicative stress.

In their struggle for survival, cancer cells can develop cooperativity with
normal stroma, but also can rely on cooperation with each other. For example,
it has been hypothesised that cancer cell populations can develop subclones
specialised in producing growth signals for the rest of the tumour cells (Axel-
rod et al., 2006).



Cancer robustness: Facts and hypotheses 295

Cancer cells can acquire the capability to actively withstand normal cells
in the competition for living space. In particular, one of the interesting hy-
potheses is that as a result of their glycolytic phenotype, cancer cells can
induce microenvironmental acidosis which is not physiological for normal cells
(Gatenby and Gillies, 2004). Such a strategy requires further adaptation of
cancer cells through somatic evolution to phenotypes resistant to acid-induced
toxicity.

Cancer therapy represents a major stress for rapidly dividing cancer cells.
Some of them can eventually develop a therapy resistant phenotype. It would
be interesting to understand in detail how a cancer cell develops resistance
mechanisms in the process of their evolution in the context of therapy ap-
plication. There are several examples where such a process is relatively well
documented. One of the most studied examples is the development of resis-
tance to cisplatin, which is one of the most used platinum-based compounds
that exerts clinical activity against a wide spectrum of solid neoplasms∗

(Galluzzi et al., 2011). Cisplatin exerts anticancer effects via multiple mech-
anisms, with the best understood mode of action involving the generation of
DNA lesions followed by activation of DNA damage response and induction
of apoptosis. Cisplatin often leads to an initial therapeutic success associ-
ated with partial responses or disease stabilisation. Nevertheless, an important
fraction of already-sensitive tumours eventually develop chemoresistance. The
mechanisms of resistance to cisplatin can be classified as pre-target, on-target,
post-target and off-target mechanisms. Thus, an example of a pre-target resis-
tance mechanism is activating multidrug resistance genes such as MRP2. An
example of on-target resistance is the increased activation of some of the DNA
repair pathways, in particular, NER, which can mitigate the DNA damage ef-
fect of cisplatin. Post-target effects are usually associated with inactivation
of the apoptosis pathway, for example, by overexpressing BCL2-like proteins.
Finally, an example of off-target resistance mechanism is the activation of non-
cisplatin-specific survival mechanisms such as autophagy. All these examples
illustrate the variety of strategies a cancer cell can use in order to protect
itself from the action of a cytotoxic drug. Hence, it is difficult to imagine
a single universal magic bullet by which the cisplatin treatment should be
accompanied in order to overcome cellular resistance (Galluzzi et al., 2011).

The above mentioned comparison between cancer and normal cells in terms
of robustness with respect to survival, creates a complex picture. Robustness
of cancer cells can be a result of selective pressure but also it can be a byprod-
uct of their stressful conditions. It would be correct to say that the cancer
cells have their own specific spectrum of fragilities not common to that of
the normal cells. Compared to normal cells, individual cancer cells can be
extremely fragile, sick and suffering from multiple defects. On the contrary,
genetically heterogeneous cancer cell populations characterised by genetic in-
stability can be extremely robust due to significantly increased evolvability
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and, hence, possibilities to adapt and survive stresses induced both by ag-
gressive environment (for example, as a result of anticancer therapy) and the
destructive consequences of increased mutagenesis.

9.7 Cancer resistance, relapse and robustness

A major problem in treating cancer concerns its relapse. Available cy-
totoxic therapies can efficiently reduce the bulk of tumour cells, many solid
tumours can be removed by surgery, targeted therapies can specifically kill
the cancer cells overexpressing certain receptors or possessing specific muta-
tions, etc. However, the efficiency of these treatments is often mitigated by
re-appearance of drug-resistant tumours or metastasis∗. From an evolution-
ary perspective, two major hypotheses are considered in the current literature
explaining the phenomenon of tumour relapse: (1) The clonal genetic hetero-
geneity of tumours accompanied by the Darwinian selection of the resistant
traits and (2) The cancer stem cell hypothesis.

9.7.1 Clonal genetic heterogeneity

Nowell (1976) summarised multiple observations on the tumorigenic kary-
otypes with the following hypothesis: “acquired genetic lability permits step-
wise selection of variant sub-lines and underlies tumour progression.” By this,
it was hypothesised that natural selection for the most fit (aggressive and
treatment-resistant) cell clones is constantly happening inside tumours. Sev-
eral years later, Goldie and Coldman (1979) developed a mathematical model
which predicted that tumour cells mutate to a resistant phenotype at a rate
dependent on their intrinsic genetic instability. The probability that a cancer
contains drug-resistant clones depends on the mutation rate and the size of
the tumour. According to this hypothesis, even the smallest detectable cancers
would contain at least one drug-resistant clone.

Recent experimental studies prove the hypothesis of coexistence of multi-
ple clones in leukaemia and many solid tumours (Marusyk and Polyak, 2010).
In some studies, it is estimated that the total number of mutations and sub-
clones in clinically detectable tumours can reach billions (Klein, 2006). Such
a variability creates a basis for robustness of cancer cell populations against
most of the cancer treatments (Gerlinger and Swanton, 2010).

Loeb et al. (1974) proposed that cancer cells should acquire much higher
mutation rates than the normal cells in order to achieve such a level of het-
erogeneity. This is related to the increased, by many orders of magnitude, the
number of errors during DNA replication (genomic instability). This state of
a cell is called a mutator phenotype, an important notion in the cancer robust-
ness theory (see also Section 8.1.6). The theory claims that there must exist a
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trade-off in cancer cells: on one hand, genomic instability creates selective dis-
advantages by creating numerous lethal mutants; on the other hand, genomic
instability promotes evolvability of cancer cells which can be advantageous
in environments with high DNA damage rates (e.g. during chemotherapy).
Mathematical modelling provided several important insights in this direction.
Firstly, it predicts that a mutator phenotype should be acquired relatively
early in tumorigenesis (Beckman and Loeb, 2006). Secondly, the prediction is
that the mutator phenotype creates advantages for tumorigenesis only if more
than two causal oncogene mutations are required for converting a normal cell
to a cancer cell (which means, for example, that the mutator phenotype is
not advantageous for retinoblastoma∗ but is advantageous for the prostate
cancer; Beckman and Loeb 2006). Interestingly, mathematical modelling pre-
dicts that for successful cancer cell proliferation it might be advantageous to
change this trade-off in time from maximal genomic instability to maximal
stability (Komarova et al., 2008).

The clonal heterogeneity hypothesis inspires clinical strategies for cancer
treatment to overcome the problem of tumour relapse. The Goldie-Coldman
model suggests that the best chance for a cure would be to use all effective
chemotherapy drugs. In practice, this has meant using two different non-cross-
resistant chemotherapy regimens in alternating cycles. This idea was further
developed by Day (1986) who suggested “the worst drug first” rule. The rule
consists in applying first an effective, but the least active, drug which will
eliminate the bulk of the tumour cells and will significantly decrease tumour
heterogeneity by leaving first drug-resistant cells for the action of a second
effective more active drug. However, the worst drug rule has not yet shown
efficiency in clinical trials. More systematic mathematical models have recon-
sidered it by taking time and cross-resistance into account and justifying “best
drug first, worst drug longer” strategy (Katouli and Komarova, 2011).

Evolutionary modelling approaches led to the proposal of a new therapeu-
tic strategy called adaptive treatment that aims to maintain a stable tumour
population instead of trying to achieve the maximal cell kill (Gatenby et al.,
2009). This prevents the elimination of sensitive tumour clones which should,
in theory, suppress the growth of the therapy resistant clones in a competitive
manner. A basic assumption of this strategy is that the resistant clones have
a lower fitness than sensitive clones because they commit more resources to
maintain the resistant phenotype. This strategy has been tested in animal
models of ovarian cancer treated with carboplatin but proof of the principle
in humans is not yet available (Gatenby et al., 2009).

In order to reduce the genetic heterogeneity in cancers by therapy, we still
have to better understand evolutionary and molecular mechanisms that gov-
ern it. Do mechanisms of canalisation exist in tumours as in normal cells?
Can they be enhanced? What is the role of genetic variation buffering in
tumorigenesis? For example, it is known that the classical evolutionary capac-
itor HSP90 or other chaperones are frequently overexpressed in cancer cells
(Whitesell and Lindquist, 2005). Inhibitors of HSP90 are currently investi-
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gated for application in combination with cytotoxic drugs (such as cisplatin).
However, it remains unclear how application of these inhibitors will affect tu-
mour heterogeneity, and how the role of chaperones such as HSP90 changes
in tumorigenesis with the patient’s age. All these questions are central to
understanding how to control the clonal genetic heterogeneity.

9.7.2 Cancer stem cells

The second hypothesis postulates existence of a minority of relatively
slowly proliferating cells able to self-renew among the total cancer cell pop-
ulation. By analogy with the function of normal stem cells, they are called
Cancer Stem Cells (CSC)∗ (see Chapter 2). Though genetically identical
to those cells that actively proliferate and differentiate, it is assumed that the
CSCs play a more important role in the long-term sustenance of the tumour
and dissemination of cancer cells throughout the body.

Moreover, in some models, it is assumed that the CSCs can be localised
in protective hypoxic niches formed by an extracellular matrix with a special
microenvironment controlling their division. These niches protect CSCs from
the action of anti-proliferative and cytotoxic drugs. Also the CSCs are less
affected by most of the cytotoxic drugs (acting most effectively at dividing
cells) because they are dormant most of the time. Hypoxia in the niches can
protect the CSCs from the effect of radiation therapies because radiation re-
quires oxygen to induce DNA damage. Some studies show that CSCs can use
DNA repair mechanisms more efficiently and activate multiple drug resistance
and anti-apoptotic genes. In other words, CSCs are assumed to be much more
robust than the majority of cancer cells with respect to tumour treatment,
capable to survive it and eventually to restore the eliminated tumour mass.

Currently, CSCs are defined as those cancer cells that are capable of in-
ducing xenograft mouse tumours by transplantation. Technically, the cancer
cells are divided in subpopulations with differential expression of some sur-
face markers (such as CD24 or CD44), and each subpopulation is tested by
transplantation into a mouse for its ability to seed a tumour. Due to this
complicated test for detecting stemness, a number of questions remain about
the definition, the role and the genesis of CSCs. For example, two alterna-
tive hypotheses currently coexist; one assumes that CSCs are stable in time
(hierarchical model), the second suggests that any cancer cell can fluctuate
between stem and non-stem states (stochastic model). Most of the properties
of the CSCs such that they represent a minor, dormant, resistant to thera-
pies subpopulation, have not yet been unambiguously proven experimentally.
For example, some models suggest that, at later stages of tumorigenesis, the
majority of cancer cells can possess stem properties (Clevers, 2011).

Nevertheless, several therapeutical strategies are in development to target
the CSC population rather than the rapidly dividing tumour cells. They in-
clude destruction of the protective niche, inhibition of cell migration ability,
activation of cells from dormancy, inhibition of DNA repair, increase of Reac-
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tive Oxygen Species (ROS), inhibition of survival mechanisms and induction
of differentiation (Trumpp and Wiestler, 2008). One of the obstacles on the
way to develop specific drugs against CSCs populations is current standards
for estimating the efficiency of anticancer treatment. Most of the treatment
success criteria are now based on measuring the total mass of the tumours,
while hypothetical specific anti-CSC therapies will not affect them in the first
place.

9.7.3 Unifying two theories

From a theoretical point of view, it is possible to unify the two explana-
tions for cancer resistance in one consistent view (Tian et al., 2011). To do this,
one has to consider epigenetic heterogeneity as a part of clonal heterogene-
ity. That way, CSCs represent a particular subpopulation of cells (genetically
identical but epigenetically different from the rest of the clone with particular
robustness properties). Furthermore, with increasing tumour aggressiveness,
the epigenetic landscape of the cancer cells can become more shallow, with
higher probabilities of stochastic switching between states. This can increase
the frequency of transitions between stem-like and non-stem-like epigenetic
states. Thus, both hierarchical and stochastic models can be unified, with the
first one playing a more important role at the earlier stages of tumorigenesis
(when epigenetic cellular states are better separated from each other), and the
latter being more important at the later and more aggressive stages (when the
majority of cancer cells acquire a high-level of epigenetic plasticity).

9.8 Experimental approaches to study biological
robustness

There are several well-known experimental studies dedicated to measur-
ing and explaining the robustness of certain biological mechanisms. Arguably,
the best experimentally-studied robust properties in living organisms are seg-
mentation patterns in Drosophila menalogaster development and bacterial
chemotaxis systems. A lot of effort has also been invested in understanding
the robustness of mechanisms of cell cycle and DNA repair in yeast because
the knowledge of those systems can be utilised in understanding human cell
biology.

9.8.1 Robustness of Drosophila development

Canalisation in development is a type of biological robustness conceptu-
ally developed by Waddington (1957). Using the famous metaphor of a ball
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rolling down an epigenetic landscape, he hypothesised that there must only
be a finite number of distinct developmental trajectories possible. Along the
trajectories, cells make discrete cell fate decisions. Each trajectory, called a
chreod (meaning, necessary path), must be stable against small perturbations.
Waddington underlined that the canalisation property is a result of natural
selection and of adaptation of the development to the environment. Note that
mutant phenotypes usually show much greater diversity than the wild type
ones.

Studies on Drosophila melanogaster development, and, in particular,
Drosophila embryo patterning, confirmed Waddington’s hypothesis. The exis-
tence of embryo variation-prone positional information in some of the protein
gradients, such as the Hunchback protein, proved to be an extremely robust
system. It was shown that despite large environmental variations, the position
of the first segmentation point has a variation of 1% of the total embryo length
(Houchmandzadeh et al., 2002).

Waddington’s canalisation was also demonstrated at the level of gene ex-
pression variability in Drosophila. The variation of the zygotic segmentation
gene expression patterns is markedly reduced when compared to the variation
in the levels of maternal gene expression by the time gastrulation begins. For
instance, this variation is significantly lower than the variation of the mater-
nal protein gradient Bicoid (Manu et al., 2009). The genetic network whose
properties form the epigenetic landscape, was identified and analysed through
mathematical modelling (von Dassow et al., 2000).

9.8.2 Gene knock-out screenings in yeast

Robustness of normal cells with respect to viability is extensively studied in
yeast. One of the most studied questions is: What genes should be significantly
perturbed (by knocking them out or by overexpression) in order to make
the cell nonviable? Of course, the answer to this question depends on the
environment in which the cell is cultivated. Usually the experiments are done
in the standard laboratory conditions. For these conditions, it is known that
only about 20% of Saccharomyces cerevisiae genes are required for viability
(Costanzo et al., 2011). Among the 80% remaining, some genes genetically
interact forming synthetic lethal pairs of genes (see Box 9.6).

The genome-wide scale mapping using Synthetic Genetic Array (SGA)
methodology in yeast was accomplished in 2010 in which more than 5 millions
of gene pairs were checked and about 170,000 genetic interactions (3% of all
checked pairs) were identified, approximately balanced for negative and posi-
tive ones. With respect to growth, a genetic interaction is classified as positive
(respectively negative) when the fitness of the double mutant is higher (respec-
tively lower) than expected. Negative genetic interactions often indicate func-
tional redundancy between two genes, with the most pronounced case being
synthetic lethality when simultaneous deletion of two otherwise non-essential
genes leads to cell death. Among those genes which have the tendency to have
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mostly negative interactions, many genes required for normal progression of
the cell division cycle are identified, indicating the most fragile part of the
yeast cellular physiology with respect to viability and growth.

o BOX 9.6: Synthetic lethality / Synthetic dosage lethality
Synthetic interactions are identified if mutations in two separate genes
produce a different phenotype from either gene alone, and indicate
a functional association between the two genes. Two genes have a
synthetic lethal relationship if mutants in either gene are viable but
the double mutation is lethal. Synthetic dosage lethality is a type of
genetic interaction which is detected when overexpression of a gene is
lethal only if another, normally nonlethal, mutation is present.

Synthetic lethality and synthetic dosage lethality (see Box 9.6) studies
in model organisms and human cells give hope to develop cancer drugs that
would kill cancer cells very selectively: if a cancer cell has a characteristic
deletion or amplification∗ of a gene, then inhibiting or overexpressing an-
other nonessential gene forming a synthetic pair, will lead to specific lethality
of cancer cells. For example, one particular type of breast cancer is charac-
terised by loss-of-function mutation in BRCA1 gene involved in DNA repair.
The PARP1 gene forms a synthetic lethal pair with BRCA1 in cellular mod-
els and, therefore, inhibitors of PARP1 for treating BRCA1-deficient breast
cancer were developed and went to clinical trials (Helleday, 2011), but with no
confirmation of success yet. There is a belief that not only synthetic lethality
pairs can be tried to selectively kill cancer cells but also the synthetic lethality
cocktails, i.e. drugs or drug combinations affecting several targets simultane-
ously, or taking into account more than one cancer genome modification (see
also Section 11.4). In silico modelling of robustness of metabolic networks
in yeast suggests that one can find a significant number of k-tuples of genes
such that deletion of any k−1 genes in a k-tuple would not give a lethal effect
while knocking-out all k genes is lethal (so called k-robustness) (Deutscher
et al., 2006). These predictions remain to be experimentally confirmed.

9.8.3 Statistical and epidemiological analyses

Statistical analysis of epidemiological data can also be considered as a
measure of cancer robustness. One of the major questions here is: How many
oncogene (or tumour suppressor) mutations are potentially needed to convert a
normal cell to a cancerous cell? Knudson (1971) performed a statistical analy-
sis on retinoblastoma and suggested his famous two-hit model: two mutational
events are necessary to fully inactivate two working copies of the retinoblas-
toma gene (RB). RB later became known as the first tumour suppressor gene
(see Chapter 2).

A single genomic translocation∗ creating a chimeric oncogene
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EWS/FLI1 in Ewing’s sarcoma∗ seems to be sufficient to cause cancer in
adolescents. More generally, many paediatric cancers are believed to be caused
by very few genetic modifications. However, such a low number of mutations
sufficient to induce tumorigenesis is an exception. Armitage and Doll (1954)
suggested a statistical model explaining the experimental observation that,
in industrialised nations, the frequency of most common cancers seems to
increase proportionally to the sixth power of age. This correlation could be
explained by assuming that the outbreak of cancer requires the accumulations
of six consecutive mutations. Similar studies showed that about 12 mutational
events are necessary to induce prostate cancer (Cook et al., 1969). These works
led to the development of the multistep theory of tumorigenesis according to
which the normal tissues are transformed into cancerous ones by means of a se-
ries of discrete stages: somatic mutations∗, broad genomic rearrangements,
or changes in tissue interactions and environment.

9.8.4 Gene knock-out screenings in mammalian organisms

In summary, multiple experimental observations have showed that the nor-
mal human cells are relatively safely protected from transformation to cancer
cells. In a typical scenario, multiple mechanisms should be violated to induce
tumorigenesis. However, there exist specific fragilities which are exploited by
various cancers to accelerate their development. On other hand, cancer cells
develop their specific fragilities.

In order to find these fragility points in cancer cells with respect to the
cytotoxic treatments, large-scale gene knock-out screenings have been intro-
duced. In these experiments, many genes are affected one by one by infecting
the cell with a specific small interfering RNA (siRNA) such that the expres-
sion of the affected gene is significantly (but usually not completely) reduced.
With respect to chemotherapy, the objective is to find the genes whose in-
hibition would sensitise the treatment and make it more efficient and more
specific to cancer cells. For example, a large scale siRNA screening was done
in order to find genes sensitising the cisplatin treatment. These screenings
revealed potential genes that synergistically interact with cisplatin enhancing
its action on cancer cells (Bartz et al., 2006).

9.9 Conclusion

To finalise this chapter we can still ask ourselves: Why does it make sense
to talk about cancer robustness? To summarise, the current answers to this
question are the following:

1. Since cancer cells are living cells derived from normal predecessors, they
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can benefit from all biological mechanisms developed by evolution for
maintenance of cellular and organismal function integrity and stability.
Some of these mechanisms (such as multiple control feedbacks, multidrug
resistance) allow cancer cells to actively withstand attempts to eliminate
them by using drugs.

2. Cancer cells deal with specific challenges with which their normal coun-
terparts deal to much less extent. These are stresses related to active pro-
liferation (DNA replication stress, nutritional stress, hypoxia), genomic
instability and action of anticancer drugs. The main defence mechanism
that cancer cell populations utilise to be robust in these stressful con-
ditions is their ability for fast evolution by reprogramming biological
networks inherited from the normal predecessors. In this battle, cancer
cells become more robust to some perturbations and more fragile to the
others.

3. Cancer as a disease has a significant chance to appear during a typical
human lifespan. When it appears, it is able to robustly sustain itself,
in the absence of treatment often leading to lethal consequences for
the host organism. The major manifestation of cancer robustness and
complexity is the ability of tumours to relapse after a visibly successful
treatment. The phenomenon of tumour relapse is currently explained
by clonal tumoral heterogeneity and long-term sustenance of tumoral
clones by cancer stem cells (CSCs).

. Exercises

• List and define major patterns that can potentially make bio-
logical networks robust.

• What are the conditions on long-term existence of a polymorphic
cell population?

• Explain how robust living systems can evolve.

• List major biological mechanisms of tumour relapse.

• What would be the danger in making an analogy between ro-
bustness in engineering and biological systems?
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é Key notes of Chapter 9

• Living systems are characterised by robust properties because
they are able to perform their functions despite perturbations in
their environment and genetic background.

• Cancer is robust as a disease because it has a significant chance
to appear during a typical human lifespan, and is able to sustain
itself and withstand therapeutic interventions.

• Because cancer cells deal with specific challenges not common
with their normal predecessors, they are expected to have spe-
cific fragilities that can be used for developing new cancer ther-
apies.

