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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide useful
reference books for researchers and scientists in academia, industry, and gov-
ernment, and also to offer textbooks for undergraduate and graduate courses
in the area of biostatistics. This book series will provide comprehensive and
unified presentations of statistical designs and analyses of important applic-
ations in biostatistics, such as those in biopharmaceuticals. A well-balanced
summary will be given of current and recently developed statistical meth-
ods and interpretations for both statisticians and researchers or scientists
with minimal statistical knowledge who are engaged in the field of applied
biostatistics. The series is committed to providing easy-to-understand, state-
of-the-art references and textbooks. In each volume, statistical concepts and
methodologies will be illustrated through real-world examples.
In the last decade, it was recognized that increased spending on biomed-

ical research does not reflect an increase in the success rate of pharmaceutical
development. On March 16, 2004, the FDA released a report addressing
the recent slowdown in innovative medical therapies submitted to the FDA
for approval, “Innovation/Stagnation: Challenge and Opportunity on the
Critical Path toNewMedical Products.” The report describes the urgent need
tomodernize themedical productdevelopmentprocess—the critical path—to
make product development more predictable and less costly. Two years later,
the FDA released aCritical PathOpportunities List that outlines 76 initial pro-
jects (under six broad topic areas) to bridge the gap between the quick pace of
new biomedical discoveries and the slower pace at which those discoveries
are currently developed into therapies. Among the six broad topic areas, bet-
ter evaluation tool (development of biomarker), streamlining clinical trial (the
use of adaptive design methods), and harnessing bioinformatics (the use of
computational biology) are considered the top three challenges for increasing
the probability of success in pharmaceutical research and development.
This volume provides useful approaches for implementation of target

clinical trials in pharmaceutical research and development. It covers stat-
istical methods for various computational topics such as biomarker devel-
opment, sequential monitoring, proportional hazard mixed-effects models,
and Bayesian approach in pharmaceutical research and development. It
would be beneficial to biostatisticians, medical researchers, pharmaceutical
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scientists, and reviewers in regulatory agencies who are engaged in the areas
of pharmaceutical research and development.

Shein-Chung Chow
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Preface

This edited volume is a collection of chapters covering some of the important
computational topicswith special reference to biomedical applications. Rapid
advances in ever-changingbiomedical researchandmethodological statistical
developments thatmust support these advancesmake it imperative that from
time to time a cohesive account of new computational schemes is made avail-
able for users to implement these methodologies in the particular biomedical
context or problem. The present volume is an attempt to fill this need.
Realizing the vastness of the area itself, there is no pretension to be exhaust-

ive in terms of the general field or even in terms of a topic represented by a
chapter within this field; such a task, while also requiring hundreds of collab-
orators, would require a collection of several volumes of similar size. Hence
the selectionmadehere represents ourpersonal viewofwhat themost import-
ant topics are, in terms of their applicability and potential in the near future.
With this in mind, the chapters are arranged accordingly, with the works of
immediate applicability appearing first. These are followed by more theor-
etical advances and computational schemes that are yet to be developed in
satisfactory forms for general applications.
Work of this magnitude could not have been accomplished without the

help of many people. We wish to thank our referees for painstakingly
going through the chapters as a gesture of academic goodwill. Theresa Del
Forn of Taylor & Francis Group, was most helpful and patient with our
repeatedly broken promises of meeting the next deadline. Our families have
provided their sincere support during this project and we appreciate their
understanding as well.

Ravindra Khattree, Rochester, Michigan
Dayanand N. Naik, Norfolk, Virginia
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1.1 Introduction

Microarray technology has quickly become one of the most commonly used
high throughput systems in modern biological and medical experiments over
the past 8 years. For most parts, a single microarray records the expression
levels of several genes in a tissue sample—this number often runs in tens of
thousands. At the end, a huge multivariate data set is obtained containing
the gene expression profiles. A microarray experiment typically compares
the expression data with two or more treatments (e.g., cell lines, experi-
mental conditions, etc.); additionally, there is often a time component in the
experiment. Owing to the relatively high production cost of microarrays,
oftentimes very few replicates are available for a given set of experimental
conditions that pose new challenges for the statisticians in analyzing these
data sets.

Most of the early microarray experiments involved the so-called two-
channel cDNA microarrays where small amounts of genetic materials (cRNA)
are printed on a small glass slide with robotic print heads. The mRNA samples
corresponding to two different treatments are tinted with two different fluor-
escent dyes (generally red and green) and allowed to hybridize (a technical
term for a biological process by which an mRNA strand attaches to the com-
plementary cDNA strand) on the same slide. At the end, the expression values
of the sample under comparison are evaluated with certain specialized laser
scanners. In more recent studies, the oligonucleotide arrays, also known as
the Affymetrix GeneChips®, are becoming increasingly popular. These are
factory-prepared arrays targeted for a particular genome (e.g., rat, humans,
etc.) that contain oligonucleotide materials placed in multiple pairs—called a
probe set (http://www.affymetrix.com/products/system.affx). One of each
pair contains the complementary base sequences for the targeted gene; how-
ever, the other one has an incorrect base in the middle created to measure
nonspecific bindings during hybridization that can be used for background
correction. Expression values are computed by the relative amounts of
bindings (perfect match versus perfect mismatch).

Besides the above two microarray platforms, there exist many additional
choices at present including many custom arrays offered by various man-
ufactures; in addition, serial analysis of gene expression (SAGE), which is
technically not a microarray-based technique, produces gene expression data
as well. Unlike microarrays, SAGE is a sequencing-based gene expression
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profiling technique that does not require prior knowledge of the sequences
to be considered. Another important difference between the two is that, with
SAGE, one does not need a normalization procedure (see Section 1.3) since it
measures abundance or expression in an absolute sense.

Calculating expression itself is an issue with most, if not all, microarray
platforms; in addition, there are issues of normalizations and correction for
systematic biases and artifacts, some of which are discussed in Section 1.3.
In addition, there have been recent studies comparing multiple microarray
platforms and the amount of agreement between them. The very latest set
of results (see, e.g., Irizarry et al., 2005) contradict earlier beliefs about non-
reproducibility of microarray gene expression calculations and concludes that
the laboratories running the experiments have more effect on the final conclu-
sions than the platforms. In other words, two laboratories following similar
strict guidelines would get similar results (that are driven by biology) even if
they use different technologies. On the other hand, the “best” and the “worst”
laboratories in this study used the same microarray platform but got very
different answers.

In this review, we present a brief overview of various broad topics of
microarray data analysis. We are particularly interested in statistical aspects
of microarray-based bioinformatics. The selection of topics is, by no means,
comprehensive partly because new statistical problems are emerging every
day in this fast growing field. A number of monographs have come out in
recent years (e.g., Causton et al., 2003; Speed, 2003; Lee, 2004; McLachlan
et al., 2004; Wit and McClure, 2004), which can help an interested reader gain
further familiarity and knowledge in this area.

The rest of the chapter is organized as follows. Some commonly employed
statistical designs in microarray experiments are discussed in Section 1.2.
Aspects of preprocessing of microarray data that are necessary for further
statistical analysis are discussed in Section 1.3. Elements of statistical machine
learning techniques that are useful for gaining insights into microarray data
sets are discussed in Section 1.4. Hypothesis testing with microarray data is
covered in Section 1.5. The chapter ends with a brief discussion of pathway
analysis using microarrays as a data generation tool.

1.2 Experimental Design

In planning biological experiments, including microarray experiments, the
researcher should be aware of and follow sound statistical principles. Each of
these principles, as outlined below, serves a particular purpose in ensuring a
valid experiment. Properties of a “good” experiment include the absence of
systematic error (or bias), precision, and simplicity (Cox, 1958). The experi-
ment should also permit calculation of uncertainty (error) and ideally have a
wide range of validity.
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Microarray experiments have realistic limitations that must be taken into
account at the design stage. These include the cost of arrays, restrictions on
the number of arrays that can be processed at one time, and the amount of
material necessary to hybridize an array. In addition, there may be little or no
prior information on variability available at the planning stage of a microarray
experiment.

In the discussion that follows, we describe experimental design principles,
primarily as applied to oligonucleotide arrays. Dual-channel arrays require
specialized designs, which are discussed briefly in Section 1.2.7. While the
principles described here are general, in this section we focus mainly on
experiments to detect differential gene expression.

1.2.1 Data from Microarray Experiments

For most purposes, data from a microarray experiment can be described as
multidimensional array of expression values Y. Usually, the first dimen-
sion (row) corresponds to genes or probe sets or ORFs. Depending on the
experiment, the other dimensions may represent replicates (biological and
technical), tissue types, time, and so on.

Usually, a preprocessing or normalization step is applied to the microarray
readouts to calculate an accurate and “unbiased” measure of gene expression
before additional statistical analyses are carried out. We describe various nor-
malization methods in Section 1.3. In addition, certain statistical analysis may
have an implicit normalization step.

1.2.2 Sources of Variation

When designing a microarray experiment, it is essential to be aware of the
many sources of variation, both biological and technical, which may affect
experimental outcomes. Biological variation is essentially that among sub-
jects (i.e., natural subject-to-subject variability). Different subjects from which
samples are obtained are not identical in a multitude of characteristics and
thereby have gene expressions that vary as well. This type of variation occurs
normally and is used as a benchmark when testing for differential expression.
Biological variation is reflected in experimental error.

Technical variation includes errors or effects due to instrumentation, meas-
urement, hybridization, sample preparation, operator, and other factors that
serve to add unwanted variation to the data (Churchill, 2002; Parmigiani et al.,
2003). These factors generally are uncontrolled, meaning that their presence is
not only unintended but also often unavoidable. Technical variation includes
systematic variation among or within arrays. It is described generally as an
array effect. There may also be variation that is the result of how the experi-
ment is designed or carried out; that is, variation that is due to controlled or
identifiable factors. An example is variation due to batch where arrays within
certain groups all share a common effect. Variation of this type usually can
be accounted for through statistical analysis. This type of variation often is
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considered part of technical variation, and attempts can be made to eliminate
it before data analysis.

Several authors, including Spruill et al. (2002), Kendziorski et al. (2005),
and Zakharkin et al. (2005), have attempted to assess relative sizes of several
typical sources of variation in microarray studies through experimentation.
As a word of caution, it should be noted that each of these studies was con-
ducted under a particular set of experimental conditions, and it is unclear to
what extent these results may be generalized.

1.2.3 Principles of Experimental Design

The three primary principles of experimental design, namely randomiza-
tion, replication, and blocking, each have a particular purpose, and are often
attributed to R. A. Fisher. In discussing these principles, it is important to note
that an experimental unit is defined to be the smallest division of experimental
material such that any two units may receive different treatments in the actual
experiment.

Randomization requires that experimental units be randomly allocated to
treatment conditions. The random allocation may be restricted in some way,
for instance, through blocking, depending on the design of the experiment.
Randomization is intended to protect against bias or systematic error. As
emphasized by Kerr (2003), randomization should be applied to minimize
bias induced by technical artifacts, such as systematic variation in arrays
within a batch according to the order in which they were printed. Also,
randomization must take into account processing constraints. For example,
suppose an experiment involving three treatments is run using four arrays
per treatment, and it is possible to process only eight arrays per day. If the
arrays from the first two treatments were processed on Day 1, and the arrays
from the third treatment were processed on Day 2, it may be impossible to
separate a treatment effect (whereby certain genes are differentially expressed
across treatments) from a day effect (whereby expression levels for all genes
tend to be higher on a particular day). That is, the treatment and day effects
would be confounded.

Replication implies having at least one experimental unit per treatment
condition, and is necessary in order to permit estimation of experimental
error or variance. The microarray literature distinguishes between biolo-
gical and technical replication. Biological replication refers to the number
of independent biological (experimental) units assigned to each treatment
condition, whereas technical replicates arise from repeated sampling of the
same experimental unit and will therefore be correlated (Cui and Churchill,
2003). Increasing replication, in particular biological replication, also provides
a means of increasing power and precision for comparison of treatment
means. In this context, biological replicates are considered “true” replicates,
whereas the technical replicates are subsamples and might be considered
“pseudoreplicates.” Issues related to pseudoreplication have been debated
at length in the ecological literature for more than 20 years (Hurlbert,
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1984, 2004; Oksanen, 2001). In particular, treating technical replicates as
biological replicates in a microarray experiment tends to underestimate true
experimental error, thus inflating type I error and overstating statistical
significance.

Blocking involves grouping similar units together before assignment to
treatment conditions, with the goal of reducing experimental error. In com-
plete block designs, each treatment is randomly applied at least once within
each block. Blocking accounts for one (or more) major source of extraneous
variability, in addition to the one due to the treatments. If blocking is part of
the experimental design, it should also be incorporated in the analysis.

1.2.4 Common Designs for Oligonucleotide Arrays

The simplest design is one in which two or more treatment groups are to
be compared with respect to differential gene expression, at a particular
time point. The design in which experimental units are assigned to treat-
ments in an unrestricted random fashion is known as a completely randomized
design.

Several authors, including Kerr and Churchill (2001 a,b) and Kendziorski
et al. (2003) have recommended analysis of data arising from microarray
experiments through linear models, provided necessary assumptions, includ-
ing normality and homoscedasticity of model errors are satisfied. Data from
a completely randomized design may be analyzed using a simple one-way
analysis of variance (ANOVA) model for a single gene, with

Yij = µ+ Ti + εij
where Yij is the background-corrected and normalized intensity (usually
expressed on the log2 scale) of a particular gene for the jth experimental unit
assigned to the ith treatment, µ is an average intensity level, Ti is the effect
of the ith treatment, and the εij’s are the model error terms, usually assumed
to be independently and identically distributed with mean 0 and common
variance σ 2 (i.e., εiidij ∼ N(0, σ 2)).

A natural extension to mixed linear models for oligonucleotide microarray
data was proposed Chu et al. (2002a), whereby analyses may be conducted on
a gene-by-gene basis at the probe level, accounting for variation among exper-
imental units within treatments, among arrays within experimental unit, and
among probes for a particular gene within arrays. Following Chu et al. (2002a)
a mixed linear model corresponding to a completely randomized design with
one treatment factor is given by

Yijk = Ti + Pj + TPij + Ak(i) + εijk
where Yijk is the background corrected and normalized measurement at the
jth probe in the kth replicate for the ith treatment, Ti is the fixed effect of the
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ith treatment, Pj is the fixed effect of the jth probe, and Ak(i) is the random
effect for the kth array (assuming arrays represent biological replicates) of
the ith treatment. The usual model assumptions are that Aiidk(i) ∼ N(0, σ 2

a ) and

εiidijk ∼ N(0, σ 2) with Ak(i) + εijk ∼ N(0, σ 2
a + σ 2) and

Cov(Ak(i) + εijk ,Ak′(i′) + εi′,j′,k′) =


σ 2
a + σ 2 if (i, j, k) = (i′, j′, k′),
σ 2
a if i = i′, k = k′, j �= j′

0 otherwise,

where σ 2
a is the variance component associated with variation among arrays

(biological replicates) within treatments.
A design in which blocks account for one extraneous source of variation,

and in which experimental units are randomly applied to treatments with the
restriction that each treatment appears once within each block, is known as
a randomized complete block design. A fixed or random blocking factor may be
easily incorporated into the mixed model above, through the addition of a
main effect and appropriate interaction terms involving the blocks. The mixed
models described here analyze each gene separately. Alternative approaches,
in which all genes are included in a single large mixed linear model, have been
proposed by Kerr and Churchill (2001 a,b), Wolfinger et al. (2001), and Kendzi-
orski et al. (2003). Examples of these models are discussed in Sections 1.3.2.5
and 1.5.2.

More complex designs permit accounting for additional sources of vari-
ation. Recently, Tsai and Lee (2005) describe the use of split plot designs in
the context of two-channel microarray experiments. Designs of this type may
also find application in analysis of data arising from oligonucleotide arrays,
as discussed by Chu et al. (2002a) and Li et al. (2004). For example, consider
an experiment involving rat embryos with two factors: genotype (with three
levels) and developmental stage (with two levels). A practical restriction of
the experiment is that it will be possible to harvest material to hybridize
only one array of each genotype (using pooled samples, discussed below)
for a particular developmental stage at a time. Each of these sets of three
arrays is replicated four times per developmental stage, using a total of 24
arrays. This is an example of a completely randomized design with a split
plot arrangement, which is characterized by the two factors being applied to
different experimental units. Here, the experimental unit for developmental
stage (the whole plot factor) is a set of three arrays, although the experi-
mental unit for genotype (the sub plot factor) is a single array. The model is
given by

Yijk = Di + Rk(i) + Gj +DGij + εijk
where Yijk is the background corrected and normalized measurement for jth
probe in the kth replicate for the ith developmental stage,Di is the fixed effect
of the ith developmental stage, Gj is the fixed effect of the jth genotype, and
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Rk(i) is the random effect for the kth replicate set of three arrays of the ith
genotype. Model assumptions are similar to those for corresponding terms
in the probe level mixed model presented above.

1.2.5 Power/Sample Size Considerations

An important planning issue is the question of how many biological and
technical replicates to include in a microarray experiment. The number of
replicates required to detect a particular size of effect with a pre-specified level
of power depends not only on the several sources contributing to variation
in expression levels, but also on the statistical methods used to determine
differential expression, including the choice of normalization procedure. In
general, biological replicates should be favored over technical replicates when
the objective is to detect differentially expressed genes.

A number of authors, including Lee and Whitmore (2002), Yang et al. (2003),
Gadbury et al. (2004), Jung (2005), Zhang and Gant (2005), and Tibshirani
(2006) have addressed this issue. Desired minimum detectable effect sizes are
often expressed in terms of fold-changes. For example, the objective may be to
identify genes that are up or down regulated to the extent that they exhibit
a twofold increase or decrease in expression levels. To answer the sample
size question, prior knowledge is required with respect to the variance com-
ponents associated with the various levels of the experimental structure for
each gene. Estimates of these variance components may come from previ-
ously conducted similar experiments, or pilot studies. Variance components
are discussed in Section 1.3.1.

In the context of an ANOVA model, Lee and Whitmore (2002) present
several approaches for calculation of power and sample size, and outline
applications of their methods to some standard experimental designs. Their
methods account for control of the false discovery rate (FDR) due to mul-
tiple testing. Multiple testing issues are discussed in detail in Section 1.5.
Gadbury et al. (2004) introduce the concept of expected discovery rate (EDR),
and propose corresponding methods for power and sample size calculations
adjusting for EDR. The web-based resource Power Atlas (Page et al., 2006),
available at www.poweratlas.org, implements this methodology, currently
for experiments involving just two groups, but with anticipated expansion.
This resource is designed to provide researchers with access to power and
sample size calculations on the basis of a number of available data sets,
which may be used in lieu of conducting a pilot study to generate variance
component estimates.

Recently, Tibshirani (2006) has proposed a sample size determination pro-
cedure requiring less stringent assumptions than other currently available
methods. This method does not assume, for instance, equal variances or
independence among genes. This approach may be implemented using the
significance analysis of microarrays (SAM) software (Chu et al., 2002a) to
obtain estimates of both the FDR and false negative rate (FNR) as a function
of total sample size through a permutation-based analysis of pilot data.
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1.2.6 Pooling

The primary motivation for pooling is to reduce the effect of biological variab-
ility and improve cost effectiveness. It is important to stress, as do Kendiorski
et al. (2005) and Zhang and Gant (2005), that pooling may artificially reduce
the effects of biological variability, so that statistical significance is overstated.
Disadvantages of pooling include difficulty in estimating appropriate vari-
ance components, and loss of information on individuals. However, in many
experiments, such as developmental studies involving extraction of tissues
from mouse embryos, the amount of available RNA per individual is limit-
ing. Therefore, an approach involving either pooling of embryo tissue or RNA
amplification is necessary. A potential problem with amplification is that it
tends to introduce noise, and may be nonlinear, in that all genes may not be
amplified at the same rate.

One of the issues associated with the design and analysis of microarray
experiments is the question of whether, and under what conditions, the pool-
ing of RNA samples before hybridization of arrays can be beneficial. Although
originally controversial (Affymetrix, 2004), it is now generally acknowledged
that pooling can be useful in certain circumstances (Allison et al., 2006).

Various authors, including Kendziorski et al. (2003, 2005), Peng et al. (2003)
and Zhang and Gant (2005) have discussed effects of pooling from a statistical
perspective. Kendziorski et al. (2005) considered “M on np” pooling schemes,
in which mRNA from M = np × n subjects was used to hybridize np arrays
(n subjects per pool). On the basis of an experiment involving 30 female rats
to compare the effects of a number of pooling schemes empirically, they con-
cluded that there is little benefit to pooling when variability among subjects is
relatively small, but suggest that pooling can improve accuracy when fewer
than three arrays are available per treatment condition. In experiments with
three or more arrays available per treatment condition, pooling is only likely
to be beneficial if a large number of subjects contribute to each pool.

Pooling relies on the assumption of biological averaging, that is, that the
response for each individual contributes equally to the average calculated
for the pool. For example, if each array is hybridized with mRNA from n
individuals, and the concentration of mRNA transcripts from kth individual
for the ith gene in the jth pool is Yijk , the concentration of the ith gene’s
transcripts in the jth pool will be

1
n

n∑
k=1

Yijk

if biological averaging holds. There has been some debate as to whether this
assumption is realistic. However, Kendziorski et al. (2005) observed that bio-
logical averaging occurred for most, but not all, genes involved in their exper-
iment and argue that there is some support for the validity of this assumption.

Kendziorski et al. (2005) also introduce the notion of equivalent designs, and
illustrate this concept through comparison of the various pooling schemes



C5777: “c5777_c001” — 2007/10/27 — 13:02 — page 10 — #10

10 Computational Methods in Biomedical Research

considered in their experiment. Two designs are considered to be equivalent
if they lead to the same average estimation efficiency. This is an important
cost-related consideration, in that it may be possible to reduce the number of
arrays required to achieve a desired level of precision. However, two designs
equivalent in average efficiency do not necessarily provide similar precision
for individual genes.

1.2.7 Designs for Dual-Channel Arrays

Dual-channel, or spotted cDNA arrays, requires the use of specialized
designs, which are discussed only briefly here. Interested readers may con-
sult Rosa et al. (2005) for further details. The two most common classes of
these designs are the reference designs and the loop designs (Kerr and Churchill,
2001a,b; Churchill, 2002; Kerr, 2003).

Despite reported advantages of loop designs, reference designs are still
commonly used in practice. The term reference design refers to the fact that
at least one sample is included in the experiment, to which all other samples
are compared with respect to hybridization. There are several variants of this
type of design. Steibel and Rosa (2005) describe three of these, and assign
each a distinct name. The first of these, the classical reference design (Kerr and
Churchill, 2001a) employs replicates of the reference sample. In contrast, the
common reference design uses only a single reference sample as the basis for
comparison. Yet another variant is the replicated reference design, where the
reference is biologically relevant, and is considered to be a control treatment
with replicates.

The basic loop design was proposed by Kerr and Churchill (2001a,b) and is
essentially a balanced incomplete block design. In such designs, the number
of treatments is greater than the block size. It is used when three or more treat-
ments are to be compared using two-channel microarrays. In the microarray
context, each two-channel microarray is viewed as a block of size two. Treat-
ments are then compared with each other in a multiple pairwise fashion laid
out in a daisy chain (e.g., 1 vs. 2, 2 vs. 3, 3 vs. 1). Variants of the loop design
include connected loop design (Dobbin et al., 2003), where the same biological
sample is used in two arrays connected in a daisy chain but with different dye
(channel) and interwoven loop design. In the later, the efficiency of comparison
is improved by creating additional (multiple) links amongst the treatments to
be compared (e.g., 1 vs. 2, 2 vs. 3, 3 vs. 4, 4 vs. 1, 1 vs. 3, 2 vs. 4, 3 vs. 1, 4 vs. 2).

Among the reference designs, the classical reference design is generally
considered to have lower statistical efficiency than other forms of reference
designs. Templeman (2005) compared several design alternatives for two-
channel arrays with respect to precision, power, and robustness, assuming
a mixed model analysis and a single treatment factor. He found that except
for cases with minimum replication (two replicates per treatment) the loop
designs were superior to the reference designs in terms of smaller stand-
ard errors for treatment comparisons, higher power, and greater robustness.
Although the loop designs were found to be more sensitive to missing arrays,
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the interwoven loop design is reported to be more robust to missing arrays
than the classical loop design, and yet more statistically efficient than the
common reference design. Vinciotti et al. (2005) also performed an experi-
mental comparison of the common reference vs. the classical loop design,
and found that loop designs generally have much higher precision. On the
basis of further simulation studies they concluded that, for a given sample
size, the classical loop design will have higher power than the common refer-
ence design to detect differentially expressed genes, while minimizing type I
error.

Advances are continually being made in the area of improved designs
for multichannel arrays. Recently, Wit et al. (2005) describe a procedure to
find near-optimal interwoven loop designs, using the A-optimality criterion.
Steibel and Rosa (2005) propose a blocked reference design, which tends to be
more efficient and less expensive than common reference designs. Woo et al.
(2005) present preliminary guidelines for efficient loop designs for three- and
four-color microarrays.

1.3 Normalization of Microarray Data

There are different factors that contribute to variation in the observed data
from microarray experiments. Typically, this variability is characterized as
being of two types: biological and technical, as discussed in the previous
section.
Normalization is broadly defined as any technique meant to remove or

account for technical variation in the data before statistical testing or ana-
lysis. Less noise in the data, as reflected in the estimate of experimental error,
translates into a stronger capability to detect differential expression (i.e., treat-
ment effects) of smaller magnitudes (see also Parrish and Spencer, 2004). If
technical variation can be removed, substantially reduced, or adjusted out,
the power of statistical tests will be enhanced.

Normalization procedures mainly involve revising the observed data
before statistical analysis in an effort to remove the technical variability. This
relies on the assumptions that most genes should not be affected by the treat-
ment or condition under study and that the other factors affect all or most
genes in the same or similar manner. The particular assumptions depend on
the method used for normalization. In the simplest case, revision of the data
based on these assumptions may be the only alternative for reducing technical
variation. In essence, normalization is a mechanism to “borrow” information
from other variables in order to correct identifiable deficiencies in the data.
The objectives of normalization also may be achieved in part by incorporating
into statistical models used to analyze the data adjustment terms correspond-
ing toknowneffects. Thisdoesnot require assumptionsabouthowmostgenes
are affected by various factors and the analysis typically is conducted on a
gene-by-gene basis.
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FIGURE 1.1
Panel (left) showing sample data as box plots with one of four being stochastically lower; Panel
(right) showing similar box plots after normalization.

To illustrate, consider an experiment involving eight subjects, each corres-
ponding to a unique array, who are allocated to two treatments, with four
arrays per treatment. No other experimental conditions are controlled. The
experimental error is based on the variation observed among arrays treated
alike. The objective is to test for differential expression for all genes indi-
vidually using a t-test. This can be done without normalization. If there is
no systematic variation, this approach is valid and correct. Now suppose the
conduct of the experiment was such that some of the arrays were affected in a
manner that caused all expression readings on an affected array to be under-
estimated. This could be detected by comparing the collective distribution of
gene expression values for each array. If one array had a distribution differing
in location or dispersion characteristics compared to the majority of arrays,
it might be possible to adjust all the values on the affected array so that the
resulting distribution was consistent with the other arrays. Failure to make
such an adjustment would result in excessive variability making its way into
the error term used for testing (i.e., the denominator of the t statistic would
be inflated) (see Figure 1.1).

Continuing with this example, suppose the arrays were processed in groups
of two, each group being on a different day; therefore, on each day, one
array from the first treatment and one from the second treatment were
used. The design now has an identifiable controlled factor, DAY, which is
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FIGURE 1.2
Panel (left) showing four groups of two box plots with some variability before normaliza-
tion; Panel (middle) showing after within-group normalization; Panel (right) showing overall
normalization.

a “block” effect. The experimental error now corresponds to variation due to
interaction of DAY and TREATMENT (denoted DAY × TREATMENT), and
the appropriate test in the ANOVA setting is an F-test. The effect of DAY
can be adjusted out through the linear model used for analysis; however, any
other systematic variation that impacts arrays will not be adjusted unless nor-
malization is done. In this situation, normalization could be accomplished by
comparing distributions and adjusting all expression values, as above, but
doing so within each DAY grouping, followed by an ANOVA that accounts
for the effect of DAY. An alternative approach is to apply a normalization
method on all arrays simultaneously so as to achieve similar distributions
within each array. In this case, the effect of DAY is presumably removed, and
a t-test is then applied (see Figure 1.2).
Background effects may or may not be addressed by a given normalization

procedure. Such techniques are directed primarily toward the objective of
removing local bias, but they may also serve to reduce variability in certain
situations, including those where spatial variability exists. In general, back-
ground effects may be relatively large for low expression values, and thus
smaller expression values may be more significantly impacted by background
correction methods. Methods such as robust multiarray average (RMA) (Bol-
stad et al., 2003) attempt to estimate the conditional expectation of the true
gene expression level given the observed measurement.
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1.3.1 Normalization and Its Implications for Estimation of Variance
Components

The experimental design that is employed determines how treatment effects
are tested. There are a few simple designs that are commonly used with
microarray experiments, but others may be more complex. Consider the fol-
lowing example where there are two treatments (k = 2), three biological
(i.e., experimental) units per treatment group (n = 3), and two arrays per
experimental unit (r = 2).

It is helpful to consider the expected mean squares and the associated vari-
ance components in relation to how normalization impacts on them. These
are considered for single-channel arrays.

In this design, there are two variance components: one due to variation
among biological units treated alike within treatment groups (which gives rise
to an estimate of “experimental error”) and one due to variation among arrays
within biological units. Using multiple arrays for each biological unit allows
for better precision when estimating the biological unit response. Variation
among arrays within units gives rise to what would normally be termed
“measurement error.” The correct test to use for assessing the differential
effect of treatments is to form an F ratio of the mean squares for “Treatments”
and “Among units (Trt).”

Strictly, from an analysis standpoint, there is no requirement to normal-
ize the data. If many arrays could be used for each biological unit, variation
among arrays would be merely a nuisance and would not impact signific-
antly on the test for treatment effect. On the other hand, normalization could
be used to try to eliminate or decrease the measurement error and thereby
improve the power of the test.

As shown in Table 1.1, in the case where there is only one array per exper-
imental unit (r = 1), the variance component for measurement error σ 2

a still
exists, however it is not distinguishable mathematically from the unit-to-
unit variance component σ 2

u . Normalization attempts to remove unwanted
variation by adjusting (typically) all the values for some arrays so that their
characteristics are more similar to those of the other arrays. The net desired
impact is to decrease measurement error substantially, but it may also lower
the estimate of the among units variance (i.e., among biological units treated
alike). When normalization is applied, it modifies an observation on an array,
and hopefully this modification corrects measurement error. The correction

TABLE 1.1

Expected Mean Squares for Nested Design

Source DF Expected Mean Square

Treatments k − 1 = 1 QTrt + rσ 2
u + σ 2

a
Among Units (Trt) k(n− 1) = 4 rσ 2

u + σ 2
a

Arrays (Units Trt) kn(r − 1) = 6 σ 2
a
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will also impact on the mean of the arrays within biological units, and if it is
such that the variation among the means of arrays within biological units is
also reduced, then the impact shows up as a reduction in the estimate of the
among units variance component, a smaller experimental error term, a larger
F (or t) statistic, and a smaller p value. This is considered appropriate so long
as the normalization procedure does not improperly deflate the true variance
component associated with biological units treated alike. Current methods
do not ensure that such super-deflation does not occur. Each particular
normalization method carries with it explicit or implied assumptions.

1.3.2 Normalization Methods

Several methods for performing normalization have appeared in the microar-
ray literature. In this section, some but not all of these are discussed. Some
methods use a baseline array to establish a reference point to which other
arrays are adjusted, whereas other methods use the “complete data” from all
arrays simultaneously. Each method has characteristics that may be advant-
ageous in different circumstances, but there is no agreement on which method
is best for most situations. Some of the important and more relevant methods
are presented here.

1.3.2.1 Method Based on Selected Invariant Genes

If it can be assumed that genes in a known set are unaffected by the treatment,
subjects, or other factors present in the experiment, they can be used to make
adjustments to other gene expression values (Gieser et al., 2001; Hamalainen
et al., 2001). Such a list is generally specified before the experiment is conduc-
ted (Vandesompele et al., 2002) and, in fact, some microarrays are designed
with so-called “housekeeping,” “control,” or “reference” genes. Usually, the
values of all gene expression values on a given array are corrected so that
the means of the reference genes for each array are all equal. This method
can be simply defined as follows. Let mi = mean of the expression values
of the housekeeping genes on array i. Adjust the values from array i (i > 1)
according to

y∗ij = yij − (mi −m1).

The result is that all arrays then will have the same mean for the
housekeeping genes.

1.3.2.2 Methods Based on Global or Local Values

Expression values can be adjusted so that every array will have the same
mean or, equivalently, average signal intensity. In one approach, an array is
chosen arbitrarily as a baseline reference array and the following adjustments
are made:

y∗ij = yij ×
(
y(m)baseline

y(m)i

)
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where y(m)i is the mean of all the expression values for the ith array and y(m)baseline
is the mean of all the expression values for the selected baseline array (Affy-
metrix, 2002). The means can be ordinary or robust (e.g., trimmed means).
GeneChip uses a scaling factor (SF) similar to above except that the numerator
can be an arbitrary value (e.g., 500) and the means are 2% trimmed means.
This approach is termed linear scaling and is based on an assumption of a
linear relationship between corresponding values from the two arrays.

Nonlinear scaling approaches modify the linearity assumption to allow
nonlinear relationships. In a method proposed by Schadt et al. (2001), a set
of invariant genes is identified on the basis of rank order of the expression
values from each array compared to the baseline array. They use a generalized
cross-validation smoothing spline algorithm (Wahba, 1990) and produce a
transformation of the form

y∗ij = fi(yij).

where fi represents the nonlinear scaling function. This algorithm was imple-
mented in dChip software (Schadt et al., 2001). As alternatives, a piecewise
running median regression can be used (Li and Wong, 2001) and locally-
weighted regression (loess) can be used on probe intensities (Bolstad et al.,
2003).

A third approach involves adjusting expression values so that all arrays
have the same mean. Array-specific values can be added to all expression
values within the arrays that will make the array means or medians all equal.
In this method, one array may be selected as a reference array and the intensity
values on the other arrays are adjusted so that their means equal the mean of
the reference array. This approach also can be implemented by using the mean
of the array means (or the median of the array medians) as a target value and
then making adjustments to values on all arrays. This process is represented as

y∗ij = yij + (y(m). − y(m)i )

where yij is the expression value (or its logarithm) for array i and gene j, y(m)i
is the mean (or median) for array i, and y(m). is the mean of the array means
(or median of array medians) computed over all arrays.

Further adjustments can be made so that all arrays have the same variabil-
ity. The expression data can be scaled so that all arrays have the same or nearly
the same variance, range, or other similar measure. From a distribution per-
spective, this method is meant to obtain the same dispersion characteristics
in the data from the different arrays. This is implemented simply by apply-
ing a scaling adjustment for each array, in the form of a multiplication factor.
In addition, a location adjustment can be incorporated as above. As is com-
monplace, the scaling constants can be based on the interquartile range (IQR)
and a location adjustment can be based on the median, thereby giving the
adjusted response as

y∗ij =
(
yij − y(m)i

)
×
(
D.

Di

)
+ y(m).
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where Di represents the selected measure of dispersion for the ith array and
D. is the mean, median, or maximum of the Di values over all arrays. If the
IQR is used, all arrays will have approximately the same IQR after adjust-
ment. Quasi-ranges other than the IQR (which is based on the 25th and 75th
percentiles) could be used. For example, the normal range is based on the
2.5th and 97.5th percentiles.

1.3.2.3 Local Regression Methods

The M vs. A (MvA) plot (Dudoit et al., 2002) is a graphic tool to visualize
variability as a function of average intensity. This plots values of M (differ-
ence of logs) vs. A (average of logs) for paired values. These are defined
mathematically as

Mj = log2(y
(1)
ij )− log2(y

(2)
ij ) and Aj =

[log2(y
(1)
ij )+ log2(y

(2)
ij )]

2

for array i and gene (or probe) j. With two-channel arrays, the pairing is based
on the data from the same spot corresponding to the red and green dyes.
A loess smoothing function is fitted to the resulting data. Normalization is
accomplished by adjusting each expression value on the basis of deviations,
as follows:

log2(y
(1)∗
ij ) = Aj + 0.5M′j and log2(y

(2)∗
ij ) = Aj − 0.5M′j

where M′j represents the deviation of the jth gene from the fitted line. This is
a within-array normalization.

The MvA plot can be used in single-channel arrays by forming all pairs of
arrays to generate MvA plots; this method is known as cyclic loess (Bolstad
et al., 2003). The proposed algorithm produces normalized values through
an iterative algorithm. This approach is not computationally attractive for
experiments involving a large number of arrays.

1.3.2.4 Quantile-Based Methods

Quantile normalization forces identical distributions of probe intensities for
all arrays (Bolstad et al., 2003; Irizarry et al., 2003a; Irizarry et al., 2003c;
Irizarry et al., 2003b). The following steps may be used to implement this
method: (1) All the probe values from the n arrays are formed into a p × n
matrix (p = total number of probes on each array and n = number of arrays),
(2) Each column of values is sorted from lowest to highest value, (3) The values
in each row are replaced by the mean of the values in that row, (4) The elements
of each column are placed back into the original ordering. The modified probe
values are used to calculate normalized expression values.
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1.3.2.5 Methods Based on Linear Models

Analysis of variance models have been used to accomplish normalization as
an intrinsic part of the statistical analysis in two-channel arrays (Kerr et al.,
2000). These can incorporate effect terms for array, dye, treatment, and gene,
as in:

yijkg = µ+ Ai + Tj +Dk + Gg + AGig + TGjg + eijkg
where µ is the mean log expression, Ai is the effect of the ith array effect, Tj is
the effect of the jth treatment,Dk is the effect of the kth dye, Gg is the gth gene
effect, and AGig and TGjg represent interaction effects. Testing for differential
expression is based on the TG interaction term. Normalization is achieved
intrinsically by inclusion of the array, dye, and treatment terms in the model.

A mixed-effects linear model has been proposed for cDNA data (Wolfinger
et al., 2001) in which the array effect is considered random, and data
normalization is intrinsic to the model, as above. This model is given by

yijg = µ+ Ai + Tj + ATij + Gg + AGig + TGjg + eijg.

To deal with computational issues, the authors recommended fitting the
following model and then utilizing its residuals for effects analysis:

yijg = µ+ Ai + Tj + ATij + rg(ij).

The residuals are the normalized values and are treated as the dependent
variables in the model

rijg = Gg + AGig + TGjg + eijg
which can be written for specific genes as

r(g)ij = µ(g) + A
(g)
i + T

(g)
j + e

(g)
ij .

The approach also may be used with single-channel arrays. A probe-level
mixed-effects model has been described (Chu et al., 2002b). Other normaliz-
ation methods have been proposed that involve ANOVA and mixed-effects
models (Chen et al., 2004) as well as subsets of the genes.

1.3.2.6 Probe Intensity Models

TheRMAmethod (Bolstadet al., 2003) includesbackgroundadjustmentbased
on convolution of gamma and normal distributions, quantile normalization
of probe intensities, and a probe-level linear model fitted using robust tech-
niques. This is implemented in Bioconductor R-based software (Bioconductor,
2003).

Wu and Irrizary (2005) described a modification of the RMA method,
termed GCRMA, in which the G–C base content of probes (based on probe
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sequence information) is taken into account. This approach differs from RMA
only in the way the background adjustment is done. Higher G–C content
relates to probe affinity and is associated generally with increased binding.

Probe-level models (PLM) effectively fit models involving a probe effect
and an array effect to probe intensity data on a probe-set-by-probe-set basis.
This is implemented in Bioconductor R-based software known as affyPLM.

1.4 Clustering and Classification

Various clusteringandclassificationmethodsare routinelyusedwithmicroar-
ray gene expression data. Both clustering and classification are strategies to
group data (units) into collections that are similar in nature. In the machine
learning literature, clustering methods are also known as unsupervised learn-
ing since no prior knowledge of the underlying grouping is utilized. In the
microarray context, clustering has been primarily used as an exploratory tool
to group genes into classes with the hope that the genes in a given cluster will
have similar biological functions or cellular role. Classification, on the other
hand, uses a training set of units whose group memberships are known. In
the microarray context, this has been used mostly for classifying tissues (e.g.,
cancer vs. noncancer) using their gene expression profiles. In this section, we
present an overview of some aspects of these techniques that are important
for microarray data analysis.

1.4.1 Clustering

Microarray data involves expression on levels of thousands of genes, often
recorded over a set of experiments resulting in a collection of expression
profiles. A natural step in summarizing this information is to group the genes
according to the similarity–dissimilarity of their expression profiles. Second,
one of the central goals in microarray or expression data analysis is to identify
the changing and unchanging levels of gene expression, and to correlate these
changes to identify sets of genes with similar profiles. Finally, even in well-
studied model systems like the yeast Saccharomyces cerevisiae or bacterium
Escherichia coli (found in our waste and sewage) the functions of all genes
are presently unknown. If genes of unknown function can be grouped with
genes of known function, then one can find some clues as to the roles of
the unknown genes. It is, therefore, desirable to exploit available tools for
clustering and classifications from numerical taxonomy and statistics (Sokal
and Sneath, 1963; Hartigan, 1975).

In some earlier microarray experiments, (DeRisi et al., 1997; Cho et al.,
1998; Chu et al., 1998) a mainly visual analysis was performed in grouping
genes into functionally relevant classes. However, this method is virtu-
ally impossible for more complicated and large-scale studies. In subsequent
studies, simple sorting of expression ratios and some form of “correlation
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distance” were used to identify genes (Eisen et al., 1998; Roth et al., 1998; Spell-
man et al., 1998). Hierarchical clustering Unweighted Pair Group Method
with Arithmetic mean (UPGMA) with correlation “distance” (or dissimilar-
ity) is most often used in microarray studies after it was popularized by the
influential paper by Eisen et al. (1998). One nice feature of a hierarchical clus-
tering is that it produces a tree of clusters, also known as a dendrogram, which
can be cut at various heights to see the resulting clusters. Datta (2001) intro-
duced a novel dissimilarity measure between a pair of genes, in the presence
of the remaining genes, on the basis of partial least squares (PLS) modeling
gene expressions. Model-based clustering is another well-known technique
that has been used for grouping microarray data (McLachlan et al., 2002).
This technique is based on modeling the expression profiles by mixtures
of multivariate normal distributions. The Gene Shaving algorithm (Hastie
et al., 2000) allowed genes to be in more than one cluster at the same time.
Sharan and Shamir (2000) introduced a novel clustering algorithm on the
basis of a graph-theoretic concept. Also, there exists another noteworthy, but
more complex algorithm (based on a self-organizing neural network) called
SOM (self-organizing maps, Kohonen, 1997) which seems to have gained
popularity in clustering microarray data.

Besides the clustering techniques mentioned above, there exist numerous
clustering algorithms in statistics and machine learning literature dating back
to premicroarray days. Many of them are available in statistical packages such
as S-Plus and R. Thus, a microarray data analyst has many choices of cluster-
ing methods when it comes to grouping genes; for example, partition methods
such asK-means (Hartigan and Wong, 1979), divisive clustering methodDiana
(Kaufman and Rousseeuw, 1990) and fuzzy logic–based method Fanny (Kauf-
man and Rousseeuw, 1990) are all applicable. All these clustering algorithms
have their own merits and demerits. Their results might appear to be substan-
tially different as well even when applied to the same data set of expression
profiles. We take the following illustration from Datta and Arnold (2002)
where a yeast data set (Chu et al., 1998) is clustered using five different clus-
tering techniques (Figure 1.3). Thus, there is a need for careful evaluation of
clustering algorithm given a particular data set. There exist a few approaches
regarding the selection of a clustering algorithm and validation of the results
for microarray data.

Kerr and Churchill (2001c) used a linear model (ANOVA) and residual-
based resampling to access the reliability of clustering algorithms. Chen et al.
(2002) compared the performances of a number of clustering algorithms by
physical characteristics of the resulting clusters such as the homogeneity
and separation. Yeung et al. (2001) introduced the concept of Figure of Merit
(FOM) in selecting between competing clustering algorithms. FOM resembles
the error sum of squares (ESS) criterion of model selection. Datta and Datta
(2003) selected six clustering algorithms of various types and evaluated their
performances (stability) on a well-known publicly available microarray data-
set on sporulation of budding yeast, as well as on two simulated data sets.
Here we provide a brief description of the stability measures introduced in
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FIGURE 1.3
(See color insert following page 207.) The genes were clustered into seven groups using their
expression profiles during sporulation of yeast; five different clustering algorithms were attemp-
ted (Adapted from Datta, S. and Arnold, J. (2002). In Advances in Statistics, Combinatorics and
Related Areas, C. Gulati, Y.-X. Lin, S. Mishra, and J. Rayner, (Eds.), World Scientific, 63–74.)

Datta and Datta (2003) in order to select an algorithm that produces the most
consistent results. The evaluation measures were general enough so that they
can be used with any clustering algorithm.

Let K be the number of desired clusters. Datta and Datta (2003) suggested
that the performance of an algorithm be investigated over an entire range of
“suitable” K values. The basic idea behind their validation approach was that
a clustering algorithm should be rewarded for stability (i.e., consistency of
clusters it produces). Suppose expression (ratio) data are collected over all
the genes under study at various experimental conditions such as time points
T1,T2, . . . ,Tl. An example of such temporal data is the sporulation of yeast
data of Chu et al. (1998). In that case K was around 7 (Chu et al. used K = 7)
and number of time points l = 7. Thus, consider a setup where the data values
are points in the l dimensional Euclidean spaceR′. For each i = 1, 2, . . . , l, one
repeats the clustering algorithms for each of the l data set in Rl−1 obtained by
deleting the observations at experimental condition (e.g., time) Ti. For each
gene g, let Cg,i denote the cluster containing gene g in the clustering on the
basis of data set with time Ti observations deleted. Let Cg,0 be the cluster in
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the original data containing gene g. Each of the following validation measures
could be used to measure the stability of the results produced by the clustering
algorithm in question. For a good clustering algorithm, one would expect
these stability measures to be small.

1. The average proportion of nonoverlap measure is given by

V1(K) = 1
Ml

M∑
g=1

l∑
i=1

(
1− n(Cg,i ∩ Cg,0)

n(Cg,0)

)
.

This measure computes the (average) proportion of genes that are
not put in the same cluster by the clustering method under consid-
eration on the basis of the full data and the data obtained by deleting
the expression levels at one experimental condition at a time.

2. The average distance between means measure is defined as

V2(K) = 1
Ml

M∑
g=1

l∑
i=1

d(xCg,i , xCg,0)

where xCg,0 denotes the average expression profile for genes across
cluster Cg,0 and xCg,i denotes the average expression profile for
genes across cluster Cg,i. This measure computes the (average) dis-
tance between the mean expression values (usually, log transformed
expression ratios in case of cDNA microarrays) of all genes that are
put in the same cluster by the clustering method under considera-
tion on the basis of the full data and the data obtained by deleting
the expression levels at one time point at a time.

3. The average distance measure is defined as

V3(K) = 1
Ml

M∑
g=1

l∑
i=1

(
1

n(Cg,0)n(Cg,i)

)
×

∑
g∈Cg,0, g′∈Cg,i

d(xg, xg′)

where, d(xg, xg′) is a distance (e.g., Euclidean, Manhattan etc.)
between the expression profiles of genes g and g′. This measure com-
putes the average distance between the expression levels of all genes
that are put in the same cluster by the clustering method under con-
sideration on the basis of the full data and the data obtained by delet-
ing the expression levels at one experimental condition at a time.

Figure 1.5 illustrates the average proportion of nonoverlap measures for
a number of existing clustering algorithms applied to two sets of simu-
lated data. The simulated data sets were generated by adding varying
degrees of random noise to a set of expression profiles (shown in Figure 1.4).
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FIGURE 1.4
(See color insert followingpage 207.) The average proportion of nonoverlap measure for various
clustering algorithms applied to simulated data sets.

S-Plus codes used to compute the above measures are available in the
supplementary website of the Datta and Datta (2003) paper http://www.
louisville.edu/∼s0datt02/WebSupp/Clustering/SUPP/SUPP.HTM. In each
plot, a profile closer to the horizontal axis indicates better performance over
the usable range of Kvalues.

Another approach of validating clustering results is to check whether the
statistical clusters produced correspond to biologically meaningful functional
classes. To this end, Datta and Datta (2003) compared the expression profiles
of different statistical clustering algorithms with the model profiles of some
functionally known genes. For the details, readers are referred to Datta and
Datta (2003). A novel validation measure combining statistical stability and
biological functional relevance was proposed in Datta and Datta (2006a). In
yet another attempt (Datta and Datta, 2006b), results were validated through
the gene ontology (GO) databases.

1.4.2 Classification

Unlike clustering, a classification algorithm is generally used to group tis-
sue samples (e.g., cancer and noncancer) using their gene expression profiles
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FIGURE 1.5
(See color insert following page 207.) Two simulated datasets of gene expressions were created
by adding random noise to a model profile.

when partial knowledge is available about this grouping. In general, the goal
of a classification technique is to predict class membership for new samples
(test samples) with the knowledge of the training set (set of samples for which
the classes are known).

1.4.2.1 Dimensionality Reduction

The vast amount of raw gene expression data leads to statistical and ana-
lytical challenges for using a classification algorithm to group samples into
correct classes. The central difficulty in classification of microarray data is
the availability of a very small number of samples in comparison with the
number of genes in the sample. This violates the operating assumption of the
classical statistical discriminant analysis procedures such as the linear dis-
criminant analysis (LDA) and the quadratic discriminant analysis (QDA) or
the nonparametric regression-based Neural Network procedure.

One might first attempt to reduce the number of “features” to be used in a
classification algorithm from the raw gene expression profiles. For example,
one might calculate the first few principal components (PCA) of the covari-
ates (gene expressions) and then discriminate the samples on the basis of the



C5777: “c5777_c001” — 2007/10/27 — 13:02 — page 25 — #25

Microarray Data Analysis 25

principal components (Dudoit et al., 2000; Su et al., 2003; Datta and Delap-
idilla, 2006). PLS is another useful tool in constructing latent variables that
can then be used for classification (Nguyen and Rocke, 2002a,b). Datta and de
Padilla (2006) used PLS for feature selection, together with traditional classi-
ficationalgorithmssuchas lineardiscriminationandquadraticdiscrimination
to classify multiple tumor types from proteomic data. van’t Veer et al. (2002)
applied a binary classification algorithm to cDNA array data with repeated
measurements and classified breast cancer patients into good and poor pro-
gnosis groups. Their classification algorithm consists of the following steps.
The first step is filtering, in which only genes with both small error estim-
ates and significant regulation relative to a reference pool of samples from
all patients are chosen. The second step consists of identifying a set of genes
whose behavior is highly correlated with the two sample types (e.g., up-
regulated in one sample type but down-regulated in the other). These genes
are rank-ordered so that genes with the highest magnitudes of correlation
with the sample types have top ranks. In the third step, the set of relevant
genes is optimized by sequentially adding genes with top-ranked correlation
from the second step. However, this method involves an ad hoc filtering step
and does not generalize to more than two classes. Another feature reduction
technique is to consider only the genes that are deemed to be differentially
expressed genes under different experimental conditions. Zhu et al. (2003),
Wagner et al. (2004), Izmirlian (2004), and Datta and de Padilla (2006) used a
similar approach to select the important features (mass to charge ratios) for
mass spectrometry data before a classification algorithm is used.

1.4.2.2 Classification Algorithms

The literature of classification algorithms is vast. In the previous section we
have mentioned about LDA (Fisher, 1936) and QDA. In addition to these two,
logistic regression for two classes and log-linear models for more than two
groups are also widely used. There are many more relatively modern classifi-
ers some of which are discussed very briefly in the remainder of this section.
The R-libraries (http://www.r-project.org) “class” and “MASS” contain a
number of popular classifiers.

The neural network is a two-stage regression/classification model and is
represented by a network diagram. Loosely speaking, it is modeled after the
concept of neurons in the brain. It consists of at least three layers of nodes:
the input layer, the hidden layer, and the output layer. For technical details,
please refer to Hastie et al. (2001). The R function nnet (available in the library
by the same name) fits a single hidden layer neural network.
k-nearest neighbor classification(k−NN) method is a nonparametric clas-

sifier (Devijver and Kittler, 1982; Ripley, 1996) on the basis of nonparametric
estimates of the class densities or of the log posterior. The k-NN classifier
finds k nearest samples in the training set and takes a majority vote among
the classes of these k samples. We end this subsection by discussing three
relatively new classification algorithms one of which (the Shrunken Centroid
classifier) is developed primarily for classifying microarray datasets.
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Support vector machine (SVM) (Vapnik, 1995; Burges, 1998; Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001 §4.5, 12.2, 12.3) is a new
generation classifier that has been reported to be very successful in a wide
variety of applications. For two classes, a binary classifier constructs a hyper-
plane separating the two classes (e.g., cancer from noncancer samples). The
basic idea of SVM is to map the data into a higher dimensional space and then
findanoptimal separatinghyperplane. SVMsare large-margin classifiers; that
is, they solve an optimization problem that finds the separating hyperplane
that optimizes a weighted combination of the misclassification rate and the
distance of the decision boundary to any sample vector. For further details,
the reader may consult the tutorial paper by Burges (1998) or the book by Cris-
tianini and Shawe-Taylor (2000). Brown et al. (2000) used SVM for classifying
microarray data of budding yeast S. cerevisiae and compared the performance
by other standard classification algorithms (e.g., Fisher’s LDA). SVM was
performed better than all the non-SVM methods compared in the paper.

Random Forest (Breiman, 2001) classification is an extension of classifica-
tion trees (Breiman et al., 1984) by integrating the idea of bagging. Random
Forest constructs many classification trees using different bootstrap samples
of a fixed sizem from the original data. To classify a new object from an input
vector (collection of variables) it runs the input vector to each and every tree in
the forest. Each tree gives a classification. The forest chooses the classification
having the most votes (over all the trees in the forest). About one-third of the
cases are left out of the bootstrap sample and not used in the construction of a
particular tree. The samples left out of the k-th tree are run through the kth tree
to get a classification. In this way, a test set classification is obtained for each
case in about one-third of the trees that can be used to assess the accuracy of
the classifier. Note that the Random Forest algorithm automatically finds the
most important features/variables in order to classify the data by computing
an estimate of the increase in error rate of the classifier had that variable not
been used.

Finally, the nearest shrunken centroid classification introduced by Tibshir-
ani et al. (2002) first computes a shrunken centroid for each class where each
standardized centroid is shrunk towards the overall centroid. A test sample
is classified into the class whose shrunken centroid is closest to, in squared
distance, the gene expression profile of that sample. The shrinkage can reduce
the effect of noisy genes resulting in higher accuracy of the resulting classi-
fier. It is available under the PAM (Prediction Analysis for Microarrays, not
to be confused with the clustering algorithm of the same acronym) package
(http://www-stat.stanford.edu/∼tibs/PAM/).

1.4.2.3 Accuracy of Classification

There are several methods for calculating the error rate of a classifica-
tion algorithm (e.g., resubstitution, leave-one-out cross validation, k-fold
cross validation, repeated cross validation and .632 bootstrap/bias corrected
bootstrap, etc.). In microarray studies, use of a proper method of estimation
of classification error is particularly important since typically one has a small
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sample size. Ulisses and Edward (2004) provide a comprehensive comparison
of numerous estimation methods of classification error.

Resubstitution error is usually low biased for more complex algorithms. k-
fold cross validation method is unbiased and leave-one-out is nearly unbiased
for the error estimation. However, they all have high variability. The variance
of the k-fold cross validation approach gets worse as k increases. On the other
hand, the standard bootstrap resampling method (Efron, 1979) has reduced
variability but high bias. However, the .632 bootstrap (Efron, 1983) method
has low bias and low variability at the same time. Bias-corrected bootstrap
also has low bias and low variability.

1.5 Detection of Differential Gene Expressions

One of the major goals of typical microarray studies is to determine the list
of genes whose expression profiles are different among two or more sets of
tissue samples usually collected under different experimental conditions. For
example, in the colorectal cancer data set studied in Datta and Datta (2005),
there were three types of tissues corresponding to normal, adenoma, and
carcinoma cells in colon cancer patients. A major difficulty in using classical
multivariate statistical methods is that the dimension of an expression data
vector is huge, often exceeding tens of thousands, and at the same time, there
are only a limited number of samples.

A rather impressive collection of statistical papers has emerged in this area
over the past six or so years. As a result, the selective review presented here
is by no means comprehensive. Although we attempt to present the devel-
opment in this area in a systematic manner, it is not necessarily chronologic
and reflects our own bias in selection of the highlighted papers. More com-
prehensive accounts and lists of references can be obtained in some recent
books that have been written in the area of statistical analysis of microar-
ray data such as McLachlan et al. (2004) and Lee (2004). The collection of
methods for the detection of differential gene expression generally fall into
two categories, namely those that are designed specifically for the microar-
ray studies, including adaptation of known methods (Ideker et al., 2000; Kerr
et al., 2000, 2002; Efron et al., 2001; Newton et al., 2001; Tusher et al., 2001;
Dudoit et al., 2002; Efron and Tibshirani, 2002; Ge et al., 2003; Lee et al., 2003;
Reiner et al., 2003; Storey and Tibshirani, 2003; Zhao and Pan, 2003, etc.) and
those that are applicable to multiple testing in general such as Westfall and
Young (1993), Benjamini and Hochberg (1995), Storey (2002), Efron (2004),
Datta and Datta (2005).

1.5.1 Fold Change

Mostly nonstatistical in nature, this has been the most favorite method of the
biologists and medical researchers where genes are ordered by the magnitude
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of the ratio of their gene expressions in the two samples (often referred to as
fold change). The problem with this approach is that there is no provision to
recognize that different genes may have different natural variability (scale) in
their expression values. In addition, genes declared important or significant
by an arbitrary threshold of their fold change do not control any of the various
statistical error rates associated with multiple testing procedures.

1.5.2 The Two Sample t -Test and its Variants

Use of a two-sample t-test is statistically more appropriate for ranking genes
in terms of their significance than the fold change approach. Usually a log-
transformation is first applied to the normalized and preprocessed gene
expressions to stabilize their variability and then the t-statistic is computed
for the j-th gene as

tj =
Y1j − Y2j

sj
√

1
n1
+ 1

n2

(1.1)

where, for i = 1, 2, Yij is the average log-expression of the jth gene for the ith
tissue type, ni is the number of tissue samples of type i and s2j is the pooled
sample variance of the jth gene log-expression levels across both tissue types.
Genes are ranked by absolute |tj| and all genes exceeding a threshold are
declared to be significantly differentially expressed.

Sometimes, one may choose to pool sample variance across all genes as
well under the assumption that the log-transformed expression values have
constant variance. This leads to a gene specific statistic t as above except that
an overall s is used in place of sj.

A modified t-statistic is used in the SAM method of Tusher et al. (2001)
where a constant α is added to the denominator of Equation 1.1 leading to

t′j =
Y1j − Y2j

α + sj
√

1
n1
+ 1

n2

.

This was done so that one does not get a large t-statistic simply because a
gene has low sample variance (which is a likely outcome given that one deals
with tens of thousands of genes in a microarray study). Of course, the null
distribution of t′j is no longer a t distribution. In SAM, one rejects for large
positive or negative values of t′j − E0t′j where E0t′j is an estimate of the null
expectation of t′j calculated using a null bootstrap (resample without regard
to tissue type labels) or by a null permutation method (where pseudo data are
generated by permuting the samples ignoring the tissue type labels). A similar
“regularization” of the sample variance appears in the Bayesian methods of
Baldi and Long (2001). The tuning parameter α is selected in a data-based
way using a fairly complex algorithm. Then a set of MAD (median absolute
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difference from the median) values v of the t′j are computed over grids of sj
and then the coefficient of variation of v is minimized.

Comparison of gene expressions for more than two tissue types is achieved
by an ANOVA formulation of log-transformed gene expressions

Yijk = µ+ Gi + Vj + (GV)ij + εijk (1.2)

where i denotes tissue types, j denotes genes, and k denotes replicates.
We assume that the gene expressions have been normalized so that array
effects, and so forth, have been taken out. Here µ stands for an overall mean
log-expression and G and V denote the tissue and gene main effects. Our
interest lies in testing the behaviors of the interaction terms GV. The null
hypothesis of no differential expression for gene j across all tissue types
corresponds to H0: (GV)ij = 0, for all i and the null hypothesis of no dif-
ferential expression of gene j between tissue types i1 and i2 is given by Hi1,i2

0 :
(GV)i1j− (GV)i2j = 0. These are easily tested in the framework of the ANOVA
model Equation 1.2 by classical methods and the genes can be ranked by the
corresponding F or t-statistics. This technique has been popularized by Gary
Churchill and his colleagues (Kerr et al., 2000; Kerr and Churchill, 2001 a,b;
Kerr et al., 2002 etc.) in the microarray context. Note that this analysis is dif-
ferent from the per gene one way ANOVA model introduced in Section 1.2.4.

1.5.3 Adjustments for Multiple Testing

Let us, for simplicity, consider a balanced design so that n1 = n2 = n/2, say.
Under the assumption of normality of the log-expression, the t-statistic in
Equation 1.1 has a student’s t- distribution with n − 1 degrees of freedom
leading to a p value for the j-th gene comparison pj = 2{1− Ftn−2(|tj|)}, where
Ftn−2 is the cumulative distribution function of a t distribution n− 2 degrees
of freedom. If genes for which pj ≤ 0.05 were declared to be significantly
differentially expressed, then for a typical microarray data involving 10,000
ormoregenes, on theaverageabout500geneswill bedeclared tobe significant
even if the complete null hypothesis were true (i.e., none of the genes were
actually differentially expressed). In other words, the procedure would lead
to too many false positives. This simple illustration demonstrates the need
for the global control of error rates in microarray studies.

In general, if a gene that is not differentially expressed but it is declared to be
significantby the statistical test, a type1error is committed. On theotherhand,
if the test fails to show significance for a truly differentially expressed gene, a
Type II error is made. By overall or the family-wise type 1 error rate, we mean
the probability of declaring at least one gene to be significant when none of the
genes is truly differentially expressed. The classical Bonferonni procedure is
generally not suitable for microarray studies since it would only declare genes
to be significant for which pj ≤ α/g, where α is the desired overall type 1 error
probability and g is the total number of genes on the microarray. Since g is
typically huge, this ratio is too small to have significance for most genes
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(if any) making the procedure too conservative to have any practical utility.
As a middle ground, a more appropriate type 1 error control procedure can be
used including the Holm (1979) procedure that first orders the p values and
then declares p(j) to be significant if p(j) < α/(g − j + 1). For most microarray
studies, the Holm procedure will be proved to be conservative as well and
the following procedure developed by Westfall and Young (1993) has been
advocated by Dudoit et al. (2002). It also orders the p values and then uses
resampling (or permutation) under the null to judge significance as described
in the following algorithmic steps:

1. Step 1: Find the rank orders ri = such that |tr1 | ≥ · · · ≥ |trg | and let
ui = |tri |, 1 ≤ i ≤ g be the ordered absolute test-statistics.

2. Step 2: Let Y be the matrix of log-expression values where each
column consists of the set of expression profiles for all genes cor-
responding to a single sample and the first n1 columns corresponds
to group 1 and the remaining columns correspond to group 2. Per-
mute the columns of the matrix Y and label the first n1 columns of
the permuted matrix as group 1 and the rest as group 2. For each
gene (i.e., row) j, Calculate the t test-statistics denoted t∗j with the
permuted data and reorder the absolute values as

u∗g = |t∗rg |, u∗i = max(u∗i+1, |t∗ri |), for g > i ≥ 1.

3. Step 3: Repeat Step 2 over all possible permutations and denote the
u∗i values by

u∗i (1), · · ·u∗i (B), where B = (n1 + n2)!
4. Step 4: Compute P̃ri = B−1∑B

l=1 I(u
∗
i (l) ≥ ui) and monotonize them

as
Padjr1 = P̃r1 , Padji = max(̃Pr1 , P̃ri−1), for 1 < i ≤ g.

Genes r1 · · · rm would be declared significant, given an overall type 1 error

probability α where m = max{k:Padjrk ≤ α}.
Recently, Datta and Datta (2005) demonstrated that even the Westfall and

Young procedure is too conservative for microarray applications. They pro-
pose a modification to this procedure where an empirical Bayes calculation is
incorporated first to change the p values before resampling. They show that
the modified procedure can enhance the overall sensitivity although main-
taining the type 1 error rate. Further details of this procedure are described
in Section 1.5.5.

1.5.4 False Discovery Rate

Besides controlling the overall type 1 error rate, one can consider several other
performance measures in the context of microarray studies. See Dudoit et al.
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(2003) for a comparative review of various error rates for several commonly
used multiple testing procedures. The following error rates are often used to
judge the performance of multiple tests.
Sensitivity: Expected proportion among differentially expressed genes that

were declared significant
Specificity: Expected proportion amongst nondifferentially expressed genes

that were not declared significant
False discovery rate (FDR): Expected proportion amongst genes declared

significant that were not differentially expressed
False nondiscovery rate (FNR): Expected proportion amongst genes declared

not significant that were differentially expressed
In particular, the use of FDR has become the standard in microarray stud-

ies lately largely owing to the influential paper by Benjamini and Hochberg
(1995) that offers a very simple procedure for controlling the FDR on the basis
of uncorrected P-values. Let ri the rank orders of the ordered P-values so that
Pri = P(i), 1 ≤ i ≤ g. Let q be the desired upper bound on the FDR; usually q is
taken to be between 5% and 10%. This Benjamini–Hochberg procedure (ori-
ginally introduced by Simes, 1986) declares genes r1 · · · rm to be significantly
differentially expressed where

m = max{k:Pk ≤ qk/g}.

In more recent works, additional variants of the FDR have been introduced
such as the positive FDR (Storey, 2002, 2004) and the conditional FDR (Tsai
et al., 2003) and procedures for estimating and controlling these in microarray
settings have been proposed. When one declares all genes with marginal p
values less than or equal to α to be significant, Storey’s estimates for the FDR
and the pFDR are given by

FD̂R = απ̂

F̂(α)

and

pFD̂R = απ̂

F̂(α)[1− (1− α)g] ,

respectively, where π̂ estimates the number of nondifferentially expressed
genes and F̂(α) is the observed proportion of tests (genes) with marginal p
values less than or equal to α.

In the context of p-FDR, Storey (2004) defined the gene specific q-value
that is, roughly speaking, the p-FDR of procedures that declare genes whose
statistics are as extreme as that corresponding to this particular gene to be
significant.

Efron (2005) introduced the term local FDR to indicate the posterior
probability that a given gene is null (i.e., nondifferentially expressed). Assum-
ing a two-component mixture model for the Z-scores (obtained by normal
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transformation of the p values),

f (z) = π f0(z)+ (1− π)f1(z),
where f0 and f1 are the densities of the null (nondifferentially expressed) and
non-null genes, respectively, and π is the proportion of null genes, Efron
defined the local FDR(l) at Z = z as

lFDR(z) = π f0(z)/f(z).
It has the property that the averages (expectation) of lFDR values for all

genes whose Z values are less than or equal to z equals to the FDR of the
procedure that declares all genes with Z values ≤ z to be significant. Ploner
et al. (2006) generalized the idea of a local FDR to a tow-dimensional local
FDR by considering the joint densities of a two dimensional statistic Z1,Z2

2dlFDR(z1, z2) = π f0(z1, z2)/f (z1, z2).

They proposed using the t-statistic and the logarithm of its standard errors
as the two components Z1 and Z2.

1.5.5 Procedures-Based on p Values

There are a number of recent attempts to control some global error rates
on the basis of a set of uncorrected p-values. The BH procedure described
above falls under this category. An advantage of such procedures is that
a user can use them after obtaining the list of p values from their favorite
microarray data analysis software that generally produces marginal or uncor-
rected p values. Allison et al. (2002) modeled the set of uncorrected p values
obtained from a microarray experiment by a finite mixture of beta distribu-
tions, where the first component was taken to be uniform in order to model
the null distribution. Thus, majority of the genes would correspond to the
first component. They estimated the number of mixture components. In par-
ticular, in a two-component model, they ranked genes on the basis of their
posterior probability of belonging to the second (i.e., non-null component).

Pounds and Morris (2003) also modeled the marginal p values by a two-
component mixture of a uniform and a beta. They were able to estimate the
FDR under this model scenario if one rejects all null hypotheses for which the
marginal p values were below a given threshold. By inverting this relation-
ship, their BUM procedure produces a list of significant genes corresponding
to a given FDR level. See, however, Datta and Datta (2005) for a cautionary
note.

More recently, Pounds and Cheng (2004) introduced the SPLOSH proced-
ure that provides a more accurate FDR control. More importantly, since it is
based on nonparametric function estimation techniques, it is expected to be
more robust and work well even if the mixture of beta model is not accurate.
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Datta and Datta (2005) took a different approach from the papers men-
tioned above. Instead of controlling the FDR, they attempted to control the
overall type 1 error rate following a version of the Westfall and Young pro-
cedure that involved sampling from the uniform distribution. However, first,
they transformed the set of p values by applying a normality (inverse cdf)
transformation followed by computing a new set of statistics; this new set
of statistics computes the empirical Bayes estimates of the location para-
meter θj in a simple normal location model zj = −1(pj) ∼ N(θj, 1) using
nonparametric function estimation

θ̂EBj = zj − h2

{∑M
i=1(zj − zi)φ

(
zj−zi
h

)}
{∑M

i=1 φ
(
zj−zi
h

)} , (1.3)

where φ is the standard normal pdf and h is a user specified bandwidth.
In effect, each p value borrows strength from an overall evidence against

the complete null hypothesis since the second term in the right-hand side
of Equation 1.3 is an estimate of the derivative of the logarithmic marginal
density (log fG)′ and its stochastic behavior under the complete null hypo-
thesis will be different from its behavior under the alternative. We use the
following real data example from Datta and Datta (2005) to illustrate this
effect. Figure 1.6 shows a scatter plot of this term for a colorectal cancer
data set where normal tissue gene expressions were compared with that for
carcinoma tissues. We can see that for potentially informative genes (say,
those corresponding to negative zi) it tends to be below the diagonal line

4

2

0

D
er

iv
at

iv
e 

of
 e

m
pi

ric
al

 lo
g-

de
ns

ity

−2

−4

−20 −15 −10 −5 0
Z-transformed p-values

5

FIGURE 1.6
Scatter plot of derivative of empirical log density against transformed p-values for the “normal
vs. carcinoma” comparison in a colorectal cancer data; the solid plots its theoretical values under
the complete null.
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(the theoretical values when the complete null is true) indicating an overall
presence of “differentially expressed genes” corresponding to a given z level.

Datta and Datta (2005) showed that their empirical Bayes screening (EBS)
procedure has substantially higher sensitivity than the standard step-down
approach for multiple comparisons at the cost of a modest increase in the FDR.
The EBS procedure also compared favorably when compared with existing
FDR control procedures for multiple testing (namely BH and BUM).

1.5.6 Empirical Bayes Methods

Empirical Bayes methods have a natural place in multiple decision problems
where each component decision problem can be thought of as a realization
of a Bayesian decision problem, and determining differences in microarray
gene expression is no exception. Besides the EBS procedure mentioned above,
therehavebeenmore traditional attempts touseempiricalBayes techniques in
the microarray context. Generally speaking, such approaches differ from the
full Bayesian approaches in that data-based estimates are used to determine
parameters at a certain stage of modeling the priors. At the end, generally,
an estimate of the posterior probability that a particular gene is differentially
expressed is calculated.

Newton et al. (2001) modeled the expression levels in the two channels
of a cDNA microarray with gamma priors and used Bayesian and empirical
Bayesian techniques to identify differentially expressed genes in two tissue
types. Efron et al. (2001) formulated the distribution of normalized statistics
as a two-point nonparametric mixture (as stated in Subsection 1.5.4), where
one distribution corresponds to the null genes and the other to differentially
expressed genes. They provided methods to nonparametrically estimate both
components and the mixing proportion that in turn yielded estimated pos-
terior probabilities for each gene being differentially expressed. Datta et al.
(2004) used the empirical Bayes idea to adjust certain t-test statistics obtained
from an ANOVA model to determine differential gene expressions.

1.6 Networks and Pathways

Microarray technology enables us to acquire the knowledge of genome-wide
expression. Hence, this comprehensive information on gene-expression can
serve as an important tool to understand the underlying biological system
through genetic networks. Several attempts have been made to infer the inter-
relationships of the genes through unsupervised cluster analysis. A main
purpose of using cluster analysis in this context is not only to group the
genes but also to correlate clusters with pathways (Zien et al., 2000). Several
references of cluster analysis applied to gene expression data are provided
in Section 1.4 of this document. However, there are different approaches to
detect the activities of all genes in consort (regulatory network). Datta (2001)
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used PLS method, Raychaudhuri et al. (2000) used PCA, and Spellman et al.
(1998) used Fourier analysis to unravel the consorted activities of all genes.
Other series of attempts to synthesize pathways using gene expression data
are Boolean networks (see, e.g., Liang et al., 1998) and Bayesian networks
(e.g., Friedman et al., 2000; Yamanaka et al., 2004, etc.).

Kauffman (Kauffman, 1969, 1974; Glass and Kauffman, 1973) introduced
the Boolean network. However, it has recently been adapted for gene expres-
sion data by Shmulevich et al. (2002). In this model, gene expression is quant-
ized to only two levels: ON and OFF. Also, the expression level (state) of one
gene (node) is completely determined by the values of other nodes by some
underlying Boolean function. Thus, a Boolean network B(N,F) is defined in
terms of a set of nodes (genes) N = {x1, . . . , xn} and Boolean functions F =
(f1, . . . , fn). Each xi represents the state (expression) of gene i, where xi = 1
represents the fact that gene i is expressed and xi = 0 means it is not expressed.
The model is represented in the form of directed graph. Connectivity of one
node to the other is updated synchronously in an iterative procedure.

Bayesian networks are another tool for connecting genes using their expres-
sion patterns. Bayesian networks (Pearl, 1988; Friedman et al., 2000), model
the dependence structure between different genes using the expression levels.
A Bayesian network analysis can indicate some causal relationship in the
data (in particular genes in terms of their expression levels). A Bayesian
network for X is a pair BN = (D,P). The first component, D, denotes a direc-
ted acyclic graph (DAG) whose vertices correspond to the random variables
x1, . . . xn (expression levels of several genes), and the edges represent direct
causal dependencies between the variables. The graph D involves some con-
ditional independence assumptions (Markov assumption) as follows: each
variable xi is independent of its nondescendants given its parents. The second
component of the network pair, namely P, represents the set of parameters
that quantifies the network and describes a conditional distribution for each
variable (gene expression), given its parents in D. Together, these two com-
ponents specify a unique distribution on x1, . . . xn. The graph D represents
conditional independence assumptions that allow the joint distribution to be
decomposed, taking a minimum number of parameters. Using a Bayesian
network, we might be able to answer many types of questions that involve
the joint probability (e.g., what is the probability of X = x, the expression of
a gene, given observation of some of the other gene expressions?) or inde-
pendencies in the domain (e.g., are X and Y independent once we observe
Z?). The Bayesian network literature contains a suite of algorithms that can be
used to answer such questions efficiently by exploiting the explicit structural
representation (Pearl, 1988; Jensen, 1996).