• Robust biological systems, including cancer cell populations, can
evolve by accumulation and release of genetic diversity with fur-
ther selection for better fitness.



Chapter 10

Cancer robustness: Mathematical
foundations

Robustness is a nontrivial biological phenomenon difficult to study using pure
reductionist approach (see Chapter 1): it would be very naive to think that
robustness is assured by a few selected elements of the system (however, it
can happen in some special cases such as mechanisms of protein refolding). By
contrast, robustness is rather frequently distributed everywhere in the system,
guaranteed by the whole system organisation and cooperation between its
various parts.

In this chapter, an attempt to formally describe biological robustness is
made by trying to associate some of the known robust properties of mathe-
matical objects with robust properties of biological systems. A mathematical
definition of robustness measure will be given and it will be shown that simple
and commonly-used definitions of robustness have caveats in their practical
use. Several well-known examples of mathematical objects possessing robust-
ness properties will be described. Finally, a tentative unifying view on ro-
bustness in mathematical terms will be proposed. This chapter contains some
mathematical material for which basic training in calculus and differential
equations is needed.

We will only evoke several general ideas concerning robustness through
various mathematical theories without going deeply in them. The aim of the
chapter is to highlight possible connections of these theories to the problem of
robustness and to provide starting references for further study. We will nev-
ertheless consider several notions in more details than others, mainly because
of their high citation index and the recent interest to them.

10.1 Mathematical definition of biological robustness

10.1.1 Defining robustness as variance contraction

Intuitively, we can formulate the simplest mathematical definition of ro-
bustness as a measure of the average variation of a property of a biological

305
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system from its reference (nominal) state when the conditions in which the
system exists vary.

Thus, to define robustness, one must specify:

• A system S

• A property M of the system that can be a quantity, a state, a structure
or a function

• A set of all possible conditions P in which the system S can be found

• A probability distribution φ(p), p ∈ P defined over the set of conditions
P

A way to quantify the property M (which can be represented by several
numbers) of the system S in any condition p should be defined, i.e. M rep-
resented as a vector field fM = fM (p). Together with this, a way to measure
the change of M between two different conditions p′ and p′′ should also be
defined. The corresponding measure is denoted D(fM (p′), fM (p′′)).

Let us define a reference condition of the system p∗ ∈ P , in which the
robustness is measured. Then the relative local robustness RMS (p∗) is defined
as an average deviation of the property M from its reference state in the
condition p∗:

RMS (p∗) =

∫
p∈P

φ(p)D(fM (p), fM (p∗))dp . (10.1)

After the local robustness is quantified, the global robustness can be com-
puted as an average over all possible system conditions:

R̄MS =

∫
p∈P

φ(p)RMS (p)dp .

With this formulation, different values of RMS can be compared but it
cannot be concluded if a particular RMS is big or not.

To measure the absolute robustness, a measure of change between two
different conditions p′ and p′′ needs to be introduced. First, consider a distance
function d(p′, p′′). Then, it is possible to define the scale of condition variance
and to compare RMS to it, provided the units of variation of D and d are
comparable. The latter can usually be achieved by various normalisations such
as logarithmic scales. In this case, let us define the absolute local robustness
as:

R̂MS (p∗) =
RMS (p∗)∫

p∈P φ(p)(d(p, p∗))dp
. (10.2)

When R̂MS (p∗)� 1, the property M of system S in condition p∗ is robust
with respect to perturbations from P . In other words, the meaning of Equa-
tion 10.2 is that the variance of a robust system property should be much
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smaller than properly quantified variance of conditions in which the system
exists.

Notice that the system is supposed to be robust and stable only in the
most typical conditions (with high φ(p)). Meanwhile in some relatively rare
conditions, it might be fragile and nevertheless considered to be robust on
average. The system can even be lethally sensitive to some rare disastrous
conditions to which it has never had a chance to adapt. In this case, the
probability of such conditions will determine the average system lifetime.

As a typical example, let S be a dynamical system (e.g. a model of a bio-
logical pathway), and let M be some scalar property M = M(X1, X2, . . . , Xk)
which depends on a set of system parameters {X}. A particular combination
of parameters will be our condition p = {x1, x2, . . . , xk}. Let us define how the
parameters will vary by defining probability distributions φi(xi), i = 1 . . . k for
each parameter independently. For example, we can say that a parameter i
will be distributed log-uniformly in some allowable range around its reference
value x∗i , while other parameters will be fixed at their nominal values x∗j , j 6= i.

Let D be simply D = [logM(x1, x2, . . . , xk)/M(x∗1, x
∗
2, . . . , x

∗
k)]2. Then:

RMS (x∗) = V ar(logM) , (10.3)

where V ar is the variance.
To make its meaning absolute, RMS can be normalised on the maximal

log-variance of any individual parameter:

R̂MS (x∗) =
V ar(logM)

maxi∈{1...m}{V ar(log xi)}
. (10.4)

The definitions of robustness in Equation 10.3 and Equation 10.4 were
proposed in Gorban and Radulescu (2007), where, in the spirit of Wagner
(2005), it was called distributed robustness∗ (because it might be dependent
on the whole distribution of parameter values and not necessary on one single
parameter) and further refined.

For example, we will call a property M r-robust, if, among k parameters X,
one needs to change at least r parameters in order to violate the robustness
condition R̂MS � 1. If, in addition, these r parameters are chosen by blind
random choice then the property is called weakly r-robust.

Kitano (2007) introduced a definition of robustness similar to Equa-
tion 10.1, relating it to the average degradation of a function caused by
a perturbation.

The definition of robustness given above is by no means universal. In many
specific studies, it is reasonable to introduce other ad hoc definitions. For
example, Wagner (2005) in his book defines robustness of a genotype (RNA
sequence) as the number of single-mutated variants of the genotype having the
same phenotype (secondary RNA structure). In modelling metabolic pathways
in yeast and bacteria, robustness of metabolism is often defined as a fraction
of nonessential reactions. A nonessential reaction is a reaction which removal
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does not preclude the cell to produce necessary metabolites from the nutrients
available in a given environment.

10.1.2 Properties of the variance-based robustness measure

There are flaws in the definition of robustness based on variance (or on
log-variance) such as in Equation 10.4: unfortunately, it is not invariant
with respect to nonlinear transformations of the variables xi, i.e. for the same
phenomenon, different conclusions will be made depending on what are the
parameter definitions. Let us consider a simple example:

M(k1, k2, k3) =
k3 − k1

k2 − k1
, k1 = 103s, k2 = 102s, k3 = 10s ,

where s is uniformly distributed in the interval [−1; 1]. According to the def-
inition in Equation 10.4, R̂MS = 0.23 which is an indication of M being
robust. At the same time, the function:

M(k1, k2, k3) =
e−k3 − e−k1
e−k2 − e−k1

produces R̂MS = 242 which is an indication of M being (very) nonrobust.
If we think of ki as parameters of a dynamical model of some chemi-

cal reaction network then it means that the results of measuring robustness
are drastically dependent on what we use as parameter values: the kinetic
rate constants or activation energies. However, kinetic rate constants and
activation energies are connected by a simple exponential function. Gorban
and Radulescu (2007) underlined that the definition of robustness in Equa-
tion 10.4 is well suited only for some classes of functions M , for exam-
ple, for positively homogeneous functions of degree one having the property
M(αx1, αx2, . . . , αx3) = αM(x1, x2, . . . , x3), which is a reasonable limitation
for a large class of measured dynamical system characteristics. In practice, it
means that the function for which the robustness is studied should be checked
for its scaling behaviour when all its parameters are multiplied by the same
constant.

Yet another interesting aspect concerns the scaling of robustness R̂MS with
respect to the number of arguments of the function M . In other words, this
is a question of how robustness of a property scales with the dimension of the
parameter space where it is defined.

In mathematics an interesting and nontrivial observation was made by
Millman and Gromov (1999) which was called the phenomenon of concen-
tration of measure. It states that any Lipschitz function (see Box 10.1) de-
pending on many arguments is almost constant, i.e. the variance (or the log-
variance) of the function is much smaller than the variance (or log-variance)
of the distribution of input vectors.

The simplest example of such a concentration comes from considering a
uniform distribution of points on a n-dimensional sphere with unit radius.
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o BOX 10.1: Lipschitz function
Lipschitz function (called also 1-Lipschitz function) is a function of

limited growth. A function of many arguments M(x) is called a Lip-
schitz function if there exists a constant K such that for all pairs of
vectors x and y:

|M(x)−M(y)|
d(x,y)

≤ K , (10.5)

where d(x,y) is the distance between x and y.
The smallest K is called the Lipschitz constant. If 0 < K < 1, then
the function is called a contraction mapping.

Imagine that this distribution is projected on any 2-dimensional plane em-
bedded in Rn. If n is large, then almost all projections are located in a very
tight vicinity of the centre of the projected sphere, with a variance much less
than one decreasing exponentially with n.

The phenomenon of robustness (contraction of variance) is thus an ex-
pected property if: (1) the system under study exists in a multi-dimensional
space (described by many independent variables and parameters) and (2) the
property M of the system is measured by a Lipschitz function which depends
on many variables or parameters. The latter is usually the case in many prac-
tical applications.

In the next section, we will show several examples when concentration
of measure phenomenon leads to robustness. The idea of concentration of
measure as one of the generic underlying mechanisms of biological robustness
was first suggested by Gorban and Radulescu (2007). Talagrand (1996), a
mathematician, claimed: “The idea of concentration of measure (which was
discovered by V. Milman) is arguably one of the great ideas of analysis in our
times.”

10.2 Simple examples of robust functions

10.2.1 Mean value

Many functions used in mathematics and statistics show robust be-
haviours. The simplest one is the formula for calculating the mean value:

M(x1, x2, . . . , xn) =
1

n

n∑
i=1

xi .

From the law of big numbers, it is known that the variance of the mean value
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scales with n as 1/
√
n and becomes less and less sensitive to the variations

of individual xi given that, among xi, there are no dominating variables. An
averaging of some kind is an abundant source of robustness in mathematical
modelling. Median function is another, even more robust, example. It is less
sensitive to the exact values of a limited number of atypical measurements
(i.e. outliers).

10.2.2 Rational functions

Let us consider another example which is a simple rational function (Gor-
ban et al., 2010):

M(k1, k2, ..., kn) =
P (k1, k2, ..., kn)

Q(k1, k2, ..., kn)
.

In some cases, this function can show robust properties similar to those of
the mean value function with growing number of parameters. Let us consider
a case when all kis have very different scales, i.e. for any pair i and j 6= i one
has ki � kj or kj � ki. In this case we will say that kis are well-separated.

Among the monomials from which P and Q consist, one will find few
which dominate and determine their values. In the extreme case, the whole
expressions for P can be approximated by a single monomial P ≈ A

∏n
i=1 x

αi
i

with some positive integers αis, with many of them equal to zero for a typical
polynomial. The same is true for Q. The ratio of two monomials will be a
monomial M ≈ B

∏n
i=1 x

βi

i , where βis are (positive or negative) integers.
Frequently, many or even all βis are equal to zero, which means that the value
of M effectively depends only on a small number of parameters or does not
depend on them completely.

Possible asymptotic values of M , in the case when all kis are well-
separated, can be obtained by introducing new variables ψi = ε log ki such
that ki = eki/ε, letting ε→ 0 and studying the limit limε→0M(k1, k2, . . . , kn).
Typically, this limit will depend on very few kis or will not depend on them
at all.

For the function considered in the previous section, M(k1, k2, k3) = k3−k1
k2−k1 ,

if we assume that k3 � k2 � k1 then M ≈ 1 with high accuracy (the accuracy
will be approximately equal to k2/k1). In other words, M depends very weakly
on parameters, hence, it is robust.

10.2.3 Examples from chemical kinetics

Rational functions appear everywhere in mathematical modelling of bio-
logical networks using chemical kinetics approach. One example of a rational
function is the saturating function (for example, associated with Michaelis-
Menten kinetics, see Chapter 7):
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r(x) =
Vmx

K + x
,

For big values of x� K, the function very weakly depends on x and approxi-
mately equals Vm, i.e. become robust with respect to variations in x (to those
variations when x remains sufficiently big, of course).

To illustrate the difference between several types of robustness, let us con-
sider a simple cyclic chain of irreversible reactions:

A1
k1→ A2

k2→ A3
k3→ . . .

kn−1→ An
kn→ A1 , (10.6)

where kis are reaction kinetic rate constants. The formula for the steady state
flux through such a chain is:

F =
A

1
k1

+ 1
k2

+ 1
k3

+ · · ·+ 1
kn

,

where A = [A1] + [A2] + · · ·+ [An] is the sum of all component concentrations
in the pathway which is conserved.

Let us assume that the kinetic rate constants are sampled from a normal
distribution with the mean K̄, i.e. in a typical sample, they are all similar by
the orders of magnitude. Then, one can say that the longer the chain, the less
the flux F depends on individual variations of ki values. With growth of n, F
becomes more tightly distributed around its mean value A×K̄

n with variation
scaled as 1/

√
n. This type of robustness is called the cubic robustness (Gorban

and Radulescu, 2007).

Now assume that the kinetic rate constants are sampled from a log-normal
or a log-uniform distribution. In this case, the rate constants are all of different
orders of magnitude, i.e. with high probability, there exists the smallest one
ks which is well-separated from the others: ks � ki, i 6= s. In this case the

flux F equals, with good accuracy, to ksA ×
(

1−
∑
i 6=s

ks
ki

)
. Let us vary a

randomly chosen kinetic rate constant. If the variable is not the rate constant
of the limiting reaction step ks, then the effect of this perturbation on the flux
will be negligible. If this perturbation affects ksn then the flux will depend on
this variation linearly. However, if the amplitude of the perturbation is such
that it violates the initial inequality ks � ki, i 6= s then the perturbation will
not have any effect anymore because the flux will be limited by another rate
constant. In other words, when ks increases by an arbitrary number of orders

of magnitude, the flux F can be increased only by a factor
ks2
ks

, where ks2 is
the second slowest kinetic rate constant in the chain. The longer the chain, the
smaller the mathematical expectation for this factor. As a result, the variation
of F with respect to sampling kis from a fixed log-uniform distribution scales
as 1/n. This simplex type of robustness is potentially even stronger than the
one connected with averaging (Gorban and Radulescu, 2007).
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10.3 Forest-fire model: Simple example of evolving ro-
bust system

10.3.1 Forest-fire percolation lattice model

Carlson and Doyle (2002) suggested several interesting examples in which
simple mathematical systems demonstrate complex behaviours similar, in a
sense, to the ones of biological organisms. These similarities come, more par-
ticularly, from considering the strategies of dealing with trade-offs between
robustness and fragility. Here, we will consider in detail the metaphor of
forest-fire in the percolating lattice models. The forest-fire model itself was
suggested by Henley (1989) and Drossel and Schwabl (1992).

Let us suggest the following very primitive model of forest-fire. Consider
a regular rectangular lattice N ×N of sites (lattice vertices). Position of each
site will be designated by a pair of indices i, j. Each site can be occupied
by a tree or can be empty. Two trees are called neighbours if their posi-
tions i1, j1 and i2, j2 are different only in one vertical or horizontal step, i.e.
|i1 − i2|+ |j1 − j2| = 1. Any tree configuration is characterised by its density
ρ = Ntrees/N

2. A cluster refers to a connected subset of trees such that there
exists a path from any other tree in the cluster to any tree through neigh-
bourhood relations. Based on the percolation theory, it is known that for a
randomly uniform distribution of trees, the cluster size distribution demon-
strates a phase transition behaviour: before the critical density ρc ≈ 0.59,
there is a very little chance to obtain large clusters (subcritical phase) while
for ρ > ρc (supercritical phase) there will be one large cluster containing most
of the trees with high probability (see Figure 10.1).

Now we will consider the event of ignition, i.e. when the fire starts at a
lattice site. If ignition is taking place at a site (i, j), then the whole cluster
containing (i, j) will be burnt. Let us define a probability distribution for
ignition as I(i, j). Carlson and Doyle (2002) suggested to consider two ignition
distributions: uniform I(i, j) = f = const and exponentially skewed P with a

peak in the left upper corner (for example, I(i, j) ∼ exp(− 6(i+j)
N ), as in Zhou

et al., 2005).

For each configuration of trees, an act of ignition at position (i, j) is char-
acterised by an yield Y , which is defined as the density ρ after the fire, i.e. it
is proportional to the total number of trees before the ignition minus the size
of the burned cluster containing (i, j). For the uniformly random tree distri-
bution, the mathematical expectation of yield grows approximately linearly
for ρ < ρc and gradually drops to zero for ρ > ρc. It is assumed that the time
of the cluster burning is instantaneous (the original forest-fire model considers
gradual propagation of fire, but, here, we only consider the simplest scenario of
instantaneous elimination of the whole cluster). For analytical considerations,
the lattice is considered to be of infinite size.
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(A) (B)

(C) (D)

FIGURE 10.1 Forest-fire lattice percolation model and mechanisms of
SOC and HOT. (A) The percolation forest-fire model at the critical forest den-
sity. Black spots are not occupied by trees. Tints of grey colour clusters of trees (the
largest, percolated cluster is white). HOT configurations obtained by (B) simula-
tion of Darwinian evolution, (C) local incremental algorithm (see details in Carl-
son and Doyle, 2002), and (D) grid design (manually designed lattice). Reproduced
from Carlson and Doyle (2002) with the publisher’s permission. c© 2002 National
Academy of Sciences, USA

This simple probabilistic cellular automaton game allows the demonstra-
tion of two nontrivial phenomena: Self-Organising Criticality (SOC), a notion
coined by Bak et al. (1987) and Highly-Optimised Tolerance (HOT) coined
by Carlson and Doyle (1999). Both of them are frequently mentioned in the
recent discussions on biological robustness (Kitano, 2004a). Some character-
istics of these scenarios can be computed analytically, which makes them a
useful toy case study. (Bak et al., 1987; Drossel and Schwabl, 1992).

10.3.2 Self-organising criticality

In the SOC scenario, we allow the forest to recover after every fire. At
each empty site, a new tree will appear with probability p. If we consider
the uniform ignition distribution I(i, j) = f , then the model contains two
parameters, with a dimension of time (number of update steps): 1/p is the
average time in which a tree grows, 1/f is the average time between two
ignition incidences. Hence, p/f is the number of trees grown between two
ignition incidences. The dynamical behaviour of ρ converges to a steady value
ρ̂, which is remarkable in the following aspects.

Provided a separation of time scales 1
p �

1
f , i.e. the trees grow much faster
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than ignitions occur, the density ρ̂ does not depend on exact values of p and
f . ρ̂ is also the minimal density possible, i.e. the number of growing trees
and of burned trees is maximum which corresponds to the maximum energy
dissipation in the system.

The resulting family of tree configurations is characterised by the following
critical properties:

• The system shows long-range correlations (such as percolation) in fire
incidents.

• The distribution of cluster sizes shows power-law distribution.

• The shapes of the clusters are fractal-like, i.e. are self-similar at various
scales.

The concrete parameters of this criticality are highly nontrivial (Pruessner
and Jensen, 2002).

The conclusion is that there is a big region of the system parameters in
which the forest-fire dynamics naturally converges to a critical state of the
system. This is why this phenomenon is called SOC. The phenomenon of
criticality is extremely robust: it does not require parameter fine-tuning as
it is the case in many critical systems in physics. The separation of time
scales 1

p �
1
f is suggested to be a common mechanism in dynamical systems

showing SOC. In this forest-fire model, there are three well-separated time
scales: time of cluster burning (which is considered instantaneous here), time
of tree growth, and time between two ignition events. The dynamics can be
described as a balance of two processes: (1) slowly accumulating stress (larger
clusters) and (2) fast relaxation of stress (ignitions eliminating clusters) which
is relatively infrequent.

10.3.3 Highly-optimised tolerance

The HOT mechanism works in a quite different manner, mimicking the
process of natural selection, where the mathematical expectation of yield Y
given certain ignition probability distribution I(i, j) is considered to be an
explicitly optimised fitness function. A simple scenario is the following. One
generates a population of percolation lattices, each containing some randomly
generated configuration of trees. At every optimisation step, each lattice (an
individual) gives rise to an offspring, with a certain probability of mutation∗

per site (mutation here is converting a tree into an empty site, or converting
an empty site into a tree). Hence, the population doubles. For each individual,
its fitness is calculated by generating an ignition from the probability distribu-
tion I(i, j) and calculating the yield. The yield depends on the individual tree
configuration (genotype). Half of the individuals with the least fit are removed
from the population, i.e. they die. The process is repeated until convergence
in which typically only one most fit tree configuration survives. This configu-
ration is characterised by the appearance of barriers of empty sites separating
dense clusters of trees and preventing large losses of trees (see Figure 10.1).
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The pattern of these barriers is very specific to I(i, j). The distribution of
cluster sizes reflects I(i, j) and will follow the power-law provided that I(i, j)
follows the power law. The point is that this configuration allows achieving
very high expected yields Y given the distribution I(i, j). This is why the
configuration is called Highly-Optimised. For the sites with high I(i, j) (typical
ignitions), the yield will also be very high, while for the sites with low I(i, j)
(unusual locations of ignitions) the yield can be extremely low corresponding
to catastrophic burning off huge tree clusters.

Experiments with artificial evolution were continued by Zhou et al. (2005).
In particular, they modelled the effect of coexistence of two habitats (popula-
tions of lattices) characterised by different types of I(i, j): uniform and skewed.
The individuals well fit to the uniform I(i, j) are called generalists while those
best fit to the skewed I(i, j) are called specialists. In the model, there is a pos-
sibility of an invasion attempt (when some individuals are transferred) from
one habitat to another. Simulations show that most of the time the general-
ists cannot invade the skewed habitat and cannot fix their genotype in it since
they are less fit for typical perturbations from I(i, j). On the other hand, spe-
cialists cannot invade the uniform habitat since they are not well adapted to
it and suffer from low yields. For each population in its habitat, this situation
is called stability to invasion and represents one type of robustness charac-
terising evolving systems. However, modelling showed that a rare sequence of
atypical ignitions can completely eliminate specialists in their skewed habi-
tat. In this sense, specialists’ populations do not have the so-called internal
stability (i.e. ability for sustainable existence) another type of robustness, on
a large time scale. Generalists’ populations in uniform habitat have internal
stability and, hence, their genotype is immortal. Generalists have a chance to
invade the skewed habitat and successfully proliferate there during the epochs
of specialists extinction. However, in a long run, their genotype inevitably
becomes more specialised to the skewed I(i, j).

10.3.4 Interpretation for living organisms

Zhou et al. (2005) underlined that the percolation lattice model can be
given a wider interpretation than only forest-fires. The connected clusters can
symbolise highly coupled functions of an organism such that a failure in one
function would cause cascading failures of all functions in the cluster. In this
interpretation, an organism has to deal with a trade-off between integrating all
functions and separating them by protective barriers to prevent catastrophic
cascades of failures. Need in supporting the existence of barriers is the price
for reliable functioning.

Both SOC and HOT prototype mechanisms were suggested to play an
important role in the evolution of living organisms, thus, leading to robust
system behaviours. For example, Bak and Sneppen (1993) suggested SOC as a
mechanism leading to the punctuated equilibrium effect in biological evolution.
Punctuated equilibrium is a hypothesis suggested by Eldredge and Gould
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(1972) stating that biological evolution takes place in terms of intermittent
bursts of activity separating relatively long periods of quiescence (stability of
phenotype), rather than in a gradual manner (that was the initial spirit of
Darwin’s work).

SOC corresponds to self-organisation while HOT is more explicitly related
to imitating natural selection. Note that robustness in SOC and HOT has
rather different meanings. SOC robustly leads to the appearance of certain
generic (not sensitive to small structure modifications) system configurations
characterised by some optimal properties (such as maximum energy dissipa-
tion). HOT leads to the appearance of robust yet fragile system configurations
which are highly resistant (tolerant) to typical perturbations, but can be very
fragile to unusual ones. These optimal-in-a-given-context configurations are
highly structured, can be heterogeneous and sensitive to small changes in their
structure. The SOC forest-fire tree configuration is rather (equally) fragile to
any ignition probability distribution I(i, j) while HOT can be more resistant
to some I(i, j) and even more fragile to atypical I(i, j)s.

10.4 Robustness/fragility trade-offs

10.4.1 Mathematical modelling

The concept of trade-offs between the functioning of living systems and
their robustness is one of the most important in the field of cancer robustness.
The living cell possesses only a limited amount of resources and tends to
be evolutionary adapted to use and distribute these resources in the most
efficient way (a principle that, nevertheless, can be argued in many cases).
Hence, one can try to apply some of the simple ideas from the well-developed
mathematical optimisation theory to make predictions on the complicated
relations between robustness of a function and the efficiency of the function
itself.

One of the simplest mathematical considerations is the following (compare
to the formalism proposed in Wagner, 2005). Assume that a quantitative mea-
sure of fitness of an organism w is gradually selected by evolution towards its
maximum value. Let us consider that the fitness w depends on an efficiency
f of some biological function and on the robustness of this function r, i.e.
w = w(f, r). We assume that the fitness is increased with increase of both f
and r, i.e. ∂w

∂f > 0, ∂w∂r > 0. If f and r are completely independent variables,
then the organism will eventually maximise w by evolving to the maximum
values of f and r, i.e. wmax = w(fmax, rmax).

The situation is different when the robustness depends on the function.
This dependency can take various forms: for example, robustness can be lim-
ited by the function value. However, since we assume selection for the maxi-
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mum possible values of both f and r, we can say that r = r(f). Consider the
simplest case when this function is monotonous, i.e. either growing dr

df > 0 or

descending dr
df < 0.

In the case of growing dependence dr
df > 0, there is a synergy between the

function and its robustness: this is a case of robustness for free. To give a simple
example, imagine a function dependent on an enzyme concentration e such
that a bigger enzyme concentration gives a more efficient function, though,
the efficiency gradually saturates: f(e) = fmaxe/(K + e). Then, the evolution
will optimise the fitness by increasing e. At the same time, the dependence
of f on variations of e will drop with the growth of e, hence, the robustness
of the function will be automatically and freely augmented. The maximum
fitness is again wmax = w(fmax, rmax = r(fmax)).

Let us consider the case of descending dependence dr
df < 0. Since dw

df =
∂w
∂r

dr
df + ∂w

∂f , the following condition on the growth of fitness, when the function
increases, is:

−
∂w
∂f

∂w
∂r

<
dr

df
< 0 , (10.7)

i.e. that robustness should not drop too fast with the increase of the function
efficiency, but this threshold can change with f . There are several situations
here:

1. Robustness never drops very fast, Equation 10.7 is always satisfied (see
Figure 10.2A). Then one has wmax = w (fmax, rmin = r(fmax)). As a
result, the system will be selected for the minimum value of robustness
(the most fragile system will be the most efficient).

2. Robustness always drops very fast (see Figure 10.2B), Equation 10.7
is violated for any f . Then wmax = w (fmin, rmax = r(fmin)). The sys-
tem is selected for the maximum value of robustness (it is advantageous
to be more robust even if less efficient).

3. For some values of f , Equation 10.7 is satisfied, for some other values,
it is not (see Figure 10.2C). There will be a maximum of fitness for
some intermediate values of function and robustness that, however, will
not be the maximum possible values:

wmax = w (fopt, ropt = r(fopt)) , fmin < fopt < fmax.

In the last case, we can talk about a trade-off between robustness and
function or robustness and fragility. For the values of f close to fopt, one
expects that increase in the function gives a fast drop-off of the robustness
and the resulting fitness is decreasing. On the contrary, any improvement in
robustness will cost too much in terms of function degradation and will be
eliminated by selection.



318 Computational Systems Biology of Cancer
ro

b
u

s
tn

e
s
s
 r

function f

fopt

ropt

a) selection for function

c) trade-off

b
) se

le
ctio

n
 fo

r ro
b
u
stn

e
ss

suboptimal
state

ro
b
u
st

n
e
ss

 "
fo

r 
fr

e
e
"

FIGURE 10.2 Simple mathematical view on robustness/fragility trade-
off. Shading shows values of the fitness function w(f, r) of function value f and
robustness value r. Four straight lines show examples of dependencies of r on f with
arrows showing the direction of the increase of w along the r(f) line. A circle below
the solid lines represents a suboptimal state in which the fitness can be increased in
any direction, increasing both robustness and function values (so-called violation of
trade-off scenario).

10.4.2 Examples of trade-offs

One of the simplest examples of such a trade-off was provided by Wagner
(2005) as the amount of gene overlap in viruses or bacteria. One can say that
if there is a possibility to pack genes with overlap, then this can enhance the
replication speed, co-regulation of coupled gene products, and maintenance
of a shorter genome (which might be crucial for small bacteria and viruses).
On the other hand, overlapping genes are more prone to mutations, since a
single mutation in the overlap region can affect several genes. In this case, the
trade-off solution leads to an optimal partial gene overlap.

The degree of genomic instability in a tumour is also an important example
of the robustness/fragility trade-off. Indeed, some mathematical models show
that there should be an optimal level of genomic instability in cancer cells. This
optimal level provides a balance between clonal heterogeneity and evolutionary
advantages connected to it on one hand, and the negative selection associated
with lethal consequences of genomic instability on the other hand (Komarova,
2005).
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Other mathematical models of trade-offs between robustness and optimal
functioning come from the modelling of metabolic networks by Flux Balance
Analysis (FBA) and application of constrained linear programming optimi-
sation techniques (Palsson, 2006).

10.4.3 Implications to cancer

In the cancer robustness field, there is an actively promoted idea that
in complex systems, robustness is always accompanied by specific fragilities
against some well-targeted perturbations (Kitano, 2007). This idea was in-
spired, first of all, by the above mentioned theory of HOT, which claims that
improving systems’ robustness by evolutionary selection will produce config-
urations that can be extremely robust but only for relatively frequent pertur-
bations. Rare types of perturbations to which the system did not have time
to adapt can affect the system in extreme and lethal ways. Thus, this theory
states that universal systems able to withstand any perturbations (general-
ists) are in average less efficient and robust than those able to withstand only
sufficiently frequent perturbations (specialists).

One can think of this statement either as of a proven theorem (which is
only possible to formulate and prove for some model situations such as the
forest-fire model) or as of a general law of complex systems, summarising many
experimental observations. This idea even motivated some researchers to for-
mulate the law of robustness conservation. Other researchers consider control
coefficients (see Equation 10.11 and Equation 10.12) of biochemical net-
works as measures of fragility (Westerhoff et al., 2010) and talk about conser-
vation of fragilities manifested by the summation rules (see Equation 10.13).
Simple ideas borrowed from the application of optimisation theory in eco-
nomics such as Pareto optimality allowed speculating on the fact that the
robustness/fragility trade-off can be violated if the system is not optimised
(see Figure 10.2 and Kitano, 2010). The dependence r = r(f) is valid for
the Pareto-optimised system, i.e. any increase in robustness leads to a de-
crease in the function performance. A point on the f×r plane, which is below
this dependence, can move and increase fitness in many possible directions,
including the one corresponding to the pure improvement of robustness with-
out decreasing functioning, or improving both robustness and function. As a
result, the system will shift towards its Pareto-optimal frontier, represented
by r = r(f) curve.

Postulating the necessity of the robustness/fragility trade-off inspires many
projects on finding new drug targets against cancer (see Chapter 11). How-
ever, the general theory is not constructive and does not yet provide concrete
strategies on how to identify and take advantage of such fragilities. Some
constructive approaches are developed for the robustness/fragility analysis of
biological networks, in particular, coming from the control theory and from
the theory of model reduction in reaction networks (see more details in Sec-
tion 10.7). However, these methods still need to be adapted to the specifics
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of the networks involved in cancer, taking into account tissue specificity and
large networks for which many parameters are badly determined.

10.5 Robustness and stability of dynamical systems

The theory of dynamical systems provides a solid mathematical basis
for studying many natural phenomena including biochemical mechanisms of
molecular biology. Much of this theory is devoted to studying stability of dy-
namical systems, stability of their behaviour or of particular states. This field
of science is immense. In this section, we only mention some of the exist-
ing directions which can be helpful in understanding sources of robustness
of molecular mechanisms. We will describe in more detail some of these ap-
proaches without trying to be comprehensive or to give a somehow systematic
introduction into the field. We will mention some of the most basic ideas in
the field that are required in any constructive discussion on robustness.

Before providing a short review of the ideas in the field of stability of
dynamical systems, we should notice that it would not be correct to equal the
notion of stability to the general notion of robustness. Robust functioning can
be associated with switching from one stable state to another, more adapted,
state in changed conditions. In this case, robust is more related to the fact
of robust switching between two stable states, which is usually connected to
some specific instabilities built into the system (Kitano, 2007).

In this section, we will deal with the best-studied class of dynamical sys-
tems, i.e. systems described by continuous first-order differential equations:

ẋ = f(x, t,K) , (10.8)

where t is time, x is a vector describing the state of the dynamical system, K
is a set of parameters.

Mathematical chemical kinetics permits one to model processes of intra-
cellular biochemistry. Networks of biochemical reactions can be modelled by
Equation 10.8 with the right-hand side f(x, t,K) constructed according to
well-defined rules (see Section 7.3.2). In this formalism, x(t) describes time
evolution of concentrations or absolute amounts of chemical species. Some of
the ideas described in this section are related to the general form of Equa-
tion 10.8, some are limited to the particular forms of f(x, t,K), associated
with reaction networks, or, even with narrower classes of chemical kinetics
equations (such as pure mass action law equations).

There are two types of parameters in the dynamical models. Firstly, there
are parameters K, explicitly present in the equations, which are usually kinetic
rate constants or concentrations of some chemical species that are considered
to be fixed The second ones are parameters representing the values of in-
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variants of the dynamics, i.e. the quantities that do not change along any
trajectory:

bi(x(t)) = bi0 = const, i = 1 . . .m ,

where m is the number of such invariants. In chemical kinetics, typically, bi(x)
represents the linear conservation laws, i.e. the linear combinations of chemical
species concentrations that do not vary. Values bi0 can explicitly be present in
f or not. We will call them balance parameters or constraint values. Let the
number of dynamical variables be n. All dynamic system trajectories x(t) exist
in the nonnegative orthant of Rn. The existence of m linearly independent
conservation laws reduces the effective dimension of the phase space∗ by m:
all trajectories are confined to a hyperspace of dimension n−m.

Given a vector of initial conditions x(t = t0) = x0, Equation 10.8 can
be solved numerically, sometimes analytically or semi-analytically. The re-
sulting solution can be geometrically thought of as a trajectory in the multi-
dimensional phase space. Studying one single trajectory is rarely interesting,
it is much more informative to study a geometrical picture coming from sets
of trajectories obtained by varying x0 or the parameters K of the system in
Equation 10.8. As it follows from our general definition of robustness in
Equation 10.4, we will study how variation of x0 and/or K change the set
of trajectories and in what sense. This is the theory of stability of dynamical
systems.

The trajectories of the system in Equation 10.8 follow the tangent direc-
tions of the function f in the right-hand side of Equation 10.8 that defines
a vector field in the phase space. Instead of studying variability in the sets
of trajectories, one can study variability of the vector field f(x, t,K) which
depends on the set of parameters K. Notice that this is a difficult but purely
geometrical problem and does not require integration of differential equations.

One of the most fundamental characteristics of Equation 10.8 is the set
of all stationary (or steady state) solutions, defined by the system of algebraic
equations f(x, t,K) = 0. Let us denote this finite (maybe empty) or infinite
set as {x}s. Studying this set of vectors, its dependence on parameters K and
the behaviour of the vector field f in its neighbourhood, generates the first set
of questions regarding stability (hence, robustness) of the stationary system
functioning.

10.5.1 Internal stability of a stationary state

The first category of these questions is related to the so-called internal
stability of the stationary state. A system is internally stable if it is capable to
maintain its stationary state despite perturbations that drive the system out
of it but do not change the system’s parameters. This set of questions goes
back to the works by Lyapunov (see Box 10.2).

Studying stability of a trajectory and a steady state is mathematically
equivalent. To study internal stability of dynamical systems, Lyapunov (1966)
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FIGURE 10.3 A schematic illustration of the geometrical representation
of a dynamical system. Parameter space (with the possibility of bifurcations,
bistability, oscillations, single stable state region), phase (or state) space, attractor,
initial conditions, attracting manifolds are represented.

o BOX 10.2: Stability by Lyapunov
Accordingly to Lyapunov, a stationary state xs is (uniformly) stable
if any trajectory starting in the δ-neighbourhood of xs will remain in
the ε-neighbourhood (where ε = ε(δ)) of xs for infinite time. If the
trajectory returns back to xs then it is called asymptotically stable
(Lyapunov, 1966).

suggested a mathematical apparatus of Lyapunov function, i.e. a function that
does not decrease along any system trajectory. Lyapunov function can be un-
derstood by thinking of a physical system that can be characterised by the
energy function. If the system loses energy over time and the energy is never
restored, then eventually the system converges to a final state of energy mini-
mum. Abstract dynamical systems, such as describing functioning of molecular
pathways, are usually not naturally equipped with such a function, but if it
exists then the system’s internal stability is guaranteed.

It is also important to mention the notion of internal stability by the first
approximation or linear or local stability, when perturbations are so small that
one can consider linear approximation of the dynamics in Equation 10.8:

ẋ ≈ ∂f

∂x
(xs)x + g(x) , (10.9)
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where ∂f
∂x is a matrix of partial derivatives called Jacobian. Very roughly, one

can say that for perturbations that are small enough, stability of the linearised
system leads to the stability of the initial system in Equation 10.8. The
stability of the linearised system in Equation 10.9 is studied by computing
the eigenvalues of the Jacobian in xs.

When a dynamical system is capable to return to the same stable state
despite perturbations changing its state (position of vector x in the phase
space), it is called internally stable. In terms of biological interpretation, it
means that an internally stable dynamical system can demonstrate a robust
and predictable behaviour with respect to varying environment, modelled as
changes of the initial conditions of the dynamical system.

Provided the internal stability one can study how the dynamical system
reacts to modification of its structure. Mathematically speaking, it is modelled
by changing the right-hand side f(x, t,K) of Equation 10.8 which represents
the vector field in the phase space driving the system dynamics. There are
several possible problem statements here:

1. If we change a set of parameters K for some other set K ′ = K + δK,
will the system lose its internal stability?

2. How does the vector field (i.e. f(x, t,K) function) depend on variation
of parameters K? Mathematically, it can be stated, for example, as: How

does ∂ log f(x,t,K)
∂ logK behave in different regions of the phase space?

There is a related question to the previous one: how does some function
pf (K) of parameters K, and dependent on f , change with respect to
parameter variations? A typical example is: a steady state xs(K) is a
solution of equation f(xs, t,K) = 0 which of course depends on K. How
sensitive xs(K) is to variation of K?

3. How do perturbations of the vector field itself change certain system
characteristics, i.e. what will change if we substitute the function f by
f+δf , where δf is small? Possible examples of studies can be: would the
stationary states of the system remain close to the unperturbed ones?
Would the number of states or their stabilities change after such a per-
turbation? If the qualitative features of the dynamics remain untouched
by δf , then this type of robustness is called structural stability.

10.5.2 Sensitivity analysis

Related to the second question just mentioned, the problem of how sen-
sitive the steady states are to parameter variations is traditionally studied
in the field of control theory by the series of mathematical methods called
parameter sensitivity analysis. One possible definition of sensitivity is:

S(x) =
∂x

∂k
× k

x
≡ ∂ lnx

∂ ln k
, (10.10)

where k ∈ K is a system parameter and x is a system property that can be
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quantified (such as a steady state value, a flux through particular reaction,
relaxation time). This definition is close to our definition of robustness in
Equation 10.4 and all remarks that we have made, for example, concerning
noninvariance of Equation 10.10 with respect to nonlinear transformation
of ks remain valid.

The sensitivity coefficient is known as the control coefficient in the
metabolic control theory dealing with modelling of metabolite transforma-
tions through connected pathways of reaction steps where the speed of each
reaction step is controlled by a particular enzyme. A control coefficient mea-
sures the relative steady state change in a system variable, e.g. pathway flux
J or metabolite concentration S, in response to a relative change in a param-
eter, e.g. enzyme activity or the steady state rate vi of step i. For example,
the flux control coefficient is:

CJvi =
∂ ln J

∂ ln vi
, (10.11)

and the concentration control coefficient is:

CSvi =
∂ lnS

∂ ln vi
. (10.12)

Two important summation rules are known for the control coefficients:∑
i

CSvi = 0,
∑
i

CJvi = 1 . (10.13)

These summation rules in the context of metabolic control theory were
derived independently by Henrick Kacser with Jim Burns and Reinhart Hein-
rich with Tom Rapoport in 1970s (see references in the textbook Burns et al.,
1985) but in other fields of science they have much deeper roots, coming back
to the Kirchhoff’s rules in the theory of electrical circuits.

10.5.3 Structural stability

The third question mentioned in the end of the Section 10.5.1 concerns
the notion of structural stability. It has a long and exciting history com-
ing back to the catastrophe theory by Thom (1975). Recently, the notion of
structural stability was revived in the context of regulatory motifs (see Sec-
tion 9.4) found overrepresented in various biological networks. These motifs
are hypothesised to be simple functional elements of the biological networks.
In Prill et al. (2005), it was suggested to characterise a simple network, mod-
elled by chemical kinetics equations, by its Structural Stability Score (SSS).
SSS is a probability to have a linearly stable steady state independently of the
kinetic parameter values (in other words, it is a probability of the Jacobian
eigenvalues to have negative real parts and close to zero imaginary parts). It
was shown that the statistical overrepresentation of motifs and their SSS are
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correlated, suggesting some natural selection for structural functional blocks
which have a tendency to be stable for a maximally wide range of parameters.

All these questions are relevant to robustness studies and require various
and sometimes quite complicated mathematical methods to tackle them. It is
out of the scope of this chapter to provide their detailed review.

10.5.4 Qualitative properties of dynamical systems

Studying stability properties for a general dynamical system in Equa-
tion 10.8 is a daunting task: the general form of function f can give too
many possible dynamical behaviours. Only in rare cases, and for very general
results, it is possible to take all of them into account. Any practical method
has to deal with a limited functional class of the right-hand part in Equa-
tion 10.8. For example, Thom (1975) assumed that f should be a gradient
of some other scalar function g, i.e. f(x) = −∇g(x), which led to appearance
of the catastrophe theory.

Starting from 1970s, in mathematical chemistry, there was a hope that
it will be possible to develop a rich mathematical theory for a special class
of functions f that naturally appear in modelling reaction networks. Each
reaction speed is characterised by its kinetic law and associated kinetic pa-
rameters. In most of the applications, f becomes a rational function: this
includes, for example, dynamical models of Michaelis-Menten and Hill kinetic
reaction networks. In the simplest case of the mass action law equations, f is
a sparse polynomial of not a very high degree (see Equation 7.1).

Particular attention was paid to the results on the properties of dynamical
systems of reaction networks (such as multiplicity and stability of stationary
states) that can be obtained without knowledge of the exact values of kinetic
parameters. In other words, mathematicians tried to connect the structural
properties of the reaction graph with some qualitative properties of the dy-
namics. For example, this problem is formulated as the main challenge of the
Chemical Reaction Network Theory developed by Feinberg (1987).