Lastly, we want to mention that it is important to evaluate these synthesized
pathways with respect to already known pathways. Kurhekar et al. (2002)
measured the impact of gene expression levels from a series of microarray
experiments on metabolomic and regulatory pathways. They introduce the
concept of a pathway scoring method. The basic idea behind it is as follows.
A gene that is positively expressed at a certain time point or in a particular
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sample in a biological experiment indicates that the cell requires the particular
protein coded by the gene. In this way, significant induction of the genes in a
known pathway shows that the pathway has been used more often than say
at the reference time point or in the reference cell. The significant repression
of many genes in a known pathway in similar biological experiments reveals
the deactivation of that specific pathway. In this way, it is possible to measure
the effect of a biological process on different biochemical pathways with the
help of gene expression data.

1.7 Concluding Remarks

In this chapter, we present a mostly nonmathematical overview of various
statistical analyses of microarray gene expression data. Many of these tech-
niques, notably, clustering, classification, and multiple testing can also be
applied to other high-throughput data such as proteomic data obtained using
mass spectrometer (Satten et al., 2004). As mentioned earlier, this review is not
comprehensive—the subject is still moving in various directions. We have not
reviewed papers that combine microarrays with other clinical end points, for
example, survival times (Datta et al., 2007). In the future, we might see more
and more studies where multiple forms of large-scale biological data (SNP,
microarrays, proteomic mass-spectra) will be analyzed together and efforts
in this direction are already under way (CAMDA, 2006, 2007 Conferences,
http://www.camda.duke.edu).
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2.1 Introduction

This chapter presents an overview of applications of machine and statistical
learning techniques to problems arising in the area of molecular biology and
medicine. As such, the methods and applications discussed here fall into the
general area of bioinformatics, which is concerned with the computational ana-
lysis and interpretation of data regarding biological systems and processes.
This is an active and still relatively young field of research with great potential
of advancing both basic and applied biomedical research.

The Human Genome Project (Venter et al., 2001), which was completed
recently, and its extensions such as the HapMap (International HapMap
Consortium, 2003) project dealing with genetic variability in human pop-
ulations, have triggered an enormous growth of data and research that
aims at elucidating fundamental questions in medicine, biochemistry, genet-
ics, and molecular biology. In particular, the availability of DNA sequence
information has enabled the large-scale analysis of correlations between
genetic variations and, for example, differences in susceptibility to diseases or
other medically relevant outcomes. Machine learning-based approaches are
capable of capturing complex correlations between relevant descriptors (or
“features”), such as genetic mutations, and observed outcomes, such as can-
cer survival time. Capturing and characterizing such correlations can lead
to successful prediction of various aspects of molecular systems. For a gen-
eral overview of applications of machine learning in bioinformatics, see, for
example, Baldi et al. (2000) and Mjolsness and DeCoste (2001).

We start this chapter with a very brief overview of central problems, data
sources, and measurement techniques being used in molecular biology and
genomics. This is followed by a discussion of machine learning approaches
and some aspects of general importance regarding their applications to
problems arising in molecular biology, such as the importance of data repres-
entation, model selection and validation, alternative learning algorithms, and
their interplay with hypothesis generation and further experimental studies.
We are necessarily brief and selective; rather than providing a comprehensive
overview of the field, we discuss what we believe to be crucial elements of
successful applications of machine learning and data mining techniques in
bioinformatics.
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2.2 Molecular Biology

Modern molecular biology and genomics are generating massive amounts
of data that need to be transformed into knowledge and understanding of
molecular systems and processes in the context of medicine and other applic-
ations. This data can be organized according to the different types of biological
systems it pertains to and the experimental techniques that were used. The
Central Dogma of Molecular Biology states that the information encoded
by genes (coding fragments of DNA sequences) is transcribed by a com-
plex molecular machinery into complementary messenger RNA molecules.
These in turn are translated by another complex molecular machinery (the
ribosome) into proteins, which form the building blocks of life. Recent tech-
nological advances now allow one to obtain high-throughput measurements
and comprehensive snapshots of living systems at the level of the (whole) gen-
ome (DNA sequence), the transcriptome (messenger RNA expression levels),
and the proteome (protein structure, protein expression, and protein interac-
tions). Examples of these experimental advances include large-scale DNA
sequencing and resequencing techniques, genome-wide microarray-based
gene expression profiling, mass spectrometry-based protein characteriza-
tion, high-throughput techniques to identify protein interactions as well as
structural techniques such as x-ray crystallography and nuclear magnetic
resonance (NMR). Although the amount of data generated by these various
techniques is invariably large, their fundamental nature is very different in
each case and requires significant domain insight for their analysis to result
in truly meaningful conclusions.

For example, the data produced by DNA sequencers consists of strings of
letters representing the four nucleotides in DNA. This type of data is essen-
tially static in nature and is characterized by the presence of point mutations
(one nucleotide in a certain position is replaced by another). The length of the
sequence of interest can vary considerably and can reach billions of letters
for whole-genome analyses, with point mutations observed approximately
every few hundred letters. Sample sizes of resequencing projects that aim
at estimating population-wide genetic variability can involve tens of thou-
sands of individuals. Complicating factors that may need to be addressed in
order to interpret sequence data include sequencing errors, the presence of
two (nonidentical) copies of each chromosome in diploidal organisms, length
polymorphisms suchas thepresenceof short repetitive segments and theneed
for ancestral information.

Messenger RNA expression levels (the abundance of particular mRNA
molecules in a sample), on the other hand, are represented by real num-
bers. Current technologies allow for simultaneously measuring genome-wide
expression levels of tens of thousands of genes and their variants. Unlike DNA
sequence, mRNA expression levels are very dynamic in nature: any given
gene may be “turned off” at some point in time (or in some tissue type),
or it can be highly abundant under other conditions or in other cell types.
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Expression profiling at the mRNA level, and in particular observed differ-
ences in relative abundance in different sample types such as cancer versus
healthy cells, are nowadays used to capture “molecular phenotypes” that res-
ult from different interpretations by the cells of the static DNA information in
response to different physiological conditions. Given the large dynamic range
of mRNA expression, it is especially important to consider the technical and
biological variability, which requires careful experimental design in order to
allow for statistically (and biologically) meaningful conclusions. Therefore,
sample sizes, which presently rarely exceed one hundred, are likely to grow
quickly as the cost of the technology continues to decrease.

Yet another data type is provided by structural analyses of macromolec-
ules present in cells, and in particular protein structure data. In order to
perform its physiological function, a protein typically needs to adopt a well-
defined three-dimensional (3D) structure. Mutations in the genome can result
in changes of the primary protein sequence, which in turn may affect the 3D
structure and function of that protein. Techniques such as x-ray crystallo-
graphy provide atomically detailed snapshots of macromolecular structures
that can be used to elucidate functional implications of point mutations, for
instance. Structural data are thus very different in nature compared with, say,
gene expression data; individual atoms in a protein are characterized by their
approximate coordinates in 3D space. Furthermore, some classes of proteins
such as membrane proteins are difficult to resolve structurally, which limits
the number of available data points.

At the same time, there are common aspects of these data sets in the con-
text of the applications of machine learning that basically pertain to finding
correlations between features in the data and other observables. In particu-
lar, and in the case of DNA sequence data, the features of interest might be
point mutations in a specific gene, whereas in the case of expression data the
relative abundances of the mRNA encoded by that gene would be of interest.
Finally, in the case of protein structures, a feature that might be of functional
consequence might be the evolutionary conservation of an individual amino
acid residue in a protein sequence across related species. These “features” can
then be analyzed for correlations with phenotypes such as disease states. Such
plausible correlations, as identified by computational data analyses, can in
turn form the basis for formulating testable hypotheses. For example, putat-
ive biomarkers of disease states can be identified for further experimental
and clinical validation. We stress that conclusions obtained by analysis of any
single data set are necessarily tentative; subsequent biological validation is
required in order to provide ultimate verification and give credence to any
computational findings. One of our goals in this chapter is to illustrate this
interplay through a number of examples and specific applications.

2.3 Machine Learning

The essence of machine learning is to learn from well-characterized sample
data in order to subsequently make predictions for new data instances. This
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definition is deliberately general and is inclusive of many techniques that
arose from related fields such as data mining and statistical learning. A wide
array of machine learning approaches and techniques has been developed
over the past decades with applications in such varied fields as robotics,
speech recognition, expert decision support systems, and bioinformatics.
For a comprehensive introduction to this area of research, we refer the
reader to the excellent monographs by Mitchell (1997) and Hastie et al.
(2001).

A common aspect of machine learning techniques is the fact that they
use a so-called training set (well-characterized sample data) to fit paramet-
ers for their different underlying models and formulations. The quality of
the model can (and should) then be evaluated on independent test data
sets. Machine learning techniques are also rather generic and typically not
application-specific, which implies that it is a priori difficult to predict which
technique is likely to be most successful for a particular application. On
the other hand, machine learning methods are critically dependent on the
input data being appropriately represented. Therefore, as mentioned before,
domain knowledge is essential for making informed choices regarding rep-
resentation of the problem and the choice of the machine learning technique.
In this chapter, using several specific examples, we illustrate the importance
of careful considerations for each of these issues.

Successful examples of machine learning applications in bioinformatics
include gene prediction from primary DNA sequence (Krogh et al., 1994;
Burge and Karlin, 1998) and prediction of protein secondary structures from
the amino acid sequence (Rost and Sander, 1994b; Jones, 1999; Adamczak
et al., 2005). In the first case, the input data consist of DNA sequence frag-
ments and the output is the predicted location of a coding region, whereas
in the latter case the input is given by amino sequence and the output is
the predicted local conformation of the protein chain. Machine learning
methods are also being used for prediction of protein–protein interactions,
membrane domains, posttranslational modifications and other functionally
relevant characteristics of proteins and other macromolecules (see, e.g., Krogh
et al., 2001; Fariselli et al., 2002; Bigelow et al., 2004; Blom et al., 2004; Cao et al.,
2006). Furthermore, various machine and statistical learning approaches are
being used to analyze microarray gene expression data (see, e.g., Alizadeh
et al., 1998; Eisen and Brown, 1999; Primig et al., 2000; Medvedovic et al.,
2004), protein expression data, correlations between genotypes (patterns of
variations in genomic sequences) and phenotypes, such as disease subtype,
and so forth. In this review, we will focus on applications of machine learn-
ing techniques to selected problems that pertain to sequence, expression and
structural data analysis.

2.4 Machine Learning in Practice

Our objective is to illustrate what we believe to be important considerations
when applying learning algorithms to problems in bioinformatics. Rather
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than provide an exhaustive list of algorithms (we only list a few commonly
used modern paradigms in the following section), we discuss “soft” issues
that often have a large impact on the success or failure of an application.

2.4.1 Problem Representation

A crucial element of any machine learning application (and one that is espe-
cially important in bioinformatics) is the choice of an appropriate problem
representation. Many problems allow for different data representations, and
this early decision that must be made before a learning model is chosen can be
critical. Many learning algorithms require numerical input data, which leads
to the problem that a numerical representation for categorical data needs to
be found.

A typical and common example concerns the representation of protein
sequence information; this is required for, for example, various problems
in the area of protein structure prediction. Proteins are linear molecules of
amino acids, ranging from a few tens of residues to thousands. There are
twenty amino acids in the protein “alphabet,” and so one (naïve) way of
encoding a protein sequence is to encode each amino acid in a 20-dimensional
unit vector. The overall protein sequence of length n can thus be written as
a binary vector of length 20 × n. A second approach is to quantify physico-
chemical properties of amino acid residues such as their hydrophobicity, size,
and polarity. An alternative, which has proven in several instances to lead to
significantly better results for protein structure prediction problems (Hansen
et al., 1998; Jones, 1999; Cuff and Barton, 2000; Chen and Rost, 2002), is
to take the sequence of interest and perform a multiple sequence alignment
(Rost and Sander, 1994b) against a database of other known proteins. Multiple
sequence alignments (such as those obtained by Psi-BLAST) find evolution-
arily related proteins, and they yield an alternative way of representing a
protein sequence: the position specific substitution matrix (PSSM). A PSSM
consists of log-odds mutation rates for each amino acid in homologous pro-
tein. A successful option to represent protein sequence has been not only
to use the (also 20-dimensional) substitution rate vector as representation
for an amino acid, but to extend the number of descriptors for that amino
acid by including the substitution vectors of other residues that are within a
certain distance in the linear sequence. This way one captures not only the
identity of the amino acid, but also a characterization of a part of its local
environment. Depending on the size of the “sliding window” one chooses,
this leads to a large number (hundreds) of descriptors for one amino acid,
which in turn can lead to difficulties in case the number of samples is small
(discussed subsequently). Finding the optimal representation, thus, requires
significant insight both into the problem at hand (e.g., protein chemistry) as
well as machine learning. It has been observed before that this choice often
has a much more significant effect on the final prediction accuracy compared
with, to say, the choice of machine learning algorithm.
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2.4.2 Training and Testing Data Selection

Machine learning algorithms, as mentioned earlier, “learn” from data, and in
particular, they use a “training” data set to fit parameters to models that can
then be used to draw inferences about new data points. Much care must be
taken in order to choose this training data, as poor choices can lead to poor
performance of the predictor. In particular, there are two important criteria
for choosing training data. Training instances should account for naturally
occurring variability, which is the case if it is chosen as a random sample
from the underlying distribution. This is often impossible to guarantee, espe-
cially when sample sizes are small as is the case when biological samples are
involved. However, precautions should be taken in order to avoid uninten-
ded biases in data that can arise, for example, when samples were not treated
uniformly before being assayed. The second criterion, which is somewhat
related to the first, is the avoidance of redundancy in the training set. If very
similar “objects” (in the most general case) are included in the training set,
then the learning algorithms will likely have difficulty distinguishing them,
which can lead to a phenomenon called “overfitting.” In this case, a learning
algorithm will be adapted too specifically for the training data and will likely
not perform well in general for new data (poor generalization). Furthermore,
cross-validation methods (discussed subsequently) will yield overly optim-
istic accuracy estimates on redundant training sets; this is a common problem
with many papers that have appeared in the literature. In the particular case of
protein sequences, redundancy can be avoided, for example, by ensuring that
no two sequences share significant sequence similarity. Failure to ensure non-
redundancy will likely negatively affect the quality of the resulting predictor.

2.4.3 Model Validation

Although the accuracy of a learning algorithm on the training set is certainly
one measure of interest, a realistic performance estimate can only be obtained
by checking a model’s accuracy on an independent test set. Similar with the
choice of training sets, care must be taken with test sets in order to avoid
redundancies that can lead to biased estimates. If sufficient high-quality data
are not available, as is often the case with biological data, then k-fold cross-
validation can be used: the available data set is split into k sets, k − 1 are
used for training and the remaining one for testing. This can and should be
done randomly and many times over in order to obtain converged estimates
of the average prediction accuracy as well as its variance (see, e.g., Wagner
et al., 2004b). A special case is when k = n, the number of data points, which
is also called leave-one-out cross validation, which is often used in the case
that only tens of data samples are known. If sufficient data is available, then
10-fold or 5-fold cross-validation is a reasonable choice. A second, sometimes
controversial, consideration in this area is the choice of accuracy measure. In
the case when the prediction is a numerical value (we will discuss prediction
types in more detail in a later paragraph), one can use classical measures
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such as the root mean squared error, the mean absolute error, and the correl-
ation coefficient. No single one of these measures should be overinterpreted,
and, in particular, two additional data points are required in order to provide
context for an accuracy measurement: the standard deviation of the estimate
and the “baseline accuracy,” that is, the accuracy a trivial predictor would
achieve. If cross-validation experiments are performed, then it is informative
to report on estimates for average accuracies as well the estimated standard
deviations in order to assess whether an apparent improvement in accuracy
over a competing method is truly significant or not. We will illustrate this
using examples in a later section. If the predictor is discrete in nature (e.g.,
diseased versus healthy), then the classification accuracies, sensitivity, spe-
cificity, and the Matthews correlation coefficient are natural choices. Receiver
operating characteristic curves are commonly used in the field to illustrate
the quality of machine learning algorithms, as they show the trade-off curve
between the sensitivity and specificity of a predictor. One reasonable goal to
aim for is to achieve roughly equal accuracy on both the test and training sets,
as this is an indication of stability and robust performance.

2.4.4 Feature Selection and Aggregation

With billions of nucleotides in DNA, tens of thousands of genes, hundreds of
thousands of protein and protein variants and order of magnitude, and more
protein-protein interactions, molecular biology is very high-dimensional.
High-throughput technology has allowed us to obtain various snapshots into
this complexity, and these snapshots are invariably high-dimensional. When
wanting to apply machine learning algorithms to this data, one is often (but
not always) faced with the “large p, small n” problem; a small set of samples
(data points) is characterized by a very large number of descriptors for each
sample. By the way these data look in table form, they are often referred
to as “short and fat.” Dimension reduction (also called feature selection in
machine learning) is essential in this context, as otherwise any model using
this data will necessarily have more parameters than data points. A second
motivation for feature selection is that one desired outcome of modeling bio-
logical data is often an increased understanding as to which features (DNA
sequence features, mRNA expression levels, structural elements) are the most
important ingredients that influence a measured outcome (disease versus
nondisease status, secondary structure element, etc.) and which are irrelev-
ant. In order to enable meaningful interpretation and also to prioritize the
subsequent validation experiments, it is essential that the final list of features
used in the model thus be reasonably small. (This is often called the prin-
ciple of parsimony.) Viewed this way, feature selection can often actually be
the primary goal of interpreting biological data, with the machine learning
algorithm merely providing estimates as to how predictive the selected group
of features might be.

The literature on feature selection is vast, as this is a challenging
combinatorial problem of high practical importance. The difficulty arises



C5777: “c5777_c002” — 2007/10/27 — 13:02 — page 53 — #9

Machine Learning Techniques for Bioinformatics 53

fundamentally as a consequence of the fact that (1) features are rarely inde-
pendent but rather have a complex dependence structure and (2) biological
phenomena are rarely single factor events but rather often depend on the
interaction and simultaneous occurrence of events. This introduces a combin-
atorial nature to the problem: whereas a single feature (e.g., DNA mutation)
might not be a good predictor of, say a biological phenomenon (e.g., a com-
plex disease), a combination of a specific subset of features might well contain
valuable information. The number of possible subsets is exponential in the
number of features, which implies that typically heuristics and approxima-
tions have to be used. We also note that the feature selection problem is not
independent of the learning task: some feature subsets might have good pre-
dictive value with one particular learning method, although another method
might not be able to extract sufficient information from the same feature set.

Care should be taken to apply feature selection techniques to the training
set only and not on the entire data available; otherwise bias is introduced in
the evaluation on test sets. In a k-fold cross-validation setting one is then faced
with reselecting features k times. From the stability of the k feature sets one
can gauge how robust the overall algorithm is; the development of principled
methods to combine the k selection sets is still an open research area.

Rather than give details, we mention that there are several ways in which
feature selection methods can be characterized: filter methods versus wrapper
methods, and univariate versus. multivariate. Filter approaches are ones that
are independent of a learning algorithm; they are typically applied to the data
like a preprocessing step. As a simple, but often quite effective example, we
mention the so-called F-score that was used in (Dudoit et al., 2002) microarray
data classification. Wrapper approaches to feature selection are integrated
with the learning method; for example, the learning algorithm iteratively
determines the relative importance of different features by discarding vari-
ables that do not contribute significantly to the model (e.g., the support vector
machine [SVM] method discussed later in this chapter); as such they tend to
be more computationally involved.

Finally, we mention another strategy to deal with the high-dimensionality
of biological data: feature aggregation techniques. Traditional statistical tech-
niques such as principal component analysis (PCA), for example, can be used
to determine the mutually orthogonal directions that account for the largest
proportions of the overall variance in the data (Garrido et al., 1995; Romero
et al., 1997; Hastie et al., 2000; Hastie et al., 2001; Bair and Tibshirani, 2004; Du
et al., 2006). The resulting principal component vectors (that correspond to
weighted linear combinations of features) can subsequently be used as input
for machine learning methods. As with feature selection methods, it is crucial
to compute the PCA decomposition on training data only, as otherwise the
evaluation on the test set would necessarily be biased.

2.4.5 Supervised versus Unsupervised Learning

There are two fundamentally different paradigms in machine learning, both
of which find ample applications in bioinformatics. In the first case, also called
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unsupervised learning or clustering, the task is to discover structures in the
primary data by grouping similar data points into clusters. Approaches differ
mainly in their choices of similarity measure (i.e., the underlying metric) and
the actual clustering algorithm. Well-known approaches include k-means and
hierarchical clustering. By clustering genes from microarray expression data
under different conditions, for example, one can hope to discover coregulated
genes, that is, genes that require the same transcription factors. Coregulation
of genes is often also taken as an indication of functional similarity or potential
interaction of protein product, which motivate the need for robust clustering
algorithms that can prioritize further experimental validation. One difficulty
with clustering is that it is generally very difficult to evaluate the quality of one
solution versus another. Clustering is a discovery algorithm (structure in data
is revealed), and it is unclear how clusters can be validated without resort-
ing to experimental (wetlab) techniques. Furthermore, the most commonly
used clustering procedures are, however, rather ad hoc in nature and incap-
able of separating statistically significant patterns from artifacts of random
fluctuations and uncertainty in the data. Moreover, clustering approaches
based on statistical modeling of the data often require the number of pat-
terns to be specified in advance. One promising approach that circumvents
this problem is the Bayesian infinite mixtures model (IMM) based clustering.
IMM applies “model-averaging” and offers credible assessments of statist-
ical significance of detected patterns (Medvedovic and Sivaganesian, 2002;
Medvedovic et al., 2004). This “model-averaging” approach also allows one
to circumvent effectively the problem of identifying the “correct” number of
patterns. Furthermore, these models are capable of directly modeling various
sources of experimental variability as well as accounting for noninformative
features (i.e., context specificity of different patterns).

The other class of learning algorithms are so-called supervised learning
methods. As implied by the name, these algorithms use a training set (a
“gold standard”) where the “answer” (e.g., in the form on a response vari-
able such as a phenotype, a protein fold, or a gene sequence) is given. The
learning algorithm’s task can thus be viewed as trying to approximate the
function that takes the primary data (e.g., protein sequence) as input and
yields the output of interest (e.g., the type of secondary structure adapted
by the protein in its native state). There are essentially two types of response
variables that machine learning methods can handle. If the variable is con-
tinuous is nature (e.g., the degree to which an amino acid residue is exposed
to solvent in a native protein structure), then regression-type methods are
generally used. This includes simple ordinary least-squares regression, con-
strained least-squares regression as well as more involved methods such as
support vector regression (SVR) and neural network (NN) regression. We
will elaborate on some of these in later subsections. On the other hand, if the
response variable is discrete or categorical (e.g., the type of secondary struc-
ture conformation a residue adopts in a native fold, α-helix, β-strand, or coil),
then the problem is also called a classification problem and a different arsenal
of methods is applicable. For classification problems, a further distinction can
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be made between binary problems (those with only two classes) and multi-
class problems. Some classification methods are only suitable for two-class
problems; heuristics such as majority voting algorithms need to be applied in
the multiclass case. As mentioned earlier, the validation measures will also
necessarily change depending on the nature of the response variable.

2.4.6 Model Complexity

Finally, we want to bring up a last consideration for machine learning
methods: the complexity of the model used. Model complexity can be roughly
defined as the number of free internal parameters that are optimized when
the model is trained. Another view is split complexity into the degree of
nonlinearity of the model and the number of parameters (features) by which
the input data is described. Although nonlinear models are generally more
powerful in the sense that they can capture more complex relationships
between the input data and the response variable, they also suffer from pit-
falls and dangers that need to be weighed carefully. If the number of internal
parameters (including the number of features of the input data) is signific-
antly greater than the number of samples in the training set, then any method
is likely to suffer from overfitting: the method may have good accuracy on the
training set but will not generalize well. This situation is all too frequent with
high-dimensional biological data, with possible remedies including careful
feature selection (as mentioned in a previous subsection) and the use of the
simplest model that achieves balanced accuracy in the sense that the accuracy
measures on the training and test sets are roughly equal.

2.5 Examples of Modern Machine and Statistical
Learning Techniques

The field of machine learning has produced a myriad of different algorithms
that is impossible to completely survey in a short chapter. Instead, we rather
focus on briefly introducing a few of the most successful methods that are
commonly applied to problems in bioinformatics (for a comprehensive intro-
duction to these and other statistical learning approaches, see, for example,
Hastie et al., 2001). As emphasized in the previous chapter, there are numer-
ous other very important issues besides the choice of algorithms that influence
the quality of a machine learning approach to real-world problems. Never-
theless, the choice of learning algorithm is certainly a critical one, especially
in the all-too-frequent cases where the signal in the data is weak.

2.5.1 Linear Discriminant Analysis and Support Vector Machines

Linear models are commonly used to solve classification problems (as well as
regression problems discussed later). These models are attractive because of
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their simplicity and ease of interpretation of their results. In particular, they
involve roughly as many parameters as there are features, thus facilitating
extrapolation from a limited number of sample data points. The essence of
these methods is that they find a hyperplane in the vector space X that separ-
ates vectors of one group (for example, samples from individuals affected by
a disease) from another group (healthy samples). A hyperplane wTx+ β = 0
for samples x ∈ X may be found using many algorithms so that samples from
the two groups lie on two different sides of the plane:

wTx + β < 0 for x ∈ Group 1

wTx + β > 0 for x ∈ Group 2
(2.1)

One particularly well-known linear discriminant method is Fisher’s linear
discriminant analysis (LDA) (Hastie et al., 2001). A second example that has
enjoyed tremendous popularity and success is the (linear) SVM, which may
be regarded as a generalization of LDA classifiers and is based on a learning
algorithm that uses only vectors close to the decision boundary to “support”
the orientation of the hyperplane (including misclassified vectors). As a con-
sequence SVMs are less sensitive to outliers. SVMs have emerged in the last
10 years as powerful machine learning tools and have shown excellent per-
formance in the context of bioinformatics for classification problems (e.g.,
Brown et al., 2000; Furey et al., 2000) The motivation for the SVM separating
hyperplane stems from the desire to achieve maximum separation between
the two groups. SVMs solve an optimization problem that maximizes the mar-
gin, that is, the distance between the separating hyperplane and the closest
correctly classified data vector. This margin is inversely proportional to the
normof thenormalvector‖w‖, whichmeans that this termshouldbeminimal.
At the same time, SVMs optimize the training accuracy by minimizing the
sum of violations of the constraints (Equation 2.1), resulting in the following
overall formulation:

min ‖w‖ + C‖ξ‖
s.t. wTxi + β − ξi < 0 for xi ∈ Group 1

wTxi + β + ξi > 0 for xi ∈ Group 2

(2.2)

Here C is a trade-off parameter between the generalization term ‖w‖ and
the training misclassification term ‖ξ‖ that must be chosen a priori. The SVM
problem (Equation 2.2) is, in general, an optimization problem that can be
solved with standard methods. Using (also standard) optimization duality
theory one can show that the number of constraints that are satisfied with
equality at the optimal solution is small, which implies that only a few data
points actually influence the hyperplane defined by (w,β). Linear SVMs are
suitable for solving very large-scale problems since they can be solved very
efficiently on parallel computers (Wagner et al., 2004a; 2005) and thus allow



C5777: “c5777_c002” — 2007/10/27 — 13:02 — page 57 — #13

Machine Learning Techniques for Bioinformatics 57

for the kinds of extensive cross-validation experiments necessary to obtain a
reliable classifier.

Finally, we mention briefly that SVMs can be extended using nonlin-
ear kernel functions (e.g., Schoelkopf and Smola, 2002) that compute inner
products 〈w, x〉 in high-dimensional spaces. Kernel SVMs thus still compute
maximum margin linear separating hyperplanes, but these now can cor-
respond to nonlinear separation boundaries in the original feature space.
A number of kernels are commonly used, including polynomial kernels
k(w, x) = (wTx + β)p and radial basis function (RBF) kernels for which
k(w, x) = exp(−‖w − x‖2/σ). More sophisticated kernels, reflecting some
prior knowledge about the specific problem analyzed, have been designed
(Leslie et al., 2003), and, in particular, recent years have seen the development
of specialized string kernels for particular bioinformatics applications.

There are a number of SVM software packages available, both in commer-
cial packages and as open-source software. One particular package that can
be recommended for its numerical stability and computational efficiency is
libsvm (Fan et al., 2005), which is freely available for researchers over the
Internet. Other packages and a wealth of background information on SVMs
is available at http://www.support-vector.net.

2.5.2 Linear Regression and Support Vector Regression

If the response variable is quantitative as opposed to categorical then regres-
sion approaches are needed. If the data are given by vectors xi and the
corresponding response variable is yi, then the straightforward ordinary
least squares (LS) approach computes weights w and a scalar β such that
the squared prediction error is minimized:

min
w,β

∑
i

(wTxi + β − yi)
2

The SVR approach, which is closely related to SVMs for classification, offers
a more flexible solution to the regression problem, overall numerical effi-
ciency, and applicability to large-scale problems. In particular, the so-called
ε-insensitive SVR models allow for the error measure to be defined in a flexible
way, for example, reflecting the expected level of errors by varying error bars,
ε, for different types of training examples that may differ in their characterist-
ics (Wagner et al., 2005). SVR models can be seen as extensions of LS models
where an ε-insensitive penalty function is minimized instead of the sum of
squared errors (see, e.g., Hastie et al., 2001). For the purposes of these con-
siderations, we restrict ourselves to stating the overall optimization problem
that is solved by SVRs, which reads

min ‖w‖ + C‖ξ‖
s.t. |wTxi + β − yi| − ξi ≤ ε for all i

(2.3)
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HereC is again an a prioripenalty parameter that balances the regression error
term ‖ξ‖ and the regularization term ‖w‖ (that corresponds to the margin
maximization term for SVMs). If (w̃, β̃) denotes the optimal SVR solution to
Equation 2.3, then the predicted outcome for a new data point characterized
by xk is given by ŷk = w̃Txk+β̃. To compare and contrast with the standard LS
approach, note that the termwTxi+β−yi in the constraints corresponds to the
objective function for LS. SVRs will penalize this deviation through the slack
variable ξi if it exceeds ε, which is an error insensitivity parameter that must be
set by the user a priori. In addition, SVRs generally use the 1-norm to penalize
the regression error ‖ξ‖1 and are thus less outlier sensitive, which again is
especially advantageous in many bioinformatics applications with noisy data.
Finally, we also mention that although C and ε are typically chosen as fixed
parameters, there is no real reason not to allow them to be functions of yi,
choosing different error insensitivities εi = ε(yi), depending on the expected
(or naturally occurring) error for the response variable yi. These ideas were
successfully applied in a number of protein structure prediction contexts; see,
for example, Wagner et al., 2005.

2.5.3 Neural Networks for Classification and Regression

Another solution that goes beyond LDA is provided by NNs, which can gen-
erate arbitrary nonlinear decision boundaries by addition of many simple
functions. This is typically achieved by a multistage transformation, which
may be represented graphically as a network (directed graph) of intercon-
nected layers of “computing” nodes that integrate input signals from the
previous layer. In particular, the input features (attributes) are represented by
individual nodes in the input layer and are subsequently transformed into
a new set of features using several hyperplanes, wk , corresponding to the
hidden layer nodes (here, for simplicity, we assume that only one hidden
layer is used). In other words, the inputs for the hidden layer nodes are linear
combinations of the originalN features with the coefficients of the linear com-
bination, wik , associated with connections between input node i and hidden
layer node k. The hidden layer nodes transform such defined inputs using
some functions hk(x) = s(wT

k x + wik), where the scalar functions s(·) are usu-
ally chosen to be logistic functions. Thus, they have a sigmoidal shape with
output bounded by maximum and minimum values. As a result, the outputs
are in general nonlinear functions of inputs.

There is a distant analogy between the activity of biological neurons that
sum input signals weighted by the strength of synaptic connections and send
output signals that are bounded by some maximum values. For this reason,
such nodes are called artificial neurons or perceptrons. A number of these
nodes connected to the same input form a layer that transforms the input
vector to the vector of hidden layer activities H. Connecting input and hidden
and output nodes form a network representation of such function, and this is
called a neural network. If the sigmoidal-shape functions are used for all layers,
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then this network is called a “multilayered perceptron” (MLP). If the hidden
layer functions are of Gaussian or similar type, then the network is called
RBF network (Duda and Hart, 1973; Ripley, 1994; Hassoun 1995). In general,
MLP and RBF neural networks are basically function-mapping systems for
classification and regression that can learn how to associate numerical inputs
with arbitrary outputs, changing their internal parameters.

The training of NNs typically involves minimizing the following error
function:

SSE(w) =
∑
i

α(yi)(ŷi(w)− yi)
2

where ŷi denotes the predicted value of the variable of interest, given the
parametersw of the network (weights and biases), and yi represents the target
value imposed in the training. In analogy to the error insensitivities εi, the
weights α(yi) can be chosen to reflect uncertainties associated with the target
values. Many training algorithms have been devised to find parametersw that
fit inputs to the desired outputs. One standard example of a commonly used
training algorithm is the so-called back propagation algorithm. The important
point is that the trainingofNNs involvesanattempt to solveaglobalnonlinear
optimization problem, which is inherently difficult and requires heuristics
such as different starting points and exit strategies from local minima. It is
also difficult to assess the quality of a NN configuration, that is, to estimate
how far from the global optimum one is. This is in stark contrast to SVMs that
solve a convex optimization problem with a unique minimum and are thus
computationally more efficient and less prone to overfitting.

On the other hand, NNs are very flexible and in general accurate if trained
properly. Furthermore, they can be used for either classification or regression
problems. For classification problems, NNs can be designed to have several
output nodes, each one indicating the strength of prediction for a class. For
regression problems, NNs typically have a single output node that emits a
real-valued predictor for the quantity in question. We note that the number of
free parameters that need to be chosen during the training phase for NNs can
typically be large, depending on the number of activation nodes in the hidden
layers and the topology of the network, thus requiring a comparatively large
number of training samples in order to avoid overparametrization. This is in
contrast to linear models that in general only have as many model parameters
(weights) as there are features in the data representation. However, if a suf-
ficient number of training instances is available and the models are carefully
trained, then NNs are often the methods of choice. (see, e.g., the upcoming
section on protein secondary structure prediction).

2.5.4 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used probabilistic machine
learning techniques based on a finite state machine representation of the



C5777: “c5777_c002” — 2007/10/27 — 13:02 — page 60 — #16

60 Computational Methods in Biomedical Research

structure (“grammar”) of a “language” that is to be modeled. In the
case of bioinformatics the language typically relates to genomic DNA
sequence or protein sequences, with the corresponding “grammars” encod-
ing, for example, the exon/intron/intergenic region constitution of genomic
sequences from a given genome or, say, the membership of an amino acid
sequence in a family of evolutionarily related proteins. There is a vast liter-
ature covering methodology and numerous applications of HMM models;
for an excellent review of HMM developments and applications we refer the
reader to Durbin et al. (1998).

HMMs are characterized by a set of “states” as well as the transition prob-
abilities between these states. Furthermore, HMMs can emit letters in states
(from which the words of the “language” are assembled), and the emission
probabilities for each letter depend on the underlying state the HMM is in.
Finally, the Markov property dictates that the subsequent state the HMM
transitions to depends on its current state alone. An HMMmay thus be viewed
as a machine that generates sequences—each trajectory that follows a number
of states through transition arrows generates a sequence.

Given transition and emission probabilities for an HMM, one can com-
pute a total probability that a particular sequence was emitted by that HMM.
Conversely, given a number of well-characterized training instances (e.g.,
conserved protein sequences belonging to the same family) one can design
an HMM by choosing a topology as well as transition and emission prob-
abilities that maximize the likelihood that these sequences were generated
by the HMM. There are several algorithms to perform this “training” (choice
of model parameters based on well-characterized data); the most success-
ful ones are based on variants of the well-known expectation-maximization
(EM) algorithm. We refer the reader to Durbin et al. (1998) for technical
details.

We would like to comment that the availability of various HMM pack-
ages for development and training of such models contributed significantly
to the widespread use of HMM and similar statistical learning techniques
in bioinformatics. For example, the HMMer package (Durbin et al., 1998;
http://hmmer.janelia.org), a general-purpose HMM simulator for biological
sequence analysis, which is available freely for academic use, can be used,
among other applications, in gene finding and discovery of new patterns in
genomic sequences.

In this part of the chapter, we discuss several applications of machine
learning approaches in bioinformatics. We start the discussion with applica-
tions to structural bioinfomatics, including canonical examples of secondary
structure and solvent accessibility prediction for amino acid residues in
proteins. Next, we present the problem of gene prediction and applic-
ations of HMMs to that problem. Finally, we briefly discuss issues
related to drug design and applications of machine learning techniques
to prediction of quantitative structure–activity relationship (QSAR) in this
context.



C5777: “c5777_c002” — 2007/10/27 — 13:02 — page 61 — #17

Machine Learning Techniques for Bioinformatics 61

2.6 Applications of Machine Learning to Structural
Bioinformatics

2.6.1 Secondary Structure Prediction

In order to perform their function, proteins typically adopt a specific 3D struc-
ture that remains stable under a range of physiological conditions. This is
known as the folding process, in which an extended or unfolded protein
conformation undergoes a series of conformational transitions into the fol-
ded (compact) structure. As part of this process, regular local conformations
knownas secondary structures emerge. Theseordered local structures include
α-helices and β-strands that are largely defined by local propensities of amino
acid residues with nonlocal contacts between residues additionally stabilizing
(or destabilizing) such local conformations. One of the first successful applica-
tion of machine learning techniques in the field of protein structure prediction
was the prediction of secondary structures in proteins (Qian and Seinowski,
1988; Rost and Sander, 1994a). (See also Figure 2.1 for an illustrative example
of secondary structure prediction.)

In their pioneering work Rost and Sander (1994a) demonstrated the import-
ance of the multiple alignment representation and used NNs to train a
successful classifier capable of assigning each residue to one of the three
classes (helix, β-strand or coil) with over 70% classification accuracy. In related
work, Rost and Sander (1994b) proposed to extend this approach to predict
relative solvent accessibility (RSA), which quantifies relative solvent exposure
compared with an extended conformation. Since then many different machine
and statistical learning techniques have been devised and used to improve
secondary structure prediction (for a recent review see, e.g., Przybylski and
Rost, 2002). In fact, increasingly accurate prediction methods, which achieve
about 80% accuracy for classification into three states (Eyrich et al., 2001;
Przybylski and Rost, 2002; Adamczak et al., 2005) have already and signi-
ficantly contributed to the improved performance of fold recognition and de
novo protein structure prediction methods (Fischer et al., 2001; Venclovas
et al., 2001; Schonbrun et al., 2002).

2.6.2 Solvent Accessibility Prediction

The solvent accessible surface area of an amino acid residue in a protein struc-
ture is another important attribute that, if known, can be used to facilitate
and enhance the overall structure prediction in fold recognition or de novo
folding simulations (Fischer et al., 2001; Venclovas, 2001). For example, glob-
ular proteins in aqueous solution are characterized by the formation of a
hydrophobic core, which is shielded from the solvent. Therefore, estimates
of the solvent accessibility can be compared with the solvent accessible sur-
face areas observed in known protein structures and can thus help identify
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FIGURE 2.1
(See color insert following page 207.) Comparison of experimentally observed (PDB structure
lq4k, chain A, two upper rows) and predicted (using the SABLE (From R. Adamczak, A. Porollo
and J. Meller, Proteins, 56, 753–767, 2004.) server, lower rows) structures of polo kinase PIki.
Helices are indicated using red braids, beta-strands are indicated using green arrows and loops
are shown in blue. The relative solvent accessibility is represented by shaded boxes, with black
boxes corresponding to fully buried residues. Sites located in known protein–protein interaction
interfaces are highlighted using yellow, whereas residues corresponding to polymorphic sites
are highlighted in red and Xs represent fragments unresolved in the crystal structure. Figure
generated using the POLYVIEW server (http://polyview.cchmc.org).

the most compatible structural template in fold recognition. Similarly, in
folding simulations the search through the space of all possible conforma-
tions can be biased toward those conformations that are consistent with the
predicted pattern of solvent accessibility (Adamczak et al., 2004). In addi-
tion, identifying surface exposed residues is an important step in recognition
of protein–protein interaction interfaces and may help classify functional
effects of mutations (Glaser et al., 2003). The problem of predicting RSA
appears to be more difficult than prediction of secondary structures (Rost and
Sander, 1994b; Adamczak et al., 2004). The reasons RSA prediction methods
are comparatively less successful lie primarily in the nature of the problem,
but to some extent they are also rooted in the way the problem is typically
solved.
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The RSA of an amino acid residue in a protein structure is a real num-
ber between 0% and 100%, with 0% RSA corresponding to fully buried and
100% RSA to fully exposed residues, respectively, that represents the solvent
exposed surface area of this residue in relative terms. The level of solvent
exposure is weakly conserved in families of homologous structures (Rost and
Sander, 1994b; Adamczak et al., 2004). Using PFAM multiple alignments for
protein families, it has been estimated that the average correlation of the
RSAs for pairs of equivalent residues in homologous structures is equal to
0.57 (Adamczak et al., 2004). Thus, contrary to the prediction of secondary
structures, the highly variable real valued RSA does not support the notion
of clearly defined distinct classes of residues and suggests that a regression-
based approach is appropriate for this problem. In light of these difficulties,
it is striking that most existing RSA prediction methods cast this problem
within the classification framework, attempting to predict whether a given
amino acid exceeds some (arbitrary) RSA threshold and would thus be pre-
dicted to be “exposed,” as opposed to “buried.” Recent examples of such
attempts to further improve the RSA prediction include both feed forward
(Ahmad and Gromiha, 2002) and recurrent NN (Pollastri et al., 2002), as well
as SVM-based (Kim and Park, 2004) approaches.

In an effort to go beyond the classification paradigm and provide real val-
ued RSA predictions we recently developed several alternative regression
based models, including standard LS, linear SVR and NNs-based nonlinear
models. This allowed us to investigate the prediction limits of the simplest
kinds of regression models (linear models) on the same dataset, perform
extensive cross-validation and feature selection with these simple models
and use the results to assess the relative benefits of the more involved nonlin-
ear NNs (Adamczak et al., 2004; Wagner et al., 2005). In order to represent an
amino acid residue we used evolutionary information as encoded by PSSMs
and we trained our methods using a large set of representative and nonre-
dundant protein structures. In rigorous tests, following an evaluation of
automatic protein structure prediction (EVA)-like methodology (Eyrich et al.,
2001) for evaluation of the accuracy of secondary structure prediction meth-
ods (see http://cubic.bioc.columbia.edu/eva for details.), the new NN-based
methods achieved significantly higher accuracy than previous methods from
the literature, with mean absolute errors between 15.3% and 15.8% RSA and
correlation coefficients between observed and predicted RSAs of about 0.64–
0.67 on different control sets. In two state projections (e.g., using 25% RSA
as a threshold between buried and exposed residues), the new method out-
performed current state-of-the-art classification-based approaches, achieving
an overall classification accuracy of about 77% (for details see Adamczak
et al., 2004). These estimates of the accuracy have since been confirmed by
independent studies (see, e.g., Garg et al., 2005).

2.6.3 Structural Predictions for Membrane Proteins

Although high-resolution structural data for soluble proteins and their inter-
actions are relatively abundant (and quickly growing), it is not the case for
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membrane proteins. Owing to difficulties in applying experimental tech-
niques, such as x-ray crystallography or NMR, the number of high resolution
structures of membrane proteins that have been solved to date is still very
limited. From January 2006, there were only 129 unique integral membrane
proteins with known 3D structures in the Protein Data Bank, of which 101
were α-helical membrane protein and 28 were β-barrel and other membrane
proteins (http://blanco.biomol.uci.edu/mpex/). On the other hand, it is
estimated that integral membrane proteins constitute about 20%–30% of all
proteins in the sequenced genomes (Wallin and von Heijne, 1998). The compu-
tational prediction of membrane proteins has therefore become an important
alternative and complementary tool for genomic annotations and membrane
protein studies (for a comprehensive review of the state of the art in membrane
protein prediction see, e.g., Chen and Rost, 2002).

Many successful prediction protocols, especially for the prediction of trans-
membrane helices, have been devised and employed since the pioneering
efforts of Kyte and Doolittle more than 20 years ago (Kyte and Doolittle,
1982). The first class of methods for transmembrane helix prediction relies
on hydropathy scales and other physicochemical properties of amino acids.
Successful examples of such methods include SOSUI (Hirokawa et al., 1998)
and TopPred (Claros and von Heijne, 1994). The second class includes statist-
ical methods based on the observed preferences of amino acids for membrane
proteins. An example of a successful method of this type is TMpred (Hofmann
and Stoffel, 1993). Finally, the third group of methods is based on evolution-
ary information, as encoded by the multiple alignment (MA). Examples of
such highly successful methods include the NN-based PHDhtm (Rost et al.,
1994; Rost et al., 1995; Rost et al., 1996), and a HMM-based TMHMM (Krogh
et al., 2001) and HMMTOP (Tusnady and Simon, 1998; Tusnady and Simon,
2001) methods. Whereas similar concepts apply to prediction ofβ-barrel mem-
brane proteins as well, this problem appears to be even more difficult owing
to the weakly hydrophobic nature of membrane spanning β-strands in these
proteins (Bigelow et al., 2004).

The accuracy of membrane protein prediction has recently been reevalu-
ated by several groups, suggesting that, despite some optimistic estimates
in the literature, existing methods are still rather limited in their predict-
ive power. For example, according to an independent assessment performed
in the Rost Lab (Chen et al., 2002; Chen and Rost, 2002; Kernytsky and
Rost, 2003), the top performing methods for transmembrane helix predic-
tion, such as PHDhtm, HMMTOP, or TMHMM, achieved (Chen and Rost,
2002; Kernytsky and Rost, 2003) per-segment accuracy of up to 84% and
per-residue accuracy of up to 80% in the TMH Benchmark evaluation, with
an estimated 1–6% false positive rate among globular proteins and between
20% and 30% false positive matches among signal peptides. These rates
of confusion with globular proteins and especially signal peptides make
proteome-wide annotation of membrane proteins likely to result in large num-
ber of false positives (Moeller et al., 2000, 2001; Chen et al., 2002). However,
recent improvements in that regard are likely to further increase the accuracy
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of membrane domain prediction (Viklund and Elofsson, 2004; Cao et al.,
2006).

2.6.4 Computational Protocols for the Recognition of Protein–Protein
Interaction Sites

Elucidating complex networks of molecular interactions and the resulting
dynamic states of cells and higher order systems has become one of the major
challenges in systems biology. In particular, the importance of protein–protein
interactions continues to stimulate the development of both experimental
and computational protocols that aim at elucidating protein function and the
underlying physical interactions. One important stepping stone toward these
bigger goals is the prediction of protein–protein interaction interfaces, which
is an active field of research, as summarized below.

In general, the problem of recognizing protein–protein interaction sites
can be cast as a classification problem, that is, each amino acid residue is
assigned to one of the two classes: interacting (interfacial) or noninteracting
(noninterfacial) residues. Consequently, the problem may be solved using
statistical and machine learning techniques, such as NNs (Zhou and Shan,
2001; Fariselli et al., 2002; Ofran and Rost, 2003) or SVMs (Bock and Gough,
2001; Zhang et al., 2003; Koike and Takagi, 2004). From the point of view of
a representation (feature space) used to capture characteristic signatures (or
fingerprints) of interaction interfaces, one may distinguish two main groups
of approaches. The first group of methods attempts to predict interaction sites
using just sequence information (Gallet et al., 2000; Bock and Gough, 2001;
Ofran and Rost, 2003), whereas the second group takes available structural
information into account as well (Fariselli et al., 2002; Neuvirth et al., 2004;
Bordner and Abagyan, 2005).

In the latter case, the problem typically involves the identification of spe-
cific patches on the surface of a monomeric protein structure with residues
that are either evolutionarily conserved or have a propensity for interaction
interfaces (see, e.g., Jones and Thornton, 1997; Armon et al., 2001; Valdar and
Thornton, 2001; Glaser et al., 2003; Yao et al., 2003; Caffrey et al., 2004; Bordner
and Abagyan, 2005). In addition, various statistical techniques were used to
analyze amino acid distributions at interaction interfaces and to identify dis-
tinct types of complexes with different amino acid biases (see, e.g., Gallet
et al., 2000; Ofran and Rost, 2003) For example, amino acid conservation pat-
terns were utilized to map binding sites in the SH2, PTB, and ATP domains
(Armon et al., 2001).

The advantage of using structural information, for example, in the form of
a resolved monomeric protein structure, is that the surface exposed residues
and spatial neighbors (residues in contact in 3D) can be identified, defining
potential interacting patches on the surface of a protein. Furthermore, geo-
metric characteristics and the topology of potential interacting patches can
be taken into account. On the other hand, it has been suggested that the pre-
dicted solvent accessibility can be used to address some of the limitations
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of sequence-based methods, in order to enable a more reliable prediction
of interaction sites even when structural information is not available (Ofran
and Rost, 2003; Berezin et al., 2004). However, owing to uncertain information
about structural neighbors and the additional uncertainty introduced by RSA
predictions, it remains to be seen if significant progress can be made without
incorporating experimentally derived (or obtained using reliable modeling
techniques) high-resolution structural information.

2.6.5 Phosphorylation as a Crucial Signal Transduction Mechanism

Phosphorylation constitutes one of the most important posttranslational
modification of proteins by virtue of covalently linking phosphate groups
to side chains of serine, threonine, and tyrosine amino acids by the respect-
ive protein kinases (with phosphatases catalyzing the opposite enzymatic
reaction). Relatively large, negatively charged phosphate groups change the
chemical nature of these amino acids, modulating protein structure and func-
tion by affecting protein conformation, interactions with cofactors, the overall
protein stability, and other functionally relevant characteristics. Examples of
phosphorylation and dephosphorylation events controlling important cellu-
lar and physiological processes include cell cycle regulation, various signal
transduction cascades, activation of transcription elongation complex, or
cytoskeleton reorganization.

The computational prediction of phosphorylation and other posttransla-
tional modification sites, both from the structure and the primary amino acid
sequence is an active field of research (Kreegipuu et al., 1998; Berry et al., 2004;
Blom et al., 2004; Iakoucheva et al., 2004; Rychlewski et al., 2004; Zhou et al.,
2004). Examples of methods for phosphorylation site prediction are NetPhos
(Blom et al., 1999), a NN-based predictor, Scansite (Obenauer et al., 2003),
a sequence-motif based predictor, and disorder ehhanced phosphorylation
sites predictor (DISPHOS) (Iakoucheva et al., 2004), which uses indicators
of intrinsic disorder, such as secondary structure predictions in addition to
sequence information. The latter method, together with previous reports that
most of the sites of phosphorylation lay in coil regions and close to the sur-
face (Kreegipuu et al., 1998; Nakai and Kanehisa, 1988), suggest that accurate
prediction-based profiles proposed here may help in improving the accuracy
of the recognition of phosphorylation sites. It should be also noted that some
“negative” sites might include those that just have not (yet) been reported as
phosphorylated. Therefore, phosphorylation site prediction is also likely to
be improved by one-class machine learning protocols briefly discussed in an
earlier section of this review.

2.6.6 Assessment of Functional and Structural Consequences of Mutations

The analysis of human genetic variation can shed light on the problem
of human phenotypic variation in general and the genetic basis of com-
plex disorders, in particular. Single nucleotide polymorphisms in coding
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regions (cSNPs) and regulatory regions are most likely to affect gene function
(Chakravarti, 1998; Collins et al., 1998; Syvaenen and Taylor, 2004). Accord-
ing to various estimates (which are to some extent tentative and will be most
likely refined with the rapid progress of large-scale SNP sequencing and geno-
typing efforts) half of cSNPs cause missense mutations in the corresponding
proteins, whereas the other half are silent (synonymous SNPs) and do not
cause any change in the amino acid (Cargill et al., 1999; Halushka et al., 1999).

Nonsynonymous SNPs (nsSNPs), which occur in evolutionarily conserved
regions or domains of proteins, can imply functional significance. Cur-
rently available methods for assessing the significance of the SNPs such
as PolyPhen (Ramensky et al., 2002), which classifies a SNP as “possibly
damaging” or “probably damaging” and so forth, are primarily based on
analysis of conservation and frequency of substitutions observed in fam-
ilies of homologous proteins. However, a thorough understanding of the
structural and functional properties of the normal and the “altered” proteins
owing to nsSNPs is dependent on improved understanding and prediction of
protein structure, stability, and interactions. In particular, improved annota-
tions pertaining to protein–protein interactions and recognition of sites of
posttranslational modifications would help classify nsSNPs occurring in pro-
tein coding regions. Such refined classification will help focus experimental
research by prioritizing targets for mutagenesis and other studies.

2.7 Computational Gene Identification

An accurate recognition of all gene components is hindered by the limita-
tions of our knowledge of complex biological processes and signals regulating
gene expression. Therefore, gene prediction from genomic DNA sequences
is an important and challenging problem, especially in the case of eukaryotic
organisms (including the human genome), which are characterized by the
presenceofnoncoding fragments (called introns) that separatenoncontiguous
coding fragments (called exons) within genes. In the human genome, there are
roughly ten introns per gene (in some cases the number of introns is as high as
40 and more). Vast combinatorial possibilities of potential exon/intron assem-
blies and relatively high content of noncoding sequences make the problem of
prediction the full coding sequence of a gene computationally very difficult.
Nevertheless, motivated by the practical importance of the gene prediction
problem, computational methodology for finding genes and other functional
sites in genomic DNA has evolved significantly over the past 10 years.

Among the types of informative attributes (features) that correspond to
sequence motifs and functional sites in genomic DNA that researchers have
sought to recognize are splice sites (exon/intron boundaries that are recog-
nized by the spliceosome machinery that removes introns before the mature
gene without noncoding fragments can be translated into protein), start and
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stop codons (these correspond to the first and last amino acid residues in
the resulting protein sequence), branch points (also recognized by the spli-
ceosome), promoters and other regulatory elements of transcription, length
distributions and compositional features of exons, introns, and intergenic
regions. Even though existing methods achieved only moderate accuracy
(Durbin et al., 1998), computational gene prediction has become a widely
used strategy in genomic research, facilitating greatly experimental analysis,
annotation, and biological discovery in newly sequenced genomes (Lander
et al., 2001; Venter et al., 2001). These approaches have been described in depth
previously (Snyder and Stormo, 1993; Krogh et al., 1994; Solovyev et al., 1994;
Gelfand et al., 1996; Burge and Karlin, 1997; Henderson et al., 1997; Burge
and Karlin, 1998; Durbin et al., 1998; Salzberg et al., 1998) and only those
aspects of gene recognition methods that are most relevant for the illustration
of some important aspects of applications of machine learning in this context
are briefly discussed herein.

From the methodological standpoint, two approaches to gene recognition
may be distinguished: ab initio gene prediction and similarity-based spliced
alignments methods. In both approaches, gene identification proceeds form-
ally through genomic sequence inspection and relies on prior knowledge
of gene structure. The ab initio methods, such as HMM models for exon and
intron sequences, incorporate the knowledge of known genes and their struc-
ture into a probabilistic model whose parameters are optimized to accurately
recognize representative genes included in a training set. In contrast, splice
alignment methods rely on similarities to other genes or gene products facil-
itated by alignment of genomic DNA sequence to known protein or cDNA
sequences to reveal coding regions. In practice, various hybrid methods are
often used that incorporate knowledge of predicted splice junctions to optim-
ize splicing alignments (Gelfand et al., 1996). Although ab initio methods are
biased to succeed for genes similar to those in the training set, the success of
splicing alignments depends on the suitability of the chosen target sequence
of an established gene or its product.

An important consideration of ab initio gene finding methods is the require-
ment for training by known examples when general principles governing the
transcription process and mRNA-genomic relationships are not known. This
training serves to optimize a classification model, which distinguishes coding
from noncoding and intergenic DNA sequences. Thus, since learning from
labeled examples forms the basis for ab initio gene prediction, essentially all
methods for supervised learning are applicable in this context (although cer-
tainly not all are equally well suited for the task). We focus, however, on
HMMs, which, as introduced before, have traditionally been considered as
part of the statistical learning field.

Figure 2.2 (adopted from Henderson et al., 1997) illustrates the HMM model
employed in the VEIL program (Henderson et al., 1997) for gene identific-
ation in eukaryotic genomes. Training sequences (with exons and introns)
are treated as if they were generated by the HMM model (with its topo-
logy), and the goal is to adjust the emission and transition probabilities until
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FIGURE 2.2
A typical HMM model of an exon. (Adopted from J. Henderson, S. Salzberg and K. H. Fasman,
J. Comput. Biol., 4, 127–141, 1997.)

the total probability of the training sequences is maximized. This is usually
achieved using the expectation-maximization algorithm (Durbin et al., 1998).
Once the model is trained, prediction for new sequences may be obtained by
“threading” the query sequence through the model, to find an optimal traject-
ory generating the query sequence (using the Viterbi algorithm Durbin et al.,
1998). Aligning each base in the query sequence to a particular state optimally
in the model defines location of exons, introns, and their boundaries in the
sequence. For example, the bases that are aligned to states representing exons
are predicted to belong to an exon.

One HMM approach that proved to be especially successful, although more
complex, is the Generalized Hidden Markov Model (GHMM) (Kulp et al.,
1996). The GHMM approach is employed in the widely used and very success-
ful HMMgene (Krogh, 2000) and GenScan (Burge and Karlin, 1997) programs,
for example.

2.8 Biomarkers, Drug Design, and QSAR Studies

In the past, identification of drugs and their design was done largely using
trial and error approach that was clearly not very effective. Moreover, the
mechanism of action of a successful drug would typically remain obscured.
As an alternative approach to drug design the QSAR is being widely used.
The idea behind these approaches was to use the known responses (activit-
ies) of simple compounds (structures) to predict the responses of complex
compounds, made from different combinations of the simple ones. Only
those compounds that were predicted to have desired potential were then
tested in the laboratory. Thus, QSAR approaches lend themselves naturally
to applications of machine learning.
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Ligands may be represented by multiple structural and other descriptors.
Thus, selection of key descriptors is an important step in any QSAR study.
Another important step is the identification of patterns that correlate with
activity. Furthermore, compounds exhibiting promising properties may be
compared with other candidates in order to identify other potential drugs
that share critical features. Therefore, it is evident that the machine learning
approaches to feature-selection, pattern-recognition, classification, and clus-
tering can be applied to this problem. In fact, various clustering methods
(e.g., hierarchical divisive clustering, hierarchical agglomerative clustering,
nonhierarchical clustering, and multidomain clustering) have been applied to
such problems (Kitchen et al., 2004). Self-organized NNs, SVMs, binary kernel
discrimination, and other genetic algorithm-based classification techniques
have also been discussed in the review (Walters et al., 2005) with regard to
compound classification.

Application of clustering techniques and genetic algorithms towards pre-
dicting molecular interactions has been reviewed in Dror et al. (2004) The role
of feature selection in QSAR has also been reviewed recently (Walters et al.,
2005). For example, the clustering of receptor proteins on the basis of their
structural similarity has been shown to be of great significance to drug design
in Koch and Waldmann’s (2005) review. Many other studies have made use of
machine learning techniques to address similar problems. In particular, NNs
have been widely used to solve many problems in drug design. A compre-
hensive review of the applications of NNs in variety of QSAR problems has
been presented by Winkler (2004).

In recent years, SVMs have become relatively widely used in this context as
well. For example, Zhaoet al.madeuseof SVMforpredicting toxicity suggest-
ing that SVM outperforms multiple linear regression and radial basis function
NNs for this application (Zhao et al., 2006). A novel method called least
squares support vector machine (LSSVM) was employed to screen calcium
channel antagonists in a QSAR study (Yao et al., 2005). SVM was also used to
predict oral absorption in humans involving molecular structure descriptors
(Liu et al., 2005) and to calculate the activity of certain enzyme inhibitors and
were found to perform better than classical QSAR methods (Zernov et al.,
2003).

2.9 Conclusions

Machine learning has clearly become a tool of great importance in bioinform-
atics, as evidenced by a number of promising applications in diverse areas
such as protein structure prediction, gene finding, and QSAR studies. We have
focused on a number of “soft” issues surrounding machine learning that in
our view are essential ingredients for its successful application: significant
domain insight leading to appropriate representations and descriptions of
the data, an appropriate, unbiased choice of training (or gold standard) sets,
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stringent, independent evaluation on test sets, dimension reduction through
feature selection and careful consideration and evaluation of the most appro-
priate level of model complexity. A number of machine learning algorithms
have arisen in the last decade that have been particularly successful, and
while we could not possibly provide a complete survey we hope to have led
the reader to a number of relevant references for more information. Finally, we
surveyed a (necessarily biased) sample of applications to illustrate the keys
to success in practice and to show the wide range of exciting applications in
bioinformatics that all have potential of providing significant new insights
through computational methods.
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3.1 Introduction

Machine learning methods have become increasingly popular as powerful
analytic tools for exploring complex data structures. The applications of these
methods are far reaching. The best documented, and arguably most popular
uses of machine learning methods are in biomedical research where classi-
fication is a central issue. For example, a clinician may be interested in the
following question: Does this patient with an enlarged prostate gland have
prostate cancer, or does he simply have a benign disease of the prostate?
To answer this question, various clinical information on the patient must
be collected, and a good diagnostic test utilizing such information must be
in place. The goal of machine learning methods is to provide a solution for
constructing suchdiagnostic tests. For applications ofmachine learningmeth-
ods in molecular biology and genomics, see Meller and Wagner (2007) in this
volume.
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In statistical nomenclature, learning or training refers to the process of find-
ing the values of unknown parameters. This process can be broadly classified
into two categories: supervised andunsupervised learning. Supervised learn-
ing, also called learning with a teacher, occurs when there is a known target
value associated with each input in the training set. Unsupervised learning
is needed when the training data lack target output values corresponding to
input patterns. The algorithm must learn to group or cluster the input pat-
terns on the basis of some common features, similar to factor analysis and
principal components. This type of training is also called learning without a
teacher because there is no source of feedback in the training process.

In this chapter, we discuss methodological and practical aspects of four
supervised learning techniques, namely, classification and regression trees,
artificial neural networks, random forests, and logic regression, in the context
of cancer diagnosis and prognostication. Tree-based methods were origin-
ally introduced by Morgan and Sonquist (1963) and later popularized by
Breiman et al. (1984) through practical and theoretical advances described
in their monograph on Classification and Regression Trees. Generally, tree-
based methods recursively partition the covariate space into disjoint regions
and the corresponding data into groups (nodes). For each node to be split,
some measure of separation in the response distribution between the two
daughter nodes resulting from a split is calculated. All possible splits for
each of the covariates are evaluated, and the variable and corresponding split
point that best separates the daughter nodes is chosen. The same procedure
is applied recursively to increase the number of nodes until each contains
only a few subjects. The resulting model can be represented as a binary tree.
After a large tree is grown, there are rules for pruning and for readjusting the
size of the tree. Extensions of original tree-based methods for survival data
have been studied by several authors (Gordon and Olshen, 1985; Ciampi
et al., 1987, 1988; Segal, 1988, 1995; Davis and Anderson, 1989; LeBlanc and
Crowley, 1992; LeBlanc and Crowley, 1993; Intrator and Kooperberg, 1995;
Zhang, 1995; LeBlanc, 2001). Some applications of tree-based methods for
cancer prognostication are given by Albain et al. (1990, 1992), Banerjee et al.
(2000, 2004), Zhang et al. (2001), Freedman et al. (2002), and Katz et al. (2001).

Artificial neural networks were originally developed as models for the
human brain. It is generally believed that the human brain learns by adjust-
ing the connection strengths between individual nerve cells (neurons) and
thus altering its patterns of electrical activity. It is this ability to change the
patterns of interconnections and their relative strengths that is credited with
the brain’s ability to learn, and to store and use knowledge. Artificial neural
networks are loosely based on such concepts in human synaptic physiology.

A neural network is a set of simple computational units that are highly
interconnected. The units are also called nodes, and loosely represent the
biological neurons. The connections model the synaptic connections in the
brain. Each connection has a weight associated with it, called the synaptic
weight. The neurons fire when the total signal passed to that unit is activated
according to a certain activation function. Several monographs on neural
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networks have been written during the last decade; two excellent ones are by
Ripley (1996) and Bishop (1995). Ripley (1993), and Warner and Misra (1996)
discuss neural networks from a statistical perspective. Some applications of
artificial neural networks in oncology are given by Ravdin and Clark (1992),
Burke (1994), Neiderberger (1995), Errejon et al. (2001), Khan et al. (2001), and
Takahashi et al. (2004).

Random forest is an ensemble of trees, originally developed by Breiman
(2001) with the goal of improving predictive performance and addressing
the problem of instability that is often inherent in a single tree. Applications
of random forest are given by Zhang et al. (2003) and Segal et al. (2004).
In this chapter, we present an adaptation of Breiman’s (2001) random forest
methodology to the survival data setting. The strategy involves substituting
null martingale residuals for the survival endpoint and enabling inheritance
of the random forest algorithm applicable to continuous outcomes, thereby
bypassing difficulties that result from censoring. Hothorn et al. (2006) pro-
posed a unified and flexible framework for ensemble learning in the presence
of censoring.

Logic regression is an adaptive regression methodology that attempts to
construct predictors as Boolean combinations of binary covariates (Ruczinski
et al., 2003). Themethod is particularlywell suited to situations inwhich inter-
actionsbetweenmanyvariables result in largedifferences in response. Indeed,
logic regression has been applied to studies of single nucleotide polymorph-
ism (SNP) where high-order interactions between SNPs may define genetic
pathways to disease. Applications to SNP data can be found in Kooperberg
et al. (2001, 2007), and Kooperberg and Ruczinski (2005). Other applications
of logic regression in the cancer literature include combining biomarkers to
detect prostate cancer (Etzioni et al., 2003) and identifying populations for
colorectal cancer screening (Janes et al., 2005).

The chapter is organized as follows. In Section 3.2, we discuss classification
and regression trees (CARTs), with algorithms for the survival data setting
described in Section 3.2.1. In Section 3.3 we discuss artificial neural networks
for classification and censored regression. Sections 3.4 and 3.5 present random
forest and logic regression, respectively. Analyses of the breast cancer data
are presented in Section 3.6. Finally, Section 3.7 contains concluding remarks.

3.2 Tree-Based Methods

The literature on tree-basedmethods dates fromwork in the social sciences by
Morgan and Sonquist (1963), andMorgan andMessenger (1973). In statistics,
Breiman et al. (1984) had a seminal influence both in bringing the work to the
attention of statisticians and in proposing new algorithms for constructing
trees. At around the same time decision tree induction was beginning to be
used in the field of machine learning and in engineering.
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The terminology of trees is graphic: a tree T has a root which is the top
node, and observations are passed down the tree, with decisions being made
at each node (also called daughters) until a terminal node or leaf is reached. Each
nonterminal node (also called internal node) contains a question on which a
split is based. The terminal nodes of a tree T are collectively denoted by T̃,
and the number of terminal nodes is denoted by |T̃|. Each terminal node
contains the class label (for a classification problem) or an average response
(for a least-squares regression problem). The branch Tt that stems from node
t includes t itself and all its daughters. A subtree of T is a tree with root a node
of T; it is a rooted subtree if its root is the root of T.

In the CART paradigm, the covariate space is partitioned recursively in a
binary fashion. The partitioning is intended to increase within-node homo-
geneity, where homogeneity is determined by the dependent variable in the
problem. There are three basic elements for constructing a tree under the
CART paradigm. These are (1) tree growing, (2) finding the “right-sized”
tree, and (3) testing. The first element is aimed at addressing the question
how and why a parent node is split into daughter nodes. CART uses binary splits,
phrased in terms of the covariates, that partition the predictor space. Each
split depends upon the value of a single covariate. For ordered (continuous
or categorical) covariates, Xj, only splits resulting from questions of the form
“Is Xj ≤ c?” for c ∈ domain(Xj) are considered, thereby allowing at most n−1
splits for a sample of size n. For nominal covariates no constraints on possible
subdivisions are imposed. Thus, for a nominal covariate with M categories,
there are 2M−1 − 1 splits to examine.

The natural question that comes next is, how do we select one or several
preferred splits from the pool of allowable splits? Before selecting the best
split, one must define the goodness of split. The objective of splitting is to
make the two daughter nodes as homogeneous as possible. Therefore, the
goodness of a split must weigh the homogeneities in the two daughter nodes.
Extent of node homogeneity is measured quantitatively using an impurity
function. Potential splits are evaluated for each of the covariates, and the
covariate and split value resulting in the greatest reduction in impurity is
chosen.

Corresponding to a split s at node t into left and right daughter nodes tL
and tR, the reduction in impurity is given by

�I(s, t) = i(t)− P(tL)i(tL)− P(tR)i(tR),

where i(t) is the impurity in node t, and P(tL) and P(tR) are the probabilities
that a subject falls in nodes tL and tR, respectively. For classification problems,
i(t) ismeasured in terms of entropy orGini impurity. For regressionproblems,
i(t) is typically the mean residual sum of squares. The probabilities P(tL) and
P(tR) are estimated through corresponding sample proportions. The splitting
rule that maximizes�I(s, t) over the set S of all possible splits is chosen as the
best splitter for node t.

A useful feature of CART is that of growing a large tree and then pruning it
back to find the “right-sized tree.” During the early development of recursive
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partitioning, stopping rules were proposed to quit the partitioning process
before the tree becomes too large (Morgan and Sonquist, 1963). Breiman et al.
(1984) argued that depending on the stopping threshold, the partitioning
tends to end too soon or too late. Accordingly, theymade a fundamental shift
by introducing a second step, calledpruning. Insteadof attempting to stop the
partitioning, they propose to let the partitioning continue until it is saturated
or nearly so. Beginning with this generally large tree, they prune it from the
bottom up. The point is to find a subtree of the saturated tree that is most
“predictive” of the outcome and least vulnerable to the noise in the data.

Let c(t) be the misclassification cost of a node t. Now define C(T) to be the
misclassification cost of the entire tree T: C(T) =∑t∈T̃ P(t)c(t). Note that C(T)
is a measure of the quality of the tree T. The purpose of pruning is to select
the best subtree of an initially overgrown (or saturated) tree, such that C(T)
is minimized. In this context, an important concept introduced by Breiman
et al. (1984) is the concept of tree cost-complexity. It is defined as

Cα(T) = C(T)+ α|T̃|,
where α (≥0) is a penalty parameter for the complexity of the tree. The total
number of terminal nodes, |T̃|, is used as a measure of tree complexity. Note
that the total number of nodes in a tree T (i.e., its size) is twice the number of
its terminal nodes minus 1. Thus, tree complexity is really another term for
the size of the tree. The difference between Cα(T) and C(T) as a measure of
tree quality resides in that Cα(T) penalizes a large tree.

For any tree, there are many subtrees, and therefore many ways to prune.
The challenge is how to prune, that is, which subtrees to cut first. Breiman
et al. (1984) showed that (1) for any value of the penalty parameter α, there is
a unique smallest subtree of T that minimizes the cost-complexity, and (2) if
α1 > α2, the optimal subtree corresponding to α1 is a subtree of the optimal
subtree corresponding to α2. The use of tree cost-complexity therefore allows
one to construct a sequence of nested optimal subtrees from any given tree T.
This is done by recursively pruning the branch(es) with the weakest link;
that is, the node t with the smallest value of α such that Cα(t) ≤ Cα(Tt).
Having obtained a nested sequence of pruned optimal subtrees, one is left
with the problemof selecting a best tree from this sequence. Using the learning
sample (resubstitution) estimate of misclassification cost results in selecting
the largest tree. Breiman et al. (1984) suggest using a test sample or cross-
validation to obtain honest estimates of C(T). The subtree with the smallest
estimate of misclassification cost is chosen as the final tree. Details of the
cross-validation method are described in Breiman et al. (1984) and Zhang
and Singer (1999).

3.2.1 Tree-Based Methods for Survival Data

Interest in tree-basedmethods for survival data naturally came from the need
of clinical researchers to define interpretable prognostic classification rules
both for understanding the prognostic structure of data (by forming a small
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number of groups of patients with differing prognoses) and for designing
future clinical trials. Several authors have studied extensions of original tree-
based methods in the setting of censored survival data (Gordon and Olshen,
1985; Ciampi et al., 1987, 1988; Segal, 1988; Davis and Anderson, 1989; LeB-
lanc andCrowley, 1992; LeBlanc andCrowley, 1993; Intrator andKooperberg,
1995; Zhang, 1995). Some applications of tree-based survival analyses are
given by Albain et al. (1990, 1992), Banerjee et al. (2000, 2004), Freedman et al.
(2002), and Katz et al. (2001).

Consider the usual setting for censored survival data, which includes a
measurement of time under observation and covariates that are potentially
associated with the survival time. Specifically, an observation from a sample
of size n consists of the triple (yi, δi,Xi), i = 1, . . . ,n where yi is the time under
observation for individual i, δi is the event indicator for individual i (i.e., δi = 1
if the i-th observation corresponds to an event (“failure”), and =0 if the i-th
observation is censored), and Xi = (Xi1, . . . ,Xip) is the vector of p covariates
for the i-th individual. For simplicity, we will assume that there are no tied
events.

Algorithms for growing trees for survival data are broadly classified
under two general approaches. One approach is to measure the within-
node homogeneity with a statistic that measures how similar the subjects
in each node are and choose splits that minimize the within-node error.
The alternative is to summarize the dissimilarity in survival experiences
between two groups induced by a split and choose splits that maximize this
difference.

Tree growing and pruning based on measures of within-node homogen-
eity adopt the CART algorithm directly, since the measures defined are all
subadditive, allowing comparisons between subtrees. Gordon and Olshen
(1985) presented the first extension of CART to censored survival data, which
involved a distance measure (the Wasserstein metric) between Kaplan-Meier
curves and certain point masses. A likelihood based splitting criterion was
proposed by Davis and Anderson (1989) in which they assumed that the sur-
vival function in a node is exponential with a constant hazard. The measure
for within-node homogeneity is based on the negative log-likelihood of the
exponential model at a node, that is, for node h, this is given by

R(h) = Dh

[
1− log

(
Dh

yh

)]

where Dh =
∑

i∈h δi is the total number of events and yh =
∑

i∈h yi is the
sum of observation times for all subjects in node h. LeBlanc and Crowley
(1992) developed a splitting method based on the popular semiparametric
proportional hazards model, using the deviance residual as the measure of
within-node homogeneity. Therneau et al. (1990) proposed using the null
martingale residuals from a proportional hazardsmodel as the outcome vari-
able in a regression tree. In the absence of time-dependent covariates these
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residuals are given by

M̂i = δi − �̂0(yi),

where �̂0(·) is the Breslow estimator (1972) of the baseline cumulative hazard.
Since this transforms the censored data into uncensored values in the form of
the martingale residuals, they can be used directly as continuous outcome in
CART without modification to the regression tree algorithm.

A different approach to splitting is to recursively partition the data bymax-
imizing the dissimilarity of the two daughter nodes resulting from a split
(Segal, 1988). One such algorithm was proposed by LeBlanc and Crowley
(1993) who use the two-sample log-rank statistic to measure the separation
in survival times between two daughter nodes. The two-sample log-rank
statistic was chosen because of its extensive use in the survival analysis set-
ting, and also because it is an appropriatemeasure of dissimilarity in survival
between two groups. The numerator of the log-rank statistic can be expressed
as a weighted difference between estimated hazard functions

G =
∫ ∞
0

w(u)
n1(u)n2(u)

n1(u)+ n2(u)
(d�̂1(u)− d�̂2(u)),

wherew(·) = 1, n1(u)andn2(u)are thenumberof subjects at risk in eachgroup
at timeu, and �̂1 and �̂2 are theNelson cumulative hazard estimators for each
group. In general, otherweights could be chosen to have greater sensitivity to
earlyor latedifferences in thehazardsof the twogroups. LeBlancandCrowley
(1993) propose using the ratio of G-squared divided by an estimate of its
variance as the splitting statistic. Partitioning at node h, involves finding the
split s, among all variables that maximize the standardized two-sample log-
rank statistic. Pruning is done using split complexity (LeBlanc and Crowley,
1993) and the final tree is selected using a bias-corrected version of the split
complexity and bootstrap to estimate the bias.

3.3 Artificial Neural Networks

In statistical nomenclature, a neural network is a two-stage regression or clas-
sificationmodel, typically represented by a network diagram as in Figure 3.1.
The network in Figure 3.1 is a feed-forward neural network, named such
because units in one layer are connected only to units in the next layer, and
not to units in a preceding layer or units in the same layer. This network
applies to both regression and classification. For regression, typically K = 1
and there is only one output unit Y1 at the top. For K-class classification, there
are K units at the top, with the kth unit modeling the probability of class k.
There are K target measurements Yk , k = 1, . . . ,K, each being coded as a 0-1
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FIGURE 3.1
Schematic representation of a feed-forward neural network with one hidden layer.

variable for the k-th class. The number of input measurements is p, and these
are denoted by X1,X2, . . . ,Xp.

Derived features Zj are created from linear combinations of the inputs, and
then the target Yk is modeled as a function of linear combinations of the Zj,

Zj = σ(α0j + αT
j X), j = 1, . . . ,M,

Tk = β0k + βT
k Z, k = 1, . . . ,K,

fk(X) = gk(T), k = 1, . . . ,K,

where X = (X1,X2, . . . ,Xp), Z = (Z1,Z2, . . . ,ZM), T = (T1,T2, . . . ,TK), and
the α and β coefficients represent the synaptic weights. The units Zj in the
middle layer of the network are called hidden units, since theZj are not directly
observed. In general, there can bemore than one hidden layer, with a variable
number of hidden units per layer. The intercept terms α0j and β0k can be
thought of as weights introduced by adding a new unit (the bias unit) that
is permanently at +1 and connected to every unit in the hidden and output
layers. This is the same idea as incorporating the constant term in the design
matrix of a regression by including a column of 1’s.

The function σ(·) is referred to as the activation function in the neural
network literature. The only practical requirement for σ(·) is that it be
differentiable. Although several choices of σ(·) exist in the literature, the one
that is used most commonly is the sigmoid function σ(v) = 1/(1+ e−v).
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The output function gk(T) allows a final transformation of the vector of out-
puts T. For regression, we typically choose the identity function gk(T) = Tk .
For K-class classification, the function gk(T) = eTk/

∑K
l=1 eTl is used, which

is exactly the transformation used in the multilogit model, and produces
positive estimates that sum to one.

The brain learns by adapting the strength of the synaptic connections. Sim-
ilarly, the (synaptic) weights in neural networks, similar to coefficients in
regression models, are iteratively adjusted to make the model fit the training
data well. Assume that the training data consists of N observations on the
output and input units. We denote the complete set of weights by θ , which
consists of {α0j,αj; j = 1, . . . ,M} and {β0k ,βk ; k = 1, . . . ,K}, for a total of
M(p+ 1)+ K(M + 1) weights. For regression, we use sum-of-squared errors
as our measure of fit

R(θ) =
N∑

i=1

K∑
k=1
(yik − fk(xi))

2.

For classification, we use either squared error or deviance

R(θ) = −
N∑

i=1

K∑
k=1

yik log fk(xi).

The generic approach tominimizing R(θ) is by gradient descent, called back
propagation in this setting. Because of the compositional form of the model,
the gradient can be derived using the chain rule for differentiation. This can
be computed by a forward and backward sweep over the network, keeping
track only of quantities local to each unit. In the back propagation algorithm,
each hidden unit passes and receives information only to and from units that
share a connection. Hence, it can be implemented efficiently on a parallel
architecture computer. For derivations of the back propagation equations in
the setting of a multilayered feedforward network, the reader is referred to
Ripley (1996) and Hastie et al. (2001).

For the iterative back propagation algorithm, starting values for weights
are usually chosen to be random values near zero. This makes themodel start
out nearly linear, and progressively nonlinear as the weights increase. Some
care is needed that the starting values are not taken to be too large, for if all
the αT

j X are initially large, the hidden units start in a “saturated state” (with
outputs very near zero or one).

Oftenneural networkswill overfit thedata at the globalminimumofR. One
way to avoid overfitting is to discourage largeweights and hence large inputs
to units. Weight decay modifies the classic algorithm by adding a penalty to
the error function R(θ) + λJ(θ) where J(θ) =∑K

k=1
∑M

j=1 β2
kj +

∑M
j=1

∑p
l=1 α

2
jl,

and λ ≥ 0 is a tuning parameter. This is analogous to ridge regression used
for linear models. Larger values of λ will shrink the weights toward zero;
typically cross-validation is used to estimate λ.
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Generally, in fitting neural network models, it is better to have too many
hidden units than too few. With too few hidden units, the model might not
have enough flexibility to capture the nonlinearities in the data; with too
many hidden units, the extra weights can be shrunk toward zero if weight
decay is used. Typically the number of hidden units is somewhere in the
range of 5–100, with the number increasing with the number of inputs and
number of training cases. It is most common to put down a reasonably large
number of units and train them with weight decay.

3.3.1 Neural Networks for Survival Data

Several methods have been proposed in the literature to adapt neural net-
works to survival analysis. The simplest approach involves the application of
so-called “single time-point models” (De Laurentiis and Ravdin, 1994). Since
they are identical to a logistic perceptron or a feed-forward neural network
with a hidden layer, they correspond to fitting of logistic regressionmodels or
their generalizations to survival data. In practice, a single time point t is fixed
and the network is trained to predict the t-year survival probabilities. This
approachwas used by Burke (1994) andMcGuire et al. (1992). Of course, such
a procedure can be repeatedly applied for the prediction of survival probab-
ilities at fixed time points t1 < t2 < · · · < tk . For example, Kappen and Neijt
(1993) trained several (k = 6) neural networks to predict survival of patients
with ovarian cancer after 1, 2, . . . , 6 years. However, note that without restric-
tion on the parameters, such an approach does not guarantee monotonicity
of the estimated survival curves. Ravdin et al. (1992), and Ravdin and Clark
(1992) developed a method that incorporates the censoring by creating mul-
tiple data records for each subject that span the follow-up time. Since these
authors use number of the time interval as input unit, the estimated survival
probabilities do not depend of the length of the time intervals. Schwarzer
et al. (2000) caution against such naive applications of neural networks to
survival data.

Standard requirements for the analysis of survival data are incorporated
in the approaches of Liestol et al. (1994), Faraggi and Simon (1995), and
Biganzoli et al. (1998) among others. For continuous time data Liestol et al.
(1994) proposed a piecewise constant hazard approach, whereas Faraggi and
Simon (1995) extended the proportional hazard Coxmodel with a neural net-
work predictor. Specifically, Faraggi and Simon (1995) suggested replacing
the functional β ′Xi of the Cox model by the output function of a single hid-
den layer feed-forward neural network. However, the maximization of the
resultant partial likelihood is complex and does not have a straightforward
implementation using standard software. Biganzoli et al. (1998) proposed a
flexible neural network approach, in a discrete survival time context, which
provides smoothed hazard function estimation and allows for nonlinear cov-
ariate effects. The authors demonstrated that by treating the time interval as
an input variable in a standard feed forward network with logistic activa-
tion and entropy error function, it is possible to estimate smoothed discrete
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hazards as conditional probabilities of failure. Biganzoli et al. (2002) also
introduced specific error functions and data representations for multilayer
perceptron and radial basis function extensions of generalized linear models
for survival data. Following by Therneau et al. (1990), original observation,
Ripley and Ripley (2001) suggested using the null martingale residuls from a
proportional hazards model as the output to a feed-forward neural network.
Kattan et al. (1998) and Kattan (2003) explored the above approach and found
that it performs competitively with the Cox model for prediction.

3.4 Random Forest

Random forest (Breiman, 2001) was developed as a second-generation CART
method. It is an ensemble (collection) of treeswhose predictions are combined
to make the overall prediction for the forest. The mechanism of selecting
a best split in CART and the recursive partitioning of data leads to smal-
ler and smaller data sets. This can lead to instability (Breiman, 1996) in the
tree structure, whereby small changes in the data and/or algorithm inputs
can have dramatic effects on the nature of the solution (variables and splits
selected). Another major shortcoming of tree-based methods is their modest
prediction performance, attributable to algorithm greediness and constraints
which, although enhancing interpretability, reduce flexibility of the fitted
functional forms. Growing an ensemble of trees and aggregating is a way
to fix these problems. The advantage in growing many trees and using an
aggregated estimate is that it is a way to reduce variance (Breiman, 2001). It
also leads to classifiers and predictors that are drawn from a richer class of
models (Hastie et al., 2001). Ensemble methods like bagging (Breiman, 1996;
Quinlan, 1996), boosting (Freund and Schapire, 1996; Quinlan, 1996), and
random forest (Breiman, 2001) yield substantial performance improvement
over a single tree and are known to be stable.

Bagging involves random manipulation of the training data through boot-
strap. A large number of pseudo datasets are generated by resampling the
original observations with replacement, and a tree grown on each pseudo
dataset. This results in an ensemble of trees, some of which may be close
to a global or local maxima. In boosting, the data are iteratively reweighted
instead of random resampling. The algorithm alternates between fitting a
tree and reweighting the data. The weights are adaptively chosen, with more
weight given to observations that the tree models poorly. Again, an ensemble
of trees result. The simple mechanism whereby bagging and boosting reduce
prediction error, is well understood in terms of variance reduction resulting
from averaging (Hastie et al., 2001). Such variance gains can be enhanced
by reducing the correlation between the quantities being averaged. It is this
principle that motivates random forest.

Random forest (Breiman, 2001) is an ensemble of unpruned classification or
regression trees, induced from bootstrap samples of the training data, using
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random feature selection in the tree induction process. Correlation reduc-
tion is achieved by the random feature selection. Instead of determining the
optimal split of a given node of a tree by evaluating all allowable splits on
all covariates, as is done with growing a single tree, a subset of the cov-
ariates drawn at random is employed. Prediction is made by aggregating
(majority vote for classification or averaging for regression) the predictions
of the ensemble. Random forests demonstrate exceptional prediction accur-
acy (Breiman, 2001) comparable to artificial neural networks and support
vector machines.

3.4.1 Random Forest for Survival Data

The published literature on ensemble techniques for survival data is sparse
owing to the difficulties induced by censoring. Hothorn et al. (2004) studied
an aggregation scheme for bagging survival trees. Breiman (2002), introduced
a software implementation of a random forest variant for survival data; how-
ever, it does not comewith a formal description of themethodology. Ishwaran
et al. (2004) proposed a method that combines random forest methodology
with survival trees grown using Poisson likelihoods. In a very recent article,
Hothorn et al. (2006) proposed a unified and flexible framework for ensemble
learning in the presence of censoring.

In this section, we present an adaptation of Breiman’s (2001) random forest
methodology to the survival data setting. The strategy involves substituting
suitably chosen residuals for the survival endpoint and enabling inheritance
of the random forest algorithm applicable to continuous outcomes, thereby
bypassing difficulties that result from censoring. This general strategy has
been employed to adapt additive (Cox) models (Grambsch et al. 1995; Segal
et al. 1995), multivariate adaptive regression splines (MARS) (LeBlanc and
Crowley, 1999), regression trees (LeBlanc and Crowley, 1992; Keles and Segal,
2002), artificial neural networks (Kattan et al. 1998; Ripley and Ripley, 2001)
and least angle regression-lasso (Segal, 2006) to censored survival outcomes.

For growing random forest in the survival data setting, we propose using
the null martingale residuals from a Cox proportional hazards model as the
outcome variable in the random forest algorithm. This approach is easy to
implement and circumvents the complexity induced by censoring. Ensemble
predictions are computed by aggregating across different trees in the forest.
This reduces variance and avoids the instability of working with a single
tree. We illustrate this approach using data from the breast cancer prognostic
study.

Following Breiman (2001), the idea is to grow trees by injecting two types
of randomness into the process. To grow the trees in the forest: (1) Bootstrap
the training data. Grow each tree on an independent bootstrap sample using
null martingale residuals from a Cox proportional hazards model as the out-
come variable. (2) At each node, randomly select m covariates out of all M
possible covariates. Find the best split on the selected m covariates. (3) Grow
the tree to maximal depth under the restriction of minimum nodesize = 5
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(i.e., splitting is stopped when a node has fewer than five subjects). No prun-
ing is performed. (4) Repeat for each bootstrap sample. (5) Average the trees
to get predictions.

Steps 1 and 2 introduce randomness. To ensure that random forests have
good prediction properties, it is important to check that the correct amount
of randomization has been introduced. This means that we need to determ-
ine an appropriate number of randomly selected covariates, m, to be used in
step 2 of the procedure. If we select too few covariates, the trees might be too
sparse, and the ensemble estimator will have suboptimal properties. Choos-
ing too many covariates will make the trees highly correlated, which can also
degrade performance. As discussed in Breiman (2001), onemethod for assess-
ing the accuracy of a forest is through its generalization error. As m increases,
the strength of a tree increases, which contributes to a lower forest general-
ization error; at the same time, however, the correlation between residuals
increases, which increases error.

An estimate of the prediction error rate is obtained, based on the training
data, as follows: (1) At each bootstrap iteration, predict the data not in the
bootstrap sample (Breiman calls this “out-of-bag” data) using the tree grown
with the bootstrap sample. (2) Average the out-of-bag predictions. Calculate
the error rate, and call it the out-of-bag estimate of error rate. Given that
enough trees have been grown, the “out-of-bag” estimate of error rate is an
accurate estimate of test set prediction error rate (Breiman, 2001).

In addition to excellent prediction performance, random forests possess a
number of advantages. These include the distinction of forests from so-called
black-box methods (e.g., neural nets), and accurate, internal estimates of test
set prediction error. Furthermore, a by-product of forest is a collection of
variables that are frequently used in the forests, and the frequent uses are
indicative of the importance of these variables. Zhang et al. (2003) examined
the frequencies of the variables in a forest andused them to rank the variables.
We illustrate these in our analysis of the breast cancer data.

3.5 Logic Regression

In the logic regression framework, given a set of binary covariates X, the
goal is to try to create new, better predictors for the response by considering
Boolean combinations of the binary covariates. For example, if the response
is binary, the goal is to find decision rules such as “if X1,X2,X3, and X4 are
true,” or “X5 or X6 but not X7 are true,” then the response is more likely to
be in class 0. Boolean combinations of the covariates, called logic trees, are
represented graphically as a set of and/or rules. An example of such a tree is
shown in Figure 3.2, representing the Boolean expression (X1 ∧ Xc

2) ∧ [(Xc
3 ∧

Xc
4) ∨ (X5 ∧ (Xc

3 ∨X6))]. Note that a logic tree is similar to CART in the sense
that any tree produced by CART can be written as a Boolean combination
of covariates. However, there are some Boolean expressions that can be very
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FIGURE 3.2
Schematic diagram of a logic tree representing the Boolean expression (X1 ∧Xc

2) ∧ [(Xc
3 ∧Xc

4) ∨
(X5 ∧ (Xc

3 ∨ X6))]. White letters on black background denote the conjugate of the variable.

simply represented as logic trees, but which require fairly complicated CART
rules (Ruczinski et al., 2003).

Let X1,X2, . . . ,Xk be binary (0/1) predictors and let Y be the response. The
general logic regression model is written as

g(E[Y]) = β0 + β1L1 + · · · + βpLp, (3.1)

where Lj is a Boolean combination of the predictors Xi. The above model can
be applied to any type of regression outcome by choosing the correct scoring
and link functions. The score function can be thought of as a measure of
quality of the model under consideration. For example, for linear regression,
g(E[Y]) = E[Y], and the residual sum of squares could be used for the score
function. For logistic regression, g(E[Y]) = log(E[Y]/(1 − E[Y])), and the
score could be the binomial deviance. The goal is to find Boolean expressions
in Equation 3.1 that minimize the scoring function associated with the model
type, estimating the parameters βj simultaneously with the search for the
Boolean expressions Lj. The output from logic regression is represented as a
series of trees, one for eachBooleanpredictor, Lj, and the associated regression
coefficient.

Ruczinski et al. (2003) provide a detailed description of logic regression
and the algorithm used to fit it. Finding good candidates for the logic trees
can be challenging since the total number of possible trees is huge. Since an
exhaustive search of all logic trees is infeasible, the trees are selected by a
simulated annealing algorithm (van Laarhoven and Aarts, 1987), in which a
modification to the current logic tree is proposed at random. The proposed
change is chosen from a set of permissible moves that include replacing a
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covariate with another, changing an and/or operator, adding or removing
a branch, or splitting a node. The proposed modification to a tree is always
accepted if the score of the new tree is better than the score of the previous
tree. If the score of the new tree is not better, then the new tree is acceptedwith
a certain probability. This acceptance probability depends on the difference
between the two scores and the stage of the algorithm.

In addition to the specification of the scoring function, the fitting algorithm
also requires that the maximum number of trees (p) be specified. This is com-
putationally necessary, since all trees in the model are fit simultaneously.
Furthermore, in order to avoid overfitting, model size, measured by themax-
imum number of variables, or leaves, that make up a tree, is fixed. During
model fitting, modifications to the tree are not proposed if they result in a
tree exceeding the fixed size. The model size can be selected using external
test sets, cross-validation, or randomization tests (Ruczinski et al., 2003). For
interpretability themodel size can also be chosen a priori, as implemented by
Janes et al. (2005).

Logic regression models are not restricted to classification or linear regres-
sion. Any other regression model can be considered as long as a scoring
function can be determined. Specifically, for survival data, Ruczinski et al.
(2003) considered the Cox proportional hazards model using partial likeli-
hood as score. Software for fitting logic regression models is available as R or
Splus packages at http://bear.fhcrc.org/ingor/logic/.

3.6 Detroit Breast Cancer Study

As an illustrative example, we present analyses of data from a cohort study of
breast cancer patients. Women eligible for this study were newly diagnosed
patients with stage I, II, or III breast cancer, diagnosed between January 1990
and December 1996 at Harper Hospital in Detroit, Michigan. Detailed demo-
graphic, clinical, pathological, treatment, and follow-up information were
obtained from the Surveillance, Epidemiology, and End Results (SEER) data-
base, hospital, and clinic records. Recurrence-free survival (RFS) was the
primary endpoint of the study, defined as the interval between diagnosis
and documented regional/local or distant recurrence. The primary goal of
the study was to identify patient subgroups with homogeneous RFS within
a group but also different RFS between groups (i.e., prognostic grouping of
patients).

The analysis cohort consisted of 764 patients. A total of ten covariates were
considered for the analysis. These included sociodemographic variables (age,
race, marital status, and socioeconomic status), factors characterizing tumor
(tumor size, number of positive lymph nodes, tumor differentiation, estro-
gen receptor (ER), and progesterone receptor (PR) status), and body mass
index (BMI) as a comorbid factor. Patients were classified as obese if their
BMI was>30, per the standard guideline recommended by theWorld Health
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Organization (WHO,1998). Numberofpositive lymphnodeswas categorized
as: 0, 1–3, 4–9, and>10 positive nodes. Tumor differentiationwas categorized
as: well, moderate, and poor. Estrogen and progesterone receptors are binary
categorical variables (positive/negative).

Data analysis was performed in R (R Development Core Team, 2005). We
performed tree, neural network, random forest, and logic regression analyses
of the breast cancer data using null martingale residuals from a propor-
tional hazards model as the outcome variable. Null martingale residuals are
obtained simply in R by specifying residual type and zero iterations in the
call to function coxph(). The 764 patients were split randomly into two-thirds
for training (N = 524), and one-third for testing (N = 240). The primary
motivation for this analysis was to compare and contrast the four methods
in yielding simple, interpretable prognostic rules, as well as compare their
predictive performances on the testing set.

For constructing the survival tree, we used the RPART package (Therneau
and Atkinson, 2005) in R. For constructing the neural network, we used the
nnet package in R (Venables and Ripley, 2002). We set the number of hidden
units to be 20 a priori. The decay parameter was varied between 0 and 1 and
the value that gave the lowest error on the training set was chosen. After
the final model was chosen (decay = 0.0001), the model was trained and
prediction error was reported on the basis of the testing set. For growing ran-
dom forest, we used the randomforest software, available as an R interface
(Liaw and Wiener, 2002). We grew 500 trees in a forest. The primary tuning
parameter m (i.e., the number of covariates selected randomly at each node,
among all possible covariates) was varied from 2 to 5. The smallest predic-
tion error (based on “out-of-bag” estimates of prediction error variance) was
achieved by m = 2 among the range of forests examined. Also, the size of the
individual trees constituting the forest is controlled by a tuning parameter,
which specifies the number of cases in a node below which the tree will not
split. This was set to the default value of 5, which is claimed to give generally
good results. The logic regression analyses were done using the R code avail-
able fromhttp://bear.fhcrc.org/ingor/logic/. The scoring function usedwas
residual sum of squares. In our analyses, we chose model sizes a priori; for
interpretability we fit models with four leaves per tree.

Figure 3.3 shows the survival tree based on using null martingale resid-
uals. At each level of the tree, we show the best splitter (covariate with
cutpoint). Circles denote terminal nodes in the trees. Within each terminal
node, n denotes the number of patients, R denotes the (crude) number of
recurrences, and 5 Yr is the 5-year RFS rate. The root node was split by tumor
size ≤2 cm vs. >2 cm. Patients with tumors smaller than 2 cm had signific-
antly better RFS than patientswith larger tumors (>2 cm). The former formed
a terminal node in the tree; notably, this group had the best prognosis, with a
5-year RFS rate of 85%. The subgroup with tumors >2 cm was next split by
number of positive lymph nodes (<4 vs. ≥4 positive nodes). None of the res-
ulting subgroups had any further split and formed terminal nodes, thereby
resulting in a tree with three terminal nodes. Patients with tumor size>2 cm,
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Tumor size ≤2cm Tumor size >2cm
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FIGURE 3.3
Survival tree based on martingale residuals.

and more than four positive nodes had the worst prognosis, with a 5-year
RFS rate of 22%. In comparison, patients with tumor size >2 cm, but fewer
than four positive nodes did better, with an intermediate prognosis (5-year
RFS rate = 59%).

Figure 3.4 shows a plot of variable importance from the random forest
analysis. The variable importances correspond to the forest with minimal
prediction error (m = 2). Note consistency with the tree results in terms of
the prominence of tumor size, and number of positive lymph nodes.

For the logic regression analysis, we first fitted a model with a single
Boolean tree predictor, that is, p = 1. The tree is shown in Figure 3.5. The
estimate and the 95% confidence interval associated with the coefficient for
the tree are 0.43 and (0.34, 0.52) respectively, with p-value <0.001. Patients
withpoorly differentiated and large (≥2 cm) tumors, whohavepositive nodes
or whose age is ≤50 years have a worse outcome. Note that for prognostic
grouping, with only one tree, there is only one distinct nondegenerate posit-
ivity criterion to consider, namely, whether or not the tree is satisfied (L1 = 1).
For patients satisfying the tree (i.e., those with poorly differentiated and large
(≥2 cm) tumors, who have positive nodes or whose age is ≤50 years), the
5-year RFS rate was 39%, compared with 81% for patients who do not satisfy
the tree. We also fit logic regression models with two trees, that is, p = 2. The
model was fit six times, resulting in three unique two-tree models. Since the
simulated annealing algorithm used to fit the logic regression models is not
guaranteed tofind the “best”model, this variation is to be expected. However,
the prediction errors based on the test set for all three two-tree models were
larger than the prediction error for the single Boolean tree model, therefore,
we do not present the results of the analyses from the two-tree models.

Table 3.1 shows the prediction errors from the tree, neural network, ran-
dom forest, and logic regression (single Boolean tree) analyses. The entries
are prediction error variances based on the testing set (N = 240). The best
prediction error was achieved by the random forest. However, this is only
a marginal improvement from the prediction error attained from a single
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FIGURE 3.4
Plot of variable importance in the random forest with minimal prediction error (m = 2).

pruned survival tree. A possible reason for this is the strong correlation
between the covariates in this study. Roughly 65% of all possible pairwise
correlations between covariates were significant. This could have potentially
hindered the effectiveness of the random forest variance reduction strategy.
The single logic tree (Figure 3.5) was very comparable to the survival tree
(Figure 3.3) based on predictive performance, indicating that for this prob-
lem there are several models that perform equally well. The neural network
had the largest prediction error variance. Furthermore, the so-called black-
box nature of the method makes it unattractive as a tool for prognostication.
In contrast to neural network, the other three methods allow us to describe
and evaluate the influence of individual covariates. This information is often
of equal importance as the decision rule, since it allows the clinician to bet-
ter understand the underlying process. Indeed, all the other three methods
(survival tree, random forest, and logic regression) give consistent evidence
about the importance of tumor size and positive lymph nodes, concurring
with previous reports in the literature. In addition, the survival tree and
logic tree both provide simple characterizations for prognostic grouping of
patients.
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FIGURE 3.5
The single logic tree, L1, fitted to the breast cancer data. Variables that are printed white on a
black background are the complements of those indicated.

TABLE 3.1
Prediction Error Variances from Survival
Tree, Neural Network, RandomForest, and
Logic Regression for Breast Cancer Data

Method Prediction Error Variance

Tree 59.84
Neural net 74.80
Random forest 55.77
Logic regression 59.50

3.7 Conclusions

In this chapter, we discussed methodological and practical aspects of classi-
fication and regression tree, artificial neural network, random forest, and
logic regression for cancer diagnosis and prognostication. Using data on
breast cancer patients, we compared and contrasted these methods in terms
of their predictive performance, and their capability to yield simple, inter-
pretable prognostic rules. We found that a random forest constructed using
nullmartingale residuals from a proportional hazardsmodel had the smallest
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prediction error. Results from the logic regression and survival tree analyses
were very comparable in terms of predictive performance. Both methods
also provide a natural way to identify patient subgroups based on covariate
profiles. On the other hand, a by-product of the random forest analysis is
a collection of variables that are frequently used in the forest, and the fre-
quent uses are indicative of the importance of these variables. These variable
importance summaries can be used to assess the relative importance of the
covariates in a forest. In contrast, neural networks fail to provide such inform-
ation, and therefore their utility in assessing the effect of individual covariates
is limited. In our breast cancer data example, the neural network construc-
ted using null martingale residuals also had considerably worse predictive
performance compared with the tree models and random forest.

Applications of neural networks in the clinical literature are often accom-
panied by grossly overstated claims, such as neural networks’ “ability to
learn . . . make them formidable tools in the fight against cancer” (Burke,
1994), and “neural computationmay be as beneficial tomedicine and urology
in the twenty-first century as molecular biology has been in the twentieth”
(Neiderberger, 1995). There are many other instances in the clinical literature
praising neural networks as the ultimate solution to the problem of diagnosis
and prognosis. However, as pointed out by Schwarzer et al. (2000), there
is no evidence that artificial neural networks have provided real progress
in the field of diagnosis and prognosis in oncology. Feed-forward neural net-
works are nothingmore than regressionmodels, the onlydifference being that
feed-forward neural networks (with hidden layers) provide a larger class of
regression functions. This is often referred to as the greater flexibility of neural
networks. However, greater flexibility is only of value if the true regression
function is far away from that of a linear or logistic regression model. Small
deviations from a linear or logistic model do not matter, because owing to the
small sample sizes of a few hundred typical in oncological applications, such
a difference may be small relative to random errors. Large deviations, espe-
cially functions with many jumps, are not very plausible, because biological
relationships tend to be smooth. Hence one cannot expect that the greater
flexibility of neural networks helps them to outperform regression models,
especially if the latter are combinedwith carefulmodel building, allowinguse
of quadratic or higher interaction terms, for example. Schwarzer et al. (2000)
also discuss methodological deficiencies often associated with applications
of artificial neural networks in oncology.

Support vector machine (SVM) is another supervised machine learning
technique, that has been shown to perform well in multiple areas of biolo-
gical analysis. SVMs (Burges, 1998; Cristianini and Shawe-Taylor, 2000) were
originally introduced by Vapnik and coworkers (Boser et al., 1992; Vapnik,
1998) and successively extended by a number of other researchers. SVMs dif-
fer from other linear discriminant methods in that they produce nonlinear
boundaries by constructing a linear boundary in a large transformed version
of the predictor space. Owing to their robustness to sparse and noisy data,
SVMs have been used for a wide range of classification problems, especially
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in cancer genomic and proteomic studies. Some recent applications of SVMs
to genomic data are found in Furey et al. (2000), Listgarten et al. (2004), Man
et al. (2005), Hayashida et al. (2005), and Ehlers and Harbour (2005).

There are many versions of free-wares implementing the methods
described in this chapter. Most of these are available through Statlib
(http://lib.stat.cmu.edu) and CRAN (http://cran.r-project.org/). In partic-
ular, the RPART program (Therneau and Atkinson, 2005) could be used
to implement the classification and regression tree methods, including
the methods of LeBlanc and Crowley (1992), and Therneau et al. (1990)
for censored data. Free, open-source code for random forests is available
from http://www.stat.berkeley.edu/users/breiman/RandomForests. There
is also an R implementation of random forests (Liaw and Wiener, 2002). Soft-
ware for artificial neural network is available as nnet package in R (Venables
and Ripley, 2002). Finally, R code for logic regression analysis is available
from http://bear.fhcrc.org/ingor/logic/.
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4.1 Introduction

Proteins are the building blocks of life, as they constitute the basis for much
of the molecular machinery that enables cells to function and replicate effi-
ciently. Understanding protein function and interactions, and, in particular,
loss of function and/or interactions in case of disease, are thus important
goals in biomedical science in general. Although many factors can contrib-
ute to the breakdown of parts of this molecular machinery, one important
question when studying a particular disease often concerns which proteins
are at the root of disease manifestation. Answers to this questions can lead
to fundamental insights into protein function and, possibly, to new dia-
gnostic techniques and/or promising therapeutic targets. The prospect of
having technology that can reliably identify proteins that are effectors of dis-
ease (or at least affected by disease) is thus understandably very exciting for
biomedical research in general.
Proteomic approaches to this problem attempt to capture a global snap-

shot of protein expression in a biological sample. The great difficulty that
needs to be overcome lies fundamentally in the tremendous diversity of the
physical properties of protein molecules, making them very difficult tar-
gets to capture and purify experimentally. Furthermore, proteins are very
dynamic in nature, exhibiting flexibility and variability in their conforma-
tional states, their expression levels, and their cellular localization. This is
in stark contrast to, say, genetic sequence that remains essentially intact and
static over the entire lifetime of an organism. Last but not least, a typical
cell contains tens of thousands of different protein species that undergo a
number of post-translational modifications, further complicating their iden-
tification and analysis. And so, although proteomics has tremendous appeal
and would invariably have revolutionary impact on biomedicine in general,
many technical challenges have yet to be overcome for it to translate into the
clinic.
One particular proteomic approach that has been investigated in the last

several years and has generated heated and sometimes controversial discus-
sion is that ofmass spectrometry-based protein profiling. The idea here is to use
mass spectrometry (for details see Section 4.2) to generate a one-dimensional
massprofileof a complexbiological sample. Peaks in thisprofile arepresumed
to indicate the presence of one (or more) proteins of the corresponding mass
in that biological sample, and by comparing mass profiles from, say, popula-
tions of diseased specimens with those of healthy controls one hopes to find
clues as to which mass regions would be interesting to examine in greater
detail. Early publications on this general approach suggested that the ana-
lysis of the mass spectra might lead directly to diagnostic tools (i.e., without
identification of the actual molecular origins of the observed peaks in the
spectra), but more careful studies have shown this to probably be overly
ambitious and unrealistic. And so, although it is still unclear to date whether
mass spectrometry-based protein profiling as a technique will finally have
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the impact on disease diagnosis and lead to the generation of insights into
molecular disease mechanisms, that were promised in early publications, it
is worth discussing computational and statistical aspects associated with the
kind of data generated by the technique. In this Chapter we outline some
of the steps that have been proposed to handle the high-dimensional nature
ofmass spectra, and criticallydiscussproblems suchas reproducibility, lackof
test data as well as validation.

4.2 Mass Spectrometry Profiling of Complex Biological Samples

We first outline the experimental techniques that generate the primary
data that are later subjected to the analytical techniques that are of par-
ticular interest here. Mass spectrometry-based protein profiling techniques
have relied primarily on so-called MALDI-TOF (matrix assisted laser
desorption/ionization-time of flight)-based technology. Briefly, the protein
content is extracted from clinical samples (typically fromfluids, such as blood
serum, urine, spinal fluid, or saliva), mixed with a so-called matrix to cocrys-
tallize with the protein sample, and the mixture is spotted and immobilized
on a target plate. A laser shot ionizes the proteins in the sample and transfers
them into gas phase, in general without breaking their structural integrity.
The ions are then accelerated by an electric field and fly to a detector, with
their flight time being a function of their mass to charge ratio. The time an
ionized protein takes to fly through the vacuum tube and into the detector is
a function of its mass, so that intensities in the resultingmass spectrum above
a certain signal-to-noise-threshold can be inferred to indicate the presence
of a protein at the corresponding mass-to-charge ratio. It should be stressed
at this point that MALDI-TOF-based profiling of undigested samples does
not actually allow for the identification of proteins that are expressed in a
given biological sample. It is rather only a somewhat rough screening step
that, if performed properly, aims to answer the question whether statistic-
ally significant differences in protein profiles can be detected. If answered
in the affirmative, then the masses corresponding to differentially expressed
peaks can be used to narrow the search for differentially expressed proteins
using complementary technology. This brief outline should also make it clear
that there are numerous parameters at the experimental level that need to be
chosen appropriately, such as the matrix to be used for sample crystalliza-
tion, the number of spectra to sum per acquisition, the instrument calibration
procedure, the laser intensity, and so forth. The quality and shape of the
resulting mass spectra depend on the particular choices of these to various
degrees, and good choices will also depend on the nature of the biological
sample being profiled, but one should certainly be aware of these choices that,
if chosen inconsistently, make a comparative analysis between experiments
difficult.
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Biological fluids such as serum, plasma, or urine, which are often targeted
for profiling, are exceedingly complex in their proteomic content. In order
to reduce complexity and thus increase the sensitivity of mass spectrometry-
based profiling several steps can be taken. Abundant common proteins (such
as albumin in the case of serum), which can result in large peaks that mask
smaller ones, can (and should) be depleted. Furthermore, samples are com-
monly fractionated using chromatographic methods, either in the form of
magnetic beads or, in the case of the so-called surface-enhanced laser desorp-
tion/ionization (SELDI) technology, by spotting samples onto target chips
that have affinity to certain subpopulations of proteins (e.g., proteins with
a certain degree of hydrophobicity). The details of these wetlab sample
preparation steps are beyond the scope of this paper. However, interested
reader may refer to Hutchens and Yip (1993), Merchant and Weinberger
(2000), Srinivas et al. (2001), and Srinivas et al. (2002) for a detailed dis-
cussion of these technologies. It suffices, however, to say that appropriate
choices for a given experimental setup are crucially important and will
often be the determining factor if the resulting data will be useful (e.g.,
contain signature peaks that discriminate between the two sample popula-
tions) or not. Finally, we point out that mass spectrometry exists in many
guises and is used for many purposes other than profiling (e.g., protein
identification, to name another very important application). In particular,
another application of MALDI-TOF mass spectrometry is the so-called pep-
tide mass fingerprinting (PMF) approach to protein identification. In this
context, MALDI is used to obtain a mass spectrum of a tryptic digest of a
purified protein in order to identify it by comparing the spectrum with that
of a theoretical digest. We stress that our application is quite distinct from
PMF as it profiles complex and undigested protein samples and over a larger
mass range. Other mass spectrometry techniques that are quite relevant for
the field of proteomics include liquid chromatography mass spectrometry
(LC/MS-MS) and FTQ mass spectrometry. The nature of the data generated
by these instruments is very different from the profiles generated byMALDI-
TOF, making these topics beyond the scope of this present paper. Interested
reader may refer to Aebersold and Mann (2003) and Listgarten and Emili
(2005).
We continue in the following sections with an overview of various compu-

tational and statistical techniques that have been proposed in the literature
to deal with MALDI-TOF-based mass spectrometry profiling data. Recently,
several articles, for example, by Fung and Enderwick (2002), Yasui et al.
(2003), Wu et al. (2003), and White et al. (2004) have appeared providing
steps for these type of data analysis. Although a set of strategic steps of pro-
tein biomarker discovery in prostate cancer data are provided in Yasui et al.
(2003), the article by Wu et al. (2003) provides a comparison of several classi-
fication methods for analyzing ovarian cancer data. Also, see Aebersold and
Mann (2003) and Listgarten and Emili (2005) for review of various steps in
the analysis of LC-MS data.
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4.3 Data Description

A mass spectrum m = (x, y) consists of a (typically very high-dimensional)
real valued vector x of mass-to-charge values xi and a real valued vector y of
equaldimension representing themeasured intensitiesyi at the corresponding
xi. The xis haveunitDalton/charge (m/z) and are a function of the (measured)
time-of-flight of the ionized molecule in the vacuum tube. The units of the
intensity values yi are arbitrary, the measured value depends on the signal
measured by the detector at the corresponding time of flight as well as the
number of acquisitions summed for the measurement. This number can vary
from spectrum to spectrum, depending on instrument settings that determine
when an acquisition is discarded owing to lack of signal strength.
Early publications in the field reported each sample being profiled just

once, resulting in a single mass spectrum representing the information about
each sample. See Figure 4.1 for such a spectrum for a sample. Samples are
often fractionated, however, and thus it is possible that each clinical sample
be represented by multiple complementary spectra. Furthermore, in order
to assess reproducibility one would want to collect technical replicate mass
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FIGURE 4.1
A mass spectrum. Masses are shown on the horizontal axis and intensities on the vertical axis.
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spectra and integrate this information. The literatureondealingwith technical
replicates is thin, however, we will revisit this topic later and for now focus
on the case where every sample is represented by a single mass spectrum.
One of the first tasks is to prepare this information (data) produced bymass

spectrometry into a matrix of data, containing variables (say, in columns)
and observations (in rows). The variables here are the different m/z ratios
and the observations are the samples. The response variable is the intensity
measured at a particular m/z ratio. The initial data will have samples from
different groups, and each sample (spectrum) will have a very large number
of measurements corresponding to it.
Suppose we have g groups and the ith group contains ni, i = 1, . . . , g

subjects. Our data constitute n1 + · · · + ng mass spectra on all the subjects
from different groups. For example, in the context of a lung cancer study,
g = 2 groups may be “normal healthy” group and “lung cancer group”;
in the context of a prostate cancer study, g = 4 groups may be “normal
group” containing n1 subjects with healthy controls, “benign prostatic hyper-
plasia” (BPH) group containing n2 subjectswith benign prostatic hyperplasia,
“early stages of cancer” group containing n3 subjects and “late stages cancer”
group containing n4 subjects. Data items collected from each spectrum can
be denoted by (xij1, yij1), . . . , (xijpj , yijpj ), where xijk and yijk respectively are the
kth observed (k = 1, . . . , pj) values ofm/z ratio and the intensity value at that
m/z ratio, for the jth subject j = 1, . . . ,ni, from the ith group i = 1, . . . , g.
Note that yij1, . . . , yijpj , represent measurements on the same subject, these are
usually correlated and pj in general will be very large. This leads to a very
high dimensional correlated data.
At first instance the data may appear to be a multivariate data set with

different number of variables observed for different samples. However, the
fact that the sampleshave intensitiesmeasuredatdifferentmasses (m/z ratios)
makes these data very different from the usual multivariate data. Various
stages are involved in preparing and analyzing these data. In the following
text we overview data analysis strategies that have been adopted for the
analysis of these high-dimensional data.
The following steps are generally used in the literature and in

various commercial packages that are available (e.g., ClinProTools by
Bruker, or CiphergenExpress by Ciphergen) to process mass spectrometry
profiling data:

• Baseline subtraction
• Preprocessing of the data
• Peak identification
• Normalization of intensities
• Peak alignment
• Peak (feature) selection, and
• Classification methods with cross-validation analysis
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Biomarker discovery process.

A slightly modified data analysis strategy diagram (from one of our earlier
publications) that summarizes various steps mentioned above is provided in
Figure 4.2. We will proceed by discussing each of them in a separate section.

4.4 Baseline Subtraction Methods

Eachmass spectrumexhibits its ownbase intensity level (a baseline) that varies
from sample to sample and hence is to be identified and subtracted. Two
approaches to handle this are (1) subtracting a fitted model and (2) applying
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a filtering method to smooth the signals. In some cases filtering as well as
subtraction of the fittedmodel can be performed (Listgarten and Emili, 2005).
Various smoothing methods are available; however, we have found local

linear regression to bemost useful. Given the data (xi, yi), i = 1, . . . ,n, the idea
behind local regression is that a regression function, say g(x), can be locally
approximated by the value of a smooth function at a predictor variable, say
x. Such a local approximation is obtained by fitting a regression surface to the
data points within a selected neighborhood of the point x. The percentage of
the data points used in each local neighborhood for fitting is the smoothing
parameter here. Weighted least squares can be used for fitting by taking a
smooth decreasing function of the distance from the data point to the center of
the neighborhood as weights. Statistical softwares, like SAS’ LOESS method
can easily implement this procedure.
Listgarten and Emili (2005) have suggested various other filters for data

smoothing including moving average, median, and moving geometric mean
filters. The “top hat" filter suggested in Sauve and Speed (2004) is another
choice. Recently, Williams et al. (2005) as an improvement over Wagner et al.
(2003)’s local linear regression technique, suggested a robust algorithm for
computing the baseline correction of MALDI mass spectra that seems to
work well.

4.5 Peak Identification and Extraction: Preprocessing Techniques

The peaks in the spectrum (local maxima in the intensity values) can be loc-
ated by assigning each peak to a prespecified subinterval of masses, or by
iteratively merging peaks that are closer than a threshold. For implementing
this, we may suggest the following approaches:

1. Divide the whole range of mass into equal subintervals of width,
say 8, 12, or 16 Da (mass units), and for each sample, determine
the maximum intensity value in these subintervals. If there are no
peaks found at a certain subinterval assign a value of zero to the
intensity.

2. Alternatively, peaks may be extracted first (peaks are the ones hav-
ing intensities greater than a certain signal-to-noise threshold value)
from each sample. Once all the peaks for all the samples are collec-
ted, a data file can be created by taking the union of all the mass
values and providing the observed intensities of the peaks at those
mass values. Once again the intensity is taken as zero if a peak did
not occur for any sample at a mass value. This method has some
drawbacks in that, if new samples have to be included in the ana-
lysis the whole exercise of processing the data has to be done once
again.
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4.6 Normalization of Intensities

The experimental setup is such that the absolute peak intensities are not
comparable across different samples. MALDI-type assays are generally not
quantitative, in the sense that one cannot estimate protein concentrations
from peak heights directly. However, individual peak intensities have been
shown to correlate highly with the amount of the particular underlying pro-
tein (Bakhtiar and Nelson, 2001), and so it is reasonable to use changes in
relative intensities as indicators of changes of protein expression levels.
This motivates the need for normalization of the intensities. One could

think of a number of choices of how to normalize, for example, with respect
to the maximum intensity in a sample, using the sum of all peak intensities,
or, possibly, using the total area under the peaks as reference value. None
of these is an obvious choice, and all have severe defects in the presence of
pathological examples. Suppose we choose to normalize with respect to the
sum of the intensities. This can be implemented by dividing peak intensities
of a sample by the sum of all peak intensities in that sample and multiplying
by 100, so that the processed intensities could be interpreted as percentages
of total intensity in the sample (see Baggerly et al., 2003; Wagner et al., 2003).
If area under the curve (AUC) is the choice, then normalize each of the mass
spectra by the dividing coefficient AUCof spectrumdivided by averageAUC
over all spectra. For implementation of this method see Fung and Enderwick
(2002) and Sauve and Speed (2004).
Satten et al. (2004) provide a systematic way to normalize the intensities. If

xi is the m/z ratio at which yi is the intensity then yi is normalized as

y∗i =
yi −Q0.5(xi)

Q0.75(xi)−Q0.25(xi)
,

where Qα(x) is an estimate of the α-th quantile of spectral intensities at
m/z ratio x. That is, the spectra is centered using a (local) estimate of the
median spectral intensity, and scaled by dividing by a (local) estimate of the
interquartile range. See Satten et al. (2004) for details on how to implement
this standardization.

4.7 Peak Alignment

Finally, in order to make the peak profiles comparable across different
samples, we need to align them, that is, to find one common set of peak
locations across all samples that will work as coordinates for the vectors we
will use for each sample in the classification schemes to follow. One way we
propose for this step is, if two peaks are within a certain small percentage



C5777: “c5777_c004” — 2007/10/27 — 13:02 — page 112 — #10

112 Computational Methods in Biomedical Research

(depending on the resolution and mass accuracy of the instrument) of each
other, say 0.4% of each other, then they should be considered identical and
theirmasses are to be reassigned. One can also use an algorithm andR routine
provided by Jeffries (2005) for this purpose.

4.8 Dimension Reduction and Peak Selection

The processed data at this stage are generally of a reasonable size with about
800–1600 variables (masses) and the intensities at those masses. Unfortu-
nately, the number of samples available in each group is usually small,
sometimes as small as five. Thus, we are faced with the problem of high-
dimensional data even after the preprocessing. Generally, in the processed
data a large percentage (many times 60% or higher) of the peaks appear in
only very few samples and are thus not likely to be helpful in classifying
the majority of the samples. Hence, one can ignore any peaks that occurs
in fewer than a certain prespecified number of samples. This step usually
reduces the dimension of the identifying vectors down to 200–300. However,
this number is still much larger than the number of samples available. There
is no hope of getting statistically meaningful results with lack of degrees
of freedom, so we need to further reduce the number of peaks used in the
classification.
Feature selection, that is, the reduction of the number of input variables

(or, in this case, peaks), is a crucially important step. Many classification
methods are known to perform poorly when “irrelevant” features or ones
without information content are added. Second, computational biologists are
frequently facedwith theproblemofhavingonly few (tens) samples butmany
(thousands) descriptors, as is the casewithmicroarray analysis. This presents
the challenge of designing models that are not “overfitted” to the data. One
approach to prevent this is to try to decrease the feature dimensionality by
performing feature selection.
Here we are interested in finding a reasonably small set of peaks in order

to then enable the identification of the underlying proteins and, eventually,
understand the biological function they have in the disease pathway. In this
sense the classification methods used can be viewed as validation methods
for the feature selection algorithms.
Unfortunately, finding the “best” set of features to build a predictive

model is a hard combinatorial problem, and so one must live with heur-
istic approaches. The literature on this subject is vast, and one generally
distinguishes between filtering methods (those which rank individual fea-
tures according to some criterion) and more involved wrapper algorithms,
which use classification methods directly to evaluate a particular set of fea-
tures. Here we suggest only simple filtering methods, since they seem to do
reasonably well for our purposes.
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4.8.1 Principal Component Method

Principal component analysis is a very general method of dimension reduc-
tion with minimal assumptions about the probability distribution of the
data. The idea behind principal component analysis is to find a best fitting
q-dimensional subspace for p-dimensional vectors y1, . . . ,yn, which min-
imizes the sum of squares of the perpendicular distance from the vectors
to the subspace. This subspace is spanned by the q-dimensional vectors
ui = L′(yi − ȳ), i = 1, . . . ,n, where L = (�1, . . . , �q) is p × q matrix of q
eigenvectors corresponding to the largest q eigenvalues of the variance cov-
ariance matrix of yi. Here, ȳ = 1/n

∑n
i=1 yi and L′ denotes the transpose of

matrix L.
In fact, ui, i = 1, . . . ,n are the principal component scores and the elements

of the vector are the principal components. These scores can be used as the
data for further statistical analysis.
In the present context, this method can be adopted to create smaller dimen-

sional data. Suppose yik is the kth sample vector (of dimension p) from the ith
group, where k = 1, . . . ,ni and i = 1, . . . , g. We compute the pooled sample
variance covariance matrix of all the data as follows:

S = 1
n− g

g∑
i=1

ni∑
k=1
(yik − ȳi)(yik − ȳi)′.

We note that S is a symmetric positive semidefinite matrix.
Suppose the eigenvalue (spectral) decomposition of S is written as S =

���′ = ∑p
i=1 λi�i�

′
i with �, a diagonal matrix containing the eigenvalues λi

of S in an increasing order at the diagonals and � containing the correspond-
ing eigenvectors �i in the columns. An approximation to S is S ≈∑q

i=1 λi�i�
′
i,

where q < p is selected so that at least about 90% of the variation in the data,
measured by the total variance, is accounted for by the q principal compon-
ents. In the present context q will be generally much smaller than p. Using
these eigenvectors we generate the data on principal component scores as:
uik = L′(yik − ȳi), k = 1, . . . ,ni, i = 1, . . . , g. For all the future statistical
analysis, one can use {uik} as the data.
Although in the present context we are using the principal component

method mainly for reducing the data, Xiong et al. (2000) found recently that
higher accuracy in discrimination can be achieved when the principal com-
ponents areused fordiscriminant analysis in classifyinggene expressiondata.
Thisworkalso supports our contention thatprincipal components canbeused
here both for dimension reduction and classification.
One disadvantage of using principal components for reducing the dimen-

sion, however, is that in this process of creating principal component scores,
we lose the identity of the original variables. However, using the magnitudes
of the elements of the eigenvectors, a selection of original variables repres-
enting each of the principal components can be made. See Khattree and Naik



C5777: “c5777_c004” — 2007/10/27 — 13:02 — page 114 — #12

114 Computational Methods in Biomedical Research

(2000) for an illustration of this approach and Lilien et al. (2003) for further
comments on this issue.
Wavelet transformation is another approach that can be used for dimension

reduction instead of principal component method. Recently Qu et al. (2003)
used wavelet transformations for dimension reduction in the context of their
prostate cancer spectrometry data analysis.

4.8.2 Peak Selection Method

In the following we propose a protein (variable) selection method that is sim-
ilar to gene selection method adopted in Dudoit et al. (2002), which directly
identifies most discriminating variables. Also see Golub et al. (1999) for an
alternative standardization for selecting genes.
The ratio of between-group sum of squares and within-group sum of

squares (B/W ratio) can be used, for feature selection. Suppose, that yikj is
the observed intensity of the jth feature of the kth sample belonging to the ith
group, that the number of groups is denoted by g, ni is the number of samples
in the ith group, and that

ȳij = 1
ni

ni∑
k=1

yikj, ȳj = 1∑g
i=1 ni

g∑
i=1

ni∑
k=1

yikj.

Then the between-group sum of squares for the jth feature is

Bj =
g∑

i=1
(ȳij − ȳj)

2

and the within group sum of squares is

Wj =
g∑

i=1

ni∑
k=1
(yikj − ȳij)

2.

For every feature j = 1, . . . , p we compute Bj/Wj or equivalently (for
ordering purposes), the ANOVA F-statistic

Fj =
Bj/ν1

Wj/ν2
,

where ν1 = g − 1 and ν2 = ∑
ni − g are the degrees of freedoms of Bj and

Wj respectively. Then the reduced data set will be the data corresponding
to the q largest Fj values. An advantage of this method over the other data
reduction techniques, like principal component analysis, where the data on
few linear combinations of the original variables (features) are used, is that
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we can obtain clues (their molecular weight or mass-to-charge ratio) as to the
identity of the important proteins that are used as classifiers.
A slightly more general ordering criterion for feature selection is theWilks’

likelihood ratio (	), which is the ratio of the maximized likelihood function
under the assumption that there is no difference between the groups and the
maximized likelihood function without any assumption. Smaller values of	
indicate more significant differences between the groups. If the probability
density functions (pdf) are normal then this method reduces to the B/W ratio
(F-statistic) method described above. The advantage of this method is that it
allows us to use a different pdf for this process.

4.9 Classification/Discrimination Methods

The next task is to perform a discriminant analysis to construct discriminant
functions so that the classificationof thenewunknownsamplesobtained from
MS can be performed. Various classical andmodernmethods are available for
this purpose. Classical statisticalmethods (parametric aswell as nonparamet-
ric) have stood the test of time and proved to be very useful. However, two
modern classification methods have emerged recently. One set of methods
is bagging with boosting of classification trees, and the other set is based on
support vector machines. Boosting methods have been utilized by Qu et al.
(2002), and several classical statistical methods and support vector machines
are adopted by Wagner et al. (2004) in their analyses.
In the following sections, we will only briefly describe these methods and

more details can be found in Khattree andNaik (2000) andHastie et al. (2001).

4.9.1 Parametric Discriminant Procedures

In general, in discriminant analysis, the decision rule to classify a new (or
test) sample into one of the several groups by taking the prior probabilities
and the cost of misclassifications into consideration, is as follows. Classify
the sample with an observation vector y into the ith group if the expected
cost of misclassification,

∑g
s=1 πsfs(y)c(i | s), s �= i, is smallest for i = 1, . . . , g.

Here πs and fs(y), s = 1, . . . , g, are respectively the prior probability and
the probability density function for the sth group and c(i | s) is the cost of
misclassification when the sample is classified into the ith group when it
actually comes from the sth group. Of course, for s = i, c(i | i) = 0. If all the
costs of misclassification are assumed to be equal then the classification rule
is based onminimizing the expected total probability of misclassification and
we classify the sample into the ith group if

∑g
s=1 πsfs(y), s �= i, is smallest

for i = 1, . . . , g. This rule further reduces to simply checking whether or not
πifi(y) > πjfj(y), for all j = 1, . . . , g, j �= i (see Anderson, 1984). In practice,
different known multivariate probability densities can be used for fi(·), but
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themost common density used is themultivariate normal density. If the form
of the density is not assumed to be known then the nonparametric methods
are used for estimating the density using the data.
If the probability density function for the ith group is assumed to be mul-

tivariate normal with mean vector µi and variance covariance matrix i for
i = 1, . . . , g then the above classification rule simplifies to classifying an obser-
vation y into the ith group, if D2

i (y) > D2
j (y), for all j = 1, . . . , g, j �= i. Here

D2
i (y) are defined as

D2
i (y) = (y − µi)

′−1i (y − µi)+ ln|i| − 2 lnπi, i = 1, . . . , g.

Here and at later occurrences || denote the determinant of the matrix .
Also note that the quantity (y− µj)

′−1j (y− µj) is the Mahalanobis distance
between the observation vector y and the mean of the jth population. This
is one of the most popular statistical distance that measures the distances
between two vectors by taking into account the covariance matrix of the ran-
dom vector. The above rule of classification is called quadratic discrimination
rule owing to the presence of quadratic terms in y.
With D2

i (y), i = 1, . . . , g defined as above, the posterior probability that
given y, the sample will be classified into the ith group, is given in terms of
D2

i (y) as

P(i|y) = e−
1
2D

2
i (y)

/ g∑
j=1

e−
1
2D

2
j (y), i = 1, . . . , g.

The estimated posterior probabilities are obtained by replacing µ′is and
′
i s

in D2
i (y) by their maximum likelihood estimates ȳi = 1/ni

∑ni
k=1 yik and Si,

the sample variance covariance matrix computed using the data from the
ith group, i = 1, . . . , g respectively. The criterion for classifying an obser-
vation to the closest group is equivalent to classifying it to the group with
maximum posterior probability given the observation. The quadratic dis-
crimination procedure described above reduces to linear discrimination rule if
the variance covariance matrices ′i s are all equal for the g groups.
The quadratic and linear discrimination rules described here require that

the variables used for classification are continuous andmultivariate normally
distributed. If some or all the variables are categorical then predictors based
on logistic regression can be developed.

4.9.2 Nonparametric Discriminant Procedures

In the parametric discriminant analysis the density functions fi(y) were
assumed to be multivariate normal. However, often, the functional form
of these densities are unknown (or suggested to be nonnormal by the data
in hand). In many cases we are able to use some suitable transformations
of the variables to achieve multivariate normality. This in turn enables
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us to use one of the linear or quadratic discriminant analysis. However,
sometimes such attempts may fail. This necessitates a search for alternat-
ive approaches where the density functions themselves have to be estimated
from the data available as training sets. Since in this case no parametric forms
for densities are assumed, this approach is termed as the nonparametric
approach.
We now describe a nonparametric approach based on kernel method. Sup-

pose yi1, . . . ,yini , is a random sample from the ith group, and y is an
additional observation from this group that has a (unknown) probability
density function fi(y). The unknown density fi(y) is estimated (for using in
the discrimination rule) by f̂i(y) = 1

ni

∑ni
k=1 Ki(y − yik), where the function

Ki(z) is a kernel function defined for the p-dimensional vector z, normalized
such that

∫
Rp Ki(z)dz = 1. We often assume that Ki(z) is also nonnegat-

ive. Thus, any multivariate density can be a prospective choice for the
kernel function. One popular choice for the kernel is the normal kernel
Ki(z) = (1/c0(i)) exp(−(1/2)z′V−1i z/r

2), where c0(i) = (2π)p/2rp | Vi |1/2 and
recall that | Vi | is the determinant of the matrixVi. In the above expressions,
the matrix Vi is used to assign an appropriate metric in the computation of
distances and densities. In particular, some of the choices for Vi are, Vi = Si,
the estimated variance covariancematrix for the ith group,Vi = S, the pooled
estimated variance covariance matrix, Vi = diag (S), the diagonal matrix of
the pooled variance covariance matrix, and so on. The value of r in the selec-
ted kernel is chosen to get the degree of smoothness we want for the density
that is being estimated. Further details may be found in Khattree and Naik
(2000).

4.9.3 Fisher’s Canonical Discriminant Analysis

Fisher’s linear discriminant analysis, which is also known as canonical dis-
criminant analysis, is performed using only a few (less than or equal to (g−1),
where g is the number of groups) canonical variables that are certain linear
combinations of the original variables. The canonical variables have a bet-
ter capacity to discriminate between the groups than any individual variable
because these are created such that the between-group sum of squares for
these variables is large relative to the within-group sum of squares.
Suppose {y11, . . . ,y1n1}, . . . , {yg1, . . . ,ygng } of sizes n1, . . . ,ng are independ-

ent samples from the respective populations with different mean vectors
and common variance covariance matrix. Then the sample mean vectors
ȳi = 1

ni

∑ni
k=1 yik i = 1, . . . , g, estimate the corresponding population

means and the average of the population means, is estimated by ȳ =
(1/
∑g

i=1 ni)
∑g

i=1
∑ni

k=1 yik = (1/
∑g

i=1 ni)
∑g

i=1 niȳi. The common variance
covariance matrix is estimate by the pooled sample variance covariance mat-
rix S = E/(∑g

i=1 ni − g), where E is the pooled within-group sums of squares
matrix and is given by E = ∑g

i=1
∑ni

k=1(yik − ȳi)(yik − ȳi)′. Also, D, the
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between-group sums of squares matrix is given by D = ∑g
i=1

∑ni
k=1(ȳi −

ȳ)(ȳi − ȳ)′ =
∑g

i=1 ni(ȳi − ȳ)(ȳi − ȳ)′.
Now, the canonical variables are obtained as the linear combinations

v′ly, 1 ≤ l ≤ (g − 1), where the vectors v1,v2, . . . , respectively, solve the
optimization problems, maxb�=0(b′Db/b′Sb), subject to the restrictions that
v1,v2, . . . are all such that v′lSvl = 1 and v′lSvm = 0 for l �= m. Note that
for b = v1 the above ratio of between-group sums of squares to within-
group sums of squares is maximized. It may be pointed out that the vectors
v1,v2, . . . are nothing but the eigenvectors of the nonsymmetricmatrix S−1D.
The corresponding eigenvalues say wl are such that w1 ≥ w2 ≥ . . . .
In Fisher’s discriminationmethod, canonical variables corresponding to all

the nonzero eigenvalues or corresponding to only the first few can be used.
Suppose only the first r canonical variables are used. Then the classification
procedure will classify an observation vector y to the ith group if

r∑
l=1
[v′l(y − ȳi)]2 ≤

r∑
l=1
[v′l(y − ȳj)]2, for j = 1, . . . , g, j �= i.

More details can be found in Khattree and Naik (2000) and Johnson and
Wichern (2007). For only two groups and under multivariate normal distri-
bution assumption, this procedure is same as the one derived earlier on the
basis of density functions.

4.9.4 Nearest-Neighbor Methods

Another approach that is also nonparametric in nature is the nearest-neighbor
method. This approach is based on a criterion involvingdistances from“imme-
diate neighbors” and hence, bypasses the need for a density altogether. An
affinity measure to determine the nearest neighbors is selected first. Two
common measures are the Mahalanobis distance or Euclidean distance and
oneminus the correlation coefficient between the two samples. In the nearest-
neighbormethodwefirst compute the affinitymeasurebetween theunknown
sample and all the other samples. There will be as many values of the affinity
measure as there are the number of samples. For example, for an observation
y, which is to be classified into one of the g groups, there will be

∑g
i=1 ni such

measures. For k = 1, . . . ,ni, and i = 1, . . . , g, the Mahalanobis distances dik
between y and yik , where d2ik = (y−yik)′S−1(y−yik) or oneminus the absolute
value of correlation coefficients, 1− |rik| between y and yik , where

rik = (y − ȳ1)′(yik − ȳik1)√
(y − ȳ1)′(y − ȳ1)(yik − ȳik1)′(yik − ȳik1)

,

with 1 as the vector of all ones, ȳ = (1/p)∑p
j=1 yj, and ȳik = (1/p)

∑p
j=1 yikj,

assuming that yj and yikj respectively are the jth components of y and yik , can
be calculated.
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Next, we find the samples corresponding to the k smallest values of the
selected affinity measure, where k is prespecified number. The unknown
sample is classified as belonging to the group to which the maximum num-
ber of the k closest samples belong. Wemay have undecided cases due to tied
number of samples belonging to each group. If this happens a new group
(category) “undecided" is created and the proportion of samples classified to
this group is also computed.

4.9.5 Support Vector Machines

Support vector machines (SVMs) are powerful classification tools that arose
out of the machine learning and optimization communities in the 1960s
(e.g., Mangasarian, 1965). They have recently found immense popularity,
as evidenced in the large numbers of books and research articles (see, e.g.,
Vapnik, 1995, Cristianini and Shawe-Taylor, 2000, and Hastie et al., 2001, and
references therein).∗
Wewill confine ourselves here to introducing themain ideas underlying the

modeling approach and algorithms as well as our approach to the multiclass
case. Instead of going into details our goal here is merely to give a brief and
intuitive introduction.
We start with the simple case of two classes. SVMs take a list of features

(in our case peak intensities) and associated class labels (such as healthy or
cancerous) as input andattempt tofindahyperplane that cleanly separates the
two classes, that is, one that has allmembers of one class lying on one side and
allmembers of the other class on the other. In case one such hyperplane exists,
infinitely many other feasible hyperplanes will provide clean separation, and
SVMs choose the (unique) hyperplane with maximum margin, that is one that
maximizes the distance to any data point. This is in contrast to, say, Fisher’s
discriminantmethod,which canbe interpretedasfindinga linearhyperplane,
which maximizes the distance to the class medians.
If the data vectors are denoted by yi and the classes by index sets C1 and

C0, then the basic classification problem can be written as: Find vectorw and
scalar b such that {

y′iw + b > 0 for all i ∈ C1
y′iw + b < 0 for all i ∈ C0. (4.1)

Here w is the normal vector that together with the displacement b defines
the separating hyperplane. If we set ai = 1 for i ∈ C1 and ai = −1 for i ∈ C0
then Equation 4.1 can be rewritten more compactly: Find vectorw and scalar
b such that

ai(y
′
iw + b) > 0 for all i ∈ C1 ∪ C0. (4.2)

∗The interested reader should check the web site www.kernel-machines.org for an
updated and comprehensive bibliography.
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Finding the hyperplane with maximum margin can be shown (see, e.g.,
Proposition 6.1 in Cristianini and Shawe-Taylor (2000)) to be equivalent to
minimizing the norm of w, which gives rise to an optimization problem
(known as the hard-margin SVM):

minw,b ‖w‖
such that ai(y′iw + b) ≥ 1 for all i ∈ C1 ∪ C0. (4.3)

Given an optimal solution (w∗, b∗), a new sample y will be classified as
being in C1 if y′w∗+b∗ > 0, and in C0 if y′w∗+b∗ < 0. In practice, cases where
|y′w∗+b∗| is very small are often interpreted as ambiguous and no prediction
is made. The margin of the optimal hyperplane will be given by 1/‖w‖. If the
Euclidean norm is chosen, this is a (convex) quadratic optimization problem
that can be solved very efficiently with standard software.
Of course it can happen that the constraints in Equation 4.3 are inconsist-

ent. This will occur when the classification points are not linearly separable,
and, as is usually the case with real problems, happens very often when deal-
ing with real data. The typical SVM approach to deal with this case is to
allow for misclassification by introducing slack variables ξi and relaxing the
constraints. A secondary goal now is to minimize the total misclassification
(alongwithmaximizing themargin). Clearly, there is a tradeoff between these
two objectives, and their relative importance is reflected in a trade-off para-
meter C that must be chosen a priori by the modeler. The SVM formulation
with misclassification (also known as soft-margin SVM) is now

minw,b,ξi ‖w‖ + C‖ξ‖
such that ai(y′iw + b)+ ξi ≥ 1 for all i ∈ C0 ∪ C1, (4.4)

where ξ is the vector of ξi’s.
The idea can be extended to nonlinear decision boundaries by introdu-

cing nonlinear kernels. By choosing an appropriate kernel functions h(yi) that
transform the data point, one can, for example, define SVMs that handle
polynomial or Gaussian kernels. The reader is referred to Cristianini and
Shawe-Taylor (2000) for details.
The extension of SVMs to the case with multiple classes is still an active

research topic. One can use a simple pairwise approach that constructs all
g(g−1)/2 pairwise discriminators for g classes (groups). The final classifier is
taken to be the one that dominates all others, provided it exists. Otherwise, the
result is considered tobe inconclusive, anevent thatoccurs inonlyavery small
percentage of cases. This approach works reasonably well for small values of
g. We want to stress here that even in the inconclusive cases it is sometimes
possible to rule out certain classes (in case they are dominated by all others),
which is an outcome that might still be of some medical relevance. Lee et al.
(2004) have found some natural and theoretically satisfying extensions.
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4.9.6 Classification Trees

The classification and regression trees (CART) introduced by Breiman et al.
(1984) haveplayed amajor role in improving classification andmachine learn-
ing methods. The classification trees are constructed by recursively splitting
the samples into two subsets starting with all the samples. Each terminal
node is assigned a group or class label and the resulting partition provides
a classifier. See Hastie et al. (2001) for an easy exposition of these and other
machine learning algorithms. Adam et al. (2002) have used CART in their
prostate cancer spectrometry data analysis.

4.9.7 Bagging and Boosting for Improving Prediction

Breiman (1996, 1998) in a series of papers suggested methods to improve the
performance of CART and other classifiers by aggregating them. Aggregat-
ing (unstable) classifiers can greatly improve predictive accuracy. Bootstrap
aggregating, termed by Breiman (1998) as bagging, is a popular aggregating
method and it has been successfully used in mass spectrometry data analysis
by Wu et al. (2003). In bagging algorithm, a large number, say B, of bootstrap
samples are selected with replacement from the original training data set and
tree classifiers are computed using each of the B bootstrap samples. Classific-
ation of a sample is made using all these classifiers and the final classification
is based on a simple majority rule. Computer routines written in R-language
are available to implement bagging for classification.
Freund and Schapire (1997) proposed an algorithm called boosting, which

is especially popular amongmachine-learning community. Whereas bagging
algorithm works by taking bootstrap samples from the training data set,
the boosting algorithm works by changing the weights on the training set.
Construction of the predictor is such that it can incorporate weights on the
samples. Depending on the training data set classification errors, the weights
are changed and a new predictor is constructed. Variations such as Adaboost
and other algorithms to implement boosting are available in R routines.
Boostingalgorithmwith regressionandclassification treeshasbeenusedby

Quet al. (2002), and it is used alongwithpredictor basedon logistic regression
discussedbyYasui et al. (2003) in their prostate cancermass spectrometrydata
analysis.

4.9.8 Random Forest

Random forests proposed byBreiman (2001) are a combination of tree predict-
ors such that each tree depends on the values of an independently sampled
vectorhaving the samedistribution for all trees in the forest. Thismethodcom-
bines bagging and random feature selection and this leads to improvement
in predictive accuracy of the predictors. An algorithm provided by Breiman
(2003) for implementing random forest is as follows: (1) Draw B bootstrap
samples with replacement from the training data set. (2) Use the ith bootstrap
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sample and construct a classification tree and use it to predict those samples
that are not in the bootstrap sample. These samples are termed as out-of-bag
samples and the predictions are called out-of-bag estimators. (3) When con-
structing the prediction tree, at each node splitting first randomly select a
smaller number, say m, variables then choose one best split from these vari-
ables. (4) The final prediction is the average of out-of-bag estimators over all
bootstrap samples.
Using the Random forest package in R it is easy to apply this method and

Wu et al. (2003) have successfully used this for their analysis of ovarian cancer
mass spectrometry data.

4.10 Validation Techniques

Providing methods and tools for assessing and validating the predictors is
another important data analysis step. Using an appropriate measure of pre-
diction error estimation is very important for the comparisons, especially
where both smoothed and unsmoothed predictors are included.

4.10.1 Cross-Validation Method

Leave-one-out or leave-many-out cross-validation method has been a very
popular tool for validating a predictor by computing prediction error estim-
ates. In order to assess the generalization power of the classification methods
and to estimate their prediction capabilities for unknown samples, the data
are split into training and test sets. The predictor that is constructed using a
training sample (e.g., all but one) is used to classify the sample that is left out
and this process is repeated on all samples. Finally, prediction error estimate
is obtained by computing the proportion of misclassified samples. This cross-
validation procedure is easy to implement and provides an excellent estimate
of the prediction error if the predictors are smooth like linear discriminants.
We stress that feature selection also needs to be performed in every exper-
iment on the training set only (unlike what is often seen in the literature)
in order not to bias the feature selection procedure unfairly. Several papers
(e.g., Wagner et al., 2003) have shown that performing feature selection on
the entire data set often grossly underestimates the prediction error.

4.10.2 Bootstrap Method

Although for smooth predictors cross-validation method will provide an
excellent estimate of prediction error, for unsmooth predictors, like nearest
neighbor predictors, cross-validation method is found to provide unstable
estimates of prediction error. See Efron and Tibshirani (1997) for details.
In general, bootstrap provides an alternative method for estimating the
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prediction error. However, Efron and Tibshirani (1997) proposed a specific
bootstrap, the 632+ bootstrap, which is an improvement on cross-validation
method.

4.11 Examples

Herein we provide two examples that we have dealt with in the past. The
first example is Duke’s lung cancer data obtained throughMALDI-TOF tech-
nology (Wagner et al., 2003) and the second example is Eastern Virginia
Medical College prostate cancer data obtained through SELDI-TOF techno-
logy (Wagner et al., 2004). Although we have concentrated on MALDI-TOF
here, the indicated steps for data analysis are general and can be applied to
any mass spectrometry data. We have implemented the entire scheme from
Figure 4.2 using a combination of languages and tools such as Perl, SAS, and
Matlab. The SVMlight software (Joachims et al., 1999) was used for the SVM.

4.11.1 Duke Lung Cancer Data

Herein we provide a summary of the analysis of these data that is detailed in
Wagner et al. (2003). A total of 820 protein mass spectra obtained from serum
samples of 24 lung cancer patients and 17 healthy patients with each sample
split into 20 fractions were available for the analysis. Each mass spectrum
consists of 60,831 intensity measurements at discrete mass/charge (m/z) val-
ues. Both the raw data sets as well as a processed set, which contained the
locations and raw intensities of peaks as identified by the software that comes
with the MALDI-TOF instruments, were available for the analysis. The prob-
lem of interest was to find patterns among the protein mass spectra of these
samples that characterize and distinguish healthy individuals from diseased
ones.
In order to make the data amenable to classification, we needed to con-

vert the mass spectra of each fraction into lower dimension vectors, that
characterize the samples (the peak profiles). Each raw spectrum consists of
60,831 intensity measurements at discrete mass/charge (m/z) values. Given
the small sample size of 41, our first goal is to reduce this data to, say, less than
20 peaks that discriminate between healthy and diseased states. However,
first we go through a series of preprocessing steps as indicated below.

Baseline identification and subtraction: It can be seen that each mass spec-
trum (an example is given in Figure 4.1) exhibits a base intensity level (a
baseline) thatvaries fromsample to sample (fraction to fraction in this example)
and consequently needs to be identified and subtracted. We see in the figure
a near-exponential decay in the noise at the beginning, after which the noise
level appears to be a linear function of themass/charge ratio. This noise varies
across them/z-axis, and it generally varies across different fractions, so that a
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one-value-fits-all strategy cannot be applied. Using local linear regression (as
implemented in the software package SAS by the LOESS Procedure) we get
a rough approximation of the baseline iteratively in order to smooth over the
peaks. To deal with the exponential decay at the beginning we used varying
degrees of smoothness, depending on the mass/charge interval being con-
sidered. A second iteration of smoothingwas applied by identifying intensity
values that deviated from the baseline by more than one standard deviation.
Those values were (temporarily) replaced by their corresponding baseline
values, and the smoothing technique was reapplied. As can be seen in the
example in Figure 4.1, the resulting baseline appears to be satisfactory.

Peak identification and extraction: Here we took the masses of the peaks
from the processed data that were identified by the software provided with
the mass spectrometry instrument, coupled with some human processing.

Intensity normalization: Details of the experimental setup are such that the
absolute peak intensities are not comparable across different fractions, let
alone samples. One could think of a number of choices of how to normalize,
but we chose to normalize with respect to the sum of the intensities. Each
peak intensity was divided by the sum of all peak intensities in that fraction
and multiplied by 1000, so that the processed intensities could be interpreted
uniformly over different fractions and samples.

Merger of fraction data into sample data: There are numerous cases where
several fractions display peaks at very similar mass points, and so the ques-
tion arises how to decide when two peaks in different fractions are to be
considered to stem from the same protein and when they represent different
proteins. In order to extract a single peak profile per sample one needs to
merge the normalized peak profiles from the 20 fractions. The mass accuracy
of the instrumentwas given to be approximately 0.1%.We chose the following
heuristic when merging peaks. If the masses of two peaks are within 0.2%,
we merge them and assign the new peak to have a mass of the average of
the two and its intensity to be the maximum of the two peaks. The tolerance
of 0.2% was intentionally chosen to be larger than the instrument accuracy
to additionally smoothen the data. This scheme was applied iteratively, with
subsequent new peak masses to be chosen as the weighted average of the
previous peaks.

Peak alignment across samples: In order to make the peak profiles compar-
able across different samples, weused the same to the oneusedwhenmerging
fractions into samples, that is, if two peaks are within 0.2% of each other then
they were considered identical and their masses were reassigned.

Peak selection: The preceding steps resulted in vectors of length 603 for each
sample. Of the 603 peaks in this reduced data set, over 60% appear in only
very few samples and are thus not likely to be helpful in classifying themajor-
ity of the samples. Hence, we chose to ignore any peaks that occurred in
fewer than 8 samples, a step that reduced the dimension of the identifying
vectors down to 229. Next, using B/W ratio (or the F-statistic as described
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earlier) we ordered the peaks in order to select the most important peaks for
discrimination.