If we were to make constructive conclusions about qualitative features of
dynamics, looking only at the structure of the reaction graph then, evidently,
this would mean that these features are robust, i.e. do not depend on pa-
rameters. This question is interesting for the case of large reaction graphs
(containing at least 10 reactions) with a nontrivial structure, containing feed-
backs, branching points, etc.

Unfortunately, not many practical results were obtained in this direction.
Horn, Jackson and later Feinberg (for references, see Feinberg, 1987) studied
properties of dynamical systems describing reaction networks characterised
by mass action law. One of the principal results of their theory is known as
deficiency zero and deficiency one theorems.

In simple terms, deficiency represents a number of degrees of freedom which
distinguish a given reaction network model from a reaction network with nice
relaxation properties and a possibility of detailed balance. Deficiency zero
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networks are equipped with a law analogous to the second law of thermody-
namics: the total entropy of the concentrations of chemical species does not
decrease along any trajectory. Hence, any deficiency zero reaction network
has a natural Lyapunov function and converges to a unique nontrivial (with
positive concentrations of chemical species) equilibrium, which is asymptoti-
cally stable. It is also possible to prove some results on the uniqueness of the
equilibrium state for deficiency one networks (Feinberg, 1987). The problem
is that the networks of deficiency zero and one are not among the most in-
teresting networks for describing biological pathways, where more interesting
and nonequilibrium phenomena are thought to be essential. Thus, these re-
sults can serve as a part of the toolbox for qualitative dynamical analysis of
reaction networks, but for a relatively modest class of systems.

Nevertheless, in some particular cases, the mathematical results connected
with deficiency give insights into how robust properties of some molecular
mechanisms are achieved. The absolute concentration robustness notion was
introduced by Shinar and Feinberg (2010). Absolute concentration robustness
is the complete insensitivity of some concentrations of chemical species to the
values of balance parameters.

10.6 Dynamical robustness and low-dimensional
dynamics

The notion of attractor (see Box 10.3) plays one of the central roles in the
analysis of long-term and stable behaviours of dynamical systems. Analysis
of attractors and their basins of attraction together with their dependence
on system parameters is one of the most used methods in analysing the sta-
bility of dynamical systems. In the context of robustness, several questions
are important here: What is the dimension of the attractor itself? What is
the size (in some measure) and the configuration of its basin of the attrac-
tion? How stable are these properties with respect to parameter variations?
etc. Low-dimensional attractors (points, limit cycles) with large regions of at-
tractivity can be associated with stability of certain homeostatic biological
system properties. Moreover, possibility of switching between several attrac-
tors as an adaptive response to a perturbation can be a good mathematical
metaphor of certain robust biological functions such as glycolitic shift in tu-
mour metabolism (Kitano, 2007).

10.6.1 Dynamical robustness

In many biological applications not only the final attractive state of a dy-
namical system matters but also the way and the speed with which the system
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o BOX 10.3: Attractors
An attractor is a subset of the phase space characterised by the prop-
erties of:

• positive invariance under the system dynamics: if a trajectory
starts from a point on the attractor, then it never leaves it,

• existence of a basin of attraction such that all points from this
basin will eventually enter the attractor and minimality, i.e.
there is no any subset inside the attractor possessing the prop-
erties of invariance and attractivity.

Attractors can be points, curves and manifolds, or more complicated
objects such as strange attractors (complicated sets with a fractal
structure and characterised by a noninteger dimensionality).

trajectories approach it. Many biological networks determine cell behaviours
through time-varying signals operating during a transient activated state that
ultimately returns to a basal steady state. This process can be called relax-
ation towards an attractor. For example, the final state of the dynamics of a
DNA repair pathway can be repaired DNA. Nevertheless, if this process takes
too long, it can be lethal for the cell. Some models of apoptosis interpret
apoptosis as a passage of system trajectories through nonphysiological and
lethal regions of the phase space (Aldridge et al., 2006). Weak dependence on
parameters or initial conditions of not only the final stable system properties
but also of its relaxation processes is called dynamic robustness, a term coined
in Gorban and Radulescu (2007).

Relaxation processes are highly affected by the hierarchical organisation
of time scales, which is a common observation in most biochemical pathways.
For example, changes in gene expression programs can take hours and even
days, post-translational protein modifications can take minutes and protein
complex formation can take seconds. Protein half-lifetimes can vary from min-
utes to days. This important observation applies not only to time scales but
also to concentration values of various species in these networks. mRNA copy
numbers can change from some units to tens of thousands, and the dynamic
concentration range of biological proteins can reach up to five orders of mag-
nitude.

10.6.2 Low-dimensional invariant manifolds

Separation of time scales in dynamical systems leads to the phenomenon
of existence of lower-dimensional invariant manifolds in the phase space of
a dynamical system. An invariant manifold is embedded in the phase space
such that if a trajectory starts on it, it never leaves it. The manifold is called
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slow and attractive if a typical trajectory of the system in the phase space
can be divided in a fast motion phase towards the manifold and relatively
slow motion close to the manifold and along it. Invariant manifolds of higher
dimensions can contain the invariant manifolds of lower dimensions forming
an invariant flag: a hierarchy of invariant sets embedded into each other. All
attractors of the system are evidently located on the invariant manifold. If
the invariant manifold is slow then the system trajectories spend most of the
time in the close vicinity of invariant manifolds and only transiently appear
at large distance (provided some distance measure) from it.

The high-dimensional system dynamics can be projected, i.e. reduced, onto
the manifold and studied on it. This is the essence of many methods of model
reduction dealing with separation of time scales. Quasi-steady state and quasi-
equilibrium approaches construct an approximation to the slow manifold un-
der certain assumptions, whereas other methods allow finding explicitly the
slow invariant manifold for some classes of dynamical systems and study the
system dynamics restricted to the manifold. This is the most consistent ap-
proach due to invariance (Gorban, 2005).

It is important to understand that in the case of a dynamical system char-
acterised by a hierarchy of time scales, not all events that occur in any time
scale can be observed in experiment. Very fast time scales correspond to im-
measurably fast processes (repeating Nobel laureate Manfred Eigen). Very slow
time scales correspond to the changes that can be considered almost constant
during the time of the experiment. Only processes taking place on the time
scales comparable to the time scale of making measurements are observable.
Moreover, only the system parameters that contribute to these processes are
important for explaining the system’s behaviour, and can be estimated from
experimental data. The invariant manifold, if it exists, indicates that some fast
time scales of the dynamical system can be neglected after which the system
becomes simpler and more tractable.

Existence of a low-dimensional invariant manifold assures the dynamical
robustness in two aspects:

• The system weakly depends on changing the initial conditions, since
big regions of the phase space will be projected onto a relatively small
area on the invariant manifolds. That way, an invariant manifold can be
understood as an implementation of Waddington’s notion of homeorhesis
for dynamical systems. Homeorhesis can be defined as the phenomenon
of trajectory stability as opposed to homeostasis∗, i.e. steady state
stability.

• The system weakly depends on the parameters determining the processes
of fast relaxation towards the invariant manifold and not responsible for
the manifold shape.

Both of these types of dynamical robustness will be more pronounced if the
intrinsic dimension of the invariant set is getting smaller.

In this sense, one can suggest that the higher the variability of the initial
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conditions and of the system parameters and the smaller the intrinsic dimen-
sion of the system dynamics, the stronger the robustness properties one would
expect to observe. The intrinsic dimensionality of the dynamics is not deter-
mined by the structure of biochemical reaction networks in a simple way: de-
pending on the distribution of kinetic parameters, even complex systems with
many components and connections can possess surprisingly low-dimensional
intrinsic dynamics confined to invariant manifolds. Moreover, our observation
is that this is true for most of the mathematical models of biochemical path-
ways (for example, see Radulescu et al., 2007).

10.7 Dynamical robustness and limitation in complex
networks

10.7.1 Static and dynamic limitation

Another important and general phenomenon that can contribute to a par-
ticularly robust response of biochemical reaction networks is the static and
dynamic limitation. The idea of limitation is that, even in very complex dy-
namics of a reaction network, at every particular moment of time, there might
be a limiting place in the network which completely determines the dynamics
locally.

Limitation is inspired by the notion of a rate limiting reaction step in a
chain of linear reactions (as opposed to the cyclic chain of reactions introduced
in Equation 10.6). If among all the reactions, the slowest one has a rate
constant well-separated from all the others then the flux through the cyclic
chain of reactions depends only on this rate constant and will be completely
insensitive with respect to (sufficiently small) variations in other constants.
Hence, this system of reactions is extremely robust yet controllable. The simple
fact that the relaxation time (see Box 10.4) of this cycle is determined by
the second slowest kinetic constant can be easily demonstrated (Gorban et al.,
2010).

10.7.2 Asymptotology of reaction networks

During the 20th century, the concept of the limiting step was revised sev-
eral times. The simple idea of a narrow place, i.e. the least conductive step,
could be applied without modification only to a simple cycle or to a chain of
first-order irreversible steps. In more complex situations, various difficulties
arise for its proper definition and use. The notion of the limiting step was
outmoded; however, several modifications of this notion were suggested (for a
review, see Gorban et al., 2010).

In Gorban et al. (2010), it was suggested that the correct generalisation of
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o BOX 10.4: Relaxation time
The relaxation time is the characteristic time needed for a dynamic
variable to change from the initial condition to some close vicinity of
the stationary state. Most naturally the relaxation time is introduced
in the case of linear relaxation dynamics. For example, if a variable
follows simple dynamics in the form x(t) = A

(
1− e−λt

)
, where A is

the steady state value of x, then the relaxation time is τ = 1
λ and

it is the time needed for x to increase from the zero initial value to
approximately 1/e ≈ 63% of the A value. Measuring the approximate
relaxation time in practical applications consists of fitting the linear
dynamics to the experimental time curves and estimating λ. The re-
laxation time is a relatively easily measurable quantity, sometimes
essential, as in the field of relaxometry.

the limiting step is the notion of dominant system. A dominant system is an
auxiliary minimal reaction network which defines the main asymptotic terms
of the stationary state and the relaxation times in the limit of well-separated
time scales. For complex networks, this dominant system cannot be reduced
to a single reaction step. Moreover, in nonlinear (with nonmonomolecular re-
actions) networks, this limiting place can change with time. In monomolecular
reaction networks with separation of time scales, the dominant system (limit-
ing place) does not change in time and an algorithm for its construction has
been developed (Gorban et al., 2010).

Finding dominant asymptotic solutions is useful in at least two aspects:
(1) these solutions are often simple and even trivial and tractable analytically,
and (2) these solutions often depend on much smaller number of parameters
than the initial system. Typically, the asymptotic solutions depend on the
ordering of kinetic constants rather than on their exact values.

Asymptotic analysis explores the dynamical properties of complex net-
works by listing all possible dominant systems under given qualitative con-
straints on parameter values, by analysing these solutions and by associating
the observed biological system behaviours with these solutions. Automatically,
all these solutions are robust because they depend on a small number of pa-
rameters. Those parameters or parameter combinations that are conserved in
the asymptotic solutions are system control parameters allowing manipulat-
ing the system. Those parameters that are not included in the asymptotic
solutions can be considered insensitive. From this analysis, one can also pre-
dict which parameter relations (inequalities in the form ki � kj) should be
changed to switch from one type of asymptotic behaviour to another, thus
providing predictions of what should be the most critical interventions with
the most desired robust outcome.
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10.7.3 Limitation and design of robust networks

Analysis of robustness of the systems with limiting places predicts that
robustness of the system can grow with the length of the pathways or cycles
in the network. In other words, complex networks are predicted to be more
robust given that they follow some general principles of evolutionary design.
These robustness principles are described in Gorban and Radulescu (2007) in
the following way: “...We can obtain design principles for robust networks.
Suppose we have to construct a linear chemical reaction network. How to in-
crease robustness of the largest relaxation times for this network? To be more
realistic let us take into account two types of network perturbations: (1) ran-
dom noise in constants; (2) elimination of a link or of a node in reaction
network. Long routes are more robust for the perturbations of the first kind.
So, the first recipe is simple: let us create long cycles! But long cycles are
destroyed by link or node elimination. So, the second receipt is also simple:
let us create a system with many alternative routes! Finally the resources are
expensive, and we should create a network of minimal size. Hence, we come to
a new combinatorial problem. How to create a minimal network that satisfies
the following restrictions (1) the length of each route is bigger than L; (2)
after destruction of Dl links and Dn nodes there remains at least one route
in the network. In order to obtain the minimal network that fulfils the above
constraints, we should include bridges between cycles, but the density of these
bridges should be sufficiently low in order not to affect significantly the length
of the cycles. Additional restrictions could be involved. For example, we can
discuss not all the routes, but productive routes only (that produce something
useful). For acyclic networks, we obtain similar receipts: long chains should be
combined with bridges. A compromise between the chain length and number of
bridges is needed. We can also mention the role of degradation reactions (reac-
tion with no products). Concentration phenomena are more accentuated when
the number of degradation processes with different relaxation times is larger.
Thus, one can increase robustness by increasing the spread of the lifetimes of
various species.”

10.7.4 Model reduction

Extracting both the low-dimensional dynamics of a complex dynamical
system and its limiting place is included in the toolbox of analytical and com-
putational methods referred to as model reduction. Model reduction aims at
simplifying the description of large and complex models and is tightly linked
to the study of robustness. The main principle remains the same as previ-
ously described: the parameter combinations (typically some complex ratios
of them) that one finds in the reduced model are the control parameters to
which the system is the most sensitive. Other parameters can be largely (fre-
quently, by several orders of magnitude) varied without having a significant
effect on the most essential observable system properties such as its attractors
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and the relaxation processes towards attractors. By systematically applying
model reduction, one can construct a hierarchy of models of decreasing com-
plexity (see an example of this approach with NFkB pathway modelling in
Radulescu et al., 2008). It allows the comparison of models of various com-
plexity levels and to derive the model of the minimal possible complexity, i.e. a
model that still approximates well the available experimental data but cannot
be simplified further without making the approximation worse. That way, only
the essential model parameters entering the minimal complexity model will be
fitted from experiment, thus avoiding the problem of model nonidentifiability
and parameter overfitting.

10.8 A possible generalised view on robustness

It would be extremely difficult to develop a universal view on robustness of
biological systems. In this section, we try to generalise our view on robustness
and summarise the conclusions listed previously in this chapter.

One general observation on biological systems is that more robust organ-
isms are more complex in the sense that they usually contain more elements,
more reactions, more levels of regulation and control: they exists in spaces
of higher number of dimensions. It can be shown that there is no consistent
trend to complexification (progress) in the history of biological organism evo-
lution. Periods of increasing complexity bursts are rather a consequence of a
weak purifying selection (Koonin, 2009). So, we do not claim that the biolog-
ical systems tend to complexity, or that complexity evolves, we only observe
that when complexification takes place, it often leads to creation of robust-
ness generators such as redundancy and degeneracy, distributed robustness,
bowtieness, multiscaleness, etc.

Theoretically, we can think of three types of complexity: reducible, self-
averaging and wild (Gorban, 2009). Wild complexity is intractable with our
current scientific tools while reducible and self-averaging represent two ap-
proaches trying to understand the complexity from two very different per-
spectives.

To understand this classification, we can think of a complex phenomenon
as an object existing in a multi-dimensional space. Our perception of this
object is inevitably low-dimensional (because for instance, our mind is organ-
ised by the presentation of our motion in three-dimensional space and the
convenient static visualisation is two-dimensional). We can represent our per-
ception as a projection of the object from high-dimensional to low-dimensional
space. A biological function can be also considered as a projection of its high-
dimensional microscopic detailed description onto a low-dimensional space
where it is manifested at macroscopic level. Let us try to imagine what one
can observe through such a projection.
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10.8.1 Reducible complexity

The reducible complexity model states that despite the fact that the com-
plex object is embedded in high-dimensional space, intrinsically, it remains
low-dimensional with a relatively small number of degrees of freedom. Chang-
ing and choosing a right angle of view or a screen, would reduce this type of
complexity to a much simpler and low-dimensional view. A right metaphor for
this is a cloud of points in a multi-dimensional Euclidean space, distributed
in the vicinity of some nonlinear low-dimensional surface. The cloud exists
in many dimensions, but effectively it has only few degrees of freedom, few
true coordinates. Projecting the cloud on a randomly chosen low-dimensional
screen will show an image, difficult to interpret and potentially very different
from one projection to another. However, knowing the intrinsic coordinates of
the system would reveal the internal low-dimensional structure of the cloud,
and would allow the observation of all its features without distortions. Re-
ducible complexity of dynamical systems is manifested in low-dimensional
intrinsic structure of their attractors or existence of low-dimensional invariant
manifolds described in the previous section.

Another frequent type of reducible complexity is a system’s structure
following some relatively simple organisational principle. One of the most
common principles is the hierarchical organisation. A good mathematical
metaphor can be a cloud of points in a high-dimensional space organised in a
system of embedded clusters: there are high-level clusters, inside which there
are clusters of points of the second level, inside which there are clusters of the
third level, etc. Importantly, at each level, the number of clusters is relatively
small compared to the total number of points. In biological networks, this type
of hierarchical reducible complexity is revealed in the existence of modules,
compartmentalisation, multiple concentration and time scales. In physiology,
it can be seen as the construction of an organism from organs, tissues and cells.
The term self-simplification with respect to evolving biological systems was
coined by Pattee (1972) to describe the complexity with some internal hierar-
chical structure. Indeed, existence of relatively simple hierarchies is frequently
associated with self-organisation.

10.8.2 Self-averaging complexity

Generally speaking, we say that the reducible complexity is associated with
a possibility of a compact or a low-dimensional description of a complex object.
Self-averaging complexity, by contrast, is usually associated with truly high-
dimensional objects that do not possess any intrinsic low-dimensional simple
structure. However, after projection on most of the low-dimensional screens,
they will look very similar. A good mathematical metaphor for this type of
complexity is a multi-dimensional hypersphere uniformly sampled by points.
After projection on any two-dimensional plane, most of the points will be
located very close to the centre of the sphere, and, very rarely, they will be
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projected at the distance of the sphere radius from the centre. Moreover, if
we look at this cloud of projected points with a magnifying glass, we discover
that their distribution is very close to a normal one (i.e. Gaussian).

In statistical physics, this corresponds exactly to the well known
Maxwellian distribution and in general, this is an example of Gromov’s mea-
sure of concentration phenomenon: truly high-dimensional objects look very
small (concentrated) after projection onto a low-dimensional space and most
of the distributions become almost normal after projections on the low-
dimensional subspaces (see Section 10.1, where it is briefly discussed). In sta-
tistical physics, this creates a possibility for relatively simple low-dimensional
macroscopic description of high-dimensional complex microscopic processes.

10.8.3 Wild complexity

Wild complexity cannot be simplified neither by reduction nor by aver-
aging. There is no good low-dimensional screen to observe this object and
any projection will give a different view of the object, with new features. One
cannot dissect this complexity with levels because there is no clear separation
between them, they all coexist and penetrate into each other. There is no
time or space scale separation; most of the processes are happening at the
same time and everywhere with strong between-scale coupling. In wild com-
plex systems, many local perturbations produce global effects which might
be very different from one perturbation to another similar perturbation. As a
matter of fact, the objects possessing wild complexity would be unimaginable
and indescribable, i.e. not allowing a description in a compact and abstract
form.

Due to this, we do not have many examples of wild type complexity, be-
cause its definition comes from a negation: it is a complexity that cannot
be reduced or averaged whereas any simple illustrative example will be al-
ready reduced or averaged. Probably, one of the few examples can be found
in the collective neuron excitation dynamics of our brain. Izhikevich and
Edelman (2008) developed a computer brain model with one million multi-
compartmental spiking neurons and a billion synapses. The model is calibrated
to reproduce known types of responses recorded in vitro in rats. Computer
simulations of this model show overwhelmingly complex dynamics charac-
terised by global excitation-like responses, spontaneous activity, sensitivity to
changes in individual neurons, functional connectivity on different scales. The
complexity of this model can be tentatively characterised as wild.

A close by wording (but not by its meaning) term irreducible complexity in
evolutionary theories is historically associated with intelligent design ideas (in
particular, by Michael Behe). The irreducibly complex systems were defined
as “composed of several well-matched, interacting parts that contribute to the
basic function, wherein the removal of any one of the parts causes the system
to effectively cease functioning,” i.e. as extremely fragile systems. The notions
of wild and irreducible complexities are quite different in our understanding.
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10.8.4 Complexity and robustness

We, cautiously, claim that reducible and self-averaging complexity models
can lead to robustness and to the possibility of control, while wild complexity
models are hypersensitive to small perturbations. They are neither robust nor
easily controllable.

In other words, we claim that all types of robustness can be associated
with two principal causes: (1) with the fact of intrinsic simplicity of a visi-
bly complex and multi-dimensional system: an object has much less degrees
of freedom than parameters, or (2) with the built-in and automatic robust-
ness of low-dimensional projections of high-dimensional objects: an object will
look very similar being seen from many possible projections. Robustness gen-
erators such as redundancy, bowtieness, or buffering are consequences of the
reducible complexity. Sources of robustness such as distributed robustness,
cooperativity, or robustness of many dynamical features such as oscillation
periods, steady state fluxes, etc. can be consequences of self-averaging com-
plexity. When neither reduction nor averaging is possible, the wild complexity
leads to hypersensitivity and fragility as a principle of organisation.

This theoretical suggestion needs to be more elaborated in order to pro-
vide concrete recipes to measure or to manage robustness in concrete exam-
ples. However, some simple ideas can be already implemented. For example,
in Radulescu et al. (2007), it was suggested to compare the robustness of
dynamical models of NFkB pathway by estimating the intrinsic dimension of
the invariant manifold. It was shown that this dimension is much smaller than
the dimension of the phase space and is almost invariant with respect to ap-
plication of model reduction techniques. Moreover, it was shown that adding
or removing some specific regulations can significantly affect this dimension
leading to appearance or disappearance of new intrinsic degrees of freedom in
the system. We can predict that this is a common feature of most of the exist-
ing mathematical models of biochemical pathways, including those involved
in cancer.