Classification methods:We experimented with the classification algorithms
using between 3 and 15 peaks as ordered by the B/W criterion. The methods
used are the linear and quadratic discrimination methods, nonparamet-
ric discrimination method using a kernel, k-nearest neighbor classification
(kNN) method using the Mahalanobis distance, and linear SVMs. We chose
k = 6 for kNN, r = 0.5 for the kernel method and C = 1, where C is the
tradeoff parameter betweenmarginmaximization andmisclassification error
in the SVM.

Results and discussion: Leave-one-out cross-validation error rates using top
four peaks for classification, when the selection of peaks was based on the
entire data set, averaged around 13% indicating thatmost of themethods per-
formed similar. It is encouraging that just based on four peaks these methods
were able to correctly discriminate 87% of the time. When these classifica-
tion procedures were applied on a set of randomized data sets the average
error rate was about 50% as it ought to be. This indicates that these methods
have significant discriminant power and the results obtained are not just the
artifacts of the choices made in the preprocessing stages.

We were able to increase the success rate considerably when the top thir-
teen peaks were used. For SVM and kNN the error rate dropped down, close
to 2%. However, for the quadratic discriminantmethod the error rate jumped
to the highest level at 24%. A reason for such a high rate for the quadratic dis-
criminationmethod, which requires estimation of 13×13 variance covariance
matrix within each group, is due to very small sample size (only 17) in one
of the two groups. When cross-validation studies are performed, care must
be taken to ensure that the test set does not influence the choice of the peaks
used in the classification. When peak selection was done at each iteration (on
every training set), the error rates for all the methods except SVM increased
considerably. It was found that SVM is least affected either by how the peak
selection was made or by the small sample size.
The four most significant peaks that we used in order to generate the res-

ults occur at m/z values 28,088.9, 11,695.2, 9,481.7, and 8,712.4. The first,
third, and fourth of these peaks are down-regulated in lung cancer, whereas
the second is upregulated; indeed, the second peak appears only in one of the
healthy samples, at a low intensity. Identifying these proteins or protein frag-
ments, and understanding their role in lung cancer would provide credence
to the data processing techniques and classification algorithms that we have
employed.

4.11.2 Prostate Cancer Data

Serum samples were obtained from the Virginia prostate center tissue and
body fluid bank. SELDI-TOF mass spectrometry protein profiles of serum
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from 82 unaffected healthymen, 77 patients diagnosedwith BPH, 83 patients
with organ-confined prostate cancer (PCA), and 82 patients with nonorgan-
confined PCA were available, in duplicate, for the analysis. For details on
sample preparation and the particular kind of chromatographic affinity chip
used, see Adam et al. (2002).
Peakdetection andalignmentwereperformedwithCiphergenProteinChip

Software 3.0 with somemodifications. Compilation of 326 samples providing
779 peaks in the mass range from 2 to 40 kDa were selected by the Protein-
Chip software for analysis. For details on sample preparation, the particular
kind of chromatographic affinity chip used, and various steps involved in
preprocessing of the data see Adam et al. (2002) and Qu et al. (2002).
We first chose to disregard any peaks appearing in 30 or fewer samples (i.e.,
≤10%), thus preventing the classification methods from taking advantage of
what are likely to be spurious peaks or data artifacts, possibly contaminants.
This resulted in a reduction from 779 peaks in the original data set to 220.
In order to further reduce the number of features to, say, under 25, we used
the ratio of between group sum of squares and within group sum of squares (B/W
ratio), for feature selection.
For classification/discrimination, as in the previous example, we used

the quadratic discriminant method, nonparametric (kernel) method, Fisher’s
canonical (linear) discriminant method, the kNN method, and the SVMs.
We used a standard cross-validation technique and split the data randomly

and repeatedly into training and test sets. The training sets consisted of ran-
domly chosen subsets containing 90% of each class (for a total of 294 per run);
the remaining 10% of the samples from each class (a total of 32) were left
as test sets. Feature (peak) selection was performed in every experiment on
the training set only. Repeated cross-validation runs were used to estimate
the average classification accuracy as well as the standard deviation. The fol-
lowing conclusions are made on the basis of our experiments. Details can be
found in Wagner et al. (2004).
On the basis of 100 repetitions, all themethods achieved rather comparable

prediction accuracies, which ranged from 75% to 84%, with SVM performing
the best. The standard deviations were rather high, which indicated that
there was awide range of observed classification accuracies over the 100 runs
performed. Our results also indicated that all methods are rather sensitive to
noise. Increasing the number of peaks at times deteriorates the classification
accuracy, underscoring theneed forhigh-quality feature selectionprocedures.
These results should be viewed in the context of what one would expect

to see if the peaks considered contained no information with regard to the
various phenotypes. Since there are four classes, a random classifier would
be expected to achieve about 25% accuracy. In order to get a sense of the sig-
nificance of these results and to attempt to rule out data artifacts, we checked
the performance of the classifiers on the same data but with randomized
group assignments. We generated 1000 randomized data sets (the labels of
the entire data set were permuted at random) and averaged the performance
of the linear SVMusing 15 peaks on 10 random choices of test and training set
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(so that in fact 10,000 random runs were performed). The best classification
accuracy average out of those 1000 runswas 34.4%, although themedian clas-
sification accuracy was 24.1%. This is significantly below the 79.3% observed
for SVM method using 15 peaks, and is an indication that these results are
not merely due to some spurious structure in the data.
We also want to mention that when all 5 classification methods are trained

using the entire data set and 15 peaks, 74% of all samples are correctly classi-
fied by all methods simultaneously. We take this high level of concordance of
the classificationmethods as a strong indication and additional evidence that
a largemajority of samples are indeedwell separated in this low-dimensional
space, and that there is significant information content in this data set that
can be used to discriminate between the four classes.
Finally, we want to mention the top masses that repeatedly appear in the

peak selection list of various classifiers: 9720.0, 9655.7, 5074.2, 3896.6, 3963.2,
7819.8, 7844.0, 6949.2, 8943.1, 4079.5. Some of these masses, for example,
7819.8 and 9655.7, had also been used in previous studies (Adam et al., 2002)
as being important discriminators. Note, however, that all masses are in the
range of those of typical proteins. Although the identification of the under-
lying proteins and our understanding of their biological significance is still
outstanding, we believe that the results we provide here do indeed indicate
that they are good candidates for biomarkers, and that their identification can
provide new insights of clinical relevance.

4.12 Remarks about Quality Control Issues

The quality control issues of the data generated by the MALDI, SELDI, and
other technologies have to be addressed before the data are used for drawing
conclusions. The reproducibility of the spectra can be checked by studying
the effects of time, machines, operators, chips, spots, and other factors using
the analysis of variance methods on the data for the same specimen sample,
but produced under these different values of the factors. See Coombes et al.
(2003) for a discussion of quality control issues with the spectra produced
by SELDI technology in the context of samples of nipple aspirate fluid. They
used control samples on two spots on each of the three ProteinChip arrays
(Ciphergen Biosystems, Inc.) on four successive days to generate twenty-
four SELDI spectra. Using these data the effects of spots, chips, and time
can be studied on the spectra by taking the intensities at variousm/z ratios as
responsevariable. Coombeset al. (2003), however, usedMahalanobisdistance
in principal component space as a measure to assess the reproducibility of
proteomics spectra. Also, see Reese (2006) for a detailed study on quality
assessment of SELDI-TOF mass spectrometry data.
Computer programs and routines to carry out most of the analysis that we

have proposed here are easily available in public (e.g., R) and professional
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(e.g., SAS, S+, MATLAB) softwares. In our previous works the entire scheme
fromFigure 4.1was implemented using a combination of languages and tools
including Perl, SAS, and Matlab. The linear support vector machine was
implemented using a freely available software package SvmFu (available at:
http://five-percent-nation.mit.edu/SvmFu/) and SVMlight software.
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5.1 Introduction

Despite the decrease in overall cancer mortality rates in the United States
since the early 1990s, cancer remains amajor public health problem. The total
number of recorded cancer deaths in the United States continues to increase
every year, due to an aging and expanding population. Cancer is currently
the second leading cause of death in the United States after heart disease, and
is estimated to cause approximately 563,700 fatalities in 2004—which is more
than 1500 people a day (see American Cancer Society, 2004). The National
Institutes of Health (NIH) predicted the overall annual costs of cancer for
2001 at $156.7 billion: $56.4 billion for direct medical costs, $15.6 billion for
indirect morbidity costs, and $84.7 billion for indirect mortality costs.
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With so much at stake, many private and public agencies depend on reli-
able and accurate prediction of future mortality and incidence counts for
program planning and resource management. Examples include research
investigators, health care providers, the media, and the government, among
others.
For more than 40 years, the American Cancer Society (ACS) has been pro-

ducing such figures annually. These predictions are based onmodels fitted to
past data andappear in theACS’ publicationsCancer Facts & Figures (CFF) and
CA-A Cancer Journal for Clinicians every year and are also available from the
ACSwebsite http://www.cancer.org. Past data are in the form of causes
of death filed by the certifying physicians and are available from theNational
Center for Health Statistics (NCHS). Owing to administrative and proced-
ural delays, the latest available data are always 3 years old, necessitating
3-year-ahead projections to get an idea of the current year’s numbers.
Before 1995, theACSmodelwas based on linear projections. Since 1995, the

ACShasuseda timeseriesmodelwithaquadratic trendandanautoregressive
error component. This model was fitted on the basis of the mortality counts
from 1979 through themost recently available year and then projected 3 years
ahead to get predictions for the current calendar year (seeWingo et al., 1998).
Since SASTM PROC FORECASTwas used to do the fitting and prediction, we
shall henceforth refer to this model as the PF model. Even though the PF
model was a substantial improvement over the ones in place prior to 1995, it
was slow in capturing sudden and rapid changes in the trend and performed
well only in cases where the trend changed gradually. To compensate for
this slow adjustment, ACS made subjective modifications to the forecasts
before publishing them in Cancer Facts & Figures. The published number for
a particular year was one of five possible choices (see Wingo et al., 1998):
the point prediction from PROC FORECAST, the 95% prediction limits and
the midpoints between the forecast and the prediction limits. These choices
varied among different sites and also from year to year for the same site.
Recently, the National Cancer Institute (NCI), in collaboration with ACS,

developed and tested a newmethod of obtaining 3-year-ahead predictions of
the mortality counts. After extensive testing and validation, the newmethod
was found to be a significant improvement. It was used to obtain the predic-
tion counts published in Cancer Statistics, 2004 (see Jemal et al., 2004), and
has been decided that the method be used in all future predictions of Cancer
Facts & Figures and Cancer Statistics. In this chapter, we present theoretical
details andmotivation for the newmethod. Detailed validation results based
on runs on various cancer sites are published in Tiwari et al. (2004).
The proposed method uses a special form of state space model (SSM) (see

Harvey, 1989, p. 100), (Harvey, 1993, p. 82) known as the local quadratic
trendmodel (see Harvey, 1989, pp. 294–295). This model assumes that locally
(i.e., at each point of time), the mortality counts have a quadratic trend, and
that the coefficients randomly vary over time. The local nature of the new
model makes it quite flexible and it is quick to adjust to rapidly changing
trends in the data, when compared to models where coefficients do not vary
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over time. The introduction of this extra randomness, although giving rise to
improved predictions, can, however, result in sharp year-to-year variations
in the predicted series, especially when the observed series is not smooth. To
further improve these predictions to be closer to their observed values and to
control the excess variability, we introduce “tuning parameters” in the error
variances. These parameters are estimated byminimizing the sum of squares
of prediction errors. The resulting predictions are sometimes smoother than
the “untuned” model, and are still an improvement over the fixed coefficient
method.
The layout of this chapter is as follows: In Section 5.2, we describe the

NCHS cancer mortality data. In Section 5.3, we review the previous methods
used for cancer mortality prediction. In Sections 5.4 and 5.5, we present the
SSM and examples of some applications. In Sections 5.6 and 5.7, we present a
variant of the SSM and examples of its use. Finally, in Section 5.8, we discuss
future research. Derivations of some relevant results are presented in the
Appendix.
Throughout this chapter, we will use the notation dt for the number of

(cancer) deaths. Furthermore, we will use the notations �,�2, and �3 to
denote first, second, and third differences respectively of the appropriate
time series. For example, �dt = dt − dt−1, �2dt = �dt − �dt−1, and
�3dt = �2dt −�2dt−1 respectively. The notation γ (k) will be used to denote
the autocovariance at lag k and finally, ρ(k) will be used to denote the
corresponding autocorrelation.

5.2 NCHS Cancer Mortality Data

Information on cancer deaths is based on causes-of-death reported by the cer-
tifying physicians on patients’ death certificates filed by the states. Such data
are cleaned and compiled each year by the NCHS of the Centers for Disease
Control (CDC) (http://www.cdc.gov/nchs). Owing to the complex pro-
cess of data collection, tabulation, and publication, and the sheer number of
records involved, the latest data are about 3years oldwhen theybecomeavail-
able to the public. For example, in January 2004, the latest available actual
cancer mortality figures were from 2001.
Even though data from earlier years were readily available, ACS used data

going back only upto 1979 to obtain the predicted national and state level
mortality counts in Cancer Facts & Figures. For comparison of the proposed
method with its competitors, we initially based our predictions on the same
mortality data, that is, 1979 through the currently available year. However,
since the SSM was found to result in improved predictions with larger data
sets, we based all subsequent analyses on 1969 through the most recently
available data (see Section 5.4), ensuring International Classification of Dis-
ease (ICD) compatibility. Our final data are thus of the form (dt)

33
t=1, where
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t = 1 corresponds to 1969 and t = 33 corresponds to 2001. We will use the
notation T to denote the length of the observed data series (here, T = 33).
In our analyses, wehaveuseddata for several sites includingmost common

cancers such as breast cancer, lung cancer, and prostate and rare cancers such
as testicular cancer. These data were broken down by gender (if appropriate),
by state, and the observednumber of cases in 1998 and separate analyseswere
run for each such group. The datawere obtained from theNCI’s Surveillance,
Epidemiology, andEndResults (SEER)programusing theSEER∗Stat software
(see National Cancer Institute, 2004).

5.3 Review of Previous Method

As mentioned earlier, prior to 1995, the predictions from ACS were based on
linearprojections. Since 1995until 2003, ACSused thePFmodel consistingof a
quadratic time trend to capture the long-termbehavior, and an autoregressive
process for the errors to capture the short-term fluctuations in cancer deaths
(see Wingo et al., 1998). More precisely, the PF model fitted by ACS was of
the form

dt = b0 + b1t+ b2t2 + ut, (5.1)

ut = a1ut−1 + · · · + aput−p + εt. (5.2)

Here {εt} is assumed to be an independent sequence of zero-mean, random
errors with constant variance. Note also that dt and t are the only observed
values in this model.
The PF model was fitted in two sequential steps. First, the quadratic time

trend model

dt = b0 + b1t+ b2t2 (5.3)

was fitted using ordinary least squares to detrend the series.
Once the parameters b0, b1, and b2 were estimated, the residuals

ût = dt − (b̂0 + b̂1t+ b̂2t2) (5.4)

were obtained. Next, the autoregressivemodel (5.2)was fitted to the residuals
{ût} to generate the overall forecasting model.
StandardBox–Jenkins-typeof techniques (Box and Jenkins, 1976)wereused

for model fitting using SAS procedure PROC FORECAST in the SAS/ETS
library (see SAS Institute, 1993, Chapter 9). At least seven observations are
necessary to fit the previous model.
Once a model was fitted, PROC FORECAST was further used to obtain

a 3-year-ahead prediction and the corresponding 95% prediction interval.
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The point estimates of the mortality predictions obtained directly from PROC
FORECAST will henceforth be denoted by PF estimates, or simply by PF.
The numbers published in Cancer Facts & Figures, however, were not neces-
sarily the same as PF and will henceforth be denoted by CFF. As mentioned
earlier, a priori, there were five possible choices for CFF: the PF estimate
itself, the upper and lower 95% prediction limits, and the midpoint between
these limits and the PF estimate. CFF was a subjective choice among these five
possibilities, made to compensate for the effects of recently changing mortal-
ity rates or large year-to-year variations in the number of cancer deaths that
could not be captured through the model. For example, for 1998 estimates,
lower 95% limit was selected for prostate, upper midpoint was selected for
colon cancer in females and the lowermidpoint was selected for stomach and
cervix uteri in females (see Wingo et al., 1998).
Figure 5.1 shows the outcome of this 3-year-ahead prediction procedure

using data on all cancer deaths (1979–2000). Since at least 7 years’ data are
necessary to fit the PF model, PF prediction starts from 1988 onwards. Note
that each one of the PF estimates in Figure 5.1 are 3-year-ahead predictions
and hence are based on potentially different model fits. For example, the PF
estimate for 1995 is obtained by fitting the PFmodel to data from 1979 to 1992
and extrapolating 3 years ahead. The PF estimates in the figure are possibly
different from the published CFF estimates.
Inpractice, thePFmodelwas applied to individual site- andgender-specific

data and the predictions were summed up to obtain an overall national level
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FIGURE 5.1
Three year-ahead predictions of all US cancer deaths, 1988–1999, using the current method. L95
and U95 denote the lower and upper 95% prediction limits.
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prediction. State-level predictions were also obtained using the same meth-
odology; however, the estimates for individual states were proportionally
adjusted to make sure that the state totals equal the corresponding national
PF estimate.

5.4 The State Space Model

We model the observed number of deaths dt by

dt = αt + εt (t = 1, 2, . . .), (5.5)

whereαt is theunobserved trendand εt is the (measurement) error at time t. εts
are assumed to be serially uncorrelatedwithmean 0 and constant variance σ 2ε .
Since our goal is to predict mortality counts at the national and state levels,

and the observed number of mortality counts for most of the cancers at
the national and state levels are large, the errors εt are assumed to be nor-
mally distributed, similar to the assumption in Equation 5.1. One may also
model the mortality counts using a Poisson or a general exponential family
of distributions. However, as discussed in Section 5.8, these models require
the knowledge of the population at risk and their estimates. The resulting
estimates of dt are hence biased.
Instead of using a deterministic function to model the trend (e.g., as in

Equation 5.1), we propose using a trend that changes with time. This allows
the model to quickly make adjustments and get closer to the observed series.
Possible forms of the time-varying trend are

1. Local level

αt = αt−1 + η1t (t = 1, 2, . . .). (5.6)

2. Local linear

αt = αt−1 + βt−1 + η1t,
βt = βt−1 + η2t,

}
(t = 1, 2, . . .). (5.7)

3. Local quadratic

αt = αt−1 + βt−1 + γt−1 + η1t,
βt = βt−1 + 2γt−1 + η2t,
γt = γt−1 + η3t,

 (t = 1, 2, . . .). (5.8)

Similar higher-order generalizations are also possible. In all these formula-
tions, the errors ηit are assumed to be serially uncorrelated with mean 0 and
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variance σ 2i . Furthermore, they are assumed to be uncorrelated with each
other and with the εts.
As the names suggest, Equation 5.6 generalizes a trend with fixed level,

Equation 5.7 generalizes a trend that is linear in time, and Equation 5.8
generalizes one that is quadratic in time. Assuming σ 2i ≡ 0 (i = 1, 2, 3) in
all the above cases give the corresponding constant, linear, and quadratic
trends with deterministic coefficients. In particular, Equation 5.8 becomes
dt = α0 + β0t + γ0t2 + εt and hence is similar to the PF model, except that it
uses independent errors.
Models (5.6), (5.7) or (5.8), when combinedwith Equation 5.5 can bewritten

in the general state-space formulation

dt = Ftθ t + εt, (5.9)

θ t = Gtθ t−1 + ηt. (5.10)

For example, Equation 5.5 combined with Equation 5.8 can be written as
Equations 5.9 and 5.10 where

Ft ≡ F = (1, 0, 0), θ t = (αt,βt, γt)
′, Gt ≡ G =

1 1 1
0 1 2
0 0 1


and ηt = (η1t, η2t, η3t)′. In Equation 5.8, βt can be interpreted as the local slope
and γt as the local curvature of the trend at time t.
Equations 5.9 and 5.10 are called themeasurement and transition equations

respectively of a SSM. θ t is a random quantity called the state vector and con-
tains all the relevant information about the process generating the observed
series at time t. εt and ηt are called the measurement and transition errors
respectively and are assumed to have zero mean with covariance matrices
given by Vt andWt respectively. Ft, Gt, Vt, andWt are called systemmatrices
and may depend on unknown parameters ψ . The specification of a SSM
is completed with two further assumptions: (1) the initial state vector θ0 has
mean a0 and covariancematrixC0 and (2) the disturbances εt and ηt are uncor-
related with each other and with the initial state vector θ0. For more details
on SSMs, see Harvey (1989, 1993), West and Harrison (1997).
When the system matrices along with a0 and C0 are completely known,

the Kalman filter (KF) algorithm (Kalman, 1960; Kalman and Bucy, 1961) can
be applied to recursively calculate the optimal estimator of the state vector
at time t on the basis of all the information at time t (i.e., d1, . . . , dt). Once
the end of the series is reached, further application of the KF allows one to
obtain optimal predictions of future observations. SeeMeinhold and Singpur-
walla (1983), Harvey (1989, 1993) for more details on the KF. Various software
packages are available that readily implement the filtering algorithm.
To keep our proposedmodel comparable to the fixed-coefficient model, we

will henceforth work only with the local-quadratic model. For simplicity, we
make the model time-invariant by assuming Vt ≡ V andWt ≡ W . Note that
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the transition equation in this simplified model is not stationary, since the
eigenvalues of the transition matrix G are all equal to 1 (see Harvey, 1989).
In the absence of any prior information on θ0, we settle for a diffuse prior by
setting a0 to be a solution ofd1

d2
d3

 =
1 1 1
1 2 4
1 3 9

α0β0
γ0


and C0 = κI where κ = 10,000 (see Harvey, 1993).
Since V and W are not known, they are estimated from the data before

application of the KF. Assuming that the measurement and transition errors
as well as the initial state θ0 are normally distributed, one can write the
log-likelihood of the observations as

log L(ψ) = −T
2
log 2π − 1

2

T∑
t=1
logKt − 12

T∑
t=1

ν′tK−1t νt,

where νt is the innovation vector, Kt is its mean squared error (MSE) (see
Appendix Equations 5.13 and 5.14), and ψ is the vector of model parameters
(called hyperparameters) determining V and W . The hyperparameters can
then be estimated by maximizing the likelihood. Plugging in the estimated
hyperparameter values give us themaximum likelihood estimators (MLEs) of
V andW . ThisV andW can be used in conjunctionwith the previous inform-
ation to run the KF for prediction. In addition to a point prediction, one can
get a 95% prediction interval calculated from the MSE. Note that one of the
byproducts of the maximum likelihood (ML) estimation is Akaike’s inform-
ation criterion (AIC) (see Akaike, 1974), which gives a measure of goodness
of fit of the Gaussian model to the observed series. Various packages such as
SsfPack2.2 (see Koopman et al., 1999) allow one to do the model estimation
and prediction along the lines described above.
Note that the normal-error SSMmay be inappropriate formodeling data on

rare cancers or data at the state level, owing to the nonnormality of such data.
In such cases, one may use Dynamic Generalized Linear Models (DGLM)
described inFerreira andGamerman (2000),West andHarrison (1997). Forour
problem, we have only workedwith national-level data. It was also desirable
thatwe have a single and easily explainablemethod ofmodeling for all cancer
sites. Hence, we did not explore the DGLM aspect further.

5.5 Application

Figures 5.2 and5.3 give the 3-year-aheadpredictions ofmortality counts using
PF model and SSM for lung cancer, in males, breast cancer in females, pro-
state cancer, and testicular cancer. The predictions are shown for the years
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FIGURE 5.2
Three year-ahead predictions using PF and SSM (ML) methods. (a) Prostate cancer and (b) lung
cancer, males.

1978–2000 along with the corresponding observed values. It is important to
note that the prediction for any year is based on data from 1969 to 3 years
prior to that prediction year. For example, the prediction for 1995 is based on
data from 1969 to 1992, and so on. Thus, even when using the same method
(say PF), the input data for the model increases as one moves along in time.
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FIGURE 5.3
Three year-ahead predictions using PF and SSM (ML) methods. (a) Breast cancer, females and
(b) testicular cancer.

Note that the predicted series obtained using SSM is able to adapt to chan-
ging trends in the observed series faster than that obtained using PF model.
To be able to adjust fast enough, the predicted series from SSM exhibits larger
jumps from year-to-year compared to that from PF model. In contrast, the
fixed time trend in the PF model is more robust and the model adjusts very
little in the presence of additional data. Although the resulting SSM series
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stays close to the observed data on the average owing to the flexibility of the
model, the year-to-year fluctuations are somewhat of a disadvantage from a
practitioner’s point of view. The uncertainty generated by these variations
make the results unusable, especially if the variations are very pronounced
(e.g., as in testicular cancer). When the observed data are inherently oscillat-
ory (e.g., in rare cancers like testicular cancer, see Figure 5.3), these oscillations
get magnified by the SSM prediction process.

5.6 “Tuned” SSM

TheSSMpredictions are further improved (resulting inpredictedvaluesbeing
closer to their observed values) by introducing “tuning parameters.” These
tuning parameters may also control excessive variability in the prediction
curve.
LetV∗7 andW∗7 be the time-invariant covariance matrices used to fit (dt)

7
t=1,

using which d10 is predicted. Note that the suffix 7 inV∗7 andW∗7 denotes that
error covariances V and W relate to the data {dt}7t=1 but otherwise, they are
time invariant. As V∗7 and W∗7 are not known, they are estimated from the
data (say, using method of moments or ML approach). We denote the result-
ing predicted value by d̂10. Similarly, let V∗8 andW∗8 be used in fitting (dt)

8
t=1

and then getting d̂11. Proceeding like this, we will have V∗29 and W∗29, which
are used to obtain d̂32. The proposed method works in several steps. First, it
estimates V∗7 , . . . ,V

∗
29 andW∗7 , . . . ,W

∗
29. Then, it replaces V∗t by κVV∗t andW∗t

by κW W∗t where κV and κW are unknown constants in the interval (0, 1) and
are called “tuning parameters.” For a known value of (κV , κW ), the “tuned”
covariance matrices κVV∗t and κW W∗t can be used to refit the corresponding
model and get the corresponding predicted value d̂t+3. The resulting predic-
tion error is given by et+3(κV , κW ) = d̂t+3 − dt+3 and is obviously a function
of (κV , κW ). Repeating this process for t = 7, . . . , 29, we can get the corres-
ponding prediction errors for t = 10, . . . , 32. Defining the sum of squares of
prediction errors by

SSPE(κV , κW ) =
29∑

t=7
e2t+3(κV , κW ),

the tuning parameters are estimated by minimizing SSPE(κV , κW ). Hence,

(κ̂V , κ̂W ) = arg min
(κV ,κW )

SSPE(κV , κW ).

In the second step, the predictions are recalculated using the “tuned” covari-
ance matrices based on the estimated tuning parameters, that is, with κ̂VV∗t
and κ̂W W∗t .
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As indicated earlier, the Vt and Wt values were estimated using the ML
method—in this case, we used SsfPack 2.2 for this purpose. We then used
these estimated values to estimate the tuning parameters κV and κW using
the Nelder–Mead algorithm (Nelder and Mead, 1965) of optimization. For
programming convenience, the “tuning” part of this method was written in
“R” (Ihaka and Gentleman, 1996) and the routine optim was used for this
purpose.

5.7 Results

Figures 5.4 and 5.5 compare the “tuned” and “untuned” versions of the SSM
to the PF and the observed values. Note the success of the tuning parameters
in bringing the predictions closer to the observed values and in some cases,
dampening the oscillations. Table 5.1 gives the square root of themean of sum
of squares of relative prediction errors (RMSPE) for the years 1978–2000. Note
that for prostate cancer, SSM reduces the RMSPE by 29% and introduction
of tuning reduces it further by 30%. The corresponding figures for testicu-
lar cancer are 23% and 11% respectively. The smaller decrease for testicular
cancer can be attributed to the fact that the observed data are more oscillat-
ory compared to that for prostate cancer. The proposed 2-step method was
extensively studied and compared to (1) PF and (2) the published predic-
tions in Cancer Facts & Figures. Analysis was done for mortality data both at
the state level and at the national level. In each case, separate analyses were
run for each gender/site combination, wherever applicable. At the time this
analysis was done, data were available only upto 1999. For the last 3 years
(1997–1999), we calculated the prediction errors for each of the site/gender
combinations. These prediction errors were averaged over different years for
the same site, averaged over all sites for the same gender or averaged over
different sites which fall into the same rarity category. The results are sum-
marized in Tables 5.2 and 5.3. The runs on state-specific data were, however,
not as favorable to SSM as their national counterpart, although, overall SSM
was once again better on the average. For a more detailed description of the
findings, see Tiwari et al. (2004).
As pointed out by the referee, predictions from the tuned model may still

suffer from considerable jaggedness. This is due to the fact that from one
year to the next, the proposed method fits a separate model and the tuning
procedure only adjusts on the basis of the overall prediction error, not look-
ing at year-to-year variation. One may, however, use smoothing techniques
to reduce the amount of jaggedness, but the results may come at the cost
of decreased overall accuracy. We have not investigated this aspect in our
research.
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FIGURE 5.4
Comparison of 3-year-ahead predictions using PF and SSM (tuned and untuned). (a) Prostate
and (b) lung cancer, males.

5.8 Conclusion

We have developed a new method for short-term projection of cancer mor-
tality counts on the basis of SSM. This method combines the flexibility of a
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local quadratic model with the smoothness of a fixed-trend autoregressive
model. The resulting predictions are seen to quickly adjust to changes in the
observed trendsandare an improvementover thepreviouslyusedfixed-trend
PF model with subjective choice at the end. On the basis of extensive studies,
we have found that SSM performs better on the average, but the superiority
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TABLE 5.1
Root Mean Square of Relative Prediction Errors for the Years
1978–2000 for Selected Cancer Sites

RMSPE

Site PF SSM (untuned) SSM (tuned)

Lung, males 0.0276 0.0192 0.0147
Prostate 0.1035 0.0741 0.0519
Breast, females 0.0542 0.0401 0.0362
Testis 0.3504 0.2714 0.2492

TABLE 5.2

PMSE Using the Two Models at Various Sites

PMSE

Site PF SSM

All malignant cancers 12.90× 103 7.38× 103

Colon and rectum 1.37 × 103 1.61× 103
Liver and intrahepatic bile duct 1.86× 103 2.68× 103
Breast (females) 2.25× 103 1.46× 103

Prostate 3.07 × 103 1.66× 103

Lung and bronchus 5.15× 103 2.06× 103

Cervix uteri 3.60× 102 2.69× 102

Non–Hodgkin lymphoma 1.04× 103 0.88× 103

Leukemia 6.22× 102 6.88× 102
Stomach 5.89× 102 5.36× 102

Bold numbers denote smaller values.

is not uniform. Starting January 2004, ACS has employed the new procedure
for obtainingmortality predictions. The tables and figures appearing in Jemal
et al. (2004) were also obtained using this method.
One valid criticism of the method is the use of normal measurement errors

for count data. This is, however, not a practical problemwhenwe are dealing
with common cancers at the national level, but can potentially lead to erro-
neous predictionswhen dealingwith rare cancers. In such cases, onemay use
measurement equations from the exponential family, such as a Poisson. Such
DGLMs are discussed in West and Harrison (1997), Ferreira and Gamerman
(2000).
Another set of improvements may be obtained by using different local

polynomials for different cancer sites. For example, instead of using a local
quadratic, a local linearmay be sufficient for testicular cancer. Addition of the
quadratic term possibly increases the variability of the predictions, as evident
in Figure 5.5. Addressing this problem would require one to manually go
through each cancer site and decide on the optimal model individually.
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TABLE 5.3
Observed and 3-year-ahead Predictions for Selected Cancer Site/Sex Combinations
for 1999, Using Data from 1969 to 1996

Three Year Predicted Values

Cancer Sites/Sex Combinations Observed PFa CFFb SSMc

Colon and rectum (Females) 28,909 27,957 28,800 26,589
Lung and bronchus (Females) 62,662 69,421 68,000 62,658
Melanoma of the skin (Females) 2,686 2,821 2,700 2,807
Breast (Females) 41,144 45,345 43,300 42,746
Ovary 13,627 14,317 14,500 13,294
Hodgkin lymphoma (Females) 618 715 600 656
Non–Hodgkin lymphoma (Females) 11,008 12,472 12,300 12,126
Acute lymphocytic leukemia (Females) 582 707 600 591

Colon and rectum (Males) 28,313 27,831 27,800 27,793
Lung and bronchus (Males) 89,399 93,619 90,900 89,257
Melanoma of the skin (Males) 4,529 4,745 4,600 4,760
Prostate 31,728 39,027 37,000 32,733
Testis 378 321 300 321
Hodgkin lymphoma (Males) 785 892 700 623
Non–Hodgkin lymphoma (Males) 11,794 13,692 13,400 13,163
Acute lymphocytic leukemia (Males) 779 866 800 789

Bold numbers indicate best prediction.
a Three-year-ahead predicted value from PROC FORECAST.
b Cancer Facts & Figures, 1999, using data from 1979 to 1996.
c Three-year-ahead predicted value from the State space Method.

Although we explored the above two issues by trying different models
for different cancer sites, it was eventually decided that one method (local
quadraticwithnormal errors) beused for theprediction of all cancermortality
counts. Such a uniformmethod is not only easy to implement, but is also easy
to explain to the broad audience of nonstatisticians. Moreover, an advantage
of the normal model is that it allows one to estimate the national counts from
a joint model of the state counts.
For completeness, we would like to mention that we analyzed several sites

using estimates of V and W on the basis of method of moments, and the
predictions obtained were quite similar. The method of moments estimates
V and W were obtained by equating the sample autocovariances of �3dt to
the corresponding population versions (see Equation 5.15). Unlike the ML
method, the method of moments is easier to implement as the estimates are
explicitly obtained.
Although the SSM (with tuning) has been shown to perform better in most

cases, theoretical properties of the tuning parameter estimators and hence
of the tuned predictors are very difficult to obtain. Hence, we only present
results from various runs instead of doing a theoretical study. An alternate
approach using full Bayesian analysis was also investigated by the authors.
This is fully model based and is computationally more involved. The results,
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however, were comparable to those obtained in this paper, with a slight edge
for the SSM. See Ghosh and Tiwari (2007) for details on the Bayesian method
and the results.
Improved predictions can also possibly be obtained by incorporating

covariates in themodel beingused. For example, themodel canbemodifiedas

dt = αt + δ′xt + εt,
αt = αt−1 + βt−1 + γt−1 + η1,t,
βt = βt−1 + 2γt−1 + η2,t,
γt = γt−1 + η3,t,

where xt is the vector of covariates. Variables such as age-group and gender
are natural choices for covariates and incorporation of them is expected to
improve predictions. For lung cancer, we could include the percentage of
smokers in the population as one of the components of xt (note that such
modifications are not possible with the PF method). Smoking figures are not
available for all the years 1979–1998 and hence would possibly need to be
interpolated/extrapolated to be used in this case. Moreover, the effect of
smoking on cancer is not immediate but is with a pronounced lag. It is an
open question how we would incorporate such lagged effect in our model.
By using preliminary mortality data (which become available earlier than

the final numbers), the number of steps to predict ahead can be reduced
to two. This would result in improved predictions and definitely narrower
intervals.
The noisy prediction in rare cancer sites (such as testicular cancer) can be

corrected by using a non-normalmodel—for example, a Poissonmodel in the
set-up ofWest et al. (1985),West andHarrison (1997), Ferreira andGamerman
(2000). A model of the form

dt ∼ Poisson(ntg(λt)),

g(λt) = log
(

λt

1− λt

)
= x′tβt

was tried in particular. This, however, required knowledge of nt for the past
years and also for the future year for which prediction is desired. As popula-
tion census is conducted every 10 years, most of the values of nt are based on
interpolation and extrapolation. The variability in the nt values translated to
increased uncertainty in the estimated mortality counts. We thus found this
method to be impractical for public use.
It isworthnoting that theproposedSSMcanbeused togenerate predictions

for either counts, crude rates, or age-adjusted rates of mortality. For example,
suppose onedenotes by rt the age-adjustedmortality rate at time t,wi to be the
adjustment factor for age-group i, dit to be the mortality count in age-group i
at time t and nit to be the population at risk (of death) in age-group i at time t.
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Then, we have

rt =
I∑

i=1
wi

dit

nit
, t = 1, . . . ,T.

One may use the rt values as input to the SSM routine to get the desired
prediction of rT+3. Extensive runs of the SSM procedure on age-adjusted
rates for various cancer sites have been recently conducted and the results
look quite promising.
Finally, another approachwould be to incorporate cancer incidence inform-

ation (available from SEER) along with the cancer survival rates and use a
back-calculation method for mortality prediction (see Brookmeyer and Gail,
1988; Bacchetti et al., 1993; Mezzetti and Robertson, 1999). This is the subject
of ongoing research on incidence prediction and results will be published in
a future article.

5.A Appendix

5.A.1 The Kalman Filter

Let θ̂ t be the optimal estimator of the state vector θ t based on d1, . . . , dt and
Ct be its m×mMSE matrix. We then have

Ct = E[(θ t − θ̂ t)(θ t − θ̂ t)
′].

Suppose we are at time t and θ̂ t and Ct are available. Then, based on the
data upto and including time t, the optimal estimator of θ t+1 is

θ̂ t+1|t = Gt+1θ̂ t, (5.11)

and the updated MSE matrix for θ̂ t+1|t is

Ct+1|t = Gt+1CtG′t+1 +Wt+1. (5.12)

Equations 5.11 and 5.12 are called the prediction equations. The corresponding
estimator of dt+1, called the predicted value, d̃t+1|t is then

d̃t+1|t = Ft+1θ̂ t+1|t.

Let the prediction error of dt+1 based on data upto t (also called the
innovation vector), be denoted by νt+1. Then,

νt+1 = dt+1 − d̃t+1|t = Ft+1(θ t+1 − θ̂ t+1|t)+ εt+1, (5.13)
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and its MSE is given by

Kt+1 = Ft+1Ct+1|tF′t+1 + Vt+1. (5.14)

Once a new observation dt+1 becomes available, the estimator θ̂ t+1|t of the
state vector θ t+1 and its corresponding MSE can be updated. The updating
equations, known as KF updating equations, are given by

θ̂ t+1 = θ̂ t+1|t + Ct+1|tF′t+1K
−1
t+1(dt+1 − Ft+1θ̂ t+1|t)

and

Ct+1 = Ct+1|t − Ct+1|tF′t+1K
−1
t+1Ft+1Ct+1|t.

Starting with initial conditions θ̂0 and C0, the above equations are used
recursively for t = 0, 1, . . . ,T − 1 to finally get θ̂T , which contains all the
information for predicting future values of dt, t > T. The l-step ahead
estimator of θT+l given information upto T is then

θ̂T+l|T = GT+lθ̂T+l−1|T , l = 1, 2, . . .

with θ̂T|T = θ̂T . The associated MSE matrix is given by

CT+l|T = GT+lCT+l−1|TG′T+l +WT+l, l = 1, 2, . . .

with CT|T = CT .
The l-step predictor of dT+l given d1, . . . , dT is

d̃T+l|T = FT+lθ̂T+l|T

with its prediction MSE being

MSE(d̃T+l|T) = FT+lCT+l|TF′T+l|T + VT+l.

See Harvey (1993) for derivations of the results in this section and further
details.

5.A.2 Autocovariances of the Local Quadratic Trend Model

�dt = βt−1 + γt−1 + η1t +�εt,
�2dt = 2γt−2 + η2,t−1 + η3,t−1 +�η1,t +�2εt,
�3dt = 2η3,t−2 +�η2,t−1 +�η3,t−1 +�2η1,t +�3εt.
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Hence, autocovariances of �3dt are given by

γ (0) = 20σ 2ε + 6σ 21 + 2σ 22 + 2σ 23 ,
γ (1) = −15σ 2ε − 4σ 21 − σ 22 + σ 23 ,
γ (2) = 6σ 2ε + σ 21 ,
γ (3) = −σ 2ε ,
γ (k) = 0, k ≥ 4.


(5.15)
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6.1 Introduction

Survival models have found numerous applications in many disciplines.
Beginning with their use in analyses of survival times in clinical and health
related studies and failure times of machine components in industrial
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engineering, these models have now found application in several other fields,
including demography (e.g., time intervals between successive child births,
duration of marriages), criminology (e.g., studies of recidivism), and labor
economics (e.g., spells of unemployment, duration of strikes, time to retire-
ment). The terms duration analysis, event-history analysis, failure time analysis,
reliability analysis, and transition analysis refer essentially to the same collec-
tion of techniques although the emphases in certain modeling aspects would
differ across disciplines.

The main outcome in a survival model is a time T to some well-defined
event (such as death) measured from some time origin (t = 0). Often interest
lies in assessing the impact of measured covariates z on the survival dis-
tribution S(t | z) = P[T > t | z], t ≥ 0, on derivative measures such the
mean survival E(T | z) or the median survival and other percentiles. Several
regression-type models, such as the accelerated failure time model and the pro-
portional hazards model have been extensively developed for the single event
survival data. However, in many applications in epidemiology, medicine,
sociology, and econometrics, individuals can experience several events over
time. For example, in cancer studies patients often undergo periods of remis-
sion and relapse before succumbing to death. The events “remission” and
“relapse” have different clinical characteristics and the event history path
from initiation of cancer treatment to death could involve several periods of
remission and relapse. In labor economics, workers may experience several
spells of unemployment interspersed with periods of employment. Here the
events “employed,” “unemployed” are repeated events. Studies of recidivism
in criminology concern the sequential dates of arrest of a parolee since release
from prison. In nosocomial investigations multiple times of the infection
following surgery may occur.

Multiple failures times also occur in the context of clustered data. In the
diabetic retinopathy study, a pair of failure times was potentially observed
representing the time to blindness in the right eye and left eye of the patient.
One eye was treated with laser photocoagulation while the other eye served
as control. In veterinary studies, a natural clustering occurs when the unit of
analysis is the litter, and failure times of individual animals must be analyzed
jointly.

A convenient representation of an individual’s event history is a finite-state
stochastic process in continuous-timeX = {X(t) : t ≥ 0}whereX(t) is the state
occupied at time t (Gardiner et al., 2006). The state space E = {1, 2, . . . ,m}
labels distinct states (health conditions or events) that may be occupied over
time. Hence, the multiple durations are the sequence of sojourns spent in
states. Typically, E comprises several transient states such as “remission” and
“relapse,” or “well” and “ill,” and one or more absorbing states (e.g., “dead”).
A transient state is one which if entered will be exited after a finite sojourn,
while an absorbing state is never left once entered. The analog of survival
time is the time to absorption from a transient state. Survival models have just
two states, “alive” or “dead” and therefore only a single possible transition
from “alive” to “dead.” In general interest lies in the transition probabilities,
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Phj(s, t) = P[X(t) = j | X(s) = h], s ≤ t, h, j ∈ E and how these probabilities
are affected by covariates z(0) known at t = 0 or by the entire past history of
time-dependent covariates {z(u) : u < s}.

We can also describe an individual’s course of events as follows. At time
T0 = 0 the initial state is X0. After a duration T1 the patient exits the initial
state making a transition to stateX1. The next transition occurs at timeT2 with
passage to state X2, and so on. This defines a sequence {(Xn,Tn) : n ≥ 0} of
states and transition times. If at then-th transition an absorbing state is entered
thenXn+1 = Xn andTn+1 = ∞. The sojourn times or durations in the transient
states are T1,T2 − T1,T3 − T2, . . . . The two descriptions are equivalent. From
the process X, we can define {(Xn,Tn) : n ≥ 0} using the forward recurrence
time W(t) = inf{s ≥ 0 : X(t + s) = X(t)}, that is, the first time after t that a
patient leaves the stateX(t). If the state is absorbing, we setW(t) = ∞. Define
inductively, T0 = 0,X0 = X(0) and Tn+1 = Tn +W(Tn), n ≥ 0. If W(Tn) <∞,
then Xn+1 = X(Tn+1); otherwise Xn+1 = Xn. Therefore, viewed at time t, the
next transition out of the present state X(t) will occur at time t +W(t) and
the time elapsed since the last transition is L(t) = inf{s ≥ 0: X(t− s) = X(t)},
called the backward recurrence time or the current duration. The time interval
[t− L(t), t+W(t)] captures the current sojourn.

Some simplifying assumptions are needed to make the mathematical devel-
opment tractable. Assuming X is a Markov process restricts the dependency
of (Xn,Tn) on past information. For instance, given the states the sojourn
times are independent with the conditional distribution of the present sojourn
Tn+1 − Tn depending only on the present state of occupation Xn and destin-
ation state Xn+1. It also entails that the states constitute a Markov chain. For
purposes of modeling covariate effects, we may consider the natural exten-
sions of the single event survival models such as the multiplicative intensity
model (Andersen et al., 1993).

The purpose of this chapter is to provide an overview of the application of
multistate models in analyzing multiple failure times. We consider models
that accommodate covariates, both fixed and time-dependent. Section 6.2
describes the salient features of a multistate model and how covariates are
incorporated into the model. The main application in Section 6.3 is the use
of SAS software in estimating a 3-state wellness–illness–death model with
both fixed and time-dependent covariates. If the terminal event (death) is the
focus of interest, the time of the intermediate event (illness) might be viewed
as a time-dependent covariate, or the occurrences of the two events illness
and death could be analyzed jointly. We provide the computational details
for these two approaches using the SAS PHREG procedure taking advantage
of some recent enhancements.

The data set used for illustration is a sample of 137 leukemia patients
who underwent bone marrow transplantation described in Klein and
Moeschberger (1997)where several featuresof thisdata set are extensivelydis-
cussed. Several articles have addressed estimation of probabilities of events
associated with a patient’s disease progression (Klein et al., 2000; Keiding
et al., 2001; Klein and Shu, 2002). Similar models are used to study mortality
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in patients with liver cirrhosis where bleeding from the esophageal varices
is an intermediate event that may affect prognosis (Andersen et al., 2000).
Gardiner et al. (2006) apply a 3-state model to examine episodes of normal
and impaired physical function in cancer patients from the initiation of treat-
ments and use this framework to estimate costs of treatment. However, in
this example multiple transitions between the normal and impaired states
are possible in patients before the terminal event (death). In all examples,
noninformative censoring of event times can occur because the observational
period might not capture the full event histories of all patients.

6.2 Multistate Model

Let X = {X(t) : t ≥ 0} denote a stochastic process in continuous-time with
finite state space E = {1, 2, . . . ,m}. The process is called a nonhomogeneous
Markov process if for all 0 ≤ s ≤ t and h, j ∈ E, P[X(t) = j | X(s) = h,X(u) :
u < s] = P[X(t) = j | X(s) = h] = Phj(s, t). The Markov assumption restricts
the future development of X given the past to only the most recent past. The
internal history {Ft : t ≥ 0} is generated from the σ-algebra Ft = σ {X(u) :
u ≤ t} that is usually augmented by information on covariates measured
at t = 0.

6.2.1 Transition Probabilities and Intensities

Associated with the transition probabilities Phj(s, t) are the transition intensit-
ies, αhj(t) = lim�t↓0 Phj(t, t+�t)/�t, h = j, with αhh = −

∑
j =h αhj. The hazard

rate for a sojourn in progress in state h at time t is−αhh(t). Given that a trans-
ition out of state h occurs at time t, this transition is to state j with probability
αhj(t)/(−αhh(t)). Let P = {Phj : h, j ∈ E}, α = {αhj : h, j ∈ E} be matrices and I
be the identity matrix. Just as the hazard rate determines the survival distri-
bution, the transition intensities determine the transition probabilities by the
product–integral relationship P(s, t) = ∏s<u≤t(I + α(u)du). In computations
from event history data, this is computed as a product of matrices. The P(s, t)
also satisfy the differential equation, P′(s, t) = P(s, t)α(t) subject to P(s, s) = I
where the prime denotes differentiation with respect to t. When α is a con-
tinuous function the formal solution is P(s, t) = exp(

∫ t
s α(u)du)where exp(A)

is the matrix exponential of the square matrix A (Golub and Van Loan, 1996).
Several special cases of Markov processes are obtained by restricting the

dependence of the intensities αhj(t) on t. When αhj are constants the process
X is a homogeneous Markov process. Durations are then exponentially distrib-
uted and conditionally independent given the states. When αhj(t) = αhj(L(t))
depends only on elapsed time d = L(t) since entering the state h, the process is
called a (homogeneous) semi-Markov process. In general semi-Markov processes
there is explicit dependence of αhj on two time scales, chronological time t and
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the elapsed time d = L(t). If the bivariate process {(X(t),L(t)) : t ≥ 0} has the
Markov property, the transition probabilities will have four time arguments,
Phj(s, t,u, v) = P[X(t) = j,L(t) ≤ v | X(s) = h,L(s) = u]. In practice one
tries to maintain the original Markov structure of X and model the duration
dependence through time-varying covariates.

Associated with X is a counting process Nhj(t) which denotes the number
of direct transitions from state h to j in the time interval [0, t], Nhj(t) = #{s ≤
t : X(s−) = h,X(s) = j}, h = j. The cumulative information revealed up to
time t is the σ-algebra Ft generated by {Nhj(s), s ≤ t, h = j, h, j ∈ E} and X(0)
(including covariate information known at t = 0). The indicator function
Yh(t) = [X(t−) = h] denotes whether the process is in state h just before
time t. Then with respect to the filtration {Ft : t ≥ 0}, the counting processes
{Nhj, h = j, h, j ∈ E}have random intensity processes {λhj, h = j, h, j ∈ E}where

λhj(t) = αhj(t)Yh(t). Moreover, Mhj(t) = Nhj(t) −
∫ t

0 Yh(u)αhj(u)du, h = j, h,
j ∈ E are zero-mean local square-integrable martingales.

If observation of X is ceased after some random time U, independent of
X, we denote the censored process by Nhj(t ∧ U) and the state indicator by
Yh(t) = [X(t−) = h, U ≥ t]. Then, with respect to the filtration generated
by {Nhj(s ∧ U),Yh(s) : s ≤ t, h = j, h, j ∈ E} the aforementioned martingale
property still obtains. In the sequel, we will assume that censoring has been
accommodated in this way.

6.2.2 Regression Models

To incorporate heterogeneity across patients we let the transition intens-
ities depend on a covariate vector z(t) through a Cox-regression model
αhj(t, z(t)) = αhj0(t) exp(β ′hjz(t)) where αhj0(t) is an unknown baseline intens-
ity and the regression coefficients βhj are specific to the transition h → j.
We can recast this model as αhj(t, z(t)) = αhj0(t) exp(β ′zhj(t)) in terms of a
type-specific p × 1 covariate vector zhj computed from z and an associated
composite regression vector β.

The covariates generate their own history Gt = σ{z(u) : u ≤ t} and
therefore the observed history isHt = Ft ∨ Gt—the minimum σ-algebra gen-
erated by Ft and Gt. Informally, our definition of transition intensity is then
αhj(t, z(t)) = lim�t↓0 P[X(t + �t) = j | X(t) = h,Gt]/�t, h = j. To maintain

the martingale property on Mhj(t) = Nhj(t) −
∫ t

0 Yh(u)αhj0(u) exp(β ′zhj(u))du
we assume that z(t) is predictable (with respect to {Ft : t ≥ 0}). In words,
this essentially means that the values of all covariates at t are known just
before t, being influenced only by information from the strict past—that is,
z(t) is Ft−-measurable.

Time-dependent covariates have implications for inference (Andersen,
1986; Andersen and Keiding, 2002). A partial likelihood function formed
by conditioning on the strict pastHt− is sufficient for estimating parameter β.
However, estimating transition probabilities P(s, t | z(t)) is no longer feas-
ible without additional knowledge of the evolution of z(t). An assumption
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of exogeneity of z(t) with respect to the underlying event times allows one
to interpret αhj(t, z(t)). See Heckman and Singer (1985), Lancaster (1990) and
van den Berg (2001) for a discussion of exogeneity. With a fixed covariate
profile z0, we can estimate P(s, t | z0) following estimation of β from Cox
regressionmodel and the integratedbaseline intensitiesAhj0(t) =

∫ t
0 αhj0(u)du.

For most applications in biomedical studies, modeling with multiple states is
still feasible when the time-dependent covariates are discrete variables. How-
ever, there are situations in which joint modeling of the continuous covariate
observations and the underlying event-history processes {Nhj(t), h = j, t ≥ 0}
would be necessary (Hogan and Laird, 1997; Wulfsohn and Tsiatis, 1997;
Henderson et al., 2000).

6.2.3 Estimation of Transition Probabilities

Andersen et al. (1993) pioneered an elegant asymptotic theory for estimat-
ors of β, Ahj(t | z0) and Phj(s, t | z0) where z0 denotes a fixed covariate
profile. For each of n patients in a study we observe processes of the type
described. For the i-th patient the basic covariate vector is zi(t), the ini-
tial state Xi(0), the state indicator Yhi(t) = [Xi(t−) = h,Ui ≥ t] and
Nhji(t) = #{s ≤ t ∧ Ui : Xi(s−) = h,Xi(s) = j}, h = j. Conditional on
{zi,Xi(0) : 1 ≤ i ≤ n} assume the processes {Xi(t) : t ∈ T } are independent and
that the modelαhj(t, z(t)) = αhj0(t) exp(β ′zhj(t))holds for each individual with
the samebaseline intensities. LetNhj(t) =

∑n
i=1 Nhji(t)andYh(t) =

∑n
i=1 Yhi(t)

be the aggregated processes over the sample.
An estimator β̂ of β is derived by maximizing the generalized Cox partial

likelihood given by

n∏
i=1

∏
t

∏
h=j

{
Yhi(t) exp(β ′zhji(t))∑n
k=1 Yhk(t) exp(β ′zhjk(t))

}�Nhji(t)

.

The integrated baseline intensities Ahj0(t) are estimated by

Âhj0(t) =
∫ t

0

[Yh(u) > 0]
S(0)hj (β̂,u)

dNhj(u), h = j

where S(0)hj (β̂, t) = ∑n
i=1 Yhi(t) exp(β̂ ′zhji(t)). Then we get Âhj(t | z0) =

Âhj0(t, β̂) exp(β̂ ′zhj0), h = j and Âhh(t | z0) = −∑j =h Âhj(t |z0). The Aalen–

Johansen estimator of the transition probabilities is P̂(s, t | z0) = ∏
s<u≤t(I +

dÂ(u | z0)). If a transition occurs at time u, then I + dÂ(u | z0) is the mat-
rix whose (h, j)-th element is exp(β ′zhj0)�Nhj(u)/S

(0)
hj (β̂,u) if h = j and equal

to 1 − ∑j =h exp(β ′zhj0)�Nhj(u)/S
(0)
hj (β̂,u) if h = j. Under some regularity

conditions the estimators β̂, Â(t | z0) and P̂(s, t | z0) are
√
n-consistent and

asymptotically normal.
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Remission
state 0 

�01(t, z(t))

�02(t, z(t)) �12(t, z(t))

Censored 

Dead
state 2 

Recovery
state 1

FIGURE 6.1
Three-state transition model.

6.2.4 Example

The application that we discuss in the next section uses a 3-state model with
states labeled 0 = remission, 1 = recovery, and 2 = dead/relapse. Only
forward transitions 0→ 1, 0→ 2, 1→ 2 are allowed as shown in Figure 6.1.
Since censoring might occur from states 0 or 1, additional paths are shown
from these states. However, they should not be construed as transitions.

Suppressing the dependence on a covariate profile z, the differential
equations (with differentiation with respect to t), P′(s, t) = P(s, t)α(t) are then
explicitly

P′00(s, t) = −P00(s, t)(α01(t)+ α02(t)),

P′11(s, t) = −P11(s, t)α12(t),

P′01(s, t) = P00(s, t)α01(t)− P01(s, t)α12(t).

The solution is

P00(s, t) = exp
(
−
∫ t

s
(α01(u)+ α02(u))du

)
,

P11(s, t) = exp
(
−
∫ t

s
α12(u)du

)
,

P01(s, t) =
∫ t

s
P00(s,u)α01(u)P11(u, t)du,

and

P02 = 1− P00 − P01, P12 = 1− P11.

The hazard rate at time t for stay in state 0 is α01(t)+α02(t). Starting in state 0
at time t = 0, exit out of this state occurs at time T1 = inf{t > 0 : X(t) = 0}.
Hence P[T1 > t | X0 = 0] = P00(0, t). Similarly, measured from entry into
state 1, T12 is the length of stay in state 1. This has hazard function α12(t).
If a transition occurs at t = T1, the transition is to state 1 with probability
α01(t)/(α01(t)+α02(t)), and to state 2 with probability α02(t)/(α01(t)+α02(t)).
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Overall survival time is defined by T = inf{t > 0 : X(t) = 2}. Its
two conditional survival distributions are S02(t) = P[T > t | X0 = 0] =
P00(0, t)+P01(0, t) = 1−P02(0, t) and S12(t) = P[T > t | X0 = 1] = P12(0, t). If
πh = P[X0 = h] denotes initial distribution, the unconditional distribution is
S2(t) = π0S02(t)+ π1S12(t). The intensity (hazard) corresponding to S02(t) is

α(t) = −d[log S02(t)]
dt

= −
(
P′00(0, t)+ P′01(0, t)
P00(0, t)+ P01(0, t)

)
.

Using the above differential equations leads to

α(t) = α02(t)
P00(0, t)

P00(0, t)+ P01(0, t)
+ α12(t)

P01(0, t)
P00(0, t)+ P01(0, t)

.

This death hazard is a combination of the two intensities α02(t),α12(t). We
can interpret P00(0, t)/(P00(0, t)+ P01(0, t)) as the conditional probability of
being in state 0 at time t, given survival up to time t and that one starts in
state 0 at time 0. Similarly, P01(0, t)/(P00(0, t)+ P01(0, t)) is the conditional
probability of being in state 1 at time t, given survival up to time t and that
one starts in state 0 at time 0.

If α02(t) = α12(t) = α(t)we get P00(s, t) + P01(s, t) = exp(− ∫ ts α(u)du) =
P11(s, t) and therefore P02(s, t) = P12(s, t). In general with fixed covari-
ates z, even if the intensities αhj(t, z) have proportional hazards, αhj(t, z) =
αhj,0(t) exp(β ′zhj) it does not necessarily yield a proportional hazards model
of the intensity α(t, z).

Consider starting in state 0 and the role of the intermediate event time of
recovery, T01 = inf{t > 0 : X(t) = 1} on survival. For s < t, P[T ≤ t | T01 >

s,T > s] = P02(s, t) and P[T ≤ t | T01 ≤ s,T > s] = P12(s, t). The direct
derivation uses the differential equations for Phj(s, t). We have

P[T ≤ t | T01 > s,T > s] =
∫ t

s
P00(s,u){α02(u)+ α01(u)P12(u, t)}du

=
∫ t

s
P00(s,u)[α02(u)+ α01(u)]du

−
∫ t

s
P00(s,u)α01(u){1− P12(u, t)}du

=
∫ t

s
−P′00(s,u)du− P01(s, t)

= 1− P00(s, t)− P01(s, t) = P02(s, t)

P[T ≤ t | T01 ≤ s,T > s] =
∫ t

s
P11(s,u)α12(u)du

=
∫ t

s
−P′11(s,u)du = 1− P11(s, t) = P12(s, t).
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In the case of a homogeneous Markov process, the intensities are con-
stants (in time). This leads to simple closed expressions for the transition
probabilities. We obtain

P00(s, t) = exp(−(α01 + α02)(t− s)), P11(s, t) = exp(−α12(t− s))

and

P01(s, t) = α01

α01 + α02 − α12
{exp(−α12(t− s))− exp(−(α01 + α02)(t− s))}.

The survival distribution S02(t) can be expressed as a mixture of two distri-
butions. The first is an exponential distribution with parameter λ0 = α01+α02
for stay in state 0, and the second is the sum of this distribution and an inde-
pendent exponential distribution with parameter λ1 = α12 for stay in state 1.
Let q01 = α01/(α01 + α02)—the probability of exit from state 0 to state 1. Then

S02(t) = (1− q01)e−λ0t + q01

{
λ1e−λ0t

λ1 − λ0
+ λ0e−λ1t

λ0 − λ1

}
.

6.3 Application

The data set for this illustration is taken from Klein and Moeschberger (1997).
The data set comprises 137 patients who underwent allogeneic bone marrow
transplants for treatment of leukemia from March 1, 1984 to June 30, 1989.
Patients were in one of three risk categories on the basis of their disease
status before treatment. These groups were: (1) ALL—acute lymphoblastic
leukemia, (2) AML—acute myelotic leukemia, low risk, and (3) AML—high
risk. Covariates measured at the time of transplant include patient and donor
age, gender, and cytomegalovirus immune status (CMV).

Several events may occur following transplantation. We focus on two
events, death/relapse combined, and the intermediate event called plate-
let recovery when the platelet count returns to a normal level from a
depressed level that usually occurs following surgery. Platelet recovery is a
binary time-dependent covariate when one is only interested in modeling the
death/relapse intensity. Alternatively, we may set up a state transition model
with three states. State 0 is the initial state (remission) for all patients at time
t = 0 and therefore π0 = P[X0 = 0] = 1. Platelet recovery is state 1 (=X1) and
we combine relapse or death into a single terminal state (X2, state 2). This
leads to the possible transitions 0→ 1, 0→ 2, 1→ 2 as shown in Figure 6.1.
A patient who is still in remission at last follow-up time has not undergone
any of these transitions. A patient whose platelets have recovered to nor-
mal levels by the time of last follow-up has undergone the 0→ 1 transition.
A patient who relapsed or died during the study period would have either
the 0→ 2 or 1→ 2 transition.
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A general multiplicative intensity model for the three transitions is

α01(t, z(t)) = α01,0(t) exp(β01z(t))

α02(t, z(t)) = α02,0(t) exp(β02z(t))

α12(t, z(t)) = α12,0(t) exp(β12z(t)),

where our notation indicates allowance for transition-type specific baseline
intensities αhj,0(t) and regression parameters βhj. Therefore, we could in effect
analyze each transition separately, or as we shall demonstrate later by a
single invocation of SAS PHREG. Preparation of the appropriate SAS data
set depends on whether we are interested in the two events separately or
only on the terminal event (dead/relapse). In the latter case, a single record
per patient file can be used with time to platelet recovery as a time-dependent
covariate. The regression model for the hazard function for survival of this
2-state model (ignoring state 1) is α(t, z(t)) = α0(t) exp(βz(t)).

6.3.1 Description of Variables in the Bone Marrow Transplant Study

The base data set BMT_SH is arrayed as a single record per patient. Variables
names, a brief description and coding are in Table 6.1. There are two sets of
factors. The first set of factors is measured on the patient. These are the dis-
ease risk group membership (DGROUP), an indicator (FAB) for classification
grade M4 or M5 for AML patients, and an indicator (MTX) of whether the
patient was given a graft-versus-host disease prophylactic (methotrexate with
cyclosporine). The second set of factors is based on a combination of patient
and donor characteristics, involving patient and donor sex (PSEX, DSEX),
patient and donor CMV status (PSTATUS, DSTATUS), and patient and donor
age (PAGE, DAGE).

Of the137patientswhoreceiveda transplant at time t = 0, 120 subsequently
had platelet recovery (PRI = 1). Of these 120 patients, 67 died or relapsed
(DFI = 1) and 53 were alive in remission at last follow-up. Of the 17 patients
who had no platelet recovery (PRI = 0), 16 died or relapsed and one was
alive.

6.3.2 Analysis of Disease-Free Survival

We analyze disease-free survival (TFREEST) using a Cox-regression model
for the overall hazard α(t, z(t)) = α0(t) exp(β ′z(t)). For each patient the time-
dependent indicator PLSTATUS(t) for platelet recovery status at time t is
created as follows. For patients without platelet recovery (PRI = 0) define
PLSTATUS(t) = 0; patients with platelet recovery, set PLSTATUS(t) = 0 if
t < TRETP and PLSTATUS(t) = 1 if t ≥ TRETP. All other covariates are
assessed at t = 0.
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TABLE 6.1

Variables in BMT_SH Data Set

Variable
Name Description Coding

ID Patient identification
TFREEST Disease-free survival time Time in days to relapse, death, or end of

study
DFI Disease-free survival indicator 1 = dead or relapsed, 0 = alive disease free
PRI Platelet recovery indicator 1 = platelet recovered, 0 = no platelet

recovery during study
TRETP Days to platelet recovery Time is days to platelet recovery, if PRI = 1.

Otherwise, TREP = .
DGROUP Disease group 1 = ALL (acute lymphobastic leukemia)

2 = AML-low risk (acute myeloctic
leukemia)

3 = AML-high risk
PAGE Patient age in years
DAGE Donor age in years
PSEX Patient sex 1 =Male, 0 = Female
DSEX Donor sex 1 =Male, 0 = Female
PSTATUS Patient CMV status 1 = CMV Positive, 0 = CMV Negative
DSTATUS Donor CMV Status 1 = CMV Positive, 0 = CMV Negative
FAB FAB Grade 1 = Grade 4 or 5 and AML, 0 = otherwise
MTX Methotrexate used as a

Graft-Versus-Host-Disease
Prophylactic

1 = Yes, 0 = No

Our primary focus is on the impact of disease risk groups (DGROUP) and
platelet recovery on disease-free survival. Preliminary analyses show that
patient and donor sex, and patient and donor CMV status do not have a sig-
nificant effect on survival. However, with patient and donor age there seems
to be a strong interaction. In what follows we will only consider the two age
variables (PAGE, DAGE), FAB and MTX. Since the effect of these covariates
might differ before and after platelet recovery, the model for α(t, z(t)) has
regression coefficients specific to the two periods.

For example, consider the base model with DGROUP and PLSTATUS. For
DGROUP we use two coefficients (β1,β2) for (AML-high risk, AML-low risk),
with the group ALL as referent, a coefficient β3 for PLSTATUS and two coef-
ficients (β4,β5) for the crossed effect DGROUP×PLSTATUS. Then α0(t) is the
hazard for the ALL group before platelet recovery, and α0(t) exp(β3) is the
hazard after platelet recovery. Therefore, exp(β3) is the relative hazard for
a patient in the ALL group at time t after platelet recovery compared with
a patient in the ALL group at time t whose platelets have not recovered to
normal levels. The other parameters are identified as shown by the other
comparisons in Table 6.2.
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TABLE 6.2

Regression Parameters

Platelet Recovery Comparison Risk Groups Relative Hazard

Before AML-high risk vs. ALL exp(β1)
Before AML-low risk vs. ALL exp(β2)
After AML-high risk vs. ALL exp(β1 + β4)
After AML-low risk vs. ALL exp(β2 + β5)

6.3.3 Estimation of the Base Model

To enhance the presentation the following formats may be used:

proc format;
value dgroup 1 = ’ALL’ 2 = ’AML low risk’
3 = ’AML high risk’;

value dfi 1 = ’dead or relapsed’ 0 = ’alive disease free’;
value pri 1 = ’platelets returned to normal’
0 = ’platelets never returned to normal’;

value fab 1 = ’FAB grade 4 or 5 and AML’ 0 =
’otherwise’; value mtx 1 = ’yes’ 0 = ’no’;
run;

The base model with the parametrization given in Table 6.2 is estimated
using the SAS TPHREG (experimental) procedure in SAS version 9.1.3. This
is an enhancement of the SAS PHREG procedure allowing for CLASS and
CONTRAST statements. Future releases of SAS will likely fold these options
into PHREG. The following syntax fits the base model. Some options are
redundant but are included for clarity.

proc tphreg data = BMT_SH;
class dgroup(ref = ’ALL’)/param = ref;
model tfreest*dfi(0) = dgroup|plstatus/ties = breslow;
if pri = 0 or (pri = 1 and tfreest<tretp) then plstatus = 0;
else plstatus = 1;
format dgroup dgroup.;
run;

An estimator β̂ of β is derived by maximizing the generalized Cox partial
likelihood given by

n∏
i=1

∏
t

{
Yi(t) exp(β ′zi(t))∑n
k=1 Yk(t) exp(β ′zk(t))

}�Ni(t)

where Yi(t) = 1 if the i-th patient is at risk of death/relapse at time t−, and
Yi(t) = 0 otherwise. Also Ni(t) = 1 if the event death or relapse has occurred
by time t in the i-th patient; if not, Ni(t) = 0.
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TABLE 6.3

Contrast Estimates and Confidence Intervals for Base Model

Relative
Contrast Hazard 95% LCL 95% UCL p-Value

Before recovery: AML-high risk vs. ALL 2.305 0.592 8.966 0.2284
Before recovery: AML-low risk vs. ALL 2.883 0.706 11.778 0.1402
After recovery: AML-high risk vs. ALL 1.355 0.765 2.402 0.2978
After recovery: AML-low risk vs. ALL 0.450 0.241 0.840 0.0122

The time-dependent platelet status recovery indicator must be created
within the procedure. There are 83 event times in the data set. At each event
time t = TFREEST, the data is scanned to determine the function (of β)∑n

k=1 Yk(t) exp(β ′zk(t)) where

β ′z(t) = β1AMLH + β2AMLL + β3PLSTATUS(t)+ β4AMLH × PLSTATUS(t)

+ β5AMLL × PLSTATUS(t),

is evaluated for each patient. AMLL and AMLH are, respectively, indicators
for the AML-low risk and AML-high risk groups.

To obtain estimates and 95% confidence intervals for the relative hazards in
Table 6.2, we specify the vectors L for the parametric functions L′β. The syntax
to obtain Table 6.3 uses CONTRAST and ODS statements. [The experimental
TPHREG procedure is used throughout. Its options will be available in the
PHREG procedure in a future release of the SAS/STAT Software.]

ods output contrastestimate = contrasts;
proc tphreg data = BMT_SH;
class dgroup(ref = ’ALL’)/param = ref;
model tfreest*dfi(0) = dgroup|plstatus/ties = breslow;
if pri = 0 or (pri = 1 and tfreest<tretp) then
plstatus = 0;

else plstatus = 1;
format dgroup dgroup.;
contrast ’Before Recovery: AML-high risk vs ALL’

DGROUP 1 0/estimate = exp;
contrast ’Before Recovery: AML-low risk vs ALL’

DGROUP 0 1/estimate = exp;
contrast ’After Recovery: AML-high risk vs ALL’

DGROUP 1 0 dgroup*plstatus 1 0/
estimate = exp;

contrast ’After Recovery: AML-low risk vs ALL’
DGROUP 0 1 dgroup*plstatus 0 1/
estimate = exp;

run;
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Table 6.3 can be generated from the following syntax that creates an RTF
file from the CONTRASTS data set. This article was produced as a WORD file
that allowed easy insertion of the RTF file within the document with minor
additional editing.

ods rtf file = "C:\Documents and Settings\My Documents\
contrasts.rtf"

style = styles.journal;
proc print data = contrasts noobs label

style(DATA) = {font = ("TimesNewRoman", 3.5,
medium roman normal)}

style(TABLE) = {frame = box}
style(HEADER) = {font = ("TimesNewRoman", 3.5,

bold roman normal)};
format estimate lowerlimit upperlimit F6.3
probchisq pvalue6.4;

var contrast estimate lowerlimit upperlimit probchisq;
label estimate = ’Relative Hazard’ lowerlimit = ’95% LCL’
upperlimit = ’95% UCL’ probchisq = ’p-value’;

run;
ods rtf close;

6.3.4 Variable Selection

The constellation of variables is the time invariant effects DGROUP, FAB,
MTX, PAGE, DAGE and PAGE×DAGE, the time-dependent effect PLSTATUS
and its interaction with all the preceding effects. We will use a forward selec-
tion process (SELECTION = FORWARD) with significance level for entry set
at 10% (SLENTRY = .10). All effects are subject to the hierarchy requirement.
With HIERARCHY =MULTIPLE a single main effect can enter the model or
an interaction can enter the model together with all the effects that are con-
tained in the interaction. In contrast with HIERARCHY = SINGLE, only one
effect can enter at each step, subject to the model hierarchy requirement. For
example, this means that the interaction DGROUP×PLSTATUS can enter the
model only if both the main effects are already in the model.

SAS uses the score statistic (instead of partial likelihood ratio statistic)
to assess the order of variable entry. In this example there are 13 effects—
six time invariant effects, one time-dependent effect PLSTATUS, and its six
interactions. The score statistic with the smallest p-value consistent with the
entry significance level determines the effects that will be entered first. The
multiple hierarchy option considers multiple degrees of freedom tests for
interactions and all effects that contain it. At the first step, the following
are entered: PAGE, DAGE, PAGE×DAGE, PLSTATUS, PLSTATUS× PAGE,
PLSTATUS × DAGE and PLSTATUS × PAGE × DAGE. The second step
assesses the remaining six effects for entry to augment the first model. This
results in DGROUP and PLSTATUS × DGROUP being added. Step 3 then
adds FAB and PLSTATUS × FAB. The only effects remaining are MTX and
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MTX× PLSTATUS. The score test p-values are .46 for MTX alone, and .53 for
MTX and MTX × PLSTATUS. Because they are above our significance level
for entry (.10) the selection process ends.

The syntax for running the selection procedure is:

proc tphreg data = BMT_SH;
class dgroup(ref = ’ALL’) fab(ref = ’otherwise’)
mtx(ref = ’no’)/param = ref;

model tfreest*dfi(0) = dgroup|plstatus fab|plstatus
page|dage|plstatus mtx|plstatus/selection = forward
slentry = .10 hierarchy = multiple ties = breslow details;

if pri = 0 or (pri = 1 and tfreest<tretp) then plstatus = 0;
else plstatus = 1;
page = page-28;
dage = dage-28;
format dgroup dgroup. fab fab. mtx mtx.;
run;

REMARKS
The patient and donor age variables are centered at their median values
(=28 years).

Had we set our entry criterion at .50, MTX would have entered at step 4.
With only MTX× PLSTATUS left to consider, its score test p-value is .39, and
so it too would enter the model.

With HIERARCHY = SINGLE, interactions are considered for entry only
after their constituent single effects have entered the model. This option res-
ults in a model with PLSTATUS, DGROUP, FAB, PLSTATUS × DGROUP,
and PLSTATUS× FAB. As noted earlier (PAGE, DAGE) are not individually
significant unless their interaction is present. Therefore, the single hierarchy
option would fail to select the patient/donor age effects.

The parameter estimates in the final model are shown in Table 6.4. Estimates
of the relative hazard for selected contrasts are in Table 6.5. Our parametriz-
ation makes the baseline hazard α0(t) the hazard for the ALL group before
platelet recovery for a patient and donor at the median age (=28 years) and
FAB = otherwise. With respect to disease-free survival, there is no significant
difference between each AML group and the ALL group before platelet recov-
ery. However, after platelet recovery the AML-low risk group has significant
better survival than the ALL group (RH = 0.18, 95% CL: [0.08, 0.41]).

6.3.5 Using a Multiple Record, Counting Process-Style Input

An alternative computing strategy uses a file that represents the transition
records of each patient according to the schema in Figure 6.1. All patients
begin at t = 0 (TSTART) in state 0. A patient whose platelets did not return
to normal levels (PRI = 0) experiences the transition 0 → 2 provided the
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TABLE 6.4

Parameter Estimates in Final Model

Parameter Standard
Parameter Class Value Estimate Error p-Value

DGROUP AML-high risk 1.1071 1.2242 0.3658
DGROUP AML-low risk 1.3073 0.8186 0.1103
PLSTATUS −0.3062 0.6936 0.6589
PLSTATUS*DGROUP AML-high risk −1.8675 1.2908 0.1479
PLSTATUS*DGROUP AML-low risk −3.0374 0.9257 0.0010
FAB FAB grade 4 or 5 and AML −1.2348 1.1139 0.2676
PLSTATUS*FAB FAB grade 4 or 5 and AML 2.4535 1.1609 0.0346
PAGE −0.1538 0.0545 0.0048
DAGE 0.1166 0.0434 0.0072
PAGE*DAGE 0.0026 0.0019 0.1814
PLSTATUS*PAGE 0.1933 0.0588 0.0010
PLSTATUS*DAGE −0.1470 0.0480 0.0022
PLSTATUS*PAGE*DAGE 0.0001 0.0023 0.9561

PLSTATUS = 0, before platelet recovery; PLSTATUS = 1, after platelet recovery.

TABLE 6.5

Contrast Estimates and Confidence Intervals from Final Model∗

Relative
Contrast Hazard 95% LCL 95% UCL p-Value

Before recovery: AML-high risk vs ALL 3.026 0.275 33.333 0.3658
Before recovery: AML-low risk vs ALL 3.696 0.743 18.391 0.1103
After recovery: AML-high risk vs ALL 0.467 0.210 1.039 0.0620
After recovery: AML-low risk vs ALL 0.177 0.077 0.409 <.0001

∗ Adjusted for patient and donor age, FAB.

patient is not censored. An indicator IND02 labels whether or not the trans-
ition occurred, and the ending time is TSTOP = TFREEST. A stratum label 02
is created for this record. A patient whose platelets returned to normal levels
(PRI = 1) experiences the transition 0→ 1. This occurs at TSTOP = TRETP.
An indicator IND01 = 1 labels that this transition occurred and a stratum
label 01 is created for this record. A second record is created to represent
the next transition 1 → 2 starting at TSTART = TRETP and ending time
at TSTOP = TFREEST. The indicator IND12 labels whether the transition
occurred: IND12 = 1, otherwise IND12 = 0. A stratum label 12 is created for
this record. For each patient, IND01, IND02, IND12 are all zero unless the
corresponding transition occurred.

This technique of representing the event-history data with time-dependent
covariates was popularized by Therneau and Grambsch (2000). It works well
when the time-dependent covariates take on a finite number of values. Each
interval (TSTART, TSTOP) denotes an interval of risk for the patient with cov-
ariate measured at the beginning of the interval. At TSTOP some covariate
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values might change or the event status changes. If overall disease-free sur-
vival is the event of interest, a censoring variable STATUS indicates whether
or not the transition resulted in this event. Therefore, STATUS = 1 for
IND02 = 1 or IND12 = 1 and STATUS = 0 otherwise. Note that we do
not set STATUS = 1 for IND01 = 1 because platelet recovery is not being
considered an event in this analysis.

The following data step creates the extra 120 records for patients who had
platelet recovery (PRI = 1). These records have PLSTATUS = 1 for the period
representing the transition 1→ 2. Otherwise, PLSTATUS = 0 for all records.
There is one patient in the data set whose time to platelet recovery is zero
(TRETP = 0). This creates a null interval for the transition 0 → 1. In the
syntax below this is prevented by adding 1 day to TSTOP.

data bmt_LG;
set bmt_SH(keep = id tretp tfreest pri dfi dgroup
fab page dage mtx);

retain tstop;
IND01 = 0; IND12 = 0; IND02 = 0;
if pri = 0 then do;
tstart = 0; tstop = tfreest; plstatus = 0; stratum = ’02’;

if dfi = 1 then IND02 = 1; else IND02 = 0;
status = IND02;
if tstop = tstart then tstop = tstart+1;

output; end;
if pri = 1 then do;
tstart = 0; tstop = tretp; plstatus = 0; stratum = ’01’;

IND01 = 1;
status = 0; /*Platelet recovery not regarded as event*/
if tstop = tstart then tstop = tstart+1;
output;
tstart = tstop; tstop = tfreest;
plstatus = 1; stratum = ’12’;

if dfi = 1 then IND12 = 1; else IND12 = 0;
status = IND12;

output; end;
run;

The count of events among the 137 patients is easily tracked using the
created indicators (Table 6.6). Of the 120 patients who had platelet recovery
(transition 0→ 1) 67 died or relapsed (IND12 = 1), and 53 were censored. Of
the other 17 patients (IND01 = 0), 16 died or relapsed and 1 was censored.
Note that STATUS = 1 for the event of interest—died or relapsed, a total of
83 events.

Table 6.6 may be generated by the following syntax and printing of the
output LIST data set.

proc format;
value plstatus 1 = ’after’ 0 = ’before’;
run;
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TABLE 6.6

Count of Events among 137 Transplant Patients

Plstatus Stratum Status IND01 IND12 IND02 Frequency

Before 01 0 1 0 0 120
Before 02 0 0 0 0 1
Before 02 1 0 0 1 16
After 12 0 1 0 0 53
After 12 1 1 1 0 67

TABLE 6.7

Parameter Estimates from Final Model (Multiple Record File)

Class Parameter Standard
Parameter Class Value Value Estimate Error p-Value

DGROUP AML-low risk 1.3160 0.8188 0.1080
DGROUP AML-high risk 1.1251 1.2252 0.3585
PLSTATUS After −0.2866 0.6956 0.6803
DGROUP*PLSTATUS AML-low risk After −3.0469 0.9259 0.0010
DGROUP*PLSTATUS AML-high risk After −1.8859 1.2916 0.1443
FAB FAB grade 4 or

5 and AML
−1.2444 1.1126 0.2634

PLSTATUS*FAB After FAB grade
4 or 5 and
AML

2.4644 1.1594 0.0335

PAGE −0.1535 0.0546 0.0049
DAGE 0.1163 0.0435 0.0075
PAGE*DAGE 0.0026 0.0019 0.1801
PAGE*PLSTATUS After 0.1931 0.0588 0.0010
DAGE*PLSTATUS After −0.1467 0.0481 0.0023
PAGE*DAGE*PLSTATUS After 0.0001 0.0023 0.9585

ods output list = list;
proc freq data = bmt_LG;
tables plstatus*stratum*status*ind01*ind02*ind12/list;
format plstatus plstatus.;
run;

Because PLSTATUS is a class variable in the data set bmt_LG, we can readily
obtain the results shown previously in Tables 6.4 and 6.5 using appropriate
options in the CLASS statement. Table 6.7 is derived from the PARMS data
set created by

ods output parameterestimates = parms;
proc tphreg data = bmt_LG namelen = 25 multipass;
class dgroup(descending) plstatus fab/param = glm;
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model (tstart, tstop)*status(0) = dgroup|plstatus
fab|status page|dage|
plstatus/ties = breslow;

page = page-28;dage = dage-28;
format dgroup dgroup. fab fab. plstatus plstatus.;
run;

A full parametrization is requested through the global PARAM = GLM
option. The local DESCENDING option on DGROUP makes the ALL group
the referent. The default ordering makes the highest formatted value the
referent that would be “AML-low risk.” In the data set PARMS, all referent
categories have degrees of freedom 0 (DF = 0) and therefore can be eliminated
in the subsequent print procedure creating Table 6.7.

There appears to be minor differences in the parameter estimates shown
here and those in Table 6.4. This is because PHREG terminated at the optim-
ized partial−2 log likelihood value of 683.254 whereas the previous approach
ended at a value of 683.042. The differences remain approximately the same
under other ties-handling options (TIES = EFRON, or EXACT).

6.3.6 Plotting Survival Curves

From the death or relapse intensity model α(t, z(t)) = α0(t) exp(βz(t))the
cumulative baseline hazard

A0(t) =
∫ t

0
α0(u)du

is estimated by

Â0(t) =
∫ t

0

[Y(u) > 0]
S(0)(β̂,u)

dN(u)

where

S(0)(β̂, t) =
n∑
i=1

Yi(t) exp(β̂ ′zi(t)), Y(t) =
n∑
i=1

Yi(t) and N(t) =
n∑
i=1

Ni(t).

The next step is the estimation of survival function S(t | z0) = exp(−A0(t)
exp(β ′z0)) at a specified (fixed) covariate z0. In the final model (Table 6.7) we
will estimate survival in the three disease groups for patients with PAGE = 28,
DAGE = 28 and FAB = 0. The profile must also specify the platelet status
indicator PLSTATUS. In the data set bmt_LG, this is explicitly created. Platelet
recovery time range is 1 to 100 days, with median 18 days for the 120 patients
who had platelet recovery. In the 83 patients who died or relapsed, the event
time range is 1–2204 days, with median 183 days. Only three events occurred
after 750 days.
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The COVAR data set contains the six profiles (three disease groups with
and without platelet recovery) that are fixed. Values for all covariates in
the final model must be specified together with formats. This could be
created by

proc sort data = BMT_LG out = covar(keep = dgroup plstatus)
nodupkey;

by DGROUP PLSTATUS;
run;

data covar;
set covar;
page = 0; dage = 0; fab = 0;
format dgroup dgroup. fab fab. plstatus plstatus.;
run;

The PAGE and DAGE variables are set to zero because the following syntax
estimates the baseline cumulative hazard at the desired profile by centering
the two covariates.

proc tphreg data = bmt_LG namelen = 25 multipass noprint;
class dgroup(descending) plstatus fab/param = glm;
model (tstart, tstop)*status(0) = dgroup|plstatus
fab|plstatus

page|dage|plstatus/rl ties = breslow;
baseline out = survival_est covariates = covar lower = LCL
survival = survival upper = UCL/cltype = loglog
method = ch nomean;

page = page-28;
dage = dage-28;
format dgroup dgroup. fab fab. plstatus plstatus.;
run;

The data set SURVIVAL_EST contains the survival estimates and 95%
confidence limits for all six profiles. Because Â0(t) is a step function with
values changing at the event times (there are 76 distinct times), each survival
curve is estimated at the same grid of event times according to Ŝ(t | z0) =
exp(−Â0(t) exp(β̂ ′z0)). Figure 6.2 depicts the survival estimates (through
750 days) in the ALL and AML low risk groups without platelet recovery.
The following syntax was used:

goptions reset = global colors = (black blue red
green purple)

gunit = pct cback = white ctext = black
ftext = "Garamond"

htitle = 4 htext = 3 hsize = 7 in vsize = 7 in
offshadow = (-.5 -.5);



C5777: “c5777_c006” — 2007/10/27 — 13:03 — page 173 — #21

Analyzing Multiple Failure Time Data Using SAS® Software 173

1.00

0.75

Disease group All
AML-low risk

0.50

0.25

0.00

0 50 100 150 200 250 300

Time, days

S
ur

vi
va

l p
ro

ba
bi

lit
y

350 400 450 500 550 600 650 700 750

FIGURE 6.2
ALL and AML-low risk, without recovery.

symbol1 interpol = stepjl value = dot color = red h = 1;
symbol2 interpol = stepjl value = circle color = blue h = 1;
axis1 label = (angle = 90 ’SURVIVAL PROBABILITY’)
order = (0 to 1 by .25) offset = (2 2);

axis2 label = (’TIME, Days’) order = (0 to 750 by 50)
offset = (2 2);

legend1 across = 1 label = (’Disease Group’) cshadow = gray
frame mode = protect position = (inside right top)
offset = (-2,-2);

proc gplot data = survival_est;
where dgroup in (1, 2) and plstatus = 0;
plot survival*tstop = dgroup/vaxis = axis1
haxis = axis2 legend = legend1;

format dgroup dgroup. plstatus plstatus.;
title ’Figure 6.2: ALL and AML-low risk, without recovery’;
run; quit;

The CLTYPE = loglog option computes the 95% pointwise confidence
intervals (LCL, UCL) for the survival curves based on the log(− log S(t | z0))

transformation. This is slightly more accurate than the default option based on
the log transformation. Figure 6.3 plots the survival curves and confidence
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FIGURE 6.3
ALL and AML-low risk with platelet recovery: survival estimates and 95% pointwise confidence
intervals.

intervals in the ALL and AML-low risk groups with platelet recovery. For
plotting, a data set AFTER was created.

data after;
merge survival_est(keep = dgroup plstatus tstop plstatus
survival lcl ucl

where = (dgroup = 1 and plstatus = 1)
rename = (survival = surv_ALL lcl = lcl_ALL ucl = ucl_ALL))
survival_est(keep = dgroup plstatus survival lcl ucl
where = (dgroup = 2 and plstatus = 1)
rename = (survival = surv_AML_low lcl = lcl_AML_low
ucl = ucl_AML_low))

survival_est(keep = dgroup plstatus survival lcl ucl
where = (dgroup = 3 and plstatus = 1)
rename = (survival = surv_AML_high lcl = lcl_AML_high
ucl = ucl_AML_high));

drop dgroup plstatus;
run;

The six plots of survival curves and confidence limits are created using
GPLOT with additional symbol statements similar to those used in Figure 6.2.
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The annotation uses a data set ANNO with labels assigned to positions on
the plot by visual inspection of the (x, y) coordinates.

data anno;
length text $ 22 color function style $ 8;
retain function ’LABEL’ position ’4’ hsys ’3’ ysys ’2’
xsys ’2’ size 2 style "zapfb";

text = ’ALL, 95% LCL’; x = 500; y = .25;
color = ’red’; output;

text = ’ALL, survival’; x = 600; y = .40;
color = ’red’; output;

text = ’ALL, 95% UCL’; x = 600; y = .58;
color = ’red’; output;

text = ’AML low risk, 95% LCL’; x = 500; y = .70;
color = ’blue’; position = ’2’; output;

text = ’AML low risk, survival’; x = 600; y = .80;
color = ’blue’; position = ’2’; output;

text = ’AML low risk, 95% UCL’; x = 500; y = .96;
color = ’blue’; position = ’2’; output;

run;

proc gplot data = after;
plot (lcl_all surv_all ucl_all lcl_aml_low
surv_aml_low ucl_aml_low)*tstop/annotate = anno
overlay vaxis = axis1 haxis = axis2;

title ’Figure 6.3: ALL and AML-low risk with platelet
recovery’;

title2 j = c ’95% pointwise confidence intervals’;
run;
quit;

6.3.7 Multiple Events and Stratum-Specific Analysis

The regression model that we have considered has a single overall hazard
function for the intensity of death or relapse, α(t, z(t)) = α0(t) exp(βz(t))
where z(t) is a large covariate vector that captures the variables DGROUP,
FAB, PAGE, DAGE and PAGE×DAGE for the periods before and after platelet
recovery through the time-dependent indicator PLSTATUS. However, plate-
let recovery was not regarded as an “event,” but as a covariate. We now turn
to a full event-specific analysis of three transitions shown in Figure 6.1.

Now regard platelet recovery also as an event and consider the three-state
model with transition-specific covariates:

α01(t, z(t)) = α01,0(t) exp(β01z(t))

α02(t, z(t)) = α02,0(t) exp(β02z(t))

α12(t, z(t)) = α12,0(t) exp(β12z(t)).
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Because the baseline intensities α01,0,α12,0,α02,0 and regression parameters
β01,β12,β02 are specific to each transition type, we may analyze each transition
separately. However, with a small expansion of the data file all three analyses
can be obtained from a single invocation of PHREG.

The syntax below creates the file bmt_EXP. The key additions to bmt_LG
are records for patients who had the 0→ 2 transition (16 events, 1 censored).
They are also considered at risk for the 0→ 1 transition, but all were censored
and thus STATUS = 0. Similarly, patients who had the 0 → 1 transition
(120 events) are considered at risk for the 0 → 2 transition, but all were
censored. The variable STATUS indicates whether or not the events “platelet
recovery,” “death/relapsed” were observed.

data bmt_EXP;
set bmt_SH(keep = id tretp tfreest pri dfi dgroup fab page
dage mtx);

retain tstop;
IND01 = 0; IND12 = 0; IND02 = 0;
if pri = 0 then do;
tstart = 0; tstop = tfreest; plstatus = 0; stratum = ’02’;

if dfi = 1 then IND02 = 1; else IND02 = 0;
status = IND02;
if tstop = tstart then tstop = tstart+1;

output;
stratum = ’01’; IND01 = 0; IND02 = 0; status = 0; output;
end;

if pri = 1 then do;
tstart = 0; tstop = tretp; plstatus = 0; stratum = ’01’;

IND01 = 1;
status = 1; /**** platelet recovery regarded as event ****/
if tstop = tstart then tstop = tstart+1;
output;

stratum = ’02’; IND01 = 0; IND02 = 0; status = 0; output;
tstart = tstop; tstop = tfreest; plstatus = 1; stratum = ’12’;

if dfi = 1 then IND12 = 1; else IND12 = 0;
status = IND12;

output;
end;
run;

To estimate the transition-specific regression model with PHREG we need
a STRATA statement for the different baseline intensities. All covariate effects
appear as crossed effects with the stratum variable in order to get type-
specific estimates. The variable PLSTATUS created above for clarity is no
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TABLE 6.8
Number of Patients, Events, and
Censored Events

Stratum Total Event Censored

01 137 120 17
02 137 16 121
12 120 67 53

Records 394 203 191

longer necessary. The syntax for invocation of PHREG is:

proc tphreg data = bmt_EXP namelen = 25 multipass;
class stratum dgroup(descending)fab/param = glm;
strata stratum;
format dgroup dgroup. fab fab.;
model (tstart, tstop)*status(0) = stratum*dgroup stratum*fab

stratum*page stratum*dage
stratum*page*dage/
ties = breslow;

page = page-28; dage = dage-28;
run;

Table 6.8 is derived from the default output “Summary of the Number of
Event and Censored Values” using appropriate ODS statements. Stratum 01
labels the 0 → 1 transition. A total of 137 patients are at risk, 120 events
(i.e., platelet recovery) are observed and 17 are censored for this event. For
the 0→ 2 transition, of 137 patients at risk, 16 events (i.e., died or relapsed)
are observed and 1 patient is censored for this event. The 1 → 2 transition
concerns only the 120 patients with platelet recovery. Of these, 67 events are
observed with the rest being censored.

Exactly the same results as in Table 6.9 would be obtained by analyzing each
transition separately. For example, for the transition 0 → 1 all patients are
at risk. The censoring indicator for the event “platelets recovered” is IND01.
Accordingly, our syntax is then

proc tphreg data = bmt_exp namelen = 25;
where stratum in (’01’);
class dgroup(descending)fab/param = glm;
format dgroup dgroup. fab fab.;
model (tstart, tstop)*IND01(0) = dgroup fab page dage

page*dage/ties = breslow ;
page = page-28; dage = dage-28;
run;
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TABLE 6.9

Parameter Estimates from Type-Specific Transition Model

Class Parameter Standard
Parameter Value Class Value Estimate Error p-Value

STRATUM*DGROUP 01 AML-low risk 0.3337 0.2496 0.1812
STRATUM*DGROUP 01 AML-high risk 0.1428 0.2978 0.6316
STRATUM*FAB 01 FAB grade 4 or 5

and AML
−0.1079 0.2360 0.6475

PAGE*STRATUM 01 0.0156 0.0161 0.3310
DAGE*STRATUM 01 −0.0143 0.0138 0.3016
PAGE*DAGE*STRATUM 01 −0.0016 0.0009 0.0694
STRATUM*DGROUP 02 AML-low risk 1.4664 0.9174 0.1100
STRATUM*DGROUP 02 AML-high risk 1.4477 1.3334 0.2776
STRATUM*FAB 02 FAB grade 4 or 5

and AML
−1.7567 1.3214 0.1837

PAGE*STRATUM 02 −0.1616 0.0620 0.0091
DAGE*STRATUM 02 0.1258 0.0475 0.0081
PAGE*DAGE*STRATUM 02 0.0032 0.0021 0.1303
STRATUM*DGROUP 12 AML-low risk −1.7160 0.4255 <.0001
STRATUM*DGROUP 12 AML-high risk −0.7565 0.4075 0.0634
STRATUM*FAB 12 FAB grade 4 or 5

and AML
1.2115 0.3223 0.0002

PAGE*STRATUM 12 0.0387 0.0218 0.0753
DAGE*STRATUM 12 −0.0292 0.0205 0.1540
PAGE*DAGE*STRATUM 12 0.0027 0.0012 0.0305

The output would match the top part of Table 6.9 with stratum class value =
01. For the transition 0 → 2, the risk stratum is 02 and censoring indicator
IND02. For the transition 1→ 2, the risk stratum is 12 and censoring indicator
IND12. Because there are a number of tied platelet recovery times, a better
ties-handling likelihood for the 0 → 1 transition than the default Breslow
likelihood is the Efron likelihood (TIES = EFRON) or exact likelihood (TIES =
EXACT).

In Section 6.3.4, we analyzed factors associated with the overall death of
relapse intensity, treating platelet recovery status as a time-dependent cov-
ariate. We found no significant effect of MTX use. If the impact of MTX on
each of the transitions is now assessed we find that it has a very significant
influence on platelet recovery intensity, but not on the two death or relapse
intensities. In the next section we will add MTX to the covariates for the 0→ 1
transition.

6.3.8 Common Baseline Death or Relapse Intensities

Thedeath/relapse intensitiesα12(t, z(t))andα02(t, z(t))arenowmodeledwith
common baseline intensity α0,0(t). We will still maintain separate regression
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coefficients β01,β12,β02 for the transition types. The model is

α01(t, z(t)) = α01,0(t) exp(β01z(t))

α02(t, z(t)) = α0,0(t) exp(β02z(t))

α12(t, z(t)) = α0,0(t) exp(β12z(t)).

Because they share a common baseline intensity we must analyze the trans-
itions 0 → 2 and 1 → 2 jointly. Suppose we make α0,0(t) represent the ALL
group without regard to platelet recovery status. First, modify the data set
bmt_exp by

data common;
set bmt_exp(where = (stratum in (’02’ ’12’)));
if dgroup = 1 then plc = 0;
else plc = plstatus;
run;

The PLC indicator will be used as a class variable. It cannot be created by
programming statements within the TPHREG procedure. To fit the model,
both DGROUP and FAB must be sub-grouped by PLC, the latter because we
want FAB = 0 to refer to a single group within ALL. The two age variables and
their interactions are sub-grouped by the levels of PLSTATUS. The following
syntax will fit the model.

proc tphreg data = common multipass;
class plc plstatus(descending) dgroup(descending)
fab/param = glm;

format dgroup dgroup. fab fab. plc plstatus plstatus.;
model (tstart, tstop)*status(0) = dgroup*plc fab*plc
page*plstatus dage*plstatus page*dage*plstatus/
ties = efron;

page = (page-28);
dage = (dage-28);
run;

Table 6.10 replaces the portion of Table 6.9 that corresponds to the trans-
itions 0 → 2 and 1 → 2. With MTX included in the model for α01(t, z(t)) =
α01,0(t) exp(β01z(t)) a separate invocation of PHREG is used (Table 6.11). All
three transitions could be analyzed in one single call of PHREG by creating
a data set in which MTX is identically zero for the 0 → 2 and 1 → 2 trans-
itions but retains its values for the 0→ 1 transition. Also, a two-level stratum
variable is easily created through formatting of 0 → 2 and 1 → 2 into one
stratum and 0→ 1 as the other stratum. The syntax is similar to that used in
Section 6.3.7 leading to Table 6.9.
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TABLE 6.10
Parameter Estimates from Transition Model for 0 → 2 and 1 → 2 with a Common
Baseline Intensity

Class Parameter Standard
Parameter Value Class Value Estimate Error p-Value

PLC*DGROUP Before AML-low risk 1.5442 0.6358 0.0152
PLC*DGROUP Before AML-high risk 1.3148 1.1598 0.2569
PLC*FAB Before FAB grade 4 or

5 and AML
−1.2465 1.1152 0.2637

PAGE*PLSTATUS Before −0.1599 0.0538 0.0030
DAGE*PLSTATUS Before 0.1195 0.0436 0.0062
PAGE*DAGE*PLSTATUS Before 0.0028 0.0019 0.1422
PLC*DGROUP After AML-low risk −1.7625 0.4184 <0.0001
PLC*DGROUP After AML-high risk −0.7906 0.3991 0.0476
PLC*FAB After FAB grade 4 or

5 and AML
1.2234 0.3224 0.0001

PAGE*PLSTATUS After 0.0404 0.0216 0.0612
DAGE*PLSTATUS After −0.0308 0.0203 0.1299
PAGE*DAGE*PLSTATUS After 0.0027 0.0012 0.0292

TABLE 6.11

Parameter Estimates from Model for Platelet Recovery (0→ 1 Transition)

Parameter Standard
Parameter Class Value Estimate Error p-Value

MTX Yes −1.1970 0.2386 <0.0001
DGROUP AML-high risk −0.0817 0.2960 0.7824
DGROUP AML-low risk 0.0742 0.2553 0.7713
FAB FAB grade 4 or 5 and AML −0.3481 0.2431 0.1522
PAGE 0.0332 0.0169 0.0495
DAGE −0.0247 0.0150 0.0985
PAGE*DAGE −0.0027 0.0010 0.0074

6.3.9 Calculating Transition Probabilities

Using the model specified in the previous section, we now consider the com-
putation of the transition probabilities Phj(s, t | z) for a specified covariate
profile z. If instead our model had baseline intensities and covariates spe-
cific to each transition, our task would be relatively easy for some of these
probabilities. For example, P00(s, t | z) = exp(− ∫ ts (α01(u, z)+ α02(u, z))du)
could be computed from the cumulative intensities A01(t, z) =

∫ t
0 α01(u, z)du

and A02(t, z) =
∫ t

0 α02(u, z)du by estimating the transitions 0 → 1 and
0 → 2 separately. Similarly, from A12(t, z) =

∫ t
0 α12(u, z)du we can get

P11(s, t | z) = exp(−(A12(t, z)− A12(s, z))). For P01(s, t | z) we could use
P01(s, t | z) =

∫ t
s P00(s,u |z)dA01(u, z)P11(u, t |z). These are the Nelson–Aalen

estimators.



C5777: “c5777_c006” — 2007/10/27 — 13:03 — page 181 — #29

Analyzing Multiple Failure Time Data Using SAS® Software 181

A general method is to use the product integral P(s, t | z) = ∏
u∈(s,t](I+

dA(u)). The two computational methods will give numerically comparable
but not necessarily the same results. This is similar to the difference between
the Kaplan–Meier (product-limit) estimator of survival and the Nelson–Aalen
estimator of the survival function for a single event.

As an example of the calculations that can be carried out in SAS, consider the
model of the previous section leading to the parameter estimates in Tables 6.10
and 6.11, and the probabilities P02(s, t | z),P12(s, t | z) as a function of s
with t held fixed at 24 months. Then P02(s, 24 | z) is the forecast of death or
relapse by 24 months, given that at current time s platelet recovery has not
occurred; P12(s, 24 | z)is the forecast of death or relapse by 24 months, given
that at current time s platelet recovery has already occurred. We compute
these probabilities for the three DGROUP specifying FAB = 0, PAGE = 28
and DAGE = 28. We also consider MTX use because it appears in the model
for platelet recovery.

1. ALL Group

According to our model and covariate specification α02(t, z) = α0,0(t) =
α12(t, z) and α01(t, z) = α01,0(t) exp(β01MTX). As shown in Section 6.2.4,
irrespective of MTX use we get P02(s, 24 | z) = P12(s, 24 | z).
2. AML-low risk, AML-high risk Groups

Here

α02(t, z) = α0,0(t) exp(β02,1AMLL + β02,2AMLH),
α12(t, z) = α0,0(t) exp(β12,1AMLL + β12,2AMLH) and
α01(t, z) = α01,0(t) exp(β01MTX+ β01,1AMLL + β01,2AMLH),

where AMLL and AMLH are indicators for low- and high-risk AML groups.
We will focus on the calculations in the AML-low risk group. Create a

data set COVAR00 with the covariate profiles of interest. This is used in
the BASELINE statement in PHREG when estimating the death or relapse
transitions jointly. COVAR00 could be extracted using

proc sort data = common out = covar00(keep = plc plstatus
dgroup) nodupkey; by dgroup plc;

run;

data covar00;
set covar00;
fab = 0; page = 0; dage = 0;
format dgroup dgroup. fab fab. plc plc. plstatus plstatus.;
run;

COVAR00 has five profiles with the required covariates and formats to
estimate the cumulative intensities from the model of Table 6.10. Only one
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additional statement is required in the PHREG call:

baseline covariates = covar00 out = cumint_00
logsurv = logsurv;

The output data set cumint_00 has the estimates of A02(t, z) and A12(t, z)
in the variable LOGSURV (but with negative sign). We reverse the sign in a
short data step and change the time scale to months instead of days.

data cumint_00;
set cumint_00;
cum_haz = -logsurv;
time_m = (tstop/365.25)*12; /*time in months*/
run;

The next step is to get the estimates ofA01(t, z) from the model of Table 6.11.
This is done in an analogous manner with a prespecified COVAR01 data
set with 6 DGROUP by MTX profiles. A data set cumint_01 as above is
created.

In STATS1 below, we extract the profile information for AML-low risk,
and no MTX use. This will be used to compute all the estimates Phj(s, 24 | z)
through the product-integral formula using an IML routine. Note that MTX is
set to missing for STRATUM 02 and 12 because this covariate does not appear
in our model for the death or relapse transitions.

data stats1;
set cumint_00(keep = time_m cum_haz dgroup plc where =
(dgroup = 2 and plc = 0) in = one)
/*0→2 without recovery*/

cumint_00(keep = time_m cum_haz dgroup plc where =
(dgroup = 2 and plc = 1) in = two)
/*1→2 with recovery*/

cumint_01(keep = mtx time_m cum_haz dgroup where =
(dgroup = 2 and MTX = 0) in = three); /*no MTX*/

if one then stratum = ’02’; if two then stratum = ’12’;
if three then stratum = ’01’;

run;

Two additional data steps will create STATS3 with the jumps �Ahj(t, z).
These steps, the IML routine and the syntax for plotting the estimated prob-
abilities, are summarized in the Appendix. For AML low risk, with MTX use
the STATS1 data set needs to be recreated (changing MTX = 0 to MTX = 1)
and all the subsequent steps rerun.

Figure 6.4 shows the plot of the estimated probabilities over the range of
4 months. For patients whose platelets have recovered to normal levels, the
forecast for death or relapse at 24 months is fairly low. For patients without
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FIGURE 6.4
P02(u,24) and P12(u,24) for AML low risk.

recovery the probability of death or relapse increases sharply after about
11

2 months in patients with MTX use having worse outcome. From Table 6.11
we see that MTX use negatively impacts platelet recovery.

6.4 Concluding Remarks

In this chapter, we have demonstrated the use of SAS software in analyzing
multiple failure times. Thecontext is amultistateMarkovmodel thatdescribes
the events that a patient might experience over time. Event types become syn-
onymous with states of the process. In our example of leukemia patients who
underwent bone marrow transplantation time is measured from the start of
follow-up when all patients are assumed to be in remission (state 0). The ter-
minal event is death or relapse (state 2) with platelet recovery (state 1) being
an intermediate event. Using the counting process-style input we assessed
the impact of DGROUP and other covariates on the transition intensities of
death or relapse with platelet recovery (1→ 2) and without platelet recovery
(0 → 2). In Section 6.3.7, our transition model has baseline intensities and
regression parameters specific to each transition type. The results in Table 6.9
could also be obtained by analyzing each transition individually with separ-
ate invocations of PHREG. By expanding our data set to contain individual
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records for each patient at risk of each event type, a single invocation of
PHREG is sufficient. In this format, one can easily test hypotheses of the
effect of covariates across event types.

In Section 6.3.8, we assume a common baseline intensity for the 0→ 2 and
1→ 2 transitions and again we suggest a joint analysis with suitable modific-
ation of the input data set. Next, we show how transition probabilities could
be calculated from the PHREG output with some basic matrix manipulations
using SAS/IML.

The use of the multistate representation comes with some caveats, par-
ticularly in using it for time-dependent covariates. Here we have a single
time-dependent covariate—the platelet recovery indicator PLSTATUS(t) that
can change value from 0 to 1 only. If we had modified our model of
Section 6.3.8 so that the transitions 1 → 2 and 0 → 2 have proportional
intensities with respect to PLSTATUS(t) this covariate is now endogenous as
noted in Section 6.2.2. Our methods still apply to time-dependent covariates
that can have only a finite set of values so that the multistate representa-
tion could be made. With covariates that could change continuously this
is clearly infeasible. Joint modeling of the covariate and the event-history
processes are needed. Several articles addressing this problem (Hogan and
Laird, 1997; Wulfsohn and Tsiatis, 1997; Henderson et al., 2000) generally
have one covariate process and a single-event counting process such as
mortality.

There are other analyses of multiple events times that we have not discussed
here. For example, in studies where a natural clustering of units exists the
events times should be analyzed at the cluster level acknowledging the likely
correlation between event occurrences within the cluster. With recurrent event
data where each unit could experience a number of repeated events of the
same type such as episodes of a disease, or recurrences of tumors a state-
specific analysis is possible by labeling the sequence of events 0 → 1 →
2 → · · · . The PHREG procedure can also be applied in these analyses. It
might be surmised from our example that the main effort lies in preparing
the requisite data set that the procedure would use in creating the correct risk
sets for fitting the intended model.

The PHREG procedure is a powerful tool in alleviating the computa-
tional burden of analyzing event-history data. Future releases of the software
will likely address modeling of multivariate survival times through random
effects and frailty models.
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Appendix

SAS Steps for Computing P (s,24) in AML-Low Risk

proc sort data = stats1; by stratum mtx; run;

data stats2; /** Subsetting to AML low risk
with/without MTX **/

set stats1(where = (dgroup = 2 and (mtx = 0 or mtx = .))
keep = stratum dgroup mtx time_m cum_haz);

by stratum;
cumhaz_ = lag(cum_haz);
if first.stratum then cumhaz_ = 0;
del_haz = cum_haz-cumhaz_;
run;

proc sort data = stats2; by time_m;
run;

proc transpose data = stats2 out = stats3(drop = _name_)
prefix = DELA;

by time_m;
var del_haz;
id stratum;
run;

%/*************************************************/
/* Jumps in cumulative intensities A00, A01, A02 */
/* A11, A12 */
/**************************************************/

data stats3;
set stats3;
array s{*} dela01 dela02 dela12;
do i = 1 to dim(s);
if s{i} = . then s{i} = 0;
end;
drop i;
dela00 = -(dela01+dela02);
dela11 = -dela12;
dela10 = 0;
run;

%/********************************************************/
/*** IML STEPS TO COMPUTE P(u,24) ***/
/*********************************************************/
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proc iml;

use stats3(where = (time_m< = 24));
read all var{time_m} into TIME;
read all var{DELA00 DELA01 DELA02 DELA10 DELA11 DELA12}
into A;

A[,1] = A[,1]+1;
A[,5] = A[,5]+1;
P_ = I(3);
P = shape(0,3,3);

varnames = {T P00 P01 P02 P10 P11 P12 P20 P21 P22};
nc = ncol(varnames);
ET = J(nrow(TIME),nc,0);

do i = nrow(A) to 2 by -1;
P[1,] = A[i,{1 2 3}];
P[2,] = A[i,{4 5 6}];
P[3,] = {0 0 1};
P_ = P*P_; /** This is important **/

E = rowvec(P_);
ET[i-1,] = TIME[i-1,1]‖E;

end;

nr = nrow(TIME);
ET[nr,1] = TIME[nr,1];
ET[nr, 2:10] = {1 0 0 0 1 0 0 0 1};
mattrib ET colname = varnames;

create ESTIMATE from ET[colname = varnames];
append from ET;

close estimate;
quit;

data estimate1(label = ’AML low risk, no MTX’);
set estimate;
label P12 = ’AML high risk with recovery’

P02 = ’AML high risk wihout recovery’;
run;

∗∗ Repeat routine to create estimate2 for AML-low risk, with MTX ∗∗

SAS Steps for Plotting

** Create AML_low to contain all estimates of P02(s, 24 | z) and P12(s, 24 | z)**
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data AML_low;
set estimate1(keep = T P02 in = one rename = (P02 = P))

estimate2(keep = T P02 in = two rename = (P02 = P))
estimate2(keep = T P12 in = three rename = (P12 = P));

if one then do; MTX = 0; PLC = 0; GRP = 1; end;
if two then do; MTX = 1; PLC = 0; GRP = 2; end;
if three then do; PLC = 1; GRP = 3; end;
run;

proc format;
value grp 1 = ’without recovery, no MTX’

2 = ’without recovery, with MTX’
3 = ’with recovery’;

run;

goptions reset = global colors = (black blue red
green purple)

gunit = pct cback = white ctext = black
ftext = "Garamond"

htitle = 3 htext = 2.5 hsize = 7 in vsize = 7 in
offshadow = (-.5 -.5);

symbol1 interpol = stepjl value = dot color = black h = 1;
symbol2 interpol = stepjl value = dot color = purple h = 1;
symbol3 interpol = stepjl value = dot color = blue h = 1;

axis1 label = (angle = 90 ’Probability of Death or Relapse’)
order = (0 to 1 by .2) offset = (2 2);

axis2 label = (’TIME, months’) order = (0 to 4 by 1)
offset = (2 2);

legend1 across = 1 label = none cshadow = gray
mode = protect frame position = (inside middle right)
offset = (-2,2);

proc gplot data = AML_low;
plot P*T = grp/vaxis = axis1 haxis = axis2 legend = legend1;
title ’Figure: P02(u,24) and P12(u,24)’;
title2 j = c ’AML low risk’;
format grp grp.;
run;
quit;
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7.1 Statistical Issues in Modeling HIV Data

More than 20 years after its initial outburst, HIV/AIDS pandemic continues
to be one of the most important threats of global public health, with an estim-
ated 39 million people infected world wide and 4million new infections each
year (UNAIDS, 2006). Modeling HIV data proved to be a challenging area of
research and has led to numerous developments in the design and analysis of
clinical trials andobservational studies. The introductionof highly active anti-
retroviral treatment in the mid-1990s led to a dramatic reduction in the rates
of death or development of AIDS. The severity of infection has subsequently
been measured by immunological and virological markers, especially con-
centration of CD4 cells and HIV-1 viral RNA (viral load, VL) in the plasma.
Challenges to modeling these markers are (1) the measurements are longitu-
dinal; (2) the models are in general complex and rarely can be reduced to

189
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linear models; and (3) thesemarkers are affected by several factors, including
development of viral resistance, start or stopping of treatment, nonadherence
to treatment, choice of treatment, and treatment toxicity. These factors, alone
or in combination, affect the validity of simple statistical models, may induce
informative dropout, errors in variables, censored observations, and so forth.
Furthermore, in contrast to randomized clinical trials, observational studies
data are subject to confounding, such as the decision when to start or change
treatment, and dropout.
Recent work dealing with some of these issues includes Brown et al.

(2005)—joint modeling of CD4, HIV-1 RNA, and time to AIDS or death;
Foulkes and DeGruttola (2003)—modeling of viral resistance; Wu and Ding
(1999)—modeling of HIV-1 response to antiretroviral treatment; see also
Hughes (2000).
In this chapter, we will present some of our recent work in modeling lon-

gitudinal HIV-1 RNA and CD4 data using mixed effects models, with a focus
on the statistical and computational challenges encountered. For the use of
mixedmodels in the context of survival analysismodels, see Xu andDonohue
(2007) in this volume.

7.2 Mixed-Effects Models for Censored HIV-1 RNA Data

Linear and nonlinear mixed effects (LME and NLME respectively, referred
jointly as N/LME) models have a long history in modeling HIV data, dating
back to the early work of DeGruttola et al. (1991). Carlin (1996) modeled CD4
counts in a Bayesian framework. Wu and Ding (1999) used NLME for HIV-1
RNAfollowing start of treatment; Fitzgerald et al. (2002)usedNLMEtomodel
viral reboundowing to treatment failure. GuoandCarlin (2004) addedexplicit
modeling of the dropout process. See also Ghosh and Vaida (2007) and the
citations within. Mixed effects models allow for subject-level estimation and
have a simple and attractive interpretation. In addition, when the modeling
is done carefully they yield valid, unbiased, and efficient inference, in the
presence of dropout occurring at random.
A special challenge presents the censored HIV-1 RNA values. In untreated

HIV-1 individuals the large HIV-1 concentrations may be above the limit
of detection of the assay. We will analyze such a dataset in Section 7.2.2.
Conversely, antiretroviral treatment leads typically to “viral suppression”
in plasma. Unfortunately, the HIV is not eradicated, but its concentration
decreases below the limit of detection of the assay. It is important that this
type of censoring be accounted for in the statistical analysis. Earlierworkused
ad hocmethods, such as replacing the censored valueswith half the detection
limit (Wu and Ding, 1999). Fitzgerald et al. (2002) proposed multiple imputa-
tion to deal with censoring, and Hughes (1999) proposed a Monte Carlo
Expectation-Maximization (MCEM) algorithm for estimating the maximum
likelihoodestimator (MLE)of theLMEwith censored response (LMEC).Vaida
et al. (2007) extend this work to N/LME with censored response (N/LMEC)
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and improve the computation of this algorithm, including efficient block-
sampling at the Monte Carlo E-step, improved numeric implementation and
automatic monitoring and stopping of the algorithm. They also compare the
three methods (ad hoc, multiple imputation, and MCEM) and show that
MCEM estimation is the most statistically efficient.
Vaida et al. (2007) used closed-form formulas at the E-step for clusters

with one or two censored observations. Building on this work, in this section
we will discuss an implementation of the EM algorithm for N/LMEC with
improved speed and precision. The main advantage of this algorithm is that
it does not require Monte Carlo simulation; the E-step is available in closed
form, requiring only the multinormal cummulative distribution function
(CDF). This in turn is computed inRusing themvtnormpackage (Genz, 1992).

7.2.1 EM Algorithm for N/LME with Censored Response

Consider the Laird–Ware model

yi = Xiβ + Zibi + ei, bi ∼ N(0, σ 2D), eij ∼ N(0, σ 2), (7.1)

i = 1, . . . ,m, where ei = (ei1, . . . , eini)
′ and bi, ei are independent for all i

and independent of each other. D is a positive definite matrix depending on
a vector of parameters γ . Put n = ∑m

i=1 ni, σ 2D = � and Vi = var(yi) =
Zi�Z′i + σ 2I. The response yij is not fully observed for all i, j. Assuming
left censoring, let the observed data for the ith subject be (Qi,Ci), where Qi
represents the vector of uncensored readings or censoring levels, and Ci the
vector of censoring indicators

yij ≤ Qij if Cij = 1; yij = Qij if Cij = 0. (7.2)

In the EM we update β, σ 2 with {yij : Cij = 1} as missing data, and � using
{yij : Cij = 1} and bi as missing data. Decompose D−1 = �′� and write:
δ = (β ′, b′1, . . . , b′m)′, ỹ = (ỹ′1, . . . , ỹ′m)′, where

(
ỹi X̃i Z̃i

) = (yi Xi Zi
0 0 �

)
, and M =

X̃1 Z̃1
...

. . .
X̃m Z̃m

 . (7.3)

The M-step updates for the MLE (Vaida et al., 2007) are as follows:

δ̂ = (M′M)−1M′E(ỹ), (7.4)

σ̂ 2 = 1
n
‖E(ỹ)−Mδ̂‖2 + 1

n

m∑
i=1

tr{var(yi)} − 1
n

m∑
i=1

tr{WiZ
′
ivar(yi)Zi}, (7.5)

�̂ = 1
m

m∑
i=1

E(bi)E(bi)
′ + 1

m

m∑
i=1

var(bi), (7.6)
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where Wi = (Z′iZi + D−1)−1, E(bi) = WiZ′i{E(yi) − Xiβ}, var(bi) = σ 2Wi +
WiZ′ivar(yi)ZiWi, and E(yi), var(yi) are the mean and variance conditional
on {Ci,Qi; i = 1, . . . ,m}, taken at the current parameter value θ = (β, σ 2,D).
The update for unstructured � is given by Equation 7.6. If � is diagonal the
right-hand side of Equation 7.6 is replaced by the diagonal matrix with same
diagonal elements as Equation 7.6.
The computations use dimension reduction based on QR decomposition,

which takes advantage of the sparse nature of the matrix M (Pinheiro and
Bates, 2000). The key feature is that the number of columns of the matrices
to be decomposed does not increase with the number of clusters m or the
number of data points N.
From Equations 7.4 through 7.6 it is clear that the E-step reduces to the

computation of E(yi|Qi,Ci, θ) and var(yi|Ci,Qi, θ). These are determined as
follows. Partition yi into the observed and censored parts: y′i = (yoi ′, yci ′), that
is, Cij = 0 for all elements in yoi , and 1 for all elements in yci ; write accordingly
Q′i = (Qo

i
′,Qc

i
′
). Ignoring censoring for the moment, we have that marginally

yi ∼ N(Xiβ,� = σ 2(I + ZiDZ′i)). Then yoi ∼ N(Xo
i β,�oo), yci |yoi ∼ N(µi,Si),

where

µi = Xc
i β +�co�

−1
oo (y

o
i − Xo

i β),

Si = �cc −�co�
−1
oo �oc,

and

� =
(
�oo �oc
�co �cc

)
.

It follows that

E(yi|Qi,Ci, θ) = ((yoi )′, (µc
i )
′)′, var(yi|Qi,Ci, θ) =

(
0 0
0 Sci

)
,

where µc
i = E(U), Sci = var(U), and U = (yci |Qc

i , y
o
i ) follows a multinormal

distribution N(µi,Si) left-truncated at Qc
i . Let Bi be a diagonal matrix with

diagonal elements equal to the square roots of the corresponding diagonal
elements in Si. Put X = B−1i (U − µi). Then X has a multinormal distribution
N(0,Ri) left-truncated at ai = B−1i (Qc

i − µi) and Ri = B−1i SiB
−1
i is the correl-

ation matrix corresponding to Si. Then µc
i = BiE(X) + µi, Sci = Bivar(X)Bi

and calculation of µi,Sci reduces to computing the mean and variance of X.
Closed-form formulas for E(X), var(X) were developed by Tallis (1961) and
Finney (1962). They depend on the multinormal CDF, of dimension smaller
than or equal to the dimension of X, or the number of censored observations
in the cluster. Themultinormal CDF is available in R through the pmvnorm()
function from the mvtnorm package (Genz, 1992; R Development core Team,
2006), which is called in our computation routine. See Vaida and Liu (2007)
for further details.
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The variance of the MLE θ̂ , estimated at convergence, is adjusted for the
censored information using Louis’ formula (Orchard and Woodbury, 1972;
Louis, 1982). The variance of the fixed effects in the approximate MLE is
given (Hughes, 1999) by

var(β̂) =
( m∑

i=1
{X′iV−1i Xi − X′iV

−1
i var(yi|Qi,Ci)V

−1
i Xi}

)−1
. (7.7)

7.2.1.1 The Likelihood Function

Putn(u;A) and φ(u;A) be respectively the left-tail probability (component-
wise) and the probability density function of the N(0,A) distribution, com-
puted at u. Let αi = P(yci < Qc

i |yoi ) = nci
(ai;Ri). The likelihood for cluster i is

given by

Li = P(Qi|Ci, θ)

= P(yci ≤ Qc
i |yoi = Qo

i , θ)P(y
o
i = Qo

i |θ)
= αi φ(Qo

i − Xo
i β;�oo).

Therefore, the log-likelihood function for the observed data is given by

l(θ) =
m∑
i=1
{log αi + log φnoi (Q

o
i − Xo

i β;�oo)}.

This can be computed at each step of the EM algorithm without addi-
tional computational burden, since αi’s are computed at the E-step. The
log-likelihood can be used to monitor the convergence of the algorithm.
Alternatively, Vaida et al. (2007) monitor convergence using the objective
function

fo(θ) = −N/2{1+ log(2πσ 2)} +m/2 log |D−1| − 1/2
m∑
i=1

log |Z′iZi +D−1|,

which is the log-likelihood of the linearmixedmodelwithout censoring, with
β profiled out (Pinheiro and Bates, 2000, Chapter 2).

7.2.1.2 Nonlinear Case

The N/LME (Lindstrom and Bates, 1990; Pinheiro and Bates, 2000) is given
by

yij = f (β, bi)+ eij, (7.8)

where f (β, bi) = f (β, bi, xij) is a nonlinear function of the fixed β and random
effect bi; xij is a vector of covariates, and bi and eij are given by Equation 7.1.
The approximate MLE (β̂, σ̂ 2, γ̂ ) and predictors for the random effects b̂i are
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computed by iterative linearization (L) of the conditional mean function. The
L-step yields the LME wi = X∗i β + Z∗i bi + ei, i = 1, . . . ,m, where

wi = yi −
{
f∗i −

(
∂f∗i
∂β

)
β∗ −

(
∂f∗i
∂bi

)
b∗i
}
, (7.9)

X∗i = ∂f∗i /∂β, Z
∗
i = ∂f∗i /∂bi, yi is the ni-vector dependent variable for the

ith subject, fi, ei are respectively the corresponding mean function and error
ni-vectors, and the terms marked with an asterisk are computed with the
current parameters (β∗, b∗i ). For censored response the linearized model is an
LME with censored data, which is solved as in the previous section. More
precisely, the algorithm iterates to convergence between L, E, and M steps.
See Vaida et al. (2007) for more details.

7.2.2 HIV-1 Viral Load Setpoint for Acutely Infected Subjects

Our study concerns untreated individuals with acute HIV infection. Longi-
tudinal HIV RNA measurements were taken on 320 subjects from the Acute
Infection and Early Disease Research Program (AIEDRP), a large, ongoing,
multicenter observational study, who were identified as HIV positive close
to the time of infection. In contrast with HIV-1 RNA data for subjects on
antiretroviral treatment (e.g., Vaida et al., 2007), some observations here are
right-censored, since during the acute stage of infection the large HIV RNA
observations may lay above the limit of quantification of the assay. This limit
is between 75,000 and 500,000 cp/mL, depending on the assay. The time of
infection was estimated at 24 days before first positive HIV RNA sample or
detectable serump24 antigen test. We includedHIV RNA in the first 180 days
of follow-up andonly up to the start of antiretroviral treatment. In the absence
of treatment followingacute infection, theHIVRNAdecreases and thenvaries
around a setpoint value. This setpoint value may differ between individuals,
and is of central interest here. The viral setpoint characterizes the severity of
infection, it may relate to the strength of the subject’s immune system and
it may predict clinical progression of the disease. The subjects had between
1 and 14 observations: 129 had one, 82 had two, and 109 had three or more
observations. Of the830 recordedobservations, 185 (22%)wereabove the limit
of quantification of the assay (right-censored). The individual profiles and a
smooth mean of the observed data are included in Figure 7.1. The smooth
curve agrees qualitatively with the postulated shape of the HIV RNA traject-
ory for acutely infected patients. There is possible indication of a continuing
viral decay rather than stabilization to a setpoint, with the caveat that the
observed mean curve may be biased owing to the exclusion of the censored
values and to differential follow-up (see, e.g., Diggle et al., 2002, Chapter 11).
It is clear that the viral setpoint values differ from subject to subject.
Our analysis considers three models for these data. We started by fitting a

four-parameter logistic model taking into account the censoring information.
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FIGURE 7.1
AIEDRP data andmodel fits from (1) random intercept logistic model (– –); (2) random intercept
logistic model with linear decrease after 50 days (- -); (3) logistic model with random intercept
and random linear decrease after 50 days (− · −). Solid line: a smooth fit of the observed data
with censored observations excluded.

The model is

yij = α1i + α2[1+ exp{(tij − α3)/α4}]−1 + eij, (7.10)

where yij is the log10 HIV RNA for subject i at time tij. This is an inverted
S-shaped curve, with the constant value for the later times representing the
subject-specific setpoint. The parameters α1i and α2 are the setpoint value and
the decrease from the maximum HIV RNA; α4 is a scale parameter model-
ing the rate of decline, and α3 is a location parameter indicating the time of
achieving the HIV RNA midpoint value. In order to force the parameters to
be positive, we reparametrized the model to β1i = log(α1i),βk = log(αk), k =
2, 3, 4. The setpoint α1i was taken to be random: β1i = β1 + bi, bi ∼ N(0, σ 2b1).
It is tempting to consider models including random effects for β3 and β4, but
there are not enough available data in the acute (earliest) phase of infection
to allow for inclusion of these random parameters.
The plot of model residuals against time shows a relatively good fit

(Figure 7.2), but it suggests that the model does not capture a time trend
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FIGURE 7.2
AIEDRP data: smooth means of residuals from (1) random intercept logistic model (– –);
(2) random intercept logistic model with linear decrease after 50 days (- -); (3) logistic model
with random intercept and random linear decrease after 50 days (− · −). The residuals from
model (3) appear as points; the right-censored residuals appear as “+.”

in the data after day 50 since infection and an initial increase in viral load (see
also Figure 7.1). In addition, a variogramof the residuals (Figure 7.3) indicates
long-term autocorrelation, which may be either due to bias in modeling the
mean term or to genuine serial autocorrelation beyond the random intercept,
unaccounted for in the model.
To address the bias concern we added a linear term after day 50 in the

second model

yij = α1i + α2[1+ exp{(tij − α3)/α4}]−1 + α5(tij − 50)+ eij (7.11)

The residuals’ plot (Figure 7.2) indicates a better overall fit, but the variogram
(Figure 7.3) shows that the serial autocorrelation is not properly accounted
for. This suggests a third model, by adding a random slope after day 50

yij = α1i + α2[1+ exp{(tij − α3)/α4}]−1 + α5i(tij − 50)+ eij. (7.12)
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FIGURE 7.3
AIEDRP data: variogram from model residuals from (1) random intercept logistic model (– –);
(2) random intercept logistic model with linear decrease after 50 days (- -); (3) logistic model with
random intercept and random linear decrease after 50 days (− · −).

As in Equation 7.10, we have log(α1i) = β1i = β1 + b1i, βk = log(αk) for
k = 2, 3, 4, but α5i = β5 + b5i, in order to allow for increasing HIV RNA
trajectories after day 50. Also, (b1i, b5i) are assumed to be iid, multivariate
normal with unrestricted variancematrix. Themodel fit is slightly better than
that in the second model, with the smooth mean residual curve in Figure 7.2
closer to zero, and fitted values between the fitted values of the first two
models. More importantly, the residuals show no serial correlation in the
variogram (Figure 7.3).
The results of the analysis are in Table 7.1. We can use the last model with

reasonable confidence for predictions of viral load. For example, at 6 months
since infection the average viral load is 4.55 log10 units (in contrast, the set-
point model (7.10) estimates this at 4.83. The individual 6-month viral load
estimates vary between 1.63 and 6.65, with 5th and 95th quantiles at 3.37
and 5.50. The average slope after day 50 was negative, β5 = −0.0035 log10
HIV/day, with 95%CI (−0.0063,−0.0006). However, the individual slopesα5i
included positive values, with 5th and 95th quantiles of −0.0070 and 0.0004.
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TABLE 7.1

Analysis of Primary HIV Infection

Setpoint Model Five-Parameter Model

Estimate SE Estimate SE

β1 1.575 0.014 1.609 0.014
β2 0.4240 0.0933 0.1441 0.0950
β3 3.561 0.034 3.526 0.024
β4 1.547 0.228 1.060 0.267
β5 −3.48× 10−3 1.43× 10−3
σ 0.554 0.512
σb1 0.139 0.133
σb5 7.10× 10−3
ρb12 0.17

Theparameters are from the random-intercept logisticmodel and logistic
model with random intercept and random linear decrease after 50 days,
respectively.

7.3 Random Changepoint Modeling of CD4 Cells Rebound

In most HIV patients who initiate and sustain highly active antiretroviral
treatment (HAART), the viral load decreases sharply to undetectable levels.
At the same time, the immune system recovery ismarked by an increase in the
CD4 T-cell count. Several authors noted two stages in the CD4 count increase:
a sharper increase following start of treatment, until 6–18 weeks after treat-
ment, followed by a slower, gradual increase (Bennett et al., 2002; Deeks et al.,
2004; Bosch et al., 2006). There is no clear agreement in the literature on the
time of change of the CD4 slope. One possible explanation is that the CD4
profiles may be different for different individuals. To account for these differ-
ences following start ofHAARTwepropose a random changepointmodel for
the CD4 counts, see also Ghosh and Vaida (2007). A second important aspect
concerns patient dropout. The longitudinal CD4 profiles are censored at the
time of the subject going off study treatment. This is a potentially informative
dropout mechanism. Wemodel the informative dropout jointly with the CD4
count outcome, similar to Guo and Carlin (2004). The parameters of the drop-
out time distribution include the time of changepoint and the random effects
of the CD4 model. We take a Bayesian approach to estimation. This has the
major computational advantage of parameter estimation usingMarkov chain
Monte Carlo (MCMC). Inference is based on the posterior distribution, which
is assessed from the MCMC sample. As discussed by Gelman et al. (2004),
the various sources of parameter uncertainty are accounted for, in contrast
to the standard asymptotic methods of classical inference. Also, see Lopes
et al. (2007) in this volume. We use the deviance information criterion (DIC)
(Spiegelhalter et al., 2002) for model selection.



C5777: “c5777_c007” — 2007/10/27 — 13:03 — page 199 — #11

Mixed Effects Models for Longitudinal Virologic and Immunologic HIV Data 199

Our work is motivated by the analysis of the AIDS clinical trial ACTG 398.
We introduce the general model first, followed by the data analysis.

7.3.1 A Hierarchical Bayesian Changepoint Model

Let yi = (yi1, . . . , yini)′ be the responsevector (CD4 cell counts) for individual i,
at time ti = (ti1, . . . , tini)′; i = 1, . . . ,n; j = 1, 2, . . . ,ni. A square root transform-
ation of theCD4 counts improves symmetry and normality of the distribution
around the mean.
The first stage of the hierarchicalmodel assumes the following changepoint

(“broken stick”) regression:

yij = β1 + β2(tij − Ki)− + β3(tij − Ki)+ + bi + eij, (7.13)

where Ki is the changepoint for subject i, (tij −Ki)− equals (tij −Ki) if tij < Ki
(i.e., before the changepoint) and 0 otherwise; similarly, (tij − Ki)+ = tij − Ki
for tij ≥ Ki and 0 otherwise; β = (β1,β2,β3)′ is the vector of fixed effects, bi is
the random effects for subject i, and eij is the error.
The parameters β1,β2 are the estimated fixed effect intercept and slope

before the changepoint Ki, and β3 is the slope after changepoint. The change-
point for the ith subject Ki is assumed to be unknown. At the second stage the
random subject effects and errors are defined as

bi ∼ N(0, σ 2b ), eij ∼ N(0, σ 2), (7.14)

independently of each other.
At the third stage, wemodel thedropoutdue togoingoff study treatment. As

discussed earlier, this kind of dropout is informative (Wu and Carroll, 1988;
Little and Rubin, 2002). Thus, for accurate estimation of the changepoints
we jointly model the longitudinal marker and the survival censoring process
(Faucett and Thomas, 1996; Touloumi et al., 1999; Lyles et al., 2000). Here the
time to dropout is assumed to be exponentially distributed, with intensity
parameters related to the longitudinal process through sharing the individual
parameters of Equation 7.13. Specifically, Let Ts

i denote the dropout time for
subject i; let Ci denote the “censoring time” for Ts

i , here 48 weeks, the length
of follow-up. The observed survival data consists of Ti = min(Ts

i ,Ci) and the
event indicator variable δi taking the value 1 if Ti = Ts

i and 0 otherwise. We
assume that Ts

i has an exponential distribution with mean λ−1i , where

λi = exp{α0 + α1 log(Ki)+ α2bi}. (7.15)

Note that the roles of Ts
i andCi seem at first counterintuitive, since when Ti =

Ts
i the longitudinal vector yi is censored owing to subject dropout, whereas

when Ti = Ci, the vector yi is complete.
The association between the longitudinal and the survival processes arises

in Equation 7.15 in two ways. One is through the changepoint and the other
is through the sharing of the random effect bi. The strength and significance
of the association is measured by α1 and α2, with values of 0 indicating no
association with logKi and bi, respectively. Other forms for λi are possible.
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We arrived at Equation 7.15 through a model selection process, see Ghosh
and Vaida (2007) for more details.
Finally, at stage four we define the priors for the parameters. We assume

inverse-gamma priors to the measurement error variance σ 2 ∼ IG(a, b), the
random effect variance σ 2b ∼ IG(c, d). We assign exponential before the indi-
vidual changepointsKi ∼ exp(γ ), where γ ∼ Gamma(ak , bk). The fixed effects
are assigned a normal prior, βj ∼ N(µβ , σβ), j = 1, 2, 3. The association
parameters are also assumed as a normal prior, αj ∼ N(µα , σα).

7.3.2 Model Selection Using Deviance Information Criterion

In Bayesian data analysis, model comparison and selection are needed for at
least two reasons: (1) finding the “best” model, or subset of models, which
describe the data, and (2) studying the sensitivity of the results to prior spe-
cification. In the absence of prior information this means that the specified
prior distribution needs to be reasonably uninformative. On a more philo-
sophical level, how model selection is done depends on what is the purpose
of inference. Usually this entails model prediction, rather than simple fit of
the existing data, or even testing whether certain covariates are significantly
associated with the outcome.
We use here the DIC of Spiegelhalter et al. (2002). This criterion is a

Bayesian equivalent of the Akaike information criterion (AIC) (Akaike, 1973;
Burnham and Anderson, 2002). For mixed effects models, Vaida and Blan-
chard (2005) show that DIC is related to their conditional AIC. DIC consists
of two components, a term that measures goodness-of-fit and a penalty term
for increasing model complexity: DIC = D̄+ pD. The first term, D̄, is defined
as the posterior expectation of the deviance:

D̄ = Eθ |y[D(θ)] = Eθ |y[−2 ln f (y|θ)].
The better the model fits the data, the smaller is the value of D̄. The second
component, pD, measures the complexity of the model by the effective number
of parameters and is defined as the difference between the posterior mean
of the deviance and the deviance evaluated at the posterior mean θ̄ of the
parameters:

pD = D̄−D(θ̄) = Eθ |y[D(θ)] −D(Eθ |y[θ ]) = Eθ |y[−2 ln f (y|θ)] + 2 ln f (y|θ̄ ).
(7.16)

Equation 7.16 shows that pD can be regarded as the expected excess of the true
over the estimated residual information in data y conditional on θ . Hence, we
can interpret pD as the expected reduction in uncertainty due to estimation.
Rearranging Equation 7.16 gives D̄ = D(θ̄) + pD. As a result, DIC can be
represented as DIC = D(θ̄) + 2pD. A smaller DIC indicates better model fit.
As a rule of thumb, analogously to AIC, a difference larger than 10 between
the DIC values of two competing models is overwhelming evidence in favor
of the better model (Burnham and Anderson, 2002).
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7.3.3 Analysis of ACTG 398 Data

The data set we analyze here is from AIDS Clinical Trials Group (ACTG) 398
(Hammer et al., 2002). The goal of the trial was to assess whether adding
a second protease inhibitor (PI) to a PI-containing regimen would improve
outcomes inpatientswhohadalready failed aPI-containing regimen. Patients
were randomized to one of four treatment arms and followed for 48 weeks.
The CD4 counts were measured at weeks 0 (baseline), 2, 4, 8, 16, 24, 32, 40,
and 48 for all subjects. About half the patients had prior experience to the
nonnucleoside reverse transcriptase inhibitors class of drugs (NNRTI), other
than the study drug Efavirenz. All subjects received Efavirenz, which, as it
turned out, was importantly related to virologic failure. In the first 48 weeks
of the study, 317 subjects had virologic failure, whereas 164 maintained a
good virologic response. We work with these 164 subjects; they have 985
CD4 observations ranging from 3 to 8 observations per subject. The mean
value and median of the CD4 counts are 17.21 and 17.03, respectively. The
covariates of interest included in this analysis are treatment (the three dual
PI arms combined and placebo), NNRTI experience, and baseline log10 viral
load. Figure 7.4 shows the longitudinal CD4 profiles for the 164 subjects.
ACTG 398 had high toxicity rates owing to high drug burden and to the

advanced stage of infection in the study population; 46% of the subjects went
off study-treatment (stopping at least one drug) owing to toxicity byweek 48.
When a subject goes off-study-treatment this affects immediately their viral
load and CD4 cell count. In our analysis the interest is in modeling the effect
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FIGURE 7.4
CD4 profiles for the 164 subjects in the study (thin lines). The solid lines mark the median and
quartiles of the observed data at each time point. The dashed line is the median predicted CD4
for all subjects based on Model 6.
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FIGURE 7.5
Dropout times for the 164 subjects in the study: Kaplan–Meier curves and model fits from the
marginal dropout distribution of Model 6.

of the actual antiviral treatment on CD4 for subjects that sustain control of
viral infection, so the CD4 values were censored at the time of off-study-
treatment. On the basis of the main analysis results we only consider two
treatment groups, the combination of three dual-PI arms and the PI-placebo
arm. Of the 164 drop-off times, 50 (30%) were censored at week 48. Figure 7.5
shows the dropout curve using the Kaplan–Meier estimate and using the fits
from the final joint model.
The hyperparameters in the prior distributions for the parameters in the

modelwere chosen so that the priors are uninformative. In particular, we took

βj ∼ N(0, 1000), independent (7.17)

αj ∼ N(0, 1000), independent (7.18)

σ 2 ∼ IG(0.001, 0.001), (7.19)

σ 2b ∼ IG(0.001, 0.001), (7.20)

γ ∼ G(0.1, 0.1). (7.21)

One advantage of the Bayesian hierarchical modeling is its ability to
estimate multidimensional parameters using MCMC methods. We used the
noncommercial statistical software WinBUGS (Spiegelhalter et al., 2003) to
obtain the posterior samples (Figure 7.6). Using convergence diagnostic tool
of Gelman and Rubin (1992) and the quantile plots, we concluded that 10,000
iterations were sufficient for the burn-in-period.
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Histogram of the posterior mean values of the changepoints Ki ACTG 398.

Weconsidered several jointmodels for yij and for the exponential parameter
of Ts

i , λi, as follows:

Model 1: Independent models for survival and longitudinal measures,
that is, Equation 7.13 and λi = λ.

Model 2: Longitudinal model given by Equation 7.13 and λi(t) =
exp(α0 + α1Ki).

Model 3: Longitudinal model given by Equation 7.13 and λi(t) =
exp(α0 + bi).

Model 4: Longitudinal model given by Equation 7.13 and

λi(t) = exp{α0 + α1log(Ki)}. (7.22)

Model 5: Fixed changepoint model, that is, longitudinal model given
by Equation 7.13 with Ki = K, and survival model Equation 7.15.

Model 6: Longitudinal model given by Equation 7.13 (random change-
point), and survival model (7.15).

Model 7: Same as Model 6, but with the three covariates included, that
is, Equation 7.23 below and Equation 7.15,

yij = β1+β2(tij−Ki)−+β3(tij−Ki)++β4x4i+β5x5i+β6x6i+bi + eij,
(7.23)

where x4i, x5i, x6i are baseline log10 HIV-1 RNA, treatment (dual PI
versus PI-placebo), and NNRTI experience, respectively.
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Model 8: Same as Model 6 but with log10 HIV-1 RNA as a covariate.
Model 9: A random intercept and slope model for yij,

yij = β1 + β2(tij − Ki)− + β3(tij − Ki)+ + b0i + b1itij + eij,

and survival model (7.15).
Model 10: Longitudinal model given by Equation 7.1, and survival

model

λi(t) = exp{α0 + α1I(t > Ki)}. (7.24)

Model 5 has a fixed changepoint for the (square root) CD4, whereas all
other models have random changepoint. Models 1–6 share the same mean
function for the CD4; Model 7 and Model 8 include also baseline covariates.
Model 8 includes only log10 HIV-1 RNA, which is the only covariate statist-
ically significant in Model 7. Model 9 includes a random slope for the square
root CD4. Models 1–6 and 8 have an increasingly complex model for the
drop-off time. Model 1 assumes uninformative censoring mechanism for the
CD4. In Model 3 the correlation is induced by bi, whereas in Models 2 and 4
the correlation is given by Ki and log(Ki) respectively, linearly on the log(λi)
scale. Finally, in Models 5–9 the correlation is given by both bi and log(Ki),
as in Equation 7.15. Model 10 has piecewise-constant hazard for each subject,
before and after the CD4 changepoint Ki.
Table 7.1describes themodel comparison for thesemodels, and includes the

DIC and the effective number of parameters pD. Model 5 (fixed changepoint)
has least support, DIC = 4593.2, at least 100 larger than all other models.
Model 1 (uninformative censoring) is next least supported, DIC = 4482.7.
Including bi, Ki, or log(Ki) in log(λi) (Models 2–4) slightly reduces the
DIC. Including random slope (Model 9) does not improve the DIC. A large
improvement is achieved by Model 6, DIC = 4457.4 where both bi and
log(Ki) are included, as in Equation 7.15. Adding covariates to the CD4 in
Models 7 and 8 does not improve the DIC overModel 6 (the difference in DIC
is moderately large, 7.4 and 9.2, respectively).
Model 10 is a special case, because its implementation (with piecewise con-

stant hazard of dropout) requires additional “nodes,” or parameters in the
model. We used the “zero trick,” or the point process representation of the
survival process, as suggested in Spiegelhalter et al. (2003). As mentioned
in the previous section, the DIC in this case includes these additional nodes
“in focus,” and therefore it is not directly comparable with the DIC of the
other models. The computation of the relevant DIC is nontrivial, it requires
integration of the additional nodes, and is an open area of research. For com-
parison with Model 6 we also ran Model 6 using the equivalent “zero trick”
implementation as for Model 10, and we compared the DIC values from
this implementation (Table 7.1). In this comparison the more parsimonious
Model 6 has the lower DIC value.
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Thus, Model 6 is the favored model. The number of effective degrees of
freedom pD is the smallest for the fixed changepoint model, pD = 165.3.
Interestingly, the 164 random effects bi in this model are counted almost as
full parameters. The “full status” of the bi indicates that the random effects
model fit will be similar to one inwhich the randomparameters are treated as
fixed. Vaida and Blanchard (2005) show an example of a LME model where
such a random effects model has a better fit than the corresponding model
with the random parameters treated as fixed effects, and much better than a
model where the random effects are completely ignored and discuss the issue
of counting the random effects. The random changepoint accounts for an
additional 27–35 degrees of freedom, pD = 190.8–202.6 for the other models.
The fixed changepointmodel placesK at 6.8weeks (standard deviation, SD =
1.1 weeks). The other seven models have very similar posterior means of the
changepoint values, which is placed, on average, at 3.6 weeks. However,
the credible interval for K in the fixed changepoint model overlaps with that
for the average K in the random changepoint models. Figure 7.3 shows the
histogram of the posterior means for the changepoints Ki.
The parameter estimates forModel 6 are in Table 7.2. AlthoughModel 7 has

a higher DIC, since the influence of the covariates may be of interest nonethe-
less, we report in Table 7.2 the parameter estimates from this model as well.
Except for the intercept, the two models give similar parameter values. For
Model 6, the initial slope is of about 0.40 (in square root CD4 concentrations
per week), which translates in a first-week increase of about 13.7 cells/µL,
and a first-month increase of about 43 cells/µL. The subsequent increase,
following the changepoint, is much smaller, of 0.017, which translates into a

TABLE 7.2

Model Comparison: DIC Values for Models 1–10

DIC pD K̄ (SD)

Model 1 4482.7 201.4 3.6 (1)
Model 2 4481.3 199.5 3.8 (1.3)
Model 3 4481.1 202.6 3.3 (0.9)
Model 4 4470 191.7 3.406 (0.9)
Model 5 4593.2 165.3 6.8 (1.1)
Model 6 4457.4 200.6 3.6 (1.2)
Model 7 4463 190.8 3.5 (1.2)
Model 8 4464.2 191 3.4 (1.2)
Model 9 4481.2 198.6 3.5 (1)
Model 6∗ 7137.4 238.7
Model 10∗ 7755.9 201.3

pD is the effective degrees of freedom, and K̄ is the average
(and standard deviation) of the posteriormean changepoint
for the 164 subjects, in weeks. DICs for models markedwith
∗ include additional parameters and are only comparable
with each other.
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TABLE 7.3
Parameter Estimates: Posterior Means (and 95%
Posterior Intervals) for Models 6 and 7

Model 6 Model 7

β1 16.89 (16.1, 17.8) 24.6 (19.0, 29.0)
β2 0.40 (0.399, 0.481) 0.436 (0.404, 0.503)
β3 0.017 (0.002, 0.027) 0.018 (0.008, 0.028)
β4 — — −1.90 (−2.84, −0.77)
β5 — — 1.23 (−0.28, 2.85)
β6 — — 0.90 (−0.64, 2.54)
σb 5.06 (4.40, 5.58) 4.73 (4.20, 5.33)
σ 1.59 (1.50, 1.68) 1.59 (1.50, 1.68)
α0 −3.475 (−4.01, −3.19) −3.71 (−4.07, −3.27)
α1 −0.035 (−0.456, 0.352) −0.030 (−0.127, 0.055)
α2 −0.066 (−0.107, −0.019) −0.060 (−0.109, −0.014)

first-month increase following the changepoint of less than 1 cell/µL. Both
slopes, β2 and β3, are significantly positive, that is the 95% posterior credible
interval of each of these parameters does not include zero (Table 7.3). The
residual and between-subject standard deviations are 1.54 and 4.96, respect-
ively, which indicates that 8.3% of the variability is due to random error,
and 86.4% is due to between-subjects variation. The remaining 5.2% of the
variability is accounted by the random Ki.
For Model 7, the covariates parameters show that the square root CD4

counts are significantly associated with baseline log10 HIV-1 viral load, with
a −1.90 reduction in response, or about −68 cells/µL, per one log10 increase
in viral load, but it is not significantly associatedwith study treatment orwith
NNRTI experience.
Turning to the parameters of the drop-off times, we note that neither α1

nor α2 is zero, indicating a correlation between longitudinal and dropout
model. However, whereas α1 is not statistically significant, α2 is significantly
different from 0. The point estimates for both are negative, suggesting that
lower baseline CD4 values and earlier changepoint values are associatedwith
earlier drop-off times.
A visual inspection of variousmodel parameters showed that the posterior

densities are smooth and unimodal. The trace plots indicated good mixing
and convergence (not included). DIC gave credible values with positive and
meaningful pD values.

7.4 Discussion

Using the the two statistical analyses presented in this chapter, we have
illustrated some of the complexities occurring in HIV research and provided
potential approacheswhich can be used. Muchwork is still underway inHIV
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research as well as in longitudinal data analysis. We will mention here only
twodirections of active research: (1)modeling thedropout process (seeDiggle
et al., 2002, Chapter 11 andHogan et al., 2004 for an overview) and (2) smooth
modeling using p-splines and mixed effects, see for example, Durban et al.
(2005). Our own current work investigates using a semiparametric survival
model for dropout and joint modeling of CD4 and HIV-1 RNA longitudinal
profiles.
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8.1 Introduction

This articlegives a surveyofBayesian techniquesuseful forbiomedical applic-
ations. Given the extensive use of Bayesian methods, especially with the
recent advent of Markov Chain Monte Carlo (MCMC), we can never do
exhaustive justice. Nevertheless, we have made an attempt to present dif-
ferent Bayesian applications from different viewpoints and differing levels of
complexity. We start with a brief introduction to the Bayesian paradigm in
Section 8.2, and give some basic formulas. In Section 8.3, we review conjug-
ate Bayesian analysis in both the static and dynamic inferential frameworks,
and give references to some biomedical applications. The conjugate Bayesian
approach is often insufficient for handling complex problems that arise in
several applications. The advent of sampling-based Bayesian methods has
opened the door to carrying out inference in a variety of settings. They must
of course be used with care, and with sufficient understanding of the under-
lying stochastics. In Section 8.4, we present details on the algorithms most
commonly used in Bayesian computing and provide exhaustive references.
Sections 8.5–8.8 show illustrations of Bayesian computing in biomedical
applications that are of current interest.