10.9 Conclusion

The mathematical interpretation of biological robustness is still in its in-
fancy. There are some promising mathematical objects with the robust prop-
erties resembling those of biological mechanisms. For example, simple evo-
lutionary models establish principles of self-organisation and optimised tol-
erance in evolving cell populations. Robustness of cellular biochemistry can
be associated with robustness of the corresponding dynamical models of cel-
lular networks, where dynamical systems stability theory and control theory
are the most developed approaches. Mathematical models and ideas borrowed
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from optimisation theory can serve as a basis for understanding trade-offs
between efficiency and robustness that cancer cells have to resolve. Model
reduction techniques, including asymptotic approaches from chemical kinet-
ics, give a possibility to identify the most sensitive combinations of parame-
ters of biochemical reaction networks. For the future mathematical theory of
cancer robustness, all these methods should be made much more specific to
the problems met in mathematical modelling of the mechanisms involved in
tumorigenesis∗.

. Exercises

• Give an example of a robust mathematical function and compute
its robustness.

• Why can increasing network size automatically lead to more ro-
bust behaviours?

• What is the principal difference between the mechanisms of SOC
and HOT in terms of robustness to invasion of a mutant indi-
vidual in a population?

é Key notes of Chapter 10

• The theory of dealing with biological robustness, how to measure
and modify it, can contribute to cancer treatment strategies. By
systematic identification of fragile points and by hitting them
with right strengths, in the right periods of time and in the
most efficient combinations, one can try to develop new cancer
therapies. One of the most important conclusions of the theory of
cancer robustness is that such fragilities should inevitably exist
due to necessity for resolving trade-offs between robustness and
other functions of the cancer cells.

• Complex systems optimised for performing certain functions
usually have to resolve trade-offs between robustness and effi-
ciency.

• From the mathematical point of view, robustness is often an
expected property of multi-dimensional systems connected with
self-averaging and dimension reduction.



Chapter 11

Finding new cancer targets

Anti-cancer drugs should ideally kill cancer cells, and leave normal cells in
peace. This paramount goal is extremely challenging because cancer cells have
few demonstrable biochemical differences with normal cells, and because of the
large diversity among cancer cells (see Chapter 2). Historically, cancer drugs
have targeted proteins active in rapidly proliferating cells, such as metabolic
enzymes active in cell division or DNA polymerase and topoisomerase impor-
tant for DNA replication. Unfortunately, these processes are not specific to
cancer cells and the corresponding drugs also hit all normal cells having a
rapid turnover such as skin, hair, gastrointestinal and bone marrow, leading
to the many common side effects associated with cancer chemotherapy.

More recently, insight into hormone signalling have led to the targeting
of nuclear hormone receptors, and the elucidation of signalling pathways∗

has highlighted the relevance of signalling proteins, including growth factor
receptors and kinases, as promising cancer drug targets. The rapid accumu-
lation of cancer genomic data, and parallel progress in our understanding of
the molecular basis of cancer, have increased the hope that more effective and
less toxic therapies can be discovered less serendipitously than in the past.
This requires the development of specific computational models to identify
new candidate cancer targets from the analysis of large omics datasets and
mathematical models of tumorigenesis∗, which we discuss in this chapter.

In particular, we review how systematic comparison of cancer and normal
cells at the molecular level may help pinpoint new specific targets by analysing
lists of interesting candidate genes (see Section 11.1). Alternatively, since
cancer can be considered a network disease (see Chapter 2), many recent
methods to identify cancer drug targets rely on the analysis and modelling
of the network responsible for sustaining tumorigenesis (see Section 11.2)
and on efficient ways to disrupt its functioning (see Section 11.3). This
may ultimately lead to modelling frameworks able to identify combinations of
targets with high efficacy and specificities on cancer cells (see Section 11.4).
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11.1 Finding targets from a gene list

A typical systems biology project aiming at identifying drug targets starts
with collection of data, such as genomic or transcriptomic data obtained with
high-throughput technologies (see Chapter 3). After proper data normali-
sation and statistical analysis (see Chapter 4–Chapter 6), one frequently
gets a list of genes and proteins which may contain good candidates to iden-
tify new drug targets. The list typically contains differentially expressed genes
between cancer and normal cells, or genes located in a genomic region found
to be often amplified or deleted in cancer samples. One can then try to find
the most promising targets within this list by prioritising the genes on the list
(see Section 11.1.1), or identify good candidate targets outside of the list by
identifying master regulators responsible for the deregulation of the genes on
the list (see Section 11.1.2).

11.1.1 Gene prioritisation

Traditional linkage analysis or study of chromosomal aberrations in DNA
samples can lead to the identification of genomic regions containing one or
several cancer genes, whose disruption causes or allows tumorigenesis. The
proteins coded by these cancer genes have an obvious potential as new ther-
apeutic targets for cancer. The genomic regions identified, however, typically
contain tens to hundreds of candidate genes. Similarly, the analysis of cancer
or normal samples with gene or protein expression techniques often allows
one to identify many interesting proteins, among which only a few are causal
and may become cancer targets. In both cases, since experimental validation
of candidate cancer genes is a long and expensive process, it is important to
be able to identify, among a list of candidate genes, which ones are the most
promising cancer genes, or at least to prioritise the genes from the most likely
to be a cancer gene to the less likely.

Gene prioritisation among a list of candidate genes is typically based on
what we already know about the genes: the most promising candidate genes
are typically those which are known to play a role in some biological process
important for cancer cells, or which share similarities such as coexpression with
other known cancer genes. Since the knowledge and information we have about
genes and proteins is nowadays fragmented in different forms in a multitude of
databases (see Section 4.5.1 and Section 4.7), computational approaches to
integrate heterogeneous data and knowledge have emerged recently as promis-
ing tools for gene prioritisation (Giallourakis et al., 2005). For example, some
methods try to automatically compare the known functional annotations of
each candidate gene to the description of the disease in order to automatise
the process of cancer gene hunting (Perez-Iratxeta et al., 2002; Turner et al.,
2003; Tiffin et al., 2005). Many other approaches, varying in the algorithm
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they implement and the data sources they use, try to identify candidate genes
sharing similarities with known disease genes, as reviewed by Tranchevent
et al. (2010). For example, Endeavour (Aerts et al., 2006; De Bie et al., 2007)
use state-of-the-art machine learning techniques to integrate heterogeneous
information and rank the candidate genes by decreasing similarity to known
disease genes, while PRINCE (Vanunu et al., 2010) uses label propagation
over a Protein–Protein Interaction (PPI) network and borrows information
from known disease genes of related diseases. ProDiGe is a recently proposed,
state-of-the-art method to combine heterogeneous data, including genomic,
transcriptomic and protein network data, in a single machine learning model
for gene prioritisation (Mordelet and Vert, 2011). An obvious limitation of this
guilt-by-association strategy is that only genes sharing similarity to those we
already know can be discovered, limiting their potential for cancers with no
or few known causal genes. Interestingly, Mordelet and Vert (2011) showed in
a retrospective study that sharing of information across different diseases, in
particular different cancers, is possible and can lead to the discovery of cancer
genes even for cancers with no or few known causal genes.

11.1.2 Drug targets as master regulators of genes and pro-
teins with altered expression

When a list of candidate genes results from the analysis of gene expression
data, as typically a list of differentially expressed genes between cancer and
normal tissues, it may be the case that looking for potential targets within
the list using techniques mentioned in Section 11.1.1 is useless. Indeed,
this list of genes alone is not sufficient to claim that affecting differentially
expressed genes will revert or disrupt the tumorigenic phenotype. As a matter
of fact, most of these molecules will probably be deregulated as a consequence
rather than a cause of tumorigenesis. Moreover, the molecules that are the
most important drivers (see Chapter 2) of the changes in cancer cells can
be absent in the differential expression list, simply because their signal could
be amplified by cell signalling cascades, producing the most visible effects
downstream of them. Metaphorically speaking, the cause of a snow avalanche
can be a slight movement of a small stone, which will be completely lost in
the catastrophic falling down of big stones as a consequence of the avalanche.

One idea to control deregulated cellular signalling in the most efficient
way is to target molecules that are rather upstream of cellular signalling.
These upstream causal genes can be also called master regulators of the genes
and proteins with altered expression. They can be potentially identified by
applying graph theoretical approaches to regulatory networks.

Using software and databases such as JASPAR (Portales-Casamar et al.,
2010), Allegro (Halperin et al., 2009), Weeder (Pavesi et al., 2004), Pscan
(Zambelli et al., 2009) and the commercial network analysis pipelines such as
ExPlainTM from BIOBASE (Kel et al., 2008) and geneXplainTM , the mas-
ter regulators are identified in the following fashion. From a set of differentially
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(A) (B)

FIGURE 11.1 Identification of overrepresented regulatory motifs. From
a set of differentially expressed genes, overrepresented regulatory motifs have been
identified using JASPAR (Portales-Casamar et al., 2010) and Weeder (Pavesi et al.,
2004). (A) Gene expression has been compared between breast cancer cell lines over-
expressing MYC and the same cell lines depleted in MYC using a small interfering
RNA-mediated knock-out (Cappellen et al., 2007). (B) Gene expression has been
compared between tumours mutated and not mutated for TP53 on breast cancer.
(Bertheau et al., 2007). Image adapted from Meng et al. (2010).

expressed genes identified with statistical and prioritisation methods (see Sec-
tion 6.3 and Section 11.1.1) the promoters of these genes are analysed for
the presence of overrepresented regulatory motifs (i.e. DNA transcription fac-
tor binding sites) to identify a potential set of transcription factors able to
regulate this particular gene set.

The positions of these transcription factors in the global gene regulatory
network are then determined and serve as anchors for the master regulator
set. The regulatory network is further analysed by tracing the paths going
upstream of the anchor points. The master regulator is defined as a node
towards which these paths tend to converge after a certain number of up-
stream steps, i.e. those nodes that maximise the number of reachable anchor
nodes at certain number of step downstream of a master node. Of course, a
careful statistical analysis is performed to ensure that the potential master
regulators represent unexpectedly significant path convergence points and the
corresponding p-values are estimated. More subtleties come from trying to es-
tablish preferable routes when going upstream of anchor nodes. This is done
by using data on gene expression or introducing the notion of a molecular cas-
cade, i.e. a set of signalling pathway steps frequently observed to act together
in the same cell and experimental conditions.

The master regulators are usually better candidates to be targeted by
drugs than simply the deregulated nodes because they are more probable
driver players causally involved in the changes observed in cancer cells.
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11.2 Prediction of drug targets from simple network
analysis

In this section, we consider the situation where we have a network model
of a process importance for cancer, such as the RB pathway described in
Section 4.9.2 or the subnetwork identified by differential analysis of gene ex-
pression data discussed in Section 6.5.2, and we wish to identify important
nodes in this model as potential drug targets. Design of interventions in the
network functioning with the desired outcome is a nontrivial problem, espe-
cially considering that the network contains complex combinations of feedback
regulatory loops. With a little amount of prerequisite information, the sim-
plest methods aim at disrupting the network connectivity by attacking nodes
with properties of hubs∗ and routers∗.

Indeed, it can be shown that the proteins with the most essential function
in a living cell have tendency to be hubs, i.e. to be connected to many other
proteins via PPIs and various regulatory mechanisms (Jeong et al., 2001).
Hubs are intuitively good targets to damage a network since removing a hub
from a network can drastically change its properties such as its connectedness
(or degree of connectivity).

In addition, from graph theory we know that the connectedness of a graph
(the property of being connected in one component) can be affected in the
most pronounced way not only by removing nodes with the highest connec-
tivity (hubs), but also by removing nodes with the highest centrality∗ (router
nodes). The notion of network router is less well-known that of the hub (see
Figure 11.2). Intuitively, centrality is a measure of how far a node is sit-
uated from the centre of a graph. The graph centre can be roughly defined
as a node minimising the sum of distances (for example, path lengths) to all
other nodes of the graph. In practice, many measures of node centrality exist,
betweenness being one of the most used. To compute betweenness, one has to
find all shortest paths connecting each node in the graph to all other nodes.
According to its definition, betweenness of a node is roughly the number of
the shortest paths passing through this node. It is easy to understand that
nodes with high betweenness are not necessarily highly connected. One can
imagine a graph constructed by connection of two densely connected clusters
of nodes with a relatively thin bridge between them. The nodes in the bridge
will have high betweenness but not the highest connectivity. Removing these
nodes from the graph can disrupt it into two disconnected parts preventing
communication between two graph clusters.

Following this idea, the simplest approach in predicting drug targets from
a network of PPIs potentially involved in tumour progression∗ consists of
listing the most significant hubs and routers of this network. There are several
subtleties, however. For instance, predicting that hub nodes are drug targets,
and at the same time significant hubs in the global network of molecular inter-
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router 
and hub

router 
but not hub

hub but
not router

FIGURE 11.2 Network hubs and routers. In this network node sizes are pro-
portional to the connectivity of the node (number of neighbours) and the gray colour
reflects betweenness values (white nodes have smallest betweenness and the black
nodes have highest betweenness). Hub nodes are not necessarily routers, and routers
are not necessarily hubs.

actions is not very promising for cancer therapies: affecting these nodes will
most probably disrupt not only the functioning of a network driving tumorige-
nesis but also the essential functions of normal cells. Hence, this therapy will
not discriminate cancer and normal cells and will be most probably too toxic.
To take this into account, one can introduce the notion of hubs and routers
specific to the cancer network analysed. For example, a specific hub would be a
node with an unexpectedly large connectivity in the cancer-specific network,
given the structure of the genome-scale network of molecular interactions.
The easiest way to achieve this is to use relative connectivity and relative
centrality as ratios between connectivity in the network to be analysed and
the genome-scale global network.

11.3 Drug targets as fragile points in molecular mecha-
nisms

Cancer cells, as well as normal cells, possess certain properties of robust-
ness (see Chapter 9). Another way to identify drug targets is to find fragile
points in cancerous molecular mechanisms Ideally, these fragile points should
be specific to cancer cells and not affect normal cells. By definition, a frag-
ile point is a parameter of a molecular network whose change will have the
largest effect on a desired network property (for example, production of ATP,
activation of apoptosis or arresting cell growth).

Several mathematical approaches for defining the most sensitive parame-



Finding new cancer targets 343

ters of the dynamics of a biological network are reviewed in Chapter 10 and
include: computing parameter sensitivities in metabolic control analysis (see
Section 10.5), identifying rate limiting places in complex reaction networks
(see Section 10.7), and using Flux Balance Analysis (FBA) to determine en-
zymes whose activity change can affect the maximum number of vital fluxes in
a reaction network (see Section 10.1). Let us mention a few examples when
network modelling lead to suggesting a novel drug target.

In Faratian et al. (2009), a continuous kinetic model was developed
to predict resistance to Receptor Tyrosine Kinase (RTK) inhibitor thera-
pies. The mathematical model included RTK inhibitor antibody binding,
HER2/HER3 dimerisation and inhibition, AKT/Mitogen-Activated Protein
Kinase (MAPK) crosstalk, and the regulatory properties of PTEN . The model
was parameterised using quantitative phosphoprotein expression data from
cancer cell lines using Reverse-Phase Protein Arrays (RPPA) (see Chap-
ter 3). The simulations of the model showed that PTEN is a promising drug
target, acting as the key determinant of resistance to anti-HER2 therapy. This
prediction was further validated in a cohort of 122 breast cancers.

In Sahin et al. (2009), a Boolean model of ERBB signalling coupled with
G1/S transition of the cell cycle was constructed. In silico analysis of loss-
of-function using this model defined potential therapeutic strategies for de
novo trastuzumab resistant breast cancer. It was shown that combinatorial
targeting of ERBB receptors or of key signalling intermediates does not have
a potential for treatment of de novo trastuzumab resistant cells. At the same
time, MYC was identified as a novel potential target protein in resistant breast
cancer cells.

11.4 Predicting drug target combinations

Both experimental and theoretical studies suggest that the most efficient
and, maybe almost always, the only possible way to affect the behaviour of
cancer networks is through affecting several fragile points at the same time.
In clinics, this approach is known under the name of combinatorial therapy.
Note that a drug can affect several targets simultaneously, hence, there is a
possibility of having one-drug multiple-targets therapy.

Recently, the idea of exploiting the notion of synthetic lethality (see
Box 9.6) in treating cancer gathered a lot of interest. Synthetic lethality
is an observation on the experiments of gene knock-outs in model organisms.
Knocking-out gene A and gene B separately might not have any effect on vi-
tal cellular functions while simultaneous knock-out of genes A and B can be
lethal. It is known that cancer genome is modified with respect to a normal
genome, hence, some of the genes in a cancer cell can be either lost or mutated
with loss-of-function. If, for such a gene with lost function, one can identify
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another nonessential gene that synthetically lethally interacts with it then this
can be a basis for specific cancer therapy (suppressing function of the partner
will kill only cancer cells but not normal cells). PARP1 inhibitors to treat
BRCA1-mutated breast cancers were suggested following this idea (Helleday,
2011). However, the reality of tumoral cells and their genetically heteroge-
neous populations (see Section 2.3) might be more complex and not limited
to synthetically lethal pairs. There might be synthetic lethal cocktails contain-
ing more than two elements. However, their identification is not amenable to
experimental discovery through large-scale screenings due to a large number
of possible gene combinations. Therefore, mathematical modelling can help to
predict the most promising drug target combinations from the analysis and
modelling of gene regulatory networks.

o BOX 11.1: Minimal intervention set
A minimal intervention set is a combination of knock-outs (deletions of
genes or proteins) and knock-ins (overexpression of genes and proteins)
inducing a desired signalling network behaviour (Klamt, 2006; Sam-
aga et al., 2010). The desired network behaviour can be fixing some
network nodes in particular states (in Boolean modelling), disrupting
paths in the network from a set of source to a set of targets nodes (in
structural analysis of networks or modelling metabolic cascades), or
impeding any feasible steady state flux distributions involving certain
reactions (in stationary flux analysis).
The set of interventions is called minimal if there exists no other subset
of this set capable of achieving the same goal. Therefore, there might
be minimal intervention sets of several sizes (see Figure 11.3).
The problem of finding a minimal intervention set is related to finding
a minimal cut set and a minimal hitting set.

One of the most utilised concepts in this field is the notion of minimal
intervention set (see Box 11.1) which permits one to identify combinations
of drug targets. An example of finding a minimal cut set (a type of minimal
intervention set in which only knock-outs are used) for a toy network is pro-
vided in Figure 11.3. Given a complex network of large size, the task of listing
all minimal intervention sets easily becomes computationally intractable. This
creates a need for implementation of approximate algorithms aiming at listing
only the most promising combinations of drug targets and prioritising them
(Vera-Licona et al., 2012).
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Source nodes

Minimal cut sets of size 2:
  {I1, I2}
  {C, G}
  {B, E}

Minimal cut sets of size 3:
  {C, F, I1}
  {B, C, F}

Target nodes

FIGURE 11.3 Finding a minimal cut set to disrupt signalling in a toy
network. A toy network contains two source nodes, i.e. inputs, and two target
nodes, i.e. outputs. Here, a minimal cut set aims at disrupting all possible paths
from source to target nodes. There exist three minimal cut sets of size 2 and two
minimal cut sets of size 3.

. Exercises

• In Figure 11.3, add a connection between node E and node G.
How will it affect the minimal cut sets?

• Explain why PARP1 inhibitors should specifically kill some
types of cancer cells but not normal cells.

• Think of in what case a router is a hub at the same time.
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é Key notes of Chapter 11

• Finding targets using systems biology approaches in cancer biol-
ogy aims at disrupting functioning of either malignant signalling
(leading to stopping proliferation) or survival signalling (leading
to death) in cancer cells. To be used in therapy, targets should
(1) affect cancer cells to a much larger extent than the normal
tissue cells and (2) not induce side effects such as toxicity.

• Methods of gene prioritisation allow one to find the most evident
candidates for targets.

• If the structure of the network involved in tumorigenesis is
known, one can test hub and router nodes specific for the network
as candidates for targeting the cancer cells.

• Combining gene expression, motif enrichment analysis and net-
work structure allows identifying master regulator nodes as po-
tential targets for therapy.

• Dynamical modelling of networks allows finding fragile points,
using parameter sensitivity analysis. Fragile points can suggest
potential therapeutical targets.



Chapter 12

Conclusion

In this book, we have presented the ways that large-scale high-thoughput
technologies and computational systems biology have started to revolutionise
cancer research and clinical management. We have reviewed in particular how
systems biology can help understand the principles of tumorigenesis∗ and
tumour progression∗, and we suggest improvements in cancer treatment
through better diagnosis, prognosis∗, prediction of response to drugs, iden-
tification of new drug targets, and optimisation of therapeutic strategies for
killing cancer with drugs. In this last chapter, we briefly discuss alternative
approaches for curing cancers, and present a few forthcoming challenges of
computational systems biology of cancer.

12.1 Cancer systems biology and medicine: Other paths

The strategy to fight cancer sketched in this book, involving predictive
models and rational decision-making to selectively kill cancer cells, is an ob-
vious way to follow for combating the disease. It is however not the only one,
and at least two other strategies should be considered. The first one is pre-
vention, that is, taking appropriate measures to avoid the disease; avoiding
carcinogens, adopting diet and other life habits that are known to lower cancer
risks . . . an ounce of prevention is worth a pound of cure. The second one is
controlling the tumour: preventing metastasis and any major consequences for
the patient’s health, but accepting not to defeat the cancer. Both strategies
are also amenable to systems biology approaches.