8.2 A General Framework for Bayesian Modeling

Assume an investigator is interested in understanding the relationship
between cholesterol levels and coronary heart disease. Both classical and
Bayesian statistics start by describing the relative likelihood of possible
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observedoutcomesasaprobabilitymodel. Thisprobabilitymodel isknownas
the sampling model or likelihood, and is usually indexed by some unknown
parameters. For example, the parameters could be the odds of developing
coronary heart disease at different levels of cholesterol. Bayesian inference
describes uncertainty about the unknown parameters by a second probabil-
ity model. This probability model on the parameters is known as the prior
distribution. Together, the sampling model and the prior probability model
describe a joint probability model on the data and parameters. In contrast,
classical statistics proceed without assuming a probability model for the para-
meters. The prior probability model describes uncertainty on the parameters
before observing any data. After observing data, the prior distribution is
updated using rules of probability calculus (Bayes’ rule). The updated prob-
ability distribution on the parameters is known as the posterior distribution
and contains all relevant information on the unknown parameters. From a
Bayesian perspective, all statistical inference can be deduced from the pos-
terior distribution by reporting appropriate summaries. In the rest of this
section, we review the formal rules of probability calculus that are used
to carry out inference, as well as model adequacy, model selection, and
prediction.

8.2.1 Discrete Case

Suppose A1, . . . , AK are K disjoint sets and suppose πi = P(Ai) is the prior
probability assigned to this event, 0 ≤ πi ≤ 1,

∑K
i=1 πi = 1. Consider n

observable events B1, . . . , Bn. Let p(Bj |Ai) denote the relative likelihood of the
events Bj under the events Ai (sampling model). The conditional probability
of Ai given the observed events is from Bayes’ theorem

P(Ai|Bj) =
P(Bj|Ai)P(Ai)

P(Bj)
, (8.1)

where P(Bj) is the marginal probability of observing Bj and is

P(Bj) =
K∑

i=1

P(Bj|Ai)P(Ai). (8.2)

We often write this posterior probability as P(Ai|Bj) ∝ P(Bj|Ai)P(Ai). In this
discrete case, the notion of Bayesian learning (updating) is described by

P(Ai|Bj, B
∗
j ) ∝ P(B∗j , Bj|Ai)P(Ai) = P(B∗j |Bj, Ai)P(Ai|Bj). (8.3)

EXAMPLE 1
A simple biomedical application discussed in Gelman et al. (2004) and
Sorensen and Gianola (2002) deals with obtaining the probability that a
woman XYZ is a carrier of the gene causing the genetic disease hemophilia.
Double recessive women (aa) and men who carry the a allele in the
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X-chromosome manifest the disease. If a woman is a carrier, she will transmit
the a allele with probability 0.5, and ignoring mutation, will not transmit
the disease if she is not a carrier. Suppose a woman is not hemophilic,
her father and mother are unaffected, but her brother is hemophilic (their
mother must be a carrier of a). We wish to determine the probability that
XYZ is a carrier. Suppose A1 and A2 respectively denote the events that
XYZ is a carrier, and that she is not a carrier, with (prior) probabilities
P(A1) = P(A2) = 0.5. In terms of a discrete random variable θ , with θ = 1
denoting she is a carrier and θ = 0 indicating she is not, the prior distribution
on θ is P(θ = 1) = P(θ = 0) = 0.5. The prior odds in favor of the mother
not being a carrier is P(θ = 0)/P(θ = 1) = 1. Suppose information is also
provided that neither of the two sons of XYZ has the disease. For i = 1, 2, let
Yi be a random variable assuming value 1 if the ith son has the disease and
value 0 if he does not. Assuming Y1 and Y2 are independent conditional on
θ , we have that given θ = 1,

P(Y1= 0, Y2= 0|θ = 1) = P(Y1 = 0|θ = 1)P(Y2 = 0|θ = 1) = 0.5× 0.5 = 0.25.

Also, given θ = 0,

P(Y1 = 0, Y2 = 0|θ = 0) = P(Y1 = 0|θ = 1)P(Y2 = 0|θ = 1) = 1× 1 = 1.

The posterior distribution of θ can be written for j = 0, 1 as

P(θ = j|Y1 = 0, Y2 = 0) = P(θ = j)P(Y1 = 0, Y2 = 0|θ = j)∑1
i=0 P(θ = i)P(Y1 = 0, Y2 = 0|θ = i)

so that given that neither son is affected, the probability that XYZ is a carrier
is 0.2 and that she is not a carrier is 0.8. The posterior odds in favor of XYZ
not being a carrier of hemophilia is

P(θ = 0|Y1 = 0, Y2 = 0)/P(θ = 1|Y1 = 0, Y2 = 0) = 4.

8.2.2 Continuous Case

Let θ = (θ1, . . . , θk) be a k-dimensional vector of unknown parameters (k ≥ 1),
and suppose that a priori beliefs about θ are given in terms of the prob-
ability density function (pdf) π(θ) (prior). Let y = (y1, . . . , yn) denote an
n-dimensional observation vector whose probability distribution depends on
θ and is written as p(y|θ) (sampling model). Both θ and y are assumed to
be continuous-valued. To make probability statements about θ given y, the
posterior density using Bayes’ theorem is defined as (Berger, 1985)

π(θ |y) = π(θ ,y)
m(y)

= π(θ)p(y|θ)
m(y)

, (8.4)

where m(y) = ∫
π(θ)p(y|θ)dθ is the marginal density of y and does not

depend on θ . Also called the predictive distribution of y, m(y) admits the
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marginal likelihood identity m(y) = π(θ)p(y|θ)/π(θ |y), and plays a useful
role in Bayesian decision theory, empirical Bayes methods, and model selec-
tion. Recall that the likelihood function l(θ |y) = p(y|θ), regarded as a function
of θ . We think of the prior–posterior relationship as Posterior ∝ Prior ×
Likelihood, and write

π(θ |y) ∝ π(θ)l(θ |y). (8.5)

It is often convenient to work with the logarithm of the likelihood, L(θ |y).
Bayesian inference involves moving from a prior distribution on θ before
observing y to a posterior distribution π(θ |y) for θ , and in general, con-
sists of obtaining and interpreting π(θ |y) through plots (contour and scatter),
numerical summaries of posterior location and dispersion (mean, mode,
quantiles, standard deviation, interquartile range), credible intervals (also
called highest posterior density (HPD) regions), and hypotheses tests (see
Lee, 1997; Congdon, 2003; Gelman et al., 2004). The sequential use of Bayes’
theorem is instructive. Given an initial set of observations y, and a posterior
density (Equation 8.5), suppose we have a second set of observations z dis-
tributed independently of y, it can be shown that the posterior π(θ |y, z) is
obtained from using π(θ |y) as the prior for z, that is,

π(θ |y, z) ∝ π(θ |y)l(θ |z). (8.6)

EXAMPLE 2
Lopes et al. (2003) consider hematologic, that is, blood count data from a
cancer chemotherapy trial. For each patient in the trial we record white blood
cell count over time as the patient undergoes the first cycle of a chemotherapy
treatment. Patients are treated at different doses of the chemotherapy agent(s).
The main concern is inference about the number of days that the patient is
exposed to a dangerously low white blood cell count. We proceed with a
parametric model for the white blood cell profile over time. In other words,
we assume initially a constant baseline count, followed by a sudden drop
when chemotherapy is initiated, and finally a slow S-shaped recovery back
to baseline after the chemotherapy. The profile is indexed by a 7-dimensional
vector of random effects (see Section 8.3.3) that parameterize a nonlinear
regression curve that reflects these features. Let θ i denote this 7-dimensional
vector for patient i. Let f (t; θ i)denote the value at time t for the profile indexed
by θ i. Let yij, j = 1, . . . , ni denote the observed blood counts for patient i on
(known) days tij. We assume a nonlinear regression with normal residuals

yij = f (tij; θ i)+ εij, (8.7)

with a normal distributed residual error, εij ∼ N(0, σ 2). For simplicity we
assume that the residual variance σ 2 is known. Model (8.7) defines the
samplingmodel. Themodel is completedwithapriorprobabilitymodelπ(θ i).
In other words, the prior reflects the judgment of likely initial white blood
counts, the extent of the drop during chemotherapy, and the typical speed
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of recovery. Let yi = (yij, j = 1, . . . , ni) denote the observed blood counts for
patient i. Using Bayes’ theorem we update the prior π(θ i) to the posterior
π(θ i|yi). Instead of reporting the 7-dimensional posterior distribution, infer-
ence is usually reported by posterior summaries for relevant functions of the
parameters. For example, in this application an important summary is the
number of days that the patient has white blood cell count below a critical
threshold. Let f (θ i) denote this summary. We plot π(f (θ i)|yi). In this short
description we only discussed inference for one patient, i. The full model
includes submodels for each patient, i = 1, . . . , n, linked by a common prior
π(θ i). The larger model is referred to as a hierarchical model (see Section 8.3.1).
The prior π(θ i) is also known as the random effects distribution. It is usually
indexed with additional unknown (hyper-) parameters φ and might include a
regression on patient specific covariates xi, in summaryπ(θ i|φ, xi). The covari-
ate vector xi includes the treatment dose for patient i. The model is completed
with a prior probability model π(φ) for the hyperparameter φ. In summary,
the full hierarchical model is

likelihood: yij = f (tij; θ i)+ εij, i = 1, . . . , n, j = 1, . . . , ni,

prior: θ i ∼ p(θ i | φ, xi), φ ∼ π(φ).

In the context of this hierarchical model, inference of particular interest is the
posterior predictive distribution π(θn+1|y1, . . . ,yn, xn+1). This distribution is
used to answer questions of the type: “What is the maximum dose that can
be given and still bound the probability of more than 4 days below the critical
lower threshold at less than 5%?.”

8.2.3 Prior and Posterior Distributions

A prior distribution represents an assumption about the nature of the para-
meter θ , and clearly has an impact on posterior inference. Early Bayesian
analyses dealt with conjugate priors, and this is explored further in Section 8.3.
A prior density π(θ) is said to be proper if it does not depend on the data and
integrates to 1. Bayesian inference is often subject to a criticism that posterior
inference might be affected by choice of a subjective, injudicious prior, espe-
cially if the sample size is small or moderate. Considerable effort at defining
an objective prior, whose contribution relative to that of the data is small,
is often made. An extensive literature exists on approaches for specifying
objective or noninformative priors (Berger and Bernardo 1992; Bernardo and
Smith 1994). The uniform prior, π(θ) = 1/(b − a) for θ ∈ (a, b), is the most
commonly used noninformative (vague) prior. Note that a uniform prior for
a continuous parameter θ on (−∞,∞) is improper, that is, the integral of
the pdf is not finite. Although it is generally acceptable to use an improper
prior, care must be exercised in applications to verify that the resulting pos-
terior is proper. A class of improper priors proposed by Jeffreys (1961) is
based on using Fisher’s information measure through π(θ) ∝ |I(θ)|1/2, where
I(θ) = E{−∂2L(θ |y)/∂θ∂θ ′}.
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EXAMPLE 3
When y1, . . . , yn are independent and identically distributed (iid) N(µ, σ 2)

with known σ 2 and π(µ) = c, for some constant c, then it is easily verified
that the posterior of µ is π(µ|y) ∝ exp{−n(2σ 2)−1(µ− y)2}, which integrates
to
√

2πσ 2/n and is proper. The Jeffreys’ prior is π(µ) ∝ √n/σ 2 = c.

See Bernardo (1979) for a discussion of reference priors, Sivia (1996) for
examples of maximum entropy priors, and Robert (1996) and Congdon
(2003) for discrete mixtures of parametric densities and Dirichlet process pri-
ors (DPP) with applications for smoothing health outcomes (Clayton and
Kaldor, 1987) and modeling sudden infant death syndrome (SIDS) death
counts (Symons et al., 1983). Prior elicitation (Kass and Wasserman, 1996)
continues to be an active area of research.

Posterior inference will be robust if it is not seriously affected by the choice
of the model (likelihood, prior, loss function) assumptions and is insensitive
to inputs into the analysis (Kadane, 1984; Berger et al., 2000); see Sivaganesan
(2000) for a detailed review of global robustness based on measures such
as the Kullback–Leibler distance. Robustness measures are closely related
to the class of priors used for analysis. Typically, a class of priors is chosen
by first specifying a single prior p0 and then choosing a suitable neighbor-
hood � to reflect our uncertainty about p0, such as ε-contamination classes,
density bounded classes, density ratio classes, and so forth. For instance, an
ε-contamination class is� = {p : p = (1− ε)p0+ εq; q ∈ Q}, where Q is a set of
probability distributions that are possibly deviations from p0. Kass et al. (1989)
have described approximate methods to assess sensitivity whereas Gustafson
(1996) has discussed an ‘informal’ sensitivity analysis to compare inference
on a finite set of alternative priors.

8.2.4 Predictive Distribution

The predictive distribution of y accounts both for the uncertainty about θ and
the residual uncertainty about y given θ , and as such, enables us to check
model (prior, likelihood, loss function) assumptions. Predictive inference
about an unknown observable ỹ is described through the posterior predictive
distribution

p(̃y|y) =
∫

p(̃y, θ |y)dθ =
∫

p(̃y|θ)π(θ |y)dθ , (8.8)

where the second identity assumes that ỹ and y are independent
conditional on θ .

EXAMPLE 4
Suppose y1, . . . , yn iid N(θ , σ 2), θ |σ 2 ∼ N(θ0, λ−1

0 σ
2) and σ 2 ∼ Inv-χ2(α0, σ 2

0 ),
that is, σ−2 ∼ χ2(α0, σ 2

0 ),

π(θ |σ 2) = (2πλ−1
0 σ

2)−1/2 exp{−0.5λ0(θ − θ0)2/σ 2}
π(σ 2) = (0.5α0)

0.5α0�−1(0.5α0)σ
α0
0 σ
−(α0+2) exp{−0.5α0σ

2
0 /σ

2},
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so that the joint prior π(θ , σ 2) is given by their product as N-Inv-
χ2(θ0, λ−1

0 σ
2;α0, σ 2

0 ) and the joint posterior is N-Inv-χ2(θ1, λ−1
1 σ

2
1 ;α1, σ 2

1 )

where θ1 = (λ0 + n)−1[λ0θ0 + ny], λ1 = λ0 + n, α1 = α0 + n and

σ 2
1 = α−1

1 [α0σ
2
0 + (n− 1)s2 + (λ0 + n)−1λ0n(y − θ0)2].

Suppose a noninformative prior specification π(θ , σ 2) ∝ (σ 2)−1 is used, the
joint posterior specification is given by π(θ |σ 2,y) is N(y, n−1σ 2) and π(σ 2|y)
is Inv-χ2(n− 1, s2).

Gelman et al. (2004) describe an application of a normal hierarchical model
to a meta-analysis, whose goal is to make combined inference from data on
mortality after myocardial infarction in 22 clinical trials, each consisting of two
groups of heart attack subjects randomly allocated to receive or not receive
beta-blockers; see Rubin (1989) for more details on Bayesian meta-analysis.

8.2.5 Model Determination

Model determination consists of model checking (for adequate models) and
model selection (for best model); see Gamerman and Lopes (2006, Chapter 7)
and Gelman et al. (2004). Classical and Bayesian model choice methods would
involve comparison of measures of fit with the current fitted data or cross-
validatory fit to out-of-sample data. Formal Bayesian model assessment is
based on the marginal likelihoods from J models Mj (j = 1, . . . , J) with (1) para-
meter vector θ j whose prior density is pj, and (2) with prior model probability
P(Mj), with

∑
j P(Mj) = 1. Given data, the posterior model probability and

the probability of the data conditional on the model (Gelfand and Ghosh,
1994) are respectively

P(Mj|y) = P(Mj)

∫
l(θ j|y)π(θ j)dθ j∑J

l=1[P(Ml)
∫

l(θ l|y)π(θ l)dθ l

P(y|Mj) = mj(y) =
∫

l(θ j|y)π(θ j)dθ j. (8.9)

The Bayes factor for two distinct models M1 and M2 is the ratio of the
marginal likelihoods m1(y) and m2(y), that is,

P(y|M1)

P(y|M2)
= P(M1|y)

P(M2|y) ×
P(M2)

P(M1)
. (8.10)

See Kass and Raftery (1995) and Pauler et al. (1999) for an application to
variance component models. For applications with improper priors, Bayes
factors cannot be defined and several other model selection criteria have been
proposed, such as the pseudo Bayes factor (Geisser, 1975), intrinsic Bayes
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factor (Berger and Pericchi, 1996), and so forth. Model averaging is another
option infinding thebest inference; seeHoetinget al. (1999) for a review. These
methods are most effective with the sampling-based approach to Bayesian
inference described in Section 8.4.

8.2.6 Hypothesis Testing

The Bayesian approach to hypothesis testing of a simple H0 : θ ∈ �0 = {θ0}
versus simple H1 : θ ∈ �1 = {θ1}, where� = �0∪�1, is more straightforward
than the classical approach; it consists of making a decision based on the
magnitudes of the posterior probabilities P(θ ∈ �0|y) and P(θ ∈ �1|y), or
using the Bayes factor in favor of H0 versus H1 as

BF = π1P(θ ∈ �0|y)
π0P(θ ∈ �1|y) ,

where π0 = P(θ ∈ �0) and π1 = P(θ ∈ �1) are the prior probabilities. The
Bayesian p-value is defined as the probability that the replicated data could
be more extreme than the observed data, as measured by the test statistic T:

pB = P(T(yrep, θ) ≥ T(y, θ)|y)

=
∫ ∫

IT(yrep,θ)≥T(y,θ)p(yrep|θ)p(θ |y)dyrep dθ . (8.11)

Bayesian decision analysis involves optimization over decisions in addi-
tion to averaging over uncertainties (Berger, 1985). An example on medical
screening is given in Gelman et al. (2004), Chapter 22.

8.3 Conjugate or Classical Bayesian Modeling

Conjugate Bayesian analysis was widely prevalent until the advent of an
efficient and feasible computing framework to handle more complicated
applications. A class P of prior distributions for θ is naturally conjugate for
a class of sampling distributions F if P is the set of all densities with the
same functional form as the likelihood, and if for all densities p(·|θ) ∈ F and
all priors p(·) ∈ P , the posterior p(θ |y) belongs to P . It is well known that
sampling distributions belonging to an exponential family have natural con-
jugate prior distributions. Specifically, suppose the sampling distribution for
y and the prior distribution for the parameter θ have the forms

p(y|θ) ∝ g(θ)n exp[φ(θ)′t(y)],
π(θ) ∝ g(θ)η exp[φ(θ)′ν], (8.12)
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where t(y) is a sufficient statistic for θ ; the posterior density for θ has the form

π(θ |y) ∝ g(θ)(η+n) exp[φ(θ)′(ν + t(y)]. (8.13)

Although resulting computations are simple and often available analytic-
ally in closed forms, it has been shown that exponential families are in general
the only classes of sampling distributions that have natural conjugate priors.

There are several applications in biomedical areas. A useful model in
epidemiology for the study of incidence of diseases is the Poisson model.
Suppose y1, . . . , yn is a random sample from a Poisson(µ) distribution, so
that l(µ|y) ∝ µ

∑
yi exp(−nµ), which is in the exponential family. Suppose

π(µ) ∼ Gamma(α,β) (with shape α and scale β), then the posterior also
belongs to the same family. Nonconjuacy is preferable or necessary to handle
most complicated problems that arise in practice. Further, analytical results
may not be available and we must use simulation methods, as described
in Section 8.4. Static and dynamic linear modeling offer a versatile class of
models that may be handled using simple computational approaches under
standard distributional assumptions.

8.3.1 Linear Modeling

Since the discussion of Bayesian inference for the linear model with a single-
stage hierarchical prior structure (Lindley and Smith, 1972), great strides have
been made in using Bayesian techniques for hierarchical linear, generalized
linear, and nonlinear mixed modeling. Their two-stage hierarchical normal
linear model supposes

y|θ1 ∼ N(A1θ1,C1), θ1|θ2 ∼ N(A2θ2,C2) and

θ2|θ3 ∼ N(A3θ3,C3),

where additionally, θ3 is a known k3-dimensional vector, and A1, A2, A3, C1,
C2, and C3 are known positive definite matrices of appropriate dimensions.
The posterior distribution of θ1 given y is then N(Dd,D)where

D−1 = A′1C
−1
1 A1 + [C2 +A2C3A′2]−1

d = A′1C
−1
1 y + [C2 +A2C3A′2]−1A2A3θ3. (8.14)

The mean of the posterior distribution is seen to be a weighted average
of the least squares estimate (A′1C

−1
1 A1)

−1A′1C
−1
1 y of θ1 and its prior mean

A2A3θ3, and is a point estimate of θ1. The three-stage hierarchy can be exten-
ded to several stages. Smith (1973) examined the Bayesian linear model in
more detail and studied inferential properties. There is an extensive literat-
ure on the application of these methods to linear regression and analysis of
designed experiments in biomedical research. Classical Bayesian inference for
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univariate linear regression to model responses y = (y1, . . . , yn) as a function
of an observed predictor matrix X stems from

y|β, σ 2,X ∼ Nn(Xβ, σ 2I); π(β, σ 2|X) ∝ σ−2 (8.15)

where the noninformative prior specification is adequate in situations when
the number of cases n is large relative to the number of predictors p. Posterior
inference follows from

β|σ 2,y ∼ N(β̂, σ 2Vβ); σ 2|y ∼ Inv− χ2(n− p, s2), where

β̂ = (X′X)−1X′y; Vβ = (X′X)−1; s2 = (n− p)−1(y − Xβ̂)′(y − Xβ̂).

The conjugate family of prior distributions is the normal-Inv-χ2 shown
in Section 8.2. Jeffreys’ prior is π(β, σ 2) ∝ √|I(β, σ 2)| ∝ (σ 2)−(p+2)/2. An
extension to normal multivariate regression with q-variate independently
distributed responses y1, . . . ,yn is straightforward

yi|B,�, xi ∼ Nq(x′iB,�), i = 1, . . . , n; π(β, σ 2|X) ∝ σ−2. (8.16)

A noninformative prior specification is the multivariate Jeffreys prior
π(β,�) ∝ |�|−(q+1)/2, and the corresponding posterior distribution is �|y ∼
Inv-Wishartn−1(S) and β|�,y ∼ N(y, n−1�). The conjugate prior family
for (B,�) is the normal-Inv-Wishart(B0,�/λ0, ν0,�−1

0 ) distribution. Several
applications exist in the literature. Buonaccorsi and Gatsonis (1988) discussed
inference for ratios of coefficients in the linear model with applications to
slope-ratio bioassay, comparison of the mean effects of two soporific drugs
and a drug bioequivalence problem in a two-period changeover design with
no carryover and with fixed subject effects. Other typical examples of hier-
archical normal linear models in biomedical applications are Hein et al. (2005),
Lewin et al. (2006) for gene expression data, and Müller et al. (1999) for
case-control studies.

8.3.2 Dynamic Linear Modeling

In contrast to cross-sectional data, we frequently encounter situations where
the responses and covariates are observed sequentially over time. It is of
interest to develop inference for such problems in the context of a dynamic
linear model. Let y1, . . . ,yT denote p-dimensional random variables that are
available at times 1, . . . , T. Supposeyt depends on an unknown q-dimensional
state vector θ t (that may again be scalar or vector-valued) through the
observation equation

yt = Ftθ t + vt, (8.17)

where Ft is a known p × q matrix, and we assume that the observation error
vt ∼ N(0,Vt), with known Vt. The dynamic change in θ t is represented by
the state equation

θ t = Gtθ t−1 +wt, (8.18)
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where Gt is a known q × q state transition matrix, and the state error
wt ∼ N(0,Wt), with known Wt. In addition, we suppose that vt and wt
are independently distributed. Note that θt is a random vector; let

θ t|yt ∼ N(θ̂ t,�t) (8.19)

represent the posterior distribution of θ t. The Kalman filter is a recursive
procedure for determining the posterior distribution of θ t in this conjug-
ate setup, and thereby predicting yt (West and Harrison, 1989). Estima-
tion of parameters via the expectation-maximization model (EM) algorithm
(Dempster et al., 1977) has been discussed in Shumway and Stoffer (2004),
who provide R code for handling such models; see also http://cran.r-
projrct.org/doc/packages/dlm.pdf (R package from G. Petris). Gamerman
and Migon (1993) extended this to dynamic hierarchical modeling in the
Gaussian framework.

Gordon and Smith (1990) used a dynamic linear model framework to model
and monitor medical time series such as body-weight adjusted reciprocal
serum creatinine concentrations for online monitoring under renal trans-
plants, and daily white blood count cells levels in patients with chronic
kidney disorders. Kristiansen et al. (2005) used the Kalman filter based on a
double integrator for tracking urinary bladder filling from intermittent blad-
der volume measurements taken by an ultrasonic bladder volume monitor.
Wu et al. (2003) have used a switching Kalman filter model as a real-time
decoding algorithm for a neural prosthesis application, specifically for the
real-time inference of hand kinematics from a population of motor cortical
neurons.

8.3.3 Beyond Linear Modeling

The linear mixed model (LMM) generalizes the fixed effects models discussed
above to include random effects and has wide use in biomedical applications.
Let β and u denote p- and q-dimensional location vectors related to the n-
dimensional observation vector y through the regressor matrix X and design
matrix Z

y = Xβ + Zu+ ε; ε|σ 2
ε ∼ Nn(0, σ 2

ε I), (8.20)

so that y|β,u, σ 2
ε ∼ Nn(Xβ + Zu, σ 2

ε I). Assume priors π(β|σ 2
β ) ∼ N(0, σ 2

βB),
u|Vσ 2

u ∼ N(0, σ 2
uVσ

2
u ), where B and V are known, nonsingular matrices, and

σ 2
u and σ 2

β are unknown hyperparameters. It is easily seen that no closed form
expressions for the posterior distributions are possible, and inference for these
models is feasible through the sampling-based Bayesian approach described
in Section 8.4.

Bayesian analysis for generalized linear models (GLIMs) useful for ana-
lyzing non-normal data has seen rapid growth in the last two decades;
see Gelfand and Ghosh (2000) for an overview and summary. West (1985)
and Albert (1988) were among early discussants of a general hierarchical
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framework for GLIMs. Most familiar examples are logit or probit models
for binary/binomial responses, loglinear models for responses of counts,
cumulative logit models for ordinal categorical responses, and so forth.
Suppose the responses y1, . . . , yn are independent with pdf belonging to an
exponential family, so that the likelihood is

l(θ |y) =
n∏

i=1

exp[a−1(φi){yiθi − ψ(θi)} + c(yi;φi)], (8.21)

where θ = (θ1, . . . , θn), θi are unknown parameters related to the predictors
x1, . . . , xn and regression parameters β via θi = h(x′iβ) for a strictly increasing
sufficiently smooth link function h(·), and a(φi) is known. A simple conjugate
prior for β is N(β0,�) where β0 and � are known, so that the posterior has
the form

π(β|y) ∝ exp

{∑
i

a−1(φi)[yih(x
′
iβ)− ψ(h(x′iβ))] −

1
2
(β − β0)

′�−1(β − β0)

}
.

(8.22)

This posterior is not analytically tractable. Computational Bayesian meth-
ods discussed in Section 8.4 enable inference in complex situations such
as generalized linear mixed models (GLMMs) (Clayton, 1996), nonlinear
random effects models (Dey et al., 1997), models with correlated random
effects and hierarchical GLMMs (Sun et al., 2000), correlated categorical
responses (Chen and Dey, 2000), overdispersed GLIMs (Dey and Ravishanker,
2000), and survival data models (Kuo and Peng, 2000). Applications of
such models to disease maps is discussed further in Section 8.6 (see also
Waller et al., 1997).

8.4 Computational Bayesian Framework

As indicated in the previous discussion, the main ingredients of the Bayesian
feast are probabilistic models (parametric or semiparametric) and prior distri-
butions, which when combined, produce posterior distributions, predictive
distributions, and summaries thereof. More specifically, recall the posterior,
the predictive, and the posterior predictive distributions (Equations 8.4, 8.9,
and 8.8), that is, π(θ |y) = π(θ)p(y|θ)/m(y), m(y) = ∫

π(θ)p(y|θ)dθ and
p(̃y|y) = ∫

p(̃y|θ ,y)π(θ |y)dθ . The Bayesian agenda includes, among other
things, posterior modes, maxθ π(θ |y), posterior moments, Eπ [g(θ)], dens-
ity estimation, π̂(g(θ)|y), Bayes factors, m0(y)/m1(y), and decision making,
maxd

∫
U(d, θ)π(θ |y)dθ .

Historically, those tasks were (partially) performed by analytic approxim-
ations, which include asymptotic approximations (Carlin and Louis, 2000),
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Gaussian quadrature (Naylor and Smith, 1982) and Laplace approximations
(Tierney and Kadane, 1986; Kass et al., 1988; Tierney et al., 1989). Mod-
ern, fast, and cheap computational resources have facilitated the widespread
use of Monte Carlo methods, which in turn has made Bayesian reason-
ing commonplace in almost every area of scientific research. This trend is
overwhelmingly apparent in the biomedical sciences (Sorensen and Gianola,
2002; Larget, 2005; Do et al., 2006). Initially, simple Monte Carlo schemes
were extensively used for solving practical Bayesian problems, including
the Monte Carlo method (Geweke, 1989), the rejection algorithm (Gilks
and Wild, 1992), the weighted resampling algorithm (Smith and Gelfand,
1992), among others. Currently, one could argue that the most widely used
Monte Carlo schemes are the Gibbs sampler/data augmentation algorithm
(Tanner and Wong, 1987; Gelfand and Smith, 1990) and the Metropolis–
Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970), which
fall in the category of MCMC algorithms (Gilks et al., 1996). This section
only briefly introduces the main algorithms. The more curious and energetic
reader will find in Gamerman and Lopes (2006) and its associated web-
page www.ufrj.br/mcmc, among other things, extensions of these basic
algorithms, recent developments, didactic examples and their R codes, and
an extensive and updated list of freely downloadable statistical routines and
packages.

8.4.1 Normal Approximation

Let m be the posterior mode, that is, m = arg maxθ π(θ |y); a standard
Taylor series expansion leads to approximating π(θ |y) by a (multivari-
ate) normal distribution with mean vector m and precision matrix V−1 =
−(∂2 log π(m|y)/∂θ∂θ ′). This approximation can be thought of as a Bayesian
version of the central limit theorem (Heyde and Johnstone, 1979; Schervish,
1995; Carlin and Louis, 2000). Finding m is not a trivial task and generally
involves solving a set of nonlinear equations, usually by means of iterative
Newton–Raphson-type and Fisher’s scoring algorithms (Thisted, 1988). For
most problems, specially in high dimension, normal approximations tend to
produce rather crude and rough estimates.

8.4.2 Integral Approximation

One of the main tasks in Bayesian analysis is the computation of posterior
summaries, such as means, variances, and other moments, of functions of θ ,
say t(θ), that is,

E[t(θ)] =
∫

t(θ)p(y|θ)π(θ)dθ∫
p(y|θ)π(θ)dθ . (8.23)

In this section, a brief review of the main analytic and stochastic approx-
imations to the above integral is provided.
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8.4.2.1 Quadrature Approximation

Quadrature rules approximate unidimensional integrals
∫ b

a g(θ)dθ , for
instance g(θ) = t(θ)p(y|θ)π(θ) in Equation 8.23, by

∑n
i=1 wig(θi) for suit-

ably chosen weights wi and grid points θi, i = 1, . . . , n. Simple quadrature
rules are Simpson’s and the trapezium rules. Gaussian quadrature are special
rules for situations where g(θ) can be well approximated by the product of a
polynomial and a density function. Gauss–Jacobi rule arises under the uni-
formity [−1, 1] density, whereas Gauss–Laguerre and Gauss–Hermite rules
arise under gamma and normal densities. See, for instance, Abramowitz and
Stegun (1965) for tabulations and Naylor and Smith (1982) and Pole and West
(1990) for Bayesian inference under quadrature. Quadrature rules are not
practical even in problems of moderate dimensions.

8.4.2.2 Laplace Approximation

For t(θ) > 0, Equation 8.23 can be written in the exponential form as

E[t(θ)] =
∫

exp{L∗(θ)}dθ∫
exp{L(θ)}dθ , (8.24)

where L∗(θ) = log t(θ)+log p(y|θ)+log π(θ) and L(θ) = log p(y|θ)+log π(θ).
Better (than normal) approximations can be obtained by Taylor series expan-
sions both in the numerator and the denominator of the previous equation.
It can be shown under fairly general conditions, and when t(θ) > 0 that

Êlap[t(θ)] =
( |V∗|
|V|

)1/2

exp{L∗(m∗)− L(m)}, (8.25)

where m∗ is the value of θ that maximizes L∗ and V∗ as minus the inverse
Hessian of L∗ at the point m∗. This approximation is known as the Laplace
approximation (Kass et al., 1988). Laplace approximations for the case where
t(θ) < 0 appear in Tierney et al. (1989). The Laplace approximation tends to be
poor either when the posterior is multimodal or when approximate normality
fails.

8.4.2.3 Monte Carlo Integration

If a sample θ1, . . . , θn from the prior π(θ) is available, then

Êmc[t(θ)] =
∑n

j=1 t(θ j)p(y|θ j)∑n
j=1 p(y|θ j)

(8.26)

is a Monte Carlo (MC) estimator of E[t(θ)] in Equation 8.23. Limiting the-
ory assures us that, under mild conditions on t(θ), the above MC estimator
converges to its mean E[t(θ)] (Geweke, 1989).
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It is well known that sampling from the prior distribution may produce
poor estimates and a practically infeasible number of draws will be necessary
to achieve reasonably accurate levels of approximation. The MC estimator
(Equation 8.26) can be generalized for situations where, roughly speaking, a
proposal density q(θ) is available that mimicsπ(θ |y) in the center, dominates it
in the tails, and is easy to sample from. More specifically, if a sample θ1, . . . , θn
from q(θ) is available (see sampling from distributions later in this section),
then another MC estimator for Equation 8.23 is

Êmcis[t(θ)] =
∑n

j=1 t(θ j)p(y|θ j)π(θ j)/q(θ j)∑n
j=1 p(y|θ)π(θ j)/q(θ j)

. (8.27)

This estimator is commonly known as a Monte Carlo via Importance Sampling
(MCIS) estimator of E[t(θ)]. It is easy to see that the previous MC estimator is
a special case of the MCIS when q(θ) = π(θ). The proposal density q is also
referred to as importance density and sampling from q is known as importance
sampling. Limiting theory assures us that MC estimators, under mild con-
ditions on t(θ) and q(θ), approximate the actual posterior expectations (see
Geweke, 1989).

8.4.3 Monte Carlo-Based Inference

On the basis of the previous argument, if θ1, . . . , θn is a readily available
sample from the posterior π(θ |y) then the MC approximation to E[t(θ)]
would be n−1∑n

j=1 t(θ j). The problem is that θ1, . . . , θn is rarely readily avail-
able. We now discuss two algorithms for sampling independent draws from
π(θ |y), namely, the rejection algorithm and the weighted resampling algorithm.
We also discuss two iterative algorithms, namely, the Gibbs sampler and the
Metropolis–Hastings algorithm, that sample from Markov chains whose limit-
ing, equilibrium distributions are the posteriorπ(θ |y). One common aspect of
all these algorithms is that they all potentially use draws from auxiliary, pro-
posal, importance densities, q(θ), whose importance are weighted against
the target, posterior distribution π(θ |y), that is, by considering weights
π(θ |y)/q(θ) (see the explanation between Equations 8.26 and 8.27). For nota-
tional reasons, let π̃(θ) = p(y|θ)π(θ) be the unnormalized posterior, while
ω(θ) = π̃(θ)/q(θ) is the unnormalized weight.

8.4.3.1 Rejection Method

When samples are easily drawn from a proposal q such that π̃(θ) ≤ Aq(θ), for
some finite A and for all possible values of θ , then it can be shown that the
following algorithm produces independent draws from π̃(θ). The proposal
density q is commonly known as a blanketing density or an envelope density,
while A is the envelope constant. If both π̃ and q are normalized densities, then
A ≥ 1 and the theoretical acceptance rate is given by 1/A. In other words,
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more draws are likely to be accepted the closer q is to π , that is, the closer A
is to one.

Algorithm 8.1 Rejection method

1. Set j = 1.
2. Draw θ∗ from q and u from U[0, 1].
3. Compute the unnormalized weight, ω(θ∗).
4. If Au ≤ ω(θ∗), then set θ j = θ∗ and j = j + 1.
5. Repeat steps 2, 3, and 4 while j ≤ n.

The resulting sample {θ1, . . . , θn} is distributed according to π(θ |y).

8.4.3.2 Weighted Resampling Method

When A is not available or is hard to derive, weighted resampling is a direct
alternative since it can use draws from a density q without having to find
the constant A. This algorithm is more commonly known as the sampling
importance resampling (SIR) algorithm (Smith and Gelfand, 1992). We should
also mention other adaptive rejection algorithms and the renewed interest
in SIR-type algorithms in sequential Monte Carlo (Doucet et al., 2001) and
population Monte Carlo (Cappé et al., 2004).

Algorithm 8.2 Weighted resampling method

1. Sample θ∗1, . . . , θ∗m from q.
2. For i = 1, . . . , m

(a) Compute unnormalized weights: ωi = ω(θ∗i );
(b) Normalize weights: wi = ωi/

∑m
l=1 ωi.

3. Sample θ j from {θ∗1, . . . , θ∗m}, such that Pr(θ j = θ∗i ) = wi, for
j = 1, . . . , n.

For large m and n, the resulting sample {θ1, . . . , θn} is approximately
distributed according to π(θ |y).

8.4.3.3 Metropolis–Hastings Algorithm

Instead of discarding the current rejected draw, as in the rejection algorithm,
MH algorithms (Metropolis et al., 1953; Hastings, 1970) translate the rejection
information into higher importance, or weight, to the previous draw. This
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generates an iterative chain of dependent draws (a Markov scheme). Markov
chain arguments guarantee that, under fairly general regularity conditions
and in the limit, such a Markov scheme generates draws from π , also known
as the target, limiting, equilibrium distribution of the chain (Tierney, 1994).

Algorithm 8.3 Metropolis–Hastings algorithm

1. Set the initial value at θ0 and j = 1.
2. Draw θ∗ from q(θ j−1, ·) and u from U[0, 1].
3. Compute unnormalized weights and the acceptance prob-

ability

ω(θ j−1, θ∗) = π̃(θ∗)/q(θ j−1, θ∗)

ω(θ∗, θ j−1) = π̃(θ j−1)/q(θ
∗, θ j−1)

α(θ j−1, θ∗) =min

{
1,
ω(θ j−1, θ∗)
ω(θ∗, θ j−1)

}
.

4. If u ≤ α(θ j−1, θ∗) set θ j = θ∗, otherwise set θ j = θ j−1.
5. Set j = j + 1 and go back to step 2 until convergence is

reached.

In the above algorithmic representation, the proposal density q(·, θ) plays a
similar role as q(θ) in both rejection and SIR algorithms. Two commonly used
versions of the MH algorithm are the random walk MH and the independent MH,
where q(φ, θ) = q(|θ − φ|) and q(φ, θ) = q(θ), respectively. Proper choice of
q and convergence diagnostics are of key importance to validate the algorithm
and are, in the majority of the situations, problem-specific. See Chen et al.
(2000) or Gamerman and Lopes (2006), Chapter 6, for additional technical
details, references, and didactic examples.

8.4.3.4 Gibbs Sampler

Like MH algorithms, the Gibbs sampler is an iterative MC algorithm that
takes advantage of easy to sample from, and easy to evaluate full conditional
distributions that appear in several statistical modeling structures. More spe-
cifically, it is an algorithm that breaks the vector of parameters θ into d blocks
(scalar, vector or matrix) of parameters θ1, . . . , θd and recursively samples θ i
from its full conditional π(θ i|θ−i,y), where θ−i = (θ1, . . . , θ i−1, θ i+1, . . . , θd),
for i = 1, . . . , d. Its name is derived from its initial use in the context of image
processing, where the posterior distribution was a Gibbs distribution (Geman
and Geman, 1984), while Gelfand and Smith (1990) made it popular within
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the statistical community. As the number of θ draws increases, the chain
approaches its equilibrium, viz., π(θ |y). Convergence is then assumed to
hold approximately. It can be described algorithmically as follows.

Algorithm 8.4 The Gibbs sampler

1. Set the initial values at θ (0)= (θ (0)1 , . . . , θ (0)d )
′ and j = 1.

2. Obtain a new value θ (j)= (θ (j)1 , . . . , θ (j)d )
′ from θ (j−1) as follows:

θ
(j)
1 ∼ π(θ1|θ (j−1)

2 , . . . , θ (j−1)
d ),

θ
(j)
2 ∼ π(θ2|θ (j)1 , θ (j−1)

3 , . . . , θ (j−1)
d ),

...

θ
(j)
d ∼ π(θd|θ (j)1 , . . . , θ (j)d−1).

3. Set j = j + 1 and go back to step 2 until convergence is
reached.

8.4.3.5 MCMC Over Model Spaces

Suppose models Mj, for j ∈ J (for instance, J = {1, . . . , J}), are entertained.
Also, under model Mj, assume that p(y|θj, Mj) is a probability model for y

parameterized by a dj-dimensional vector θ j (usually in �dj ). Because the
dimension (and interpretation) of the model parameters might vary with
the models, the above MCMC algorithms cannot be directly used in order
to derive, for example, approximations for π(θ j|y, Mj) and, perhaps more
importantly, Pr(Mj|y), the posterior model probability for model Mj. Non-
etheless, Carlin and Chib (1995) and Green (1995) respectively proposed
generalizations of the Gibbs sampler and the MH algorithm to situations
where the parameter vector becomes (j, θ), where θ = (θ j : j ∈ J ). The former
is commonly known as the Carlin–Chib algorithm and the latter as the revers-
ible jump MCMC (RJMCMC) algorithm. Dellaportas et al. (2002) and Godsill
(2001) propose hybrid versions of these two algorithms, whereas Clyde (1999)
argues that MCMC model composition (Raftery et al., 1997) and stochastic
search variable selection (George and McCulloch, 1992) are particular cases
of the RJMCMC algorithm. Among many others, Kuo and Song (2005) used
RJMCMC for carrying out inference in dynamic frailty models for multivari-
ate survival times (see Section 8.5.3), Waagepetersen and Sorensen (2001) used
it in genetic mapping and Lopes et al. (2003) in multivariate mixture modeling
of hematologic data (see Example 2). Detailed and comprehensive review of
MCMC algorithms over model spaces appeared in Sisson (2005) along with
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an extensive list of freely available packages for RJMCMC and other transdi-
mensional algorithms. Further details appear in Chapter 7 of Gamerman and
Lopes (2006).

8.4.3.6 Public Domain Software

Until recently, a practical impediment to the routine use of Bayesian
approaches was the lack of reliable software. This has rapidly changed over
the last few years. The BUGS project (Spiegelhalter et al., 1999) provides pub-
lic domain code that has greatly facilitated the use of Bayesian inference.
The BUGS code is available from http://www.mrc-bsu.cam.ac.uk/
bugs/winbugs/contents.shtml. The software is widely used and well
tested and validated.

Another source of public domain software for Bayesian inference consists
of libraries for the statistical analysis system R (R Development Core Team,
2006). R provides many libraries (packages) for Bayesian inference, including
MCMCpack for MCMC within R, bayesSurv for Bayesian survival regres-
sion, boa for MCMC convergence diagnostics, DP-package for nonparametric
Bayesian inference, and BayesTree for Bayesian additive regression trees. All
packages are accessible and can be downloaded from the main R website
http://cran.r-project.org.

8.5 Bayesian Survival Analysis

Bayesian methods for survival analysis to model times-to-events have been
widely used in recent years in the biomedical and public health areas. The
book by Ibrahim et al. (2001) is an excellent text describing various aspects
of Bayesian inference. Here, we give a brief summary, with references, of a
few useful areas, and then describe in detail frailty models for multivariate
survival times.

8.5.1 Models for Univariate Survival Times

Univariate survival analysis assumes a suitable model for a continuous non-
negative survival time T which may be described in terms of the survival
function S(t) = P(T > t) or the hazard function h(t) = −d log S(t)/dt. A para-
metric framework assumes that i.i.d. survival times t = (t1, . . . , tn) follow
a parametric model such as exponential, Weibull, gamma, lognormal, or
poly-Weibull. The data might be complete or censored. Recall that a sur-
vival time is right (left) censored at c if its actual value is unobserved and it is
only known that the time is greater than or equal to (less than or equal to) c,
and is interval censored if it is only known that it lies in the interval (c1, c2).
Given a set of p covariates (risk factors) Z1, . . . , Zp, it is straightforward to
use a standard software like BUGS to fit a suitable regression model and
derive posterior and predictive distributions. A proportional hazards model
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specifies h(t|z) = h0(t) exp(z′iβ) for a vector of parameters β = (β1, . . . ,βp)
′,

and baseline hazard h0(.). Biomedical applications of parametric models have
been discussed for instance in Achcar et al. (1985) and Kim and Ibrahim (2000).
For situations in which the proportional hazards may be inappropriate, flex-
ible hierarchical models with time dependent covariates have been fit so that
h(t|z) = h0(t) exp(x′iβ(t), or even by replacing the linear term by a neural
network; see Gustafson (1998), Carlin and Hodges (1999), and Faraggi and
Simon (1995). Gustafson (1998) discusses data on duration of nursing home
stays through the hybrid MCMC algorithm. As another alternative, a gener-
alization of the Cox model has been discussed in Sinha et al. (1999) through a
discretizehazardand timedependent regressioncoefficients, withapplication
to breast cancer data (Finkelstein and Wolfe, 1985).

With recent advances in computational Bayesian methods, semiparamet-
ric and nonparametric methods have become more prevalent. The piecewise
constant semiparametric hazard model defines a finite partition of the time
axis into K intervals, and assumes a constant baseline hazard in each subin-
terval; the simplest baseline, called the piecewise exponential model, will be
described under frailty modeling later in this section. Nonparametric models
include use of gamma process priors (Kalbfleisch, 1978), beta process priors
(Sinha, 1997), correlated gamma process priors (Mezzetti and Ibrahim, 2000),
Dirichlet process priors (DPP) (Gelfand and Mallick, 1995), mixtures of DPP’s
or MDP models (MacEachern and Müller, 1998), and Polya tree process priors
(Lavine, 1992).

8.5.2 Shared Frailty Models for Multivariate Survival Times

Dependent multivariate times to events frequently occur in several bio-
medical applications, and frailty models (Vaupel et al., 1979) have been
extensively used for modeling dependence in such multivariate survival data.
The dependence frequently arises because subjects in the same group are
related to each other, or due to multiple recurrence times of a disease for
the same patient, and computational Bayesian methods facilitate a variety of
frailty models. The widely used shared frailty models for multivariate times
to events assume that there is an unobserved random effect, known as frailty,
which explains dependence that may arise owing to association among sub-
jects in the same group, or among multiple recurrence times of an event for
the same subject. Suppose the survival time of the kth subject (k = 1, . . . , m)
in the jth group (j = 1, . . . , n) is denoted by Tjk , and zjk is a fixed, possibly
time dependent covariate vector of dimension p.

EXAMPLE 5
An often cited example (McGilchrist and Aisbett, 1991) consists of the kidney
infection data on times to first and second occurrence of infection in 38 patients
on portable dialysis machines (n = 38, m = 2). Binary variables represent-
ing, respectively, the censoring indicators for the first and second recurrences
are available; occurrence of infection is indicated by 1, and censoring by 0.
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The gender of the patients (0 indicating male, and 1 indicating female), is a
covariate (see Ibrahim et al., 2001, Table 1.5). Other covariates, such as age
and disease type of each patient, are also available with this data. However,
initial analysis by McGilchrist and Aisbett, using what they referred to as a
penalized partial likelihood approach, showed that the effect of these covari-
ates on infection times was not statistically significant; hence they are omitted
from the analysis.

Given the unobserved frailty parameter wj for the jth group, the modi-
fied Cox proportional hazards shared frailty regression model (Clayton and
Cuzick, 1985; Oakes, 1989) through the hazard function is

h(tjk|wj, zjk) = h0(tjk) exp(β ′zjk)wj, (8.28)

where β is the vector of regression parameters of the same dimension, h0(.)
is the baseline hazard function and wj is an individual random effect (frailty)
representing common unobserved covariates and generating dependence.
Theevent timesare assumed tobe conditionally independentgiven the shared
frailty. For identifiability purposes, it is usual to require that the linear model
component β ′zjk has no intercept term. Let θjk = exp(β ′zjk).

8.5.2.1 Baseline Hazard Function

The baseline hazard function could be a simple constant hazard function, a
Lévy process, a Gamma process, a Beta process or a correlated prior pro-
cess (see Sinha and Dey, 1997 for an extensive review). A common parametric
baseline hazard is the Weibull form h0(tij) = λγ tγ−1

ij , for λ > 0, and γ > 0. The
more flexible piecewise exponential correlated prior process baseline hazard
requires that the time period is divided into g intervals, Ii = (ti−1, ti) for
i = 1, . . . , g, where 0 = t0 < t1 < · · · < tg < ∞, tg denoting the last sur-
vival or censored time. The baseline hazard is assumed to be constant within
each interval, that is, λ0(tjk) = λi for tjk ∈ Ii. A discrete-time martingale pro-
cess is used to correlate the λi’s in adjacent intervals, thus introducing some
smoothness (Arjas and Gasbarra, 1994). Given (λ1, . . . , λi−1), specify that

λi|λ1, . . . , λi−1 ∼ Gamma
(

ci,
ci

λi−1

)
, i = 1, . . . , g,

where λ0 = 1, so that E(λi|λ1, . . . , λi−1) = λi−1; let λ̃ = (λ1, . . . , λg). A small
value of ci indicates less information for smoothing the λi’s; if ci = 0, then
λi is independent of λi−1 while if ci → ∞, λi = λi−1. Regarding the choice
of g, a very large value would result in a nonparametric model and produce
unstable estimates of λs whereas a very small value of g would lead to inad-
equate model fitting. In practical situations, g is determined on the basis of the
design. A random choice of g will lead to a posterior distribution with vari-
able dimensions, which may be handled through a RJMCMC (Green, 1995)
described in Section 8.4.
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8.5.2.2 Frailty Specifications

Alternate parametric shared frailty specifications that have appeared in the
recent literature include the gamma model (Clayton and Cuzick, 1985),
the log-normal model (Gustafson, 1997), and the positive stable model
(Hougaard, 2000). The gamma distribution is the most common finite mean
frailty distribution, and we assume that wj are i.i.d. Gamma(κ−1, κ−1) vari-
ables, so that the mean is 1 and the variance is the unknown κ . For
identifiability, the mean of wj’s must be 1. For Bayesian inference on a shared
Gamma frailty-Weibull baseline model with application to the kidney infec-
tion data, see Section 8.4.1 in Ibrahim et al. (2001). In a proportional hazards
frailty model, the unconditional effect of a covariate, which is measured by the
hazard ratio between unrelated subjects (i.e., with different frailties) is always
less than its conditional effect, measured by the hazard ratio among subjects
with the same frailty. In particular, suppose we consider two subjects from dif-
ferent groups and with respective covariates 0 and z̃; let S0(t) and S1(t) denote
the corresponding unconditional survivor functions derived under this frailty
specification. It has been shown that the covariate effects, as measured by the
hazard ratio are always attenuated and further, S0(t) and S1(t) are usually not
related through a proportional hazards model. If the frailty distribution is an
infinite variance positive stable distribution, then S1(t) and S0(t) will have
proportional hazards; we no longer need to choose between conditional and
unconditional model specifications, since a single specification can be inter-
preted either way. A positive stable frailty distribution thus not only permits
a proportional hazards model to apply unconditionally, but also allows for
a much higher degree of heterogeneity among the common covariates than
would be possible by using a frailty distribution with finite variance, such as
the Gamma distribution. The frailty parameters wj, j = 1, . . . , n are assumed
to be i.i.d. for every group, according to a positive α-stable distribution.
The density function of a positive stable random variable wj is not avail-
able in closed form. However, its characteristic function is available and has
the form

E(eiϑwj ) = exp{−|ϑ |α(1− isign(ϑ) tan(πα/2))}, (8.29)

where i = √−1, ϑ is a real number, sign(ϑ) = 1 if ϑ > 0, sign(ϑ) = 0 if ϑ = 0
and sign(ϑ) = −1 if ϑ < 0.

8.5.2.3 Positive Stable Shared Frailty Model

Although the positive stable frailty model is conceptually simple, estimation
of the resulting model parameters is complicated owing to the lack of a closed
form expression for the density function of a stable random variable. Qiou
et al. (1999) described a Bayesian framework using MCMC for this problem
with application to the kidney infection data. This was later extended by
Ravishanker and Dey (2000) to include a mixture of positive stables frailty,
and by Mallick and Ravishanker (2004) to a power variance family (PVF)
frailty (indexed by parameters η and α). The Bayesian approach is based on
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an expression provided by Buckle (1995) for the joint density of n i.i.d. obser-
vations from a stable distribution by utilizing a bivariate density function
f (wj, y|α) whose marginal density with respect to one of the two variables
gives exactly a stable density. Let f (wj, y|α) be a bivariate function such that
it projects [(−∞, 0)× (−1/2, lα)] ∪ [(0,∞)× (lα , 1/2)] to (0,∞):

f (wj, y|α) = α

|α − 1| exp

{
−
∣∣∣∣ wj

τα(y)

∣∣∣∣α/(α−1)
} ∣∣∣∣ wj

τα(y)

∣∣∣∣α/(α−1) 1
|wj| , (8.30)

where

τα(y) = sin(παy + ψα)
cosπy

[
cosπy

cos{π(α − 1)y + ψα}
](α−1)/α

,

wj ∈ (−∞,∞), y∈ (−1/2, 1/2),ψα = min(α, 2−α)π/2 and lα = −ψα/πα. Then

f (wj|α) =
α|wj|1/(α−1)

|α − 1|
∫ 1/2

−1/2
exp

{
−
∣∣∣∣ wj

τα(y)

∣∣∣∣α/(α−1)
} ∣∣∣∣ 1
τα(y)

∣∣∣∣α/(α−1)

dy. (8.31)

Denoting by D the triplets, (tjk , δjk , zjk), the vector of unobserved w′js by
w and the vector of unobserved auxiliary variables (y1, . . . , yn) by y, the
complete data likelihood is

l(β,λ,α|w,y,D) =
n∏

j=1

m∏
k=1

g−1∏
i=1

exp{−λi iθjkwj}


× exp{−λg(tjk − tg−1)θjkwj}(λgθjkwj)
δjk . (8.32)

The observed data likelihood based on the observed data D is obtained by
integrating out the wj’s from Equation 8.32 using the stable density expres-
sion in Equation 8.31, and corresponds to the marginal model whereas
Equation 8.32 corresponds to the conditional model given the frailty. Assum-
ing suitable priors, the joint posterior density based on the observed data
likelihood is derived and appropriate MCMC algorithms (see Section 8.4)
are used to generate samples from the posterior distribution through com-
plete conditional distributions. For instance, the ratio-of-uniforms algorithm
is used to generate λk and βj samples, the MH algorithm is used for α, and
the rejection algorithm for yi. See (Qiou et al., 1999) for details, as well as for
results corresponding to bivariate times with the kidney infection data. In
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TABLE 8.1

Posterior Summary for Kidney Infection Data under Shared Frailty Models

Frailty Model

Gamma Positive Stable PVF Additive Stable

Parameter Mean (s.d.) Mean (s.d.) Mean (s.d.) Mean (s.d.)

β −1.62 (0.42) −1.06 (0.36) −1.15 (0.88) −1.40 (0.61)
1/κ 0.33 (0.17) — — —
α — 0.86 (0.07) 0.38 (0.35) —
η — — 1.09 (1.05) —
α1 — — — 0.35 (0.05)
α2 — — — 0.39 (0.04)
3 — — — 0.42 (0.04)
λ1 0.002 (0.003) 0.001 (0.002) 0.001 (0.004) 0.012 (0.015)
λ2 0.001 (0.003) 0.003 (0.007) 0.004 (0.016) 0.023 (0.036)
λ3 0.001 (0.002) 0.0038 0.005 (0.019) 0.031 (0.049)
λ4 0.001 (0.002) 0.004 (0.009) 0.005 (0.019) 0.037 (0.057)
λ5 0.001 (0.002) 0.003 (0.008) 0.005 (0.019) 0.040 (0.060)
λ6 0.001 (0.002) 0.004 (0.011) 0.005 (0.019) 0.045 (0.066)
λ7 0.001 (0.002) 0.004 (0.010) 0.006 (0.020) 0.058 (0.065)
λ8 0.001 (0.003) 0.006 (0.013) 0.008 (0.025) 0.097 (0.098)
λ9 0.006 (0.005) 0.027 (0.022) 0.038 (0.063) 0.298 (0.196)
λ10 0.360 (0.150) 1.84 (0.604) 2.60 (2.13) 2.86 (1.22)

Table 8.1, we show results from fitting the different shared frailty models to
the kidney infection data.

8.5.3 Extensions of Frailty Models

There are several extensions of frailty modeling. Unlike the shared frailty
model that corresponds to the assumption of a common risk dependence
among multivariate times, the additive frailty model (Hougaard, 2000) allows
us to handle such survival times with varying degrees of dependence, by com-
bination of subgroups. For instance, data on time to tumorigenesis of female
rats in litters was discussed by Mantel et al. (1977). Each litter had three rats;
one rat was drug-treated and the other two served as control. Time of tumor
appearance was recorded (death owing to other causes was considered as cen-
soring), and the study was ended after 104 weeks. Under an additive frailty
model, it is assumed that the three female rats in each of 50 litters correspond
to three different frailty components instead of sharing a single random com-
ponent under the shared frailty model, thereby yielding a richer dependence
structure. Each subcomponent of the resulting multivariate frailty random
variable is further decomposed into independent additive frailty variables,
and the frailty component of each rat in every litter is the sum of the litter effect
and the individual rat effect. The dependence among rats in each litter then
arises owing to the litter effect, whereas the individual rat effect generates



C5777: “c5777_c008” — 2007/10/27 — 13:03 — page 236 — #26

236 Computational Methods in Biomedical Research

additional variability. Specifically, the additive frailty model specifies that
the components of a frailty random vector are combined additively for the
jth subject within the ith group, and they then act multiplicatively in the Cox
proportional hazards model, that is,

h(tij|wij, zij) = λ0(tij) exp(β ′zij)wij; (8.33)

the dependence is generated by setting

wij = A′ijXi, (8.34)

where X′i = (Xi1, Xi2, . . . , Xis), and A′ij = (aij1, aij2, . . . , aijs) is the vector of
design components for the jth subject in the ith group. The other quantities in
Equation 8.33 have been defined earlier. Some components in wij are shared
by other subjects in the same group and thereby generate dependence. Non-
shared components produce individual variability in the model. For bivariate
times to events, suppressing the group index, the frailty may be expressed
in the form (W1, W2)where Wk corresponds to the frailty variable for the kth
subject, k = 1, 2, and is given by

W1 = X0 + X1, and W2 = X0 + X2,

where X0, X1, and X2 are independently distributed positive-valued ran-
dom variables. The dependence between bivariate times to events arises
owing to the common term X0, while the other two terms X1 and X2 gen-
erate additional unshared variability corresponding to individual random
effects. Bayesian inference under this framework has been recently discussed
in Mallick and Ravishanker (2006) with application to the tumorigenesis data
and to the kidney infection data. Extension to vector frailty is interesting (Xue
and Brookmeyer, 1996).

Hierarchical frailty models for multilevel multivariate survival data has
been discussed by Gustafson (1995) in the context of data from a clinical trial
of chemotherapy for advanced colorectal cancer. The data were collected from
419 patients who participated in the trial conducted at 16 clinical sites; Ibrahim
et al. (2001) have described the use of the hybrid Monte Carlo method for this
example. Kuo and Song (2005) have described a dynamic frailty model that
assumes a subject’s risk changes over time; they used RJMCMC for carrying
out inference. Another interesting class of models are multivariate cure rate
models (Chen et al., 2002). The cure rate model has been useful for modeling
data from cancer clinical trials, where it is assumed that a certain proportion
q of the population is cured, whereas the remaining 1 − q is not cured. For
bivariate times, see Ibrahim et al. (2001, Section 5.5) for details and examples.
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8.6 Disease Mapping

Disease mapping is, broadly speaking, the modeling of the spatial behavior of
disease rates, as well as the identification, classification, or clustering of areas
of highest (lowest) risk rates and their association to explanatory variables.
Resource allocation policies and testing of epidemiologic and environmental
hypotheses are standard scientific enquiries facilitated by disease mapping
models. Statistical models for disease mapping are meaningfully stated as
hierarchical models, such as the one characterized by Equations 8.35 through
8.37. The Bayesian approach to disease mapping problems has become com-
monplace over the last decade, with region-specific random effects modeled
by spatially structured priors at one or several hierarchy levels in general
hierarchical models (see Section 8.3.1). It is often useful to present a dis-
ease mapping model as a graphical model. This helps us discuss the model
structure without distracting details [see Mollié (1996) for an example].

One standard approach in disease mapping is to locally model counts by
Poisson distributions, that is,

yi|ρi ∼ Poisson(ρi), (8.35)

where ρi is the relative risk in region i, whose structural dependence appears
in a second hierarchical level, for instance, as

ρi = g(x′iθ + βi + εi), (8.36)

where g is a link function (e.g., exponential), x′i is a vector of explanatory
variables, βi is a region-specific random effect and εi is a noise term, usually
N(0, σ 2

ε ). The random effects coefficients βis follow a standard conditionally
autoregressive (CAR) spatial structure (Besag et al., 1991) with the conditional
distribution of βi depending on βj for all neighboring regions j, that is,

βi|β−i ∼ N

∑
j∈δi

wijβj, σ
2
β/ni

 , (8.37)

for β−i = (β1, . . . ,βi−1,βi+1, . . . ,βn), δi a set of regions adjacent to i, weighting
function ωij, ni =

∑
j∈δi ωij and wij = ωij/ni. The most often used neighboring

structure is the one that assumes that ωij = 1 if i and j are neighbor counties
and zero otherwise. Bernardinelli et al. (1995), Best et al. (1999), Kelsal and
Wakefield (2002) and Wall (2004) are a few additional studies which use CAR
prior distributions for disease mapping.

EXAMPLE 6
Nobre et al. (2005) examined the spatial and temporal behavior of malaria
incidence and its relationship to rainfall over time and across counties, for
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several counties of Pará, one of Brazil’s largest states located in the Amazon
region. In 2001, for instance, Pará had around 17,000 cases of malaria. Malaria
affects about 600 million persons a year worldwide and is the most com-
mon infectious disease found in Brazil’s rainforest. Malaria is transmitted by
mosquitoes from the Anopheles sp genus. Temperature and rainfall are import-
ant natural risk factors affecting life cycle and breeding of the mosquitoes.
Extreme rainfall and extreme drought are both equally likely to lead to pro-
liferation of the mosquitoes, and therefore the disease. Limited public health
policies and population migration are major social risk factors. Assuming the
state of Pará is divided into n contiguous counties (subregions), and that yi
are the number of malaria cases in county i, they extend the standard CAR
prior by proposing the following space-time model for malaria counts:

ρit = exp{θtxit + βit},
θt ∼ N(θt−1, τ 2

θ ),

βt ∼ D(σ 2
t ),

(8.38)

where xit is a measure of rainfall and D is the distribution of βt as a function
of σ 2

t . They entertain four space-time models by crossing two specifications
for D, that is, βt ∼ N(0, σ 2

t In) and βt ∼ CAR(σ 2
t ), and two specifications

for σ 2
t , that is, σ 2

t ∼ IG(a, c) and σ 2
t ∼ Log-normal(log(σ 2

t−1), τ
2). Figure 8.1

exhibits log-relative risks (posterior medians) for the month of March 1997
based on the third model specification, that is, βt ∼ N(0, σ 2

t In) and σ 2
t ∼

Log-normal(log(σ 2
t−1), τ

2). The temporal structures resemble dynamic linear
models and dynamic generalized linear models (West et al., 1985).

Nobre et al. (2005) generalize the models that appear in Waller et al. (1997)
and Knorr-Held and Besag (1998), who analyze lung cancer mortality in the
state of Ohio over the years. In addition, recent space-time studies in disease
mapping are Assunção et al. (2001) who model the diffusion and predic-
tion of Leishmaniasis and Knorr-Held and Richardson (2003) who examine
surveillance data on meningococcal disease incidence. MacNab et al. (2004),
Congdon (2005, Chapter 8), Best et al. (2005) and references therein provide
additional discussion about the Bayesian and empirical Bayesian estimation
in disease mapping.

8.7 Bayesian Clinical Trials

Berry (2006) argues that a Bayesian approach is natural for clinical trial
design and drug development. An important advantage is that the Bayesian
approach allows for gradual updates of knowledge, rather than restricting
the process to updating in large discrete steps measured in trials or phases.
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FIGURE 8.1
(See color insert following page 207.) Malaria in Pará: log-relative risk’s March 1997 posterior
median when βt ∼ N(0, σ 2

t In) and σ 2
t ∼ Log-normal(log(σ 2

t−1), τ
2). For instance, Anajás county

highest risk may be owing to its proximity to several rivers and to the island of Marajó.

The process of updating information under a Bayesian approach is “spe-
cifically tied to decision making, within a particular trial, within a drug
development program, and within establishing a company’s portfolio of
drugs under development” (Berry, 2006). He argues that the therapeutic areas
in which the clinical end points are observed early should benefit most from
a Bayesian approach. Bayesian methods are particularly useful for statistical
inference related to diseases such as cancer in which there is a burgeoning
number of biomarkers available for assessing the disease’s progress (Berry,
2006). An example is presented of a Phase II neoadjuvant HER2/neu-positive
breast cancer trial conducted at M. D. Anderson Cancer Center, in which 164
patients were randomized to two treatment arms, chemotherapy with and
without trastuzumab (Herceptin; Genentech), and where the primary end-
point was pathological complete response (pCR) of the tumor. In the middle
of the trial designed from a frequentist perspective and with the protocol
specifying no interim analyses, data available to assess pCR on 34 patients
showed that the trastuzumab arm had dramatic improvement, that is, 4 of 16
control patients (25%) and 12 of 18 trastuzumab patients (67%) experienced a
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pCR. The Bayesian predictive probability of the standard frequentist statist-
ical significance when 164 patients had been treated was computed to be 95%,
demonstrating the use of Bayesian analysis in conjunction with a frequentist
design to override the protocol and stop the trial.

In this section we discuss principles of Bayesian clinical trial design, how it
relates to frequentist design, and we explain details of some typical Bayesian
clinical trial designs.

8.7.1 Principles of Bayesian Clinical Trial Design

The planning of a clinical trial involves many unknown quantities, including
patient responses, that is, future data, as well as unknown parameters that
are never observed. Uncertainties about these quantities are best described by
defining appropriate probability models. Probability models that are defined
on observable data as well as parameters are known as Bayesian models. Clin-
ical trial designs based on such probability models are referred to as Bayesian
clinical trial designs. Augmenting the Bayesian model for data and para-
meters with a formal description of the desired decision leads to a Bayesian
decision problem. We refer to clinical trial designs based on this setup as
Bayesian decision theoretic designs. Many popular designs stop short of a
decision theoretic formulation. Designs that are based on a Bayesian probab-
ility model, without a formal definition of a loss function are referred to as
proper Bayesian designs (Spiegelhalter et al., 2004).

Typical examples of proper Bayesian approaches are Thall et al. (1995) or
Thall and Russell (1998).

EXAMPLE 7
Consider the following stylized example for an early phase trial. We assume
that the observed outcome is an indicator yi ∈ {0, 1} for tumor response for
the i-th patient. Let θ = Pr(yi = 1) denote the unknown probability of tumor
response. Assume that the current standard of care for the specific disease has
a known success probability of θ0 = 15%. Let n denote the number of currently
enrolled patients, and let x = ∑n

i=1 yi denote the recorded number of tumor
responses. Assuming a Beta prior, θ ∼ Be(a, b) and a binomial sampling
model, x ∼ Bin(n, θ), we can at any time evaluate the posterior distribution
p(θ | y1, . . . , yn) = Be(a+ x, b+ n− x).

A typical proper Bayesian design could proceed with the following
protocol:

• After each patient cohort, update the posterior distribution.
• Stop and recommend the experimental therapy if Pr(θ > 0.2 |

y1, . . . , yn) > π1.
• Stop and abandon the experimental therapy if Pr(θ < 0.1 |

y1, . . . , yn) > π2 or n > nmax.

The design requires the elicitation of the prior parameters (a, b) and the choice
of policy parameters (tuning parameters) (π1,π2, nmax). Policy parameters are
determined by matching desired operating characteristics, as shown below.
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8.7.2 Operating Characteristics

The distinction between Bayesian and classical (or frequentist) design is not
clear cut. Any Bayesian design can be considered and evaluated from a
frequentist perspective. As before, let θ and y generically denote the para-
meters in the underlying probability model and the observed outcomes,
respectively. Let δ denote the design. In particular, δ might include a rule
to allocate patients to alternative treatment arms, a stopping rule, and a
final decision. In Example 1, the design δ = (d, a) included a stopping rule
d(y) ∈ {0, 1} with d = 1 indicating stopping, and a final decision a(y) ∈ {0, 1}
with a = 1 indicating a recommendation of the experimental therapy. The
recommendation might imply a decision to launch a following confirmatory
trial.

For a given set of policy parameters and an assumed truth, we can evaluate
frequentist error rates and other properties by evaluating repeated sampling
expectations of the relevant summaries. Formally, we consider E(g(d, θ , y) | θ)
for an assumed truth θ . The choice of g and θ depends on the desired summary.
For example, Type-I error is evaluated by setting θ = θ0 and using g(d, θ , y) =
I(a = 1). To evaluate power we would consider g(d, θ , y) = I(a = 1) for a
grid of θ values with θ > 0.2. Other important summaries are the expected
sample size, g(d, θ , y) = minn=1,2,...,nmax{n: d(y1, . . . , yn) = 1} and the expected
number of successfully treated patients g(d, θ , y) = ∑

yi. Such summaries
are routinely reported as operating characteristics of a design. Formally,
these summaries are evaluated by essentially ignoring the Bayesian nature
of the design, and considering it as a possible frequentist design. The use
of Bayes rules to construct promising candidates for a good frequentist pro-
cedure is a commonly used approach, even beyond the context of clinical
trial design. It is considered good practice to report operating characterist-
ics when proposing a Bayesian design. In most regulatory or review settings
such reports are mandatory.

Besides the reporting purpose, an important use of operating character-
istics is to select policy parameters. Similar to most clinical trial designs,
many Bayesian designs require the selection of various policy parameters,
such as (π1,π2, nmax) in the earlier example. A commonly used procedure
is to evaluate operating characteristics for a variety of choices of the policy
parameters and fixing the final design by matching desired values for the
operating characteristics. The resulting design is valid as both, a bona fide
frequentist procedure as well as a coherent Bayesian design.

8.7.3 A Two-Agent Dose-Finding Design

Extensive recent reviews of Bayesian designs for early phase trials appear
in Estey and Thall (2003), Berry (2005a), or Berry (2005b). A more compre-
hensive review, including issues beyond clinical trial design, is presented by
Spiegelhalter et al. (2004).

As a typical example for a nontrivial Bayesian design we review in this
section a design proposed in Thall et al. (2003). They consider a protocol
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for dose-finding with two agents. The response is an indicator for toxicity,
yi ∈ {0, 1}, for the i-th patient. For given doses x = (x1, x2) of the two agents,
let π(x1, x2, θ) denote the probability of toxicity. We assume

π(x, θ) = α1xβ1
1 + α2xβ2

2 + α3(x
β1
1 xβ2

2 )
β3

1+ α1xβ1
1 + α2xβ2

2 + α3(x
β1
1 xβ2

2 )
β3

.

Here θ = (α1,β1,α2,β2,α3,β3). The model is chosen to imply parsimo-
nious submodels for the corresponding single agent therapies with x1 = 0
and x2 = 0, respectively. This allows us to include available substantial prior
information for (α1,β1) and (α2,β2). In the application the two agents are gem-
citibine and cyclophosphamide, two chemotherapy agents that are extens-
ively used in the treatment of various cancers. Without loss of generality,
assume that both agents are available at doses xj ∈ {0, 0.1, . . . , 0.9, 1.0}.

The proposed design proceeds in two stages. In the first stage we escalate
the dose of both agents along a predefined grid D1 = {x1, . . . , xk} of dose pairs

(xj
1, xj

2). For example, the predefined grid could be (xj
1, xj

2) = (j · 0.1, j · 0.1),
j = 1, . . . , 8. Patients are assigned in cohorts of K patients, using for example,
K = 2. Let Yi = (y1, . . . , yi)denote the recorded responses of the first i patients.
After each patient cohort we evaluate the posterior distribution p(θ | Y) for all
i currently enrolled patients. The posterior on θ implies a posterior estimated
toxicity surface E(π(θ , x) | Yi). Subject to an overdose control, patients in the
next cohort are assigned to the dose combination xj that is closest to a desired
target level of toxicity π∗. Overdose control means that no dose combination
xj on the grid can be skipped, that is, patients can only be assigned to xj when
earlier patients were earlier assigned to xj−1.

After a predetermined number of patients, say n1, the design switches to
the second stage. In the second stage, we drop the restriction to the grid D1.
In other words, the assumption is that stage one has approximately identi-
fied a dose combination (x∗1, x∗2) on the grid D1 with the desired toxicity, and
we can now vary the doses x1 and x2 of the two agents to optimize cancer
killing and learning about the toxicity surface. This optimization is carried
out among all dose pairs with the same a posteriori estimated toxicity level,
E(π(x1, x2, θ) | Y) ≈ π∗. Here Y are all responses that were observed up to
now. Cancer killing is approximated as λ(x1−x∗1)+ (x2−x∗2). This is based on
the assumption that the cancer-killing effect of agent 1 is stronger than that
of agent 2 by a factor λ, and that the cancer-killing effects of both agents are
additive and proportional to the dose. Learning about θ is formalized as the
log of the determinant of the Fisher information matrix.

In summary, the design has several policy parameters, the choice of the
stage one grid D1, the sample size n1, the cohort size K, and other parameters
that control details that we did not describe above. All policy parameters are
chosen by matching desired frequentist operating characteristics.
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8.8 Microarray Data Analysis

8.8.1 Introduction

High-throughput assays like microarrays, serial analysis of gene expres-
sion (SAGE), and protein mass spectrometry are becoming increasingly
more commonly used in medical and biological research. Microarrays and
SAGE experiments measure mRNA expression, whereas mass/charge spec-
tra record protein abundance. An excellent review of the experimental setup
for all three formats, and related statistical methods appears in Baggerly et al.
(2006). See also Datta et al. (2007) and Naik and Wagner (2007).

Microarray experiments are by far the most commonly used of the three
mentioned high-throughput assays. Many published methods for statistical
inference (after completed preprocessing) focus on the stylized setup of two-
group comparisons. Two-group comparisons are experiments that record
gene expression for samples under two biologic conditions of interest and
seek to identify those genes that are differentially expressed. Most microarray
experiments involve more complicated designs. But the two-group compar-
ison serves as a good canonical example. Popular methods include the use
of two-sample t-tests and nonparametric permutation tests, applied to one
gene at a time. Several methods have been proposed to adjust the resulting
p values for multiplicities and compile a list of differentially expressed genes.
This includes popular methods based on controlling (frequentist) expectation
of the false discovery rate (FDR) (Benjamini and Hochberg, 1995; Storey, 2002;
and Storey et al., 2004), the beta-uniform method (Pounds and Morris, 2003),
or significance analysis of microarrays, popularly known as SAM (Tusher
et al., 2001). Here, FDR is defined as the number of false discoveries, that is,
the number of genes that are falsely reported as differentially expressed, rel-
ative to the total number of genes that are reported as differentially expressed.
The beta-uniform method is based on modeling the distribution of p values
across all genes, and SAM is an algorithm that uses repeated simulation to
determine significance cutoffs.