12.1.1 Preventing the occurrence of cancer

Prevention programs have shown to be very efficient in decreasing the
occurrence of the pathology. This supposes, of course, identifying factors that
have strong impact on the risk of cancer. A striking example is the prevention
of lung cancer by informing about the risk of tobacco. Adequate surveillance
can also decrease drastically the incidence of cancer by early identification of
tumours, or pre-cancerous cells. Pap smears, a simple biological test which
identifies early lesions in cervix, are used at the population level in many
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developed countries, and have saved many lives. Surveillance is also adapted
for patients who present a genetic risk, like the carriers of BRCA1 or BRCA2
mutations who have a relative risk of 10 or more (compared to the general
population). Many programs have thus been launched to identify new genes of
predisposition, which could explain familial forms, or at least increased risk,
of cancer.

The so-called Genome-Wide Association Studies (GWAS) are large-scale
studies which proceed by genotyping thousands of affected individuals, and
non-affected references, typically using SNP arrays (see Chapter 3). Associa-
tion studies (within populations) identify those mutations that are associated
to increased occurrence of disease. The power of the approach resides in the
fact that no prior knowledge, and in particular no knowledge of mechanism is
required to identify association. It is purely statistical, and blind to the under-
lying biology which would explain mechanistically the increased risk. Analysis
is therefore applied gene-per-gene, or even SNP-per-SNP, which means tens
of thousands of tests. Controlling the overall false positive rate supposes to
be more stringent for each test, at the cost of reduced statistical power (see
Box 6.2)

It should be noted that such a gene-per-gene approach does not use any
prior knowledge we have about the relationships between genes, and their
interplay in biological networks. This traditional SNP-based approach does
not use information like gene expression that can also be collected to charac-
terise individuals. Using information like pathway structure or gene expres-
sion would open new approaches, that we could regroup and name systems
epidemiology. In fact, many of the techniques we presented in Chapter 6
to incorporate prior knowledge including gene sets, networks and heteroge-
neous data in prognostic and predictive models, can in principle be adapted
to systems epidemiology. For example a statistical test could be built to assess
association to disease not at the gene level, but at the pathway or network
level. The approach would assess if a pathway or a network area (a notion to
be precisely defined) is consistently impaired (possibly at different levels) in
individuals who developed a tumour. The advantage over the classical gene-
per-gene approach would be a gain in power: genes from the same pathway
could not reach significance when tested individually, whereas the pathway-
level test would be based on more information and could be conclusive. More
generally, systems epidemiology can be defined as an approach of molecular
epidemiology where assessment of association to cancer occurrence is carried
out by integrating in the statistical setting our prior knowledge about the
molecular biology of the tumour occurrence. This prior knowledge can be the
pathway structure and functioning, some known mechanism of action of a car-
cinogen (which supposes to know which carcinogens are involved and how the
individual has been exposed to it), or a gene expression signature of carcino-
genic exposure. The ideas presented here are not new (Lund and Dumeaux,
2008; Thomas et al., 2009), but have not become mainstream yet either, and
are still matters of research. Which exact form the modelling will take is still
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unclear, but we can anticipate that systems biology will soon bring important
insights in molecular epidemiological studies of cancer too.

12.1.2 Controlling the tumour

The canonical view about how to treat a pathology is of course considering
that the disease should be cured and eradicated from the patient’s body.
This is all the more true when the disease is embodied in a physical entity,
like a microbe, or in the case of cancer, tumour cells. These entities can be
physically targeted, and one would expect to do so and kill all of them. Another
strategy for treating a disease is to keep it under control, that is, to avoid fatal
consequences, or to prevent deterioration of patient health and comfort, while
renouncing exterminating all tumoural cells. Accepting to host potential killers
might look like a risky strategy, but there is growing evidence that it could in
fact be more efficient than trying to eradicate the tumour. This is, of course,
in strong opposition to the dominant principle of cancer treatment which has
been to give the highest possible dose of the most toxic drug in order to kill
as many tumour cells as possible.

In fact, a strategy which controls tumour growth without eradicating
the tumour, is already in successful practice for Chronic Myeloid Leukaemia
(CML). CML is treated by tyrosine kinase inhibitors (imatinib, and for re-
sistant cases, dasatinib or nilotinib) with excellent patient response, but in
most cases some tumour cells persist and the patient will undergo relapse.
The same treatment can be given again, several times if needed, and patients
have normal life expectancy (Gambacorti-Passerini et al., 2011). This cancer
is therefore well controlled: though we do not know how to eradicate all the
tumour cells, we prevent the fatal consequences with almost perfect efficiency.

This idea of controlling the disease has also been subject of mathematical
modelling, and the rationale and results have been described by Gatenby
(2009) (see also references therein) and is exposed below (see also Sec-
tion 9.7.1). Recognising that in most cases we do not know how to eradicate
a cancer once it has disseminated, Gatenby proposed to use the principles of
evolutionary dynamics of applied ecology and to base therapeutic strategy on
tumour evolutionary dynamics: “ . . . efforts to eliminate cancers may actually
hasten the emergence of resistance and tumour recurrence, thus reducing a
patient’s chances of survival.” Some of his examples support the hypothesis
that an intensive treatment which kills most cells, opens the road to resistant
cells:

• Without treatment the best fit cells, which in general are not the
treatment-resistant ones, dominate the tumour composition. Treatment-
resistant cells compete with them, but are disadvantaged in the prolifer-
ation race, precisely because there is a cost to resistance. They use part
of their resources to enable resistance: upregulating a pathway, DNA re-
pair, pumping molecules out, etc. They can therefore, at best, maintain
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a small number of them but, of course, not win the competition with
treatment-sensitive cells.

• When the tumour is treated intensively, the treatment-sensitive cells are
killed and the treatment-resistant cells can proliferate without competi-
tors for resources.

Gatenby proposed therefore to use adequate treatment level so as not
to kill all treatment-sensitive cells and to maintain the tumour volume to
a stable and tolerable value. This way the presence of enough treatment-
sensitive cells ensures that treatment-resistant cells can not thrive and are
maintained in low numbers. Gatenby’s mathematical model shows that this
would improve patient survival. He also presents an example of such a strategy
by treating successfully mice with human ovarian tumour with an adjusted
dose of chemotherapy∗.

Though issues like long-term toxicity are not solved, this question of mod-
elling tumour evolutionary dynamics for controlling the disease will undoubt-
edly be an important axis of the systems biology of cancer in the close future.

12.2 Forthcoming challenges

Most subjects we presented in this book are still active fields of research.
And they will continue to be major areas of research in cancer systems bi-
ology in the future. However, we can anticipate that computational systems
biology will also develop in new directions. These directions will be dictated
by biological research questions of high clinical relevance, and by progress in
investigation technologies.

12.2.1 Tumor heterogeneity

A first direction will concern the tumour heterogeneity. As already exposed,
the clonality hypothesis is only a first order approximation. We now know that
tumours present internal heterogeneity and a hierarchical organisation (see
Chapter 2 and Section 9.7.1). At the centre of this hierarchy are Cancer
Stem Cells (CSC)∗. CSC are defined by their ability to self-renew, to father
non-CSC progeny and to seed new tumours. CSC also have acquired motil-
ity, invasiveness capabilities, and resistance to apoptosis. Therefore, they are
thought to be the category of cells which has the highest propensity to metas-
tasise (Chaffer and Weinberg, 2011). They nevertheless only represent a small
fraction of the tumour cells. The modelling of this cell hierarchy and its diver-
sity should shed light on its role in the response to a therapeutic treatment, on
multidrug resistance, and on the metastatic process. The heterogeneity within
the tumour has a direct consequence on personalised medicine. Using NGS∗
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and microarrays∗, Gerlinger et al. (2012) observed in renal carcinoma that a
single area of the tumour cannot be representative of the landscape of chromo-
some alterations (i.e. mutations, Loss of Heterozygosity (LOH) and ploidy) in
the tumour. For example, among all the different somatic mutations∗ found
across different areas within the tumour, about two thirds are heterogeneous
and are not detectable in every single area. Moreover, a gene expression signa-
ture predicting the molecular subtypes can classify the same tumour in good
prognosis or poor prognosis depending on the area of the tumor used for the
prediction. Therefore, the statistical methodologies presented in Chapter 6
will have to consider this heterogeneity issue in order to improve the prediction
accuracy. For example, inferring the hierarchical organisation of clonal sub-
populations and reconstructing the lineage relation between cancer cells using
phylogenetic tree models offer new insight to decipher biomarkers (Navin and
Hicks, 2010; Gerlinger et al., 2012). A combination of computational systems
biology and high-throughput technology will definitively help to unravel the
tumour heterogeneity and to use this information in clinical practice.

12.2.2 Metastasis

The metastasis process itself should also become a major field of study
in cancer systems biology soon. How can a cancer cell leave its tumour of
origin, proceed to local invasion, intravasate into the blood or lymph stream,
migrate safely to a distant tissue, extravasate and settle in a new environment
to prosper and form a second tumour? The biology of this phenomenon is
still poorly understood, even though it is responsible for most cancer deaths.
Basic research and computational models are needed to better understand
this process, and propose plans to counter the formation of metastases. These
models should include both the description of signalling pathways involved at
these different steps, biophysical properties of tissues, cells, and Extracellu-
lar Matrix (ECM)∗ which are crucial during invasion and migration, and
action of all the tumour microenvironment. Indeed, it is now well established
that the tumour microenvironment plays a crucial role both in the develop-
ment of a tumour, in tumour cell proliferation and in metastasis formation.
In particular, the microenvironment is involved in the supply of growth fac-
tors, signalling molecules and substrates, and in establishing an inflammatory
state which is then involved in Epithelial-to-Mesenchymal Transition
(EMT)∗. EMT plays a major role by enabling epithelial cells to generate
progeny with metastatic potential (Thiery et al., 2009). Modelling interactions
between the tumour and all components of its microenvironment is therefore
needed to understand tumour progression (Gatenby and Gillies, 2008; Ander-
son et al., 2009).
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12.2.3 Cancer epigenetics

Another important direction for systems biology in the near future should
be the modelling of the role of epigenetics in tumour progression. Recently,
our knowledge of epigenetic mechanisms like DNA methylation, various his-
tone post-translational modifications and expression of noncoding RNA (see
Chapter 2) has made substantial progress (Esteller, 2007, 2008; Rodŕıguez-
Paredes and Esteller, 2011). These mechanisms are involved in many cancers
through various modes: DNA hypermethylation silencing tumour suppressor
genes; DNA hypomethylation of repetitive sequences, retrotransposons or in-
trons leading to genome instability and aberrant expression of oncogenes;
abnormal patterns of histone methylation or acetylation leading to aberrant
gene expression. Several initiatives have been launched to establish the epige-
nomic landscape of normal and tumour cells, for example by the International
Cancer Genome Consortium (ICGC), The Cancer Genome Atlas (TCGA),
ENCyclopedia Of DNA Elements (ENCODE) or AHEAD consortia (Interna-
tional Cancer Genome Consortium et al., 2010; Consortium, 2004; American
Association for Cancer Research Human Epigenome Task Force and Euro-
pean Union, Network of ExcellenceScientific Advisory Board, 2008). Epige-
netic markers are promising for cancer detection, diagnosis and prognosis.
For example, hypermethylation of DNMT is a successful biomarker for the
treatment of glioma∗ with temozolomide and radiotherapy (Esteller et al.,
2000; Baylin and Jones, 2011). Also, several epigenetic drugs have reached
the market, like DNA methyltransferase inhibitors (vidaza and decitabine)
for treatment of myelodysplastic syndrome, and histone deacetylase inhibitors
(vorinostat and romidepsin) for cutaneous T cell lymphoma∗. The epigenetic
mechanisms are key elements of the regulation of gene expression and genome
stability. The modelling of the dynamic interplay of the epigenetic actors with
genome, transcriptome and proteome is needed to understand their impact on
tumour progression and propose therapeutical intervention points and strate-
gies.

12.3 Will cancer systems biology translate into cancer
systems medicine?

12.3.1 Is optimism realistic?

After three decades of molecular biology research, our knowledge of the
fundamental aspects of tumour progression is becoming accurate and many
molecular mechanisms have been elucidated in detail. Also, we possess many
sophisticated high-throughput molecular investigation techniques. Almost ex-
haustive molecular descriptions of tumours at the genome, transcriptome and
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epigenome levels, are coming with initiatives like TCGA or ICGC. We know
how to engineer good genetic mouse models. After ten years, systems biol-
ogy starts becoming a mature science. Its paradigm has been accepted and
computational systems biology approaches are more and more refined and
efficient.

This picture of cancer research seems idyllic, but is probably over-
optimistic. We have to be careful that enthusiasm for new fields of science
is often so strong that claims of future successes might be exaggerated. This
could lead rapidly to disappointment, and from disappointment to disinterest,
and in a mirror effect, to exaggerated distrust of a discipline. Particular at-
tention has to be given to this question in cancer research, where expectations
from the patients and their families are enormous. The past has shown the
relative failure of many wars against cancer (for example see Epstein, 1990;
Epstein et al., 2002, who analyse the situation in the United States two and
three decades after the 1971 National Cancer Act which declared war against
cancer). We should therefore acknowledge that there are still many obstacles
in front of us in the battle against cancer. Molecular signatures have not de-
livered all their promises (see Chapter 6) and traditional classifications are
still used in many cases. Targeted therapies have an unexpected high rate of
failures (see Gonzalez-Angulo et al., 2010, and references therein). Robustness
of the cancer cells seems much more problematic than anticipated (see Chap-
ter 9 and Chapter 10). A recent example has shown that colon tumours
with BRAF(V600E) oncogene mutation show no response to BRAF(V600E)
inhibitors (Prahallad et al., 2012). In contrast, melanomas, with the same mu-
tation do respond. The reason is a negative feedback loop from BRAF(V600E)
to EGFR which is cut by BRAF(V600E) inhibition. EGFR is then fully acti-
vated in colon cancer, and triggers a high level of proliferation. In melanoma
where EGFR is weakly expressed, the suppression of the negative feedback
loop has no consequences and the tumour is sensitive to BRAF(V600E) in-
hibitors. The paradox is therefore that the logical treatment from the knowl-
edge of mutations might worsen the situation. Of course Prahallad et al now
propose to combine usage of a BRAF(V600E) inhibitor with a EGFR inhibitor
(a strategy exposed in Section 11.4). But it is legitimate to ask whether this
second inhibition will cut other feedback loops, thus abrogating the benefit of
the inhibitions of BRAF(V600E) and EGFR. In general, what is the number
of intervention points needed for killing the tumours? Which combination will
be efficient at an acceptable toxicity level for normal cells? We do not have
the answer yet to these questions. Another example of failure of targeted ther-
apy concerns the principle of synthetic lethality (see Chapter 9 and Chap-
ter 10). An example has already been given with genes PARP on one hand,
and BRCA1 or BRCA2 on the other hand. These two combinations show
synthetic lethality, but in clinical practice, usage of PARP inhibitors to cure
BRCA-mutated breast tumours has met with failure, because of secondary
mutations in BRCA1 or BRCA2 which restored the gene open reading frame
(Sakai et al., 2008; Edwards et al., 2008; Lord and Ashworth, 2012). Will we
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be able in such situations to understand rapidly the cause of failure, and to
propose another strategy to the patient? Can systems biology follow the pace
of mutations in tumour genomes? Can we imagine treatments that will not
drive the tumour into untractable patterns of resistance? It is premature to
know the answer.

These failures mean that important progresses in computational systems
biology of cancer are still needed. We need to be able to model not one path-
way, not two, but probably many more in a global approach (see the discus-
sion of Chapter 8). We need to identify and describe in detail compensatory
mechanisms, feedback loops and crosstalk between pathways. Only then will
we understand why a treatment may cure one patient while failing for another.

These progresses will build upon our increased understanding of the fun-
damental molecular mechanisms that govern the normal and tumour cell be-
haviour. In other words, omics and systems biology approaches should also let
space to classical molecular oncology research if we do not want to accumu-
late data that we cannot interpret. Progress will also build on the availability
of new technologies, like improved exploration of proteome, metabolome and
interactome. Investigation at single-cell level (for example single-cell sequenc-
ing) and at population level (measuring distribution of variables like protein
expression, instead of average expression) will also offer new possibilities for
systems biology modelling. Thus the road ahead is open, but nobody knows
where it will lead us.

12.3.2 Cost of personalised cancer medicine

Systems biology of cancer aims at designing tailored treatment for each
patient. One can also ask if the cost of this personalised medicine is afford-
able. Progresses based on new technologies are often expensive. Personalised
medicine should follow the rule. To start with it will be based on the availabil-
ity of targeted therapeutic molecules for all intervention points. This means
developing a few hundreds of new drugs.

On one hand pharmaceutical companies today are focusing on blockbuster
drugs, that are applicable to most people, which means the largest possible
market. The model is the average patient, which is at the opposite of per-
sonalised medicine. In personalised medicine patients will be enrolled in small
clinical trials, tailored to their genetic context. This means higher costs per
patient. On the other hand the cost of developing inhibitors for all kinases
is only a few days of the planet growth product (around 500 billion dollars).
This seems quite reasonable for a crucial health issue such as cancer.

One has also to keep in mind that with systems biology and person-
alised medicine comes preventative medicine (see Chapter 1). This preven-
tion should bring important gains in terms of saving costly treatments, and of
course, patient suffering. Making personalised medicine a reality is therefore
primarily a matter of political will and organisation.
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12.4 Holy Grail of systems biology

Computational systems biology is reviving a long-standing dream of mod-
elling a whole organism in silico, of formalising life. For a systemic disease
like cancer, the idea is to achieve the construction of a model of the human
physiology at the level of the whole body. The novelty lies in the fact that
the model could now be fed with an almost exhaustive description of molec-
ular levels, and could be personalised for a given individual, based on his
genetics, the specificities of his molecular networks, his history (in particular
his immune system), his environment (lifestyle, diet habits, exposure to car-
cinogens, etc.). This model would be used to simulate the action of potential
drugs, thus assessing efficiency and anticipating possible negative effects for
a given patient. This approach could also save a lot of time and effort in the
development of drugs, in clinical trials (e.g. by selecting in silico the patient
to include in a trial or to exclude) and in the design of innovative, multidrug
therapeutical strategies. This book has presented the first steps toward this
goal. Today, systems biology of cancer is still mainly a research activity, but
the first applications in clinical practice show that within a few years it may
well become mainstream medicine.
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Appendices

A.1 Basic principles of molecular biology of the cell

To understand the mechanism of tumour progression, it is necessary to
understand how normal cells work and how they are integrated at the level
of the whole organism. A cell is the smallest unit of an organism which is
classified as living, and it is sometimes called the building block of life (Alberts
et al., 2002, see Figure A.1). A living organism can be seen as an ecosystem
whose members are cells, reproducing by cell division, and organised into
collaborative assemblies or tissues. This ecosystem is very particular since
there is no competition between the different cell populations in a healthy
organism: each cellular type completes its specialised function which ensures
that the organism can live and reproduce. To coordinate their behaviour, the
cells send, receive and interpret an elaborate set of signals which serve as
social controls, telling each of them how to act. As a result, each cell behaves
in a socially responsible manner, resting, dividing, differentiating1 or dying as
needed for the good of the organism and the maintenance of its integrity. In
cancer cells, this harmony is broken: the collaboration between cells disappears
and a competition and selection between cancer cells appear which can lead
to the death of the organism (see Chapter 2). To complete its specialised
function, the cell follows a specific program which is described in the next
section.

A.1.1 Central dogma of molecular biology

The information flow which allows the biological program to be completed
inside the cell has been formalised by Crick (1970): “The central dogma of
molecular biology deals with the detailed residue-by-residue transfer of sequen-
tial information. It states that such information cannot be transferred from
protein to either protein or nucleic acid.” The flow of biological information
is presented in Figure A.2 and the general principles can be summarised as
follows:

1Cellular differentiation is the process by which a less specialised cell becomes a more
specialised cell type.
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FIGURE A.1 Hierarchical representation of a multi-cellular living organ-
ism. A living organism consists of building blocks of life called cells. In a cell, there
are chromosomes packing the DNA into a solenoid conformation called chromatin (p
and q define the short and long chromosome arms respectively). In the chromatin,
DNA is wrapped around nucleosomes. The DNA is the molecule which carries the
genetic information. A gene is a DNA segment which encodes for a specific cellular
function. A gene is a sequence of bases A, T, C and G.

• Molecular partners: DNA stores the information in a linear way2 and
can be split into segments or genes which encode for a specific function of
the cell. RNA can be viewed as the template which allows the synthesis
of the protein. The protein is the effector in the cell, performing the
function encoded by the gene. In cells, the DNA is packed into entities
called chromosomes (see Figure A.1).

• Flows: the step which converts DNA into RNA is called transcription
and the step which converts RNA into protein is called translation. DNA
can also be duplicated during the replication. This process occurs dur-

2The sequence of bases A, T C and G.
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DNA
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FIGURE A.2 Central dogma of molecular biology. The central dogma of
molecular biology holds that information flows from DNA to RNA to protein. Solid
arrows indicate information flows which occur in all cells, through DNA replication,
transcription of DNA into RNA, and translation of RNA into protein. Dotted arrows
indicate flows which are seen occasionally, through reverse transcription and replica-
tion of RNA. Crucially, information cannot flow from protein back into nucleic acid
sequence. Image adapted from Crick (1970).

ing the cell cycle in which a parent cell reproduces into two daughter
cells. This process allows the conservation of the program information
in daughter cells.