In this section we review some Bayesian inference for group comparison
microarrayexperiments andaBayesianperspective toerror control inmassive
multiple comparisons. One of the more popular methods is the empirical
Bayes approach proposed in Efron et al. (2001). The authors describe their
approach as an empirical Bayes method. They assume that data are summar-
ized as a set of difference scores, with one score for each gene. The method
assumes that these scores arise from a mixture model with submodels corres-
ponding to differentially and nondifferentially expressed genes. The desired
inference of identifying differentially expressed genes is formally described as
the problem of deconvolution of this mixture. This is achieved by clever, but
ad hoc methods. Parmigiani et al. (2002) assume a mixture model with three
terms corresponding to over-, under-, and normal-expressed genes, using
uniform distributions for over- and under-expression, and a central Gaussian
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for normal expression. The authors argue that further inference should be
based on the imputed latent trinary indicators in this mixture. Ibrahim et al.
(2002) propose a model with an explicit threshold to accommodate the many
genes that are not strongly expressed, and proceed then with a mixture model
including a point mass for the majority of not-expressed genes and a log nor-
mal distribution for expressed genes. Another class of methods is based on a
Gamma/Gamma hierarchical model developed in Newton et al. (2001). The
model includes parameters that are interpreted as latent indicators for differ-
ential expression. Other recent proposals based on mixture models and model
selection include Ghosh (2004), Ishwaran and Rao (2003), Tadesse et al. (2003),
Broet et al. (2002), Dahl (2003), Tadesse et al. (2005), Hein et al. (2005), and
Lewin et al. (2006) develop approaches based on hierarchical models. Frigessi
et al. (2005) develop a hierarchical model based on a detailed description of
the physical process, including the details of hybridization, and so forth.

In this section we review three of the mentioned approaches as typical
examples for this literature.

8.8.2 The Gamma/Gamma Hierarchical Model

In general, a model for microarray group comparison experiments should
be sufficiently structured and detailed to reflect the prior expected levels
of noise, a reasonable subjective judgment about the likely numbers of dif-
ferentially expressed genes, and some assumption about dependencies, if
relevant. It should also be easy to include prior data when available. One
model that achieves these desiderata is that introduced in Newton et al. (2001)
and Newton and Kendziorski (2003).

The model does not include details of the data cleaning process, including
spatial dependence of measurement errors across the microarray, correction
for misalignments, and so forth. Although such details are important, it is dif-
ficult to automate inference in the form of a generally applicable probability
model. We feel normalization and standardization are best dealt with on a case
by case basis, exploiting available information about the experimental setup.
The remainingvariability resulting frompreprocessingandnormalizationcan
be subsumed as an aggregate in the prior description of the expected noise. So
in the following discussion we assume that the data are appropriately stand-
ardized and normalized and that the noise distribution implicitly includes
these considerations. See, for example, Tseng et al. (2001), Baggerly et al.
(2001), or Yang et al. (2002) for a discussion of the process of normalization.

We focus on the comparison of two conditions and assume that data will
be available as arrays of appropriately normalized intensity measurements
Xij and Yij for gene i, i = 1, . . . , n, and experiment j, j = 1, . . . , J, with X and Y
denoting the intensities in the two conditions. Newton et al. (2001) propose
probabilistic modeling for the observed gene frequencies in a single-slide
experiment.

For each gene i we record a pair (Xi, Yi) of intensities corresponding to
transcript abundance of a gene in the two samples. The true unknown mean
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FIGURE 8.2
A model for differential gene expression from Newton et al. (2001) for fluorescence intensity
measurements in a single-slide experiment. For each gene, that is, each spot on the chip, we record
a pair (X, Y) of intensities corresponding to transcript abundance of a gene in both samples. The
true unknown mean expression values are characterized by θ0i and θ1i . The aim of the experiment
is to derive inference about equality of θ1i and θ0k . Uncertainty about θ0i and θ1i is described by
parameters (a0, ν). The variable zi is a binomial indicator for equal mean values, that is, equal
expression, associated with a probability p. All information about differential expression of gene i
is contained in the posterior distribution for zi .

expression levels are denoted by θ0i and θ1i. Other parameters, like scale
or shape parameters, are denoted a. The aim of the experiment is to derive
inference about the ratio θ1i/θ0i. Uncertainty about θ0i and θ1i is described
by hyperparameters (a0, ν, p). A latent variable zi ∈ {0, 1} is an indicator for
unequal mean values for gene i, that is, equal expression. We use zi = 0
to indicate equal expression, and zi = 1 to indicate differential expression.
Figure 8.2 summarizes the structure of the probability model. Conditional on
the observed fluorescence intensities, the posterior distribution on zi contains
all information about differential expression of gene i. Let ri = Xi/Yi denote
the observed relative expression for gene i, and let η = (a0, ν, p, a). Newton
et al. (2001) gives the marginal likelihood p(ri |zi, η), marginalized with respect
to θ1i and θ0i. They proceed by maximizing the marginal likelihood for η by
an implementation of the EM algorithm.

A simple hierarchical extension allows inference for multiple arrays. We
assume repeated measurements Xij and Yij, j = 1, . . . , J, to be conditionally
independent given the model parameters. We assume a Gamma-sampling
distribution for the observed intensities Xij, Yij for gene i in sample j,

Xij ∼ Ga(a, θ0i) and Yij ∼ Ga(a, θ1i).

The scale parameters are gene-specific random effects (θ0i, θ1i). The model
includes an a priori positive probability for lack of differential expression

Pr(θ0i = θ1i) = Pr(zi = 0) = p.
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Conditional on latent indicators zi for differential gene expression, zi =
I(θ0i �= θ1i), we assume conjugate gamma random effects distributions

θ0i ∼ Ga(a0, ν)

(θ1i|zi = 1) ∼ Ga(a0, ν) and (θ1i|zi = 0) ∼ Iθ0i(θ1i). (8.39)

The model is completed with a prior for the parameters (a, a0, ν, p) ∼
π(a, a0, ν, p)We fix ν, assume a priori independence and use marginal gamma
priors for a0 and a, and a conjugate beta prior for p.

Let Xi = (Xij, j = 1, . . . , J) and Yi = (Yij, j = 1, . . . , J). The above model
leads to a closed form marginal likelihood p(Xi, Yi|η) after integrating out
θ1i, θ0i, but still conditional on η = (p, a, a0).

Availability of the closed form expression for the marginal likelihood
greatly simplifies posterior simulation. Marginalizing with respect to the ran-
dom effects reduces the model to the 3-dimensional marginal posterior p(η |
y) ∝ p(η)

∏
i p(Xi, Yi|η). Conditional on currently imputed values forηwe can

at any time augment the parameter vector by generating zi ∼ p(zi | η, Xi, Yi)

as simple independent Bernoulli draws, if desired. This greatly simplifies
posterior simulation.

8.8.3 A Nonparametric Bayesian Model for Differential Gene Expression

Do et al. (2005) proposed a semiparametric Bayesian approach to inference
for microarray group comparison experiments. Following the setup in Efron
et al. (2001), they assume that the data are available as a difference score
zg for each gene, g = 1, . . . , G. For example, the difference score zg could
be a two-sample t-statistic computed with the measurements recorded for
gene g on all arrays, arranged in two groups by biologic condition. The
summary is a t-statistic only in name, that is, we do not assume that the
sampling model for the statistic is t-distribution under the null hypothesis.
Instead, inference proceeds by assuming that the difference scores zg arise by
independent sampling from some unknown distribution f1 for differentially
expressed genes; and from an unknown distribution f0 for nondifferentially
expressed genes. For a reasonable choice of difference scores, the distribu-
tion f0 should be a unimodal distribution centered at zero. The distribution
f1 should be bimodal with symmetric modes to the left and right of zero
corresponding to over- and under-expressed genes. Of course, the partition
into differentially and nondifferentially expressed genes is unknown. Thus,
instead of samples from f0 and f1, we can only work with the samples gen-
erated from a mixture f (z) = p0 f0(z) + (1 − p0) f1(z). Here p0 is an unknown
mixture weight. The desired inference about differential expression for each
gene is formalized as a deconvolution of this mixture. We proceed by defin-
ing prior probability models on the unknown f0 and f1. Probability models
on random distributions are traditionally known as nonparametric Bayesian
models. See, for example, Müller and Quintana (2004) for a review of nonpara-
metric Bayesian methods. We argue that the marginal posterior probability of
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gene g being differentially expressed can be evaluated as posterior expectation
of Pg ≡ (1− p0)f1(zg)/f (zg).

8.8.4 The Probability of Expression Model

The Probability of Expression (POE) model is described in Parmigiani et al.
(2002). A key feature of the model is the use of trinary indicators for over- and
under-expression. In particular, let ygt denote the observed gene expression
for gene i in sample j, with i = 1, . . . , n and j = 1, . . . , J. We introduce a
latent variable eij ∈ {−1, 0, 1} and assume the following mixture of normal
and uniform model, parameterized with θS = (aj,µi, si, κ

−
i , κ+i ):

p(ygt | eij) ∼ feg(ygt) with


f−1i = U(−κ−i + aj + µi, aj + µi)

f0i = N(aj + µi, si)

f1i = U(aj + µi, aj + µi + κ+i ).
(8.40)

In other words, we assume that the observed gene expressions arise from
a mixture of a normal distribution and two uniform distributions defined to
model overdispersion relative to the normal. Conditional on the parameters
and the latent indicators eij, we assume that the observed gene expressions yij
are independent across genes and samples. The interpretation of the normal
component is as a baseline distribution for gene i, and the two uniform terms
as the distribution in samples where gene i is over- and under-expressed,
respectively. In Equation 8.40, aj, j = 1, . . . , J are sample-specific effects,
allowing inference to adjust for systematic variation across samples, µi are
gene-specific effects that model the overall prevalence of each gene, and κ−i
and κ+i parameterize the overdispersion in the tails. Finally, si is the variance
of the baseline distribution for gene i. Parmigiani et al. (2002) define (condi-
tionally) conjugate priors for µi, si and κ+i and κ−i . For the slide-specific effect
we impose an identifiability constraint aj ∼ N(0, τ 2), i.i.d., subject to

∑
aj = 0.

8.8.5 Multiplicity Correction: Controlling False Discovery Rate

High-throughput gene expression experiments often give rise to massive
multiple comparison problems. We discuss related issues in the context of
microarray group comparison experiments. Assume that for genes, i =
1, . . . , n, for large n, we wish to identify those that are differentially expressed
across two biologic conditions of interest. From a classical perspective, mul-
tiple comparisons require an adjustment of the error rate, or, equivalently,
an adjustment of the nominal significance level for each comparison. This is
achieved, for example, in the Bonferroni correction or by the Benjamini and
Hochberg (1995) correction mentioned in Section 8.8.1.

It can be argued that Bayesian posterior inference already accounts for
multiplicities, and no further adjustment is required (Scott and Berger, 2006).
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The argument is valid for the evaluation of posterior probabilities of differen-
tial expression. In a hierarchical model, the reported posterior probabilities
are correctly adjusted for the multiplicities. But reporting posterior probabil-
ities only solves half the problem. We still need to address the second step of
the inference problem, namely, the identification of differentially expressed
genes. Berry and Hochberg (1999) discuss this perspective.

This identification is most naturally discussed as a decision problem. The
formal statement of a decision problem requires a probability model p(θ , y)
for all unknown quantities, including parameters θ and data y, a set of pos-
sible actions, δ ∈ D, and a loss function L(δ, θ , y) that formalizes the relative
preferences for decision δ under hypothetical outcomes y and assumed para-
meter values θ . The probability model could be, for example, the hierarchical
gamma/gamma model described in Section 8.8.2. The action is a vector of
indicators, δ = (δ1, . . . , δn) with δi = 1 indicating that the gene is reported
as differentially expressed. We write δ(y) when we want to highlight the
nature of δ as a function of the data. Let ri ∈ {0, 1} denote an indicator for
the (unknown) truth. The ri are part of the parameter vector θ . Usually, the
probability model includes additional parameters besides r. It can be argued
(Robert, 2001) that a rational decision maker should select the rule δ(y) that
maximizes L in expectation. The relevant expectation is the probability model
on θ conditional on the observed data, leading to the optimal rule

δ∗(y) = arg min
δ

∫
L(δ, θ , y) p(θ | y)dθ .

Let vi = E(ri | y) denote the marginal posterior probability of gene i being
differentially expressed. The assumption of nonzero prior probabilities, 0 <
p(ri = 1) < 1, ensures nontrivial posterior probabilities. In Müller et al. (2004)
we show that for several reasonable choices of L(δ, θ , y) the optimal rule is of
the form δ∗i (y) = I(vi > t). In other words, the optimal decision is to report all
genes with marginal probability of differential expression beyond a certain
threshold t as differentially expressed. The value of the threshold depends on
the specific loss function. The optimal rule δ∗ is valid for several loss functions
defined in Müller et al. (2004). Essentially, all are variations of basic 0–1 loss
functions. Let

FD =
∑
δi (1− ri) and FN =

∑
(1− δi)ri

denote false discovery and negative counts, and let

FDR = FD/
∑
δi and FNR = FN/

∑
(1− δi)

denote false discovery and false negative rates. The definitions FD(R) and
FN(R) are summaries of parameters, r, and data, δ(y). Taking an expectation
with respect to y and conditioning on r, one would arrive at the usual defini-
tion of FDRs, as used, among many others, in Benjamini and Hochberg (1995),
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Efron and Tibshirani (2002), Storey (2002), and Storey et al. (2004). Instead
we use posterior expectations, defining FD = E(FD | y), and so forth. See,
Genovese and Wasserman (2002, 2004) for a discussion of posterior expec-
ted FDR. Using these posterior summaries we define the following losses:
LN(δ, z) = c FD+ FN, and LR(δ, z) = c FDR+ FNR. The loss function LN is a
natural extension of (0, 1, c) loss functions for traditional hypothesis testing
problems (Lindley, 1971). Alternatively, we consider bivariate loss functions
that explicitly acknowledge the two competing goals: L2R(δ, z) = FNR, sub-
ject to FDR < αR, and L2N(δ, z) = FN, subject to FD < αN . Under all four
loss functions, LN , LR, L2R, and L2N , the nature of the optimal rule is δ∗. See
Müller et al. (2004) for the definition of the thresholds.

One can argue that not all false negatives and all discoveries are equally
important. False negatives of genes that are massively differentially expressed
are more serious than only marginally differentially expressed genes. To form-
alize this notion we need to assume that the probability model includes
parameters that can be interpreted as extent of differential expression, or
strength of the signal. Assume that the model includes parameters mi,
i = 1, . . . , n, with mi > 0 if ri = 1 and mi = 0 if ri = 0. For example, in the
gamma/gamma hierarchical model of Section 8.8.2 a reasonable definition
would use mi = log(θi1/θi0). Assuming parameters mi that can be interpreted
as level of differential expression for gene i, we define

Lρ(ρ, δ, z) = −
∑
δi mi + k

∑
(1− δi)mi + c

∑
δi.

For c > 0, the optimal solution is easily found as δ∗i = I{m̄i ≥ c/(1+ k)}. For
more discussion and alternative loss functions see, for example, Müller et al.
(2007).

8.9 Summary

In this chapter, we have reviewed the basic framework of Bayesian statist-
ics and typical inference problems that arise in biomedical applications. In
summary, Bayesian inference can be carried out for any problem that is based
on a well-defined probability framework. In particular, Bayesian inference
requires a likelihood, that is, a sampling model of the observable data con-
ditional on assumed values of the parameters, and a prior, that is, a prior
judgment about the parameters that is formalized as a probability model. As
long as the likelihood and the prior are available for any set of assumed para-
meter values, one can in principle implement Bayesian inference. Evaluation
up to a constant is sufficient for MCMC posterior simulation with MH chains.

The main advantage of the Bayesian framework that inference is based on
a principled and coherent approach. In particular, even for complicated
setups with hierarchical models, multiple studies, mixed data types, delayed
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responses, complicated dependence and so forth, as long as the investigator
is willing to write down a probability model, one can carry out Bayesian
inference.

There are some important limitations of the Bayesian approach. We always
need a well-defined probability model. There are (almost) no genuinely non-
parametric Bayesian methods (a class of models known as “nonparametric
Bayesian models” are really random functions, that is, probability models
on infinite dimensional spaces). For example, the proportional hazards rate
model for event time data has no easy Bayesian equivalence. Even simple
approaches like kernel density estimation, or loess smoothing have no simple
Bayesian analogs. Another limitation of Bayesian inference that arises from
the need for well-defined probability models is the difficulty to define good
model validation schemes. Principled Bayesian model comparison is always
relative to an assumed alternative model. There is no easy Bayesian equi-
valence of a simple chi-square test of fit. Although there are several very
reasonable Bayesian model validation approaches, none is based on first
principles. Another great limitation of Bayesian inference is the sensitivity
to the prior probability model. This is usually not a problem when the goal
of the data analysis is prediction or parameter estimation. Results about pos-
terior asymptotics assure us that the impact of the prior choice will eventually
wash out. However, the same is not true for model comparison. Bayes factors
are notoriously sensitive to prior assumptions, and there is no easy way to
avoid this.

In summary, the increasing notion that the advantages outweigh the limit-
ations has led to an increasingly greater use of Bayesian methods in several
areas of application including biomedical applications. Increasingly more
complex inference problems and increasingly more expensive data collec-
tion in experiments or clinical studies require that we make the most of the
available data. For complex designs, Bayesian inference may often be the
most feasible way to proceed.
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9.1 Introduction

Sequential monitoring has become a hallmark of the well-conducted ran-
domized clinical trial. The statistician computes interim values of the test
statistic for the primary outcome, and a decision is made to continue the
trial or stop, based on these interim assessments of efficacy. There is a large
literature on group sequential monitoring of population-based inference pro-
cedures; see Jennison and Turnbull (2000) for a comprehensive overview of
the subject. There is no corresponding literature on sequential monitoring
using randomization-based inference, which is rooted historically and arises
naturally from the randomized nature of the clinical trial. Here we attempt to
rectify that, by presentingwhatwe know (so far) about sequentialmonitoring
of randomization tests. This work represents a sketch of the doctoral thesis of
Zhang (2004), and focuses not on the theory, but on how toperform sequential
monitoring of randomization tests in practice. A sequential monitoring plan
necessarily involves computing the joint asymptotic distribution of sequen-
tially computed statistics. The mathematical formulation of the procedure
therefore is complicated and involves multidimensional integration and test
statistics that are messy to compute. Although we try to minimize the math-
ematical content of this paper, it is necessary to present the formulas for what
needs to be computed and the conditions under which such formulas are
appropriate.
It is our contention (and perhaps a controversial one) that although ran-

domization has become an entrenched part of the biostatistician’s culture,
it is unfortunately often treated in a lackadaisical manner. In particular,
great arguments over the appropriateness of incorporating randomization
in the analysis have been subsumed by standard analyses using SAS. Here,
we take the approach that randomization tests provide a nonparametric,
assumption-free test of the treatment effect in a clinical trial, and indeed arise
naturally from the structure of the clinical trial. Thus, randomization-based
analyses should be conducted as a matter of course, either as a complement
to population-based analyses or as a stand-alone primary analysis.

9.1.1 Sequential Monitoring under Population Model

Let us first consider a two-sample case with sample sizes NA, NB for each
treatment. LetX1, . . . ,XNA be a set of independent and identically distributed
random variables assumed to be normally distributed with mean µx and
variance σ 2. Similarly, let Y1, . . . ,YNB be a set of independent and identically
distributed random variables assumed to be normally distributed with mean
µy and variance σ 2. The usual test statistic of the hypothesis H0 : µx = µy
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against the alternative hypothesis HA : µx > µy in a nonsequential design is

Z = X̄NA − ȲNB
σ
√
1/NA + 1/NB

.

In practice, the sample sizes may not be equal. Let us first assume that NA =
NB = N/2. In order to estimate the difference, δ = µx − µy, using δ̂ = X̄NA −
ȲNB , we have Fisher’s information I = (Var(δ̂))−1 = 1/σ 2(1/NA + 1/NB) =
N/4σ 2.
The concepts of information fraction and Brownian motion are applicable

in the two sample case. We canwrite the test statistic at the end of the study as

Z1 = X̄NA − ȲNB
σ
√
1/NA + 1/NB

.

If we monitor the data after NA1 and NB1 patients have responded, then the
interim test can be based on the test statistic

Zτ = X̄NA1 − ȲNB1
σ
√
1/NA1 + 1/NB1

,

and the Fisher’s information is 1/σ 2(1/NA1 + 1/NB1). Thus, the information
fraction will be defined as

τ = (1/NA1 + 1/NB1)−1

(1/NA + 1/NB)−1
.

Note that τ may be different from the fraction of patients available, however,
in practice, the difference may be negligible. Define Bτ = Zτ√τ , for τ ∈ [0, 1],
which are known as the B-values (Lan and Wittes, 1988). The stochastic pro-
cess Bτ forms a discretized Brownian motion, which provides the theoretical
basis for sequential monitoring under population model set up.
Nowweconsider thedesignof a clinical trialwith aplan tomonitor thedata

K > 1 times. The critical problem is to decide the boundary values such that

PH0(reject H0) = PH0(Zτ1 ≥ b1, or Zτ2 ≥ b2, or · · ·ZτK ≥ bK) = α,

where τ1, . . . , τK are the information fractions at each inspection time and
α is the prespecific type I error rate. Suppose that the interim inspec-
tions happen with equal increments in information such that τ1 = 1/K,
τ2 = 2/K, . . . , τK = 1.

• Pocock (1977) employed bi = c, for 1 ≤ i ≤ K, such that

PH0(Zτi ≥ c for some i = 1, . . . ,K) = α.
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A constant boundary for the Z-values at each interim inspection is
used. As the number of inspection times K increases, the boundary
c increases also.

• O’Brien and Fleming (1979) used a constant boundary for the
B-values instead of Z-values.

PH0(Bτi ≥ c for some i = 1, . . .K) = α.
In terms of Z-values,

PH0

(
Zτi ≥ c

√
K
i
for some i = 1, . . .K

)
= α.

O’Brien-Flemingboundaries aremore strict at early inspections, while Pocock
boundaries are constant at each inspection.
Lan and DeMets (1983) introduced the concept of the spending function.

A spending function α(τ), is defined as a nondecreasing function, for τ ∈
[0, 1], with α(0) = 0 and α(1) = α. The function α(τ) specifies the type I
error rate allowed to be spent at the time with information fraction τ . The
spending function approach provides flexibility in sequential monitoring,
and the inspections do not need to be prespecified. Removing the restriction
of fixed and equally spaced inspections, Lan and DeMets gave the equivalent
spending function for both Pocock and O’Brien-Fleming approaches. The
O’Brien-Fleming spending function can be approximated by

α(τ) = 2(1−�(zα/2/
√
τ)),

where � is the cumulative distribution function of standard normal random
variable; the Pocock spending function can be approximated by

α(τ) = α log(1+ (e − 1)τ ).

To carry out sequential monitoring using the spending function approach,
one decomposes the rejection regions into disjoint regions. For K inspections,

P(Zτ1 ≥ b1) = α(τ1),
P(Zτ1 < b1,Zτ2 ≥ b2) = α(τ2)− α(τ1).
...

P(Zτ1 < b1, . . . ,ZτK−1 < bK−1,ZτK ≥ bK) = α(τK)− α(τK−1).
We can easily calculate b1 if we specify the value α(τ1). When solving for
b2, we only need the joint distribution of (Zτ1 ,Zτ2). Note that cov(Zτ1 ,Zτ2) =
(τ1/τ2)

1/2. Then b2 can be calculated by numerical integration. We then solve
for b3 using the values of b1 and b2. The process continues until bK has been
solved.
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9.1.2 Randomization Tests

Randomization tests have been thoroughly debated in the literature (e.g.,
Basu, 1980). As discussed in Rosenberger and Lachin (2002), randomization
tests are a useful alternative to, or a complement to, traditional population
model-based methods.
Under a population model, patients are assumed to be randomly sampled

from a population. Suppose we have two treatments, A and B, and we are
testing whether the two treatments are different. It is commonly assumed
that the responses of patients are randomly sampled from two populations of
responses and hence are internally and identically distributed (i.i.d.) obser-
vations from a given distribution. Standard population-based test statistics
are then used, most available in SAS.
However, clinical trials do not follow a random sampling model. There are

many factors that will make the selection nonrandom. Even if subjects are
recruited at random, they can only be represented by some undefined patient
population, an invoked population. Homogeneous population models are still
questionable even under the invoked population. Owing to the lack of a
homogeneouspopulationassumption, thepermutation test or randomization
test is a useful alternative. Under the null hypothesis, we assume that treat-
mentA and treatmentBhave nodifferencewith respect to the responses of the
subjects. The responses observed are assumed to befixedunder the null hypo-
thesis and the sequence of treatment assignments is random. This differs from
a population model, which assumes the equality of parameters of interest.
A broad family of randomization tests is that of the linear rank tests, which

are defined by

Sn =
n∑
i=1
(ain − ān)Ti,

where ain is a score function based on response of the jth subject, ān is the
mean score, Ti, i = 1, . . . ,n are 1 if treatmentA is assigned and−1 if treatment
B is assigned. The treatment assignments are the only random element, and
their distribution is computed on the basis of the particular randomization
procedureused. Under the randomizationnull hypothesis, the set of observed
responses is assumed to be a set of deterministic values that are unaffected by
treatment. That is, under the null, each subject’s observed responses is what
would have been observed regardless of whether treatment A or B had been
assigned.
Before we discuss more about linear rank tests, we will introduce dif-

ferent randomization procedures most often used in randomized clinical
trials. These are given in detail in Chapter 3 of Rosenberger and Lachin
(2002). The simplest form of a randomization procedure is the toss of a
fair coin, called complete randomization. This is rarely used in practice, but
induces a sequence of i.i.d. Bernoulli trials that is easy to analyze. Restricted
randomization is employed when we desire to maintain balance between
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treatment assignments. There are three types of restricted randomization
procedures that are used in practice: the permuted block design, Wei’s urn
design (1977, 1978), and Efron’s biased coin design (1971). Of these, Efron’s
biased coin design does not yield an asymptotically normal randomization
test (Smythe andWei, 1983), so current methodology for sequential monitor-
ing, involving monitoring a Gaussian process, does not apply. Therefore, we
will not consider Efron’s biased coin design in this work.
The permuted block design forces balance between two treatments.

Assume there are M blocks and n = mM subjects, where M and m are pos-
itive integers. Within a block, one forces balance using one of two methods:
the random allocation rule, where one draws the m treatment assignments
sequentially without replacement from an urn with exactly m/2 treatment
A balls and m/2 treatment B balls, or the truncated binomial design, which
uses complete randomization until one treatment has m/2 subjects and then
assigns all remaining subjects to the opposite treatment. We will assume the
random allocation rule is used within blocks. Note that imbalances can occur
only when the final block in the randomization is unfilled.
Wei (1977, 1978) developed an urn model, which is denoted by UD(α,β).

One can view it as following: an urn contains α A balls and α B balls. A ball is
drawn and replaced and the patient is assigned the corresponding treatment.
A ball of type i = A,B generates the addition of β balls of the opposite type.
Mathematically, the urn design can be defined by

P(Ti = 1|T1, . . . ,Ti−1) = α + βNB(i − 1)
2α + β(i − 1)

, i ≥ 2,

and P(T1 = 1) = 1/2, where NB(i) is the number of assignments to treatment
B at the ith assignment. Note that the UD(α, 0) is complete randomization.
Wei (1978) proposed a general urn design, given by

P(Ti = 1|T1, . . . ,Ti−1) = p
(
Di−1
i − 1

)
,

where Di = NA(i) − NB(i), p is a nonincreasing function, p(x) + p(−x) = 1
and p(x) = 1/2+ p′(0)x+ B(x)x2 with sup|x|≤1 |B(x)| <∞. For the symmetry
of this design, P(T1 = 1) = 1/2. Smith’s class of design (Smith, 1984) uses

p(x) = (1− x)r
(1+ x)r + (1− x)r .

It turns out that r = −2p′(0), and when r = 0, we have complete randomiz-
ation, when r = 1, we have Wei’s urn design with α = 0, and when r = 2,
we have Atkinson’s (1982) design. This dynamic design offers a compromise
between exact balance and complete randomization.
When important covariates are known to be related with the primary out-

come, stratification is sometimes employed. For example, in multicenter
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clinical trials, randomization is often stratified by clinical center. The com-
mon techniques for stratified randomization is the stratified block design, which
uses apermutedblockdesignwithin each stratum, and the stratifiedurndesign,
which uses Wei’s urn design, or its generalization, in each stratum.
The randomization test p-value is determined by permuting all possible

treatment assignment sequences and recalculating the test statistic, alongwith
its associated probability depending on the particular randomization proced-
ure. The p-value then is theprobability of obtaining a result as ormore extreme
than theobserved test statistic value. Sinceweareperforming sequentialmon-
itoring based on asymptotic Gaussian processes, we compute the randomiza-
tionp-valuebasedon thenormaldistribution. Thep-value canbe evaluatedon
the basis of different reference sets. An unconditional reference set is the set of all
possible permutations; conditional reference set includes only those sequences
with the same number of allocations on each treatment as observed. On the
basis of the different reference sets, we have two types of randomization tests.
One is the unconditional test and the other is the conditional test.

9.1.3 Outline

In Section 9.2, we will introduce commonly used score functions and discuss
their asymptotic properties. In Section 9.3, asymptotic properties of the lin-
ear rank test will be discussed. As we proceed, the theoretical basis in this
paper is the asymptotic distribution of the linear rank test. Also, wewill men-
tion the asymptotic results of the joint distribution in the sequential setup. In
Section 9.4, we define a randomization-based concept of information fraction.
Also, the calculation for different randomizationprocedureswill be provided.
In Section 9.5, general theory for K-inspection unconditional tests will be dis-
cussed. In Section 9.6, calculation details will be presented. In Section 9.7,
the commonly used three designs will be presented. In Section 9.8, condi-
tional tests with only one interim inspection will be considered. Finally, in
Section 9.9, we will have a summary.

9.2 Score Functions

The beauty of the linear rank formulation for the randomization test is that
so many of our standard population-based tests fall into that framework by
choosing an appropriate score function. Smythe and Wei (1983) were prob-
ably the first to investigate the asymptotic distribution of such tests. The key
condition for the asymptotic normality of the randomization test for the ran-
domization procedures we have described is the Lindeberg condition, which is
defined as

lim
n→∞

max1≤i≤n(ain − ān)2∑n
i=1(ain − ān)2

= 0.
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It essentially says that no individual absolute score can grow too large relative
to the sum of all the absolute scores. We now describe various score functions
and discuss when the Lindeberg condition is satisfied.
For a clinical trial with binary response data, one can assign binary scores

ain = 1 or 0. Usually, we center ain by subtracting the proportion of 1’s. As long
as the number of 1’s have the samemagnitude as the total number responses,
the Lindeberg condition holds for the binary scores.
For a clinical trial with continuous outcomes, The simple rank scores are

given by

ain = rin
n+ 1

− 1
2
,

where rin are the integer ranks. It is simple to show that the Lindeberg con-
dition always holds for the simple rank score functions. The linear rank
test using the simple rank scores is the randomization-based analog of the
Wilcoxon rank-sum test. As an alternative for continuous data, the van der
Waerden scores are defined as

ain = �−1
(
rin
n+ 1

)
,

where � is the standard normal distribution function. The linear rank test
using van der Waerden scores is asymptotically equivalent to the normal
scores test (Lehmann, 1986). The Lindeberg condition also holds for the van
der Waerden scores.
For survival data, in the usual notation of survival analysis, τ1, . . . , τn are

the event times of patients 1, . . . ,n. We have n distinct ordered survival times
τ(1), . . . , τ(n) corresponding to the scores called the logrank or Savage scores,
given by

ain = E(X(i))− 1,

where X(1), . . . ,X(n) are order statistics from unit exponential random vari-
ables (Prentice, 1978). They yield a randomization-based equivalent of the
logrank test (when there are no ties and no censoring). It is easily verified that
the Lindeberg condition also holds for logrank score function (Zhang and
Rosenberger, 2005).
With censored data, we observe a pair of data (Yi, δi), where δi = 1 for the

patient with an event and δi = 0 for a censored patient. Let τ(1) < τ(2) < · · · <
τ(M) denote theM ordered event times and Rm be the number of patients still
at risk before τ(m). The censored logrank scores are defined as

ain = δi −
i∑

m=1

δm

Rm
.
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The score function ain is centered and Lindeberg condition does not always
hold as for the logrank score function in the case of censoring. As shown in
Zhang and Rosenberger (2005), when the limit for the ratio of the number of
events to the total number of subject is larger than 0, the Lindeberg condition
holds for the censored logrank scores. In this case, the randomization test
using the censored logrank scores is a randomization-based analog of the
usual logrank test with censoring. However, there is an implicit assumption
that censoring is deterministic and unrelated to treatment assignment.

9.3 Asymptotic Results for the Unconditional Randomization
Test

9.3.1 Asymptotic Results in the Nonsequential Case

We have introduced the Lindeberg condition in Section 9.2, andwe have seen
that most commonly used score functions satisfy the Lindeberg condition. As
inRosenberger andLachin (2002), if the scores satisfy theLindeberg condition,
under most of the randomization procedures, such as complete randomiza-
tion, the random allocation rule, and the general urn design, the normalized
statisticunder thenullhypothesiswill converge toa standardnormaldistribu-
tion. Formost commonly used score functions, such as the simple rank scores,
van derWaerden scores, and logrank scores, wewill have the asymptotic nor-
mality of the test statistic. For binary score and censored logrank scores, under
the mild conditions mentioned in Section 9.2, asymptotic normality will hold
for most of the designs. The normalized statistic is defined as

Wn = Sn√
a′n�an

,

where an is the vectorized score function and � is the variance–covariance
matrix of the randomization sequence. In general, while � will be unknown
for some randomization procedures, for complete randomization, � = I and

Wn = Sn√∑n
i=1 a2in

;

for the random allocation rule, as � = n/(n− 1)I − 1/(n− 1)J, where I is an
identity n× nmatrix and J is n× nwith all elements of 1’s, thus

Wn = Sn√
n/(n− 1)

∑n
i=1 a2in

≈ Sn√∑n
i=1 a2in

.

For the general urn design, � does not have a closed form. How-
ever, an asymptotically equivalent normalization (Wei et al., 1986) is
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given by

Wn = Sn√∑n
i=1 b2in

,

where bin is a modified score function, defined as

bin = ain − r
n∑

l=i+1

 aln
l− 1

l−2∏
j=i
(1− r/j)

 , i = 1, . . . ,n,

where r = −2p′(0) > 0. Note that when r = 0, we have complete
randomization, and we have an identical formula forWn.

9.3.2 Asymptotic Results for K Inspections

Wenowmove to sequentialmonitoringwithK inspections. LetN1,N2, . . . ,NK
denote the total number of subjects observed at each inspection, S1,S2, . . . ,SK
denote the linear rank test statistic and W1,W2, . . . ,WK denote the stand-
ardized linear rank test statistic. Asymptotic joint normality is needed to
employ the Lan-DeMets spending function approach. Suppose we have spe-
cific α1,α2, . . . ,αK , such that α1+α2+· · ·+αK = α, where α is the prespecified
type I error rate. Then

P(W1 ≥ d1) = α1,
P(W1 < d1,W2 ≥ d2) = α2 − α1,
...

P(W1 < d1,W2 < d2, . . . ,WK−1 < dK−1,WK ≥ dK) = αK − αK−1,

where d1, d2, . . . , dK are the sequential boundaries that we need to compute.
If we have the asymptotic distribution ofW1, we can determine the value of
d1 using α1; if we have the asymptotic joint distribution of (W1,W2), by the
value of d1 we obtained in the first step, we can determine d2. Continuing this
process, we will have the values of dk , 1 ≤ k ≤ K if we have the asymptotic
joint distribution of (W1,W2, . . . ,WK).
Owing to previous unpublished work of Wei and Smythe (1983) on

asymptotic results for the general urn design, we can find the joint asymp-
totic distribution of the K sequentially computed test statistics. Suppose
that at kth inspection, there are Nk subjects with corresponding scores of
ajk , j = 1, . . . ,Nk . Let λk = (b1k , b2k , . . . , bNkk , 0, . . . , 0), 1 ≤ k ≤ K, where
λk is a NK × 1 vector. Also, let � = λ′kλl, a K × K matrix, the asymptotic

variance–covariance matrix of (S1,S2, . . . ,SK); let R = λ′kλl/
√
λ′kλk

√
λ′lλl be
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the asymptotic correlation matrix. If some conditions on the score functions
are satisfied, �−1/2(S1, . . . ,SK), or R−1/2(W1,W2, . . . ,WK), converges in dis-
tribution to a multivariate normal random vector with mean 0 and identity
variance–covariance matrix.
At the same time, even though the results are developed for the general urn

design, they also apply to the random allocation rule; the only difference is
λk = (a1k , a2k , . . . , aNkk , 0, . . . , 0), 1 ≤ k ≤ K. For the simple case of the complete
randomization, since aik = bik for 1 ≤ i ≤ Nk , λk = (a1k , a2k , . . . , aNkk , 0, . . . , 0).
For the score functions we discussed, the simple rank scores and the van

der Waerden scores satisfy the conditions, which imply the joint asymptotic
normality of the test statisticswith these score functions under the procedures
wementioned, such as the general urn design and the randomallocation rule.
For binary scores, as Nk −Nk−1 →∞, k = 1, . . . ,K, as long as the number of
1’s in between each inspection goes to infinity and has the same magnitude
of Nk − Nk−1, the joint asymptotic normality holds for the binary scores.
For the logrank test, as long as the number of events occurring between the
(k− 1)th and kth inspection, has the same order as Nk −Nk−1, the conditions
are satisfied. Multivariate normality cannot be rigorously established for the
case of boundedNk −Nk−1 with our method, but ifNk −Nk−1 is of moderate
size, the multivariate normal approximation should be reasonable.
We conclude that inmost cases of practical interest, there is noproblemwith

the joint asymptotic normality of sequentially computed randomization tests.

EXAMPLE 1
We now show an example of how to use these results to conduct the monitor-
ing plan. Suppose we use complete randomization with two inspections, one
interim inspection and one final inspection. Assume we have total ofN2 sub-
jects in the trial and we have observed N1 subjects in the interim inspection.
Both N1 and N2 are large numbers. Suppose we specify α1 = 0.025 and α =
0.05 for the interim inspection and final inspection. For complete randomiza-

tion,W1 =∑N1
i=1 ai1Ti/

√∑N1
i=1 a

2
i1 andW2 =∑N2

i=1 ai2Ti/
√∑N2

i=1 a
2
i2 are the test

statistics. Assume we are using van der Waerden scores for the test statistic.

Step 1: At the interim inspection,

P(W1 ≥ d1) = α1 = 0.025.

As the asymptotic distribution of W1 is known as discussed in
previous sections, we have

W1 = S1√∑N1
i=1 a

2
i1

∼ N(0, 1).

Also, for the van der Waerden score function,
∑N1
i=1 a

2
i1 ≈ N1. Thus,

we can calculate the boundary d1 = 1.96. At the same time, based on
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the observed score function and randomization sequence, we can
compute the observed W1. If the observed W1 ≥ d1, then stop the
trial; otherwise, continue the trial untilwehave accruedN2 patients.

Step 2: At the final inspection,

P(W1 < d1,W2 ≥ d2) = α − α1 = 0.025.

From the discussion of the joint asymptotic results of (W1,W2), for
complete randomization, we have λ1 = (a11, a21, . . . , aN11,
0, . . . , 0)N2×1 and λ2 = (a12, a22, . . . , aN22); thus

� =
( ∑N1

i=1 a
2
i1

∑N1
i=1 ai1ai2∑N1

i=1 ai1ai2
∑N2
i=1 a

2
i2

)
.

Let

ρ =
∑N1
i=1 ai1ai2√∑N1

i=1 a
2
i1
∑N2
i=1 a

2
i2

,

thus

R =
(
1 ρ

ρ 1

)
.

As R−1/2(W1,W2)
′ ∼ N(0, I), we obtain that

P(W1 < 1.96,W2 ≥ d2)

= 1

2π
√
1− ρ2

∫ ∞
d2

∫ 1.96

−∞
exp

(
− 1
2(1− ρ2) (w1 − ρw2)

2
)

× exp

(
−w

2
2
2

)
dw1dw2

= 1
2π

∫
d2
�

(
1.96− ρw2√

1− ρ2

)
exp

(
−w

2
2
2

)
dw2.

The above term is a decreasing function of d2 only. So setting the
above term equal to 0.025 will yield a unique solution. We can use
numerical integration to find the solution. We then compare the
observedW2 andd2 anddrawconclusions.Note inpractice, to calcu-
late d2, we do not have to do the numerical integration exactly. Both
SAS IMLand theRpackagemvtnorm, provide themultivariate nor-
mal distribution function, whichmakes the calculationmuch easier.
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9.4 Information Fraction

In sequential monitoring, the amount of statistical information accumulated
is a measure of how far a trial has progressed. Under a population model,
the information obtained by Nk would be defined according to the Fisher’s
information for the estimator of the parameter of interest. This is asymptot-
ically equivalent to the inverse of the asymptotic variance of the estimator.
For tests expressed as a partial sum rather than amean, the expression for the
information is proportional to the variance of the sum, with both increasing in
sample size. However, Fisher’s information can be formally defined only in a
populationmodel context. We need to develop an analog of Fisher’s informa-
tion. Since the linear rank test involves the sum of the scores, the information
fraction can be roughly understood as the proportion of the variance of the
currently accumulated samples to the variance of all samples planned. The
information fraction with Nk subjects observed can therefore given by

tk =
a′k�ak
a′K�aK

,

where � is variance–covariance matrix of the treatment assignments, and ak
is the vector of score functions at the kth inspection (Rosenberger and Lachin,
2002).
In general, � will not be known for some randomization procedures. For

the general urn design, the exact form of the variance–covariance form is
unknown, and we will use the asymptotic variance as an estimate in the
information fraction. Usually, we do not know the total score vector aK at
the interim time points. Thus, it is necessary to estimate the total informa-
tion or employ a surrogate measure of the total information to calculate the
information fraction. We assume that all score functions are centered and
scaled.
We will now calculate the information fraction under different randomiz-

ation procedures such as complete randomization, and general urn design.
For more complicated designs such as the permuted block design, stratified
block design, and stratified urn design, detailed information will be given in
Section 9.6.

9.4.1 Complete Randomization

For complete randomization, using simple rank scores, van der Waerden
scores, and logrank scoreswithout censoring, tk = Nk/NK . Since the treatment
variance–covariance matrix is the identity matrix, the order of the rank of the
responses does not affect the information accumulated. So we can obtain an
exact result for the total information even though we have not observed the
other NK −Nk observations.
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For the censored logrank scores, suppose the number of events between
the (k − 1)th and kth inspections have the same order of Nk − Nk−1, then
information fraction is defined as

tk =
∑Nk
i=1 a

2
ik∑NK

i=1 a
2
iK

≈ Dk
DK

,

whereDk , 1 ≤ k ≤ K are the number of events by the kth inspection. Note that
in Lan and Lachin (1990), they also discuss the information fraction concept
of the logrank test with censoringwhich is computed as the ratio of the expec-
ted number of events. Since the expected number of events is not observable,
in practice the information fraction is estimated by ratio of the number of
events, which is the same as the result we obtained above. Their approach
of estimating the information fraction can be applied here. In a maximum
information trial design, if the total number of events is known, we can calcu-
late the information fraction at each inspection. In a maximum duration trial,
if the survival times of patients are exponentially distributed, the information
fraction can be estimated as the fraction of total patient exposure. See details
in Lan and Lachin (1990).
Since � is asymptotically equivalent for the random allocation rule and

complete randomization, the information fraction is the same for complete
randomization and the random allocation rule.

9.4.2 General Urn Design

For the general urn design, after we have observed Nk responses, we have
the score function aik . To calculate the information, we still need the variance–
covariance matrix of treatment allocation and the final score function aiK .
However, we know neither of them at the kth inspection. As we have shown
that the asymptotic normality of (Sk ,SK), thus we can use the asymptotic
variances to estimate the information. The information fraction at the kth
inspection is given as

tk =
b′kbk

b′KbK
=
∑Nk
i=1 b

2
ik∑NK

i=1 b
2
iK

,

whereb′k is vector version of themodified score function from aik . To calculate
the information fraction, we need to estimate the total informationVar(SK) =∑NK
i=1 b

2
iK . It can be shown that, for the scores satisfying Lindeberg condition,

it is therefore conservative to estimate the information fraction by replacing
the total information

∑NK
i=1 b

2
iK with

∑NK
i=1 a

2
iK . Thus, at the kth interim time

point, the estimated information fraction can be written as

tk =
∑Nk
i=1 b

2
ik∑NK

i=1 a
2
iK

.
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For most of the rank-related score functions, we can calculate
∑NK
i=1 a

2
iK . For

example, for simple rank scores,
∑NK
i=1 a

2
iK ≈ NK/12; for van der Waerden

scores,
∑NK
i=1 a

2
iK ≈ NK . For binary scores, we will estimate the information

fraction as

∑Nk
i=1 b

2
ik∑NK

i=1 a
2
iK

,

and we again assume the same proportion of 1’s and 0’s will be observed at
the end of the trial as at the midpoint.

9.5 K-Inspection Unconditional Tests

In this section, we will focus on sequential monitoring using the uncondi-
tional test. All the asymptotic distribution are considered using the reference
set with all possible permutations. The spending function approach will
be applied to control the type I error rate spent at each inspection. Let
Sk , 1 ≤ k ≤ K, be the linear rank test statistic at the kth inspection and
Wk , 1 ≤ k ≤ K, will be the standardized test statistic at the kth inspection. The
same asymptotic distribution properties for (W1,W2, . . . ,WK)will hold as in
Section 9.3.
Supposewe take the spending functionapproachofLanandDeMets (1983).

Let tk , 1 ≤ k ≤ K be the information fraction at the kth inspection. To perform
sequential monitoring, we have

P(W1 ≥ d1) = α(t1),
P(W1 < d1,W2 ≥ d2) = α(t2)− α(t1),
...

P(W1 < d1,W2 < d2, . . . ,WK−1 < dK−1,WK ≥ dK) = α(tK)− α(tK−1),

where d1, d2, . . . , dK are the sequential boundaries that need to be determined.
Note that this is different from the approach we described in Section 9.3.
Instead of specifying α1, . . . ,αK at each inspection before conducting the trial,
we use the spending function approach, where the spending function is an
increasing function of the information fraction and the information fraction
is a measure of the proportion of total information accrued.
To conduct sequential monitoring using the spending function approach,

at each inspection we need to estimate the information fraction according to
the score function used. Using the chosen spending function, we can calculate
the type I error rate we spend at each inspection.
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TABLE 9.1

Boundary Values for Simple Rank Example

Spending Function α(1/2) α(1)−α(1/2) d1 d2

O’Brien-Fleming 0.0056 0.0444 2.538 1.679
Pocock 0.0310 0.0190 1.866 1.965

EXAMPLE 2
For a simple illustration, suppose we are conducting a trial with one interim
inspection and one final inspection, where we have observed N1 and N2
patients at each inspection and N2 = 2N1. For the simple rank scores, the
information fraction will be t1 = N1/N2 = 1/2, and we obtain

P(W1 ≥ d1) = α
(
1
2

)
,

P(W1 < d1,W2 ≥ d2) = α(1)− α
(
1
2

)
.

Assuming α(1) = 0.05, for different spending functions, such as O’Brien-
Fleming and Pocock, we can calculate the type I error rate spent at each
inspection as listed in the following table. By the asymptotic distribution of
W1 and α(1/2), d1 can be easily calculated. At the interim inspection, we
obtain ai1, i = 1, . . . ,N1 according to the responses of N1 subjects. IfW1 ≥ d1,
we will reject the null hypothesis and stop the trial. Otherwise, we will con-
tinue the trial and observe all N2 subjects. At the final inspection, we obtain
the score function ai2, i = 1, . . .N2 according to the responses from all the sub-
jects. At the same time, the correlation coefficient ρ can be calculated. By the
asymptotic distribution of (W1,W2), d2 can be determined by the numerical
integration. Assume thatwe have ρ = 0.5. In Table 9.1, we have calculated the
corresponding boundary values d1 and d2 for different spending functions.
Here, the boundary value d1 can be easily obtained and will change

according to the information fraction and different spending functions. The
boundary value d2 will control not only the type I error rate spent at final
inspection, but also the boundary value d1 and correlation coefficient ρ
betweenW1 andW2.

9.6 Discussion of Calculations

In this section, wewill discuss calculation of the boundary values. Aswehave
mentioned before, both the R package mvtnorm and SAS probmvn provide a
way to calculate multivariate normal distribution probabilities. Details can
be seen in Genz (1992, 1993).
For the procedures described in Section 9.5, to perform sequential mon-

itoring, we need to calculate the boundary values d1, d2, . . . , dK , assuming
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α(t1), . . . ,α(tK) are known at each inspection. In this section, our discussion
will focus on the appropriate score function and randomization sequence
such that joint asymptotic normality holds forW1, . . . ,Wl, where 1 ≤ l ≤ K.
At each inspection, we can calculate the information fraction ti and α(ti) by

using the appropriate spending function. Thus, α(t1),α(t2)−α(t1), . . . ,α(tK)−
α(tK−1) are known at each inspection time. Thus, from

P(W1 ≥ d1) = α(t1),

we can decide d1 = �−1(1 − α(t1)), the (1 − α(t1))th percentile of normal
distribution. From

P(W1 < d1,W2 ≥ d2) = α(t2)− α(t1),

the direct formula for d2 is not available, and we need to use iteration to
obtain the boundary value d2. Similarly, we can determine the boundary
values d3, d4, . . . , dK . The procedure for calculation of d2 is as follows.
As we know that

P(W1 < d1,W2 ≥ d2) ≤ P(W2 ≥ d2),

the true value for d2 will be less than �−1(1− (α2 − α1)).

• Choose the initial upper value ud = �−1(1− (α2 − α1)); let d2 = ud.
Calculate the diff = α2 − α1 − P(W1 < �−1(1 − α1),W2 ≥ d2). Let
d2 = d2 − δ1 and usually δ1 = 0.01. Repeat the above process until
diff < 0. Let ud be the last d2 such that the diff > 0 and ld be the first
d2 such that diff < 0.

• Let d2 be the average of ud and ld. Calculate diff , and if diff > 0, then
ud = d2, else if diff < 0, then ld = d2. Continue this process until the
absolute value of diff < 0.0001, the prespecified accuracy.

Also, we consider the two-sided test case. From

P(|W1| ≥ d1) = α(t1),

we can determine d1 = �−1(1−α(t1)/2), the (1−α(t1)/2) percentile of normal
distribution; from

P(|W1| < d1, |W2| ≥ d2) = α(t2)− α(t1),

which is equivalent to

P(|W1| < d1,W2 ≥ d2) = (α(t2)− α(t1))/2.
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The direct formula for d2 is not available, and a similar iteration method will
give us the boundary value d2. Continuing this way, we can determine the
boundary values d3, d4, . . . , dK .
Our program in R simplifies calculation when we have the information

fractions and the correlationmatrix ofWis. Also, we have a SASmacroLRT to
perform all the calculations, and the input from the user are the specifications
for the trial, such as the total number of inspections, the score function, the
random sequence, spending function, and the response data from the trial.
We will explain their use in detail in the following subsections.

9.6.1 R Calculations

Let us use Example 2 in the last section, as we have the correlation matrix of
W1 andW2 and the information fraction at the interim inspection t1 = 0.5. If
we choose the O’Brien-Fleming spending function, we will do the following:

>t<-c(0.5,1)
>corr<-matrix(c(1,0.5,0.5,1),2,2)
>boundary(obrien(t),corr)
$d
[1] 2.537988 1.678991

The boundary function has two inputs, one is the type I error rate that could
be spent at each inspection, and the other is the correlation matrix of Wi’s.
In this example, the function obrien(t) calculates the α1 and α2 − α1 from the
information fraction sequence t. Also, user could choose to use the Pocock
spending function as

>boundary(pocock(t),corr)
$d
[1] 1.866214 1.964978

Kim and DeMets’s (1987) spending functions are also available to use. For
details, user can refer to the program in Appendix A.

9.6.2 SAS Calculations

The SASmacroLRT provides awhole process calculationwith only necessary
inputs from the user. For example,

%LRT( k= 3,
nk= %str(20//40//60),

datain1= datadir.seq,
datain2= datadir.score,

rand=CR,
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score=srank,
col1=response,
col2=,

r=,
sp=obrien,

sided=one,
alpha=0.05,
debug=n);

here k = 3 means that the total number of inspections will be three. Also,
the first inspection will be performed when 20 patient responses have been
observed; the second inspection will be performed when 40 responses have
been observed; the last inspection will be performed when total 60 responses
have been observed. The parameter datain1 will provide the randomization
treatment sequence with column name TRT, and TRT = −1 when treatment
A is assigned and TRT = 1 when treatment B is assigned. The parameter
datain2 will provide the patient’s real response data and the parameter col1
tells the program the column name for patient response. The parameter rand
will provide the informationof the randomization sequences, and thepossible
choices will be CR, complete randomization, RAR, the random allocation
rule, andGUD, the generalized urn design. The parameter scorewill provide
the score function used, and the possible choiceswill be SRANK, simple rank
scores, VWDEN, van der Waerden scores, and LOGRANK, logrank scores.
The parameter col2 needs to be specified onlywhen logrank score is chosen. It
specifies the column name of the censor variable in datain2. The parameter r
needs tobe specifiedwhen thegeneralizedurndesign isusedand r = −2p′(0).
The parameter sp specifies the spending function and the possible choices are
OBRIEN, POCOCK, KIM1(kim spending function with θ = 1), KIM2 (kim
spending function with θ = 2). The parameter sided specifies either a one-
sided or two-sided test and the possible choices are ONE, TWO. The type I
error rate in the trial is α and the default value is 0.05. If debug = y, it will keep
some calculation files and the user has a way to track the result. If debug = n,
only necessary output will be shown.
A good practice is to have a startup.sas file and generate the program dir-

ectory and data directory. The startup.sas file specifies the path that stores the
programs and the path that stores your data files. A sample startup.sas is as
follows:

%let path=%str(C:\XXXXX);
%let pgmdir=&path\program;
%let datadir=&path\data;
libname datadir "&datadir"

In the program directory, one can store the score.sas, sp.sas, probmvn.sas,
and lrt1.sas as in Appendix B. In the data directory, one can store the random-
ization sequence data and the analysis data that can be used to generate the
score function.
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In the following, we will show a sample result from randomly generated
data that is attached inAppendix C. The above example SAS call will be used.

The SAS System

COVAR

1 0.6779251 0.5633854
0.6779251 1 0.8435999
0.5633854 0.8435999 1

D

3.3211931 2.1625538 1.6808799

The SAS output provides the iteration process. It also provides the cor-
relation matrix for the test statistics and the boundary values d1, d2, d3. In
this mock-up example, d1 = 3.3212, d2 = 2.1626 and d3 = 1.6809. At the same
time, it will output a SAS dataset called interim.sas7bdat in the data directory,
which is shown as follows:

s v w t diffst
0.8571428571 1.5079365079 0.6980100609 0.3118105999 0.0004481675
2.3902439024 3.1704342653 1.3424027786 0.6556428276 0.0150487912

1.3606557377 4.8352593389 0.6187829964 1 0.0345030413

where s records the linear rank statistics S1,S2,S3; v records the variances for
S1,S2,S3; w records the standardized test statisticsW1,W2,W3; t is the estim-
ated information fractions at each inspection; and diffst records the type I error
rate that could be spent at each inspection by the given spending function.

9.7 Unconditional Test for Three Common Designs

There are three commonly used randomization procedures: the permuted
block design, stratified block design, and stratified urn design. In this section,
we consider sequential monitoring of unconditional randomization tests for
these procedures. The full methodology and theoretical developments are
given in Zhang, Rosenberger, and Smythe (2007).
Since we are now considering randomization sequences and scores within

blocks within strata, the notation will become necessarily more complex. We
will adopt the following notation for these special designs. In the nonsequen-
tial setting, for the complete randomizationprocedure, ain is the score function
for the ith patient relative to the totalnpatients. Formore complicateddesigns
or the sequential setting, the index n will be omitted for brevity; thus when
we talk about the permuted block design, ai(j) is the score function for the ith
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patient in the jth block relative to patients in block j. For the stratified block
design, ai(jl) is the score function for the ith patient in the jth block of stratum
l relative to all patients in the jth block of stratum l. For the stratified urn
design, ai(l) is the score function for the ith patient in stratum l relative to all
patients in stratum l. In the sequential setting, for the simple randomization
procedure, a(k)i , 1 ≤ k ≤ K, is the score function for patient i at the kth inspec-
tion. For both the permuted block design and the stratified block design, the
notation will not change since the score function is the rank-related function
relative to one block and will not change with different inspections. For the
stratified urn design, a(k)i(l) is the score function for the ith patient in stratum l
at the kth inspection.

9.7.1 Properties of Randomization Tests in the Nonsequential Setting

Before we discuss the linear rank statistics under different randomization
procedures in a sequential monitoring setting, let us see how these tests
are carried out without interim inspections. We follow the development of
Rosenberger and Lachin (2002, Chapter 8). For the random allocation rule, let
ain be a centered score function and SRAR = ∑n

i=1 ainTi be the linear rank
test statistic. If the score function satisfies the Lindeberg condition, then
WRAR = SRAR/

({n/(n − 1)}∑n
i=1 a2in

)1/2 will converge to standard normal
under the null hypothesis as n→∞.
For the case of a permuted block randomization, using a random allocation

rule with block size mwithin each ofM blocks, let

SB =
M∑
j=1

wj
m∑
i=1

ai(j)Ti(j),

WB = SB
({m/(m− 1)}∑M

j=1 w2
j
∑m
i=1 a2i(j))1/2

,

where wj is the weight to block j, ai(j) is the rank-related score function and
Ti(j) is the treatment assignment for the ith patient in the jth block. AsM→∞,
the statisticWB is asymptotically distributed as standard normal by the usual
i.i.d. central limit theorem. For the unfilled block case, asM→∞, the unfilled
part is negligible, and the test statistic is still asymptotically normal.
In a stratified block design, let

STB =
L∑
l=1

Ml∑
j=1

wjl
m∑
i=1

ai(jl)Ti(jl),

WTB = STB

({m/(m− 1)}∑L
l=1

∑Ml
j=1 w

2
jl
∑m
i=1 a2i(jl))1/2

,
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wherewjl is the weight assigned to block j in stratum l,Ml is the total number
of blocks in stratum l, ai(jl) is the score function for the ith patient in the jth
block of stratum l and Ti(jl) is the treatment assignment for the ith patient in
the jth block of stratum l. For each l, 1 ≤ l ≤ L, as Ml → ∞, the statistic
WTB is asymptotically distributed as standard normal. As the total number
of strata is a finite number, for the unfilled block case, the test statistic is still
asymptotically normal.
For the generalized urn design, let ain be the centered score function and

SGUD =∑n
i=1 ainTi. Define a sequence of modified scores {bin} as follows:

bin = ain − r
n∑

l=i+1

 aln
l− 1

l−2∏
j=i
(1− r/j)

 , i = 1, . . . ,n,

where r = −2p′(0). Let s2n =
∑n
i=1 b2in. Wei, Smythe, and Smith (1986) showed

that, if the score function ain satisfies the Lindeberg condition, thenWGUD =
SGUD/sn converges in distribution to standard normal. In general, we will be
interested in the case r = 1, which is the often used Wei’s urn design (Wei,
1977).
When a separate urn randomization is employed within each stratum, we

have the following setup. For a total of L strata, let

Sl =
n∑
i=1

vliai(l)Ti(l), 1 ≤ l ≤ L,

where vli is the indicator variable for stratum l, vli = 1 if patient i is in stratum l,
vli = 0, if patient i is not in stratum l, ai(l) is the score function for the ith patient
in stratum l, and the number of patients in stratum l is nl =

∑n
i=1 vli. Let

ST =
L∑
l=1

wlSl, and WT = ST
(
∑L
l=1 w2

l
∑nl
i=1 b

2
i(l))

1/2
,

where wl is a weight assigned to stratum l and {bi(l)} is the modified score
function corresponding to {ai(l)}. As nl → ∞ as n → ∞, for each stratum l,
and if max a2i(l)/

∑nl
i=1 a

2
i(l) → 0, then Sl is normally distributed within each

stratum, for large nl, and WT is asymptotically distributed as a standard
normal.

9.7.2 Development of a Monitoring Plan

For sequential monitoring with K inspections, let N1,N2, . . . ,NK denote the
total number of patients observed at each inspection. For the permuted block
design, let M1,M2, . . . ,MK be the total number of blocks observed at each
inspection and each block with m patients. When we perform the interim
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inspections, we only consider the complete blocks we have observed. In
the following, at the kth inspection, let S(k)B denote the linear rank test for
permuted block design; let S(k)TB denote linear rank test for stratified block
design; let S(k)T denote linear rank test for stratified urn design.

9.7.2.1 Permuted Block Design

For the permuted block design with random allocation rule, let

S(k)B =
Mk∑
j=1

wj
m∑
i=1

ai(j)Ti(j), 1 ≤ k ≤ K,

with Nk = mMk , where wj is the weight for block j, ai(j) is the centered score
function for the ith patient in block j and Ti(j) is the treatment allocation

for the ith patient in block j. As M1, . . . ,MK → ∞, �−1/2(S(1)B ,S(2)B , . . . ,S(K)B )

converges in distribution to a multivariate normal random vector with mean
0, and identity covariance matrix, where �ii = Var(S(i)B ), �ij = Var(S(k)B ), with
k = min(i, j), and

Var(S(k)B ) =
m

m− 1

Mk∑
j=1

w2
j

m∑
i=1

a2i( j).

For the information fraction at the kth inspection,

tk =
Var(S(k)B )

Var(S(K)B )
=
∑Mk
j=1 w

2
j
∑m
i=1 a2i( j)∑MK

j=1 w
2
j
∑m
i=1 a2i( j)

.

For most of the rank-related score functions, such as the simple rank scores,
van der Waerden scores, and the logrank scores,

tk =
Var(S(k)B )

Var(S(K)B )
=
∑Mk
j=1 w

2
j∑MK

j=1 w
2
j

.

If the same weights have been used for each block, the information fraction
will turn out to be the proportion of the number of blocks observed or the
proportion of the number of patients observed.

9.7.2.2 Stratified Block Design

In a stratified randomization using permuted blocks, let

S(k)TB =
L∑
l=1

Mlk∑
j=1

wjl
m∑
i=1

ai( jl)Ti( jl), 1 ≤ k ≤ K, 1 ≤ l ≤ L,
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with Nk =
∑L
l=1mMlk , where wjl is the weight block j in stratum l, Mlk is

the number of blocks at the kth inspection in stratum l, ai(jl) is the centered
score function for the ith patient in the jth block of stratum l and Ti(jl) is the
treatment allocation for the ith patient in the jth block of stratum l. From
the setup of the stratified block design, we will have very similar asymptotic
result as the permuted block design. For the stratified block design, for each
stratum l, 1 ≤ l ≤ L, as Ml1, . . . ,MlK → ∞, �−1/2(S(1)TB,S

(2)
TB, . . . ,S

(K)
TB ) con-

verges in distribution to a multivariate normal random vector with mean 0,
and identity covariance matrix, where �ii = Var(S(i)TB), �ij = Var(S(k)TB), with
k = min(i, j), and

Var(S(k)TB) =
m

m− 1

L∑
l=1

Mlk∑
j=1

w2
jl

m∑
i=1

a2i( jl).

For the information fraction at the kth inspection,

tk =
Var(S(k)TB)

Var(S(K)TB )
=
∑L
l=1

∑Mlk
j=1 w

2
jl
∑m
i=1 a2i( jl)∑L

l=1
∑MlK
j=1 w

2
jl
∑m
i=1 a2i( jl)

.

For most of the rank-related score functions, such as the simple rank scores,
van der Waerden scores, and the logrank scores,

tk =
Var(S(k)TB)

Var(S(K)TB )
=
∑L
l=1

∑Mlk
j=1 w

2
jl∑L

l=1
∑MlK
j=1 w

2
jl

.

If the same weights have been used for each block and each stratum, the
information fraction will be the proportion of the number of blocks observed
or the proportion of the number of patients observed at the interim point.

9.7.2.3 Stratified General Urn Design

For the stratified urn design with total K inspections, let

S(k)l =
Nlk∑
i=1

a(k)i(l)Ti(l), 1 ≤ l ≤ L, 1 ≤ k ≤ K,

where a(k)i(l) is the score function for patient i in stratum l at the kth inspection,

and let S(k)T =
∑L
l=1 wlS

(k)
l .

By a result from Smythe and Wei (1983), as long as for each stratum l,
Nlk − Nl,k−1 → ∞, for k = 1, . . . ,K, for most of score functions we dis-
cussed in Section 9.3.2, such as the simple rank scores, van der Waerden
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scores, the logrank scores, the asymptotic joint normality of the test stat-
istic can be derived. For binary scores and censored logrank scores, as
for each stratum, the conditions specified in Section 9.3.2 hold, then we
will also have the asymptotic joint normality of the test statistic. Let λlk =
(0, . . . , 0, b(k)1(l), . . . , b

(k)
Nlk(k)

, 0, . . . , 0)′, where λlk is a NK × 1 vector. Also, let

(�km) =
∑L
l=1 w2

l λ
′
lkλlm, a K × K matrix. Then as Nlk − Nl,k−1 → ∞, k =

1, . . . ,K,�−1/2(S(1)T , . . . ,S(K)T )′ converges in distribution to a multivariate
normal random vector with mean 0, and identity covariance matrix.
For the information fraction,

tk =
∑L
l=1 w2

l Var(S
(k)
l )∑L

l=1 w2
l Var(S

(K)
l )
=
∑L
l=1 w2

l
∑Nlk
i=1(b

(k)
i(l))

2∑L
l=1 w2

l
∑NlK
i=1(b

(K)
i(l) )

2
,

with 1 ≤ k ≤ K. For each stratum l, we can estimate the total information
accrued

∑NlK
i=1(b

(K)
i(l) )

2 with
∑NlK
i=1(a

(K)
i(l) )

2. The information fraction at the kth
inspection is thus estimated as

tk =
∑L
l=1 w2

l
∑Nlk
i=1(b

(k)
i(l))

2∑L
l=1 w2

l
∑NlK
i=1(a

(K)
i(l) )

2
.

EXAMPLE 3
We repeat here verbatim the main example from Zhang, Rosenberger, and
Smythe (2007), using data provided by Dr. Neal Oden, from a clinical trial
using the stratified urn design.

The Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of
Prematurity (STOP-ROP) trial (2000) enrolled 649 infants in 30 clinical cen-
ters, whowere randomly assigned to receive either supplemental therapeutic
oxygen or conventional therapy to reduce the probability of progression to
threshold ROP from February 1994 to March 1999. Randomization assign-
ments were generated by the coordinating center using the urn designwithin
strata, and the trial was stratified by center and baseline ROP severity. To
illustrate our methods, we will analyze data on 156 infants from the five
largest strata. We take October 31, 1996, as our interim time point. At the
interim inspection, 83 infants responses have been observed, where 44 were
on conventional treatment and 39 were on supplemental treatment. As the
primary endpoint of this study is the progression of at least one study eye of
an infant to the threshold ROP, we will use the binary score function here. As
on the whole, about 50% of infants using conventional treatment progressed
to threshold ROP, wewill center the scores by subtracting 1/2. Suppose equal
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weights are applied for each stratum, then

S(1)T =
5∑
l=1

Nl1∑
i=1

a(1)i(l)T
(1)
i(l) = 4.5,

Var(S(1)T ) =
5∑
l=1

Nl1∑
i=1
(b(1)i(l))

2 = 20.491;

thus W (1)
T = 0.994. To estimate the information fraction at this interim time

point, wewill assume that 50% of total infantswill progress to threshold ROP.
We obtain

t1 =
∑5
l=1

∑Nl1
i=1(b

(1)
i(l))

2∑5
l=1

∑Nl2
i=1(a

(2)
i(l))

2
= 20.491

39
= 0.525.

If the O’Brien-Fleming (1979) spending function is used, α(0.525) = 0.007,
d1 = 2.457×√20.491 = 11.122. We would conclude that there is no sufficient
evidence that the supplemental treatment is better than the conventional treat-
ment at the interim time point and we would continue the trial. For the final
inspection,

S(2)T =
5∑
l=1

Nl2∑
i=1

a(2)i(l)T
(2)
i(l) = −3,

Var(S(2)T ) =
5∑
l=1

Nl2∑
i=1
(b(2)i(l))

2 = 39.684;

thusW (2)
T = −0.476. As α(1)−α(0.525) = 0.043, from the variance–covariance

matrix of (W (1)
T ,W (2)

T ), we obtain d2 = 1.702×√39.684 = 10.722. We conclude
that there is no sufficient evidence that the supplemental treatment is better
than the conventional treatment.
To compare our result with an analysis that ignores the randomization pro-

cedure, we calculate the Mantel–Haenszel test for five independent strata.
At the interim time point, the stratified-adjusted Mantel–Haenszel test stat-
istic Z1 = 1.747. As t1 = (

∑5
l=1 1/Nl2)/(

∑5
l=1 1/Nl1) = 0.45, using the

O’Brien-Fleming spending function, α(t1) = 0.003, thus d1 = 2.748. A sim-
ilar conclusion is made as for the randomization-based test at the interim
time point. The final stratified-adjusted Mantel–Haenszel test statistic is
Z2 = −0.681. As α(1) − α(0.45) = 0.047, using the Browian motion process
result, cov(Z1,Z2) = √t1 = 0.671, we obtain d2 = 1.654. A similar conclusion
is made as for the randomization-based test at the final time point.
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9.8 Conditional Tests

In previous sections, we have discussed a strategy for sequential monitor-
ing using unconditional linear rank tests. In this section, we will develop
a similar strategy for sequential monitoring of conditional linear rank tests.
The difference between the unconditional test and the conditional test is the
reference set. The conditional reference set includes only those sequences
with the same number of treatments assigned to A and B as were obtained
in the particular randomization sequence employed. The significance level
is computed on the basis of the observed number of patients in each treat-
ment group. Many statisticians favor the conditional reference set because
it excludes highly improbable sequences with large imbalances. Since it is
conditional on the number of the assignments in each treatment we have
observed, the variance–covariance structure will become more complicated.
In the following discussion, we will focus on the general urn design. We
will set up the sequential monitoring plan with only one interim inspection.
When K > 2, the mathematical techniques we use break down, and this is a
topic for further research. Details can be found in Zhang (2004) or Zhang and
Rosenberger (2007).

9.8.1 Sequential Monitoring Procedures

For sequential monitoring with two inspections, let N1, N2 denote the total
number of subjects observed at each inspection, with NA1, NA2 for the total
number of subjects receiving treatment A and NB1,NB2 for the total number
of subjects receiving treatment B. LetDN1 = NA1−NB1 andDN2 = NA2−NB2.
Also, here we assume that limN2→∞N1/N2 = q > 0.
After we have observed N1 subjects,

P(S1 ≥ b1|NA1 = nA1) = α1
and

P(S1 < b1,S2 ≥ b2|NA1 = nA1,NA2 = nA2) = α − α1.

From the above formulas, it is necessary to find the distribution of S1, given
NA1 = nA1, and the joint distribution of (S1,S2), given thatNA1 = nA1,NA2 =
nA2. Conditioning on theNA1 = nA1,NA2 = nA2 is equivalent to conditioning
on DN1 = mN1 ,DN2 = mN2 , where mN1 , mN2 are two sequences of integers
with the property that

mN1 −N1 is even and mN1 = x1N1/2
1 + o(N1/2

1 ),

mN2 −N2 is even and mN2 = x2N1/2
2 + o(N1/2

2 ),

where x1 and x2 are any real numbers.
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We can simplify the above procedure as

P(S1 ≥ b1|DN1 = mN1) = α1

and

P(S1 < b1,S2 ≥ b2|DN1 = mN1 ,DN2 = mN2) = α − α1.

9.8.2 Asymptotic Results

Smythe (1988) proved the conditional asymptotic normality of the linear rank
testunder thegeneralurndesign.Here,wewill extend the idea to thebivariate
case, withone interim inspection. In the following,wewill list themain results
of our work.
As N−1/21 DN1 =

∑N1
i=1N

−1/2
1 Ti, N

−1/2
2 DN2 =

∑N2
i=1N

−1/2
2 Ti, let {ci1} be the

modified score of {N−1/21 } and {ci2} be the modified score of {N−1/22 }with

ci1 = N−1/21 − r
N1∑
l=i+1

N−1/21
l− 1

l−2∏
j=i

(
1− r

j

)
,

ci2 = N−1/22 − r
N2∑
l=i+1

N−1/22
l− 1

l−2∏
j=i

(
1− r

j

)
.

Let {ai1} denote the score functions observed at the first inspection and {ai2}
denote the score functions observed at the second inspection and let {bi1} and
{bi2} be the corresponding modified score functions. Let τ 2 = (1 − 4p′(0))−1,
as proved in Wei (1978),

lim
N1→∞

N1∑
i=1

c2i1 = lim
N2→∞

N2∑
i=1

c2i2 = τ 2.

Define

µ = µ1 +
(

0
sµ2

)
,

where

µ1 =
∑N1

i=1 bi1ci1x1/
∑N1
i=1 c

2
i1∑N1

i=1 bi2ci1x1/
∑N1
i=1 c

2
i1

 ,
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and

sµ2 =
∑N2
i=N1+1 bi1ci1

(
x1
∑N1
i=1 ci1ci2 − x2

∑N1
i=1 c

2
i1

)
c2N1,N2

,

with c2N1,N2
=∑N1

i=1 c
2
i1
∑N2
i=1 c

2
i2 −

(∑N1
i=1 ci1ci2

)2
. Also

� = �1 +
(
0 0
0 s2σ 2

)
,

where

�1 =
 ∑N1

i=1 b
2
i1

∑N1
i=1 bi1bi2∑N1

i=1 bi1bi2
∑N1
i=1 b

2
i2



− 1∑N1
i=1 c

2
i1


(∑N1

i=1 bi1ci1
)2 (∑N1

i=1 bi1ci1
) (∑N1

i=1 bi2ci1
)

(∑N1
i=1 bi1ci1

) (∑N1
i=1 bi2ci1

) (∑N1
i=1 bi2ci1

)2
 ,

and

s2σ 2 =
N2∑

i=N1+1
b2i2 −

(∑N2
i=N1+1 bi2ci2

)2∑N2
i=1 c

2
i2

c2N1,N2

.

Under some conditions on the score functions, which are satisfied by
the simple rank scores, conditioning on DN1 = mN1 ,DN2 = mN2 , the
distribution of

�−1/2
((
S1
S2

)
− µ

)
converges as N1 → ∞,N2 → ∞ to a bivariate normal distribution. We can
now use bivariate normal distribution to conduct sequential monitoring.