Towards a new paradigm: Expanding the central dogma. The cen-
tral dogma of biology states that genetic information normally flows from
DNA to RNA to protein. As a consequence, it has been accepted that genes
generally encode for proteins, and that proteins fulfil the functions, in all cells,
from microbes to mammals. However, the fact that genes encode for proteins
may not be the case in complex organisms. Indeed, recent evidence suggests
that the majority of the genome of mammals and of other complex organisms
is in fact transcribed into RNA which does not encode a protein: such RNA
is termed noncoding RNA (ncRNA) but this does not mean that it has no
function (Mattick, 2003; Mattick and Makunin, 2006). To distinguish RNA
which does not encode protein from RNA which encodes protein, the latter is
termed messenger RNA (mRNA). ncRNAs can be divided into two classes: the
infrastructural and the small regulatory ncRNAs. Among the infrastructural
ncRNAs, there are transfer RNAs, ribosomal RNAs and small nuclear RNAs.
They can be involved in regulatory processes. Small regulatory ncRNAs in-
teract with mRNA via RNA interference mechanisms3 (Mello and Conte Jr,
2004) and inhibit gene expression at the stage of translation. Among the dif-
ferent types of small regulatory ncRNAs, microRNAs (miRNA) are naturally
produced in human cells, and small interfering RNAs (siRNA) have also been

3In 2006, Andrew Z. Fire and Craig C. Mello received the Nobel Prize in medicine for
the discovery of the RNA interference process.
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identified to be produced endogenously in mouse oocytes (Watanabe et al.,
2008). ncRNAs represent a new and additional level of gene regulation. In
Section A.1.2, we will give more details about the role of miRNAs in gene
expression regulation. ncRNAs can be viewed as noncoding genes.

The genetic information carried by a gene is called the genotype and when
the function encoded by the gene is effective within the cell, it is called the
phenotype. The genotype corresponds to the genetic description of the cell
while the phenotype corresponds to the expression of the function encoded by
the gene. It is possible that this function is never expressed if the cell does
not need it. Then, how does the cell decide to express or not the function
encoded by the gene? This is determined by the interaction between the con-
ditions in which the cell lives and the genetic properties of the cell: the cell
has many sensors sensitive to environmental stimuli, which are either external
(temperature, pH, nutrients, light, pathogen molecules, signals sent from other
cells, etc.) or internal (DNA damage, length of the telomere4, osmotic pres-
sure, etc.). Thus, the expression of the phenotype is determined by the sim-
ple equation genotype + environmental stimuli → phenotype. Environmental
stimuli depend not only on the stimuli at a given time but also on the stimuli
the cell has been receiving throughout its life. As a consequence, the cell has
specific characteristics due to its life history5. Therefore, the environmental
stimuli received by the cell will trigger or not the expression of the phenotype:
these stimuli play a key role in the regulation of the information flow. Indeed,
although the dogma appears to be a simple sequential information flow, the
reality is much more complex as many interactions between the cell and its
environment impact the control of replication, transcription and translation.
In a cancer cell, the regulation mechanisms are altered and the cell can no
longer complete its original program (see Chapter 2). We will describe in
the next section the mechanisms involved in the regulation of the information
flow in a normal cell.

A.1.2 Gene regulation and signal transduction mechanisms

In normal cells, the gene regulation and signal transduction held in the
central dogma of molecular biology involve different mechanisms mediated by
a large set of molecular entities.

Transcription factors. Groups of genes must be coordinately expressed
while other genes must be repressed so that the cells display complex and
tissue-specific phenotypes. Such coordination of expression is insured by pro-
teins called transcription factors. They regulate the transcription of genes by
binding to specific sequences of DNA using DNA binding domains (see Fig-
ure A.3). They perform this function alone, or in a complex with other pro-
teins. Transcription factors act by increasing (as an activator), or preventing

4The telomere is the extremity of the chromosome. Its length is an indicator of the
number of divisions a cell has undergone.

5For example, the cell differentiation signals have led to a specific function.
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FIGURE A.3 Role of transcription factor in gene expression regulation.
The transcription factor binds to specific DNA sequences of the promoter located
in the upstream region of the gene. This allows the formation of a transcription
initiation complex including the RNA polymerase which starts the transcription of
the gene into RNA.

(as a repressor) the presence of RNA polymerase, a protein which transcribes
genetic information into RNA. One transcription factor might have several tar-
get genes. Active research is currently going on based on the sequence analysis
of promoters in order to discover new target genes for each transcription fac-
tor (Tompa et al., 2005). Among transcription factors, TP53, also known as
the guardian of the genome, plays a key role in preserving the integrity of the
genome during the cell cycle. TP53 ensures that genetic material of the cell
is correctly transmitted into daughter cells.

Epigenetic regulations. Classical genetics alone cannot explain the di-
versity of phenotypes within a population. Nor does classical genetics explain
how, despite their identical DNA sequences, monozygotic twins or cloned an-
imals can have different phenotypes and different susceptibilities to a disease.
The concept of epigenetics offers a partial explanation of these phenomena.
It was first introduced by Conrad Hal Waddington in the 1940s to name “the
branch of biology which studies the causal interactions between genes and their
products, which bring the phenotype into being” (Jablonka and Lamb, 2002;
Speybroeck, 2002). Epigenetics was later defined as heritable changes in gene
expression which are not due to any alteration in the DNA sequence (Esteller,
2008). Epigenetics refers to features such as chromatin and DNA modifica-
tions which are stable over series of cell cycles but do not involve changes
in the underlying DNA sequence of the organism. These modifications play
an important role in gene silencing at the level of transcription. The main
epigenetic modifications are the following (see Figure 2.7):

• DNA methylation is a common epigenetic mechanism of gene silenc-
ing. Methylation is a chemical modification of the DNA which can be
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either inherited, created or modified in response to environmental stim-
uli without changing the DNA sequence. DNA methylation occurs in
cytosines which precede guanines in dinucleotide called CpGs. CpG
sites are not randomly distributed in the genome but are located in
CpG-rich regions known as CpG islands which span the 5′ end6 of the
regulatory region of many genes. These islands are usually not methy-
lated in normal cells (see Figure 2.7C1). DNA hypermethylation is
required in particular cases such as genomic imprinting∗ and the X-
chromosome inactivation in females7. DNA hypermethylation inside re-
peated sequences could also have a role in the protection of chromosomal
integrity, by preventing chromosomal instability and translocations∗

(see Figure 2.7A1).

• Histone modifications is another common epigenetic mechanism.
Transcription of DNA is dictated by the structure of the chromatin.
In general, the density of its packing is indicative of the frequency of
transcription (see Figure 2.7B1 and Figure 2.7D1). Octameric pro-
tein complexes called histones are responsible for chromatin packing,
and these complexes can be temporarily or more permanently modified
by processes such as methylation and acetylation. These modifications
lead to a high degree of packing which prevents genes from being acces-
sible by the transcriptional machinery. Therefore, the modifications act
as a gene silencing process. The emerging model is that specific combi-
nations of histone modifications determine the overall expression status
of a region of chromatin, a theory known as the histone code hypothesis
(Turner, 2002).

Post-transcriptional regulations. These regulations occur at the RNA
level once the DNA has been transcribed. They are the following:

• Alternative splicing is the mechanism in which the exons of the pri-
mary gene transcript, the pre-RNA, are separated and reconnected to
produce alternative RNA rearrangements. These linear combinations
then undergo the process of translation, resulting in isoform proteins.
Alternative splicing increases mRNA and protein diversity by allow-
ing generation of multiple RNA products from a single gene (see Fig-
ure A.4). For a given gene, only some splicing variants exist and not all
exon combinations are possible. This is another plausible mechanism for
the paradoxical inconsistency between the number of genes transcribed
and the diversity of phenotypes. The different ways a gene can be spliced
are controlled by the splicing code (Barash et al., 2010).

• Regulation at the mRNA level involves miRNAs which are about
21-nucleotide-long single-stranded RNA molecules. They are encoded by

6A DNA sequence is oriented from 5′ end to 3′ end.
7In mammalian females, one X chromosome is inactivated.
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FIGURE A.4 Alternative splicing. A gene consists of several exons and introns.
The DNA is transcribed in a precursor mRNA (pre-mRNA) which can be spliced in
different possible mRNAs. Only the exons are kept and further translated in different
variant proteins. Some of the splicing patterns are specific for certain types of cells.

genes which are transcribed from DNA but not translated into protein.
miRNAs are processed from precursor molecules which fold into hair-
pin structures containing imperfectly base-paired stems. The precursor
is processed by enzymes into a mature miRNA which is a single-strand
RNA molecule (see Figure A.5). Functional studies indicate that miR-
NAs participate in the regulation of almost every cellular process: in a
human a thousand miRNAs are predicted which would regulate about
50% of all protein-coding genes (Filipowicz et al., 2008; Krol et al.,
2010). miRNAs control gene expression post-transcriptionally by reg-
ulating RNA translation or stability in the cytoplasm: they act simi-
larly to siRNAs operating in RNA interference binding imperfectly to
its RNA sequence target. The most stringent requirement is a contigu-
ous and perfect base pairing of the miRNA nucleotides 2–8, representing
the seed region, which nucleates the interaction with the RNA. miRNAs
are generally viewed as negative regulators of gene expression but they
could have a much more complex role in gene expression regulation such
as gene activation in some cases (Breving and Esquela-Kerscher, 2010).

Signal transduction. As discussed in Section A.1, once the DNA is
transcribed into RNA, and the RNA is translated into protein, then the protein
can play its biological function in the cell. However, some proteins in the cell
are present in an inactive state. Post-Translational Modifications (PTM) are
needed to allow the protein to perform its function. Why is this mechanism
necessary? In the cell, some proteins are present just in case they are needed
to ensure a quick and efficient response to environmental stimuli8. Indeed, the

8We remind the reader that environmental stimuli are either external (temperature, pH,
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FIGURE A.5 Role of miRNA in a normal cell. In normal tissues, the miRNA
is first transcribed into pri-miRNA, then processed into pre-miRNA which is in turn
matured in a single strand miRNA. When it binds to its complementary sequences
on the target RNA it causes the repression of target-gene expression through protein
translation repression (when pairing is imperfect) or altered RNA stability (when
pairing is perfect). Image and legend adapted from Esquela-Kerscher and Slack
(2006); Breving and Esquela-Kerscher (2010).

transcription and translation machineries take time to complete (on the order
of hours or much longer). To ensure fast responses, proteins are present in the
cell in an inactive form and can be recruited immediately. Therefore, PTMs
(mainly phosphorylations9) allow the protein to go from an inactive state to
an active state in a process lasting seconds to minutes. Signal transduction is
a process that performs a cascade of protein phosphorylations in response to
an environmental stimulus which implies the protein is active within the cell.
The cascade also allows an amplification of the signal so that a relatively small
stimulus elicits a large response: once activated, a protein can activate many
other proteins involved in the next step so that the signal grows exponentially
(see Figure A.6). In this process, kinase proteins play a major role because
they catalyse the phosphorylation reaction. In contrast, phosphatases reverse
the reaction and dephosphorylate proteins.

To illustrate the signal transduction mechanism, let us take for example
TP53 which is a transcription factor. TP53 only plays a role when the cell
has been exposed to a stress such as DNA damage. In unstressed cells, once
TP53 has been produced, it binds to another protein called MDM2 which in-
activates TP53: when associated with MDM2, TP53 cannot bind to DNA and
therefore cannot bind to its target genes. The protein complexes TP53-MDM2

nutrients, light, pathogen molecules, signals send from other cells, etc.) or internal (DNA
damage, length of the telomere, osmotic pressure, etc.). These stimuli are defined by the
conditions in which the cell lives.

9Phosphorylation is the addition of a phosphate group to a protein molecule or a small
molecule.
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FIGURE A.6 Signal transduction cascade. In response to stress (such as DNA
damage) a first phosphorylation reaction activates the function of a first protein
which can catalyse the phosphorylation of a second protein and so on. Finally, the
phosphorylated ATM protein activates TP53 by a phosphorylation reaction too.
Once phosphorylated, TP53 binds to its target genes and initiates the transcription.
If not phosphorylated, TP53 binds to MDM2 which prevents its transcription factor
activity. Image adapted from Weinberg, 2007, Chap. 9 and Nakamura, 1998.

are exported into the cytoplasm where they are degraded by proteasomes. In
some circumstances (especially when cells are suffering certain types of stress
or damage), TP53 protein molecules must be protected from MDM2 so that
they can accumulate to functionally significant levels in the cell. This pro-
tection is achieved by phosphorylation of TP53 by the protein kinases ATM
or ATR: they give the signal to TP53 to play its transcription factor activ-
ity. The ATM protein is also activated by a phosphorylation reaction as a
result of a phosphorylation cascade initiated by stress or DNA damage (see
Figure A.6).

Different signal transduction modules are involved in response to specific
stimuli and are related to specific functions of the cell. These different mod-
ules are named signalling pathways and complex interactions between them
exist as illustrated in Figure 2.8 with a simplified view of the cell signalling
mechanism.
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A.1.3 Life of a normal cell

To conclude, there are different stages of the life of a normal cell:

1. The cell performs its specialised function.

2. If needed, it reproduces during the cell cycle.

3. It dies after a limited number of cell cycles, a phenomenon called senes-
cence.

These different steps are defined inside a program in which the sequen-
tial information flow has been formalised in the central dogma of molecular
biology. As we have seen, the execution of the specific program of the cell
involves complex regulation mechanisms in response to environmental stim-
uli: the control of gene expression by the transcription factors and alternative
splicing, the epigenetic mechanisms, the regulatory function of ncRNAs and
the signal transduction are key processes in the normal behaviour of the cell.
In a cell, its specific program also includes permanent monitoring systems to
check its ability to always behave in a responsible manner. If this is not the
case, the cell must disappear and die in a process called apoptosis. Among
the monitoring systems we can mention the cell cycle checkpoints. Indeed, it
is important that after cell division, the daughter cells will be the exact copy
of the parent cell in order to complete the same function, otherwise the cell
must enter the apoptosis process. The cancer cells which derive from normal
cells are not able to perform the original specific program due to a sequential
accumulation of events which have disturbed the monitoring system and reg-
ulatory mechanisms (see Chapter 2). Note that the present section and part
of Chapter 2 have been adapted from Hupé (2008).

A.2 Tools, software and databases

All the resources mentioned in the chapters are listed here.

TABLE A.1 Tools and software.

Tools and software

Adjuvant! Online
Estimate the risk of cancer related mortality and relapse, and the benefits of adjuvant
treatments
http://www.adjuvantonline.com

Allegro
Discovery of gene regulatory motifs from high-throughput data
http://acgt.cs.tau.ac.il/allegro

Continued on next page
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TABLE A.1 – continued from previous page
Tools and software

BiNoM
Biological network manipulation and analysis
http://bioinfo.curie.fr/projects/binom
Bioconductor
Tools for the analysis and comprehension of high-throughput genomic data with R
http://www.bioconductor.org
BioBase
Systems biology databases and software
http://www.biobase-international.com

BioMart
Data integration system
http://www.biomart.org
BioUML
An open integrative platform for systems biology
http://www.biouml.org

CellDesigner
Editor of pathway diagrams
http://www.celldesigner.org

CellSys
Software for growth and organisation processes modelling in multi-cellular systems
http://ms.izbi.uni-leipzig.de/software/cellsys
Cytoscape
Network analysis and visualisation
http://www.cytoscape.org

Galaxy
Workflow manager
http://usegalaxy.org
GeneXplain
Integrative systems biology platform
http://www.genexplain.com
GINsim
Software for creating discrete dynamical models
http://gin.univ-mrs.fr
KNIME
Workflow manager
http://www.knime.org
R
Statistical programming language
http://www.r-project.org

Taverna
Workflow manager
http://www.taverna.org.uk
VANTED
Network analysis and visualisation
http://http://vanted.ipk-gatersleben.de
XPPAUT
Tool for simulating, animating, and analysing dynamical systems
http://www.math.pitt.edu/ bard/xpp/xpp.html
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TABLE A.2 Databases.

Database

ArrayExpress
Database of public high-throughput experiments
http://www.ebi.ac.uk/arrayexpress
BIOBASE
Systems biology databases
http://www.biobase-international.com

BioCarta
Pathway database
http://www.biocarta.com

BioModels
Lists of published models
http://biomodels.net
BioPAX
Pathway exchange language for Biological pathway data
http://www.biopax.org
BioPortal
Ontology database
http://bioportal.bioontology.org
BRENDA
Enzyme information database
http://www.brenda-enzymes.org

Cancer Cell Map
Database of signalling pathway related to cancer
http://cancer.cellmap.org

CleanEx
Database of public gene expression experiments
http://cleanex.vital-it.ch/
DGV
Database of Genomic Variants
http://projects.tcag.ca/variation
DIP
Database of protein interactions
http://dip.doe-mbi.ucla.edu
DDBK
Database of nucleotide sequences
http://www.ddbj.nig.ac.jp

EMBL
Database of nucleotide sequences
http://www.ebi.ac.uk/embl
Ensembl Genome Browser
Reference genome for different species
http://www.ensembl.org
FGED
Standard for high-throughput experiments
http://www.mged.org

Gene Ontology
Database of gene annotations
http://www.geneontology.org
GEO
Database of public high-throughput experiments
http://www.ncbi.nlm.nih.gov/geo

Continued on next page
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TABLE A.2 – continued from previous page
Database

IngenuityR©

Database of molecular interactions
http://www.ingenuity.com
HPRD
Database of protein annotations and interactions
http://www.hprd.org
ICGC
Portal for cancer data
http://www.icgc.org

IntAct
Database of protein interactions
http://www.ebi.ac.uk/intact
JASPAR
Database of transcription factor binding sites
http://jaspar.genereg.net/

JWS
Database of curated models
http://jjj.biochem.sun.ac.za

KEGG
Pathway database
http://www.genome.jp/kegg
MIPS
Database of protein interactions
http://mips.helmholtz-muenchen.de/proj/ppi

miRBase
Database of miRNA
http://www.mirbase.org
MSigDB
Database of molecular signatures
http://www.broadinstitute.org/gsea/msigdb
NCBI Gene
Database of gene annotations
http://www.ncbi.nlm.nih.gov/gene
NCBI Nucleotide
Database of nucleotide sequences
http://www.ncbi.nlm.nih.gov/nucleotide
NCBI OMIM
Database of gene annotations
http://www.ncbi.nlm.nih.gov/omim

OBO
Ontology database
http://obofoundry.org
Pathguide
Database of pathway related resources
http://wwwwpathguide.org
Reactome
Public pathway database
http://www.reactome.com

ResNetR©

Database of protein interaction data for Human, Rat, and Mouse
http://www.ariadnegenomics.com

Continued on next page
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TABLE A.2 – continued from previous page
Database

SABIO-RK
Database of biochemical reactions and kinetic equations
http://sabio.villa-bosch.de
TCGA
Portal for cancer data
http://cancergenome.nih.gov
TRANSFACR©

Database of transcription factors
http://www.biobase-international.com

TRANSPATHR©

Database of molecular interactions
http://www.biobase-international.com
UCSC Genome Browser
Reference genome for different species
http://genome.ucsc.edu

UniprotKB
Catalog of information on proteins
http://www.uniprot.org

WikiPathways
Database of pathways designed for community design
http://wikipathways.org

TABLE A.3 Genes.

Symbol Synonym Name Location
ABCB1 MDR1 ATP-binding cassette, sub-family B (MDR/TAP),

member 1
7q21.12

ABCC2 MRP2 ATP-binding cassette, sub-family C (CFTR/MRP),
member 2

10q24

ABL1 ABL c-abl oncogene 1, non-receptor tyrosine kinase 9q34.1
APC adenomatous polyposis coli 5q21-q22
ATM ataxia telangiectasia mutated 11q22-q23
BAX BCL2-associated X protein 19q13.3-q13.4
BCL2 B-cell CLL/lymphoma 2 18q21.3
BCR breakpoint cluster region 22q11
BRAF v-raf murine sarcoma viral oncogene homolog B1 7q34
BRCA1 breast cancer 1, early onset 17q21-q24
BRCA2 breast cancer 2, early onset 13q12-q13
CASP3 caspase 3, apoptosis-related cysteine peptidase 4q34
CASP8 caspase 8, apoptosis-related cysteine peptidase 2q33-q34
CCNA2 CCNA cyclin A2 4q25-q31
CCNB1 CCNB cyclin B1 5q12
CCNB2 cyclin B2 15q21.3
CCND1 cyclin D1 11q13
CCNE1 CCNE cyclin E1 19q12
CCNE2 cyclin E2 8q22.1
CDC25B cell division cycle 25 homolog B (S. pombe) 20p13
CDC25C CDC25 cell division cycle 25 homolog C (S. pombe) 5q31
CDK2 cyclin-dependent kinase 2 12q13
CDK4 cyclin-dependent kinase 4 12q13
CDK6 cyclin-dependent kinase 6 7q21-q22

Continued on next page
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TABLE A.3 – continued from previous page
Symbol Synonym Name Location

CDKN1A p21CIP1 cyclin-dependent kinase inhibitor 1A (p21, Cip1) 6p21.1
CDKN1B p27KIP1 cyclin-dependent kinase inhibitor 1B (p27, Kip1) 12p13.1-p12
CDKN2A p16INK4a cyclin-dependent kinase inhibitor 2A (melanoma, p16,

inhibits CDK4)
9p21

CDKN2B p15INK4b cyclin-dependent kinase inhibitor 2B (p15, inhibits
CDK4)

9p21

E2F1 10 E2F transcription factor 1 20q11
E2F3 E2F transcription factor 3 6p22
E2F4 E2F transcription factor 4, p107/p130-binding 16q21-q22
E2F5 E2F transcription factor 5, p130-binding 8q21.2
E2F8 E2F transcription factor 8 11p15
EGFR HER1 epidermal growth factor receptor 7p12
ERBB2 HER2 v-erb-b2 erythroblastic leukaemia viral oncogene ho-

molog 2, neuro/glioblastoma derived oncogene ho-
molog (avian)

17q11.2-q12

ERBB3 HER3 v-erb-b2 erythroblastic leukaemia viral oncogene ho-
molog 3 (avian)

12q13

ERBB4 HER4 v-erb-a erythroblastic leukaemia viral oncogene ho-
molog 4 (avian)

2q33.3-q34

EWSR1 EWS Ewing sarcoma breakpoint region 1 22q12.2
FGFR3 fibroblast growth factor receptor 3 4p16.3
FLI1 Friend leukaemia virus integration 1 11q24.1-q24.3
FLIP cFLAR CASP8 and FADD-like apoptosis regulator 2q33-q34
GRB2 growth factor receptor-bound protein 2 17q24-q25
HRAS 11 v-Ha-ras Harvey rat sarcoma viral oncogene homolog 11p15.5
IGF2 insulin-like growth factor 2 (somatomedin A) 11p15.5
IL1B interleukin 1, beta 2q14
IL6 interleukin 6 (interferon, beta 2) 7p21-p15
KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 12p12.1
MAPK1 ERK2 mitogen-activated protein kinase 1 22q11.2
MAPK3 ERK1 mitogen-activated protein kinase 3 16p11.2
MAPK4 ERK4 mitogen-activated protein kinase 4 18q21.2
MAPK6 ERK3 mitogen-activated protein kinase 6 15q21
MAPK7 ERK5 mitogen-activated protein kinase 7 17p11.2
MAPK8 JNK1 mitogen-activated protein kinase 8 10q11
MAPK14 p38 mitogen-activated protein kinase 14 6p21.3-p21.2
MAPK15 ERK7,

ERK8
mitogen-activated protein kinase 15 8q24.3

MDM2 Mdm2 p53 binding protein homolog (mouse) 12q13-q14
MLH1 mutL homolog 1, colon cancer, nonpolyposis type 2

(E. coli)
3p22.3

MLL myeloid/lymphoid or mixed-lineage leukaemia (tritho-
rax homolog, Drosophila)

11q23

MYC v-myc myelocytomatosis viral oncogene homolog
(avian)

8q24

MYCN v-myc myelocytomatosis viral related oncogene, neu-
roblastoma derived (avian)

2p24.3

NFKB1 NFkB nuclear factor of kappa light polypeptide gene en-
hancer in B-cells 1

4q24

NFKB2 nuclear factor of kappa light polypeptide gene en-
hancer in B-cells 2 (p49/p100)

10q24

Continued on next page

10E2F1 and E2F3 are also referred to as E2F in this book
11In the book, RAS may refer to HRAS, KRAS, or NRAS
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TABLE A.3 – continued from previous page
Symbol Synonym Name Location

PARP1 poly (ADP-ribose) polymerase 1 1q41-q42
PTEN phosphatase and tensin homolog 10q23
RAD50 RAD50 homolog (S. cerevisiae) 5q23-q31
RAD51 RAD51 homolog (S. cerevisiae) 15q15.1
RASA1 RAS p21 protein activator (GTPase activating pro-

tein) 1
5q13

RB1 RB retinoblastoma 1 13q14.2
REL v-rel reticuloendotheliosis viral oncogene homolog

(avian)
2p13-p12

RELA v-rel reticuloendotheliosis viral oncogene homolog A
(avian)

11q13

RELB v-rel reticuloendotheliosis viral oncogene homolog B 19q13.32
RPS4X ribosomal protein S4, X-linked Xq13.1
RPS6 ribosomal protein S6 9p21
SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene

homolog (avian)
20q12-q13

STAT3 signal transducer and activator of transcription 3
(acute-phase response factor)

17q21

TBC1D9 MDR1 TBC1 domain family, member 9 (with GRAM do-
main)

4q31.1

TERF2 TRF2 telomeric repeat binding factor 2 16q22.1
TGFB1 TGFbeta transforming growth factor, beta 1 19q13.1
TNF tumor necrosis factor 6p21.3
TP53 tumor protein p53 17p13.1
WEE1 WEE1 homolog (S. pombe) 11p15.3-p15.1
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13C-based metabolic flux data

is an experimental quantification of the integrated responses of metabolic net-
works, based on labelling molecules with stable 13C isotopes subsequent gas
chromatography mass spectrometric detection of patterns in protein-bound
amino acids.

adjuvant therapy

is a therapy applied after an initial treatment in order to suppress secondary
tumour formation and to reduce the risk of future relapse∗.

amplification

of a gene is a cellular process resulting in multiple copies of a particular gene
to amplify the phenotype that the gene confers to the cell.

antagonist drug

is a drug that blocks binding to a receptor, and therefore receptor activation.

Bacterial Artificial Chromosome

also referred as BAC, is a plasmid vector in which a DNA sequence has been
inserted (from 100 up to 300 kilobases).

biomarker

is a biological property which indicates the biological state of a cell or a living
being (e.g. normal state versus pathologic state). A biomarker can be any
physical parameter (body temperature, blood pressure, osmotic pressure, etc.)
or any biochemical substance (expression of a gene, presence of a protein,
production of an hormone, etc.).

blast

is any type of immature blood cells.

Cancer Stem Cell

are defined by their ability to self-renew, to father non-CSC tumoral progeny
and to seed new tumours. CSCs also have acquired motility, invasiveness ca-
pabilities, and resistance to apoptosis; they are thought to be the category of
cells which has the highest propensity to metastasise.

carcinoma

is a cancer which arises from epithelial cells.

centrality

is a measure for a node in a graph of how close the node is to the centre of
the graph. The most popular measure of centrality is the number of shortest
paths (from all nodes to all nodes) passing through a node.
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chemotherapy

refers to the treatment of a disease by chemical substances, in particular cy-
totoxic agents for cancers.

chromatin

is the material of which the chromosomes of eukaryotes are composed. It
consists of proteins, DNA and RNA.

clinicopathological

refers to both the clinical signs and symptoms of the patient directly observ-
able by the physician and the results of laboratory examination.

comorbidity

is the simultaneous presence of two or more diseases or conditions in a patient.

distributed robustness

is a type of robustness when stable system performance cannot be attributed
to any particular element of a system but rather to a general pattern of how
the system elements are connected to each other.

emergent properties

are properties of a system containing relatively simple entities that show more
complex behaviours as a collective. The notion of emergence first appeared in
the theory of self-organisation.

epimutation

is a heritable alteration which does not affect the base pair sequence of DNA.

Epithelial-to-Mesenchymal Transition

is a transdifferentiation program where cells with epithelial phenotype are
generating cells with mesenchymal phenotype. It plays an important role in
development and morphogenesis, and is reversible (MET). In tumours EMT
confers epithelial cells with properties of motility, invasiveness, self-renewal
and the ability to seed a new tumour, in one word, to metastasise.

ExtraCellular Matrix

also referred as ECM, is the extracellular part of animal tissue serving as a
scaffolding to hold tissues together. It includes the interstitial matrix and the
basement membrane, and contains substances produced by cells and excreted
to the extracellular space. It forms a complex network of macromolecules with
distinctive physical, biochemical, and biomechanical properties.

gel electrophoresis

is a method which separates proteins according to their charge and size. The
gel refers to the matrix in which the molecule migrates.

genomic imprinting

is a mechanism by which imprinted genes are expressed in a parent-of-origin-
specific manner meaning that only one allele is expressed in the allele but
never both in normal phenotype.

glioblastoma

is a brain tumour which arises from glial cells.
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glioma

see glioblastoma∗.

grade

of a tumour is a system to classify cancer cells in terms of how abnormal they
look and how quickly the tumour is likely to grow.

haploinsufficiency

is a loss-of-function of a gene. It occurs in a diploid organism when a
mutation∗ has inactivated one copy of a gene and the remaining functional
wild type copy of the gene is not sufficient to produce enough protein to ensure
a normal cellular function.

HeLa cells

is the oldest and most commonly used immortal human cell line derived from
cervical cancer cells taken in 1951 from the patient Henrietta Lacks.

histological section

is a thin slice of tissue, typically extracted from a tumour, applied to a micro-
scopic slide to be viewed under a microscope.

homeostasis

is the process by which a cell or an organism maintains internal equilibrium
by adjusting its physiological processes.

hub

is a node in a network connected to many other nodes.

hyperplasia

is an accumulation of an excessive number of cells having a normal appearance.

hypoxia

is a condition characterised by the lack of adequate oxygen supply.

intravasation

is the invasion of a cancer through the basal membrane and into blood vessels.

leukaemia

is a malignancy of any variety of hematopoetic cell types, including the lineages
leading to lymphocytes and granulocytes, in which the tumour cells are non-
pigmented (leukaemia means white blood in Greek) and dispersed throughout
the circulation. Leukaemias are liquid cancers.

lymphoma

is a cancer which originates in lymphocytes (a type of white blood cells in
the vertebrate immune system). There exist many types of lymphomas. Lym-
phomas are solid cancers.

medulloblastoma

is a brain tumour which originates from neurons in the cerebellum.

melanoma

is a tumour arising from melanocytes, the pigmented cells of the skin and iris.
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meta-analysis

refers to statistical techniques to combine the results of several studies that
address a set of related research hypotheses.

metastasis

is a cancerous growth formed by colonisation of cancerous cells from a primary
growth located elsewhere in the body.

metastatic

(adj.) refers to a cancer with one metastasis∗ (or several).

microarray

is miniaturised sensor tools which consist of a slide glass smaller than two
square-centimetres. It can quantify genome-wide molecular parameters such
as gene expression, DNA copy number etc. A microarray is also called biochip
or chip.

mimetic drug

is a drug that mimics the structure of a protein or a protein domain (and
therefore targets its partners).

mutation

is a heritable alteration which affects the base pair sequence of DNA.

negative dominance

is a mutation in one copy of a gene whose mutant protein product interferes
with the normal wild type protein produced from the remaining wild type
functional copy of the gene.

neoplasia

is a tumour which consists of cells having an abnormal appearance and an
abnormal proliferation pattern.

neoplasm

see neoplasia∗.

neoplastic

(adj.) see neoplasia∗.

networked buffering

refers to a mechanism of emergence of robust properties from a network of
interacting agents such that each agent is able to perform more than one
function and parts of the agent functions overlap.

neuroblastoma

is a paediatric extra-cranial solid tumour arising from a sympathetic nervous
system tissue.

neutral space

is a collection of equivalent implementations of the same biological function.

NGS

stands for next-generation sequencing, a high-throughput technique which en-
ables parallel sequencing of hundreds of millions of short sequences. Origi-
nally NGS referred to the second-generation sequencing technique. NGS is
now widely used to refer to any high-throughput sequencing techniques from
second-generation until the most recent.
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off-target effect

refers to the fact that a drug designed to target a specific molecule might also
have an effect (e.g. bind) to other molecules; this is called off-target effect.

oligonucleotide

is a DNA sequence (typically about 25–60 nucleotides).

oncogene

is a gene whose activation increases the cancer risk.

oncologist

is a physician who treats cancer.

oncology

is the science which studies tumours including their development, diagnosis,
treatment, and prevention.

paralog

is another copy of a gene resulted from gene duplication.

pathologist

is a physician who studies and diagnoses diseases through examination of
organs, tissues and cells.

phase space

is the space of all system’s states, in which all the system’s trajectories are
localised.

Polymerase Chain Reaction

also referred to as PCR, is the process which allows the copying of DNA or
RNA molecules.

primary tumour

is the original site (organ or tissue) where the tumour progression started.

primer

is a DNA or RNA molecule whose 3′ end serves as the initiation point of DNA
synthesis by a DNA polymerase.

prognosis

is a forecast of the likely course of a disease, particularly of the chance of
recovery from the disease or the chance of the disease recurring.

prostatitis

is the inflammation of the prostate gland.

proteasome

is a very large protein complex, located in the nucleus and cytoplasm of eukary-
otic cells, responsible for the degradation of unneeded or damaged proteins.

recurrence

see relapse∗

relapse

can be defined as:
(1) (n.) a reoccurrence of cancer cells after remission∗ of the tumour. A
relapse occurs either at the same site of the primary tumour or in another
location. (2) (v.) the action of sustaining such a reoccurrence.
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remission

is the period during which the symptoms of a disease disappear with the
possibility of its eventual reappearance or worsening.

resection

is the removal by surgery of all or part of an organ, tissue.

restriction enzyme

is an enzyme which cuts either double-strand or single-strand DNA at specific
recognition nucleotide sequences known as restriction sites.

retinoblastoma

is a tumour which arises from cells of the retina. It is the most common type
of eye cancer in children.

reverse transcriptase

are enzymes capable of making a DNA complementary copy of an RNA
molecule using the RNA molecule as a template.

ribosome

is the complex made of RNAs and proteins which synthesises protein chains
by assembling the amino acid molecules, according to the nucleotide sequence
of an RNA molecule.

router

is a node in a network having a high (much bigger than average) centrality∗

measure.

sarcoma

is a cancer of the connective or supportive tissue (bone, cartilage, fat, muscle,
blood vessels) and soft tissue. Sarcomas generally occur in young adults.

scaffold proteins

are regulators of signalling pathways. They bind with members of a signalling
pathway, tethering them into complexes and favouring their interaction and
their localisation.

schwannoma

is a benign nerve sheath tumour arising from Schwann cells.

second-line treatment

is a treatment for a disease after an initial treatment has failed.

signalling pathway

it is set of molecules which control a cellular function (e.g. apoptosis). Once
the first molecule in the pathway is activated in response to a stimulus, it
activates another molecule. This process is repeated in an activation cascade
until the last molecule is activated and the cell function involved is carried
out. For a given cellular function, many different cascades can be connected
with crosstalks. The first molecule is in general a membrane receptor (i.e.
a protein), and the signal is transduced from the exterior of the cell to its
interior.

somatic mutation

is a mutation which appears in the genome of a cell outside of the germ line.
By definition such a mutation cannot be transmitted to the next organismic
generation.
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sporadic

refers to a disease which randomly occurs in a population without any predis-
position in contrast to a disease caused by a heritable genetic susceptibility.

stage

of a tumour is a system to classify cancer in terms of how it has spread, based
on factors such as the size of the tumour or the presence of metastasis.

translocation

is a chromosome abnormality caused by rearrangement of parts between non-
homologous chromosomes.

tumorigenesis

see tumour progression∗.

tumour progression

is the process of multistep evolution of a normal cell into a tumour cell. It is
also termed tumorigenesis, oncogenesis or carcinogenesis.

tumour suppressor gene

is a gene whose partial or complete inactivation increases the cancer risk.
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Aguilera, A. and Gómez-González, B. Genome instability: a mechanistic view of its
causes and consequences. Nat. Rev. Genet., 9:204–217, 2008.

Ahr, A. et al. Molecular classification of breast cancer patients by gene expression
profiling. J. Pathol., 195:312–320, 2001.

Ahr, A. et al. Identification of high risk breast-cancer patients by gene expression
profiling. Lancet, 359:131–132, 2002.

Alarcon, T. et al. A cellular automaton model for tumour growth in inhomogeneous
environment. J. Theor. Biol., 225:257–274, 2003.

Albeck, J. G. et al. Modeling a Snap-Action, Variable-Delay Switch Controlling
Extrinsic Cell Death. PLoS Biol., 6:e299, 2008.

Alberts, B. et al. Molecular Biology of the Cell. Garland Science, Taylor & Francis
Group, LLC, 2002. Fourth Edition.

Albertson, D. G. et al. Chromosome aberrations in solid tumors. Nat. Genet.,
34:369–376, 2003.

Aldridge, B. B. et al. Direct Lyapunov exponent analysis enables parametric study
of transient signalling governing cell behaviour. Syst. Biol. (Stevenage), 153:425–
432, 2006.

Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling. Nature, 403:503–511, 2000.

Allison, D. B. et al. Microarray data analysis: from disarray to consolidation and
consensus. Nat. Rev. Genet., 7:55–65, 2006.

Alm, E. and Arkin, A. P. Biological networks. Curr. Opin. Struct. Biol., 13:193–202,
2003.

381



382 Bibliography

Aloise, D. et al. NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn.,
75:245–248, 2009.

Alon, U. An Introduction to Systems Biology: Design Principles of Biological Cir-
cuits. Chapman & Hall/CRC Mathematical & Computational Biology, 2007a.

Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet.,
8:450–461, 2007b.

Alter, O. et al. Singular value decomposition for genome-wide expression data pro-
cessing and modeling. PNAS, 97:10101–10106, 2000.

Altinok, A. et al. A cell cycle automaton model for probing circadian patterns of
anticancer drug delivery. Adv. Drug Deliv. Rev., 59:1036–1053, 2007.

Altinok, A. et al. Identifying mechanisms of chronotolerance and chronoefficacy for
the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling.
Eur. J. Pharm. Sci., 36:20–38, 2009.

Ambroise, C. and McLachlan, G. Selection bias in gene extraction on the basis of
microarray gene-expression data. PNAS, 99:6562–6566, 2002.

American Association for Cancer Research Human Epigenome Task Force and Eu-
ropean Union, Network of ExcellenceScientific Advisory Board. Moving AHEAD
with an international human epigenome project. Nature, 454:711–715, 2008.

Anderson, A. R. and Chaplain, M. A. Continuous and discrete mathematical models
of tumor-induced angiogenesis. Bull. Math. Biol., 60:857–899, 1998.

Anderson, A. R. A. et al. Microenvironment driven invasion: a multiscale multimodel
investigation. J. Math. Biol., 58:579–624, 2009.

Anderson, R. A. et al. Tumor morphology and phenotypic evolution driven by
selective pressure from the microenvironment. Cell, 127:905–915, 2006.

Arakelyan, L. et al. A computer algorithm describing the process of vessel formation
and maturation, and its use for predicting the effects of anti-angiogenic and anti-
maturation therapy on vascular tumor growth. Angiogenesis, 5:203–214, 2002.

Arino, O. et al. Mathematical modeling of the loss of telomere sequences. J. Theor.
Biol., 177:45–57, 1995.

Arkus, N. A mathematical model of cellular apoptosis and senescence through the
dynamics of telomere loss. J. Theor. Biol., 235:13–32, 2005.

Armitage, P. and Doll, R. The age distribution of cancer and a multi-stage theory
of carcinogenesis. Br. J. Cancer, 8:1–12, 1954.

Astanin, S. and Preziosi, L. Mathematical modelling of the Warburg effect in tumour
cords. J. Theor. Biol., 258:578–590, 2009.

Astrom, K. et al. Altitude is a phenotypic modifier in hereditary paraganglioma
type 1: evidence for an oxygen-sensing defect. Hum. Genet., 113:228–237, 2003.

Auer, P. L. and Doerge, R. W. Statistical design and analysis of RNA sequencing
data. Genetics, 185:405–416, 2010.

Auffray, C. and Noble, D. Origins of systems biology in William Harvey’s masterpiece
on the movement of the heart and the blood in animals. Int. J. Mol. Sci., 10:1658–
1669, 2009.

Auffray, C. et al. The Hallmarks of Cancer Revisited Through Systems Biology
and Network Modelling. In Cesario, A. and Marcus, F., editors, Cancer Systems
Biology, Bioinformatics, and Medecine. Springer, 2011.

Axelrod, R. et al. Evolution of cooperation among tumor cells. PNAS, 103:13474–
13479, 2006.

Ayala, F. J. Biology as an autonomous science. Am. Sci., 56:207–221, 1968.



Bibliography 383

Bach, F. R. et al. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm.
In ICML ’04: Proceedings of the twenty-first international conference on Machine
learning, page 6. ACM, New York, NY, USA, 2004.

Bader, G. D. et al. Pathguide: a pathway resource list. Nucleic Acids Res., 34:D504–
D506, 2006.

Bak and Sneppen. Punctuated equilibrium and criticality in a simple model of
evolution. Phys. Rev. Lett., 71:4083–4086, 1993.

Bak et al. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev.
Lett., 59:381–384, 1987.

Baker, M. Next-generation sequencing: adjusting to data overload. Nat. Methods,
7:495–499, 2010.

Balding, D. and McElwain, D. L. A mathematical model of tumour-induced capillary
growth. J. Theor. Biol., 114:53–73, 1985.

Balkwill, F. and Mantovani, A. Inflammation and cancer: back to Virchow? Lancet,
357:539–545, 2001.

Bantscheff, M. et al. Quantitative mass spectrometry in proteomics: a critical review.
Anal. Bioanal. Chem., 389:1017–1031, 2007.

Barabási, A.-L. and Albert, R. Emergence of scaling in random networks. Science,
286:509–512, 1999.

Barash, Y. et al. Deciphering the splicing code. Nature, 465:53–59, 2010.

Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–10 years
on. Nucleic Acids Res., 39:D1005–D1010, 2011.

Bartz, S. R. et al. Small interfering RNA screens reveal enhanced cisplatin cytotox-
icity in tumor cells having both BRCA network and TP53 disruptions. Mol. Cell.
Biol., 26:9377–9386, 2006.

Battiti, R. Using mutual information for selecting features in supervised neural net
learning. IEEE T. Neural Networ., 5:537–550, 1994.

Bauer, A. L. et al. Receptor cross-talk in angiogenesis: mapping environmental cues
to cell phenotype using a stochastic, Boolean signaling network model. J. Theor.
Biol., 264:838–846, 2010.

Bauer-Mehren, A. et al. Pathway databases and tools for their exploitation: benefits,
current limitations and challenges. Mol. Syst. Biol., 5:290, 2009.

Baumuratova, T. et al. Localizing potentially active post-transcriptional regulations
in the Ewing’s sarcoma gene regulatory network. BMC Syst. Biol., 4:146, 2010.
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FIGURE 5.6 Breast cancer diversity in 2 dimensions.
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FIGURE 5.7 Multiple Factor Analysis on breast cancer data.
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