EXAMPLE 4
Complete randomization. Aswe have discussed in Section 9.1, for complete
randomization, we have p(x) = 1/2. Thus, r = −2p′(0) = 0, bi1 = ai1, bi2 = ai2,
ci1 = N−1/21 and ci2 = N−1/22 . Then

µ1 =
∑N1

i=1 bi1ci1/
∑N1
i=1 c

2
i1x1∑N1

i=1 bi2ci1/
∑N1
i=1 c

2
i1x1

 =
∑N1

i=1 ai1x1/
√
N1∑N1

i=1 ai2x1/
√
N1

 ,



C5777: “c5777_c009” — 2007/10/27 — 13:03 — page 290 — #30

290 Computational Methods in Biomedical Research

and

sµ2 =
∑N2
i=N1+1 bi2ci2

(
x1
∑N1
i=1 ci1ci2 − x2

∑N1
i=1 c

2
i1

)
c2N1,N2

=
∑N2
i=N1+1 ai2

(−√N1x1 +
√
N2x2

)
N2 −N1

.

Thus, the mean vector

µ =
 ∑N1

i=1 ai1x1/
√
N1∑N1

i=1 ai2x1/
√
N1 +∑N2

i=N1+1 ai2
(−√N1x1 +

√
N2x2

)
/(N2 −N1)

 .

Assume the centered score function we are using here, then

�1 =

∑N1
i=1 a

2
i1

∑N1
i=1 ai1ai2∑N1

i=1 ai1ai2
∑N1
i=1 a

2
i2 −

(∑N1
i=1 ai2

)2
/N1

 ,

and

s2σ 2 =
N2∑

i=N1+1
a2i2 −

(∑N2
i=N1+1 ai2

)2
N2 −N1

,

thus the asymptotic variance–covariance matrix

� =

∑N1
i=1 a

2
i1

∑N1
i=1 ai1ai2∑N1

i=1 ai1ai2
∑N2
i=1 a

2
i2 −

(∑N1
i=1 ai2

)2
/N1 −

(∑N2
i=N1+1 ai2

)2
/(N2 −N1)

 .

For the practitioner, the group sequential procedure will be as follows. After
N1 patients, find b1, such that

P(S1 ≥ b1) = α1,
where S1 has asymptotic distribution

N

∑N1
i=1 ai1x1√
N1

,
N1∑
i=1

a2i1

 .

Then after observing N2 patients, find b2, such that

P(S1 < b1,S2 ≥ b2) = α2,
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where (S1,S2) has asymptotic distribution N(µ,�) with µ and � defined
above. Note that this differs quite a bit from the unconditional approach.

EXAMPLE 5
Wei’s UD(0, 1) design. For Wei’s Urn UD(0, 1), p(x) = (1 − x)/2, thus r =
−2p′(0) = 1. Then

ci1 = N−1/21 −
N1∑

k=i+1

N−1/21
k − 1

k−2∏
j=i

(
1− 1

j

) ,

we obtain

ci1 = N−1/21
i − 1
N1 − 1

, and
N1∑
i=1

c2i1→
1
3
.

Similarly,

ci2 = N−1/22
i − 1
N2 − 1

, and
N2∑
i=1

c2i2→
1
3
.

Note that thismatchesWei’s (1978) resultswith limN1→∞ c2i1 = limN2→∞ c2i2 =
(1− 4p′(0))−1 = 1/3. By the asymptotic results,

µ1 =
3x1∑N1

i=1(i − 1)bi1/((N1 − 1)
√
N1)

3x1
∑N1
i=1(i − 1)bi2/((N1 − 1)

√
N1)

 ,

sµ2 =
∑N2
i=N1+1 bi2ci2

(
−x1∑N1

i=1 ci1ci2 + x2
∑N1
i=1 c

2
i1

)
c2N1,N2

≈ 3(−x1q3 + x2)
1− q3

∑N2
i=N1+1(i − 1)bi2
(N2 − 1)

√
N2

.

Then the conditional mean vector

µ = µ1 +
(

0
sµ2

)
.
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Also

�1 =
 ∑N1

i=1 b
2
i1

∑N1
i=1 bi1bi2∑N1

i=1 bi1bi2
∑N1
i=1 b

2
i2

− 3
(N1 − 1)2N1

×


(∑N1
i=1(i − 1)bi1

)2 (∑N1
i=1(i − 1)bi1

) (∑N1
i=1(i−1)bi2

)
(∑N1

i=1(i−1)bi1
) (∑N1

i=1(i − 1)bi2
) (∑N1

i=1(i − 1)bi2
)2

 ,

s2σ 2 ≈
N2∑

i=N1+1
b2i2 −

3
(∑N2

i=N1+1(i − 1)bi2
)2

(1− q3)(N2 − 1)2N2
.

Then the conditional variance–covariance matrix is given by

� = �1 +
(
0 0
0 s2σ 2

)
.

For the practitioner, the group sequential procedure will be as follows. After
observing N1 subjects responses, find b1, such that

P(S1 ≥ b1) = α1,

where S1 has asymptotic distribution

N

3x1
∑N1
i=1(i − 1)bi1

(N1 − 1)
√
N1

,
N1∑
i=1

b2i1 −
3(
∑N1
i=1(i − 1)bi1)2

(N1 − 1)2N1

 ,

which can also be obtained from Smythe (1988). Then after observed N2
subjects responses, find b2, such that

P(S1 < b1,S2 ≥ b2) = α2,

where (S1,S2) has asymptotic joint bivariate normal distribution with mean
µ and variance � as described above. Note that this differs from the uncon-
ditional approach. Also, only the simple rank score function will satisfy the
conditions here, which is the same condition as in Smythe (1988).

9.8.3 Information Fraction for Conditional Tests

In the previous discussion, we choose α1, α2, such that α1 + α2 = α, where
α is prespecified. For the sequential monitoring with conditional tests, we
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want to introduce the information fraction concept and apply the spending
function approach, as we did in Section 9.4.
Define the information fraction as t1 since we have only one interim

inspection. Conditioning on DN1 = mN1 ,DN2 = mN2 ,

t1 = Var(S1)
Var(S2)

.

For complete randomization,

Var(S1) =
N1∑
i=1

a2i1,

Var(S2) =
N2∑
i=1

a2i2 −
(∑N1

i=1 ai2
)2

N1
−
(∑N2

i=N1+1 ai2
)2

N2 −N1
≤

N2∑
i=1

a2i2.

A conservative estimator of t1 will be
∑N1
i=1 a

2
i1/
∑N2
i=1 a

2
i2. For the simple rank

scores, it will be N1/N2, the proportion of the subjects observed.
For the general urn design,

Var(S1) =
N1∑
i=1

b2i1 −
3
(∑N1

i=1(i − 1)bi1
)2

(N1 − 1)2N1
,

Var(S2) =
N2∑
i=1

b2i2 −
3
(∑N1

i=1(i − 1)bi2
)2

(N1 − 1)2N1
−

3
(∑N2

i=N1+1(i − 1)bi2
)2

(1− q3)(N2 − 1)2N2
≤

N2∑
i=1

b2i2.

Following the same approach as described in Section 9.4, a conservative
estimator of the information fraction is

t1 = Var(S1)∑N2
i=1 a

2
i2

.

9.9 Conclusion

We have laid a completely new framework for the sequential monitoring of
randomization tests. This has been a concise summary of the first author’s
doctoral dissertation, and several papers are being planned for current and
future submission that will contain the mathematical details. It is hoped that
thisworkwill give the tools necessary to practicing biostatisticians to conduct
a group sequential clinical trial with a randomization test as the primary
outcome.



C5777: “c5777_c009” — 2007/10/27 — 13:03 — page 294 — #34

294 Computational Methods in Biomedical Research

Appendix A

1. R boundary program

Appendix B

1. score.sas
2. sp.sas
3. probmvn.sas
4. lrt1.sas
5. sample startup.sas, which needs to be changed accordingly.

Appendix C

1. seq.sas7bdat
2. score.sas7bdat
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10.1 Univariate Frailty Models

For independent identically distributed (i.i.d.) failure time data, the propor-
tional hazards model has been widely used since its introduction in Cox
(1972). In the 1980s it began to be noted in the statistical literature that, unlike
linear models, the Cox regression models are generally not nested, so that
leaving out important covariates can lead to potential bias in the estimation of
the regression parameters of interest (Lancaster and Nickell, 1980; Gail et al.,
1984; Struthers and Kalbfleisch, 1986; Bretagnolle and Huber-Carol, 1988;
Anderson and Fleming, 1995; Ford et al., 1995). In particular, the uncon-
ditional hazard rate would be underestimated if unobserved heterogeneity in
the data was ignored (Omori and Johnson, 1993). See also Xu (1996) for a
review and discussion on the topic. Frailty models are then used to model

297
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such unobserved heterogeneity in general. The term “frailty” was first used
in Vaupel et al. (1979).
A univariate frailty model has the form

λij(t) = λ0(t) exp(β ′Zij + bi), (10.1)

where λij(t) is the hazard function for individual j in cluster i (i = 1, . . . ,n,
j = 1, . . . ,ni), λ0(t) is the baseline hazard, β is the vector of fixed regres-
sion effects as in the Cox (1972) model, and bi is the random effect or, log
frailty, for cluster i. We write the model for the general clustered data that
will be discussed in this chapter. For i.i.d. data the cluster sizes are equal to
one, so that each individual is a cluster. The term exp(bi) is called the frailty,
which acts multiplicatively on the hazard function. When at least some of the
cluster sizes are greater than one, model (10.1) is often referred to as the shared
frailty model, since individuals from the same cluster share the same frailty.
In the literature the distribution of exp(bi) is often assumed to be gamma or
log-normal. The gamma distribution has mainly been used for mathemat-
ical convenience, since it provides a conjugate prior in the likelihood function
where the unobservable randomeffects are integrated out; see below formore
details. The normal distribution, being symmetric, is sometimes considered
more natural for the unobserved bi’s, andwill be shown later to be also appro-
priate for random covariate effects. Currently, programs to fit model (10.1)
with gammaor log-normally distributed frailties are available in Splus, R, and
SAS; see Therneau and Grambsch (2000) for details.
There has been a substantial literature on the frailty models (see Oakes,

1992; Hougaard, 2000). A number of these are on the gamma frailty model
(Clayton and Cuzick, 1985; Klein, 1992; Nielsen et al., 1992; Murphy, 1994,
1995; Andersen et al., 1997; Parner, 1998; etc.). In particular, Klein (1992)
and Andersen et al. (1997) provided the Expectation-Maximization (EM)
algorithm for the nonparametric maximum likelihood estimation under the
gamma frailty model. Consistency and asymptotic normality under that
model was established in Murphy (1994, 1995) and Parner (1998).
For interpretation under model (10.1), note that the random effect bi acts

additively on the log hazard function, with no interaction between any
covariate and the clustering indicator. Figure 10.1 is an illustration for this
case, where the curves are the hypothetical log hazard functions over time.
The upper five curves are from one treatment arm, with the thick curve in
the middle indicating the average log hazard rate within that arm. The lower
five curves represent another treatment armwith themiddle curve indicating
the average log hazard rate with this other arm. The first curve in the upper
group and the first curve in the lower group are assumed to be from the same
cluster. And the second curves in the upper and lower group, respectively,
are also assumed to be from another common cluster, and so on. The figure
shows that the treatment difference, in terms of log hazard, is the same across
all the clusters. Model (10.1) cannot be used to model the type of varying
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FIGURE 10.1
Additive effect of frailty and treatment on log hazard function.

treatment effect that exists in the lung cancer data below, which involves a
cluster by treatment interaction.
For completeness as a reviewon the topic of univariate frailtymodels, in the

rest of this section we briefly describe the EM algorithm of Klein (1992) under
model (10.1) with gamma frailty distribution. Assume that Vi = exp(bi) ∼
Gamma(1/α,α), so that E(V) = 1 and Var(V) = α. The likelihood is given
in Equation 10.11 with p(·;�) replaced by the gamma density, and the joint
log-likelihood of the observed data and the unobserved random effects is
L1(β, λ)+ L2(α), where

L1(β, λ) =
n∑
i=1

ni∑
j=1
{δij[β ′Zij + log λ0(Xij)] − Vi
0(Xij) exp(β

′Zij)}, (10.2)

L2(α) = −n
{
1
α
log α + log�

(
1
α

)}
+

n∑
i=1

{(
1
α
+Di − 1

)
logVi − Vi

α

}
,

(10.3)

and Di =
∑

j δij is the observed number of failures in cluster i.
To perform the E-step of the EM algorithm, we observe that owing to

conjugacy, given data the Vi’s are independent gamma random variables
with shape parameters Ai = 1/α + Di and scale parameters Ci = 1/α +∑

j
0(Xij) exp(β ′Zij). The conditional expectation of L1(β, λ) + L2(α) given
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the observed data is then Q1(β, λ)+Q2(α), where

Q1(β, λ) =
∑
i,j

{
δij[β ′Zij + log λ0(Xij)] − Ai

Ci

0(Xij) exp(β

′Zij)
}
, (10.4)

Q2(α) =− n
{
1
α
log α + log�

(
1
α

)}

+
n∑
i=1

{(
1
α
+Di − 1

)
[ψ(Ai)− log(Ci)] − Ai/Ci

α

}
, (10.5)

and ψ(·) denotes the digamma function.
The M-step is similar to that under model (10.7) described in Section 10.3:

Q1 ismaximized using the Cox partial likelihood and Breslow’s estimatewith
an offset, andQ2 is maximized numerically. The properly estimated variance
of the parameter estimate is given in Andersen et al. (1997).

10.2 Clustered Survival Data

Clustered failure time data arise from various areas of biomedical research,
including genetic or familial studies, multicenter clinical trials, group-
randomized trials, matched pairs designs, recurrent events, environmental
studies, retrospective studies from collaborative registry protocols or meta-
analysis, and so forth. As an example, the Vietnam Era Twin (VET) Registry
data was used to study the genetic and environmental contributions to age
at onset of psychiatric disorders such as alcohol dependence and nicotine
dependence (Liu et al., 2004a,b). The VET Registry consists of a total of 7375
male–male twin pairs born between 1939 and 1957 and both twins had the
experience of serving in the military during the Vietnam era. In 1992, trained
interviewers from the Institute for Survey Research at Temple University
invited approximately 5000 twin pairs from the Registry to participate in
telephone-administrated interviews. Of these, 3372 twin pairs completed the
interviews and had known zygosity. The difference between monozygotic
and dizygotic twins can be used to estimate the genetic contribution to alco-
hol dependence, as will be shown later. In addition to clustering by the twin
pairs, there are also other levels of clustering in the data including different
symptom categories of alcohol dependence for the same person, as well as
correlation between age at onset of alcohol dependence and age at onset of
nicotine dependence for the same person. Apart from decomposition of the
total variation in age at onset into attributes owing to genetic and environ-
mental factors, it is also of interest to assess the interaction between genetic
factors and other variables such as early versus late alcohol users. Notice
that there is censoring in the age at onset data; that is, some twins had not
developed alcohol dependence at the time of phone interview. Therefore, the
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conventional linear or generalized linear mixedmodel for this type of genetic
epidemiology studies cannot be applied directly.
Another example of clustered failure time data comes from a multicenter

clinical trial in lung cancer conducted by the Eastern Cooperative Oncology
Group (ECOG). The study compared two different chemotherapy regimens:
a standard therapy cyclophosphamide, doxorubicin and vincristine (CAV)
and an alternating regimen (CAV-HEM) where cycles of CAV were altern-
ated with altretamine (hexamethylmelamine), etoposide and methotrexate
(HEM). It was found that the treatment difference between the CAV-HEM
and the CAV arms varied substantially across the participating institutions
(Gray, 1994, 1995). Figure 10.3 shows the estimated treatment effects from the
31 institutions in terms of the log hazard ratio under a proportional hazards
model. As seen in the figure, the log hazard ratios in some institutions such as
number 16 and 18 are around −0.5, whereas in some other institutions such
as number 19, 28, and 29 the log hazard ratios are almost zero. In multicenter
clinical trials, center-to-center variations can be caused by, despite the tightly
structured protocols, different standards of practice, types of supportive care,
interpretations of dose modifications, and patient populations, and so forth.
For statistical applications involving clustered data in general, random

effects models provide a powerful tool. This is not only so for genetic stud-
ies such as the VET Registry study where the primary interest lies in the
estimation of the variance components. When compared to marginal models
where the correlation structures are not specified but where robust variance
estimators of the marginal regression effect estimates are usually used, the
randomeffectsmodel has the capability ofmaking cluster-specific inference in
addition to the estimation of the variance components. For example, inmulti-
center clinical trials, estimation of center-specific treatment effects allows the
investigators to further study the possible causes of different treatment effects
observed at different trial centers, and therefore help understand the condi-
tions associated with potential therapy benefits. Some of these multicenter
trials tend to involve many institutions, each of which typically contributes
only a few patients to a particular trial. This is the type of setting where
random effects models are suitable if center effects are suspected. The use of
randomeffects survivalmodels in clinical trialswasalsoadvocated inGlidden
and Vittinghoff (2004), Murray et al. (2004), and Sylvester et al. (2002). Ran-
dom effects models, on the other hand, are usuallymore complex and require
more computation as compared to the marginal models.
Petersen et al. (1996) and Petersen (1998) extended the univariate gamma

frailty model to additive frailty models for the analysis of genetic data, where
the sum of two or more gamma frailty terms acts multiplicatively on the
hazard function. Petersen (1998) wrote the model as

λij(t) = λ0(t)(a′iUij) exp(β ′Zij), (10.6)

where U is a design vector of 0’s and 1’s, and a is a vector of gamma frailties.
Petersen (1998) summarizes the use ofmodel (6) for genetic and familial data.
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Model (6), however, is unable to incorporate random effects for arbitrary
covariates, or equivalently, covariate by cluster interactions as exemplified in
the lung cancer data. Furthermore, as will be shown in Section 10.4, for inter-
pretation of the random effects in genetic data, the extension of Equation 10.1
to proportional hazards mixed effects model (PHMM) of Section 10.3, has the
advantage of decomposingvariation in the outcomevariable itself as opposed
to variation in the hazard of the outcome variable under model (10.6), lead-
ing to results that are comparable to those already established in the genetic
epidemiology literature.

10.3 Proportional Hazards Mixed-Effects Model

In the following we continue to use i = 1, . . . ,n to indicate the clusters, and
j = 1, . . . ,ni to indicate the individuals within the ith cluster. Tij is the failure
time for individual ij, Cij is the censoring time. We observe Xij = min(Tij,Cij)
and δij = I(Tij < Cij), and Zij is a vector of covariates possibly associatedwith
the event time outcome.
Vaida andXu (2000) proposed the proportional hazardsmodelwith general

random effects

λij(t) = λ0(t) exp(β ′Zij + b′iWij), (10.7)

whereWij is a vector of covariates that have random effects.Wij is usually a
subvector of Zij, plus a possible “1” for the random effect on the baseline haz-
ard function, as in the frailtymodel (10.1) before. In contrast with the additive
frailty model (10.6), model (10.7) generalizes the univariate frailty model by
allowing a multivariate random effect with arbitrary design matrix in the log
relative risk, similar to the linear, generalized linear and nonlinear mixed
models. This allows incorporation of random effects on general covariates,
and is useful for assessing gene and covariate interactions in genetic data, and
in multicenter clinical trials for modelling center by treatment interactions as
described earlier. As an example, for the lung cancer data, if a single covari-
ate Z = 0 or 1 indicates one of the two treatment assignments, the following
model may be used to capture the cluster-specific treatment effect

λij(t) = λ0(t) exp{b0i + (β + b1i)Zij}.
The treatment effect from institution i is then β + b1i. Figure 10.2 is a illus-

tration of this case. In contrast to Figure 10.1, the treatment effect within
one cluster is different from that within another cluster. We call model (10.7)
the PHMM.
For thedistributionof the randomeffects inEquation10.7, it is assumed that

bi
iid∼ N(0,�), (10.8)
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FIGURE 10.2
The effect of cluster by treatment interaction on log hazard function.

with unknown d × d covariance matrix �. The advantages of the normal
assumption for random effects, as explained in Vaida and Xu (2000), are
symmetry and scale-invariance. The gamma distribution, in particular, is not
suitableherebecause it is not scale-invariant, so that the inference isnot invari-
ant under a change ofmeasuring unit for the random effects; if exp(b) belongs
to the gamma family and W is multiplied by a constant c, then exp(b/c) no
longer belongs to the gamma family in general. The normality assumption
for the random effects, however, can be replaced by other scale-invariant
parametric distribution such as the multivariate t-distribution.
We note that Xue and Brookmeyer (1996) used a special case ofmodel (10.7)

with bivariate normal random effects, Li and Lin (2000) studied a model
similar to Equation 10.7 with covariate measurement errors, Yau (2001) and
Ma et al. (2003) considered multilevel clustering that is also a special case
under Equation 10.7. Relatedwork has also been done in the Bayesian context
by Gray (1994), Gustafson (1997), Sargent (1998), and Carlin and Hodges
(1999).

10.3.1 Interpretation under PHMM

Model (10.7) is in parallel with the linear, nonlinear, and generalized linear
mixed-effects models. On the log hazard scale it can be written as

log λij(t) = log λ0(t)+ β ′Zij + b′iWij.
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This describes the conditional hazard, or equivalently, the conditional distri-
bution, of the event time T of an individual as a function of the covariates and
the random effects.
Model (10.7) can be written in the mathematically equivalent form of a

linear transformation model

g(Tij) = −(β ′Zij + b′iWij)+ eij, (10.9)

where g(t) = log
∫ t
0 λ0(s)ds, and e has a fixed extreme value distribution with

variance equal to 1.645. The fixed error distribution is due to, basically, the
proportional hazards assumption. When fittingmodel (10.9) to data, one tries
to find the “best” parameter values under the constraint of the extreme value
error distribution, which is equivalent to the proportional hazards constraint
under model (10.7).
In view of Equation 10.9, the PHMM then decomposes the variation in the

transformed event time T itself, instead of its hazard function, into contribu-
tions from the fixed covariate effects, the random effects, and a fixed error
variance. Note in particular that the difference in the total variances between
Equations 10.7 and 10.9 is due to the extra term eij in Equation 10.9. This
is similar to the linear regression when predicting a future individual out-
come, there is an extra variance term as compared to predicting the mean of
a future outcome. Equation 10.9 can be useful for interpretation purposes of
the PHMM, as will be seen in the applications of the next section.

10.3.2 Parameter Estimation under PHMM

Assume that the data consist of possibly right-censored observations from n
clusters, with ni subjects each, i = 1, . . . ,n. LetN =∑i ni. Within a cluster the
observations can be dependent, but conditional on the cluster-specific d × 1
vector of random effects bi, the observations are independent. We are mostly
interested in clustered data where at least one of the clusters has more than
one observation. For the i.i.d. case (i.e., allni = 1), recentwork ofKosorok et al.
(2001) provides conditions for identifiability under the frailty model (10.1).
Identifiability and asymptotics of parameter estimate (see below) under the
more general model (10.7) have been established in Xu et al. (2006).
The observed data from subject j in cluster i can generally be written as

yij = (Xij, δij,Zij,Wij). Let yi = (yi1, . . . , yini)′ be the observed data for cluster i.
Also, denote y = (y′1, . . . ,y′n)′, and b = (b′1, . . . , b′n)′. Under model (10.7), for
cluster i, conditional on the random effects, the log-likelihood is

li = li(β, λ;yi|bi) =
ni∑
j=1
{δij log λ0(Xij)+ δij(β ′Zij + b′iWij)−
0(Xij)e

β ′Zij+b′iWij },

(10.10)
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where 
0(t) =
∫ t
0 λ0(s) ds. Vaida and Xu (2000) used a nonparametric max-

imum likelihood approach, with the infinite dimensional parameter λ0(·)
replaced by the vector λ = (λ1, . . . , λs)′, where λi = λ0(ti) and t1, . . . , ts are the
distinct uncensored failure times. The need to discretize the baseline hazard
function lies in the fact that the likelihood function is otherwise unbounded;
see also Johansen (1993) and Murphy (1994). The likelihood of the observed
data is then

L(θ) =
n∏
i=1

∫
exp(li)p(bi;�)dbi, (10.11)

where θ = (β,�, λ), and p(·;�) is the multivariate normal density function.
Usually no closed-form expression is available for L(θ) and its calculation
involves d-dimensional integration.
The EM algorithm (Dempster et al., 1997) can be used to compute the

maximum likelihood estimate, and its standard convergence properties were
shown to hold in Vaida and Xu (2000). This is mainly because the parameter
vector θ in the nonparametric likelihood is in fact finite dimensional, once the
data are given. Specifically, in theE-step the following conditional expectation
of the joint log-likelihood of (y,b) given the data is computed:

Q(θ) =
∑
i

E{li(β, λ;yi|bi)|yi} +
∑
i

E{log p(bi;�)|yi}, (10.12)

where the expectations are taken under the current parameter values. The
E-step reduces to computing conditional expectations of the typeE{h(bi)|yi} =∫
h(bi)p(bi|yi) dbi. Although Gaussian quadrature may be used when the

dimension of the random effects d ≤ 2, a Gibbs sampler was used in Vaida
andXu (2000) for general purposes to approximate these integrals. TheM-step
involves maximizing the two terms on the right-hand side of Equation 10.12
with respect to (β, λ) and � separately

Q1(β, λ) =
∑
i

E{li(β, λ;yi|bi)|yi}

=
∑
i,j

{δij log λ0(Xij)+ δij(β ′Zij +W ′ijE[bi])−
0(Xij)e
β ′Zij+log E[b′iWij]}

(10.13)

where E[h(bi)] = E{h(bi)|yi}, and

Q2(�) =
∑
i

E{log p(bi;�)|yi} (10.14)

with the exact expression forQ2 depending on the parametrization of�. Note
that Q1 has the same form as the log likelihood in a classic Cox regression
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model with known offsets log E[b′iWij]. Therefore, the maximization turns
out to be equivalent to using the partial likelihood with the offsets for β and
Breslow’s estimate with the same offsets for λ. The maximizer of Q2 is the
usualmaximumlikelihoodestimator (MLE) for�, with the sufficient statistics
replaced by their respective conditional expectations given the observeddata;
see Vaida and Xu (2000) for more details.
Following the estimation of θ , the estimated variance of θ̂ can be obtained

using Louis’ (1982) formula. The computation is similar to the E-step, and for-
mulas are given in Vaida and Xu (2000). In addition, empirical Bayes estimate
of the random effects b̂i = E(bi|yi, θ̂ ) can be obtained as a by-product of the
algorithm, since at the last step of EM a Monte Carlo sample from p(bi|yi, θ̂ )
has already been obtained. The use of the predicted random effects in data
analysis and clinical research will be illustrated in the next section.
We note that most publications on frailty models used nonparametric like-

lihood, although other approaches have also been suggested that include
the residual maximum likelihood (REML) based on the partial likelihood
(McGilchrist, 1993; Yau, 2001), hierarchical likelihood (Ha et al., 2001), and
estimating equations for the mean treatment effect (Cai et al., 1999). We
also note that for the more general random effects model (10.7), Ripatti and
Palmgren (2000) used penalized partial likelihood, Ripatti et al. (2002) imple-
mented theMonte Carlo EM (MCEM) algorithmwith an automated stopping
rule, andAbrahantes and Burzykowski (2005) implemented an EMalgorithm
with Laplace approximation in the E-steps. The Laplace approximation is
good only when the cluster sizes ni’s are large. In Section 10.3.4, we show
simulation results comparing the nonparametric maximum likelihood estim-
ators (NPMLE) and the MCEM algorithm of Vaida and Xu (2000) with those
of Ripatti and Palmgren (2000) and Abrahantes and Burzykowski (2005). The
NPMLE with MCEM generally provides more accurate estimates than the
other two, especially for the variance components where the other methods
can lead to substantial bias in the estimates. In addition, the maximum like-
lihood estimate obtained through the MCEM algorithm has been stable in all
our experience with both simulated and real data sets. Figure 10.4 shows the
convergence of the EM sequence for the lung cancer data within 30 steps.

10.3.3 Computation: Gibbs-EM Implementation

Following the previous notation, for any k = 1, . . . , d, write

bi(−k) = (bi1, . . . , bi,k−1, bi,k+1, . . . , bid).

As can be verified (see Vaida and Xu, 2000), p(bi|yi) and the univariate
full-conditional densities p(bik|bi(−k),yi), k = 1, . . . , d, are both log-concave.
Therefore, the Gibbs sampler can be used, which proceeds by successively
sampling from p(bik|bi(−k),yi) for k = 1, . . . , d. Here we use the adaptive
rejection sampling algorithm of Gilks et al. (1995).
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We can generally start the EM algorithm with M = 100 Gibbs samples
per EM step, and increase this number to M = 1000 after an “MCEM burn-
in” period. The “burn-in” period is typically 30–50 iterations, except for the
cases when theMLE for (some of) the variance components converge to zero,
which can be much slower. It is known that when the true underlying vari-
ance component is zero, there is a positive probability that the MLE of it
is also zero (Crainiceanu and Ruppert, 2004). At each EM step the Gibbs
sampler for bi starts with the last value of bi from the previous EM step.
All samples generated at the E-step are used within the subsequent M-step
maximization, since the Gibbs “burn-in” is essentially realized by the pre-
vious EM steps. We stop the algorithm when the relative variation of all
parameter values is less than 1%, or after a fixed number of steps (e.g., at
most 1000 steps). Convergence is then assessed by visual inspection of the
estimates; see examples below. For a fixed Gibbs sample size M, the EM
sequence of estimates is approximately an AR(1) process with theMLE as the
mean (Chan and Ledolter, 1995). Therefore, the final MLE is computed as the
average of the EM sequence over the convergent portion of the chain.
We implemented the algorithm in the C programming language, using the

armsprogramwritten byGilks andWild. The compiledprogramaswell as the
source code is available from the first author. A version of the program with
R interface should soon be available at http://www.math.ucsd.edu/∼rxu.

10.3.4 Simulation

Here we carry out some simulation using the MCEM algorithm described
above. As no simulation results have so far appeared in the literature, the
primary purpose is to illustrate that the algorithm performswell. In addition,
we also compare the accuracy of the MCEM algorithm to the Laplace EM
of Abrahantes and Burzykowski (2005), and the penalized partial likelihood
estimation of Ripatti and Palmgren (2000). Simulation results for these latter
two methods were reported in Abrahantes and Burzykowski (2005), and are
given here in terms of bias and mean squared error (MSE) along with the
MCEM results.
As inAbrahantes andBurzykowski (2005), thedata aregeneratedaccording

to the followingmodel for a pair of bivariate failure times for each subject j in
cluster i, i = 1, . . . ,n, j = 1, . . . ,n′i; note that in our previous notation ni = 2n′i.

λij1(t) = λ01(t) exp(βZij + bi1)
λij2(t) = λ02(t) exp(βZij + bi2),

with (
bi1
bi2

)
∼ N

{(
0
0

)
,
(
σ 21 σ12
σ12 σ 22

)}
.
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The covariate Zij’s are i.i.d. Bernoulli(0.5) random variables. The censor-
ing time process is simulated by a pair of independent uniform(0,τ ) random
variable, with τ selected so that approximately 20% of the observations are
censored. For each of the parameter settings described in Abrahantes and
Burzykowski (2005), we generate 250 datasets and compare the simulation
results to those in their paper. For all settings, β = 1. The simulation res-
ults are given in Tables 10.1 and 10.2. In Table 10.1 σ 21 = σ 22 = 0.2, while
in Table 10.2 σ 21 = σ 22 = 1. In both tables the correlation coefficient ρ = 0.5
and 0.9.
From the tables we see that the MCEM algorithm has the smallest MSE

for majority of the cases; between the other two methods the Laplace EM
tends to have smaller MSE when σ 21 = σ 22 = 0.2, whereas the opposite holds
when σ 21 = σ 22 = 1. The main difficulty of the Laplace EM and the penalized
partial likelihood methods lies in the estimation of the variance components
(Abrahantes and Burzykowski, 2005) when the number of clusters is small
(n = 10) and the variance components are small (σ 21 = σ 22 = 0.2), where the
relative bias can be over 60%. TheMCEM algorithm performs much better in
comparison, especially for ni = 20where the biases for the other twomethods
are severe. The samealso reflects in the estimationof the correlation coefficient
ρ, where the MCEM appears much more accurate for the small sample sizes.
With increasing number of clusters and number of subjects per cluster, both
the bias and MSE decrease for all three methods. Note that ni is at least 20 in
these simulations, mainly owing to the fact that the Laplace approximation
only works well for reasonably large ni.

10.4 Examples

The proportional hazards mixed model, which includes the earlier frailty
models as special cases, has been applied in various areas of biomedical
research. Among them, Guo and Rodriguez (1992) and Sastry (1997) applied
frailty models to child survival in South America, with clustering by fam-
ily and by community. Li and Thompson (1997) and Siegmund et al. (1999)
applied the frailty model to identify a major (Mendelian) gene from the
rest shared familial risk for age at disease onset data. Moger et al. (2004)
applied an individual frailty model, that is, with cluster sizes equal to
one, to Danish and Norwegian cancer registry data for modelling the het-
erogeneity in the development of testicular cancer. Finally, Ripatti et al.
(2003) applied the PHMM to twin data in a setting similar to the example
given below, but with no differentiation between monozygotic and dizygotic
twins.
In the following we provide two detailed examples of the application of

PHMM.
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TABLE 10.1
TheEstimatedBias for 250 SimulatedDatasets for theMCEMAlgorithm (First Row for
Each n), the Method of Abrahantes and Burzykowski (Second Row), and the Method
of Ripatti and Palmgren (Third Row), When σ 21 = σ 22 = 0.2 and the Indicated Values
for σ12, with 20% Censoring. The Empirical Mean Squared Errors are in Parentheses

n β σ 21 σ 22 σ 12 ρ

σ12 = 0.1

ni = 20
10 −0.015 (0.028) −0.024 (0.019) −0.029 (0.022) −0.011 (0.011) 0.012

0.069 (0.097) 0.069 (0.020) 0.063 (0.019) 0.022 (0.014) −0.042
0.007 (0.077) 0.058 (0.030) 0.035 (0.026) 0.034 (0.029) 0.046

50 0.006 (0.005) −0.007 (0.005) −0.009 (0.005) −0.004 (0.003) −0.001
0.069 (0.019) 0.010 (0.003) 0.011 (0.002) 0.001 (0.003) −0.019
−0.010 (0.011) 0.000 (0.005) −0.008 (0.004) −0.003 (0.003) −0.003

100 0.004 (0.003) 0.003 (0.003) 0.001 (0.002) −0.001 (0.001) −0.010
0.074 (0.013) 0.006 (0.002) 0.008 (0.001) 0.000 (0.002) −0.014
−0.008 (0.005) −0.004 (0.003) −0.006 (0.002) −0.003 (0.001) −0.002

ni = 100
10 −0.007 (0.006) −0.015 (0.011) −0.008 (0.010) −0.011 (0.005) −0.027

0.015 (0.012) −0.020 (0.010) −0.018 (0.009) −0.013 (0.006) −0.018
0.004 (0.013) −0.019 (0.011) −0.020 (0.010) −0.006 (0.007) 0.018

50 0.000 (0.001) −0.006 (0.002) 0.000 (0.002) −0.003 (0.001) −0.007
0.010 (0.002) −0.005 (0.002) −0.005 (0.002) −0.003 (0.001) −0.005
0.002 (0.002) −0.003 (0.002) −0.005 (0.002) −0.001 (0.001) 0.004

100 0.001 (0.000) −0.005 (0.001) −0.002 (0.001) −0.002 (0.001) −0.002
0.012 (0.001) −0.001 (0.001) −0.002 (0.001) −0.001 (0.001) −0.001
−0.001 (0.001) −0.001 (0.001) 0.000 (0.001) 0.000 (0.000) 0.001

σ12 = 0.18

ni = 20
10 0.010 (0.035) 0.007 (0.027) −0.033 (0.015) −0.013 (0.014) 0.001

0.080 (0.076) 0.122 (0.044) 0.101 (0.035) 0.083 (0.016) −0.055
0.020 (0.073) 0.118 (0.046) 0.090 (0.038) 0.083 (0.019) −0.033

50 −0.004 (0.006) −0.004 (0.005) −0.002 (0.004) −0.003 (0.003) −0.002
0.071 (0.019) 0.062 (0.007) 0.055 (0.006) 0.046 (0.004) −0.023
0.000 (0.011) 0.056 (0.016) 0.041 (0.012) 0.041 (0.009) −0.009

100 0.000 (0.003) −0.002 (0.002) −0.003 (0.002) −0.003 (0.001) −0.004
0.076 (0.013) 0.029 (0.002) 0.022 (0.002) 0.019 (0.001) −0.015
−0.003 (0.006) 0.024 (0.007) 0.018 (0.006) 0.018 (0.003) −0.005

ni = 100
10 0.001 (0.008) −0.015 (0.011) −0.006 (0.011) −0.014 (0.009) −0.024

0.015 (0.012) −0.009 (0.011) −0.009 (0.010) −0.010 (0.009) −0.011
0.007 (0.013) −0.006 (0.008) −0.005 (0.007) −0.004 (0.007) 0.003

50 −0.003 (0.001) −0.003 (0.002) −0.005 (0.002) −0.004 (0.002) −0.003
0.010 (0.002) −0.004 (0.002) −0.005 (0.002) −0.005 (0.002) −0.004
0.002 (0.002) 0.000 (0.004) −0.003 (0.003) −0.001 (0.003) 0.002

100 0.002 (0.001) −0.003 (0.001) −0.003 (0.001) −0.003 (0.001) 0.000
0.012 (0.001) 0.000 (0.001) −0.001 (0.001) −0.001 (0.001) −0.001
−0.001 (0.001) −0.001 (0.001) −0.001 (0.001) 0.000 (0.001) 0.003
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TABLE 10.2
TheEstimatedBias for 250 SimulatedDatasets for theMCEMAlgorithm (First Row for
Each n), the Method of Abrahantes and Burzykowski (Second Row), and the Method
of Ripatti and Palmgren (Third Row), When σ 21 = σ 22 = 1 and the Indicated Values
for σ12, with 20% Censoring. The Empirical Mean Squared Errors are in Parentheses

n β σ 21 σ 22 σ 12 ρ

σ12 = 0.5

ni = 20
10 −0.028 (0.035) −0.099 (0.276) −0.104 (0.276) −0.084 (0.140) −0.037

0.078 (0.082) −0.100 (0.482) −0.105 (0.392) −0.086 (0.157) −0.039
−0.006 (0.081) −0.075 (0.252) −0.114 (0.242) −0.056 (0.136) −0.009

50 0.002 (0.007) −0.032 (0.051) −0.032 (0.061) −0.021 (0.029) −0.005
0.068 (0.020) −0.026 (0.190) −0.026 (0.082) −0.028 (0.038) −0.015
−0.005 (0.013) −0.018 (0.033) −0.029 (0.035) −0.010 (0.013) 0.002

100 0.000 (0.004) 0.011 (0.029) 0.000 (0.035) 0.004 (0.019) 0.001
0.075 (0.013) −0.018 (0.080) −0.016 (0.043) −0.019 (0.022) −0.011
−0.005 (0.006) −0.017 (0.033) −0.021 (0.027) −0.007 (0.018) 0.003

ni = 100
10 0.005 (0.006) −0.036 (0.210) −0.076 (0.237) −0.042 (0.134) −0.014

0.011 (0.012) −0.107 (0.249) −0.099 (0.216) −0.061 (0.128) −0.011
0.007 (0.013) −0.101 (0.241) −0.089 (0.204) −0.034 (0.119) −0.004

50 0.000 (0.001) −0.005 (0.052) −0.008 (0.044) −0.007 (0.027) −0.004
0.009 (0.002) −0.024 (0.081) −0.021 (0.041) −0.014 (0.029) −0.002
0.003 (0.002) −0.021 (0.051) −0.024 (0.039) −0.009 (0.027) −0.001

100 0.002 (0.000) 0.020 (0.027) 0.001 (0.022) 0.003 (0.013) −0.002
0.011 (0.001) −0.009 (0.026) 0.003 (0.021) −0.003 (0.015) −0.002
−0.001 (0.001) −0.010 (0.022) 0.004 (0.019) 0.004 (0.014) 0.004

σ12 = 0.9

ni = 20
10 0.005 (0.036) −0.084 (0.343) −0.072 (0.343) −0.085 (0.255) −0.016

0.081 (0.084) −0.119 (0.269) −0.124 (0.264) −0.120 (0.168) −0.013
−0.005 (0.076) −0.114 (0.182) −0.140 (0.180) −0.121 (0.075) −0.007

50 −0.002 (0.006) −0.042 (0.052) −0.036 (0.053) −0.039 (0.041) −0.004
0.069 (0.020) −0.023 (0.073) −0.031 (0.060) −0.031 (0.044) −0.007
−0.008 (0.012) −0.021 (0.051) −0.029 (0.052) −0.022 (0.016) 0.000

100 0.000 (0.004) −0.005 (0.027) −0.015 (0.033) −0.012 (0.022) −0.003
0.076 (0.013) −0.020 (0.035) −0.029 (0.027) −0.027 (0.021) −0.005
−0.007 (0.006) −0.015 (0.031) −0.024 (0.029) −0.016 (0.025) 0.001

ni = 100
10 0.008 (0.007) −0.097 (0.181) −0.111 (0.179) −0.098 (0.157) −0.005

0.013 (0.012) −0.107 (0.266) −0.098 (0.236) −0.102 (0.194) −0.011
0.005 (0.012) −0.099 (0.237) −0.096 (0.210) −0.085 (0.197) 0.003

50 −0.004 (0.001) −0.012 (0.042) −0.009 (0.038) −0.010 (0.035) −0.001
0.010 (0.002) −0.020 (0.053) −0.026 (0.047) −0.024 (0.043) −0.004
−0.001 (0.002) −0.020 (0.054) −0.024 (0.046) −0.025 (0.050) −0.005

100 0.000 (0.001) 0.001 (0.018) −0.008 (0.018) −0.003 (0.016) 0.000
0.012 (0.001) −0.007 (0.030) −0.003 (0.023) −0.006 (0.023) −0.002
−0.002 (0.001) −0.006 (0.025) −0.001 (0.021) −0.002 (0.021) 0.001
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TABLE 10.3

Estimates from the Lung Cancer Data

d = 0 d = 1 d = 2

Treatment β −0.25 (0.09) −0.25 (0.10) −0.25 (0.12)
Bone 0.22 (0.09) 0.21 (0.10) 0.23 (0.14)
Liver 0.43 (0.09) 0.42 (0.09) 0.39 (0.09)
ps −0.60 (0.10) −0.64 (0.11) −0.65 (0.13)
Weight loss 0.20 (0.09) 0.22 (0.09) 0.21 (0.09)

Treatment σ — 0.27 (0.13) 0.21 (0.43)
Bone — — 0.36 (0.12)

10.4.1 Multicenter Clinical Trial

As the first example we consider the multicenter non-small cell lung cancer
trial mentioned earlier, which was also used as an example in Vaida and Xu
(2000). The trial enrolled 579 patients from 31 institutions. The primary end
point was patient death. There were two randomized treatment arms, and
the other important covariates that affected patient survival were: presence
or absence of bone metastases, presence or absence of liver metastases, per-
formance status at study entry, and whether there was weight loss prior to
entry. Gray (1995) used a score test for the existence of random treatment
effect, and found it to be significant.
Vaida and Xu considered several different models for the data. The first

column (d = 0) of Table 10.3 is the classicCoxmodel fitwith the five covariates
but no random effects. The second column (d = 1) is PHMM (Equation 10.7)
with fixed effects for the five covariates and a random treatment effect, that is,
random treatment by institution interaction. The estimated standard devi-
ation σ̂ = 0.27 of the random treatment effect is comparable in magnitude
to the fixed treatment effect of −0.25 (Z1 = 1 for the CAV-HEM arm, 0 for
the CAV arm). It is therefore not surprsing in Figure 10.3 that some insti-
tutions have estimated treatment effects close to zero, whereas others have
approximately double the fixed treatment effect. Note that Figure 10.3 is the
plot of β̂1 + b̂i, where β̂1 is the estimated fixed treatment effect, and b̂i is the
empirical Bayes estimate of the random treatment effect for institution i. Vaida
and Xu (2000) also provided the emprical Bayes credibility intervals for the
estimated treatment effect of each institution. Figure 10.4, taken from Vaida
and Xu (2000), plots the EM sequences for each of the six finite dimensional
parameters. Plots like these are a good way for monitoring EM convergence,
especially in the absence of an automated stopping rule. Automated stopping
rules, on the other hand, also need to be validated through comparison to the
empirical convergent sequences.
We may also attempt to fit model (10.1) to the data, that is, a random effect

on the baseline hazard. It was shown inGray (1995) that therewas not a signi-
ficant variation of patient survival in the CAV arm across all institutions; note
the codingZ1 = 0 forCAVarm implies that this corresponds to nonsignificant
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FIGURE 10.3
Estimated treatment effects by institution for the lung cancer data.

variance component under model (10.1). When we tried to fit model (10.1) to
the data, we found that the variance parameter of bi converged to zero during
the EM algorithm. The result of the above two model fits means that there
was significant institutional variation in patient survival in the CAV-HEM
arm, but not in the CAV arm. This was indeed the case due to the complexity
of the medical procedure in the CAV-HEM arm, as compared to the standard
treatment CAV arm. Further investigation into the procedures carried out at
institutions 16 and 18, especially in comparison to institutions 19, 28, and
29, may shed light on the ways to achieve maximum benefit of the regimen
should further research be desired.
Since institutional differencesmight also be caused bydifferences in patient

population, Vaida and Xu (2000) tried to fit all five covariates with random
effects, andwith adiagonal�matrix for the variances. As a result the variance
parameters of the random effects for liver metastases, performance status,
and weight loss converged to zero during the EM algorithm. As mentioned
before if the true value of a variance parameter is zero, there is a positive
probability that its MLE is zero. This has been established in theory under the
linear mixedmodels both asymptotically and in finite samples, and is closely
related to the fact that the likelihood ratio statistic for testing zero variance
components has a mixed chi-squared distribution under the null hypothesis
(Crainiceanu and Ruppert, 2004).
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Finally, amodelwith the remaining two randomeffects terms, one for treat-
ment and one for bone metastases, was fit. The results are in the last column
of Table 10.3 (d = 2). The bone metastases turned out to have a fairly strong
random effect, with estimated standard deviation of 0.36. Note that this is
also a binary variable codedwith 0 and 1. Although standard errors are given
for all the parameter estimates, those for the variance components should not
be used directly to test against zero by assuming normality, since the null
hypothesis lies on the boundary of the parameter space. See the discussion
section for testing zero variance components. Note also that for this data set
the estimates of the fixed regression effects did not change substantially after
inclusion of the random effects. The emphasis of the random effects model
here is the investigation of institutional variations in the covariate effects.

10.4.2 Twin Data

As mentioned earlier, one of the applications of PHMM is genetic data. In
particular, much work has been done in genetic epidemiology to make use
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of twin data, as they provide a way to examine the relative contributions of
genetic and environmental factors to disease onset. The assumption here is
that monozygotic (MZ) twins have the exact same genes, and any difference
in disease within twin pairs should come from environmental factors. In con-
trast, dizygotic (DZ) twins only share half of their genes, and differences in
disease could be the result of environment and genetics. More specifically,
the total variance of twin resemblance on traits is partitioned into three parts:
additive genetic (G), common environment (C), and unique environment (E).
The additive genetic factor represents twin similarity arising from addictive
effects of alleles; the common environmental factor includes all nongenetic
factors shared within a twin pair that leads to twin similarity; unique envir-
onmental factor includes all nongenetic factors unshared within a twin pair
and leads to twin dissimilarity.
When the end point of a twin study is time to event with possible right-

censoring, such as age at onset of a disease, the PHMMcan be used. Themore
classic linear mixed model handles continuous outcomes with no censoring,
and the generalized linear mixed model handles dichotomized or categorical
outcomes. Another method that is sometimes used in genetic epidemiology
is structural equation modelling, which also requires dichotomizing age at
onset on divided time intervals, and is unable to handle some of the bivariate
censored cases in twin data (Liu et al., 2004a). To model the dependence
structure of the MZ and DZ twins using PHMM, we need a vector of six
random effects: b = (b1, b2, . . . , b6)′. For an MZ twin pair i, let b1i denote the
contribution from the common genetic G and the common environmental C
factors, and b2i and b3i denote the unique environmental E factors for twin 1
and twin 2, respectively, so that

λi1(t) = λ0(t) exp(b1i + b2i), (10.15)

λi2(t) = λ0(t) exp(b1i + b3i), (10.16)

when no covariates are included. We can write

Var(b1i) = σ 2G + σ 2C, Var(b2i) = Var(b3i) = σ 2E . (10.17)

For a DZ twin pair i, let b4i denote the common genetic (1/2) and the
common environmental factors, and b5i and b6i denote the unique genetic
(1/2) and the unique environmental factors for twin 1 and twin 2, respectively,
so that

λi1(t) = λ0(t) exp(b4i + b5i), (10.18)

λi2(t) = λ0(t) exp(b4i + b6i). (10.19)
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We can then write

Var(b4i) =
σ 2G
2
+ σ 2C, Var(b5i) = Var(b6i) =

σ 2G
2
+ σ 2E . (10.20)

Owing to the construction of these random effects, that is, to decompose
the total variance, it is necessary to assume that they are independent of each
other. Therefore, the variance matrix for b is

� =



σ 2G + σ 2C
σ 2E

σ 2E
σ 2G
2
+ σ 2C

σ 2G
2
+ σ 2E

σ 2G
2
+ σ 2E


. (10.21)

The above twin model was applied to the VET Registry data mentioned
earlier. The telephone-administrated psychiatric interviews were based on
the Diagnostic and Statistical Manual of Mental Disorder Version III Revised
(DSM-III-R, Robins et al., 1989). After giving verbal informed consent, the
twins were asked questions about several aspects of alcohol use, including
frequency, amount, age at onset of various symptoms, duration of each symp-
tom, and mood or perception changes associated with alcohol drinking. Of
the 10,253 eligible individuals, 8,169 (80%) were successfully interviewed.
Zygosity was determined by responses to questions relating to the similarity
of physical appearance, along with blood group typing method. The 3372
complete twin pairs of known zygosity (1874 MZ pairs and 1498 DZ pairs)
were included in the analysis described below.
By applying standard DIS-III-R computing algorithms, individual symp-

toms and the diagnoses of alcohol abuse were derived from the responses
to the questions. Using the age at onset of alcohol abuse as outcome, we fit
the above twin model to the VET Registry data, first with no covariates. The
estimates are given in Table 10.4, where in the parentheses are the standard
errors. In order to interpret the results as genetic and environmental contri-
butions to the actual age at onset of alcohol abuse, as opposed to the hazard
of it, we make use of the transformation model Equation 10.9. Here the total
variance is σ 2G + σ 2C + (σ 2E + 1.645), and the estimated genetic contribution σ 2G
as a percentage of it is 36%, whereas the common environmental contribution
is estimated to be 9%. Note that without taking into account the extra indi-
vidual (residual) variance of 1.645, wewould have had a genetic contribution
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TABLE 10.4

Estimates from the VET Registry Data

Proportion of
Contribution Estimates (SE) Total∗ (SE)

σ 2G 1.08 (0.15) 36% (5%)

σ 2C 0.27 (0.05) 9% (2%)

σ 2E 0.02 (0.01) 55% (4%)

∗ Total is σ 2G + σ 2C + σ 2E + 1.645.

of 79%. This 79% is in fact the genetic contribution to the variation in the log
hazard of age at onset, but not to the variation of the random variable age at
onset itself. The 36% genetic contribution turned out to be very comparable to
what had been previously reported in the literature on genetic contributions
to the onset of alcohol abuse.
The twin model described above can be easily extended to incorporate

covariates as in Equation 10.7. It is also possible to incorporate covariate by
gene interactions. Liu et al. (2004a) considered the possibly different genetic
and common environment contributions to the transition period from regu-
lar alcohol use to alcohol dependence, among early and late regular alcohol
users. The early users were defined as those who started regular alcohol use
before the age of 40, while the late users after age 40. For such a dichotom-
ized covariate, a vector of 12 random effects was used to model the covariate
interactionwith the genetic and environmental factors. The variancematrix is
similar to Equation 10.21, albeit with two sets of the variance parameters, one
for the early users and one for the late users. The authors found substantially
larger genetic contributions among the early users (45%) than among the late
users (16%), while the common environmental contribution was much lar-
ger among the late users. Such findings may have potential prevention or
intervention implications, since for late users appropriate strategies might be
considered to intervene on environmental determinants so as to reduce the
risk of developing alcohol dependence.
Finally, the above twin model can be extended to handle multivariate out-

comes in twin data, such as the ages at onset of multiple categories of alcohol
dependence symtoms (see Robins et al., 1989, for definition), or joint mod-
elling of ages at onset of alcohol and tobacco abuses. In the case of bivariate
outcomes, such as alcohol and tobacco abuses, again a vector of 12 ran-
dom effects is used. But unlike the case with a binary covariate above, the
variance matrix is no longer diagonal, since we cannot assume independ-
ence between the genetic contributions to alcohol and to tobacco abuses.
More specifically, denote (b1A, b2A, . . . , b6A) the random effects correspond-
ing to alcohol abuse, and (b1T , b2T , . . . , b6T) the random effects corresponding
to tobacco abuse. Then the variance matrix� for the vector of random effects
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b = (b1A, b1T , b2A, b2T , . . . , b6A, b6T)′ is block-diagonal:

diag

(σ 2GA + σ 2CA τ1
τ1 σ 2GT + σ 2CT

)
,
(
σ 2EA τ2
τ2 σ 2ET

)
,
(
σ 2EA τ2
τ2 σ 2ET

)
,


σ 2GA
2
+ σ 2CA τ3

τ3
σ 2GT
2
+ σ 2CT

 ,


σ 2GA
2
+ σ 2EA τ4

τ4
σ 2GT
2
+ σ 2ET

 ,


σ 2GA
2
+ σ 2EA τ4

τ4
σ 2GT
2
+ σ 2ET


 ,

where τ1, . . . , τ4 are the covariances of the pairwise random effects, and σ 2GA,
σ 2GT , and so forth are the variance decompositions corresponding to alcohol
and tobacco abuse, respectively.

10.5 Discussion

In this chapterwe reviewed the extension of themost commonly usedpropor-
tional hazards regression model in failure time data analysis to applications
involving correlated failure times. Alternatives to the proportional hazards
model have also been extended in this context. Most of these works were
under the linear mixed model, or equivalently, the accelerated failure time
(AFT) model with random effects. The linear mixed models are attractive
especially for interpretation purposes, since the variation in the outcome vari-
able is directly decomposed into different attributes. In addition, the linear
marginal and conditional models are nested, whereas this is not the case for
the proportional hazards regression (see also Hougaard et al., 1994; Keiding
et al., 1997). Hughes (1999) extended the linear mixed models with normal
errors by treating the right-censored data as missing in the EM algorithm.
Pan and Louis (2000) used a slightly different algorithm that required the
normality working assumption of the error terms only in the sampling steps.
Ha et al. (2002) applied hierarchical likelihood to models with only random
intercept, also under the normal error assumption.
Relatively few works have been done on model diagnostics under either

model (10.1) or model (10.7). Xu and Gamst (2007) studied the effect of
non-proportional hazards on the parameter estimates and proposedmethods
to check the proportional hazards assumption under model (10.7). Glidden
(1999), Viswanathan andManatunga (2001) and Economou andCaroni (2005)
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proposed methods for checking the frailty distribution under Equation 10.1.
O’Quigley and Stare (2002) and Duchateau et al. (2002), on the other hand,
showed that the estimate of the fixed effects and the variance components can
be robust to the misspecification of the frailty distribution. O’Quigley and
Stare (2002) also compared the efficiency of estimation under model (10.1)
relative to the stratified proportional hazards model.
Another aspect under PHMM is hypothesis testing, especially testing

whether the variances of the random effects are significantly different from
zero; that is, whether the random effects should be included in the model.
As mentioned before, the null hypothesis in this case lies on the bound-
ary of the parameter space. Gray (1995) and Commenges and Andersen
(1995) proposed a score test for no random effects in the model. Andersen
et al. (1999) showed that the score test is more efficient than modelling
the cluster effects as fixed effects for a categorical covariate that indicates
the clusters. The score test, however, cannot test for a subset of the ran-
dom effects where the null model also includes some random effects. Xu
et al. (2006) as well as forthcoming work by one of the authors and col-
league (presented at 2005 WNAR in Fairbanks, Alaska) developed methods
for model selection and for checking the proportional hazards assumption
under the PHMM.
Future work is needed to create a professional software, so that the com-

putational methods described above can be more accessible to applied users.
In creating such a software, although automated stopping rules should be
incorporated, it is perhaps also important to have visual monitoring of the
EM sequence. In our experience the convergence pattern can be different for
different data structure and different models fitted to the same data. A note-
worthy case is the convergence of some of the parameter values to zero in
the EM sequence, which can be slow. A possible improvement is through the
parameter expansion of Liu et al. (1998). Another issue is the computation of
the variance of the estimators. The observed informationmatrix includes that
for the discrete baseline hazard function, and is therefore of the dimension
greater than the number of failures in the dataset. Inversion of such a matrix
can occasionally be a problem for large registry data. An alternativemethod is
to use the profile likelihoodwith the baseline hazard as a nuisance parameter,
when of interest are the fixed and random effects. Computation of the profile
likelihood is also discussed in Xu et al. (2006).
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11.1 Introduction

Innovative statistical methods are needed to take advantage of recent
advances in biological, biomedical, and medical research, especially in
biotechnology and the human genome project for disease diagnosis and
prognosis. Some of these methods include: linear discriminant analysis,
quadratic discriminant analysis, logistic discrimination, k-nearest neighbor
classifier, support vector machine, classification trees, and random forests.
These methods play important role in the classificatory problems. Improving
the accuracy of the classification of diseased versus nondiseased samples is
one of the ongoing challenges in the world of biological research. This can be
done only by developing an appropriate method that is suitable for the data
at hand.
A conventional classification problem usually considers observations on

more than one response variable or characteristic taken at a given time point.
However, in medical research it is often found that observations on one
variable or characteristic are taken repeatedly over time. These are called uni-
variate repeated measures data. However, in many medical survival studies,
patients with diseases such as AIDS or cancer are followed up at success-
ive intervals of time, and these clinical trials often report repeated outcome
measures on more than one variable. Such data are often referred to as
the multivariate repeated measures data or doubly multivariate data. Also,
the number of such repeated measurements rarely form a long series, hence
sophisticated time series modelingmay not be applicable. Nonetheless, these
repeatedmeasurements on the sameunit or subject are stochastically depend-
ant or correlated with each other, and these correlations should be taken
into account for developing the classification rules. For continuous data this
dependence is often modeled through some covariance structure. Also, the
assumption of multivariate normality is usually made.
In this chapter, we will review the extensions of the classical discriminant

analysis methods to consider the classification for continuous univariate and
multivariate repeated measures data. For repeated measures, a covariance
structure will often be assumed. Some of the possibilities for the covariance
structure are compound symmetry (CS), autoregressive of order one (AR(1)),
moving average, and circulant. A CS structure specifies that correlation is
same among all repeated measures regardless of occasion of measurement.
An AR(1) structure specifies that the correlations are larger for time points
close to each other than for those that are far away. A circulant or circular
covariance structure arises naturally in many situation (Khattree and Naik,
1994). In this structure the observations in the immediate neighbors are more
strongly correlated. Fuller (1976) has shown that a circular covariance can be
used as an approximation for any stationary absolutely summable covariance
structure, and thus can be used in a generic way.
Classification problems using repeated measures on a single variable were

first addressed by Choi (1972). Choi developed a mixed effects model for
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classification using repeatedmeasurements on one variable by assuming that
the repeated measurements retain the same mean over time and are equicor-
related in a given group. Gupta (1980, 1986) extended the method to the
multivariate scenario, where a number of variables are measured repeatedly
over time. Gupta and Logan (1990) examined the classical approach to this
problem, as well as Bayesian predictive discrimination (Logan and Gupta,
1993) that uses a diffuse prior for the mean vectors and the variance–
covariance matrices. Nevertheless, none of these studies addressed the
problem of small sample case. The issue of small sample case was finally
addressed by Roy (2002), and Roy and Khattree (2005a,b, 2006). They con-
sidered theprobleminsmall sample situationbyassumingKroneckerproduct
structure on variance–covariance matrix. Later Roy (2006a) extended the
problemof classification ofmultivariate repeatedmeasures datawithmissing
values in a mixed model set up.
This article provides a reviewof classification rulesunder the assumptionof

multivariate normality for populations with certain structured and unstruc-
tured mean vectors and under certain covariance structures. These rules are
especially applicable and have been shown to be effective when the number
of observations is not large enough to estimate the variance–covariance mat-
rix unstructurally, and thus the traditional classification rules fail. We will
consider the classification in the context of two populations. The general case
of k populations follows in a straightforward manner. The classification rules
mentioned in this article are under the assumption of equal prior probabilities
and equal costs. Changes where they vary can be incorporated in a routine
fashion as indicated in Johnson and Wichern (2002). Classification rules for
univariate repeated measures data will be discussed in Section 11.2 and clas-
sification rules for multivariate repeated measures data with complete data
set will be discussed in Section 11.3. Testing for various covariance structures
is considered in Section 11.4 and two real life data examples are discussed
in Section 11.5. Furthermore, classification rules for multivariate repeated
measures data with missing values will be discussed in Section 11.6.

11.2 Classification in Case of Univariate Repeated
Measures Data

Let yp×1 represent the repeated measures on the subject taken over p time
points. Additional multiple subscripts describing population and subject
within population will be used on y for further description. We assume that
for each of the twopopulations j, the distribution of y is described by p-variate
normal distributionwithmeanµj andvariance–covariancematrix�j, j = 1, 2.
Let yjit be the measurement on the ith individual in the jth population

at the �-th time point, j = 1, 2; i = 1, 2, . . . ,nj; t = 1, 2, . . . , p. Thus, yji =
(yji1, yji2, . . . , yjip)′ is a p×1 randomvector corresponding to the ith individual
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in the jth population. The matrix �j is assumed to be p × p positive definite.
With p repeated measurements per patient, p(p + 1)/2 number of unknown
parameters must be estimated in an unstructured covariance matrix. Often n,
the number of observations is less than p. In such cases the traditional clas-
sification methods (Kshirsagar, 1972; McLachlan, 1992; Khattree and Naik,
2000) cannot be applied. This is another practical reason that wemust impose
certain covariance structures on �j. Even when n > p, one may like to have
a more parsimonious model with as few parameters as possible. We will
adopt the CS covariance structure in Section 11.2.1 and the AR(1) covariance
structure in Section 11.2.2.
We assume some structures on mean vectors as well. Examples of constant

mean vector structure can be found in various genetic studies, where it is
often found that mutations do not occur in genes over time; they just stay
dormant. We assume that the means of various repeated measures remain
constant over time. Thus, in the population j, µj = µj1p, j = 1, 2, where 1p is
a p× 1 vector containing all elements as unity.

11.2.1 Repeated Measures with Compound Symmetric
Covariance Structure

Let the variance–covariance matrix �j be CS. Then,

�j = σ 2j [(1− ρj)I p + ρj1p1′p],

where I p represents the p× p identity matrix. Since �j must be positive def-
inite, we must require that −1/(p− 1) < ρj < 1. We further assume that the
intraclass correlation ρj must satisfy the condition 0 < ρj < 1. It is well known
that the quantity |�j| and the matrix �−1j are as follows:

|�j| = σ 2pj [1+ (p− 1)ρj](1− ρj)p−1,

and

�−1j =
1

σ 2j (1− ρj)

[
I p −

ρj

1+ (p− 1)ρj 1p1
′
p

]
.

We have the following four possibilities under this structure:

Case 1: �1 = �2 (σ
2
1 = σ 22 , ρ1 = ρ2),

Case 2: �1 
= �2 (σ
2
1 = σ 22 , ρ1 
= ρ2),

Case 3: �1 
= �2 (σ
2
1 
= σ 22 , ρ1 = ρ2),

Case 4: �1 
= �2 (σ
2
1 
= σ 22 , ρ1 
= ρ2).
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Case 1: �1 = �2 = � (σ 21 = σ 22 = σ 2, ρ1 = ρ2 = ρ)
Andrews et al. (1986) have considered this case in the spirit of logistic

discrimination. As they have shown, the linear classification rule based on y
simplifies to,

Allocate an individual with response y to Population 1 if
p∑

l=1
yl ≥ µ1 + µ22

p,

and to Population 2 otherwise.

Clearly this classification rule is independent of �.
Given n1 + n2 = n (say) random observations Y 1 = (y11, y12, . . . , y1n1)

from Population 1 and Y 2 = (y21, y22, . . . , y2n2) from Population 2, define

W j =
∑nj

i=1(yji − ȳj)(yji − ȳj)′, for j = 1, 2, as the within sum of squares and
cross products matrix for the sample from the jth population, where ȳ1 and
ȳ2 are two sample mean vectors for the two populations.
The maximum likelihood estimates of µ1 and µ2 are given by:

µ̂j =
1′p�−1j ȳj

1′p�−1j 1p
= 1′pȳj

p
(=mj1, say), j = 1, 2. (11.1)

Case 2: �1 
= �2 (σ
2
1 = σ 22 = σ 2, ρ1 
= ρ2)

The quadratic classification rule based on y in this case, simplifies to,

Allocate an individual with response y to Population 1 if

− 1
2σ 2

[(
1

1− ρ1 −
1

1− ρ2
) p∑

l=1
y2l −

(
ρ1

(1− ρ1)(1+ (p− 1)ρ1)

− ρ2

(1− ρ2)(1+ (p− 1)ρ2)
)( p∑

l=1
yl

)2
+ 1
σ 2

(
µ1

1+ (p− 1)ρ1 −
µ2

1+ (p− 1)ρ2
) p∑

l=1
yl

≥ p
2σ 2

(
µ21

1+ (p− 1)ρ1 −
µ22

1+ (p− 1)ρ2

)
− p− 1

2
ln
(
1− ρ2
1− ρ1

)

− 1
2
ln
(
1+ (p− 1)ρ2
1+ (p− 1)ρ1

)
,

and to Population 2 otherwise.
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Themaximumlikelihoodestimatesµ1 andµ2 are the sameas inEquation 11.1.
The maximum likelihood estimates of ρ1, ρ2 and σ 2 are obtained by
simultaneously and iteratively solving the following three equations:

−np(1− ρ1){1+ (p− 1)ρ1}(1− ρ2){1+ (p− 1)ρ2}σ 2
+ {1+ (p− 1)ρ1}(1− ρ2){1+ (p− 1)ρ2}a8
− (1− ρ2){1+ (p− 1)ρ2}ρ1b8
+ (1− ρ1){1+ (p− 1)ρ1}{1+ (p− 1)ρ2}a9
− (1− ρ1){1+ (p− 1)ρ1}ρ2b9 = 0,

n1p(p− 1)ρ1(1− ρ1){1+ (p− 1)ρ1}σ 2
− {1+ (p− 1)ρ1}2a8 + {1+ (p− 1)ρ21}b8 = 0,

and

n2p(p− 1)ρ2(1− ρ2){1+ (p− 1)ρ2}σ 2
− {1+ (p− 1)ρ2}2a9 + {1+ (p− 1)ρ22}b9 = 0,

where a8 = trW 11, a9 = trW 21, b8 = tr(J pW 11), b9 = tr(J pW 21) and W j1 =
W j + nj(ȳj −mj11p)(ȳj −mj11p)′, j = 1, 2, and J p is a p× pmatrix containing
all elements as unity.
This can be achieved by using the Newton–Raphson method.

Case 3: �1 
= �2 (σ
2
1 
= σ 22 , ρ1 = ρ2 = ρ)

In this case the quadratic classification rule based on y is given by:

Allocate an individual with response y to Population 1 if

− 1
2(1− ρ)

(
1
σ 21

− 1
σ 22

) p∑
l=1

y2l −
ρ

1+ (p− 1)ρ

( p∑
l=1

yl

)2
+ 1
(1+ (p− 1)ρ)

(
µ1

σ 21

− µ2
σ 22

) p∑
l=1

yl

≥ p
2(1+ (p− 1)ρ)

(
µ21

σ 21

− µ
2
2

σ 22

)
− p
2
ln
σ 22

σ 21

,

and to Population 2 otherwise.

It can be seen that the means µj can be estimated by formula given in
Equation 11.1. Themaximum likelihoodestimates ofρ, σ 21 andσ

2
2 are obtained
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by simultaneously and iteratively solving,

− n1p(1− ρ){1+ (p− 1)ρ}σ 21 + {1+ (p− 1)ρ}a8 − ρb8 = 0,

− n2p(1− ρ){1+ (p− 1)ρ}σ 22 + {1+ (p− 1)ρ}a9 − ρb9 = 0,

and

n(p− 1)(1− ρ){1+ (p− 1)ρ}pρσ 21 σ 22 − (a8σ 22 + a9σ 21 ){1+ (p− 1)ρ}2
+ (b8σ 22 + b9σ 21 ){1+ (p− 1)ρ2} = 0,

where a8, b8, a9 and b9’s have been already defined earlier.

Case 4: �1 
= �2 (σ
2
1 
= σ 22 , ρ1 
= ρ2)

In this case the quadratic classification rule based on y is given by:

Allocate an individual with response y to Population 1 is

− 1
2

(
1

σ 21 (1− ρ1)
− 1
σ 22 (1− ρ2)

) p∑
l=1

y2l

+ 1
2

(
ρ1

σ 21 (1− ρ1)(1+ (p− 1)ρ1)

− ρ2

σ 22 (1− ρ2)(1+ (p− 1)ρ2)
)( p∑

l=1
yl

)2

+
(

µ1

σ 21 (1+ (p− 1)ρ1)
− µ2

σ 22 (1+ (p− 1)ρ2)

) p∑
l=1

yl

≥ p
2

(
µ21

σ 21 (1+ (p− 1)ρ1)
− µ22

σ 22 (1+ (p− 1)ρ2)

)

− p
2
ln
σ 22

σ 21

− p− 1
2

ln
(
1− ρ2
1− ρ1

)
− 1
2
ln
(
1+ (p− 1)ρ2
1+ (p− 1)ρ1

)
,

and to Population 2 otherwise.

Means µj are estimated as earlier. However, the maximum likelihood
estimates of ρ1 and σ 21 , ρ2 and σ

2
2 are obtained by solving,

− n1p(1− ρ1){1+ (p− 1)ρ1}σ 21 + {1+ (p− 1)ρ1}a8 − ρ1b8 = 0,

− n2p(1− ρ2){1+ (p− 1)ρ2}σ 22 + {1+ (p− 1)ρ2}a9 − ρ2b9 = 0,

n1p(p− 1)ρ1{1+ (p− 1)ρ1}(1− ρ1)σ 21
− {1+ (p− 1)ρ1}2a8 + {1+ (p− 1)ρ21}b8 = 0,



C5777: “c5777_c011” — 2007/10/27 — 13:03 — page 330 — #8

330 Computational Methods in Biomedical Research

and

n2p(p− 1)ρ2{1+ (p− 1)ρ2}(1− ρ2)σ 22
− {1+ (p− 1)ρ2}2a9 + {1+ (p− 1)ρ22}b9 = 0.

See Roy and Khattree (2003a) for more details on all four cases discussed
above.

11.2.2 Discrimination with Repeated Measures with AR(1) Covariance
Structure

Suppose the repeated measures are modeled using the first order
autoregressive (AR(1)) covariance structure given by the process

yt − µ = ρ(yt−1 − µ)+ εt,
where {εt} is a sequence of independent and identically distributed (i.i.d)
normal random variables with mean 0 and variance σ 2, and ρ is an unknown
parameter satisfying the condition |ρ| < 1. Thus, for j = 1, 2,

�j = σ 2j



1 ρj ρ2j · · · ρ
p−1
j

ρj 1 ρj · · · ρ
p−2
j

ρ2j ρj 1 · · · ρ
p−3
j

· · · · · · ·
· · · · · · ·
· · · · · · ·

ρ
p−1
j ρ

p−2
j ρ

p−3
j · · · 1


,

and �−1j is a tridiagonal matrix given by,

�−1j =
1

σ 2j (1− ρ2j )
�0j,

where

�0j =



1 −ρj 0 · · · 0 0

−ρj 1+ ρ2j −ρj · · · 0 0

0 −ρj 1+ ρ2j · · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 0 · · · 1+ ρ2j −ρj
0 0 0 · · · −ρj 1


,
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and

|�j| = (σ 2j )p (1− ρ2j )p−1.

Similar to what was done in Section 11.2.1, we will consider various cases.

Case 1: �1 = �2 = � (σ 21 = σ 22 = σ 2, ρ1 = ρ2 = ρ)
The linear classification rule based on response y is,

Allocate an individual with response y to Population 1 if

[pȳ1,p − ρ(p− 2)ȳ2,p−1] ≥ 1
2
[p− ρ(p− 2)](µ1 + µ2),

and to Population 2 otherwise.

Where ȳl,m = (yl + yl+1 + · · · + ym)/(m− l+ 1); l,m = 1, 2, . . . , p. It may be
noted that the classification rule is independent of σ 2.
The maximum likelihood estimates of µ1,µ2, ρ, and σ 2 are obtained by

simultaneously and iteratively solving the following four equations:

(p− 2)ρµ1 − pµ1 + pm11 − (p− 2)ρm12 = 0,

(p− 2)ρµ2 − pµ2 + pm21 − (p− 2)ρm22 = 0,

n(p− 1)σ 2ρ − n(p− 1)σ 2ρ3 − {ρ(α1 + β1)− γ1ρ2 − γ1}
+ n1µ1{ρ(α2 + β2)− γ2ρ2 − γ2}
+ n2µ2{ρ(α3 + β3)− γ3ρ2 − γ3}
− (n1µ21 + n2µ22){ρ(2p− 2)− (p− 1)ρ2 − (p− 1)} = 0,

and

σ 2 = 1
np(1− ρ2) [(β1ρ

2 − 2γ1ρ + α1)

− n1µ1(β2ρ2 − 2γ2ρ + α2)− n2µ2(β3ρ2 − 2γ3ρ + α3)
+ (n1µ21 + n2µ22)((p− 2)ρ2 − 2(p− 1)ρ + p)],

where mj1 = 1′pȳj/p, mj2 = (1′pȳj − ȳj1 − ȳjp)/(p− 2), j = 1, 2 and ȳj1 and ȳjp
are respectively the first and pth elements of the vector ȳj. The vectors ȳ1
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and ȳ2 are two sample mean vectors for the two populations andW j, j = 1, 2
have been defined in the previous section.

α1 = trW 0, β1 = trW 0 − w0,11 − w0,pp,

γ1 = w0,12 + w0,23 + · · · + w0,p−1 p,

α2 = trW 5, β2 = trW 5 − w5,11 − w5,pp,

γ2 = w5,12 + w5,23 + · · · + w5,p−1 p and

α3 = trW 6, β3 = trW 6 − w6,11 − w6,pp,

γ3 = w6,12 + w6,23 + · · · + w6,p−1 p.

The quantity wl,ij here denotes the (i, j)th element of the matrix W l. W 0 =
W 1 + W 2 + n1W 3 + n2W 4, W 3 = ȳ1ȳ

′
1, W 4 = ȳ2ȳ

′
2, W 5 = (1pȳ′1 + ȳ11′p),

W 6 = (1pȳ′2 + ȳ21′p).

Case 2: �1 
= �2 (σ
2
1 = σ 22 = σ 2, ρ1 
= ρ2)

The quadratic classification rule based on y is given by:

Allocate an individual with response y to Population 1 if

− 1
2σ 2

(
1

1− ρ21
− 1
1− ρ22

) p∑
l=1

y2l

− 1
2σ 2

(
ρ21

1− ρ21
− ρ22

1− ρ22

) p−1∑
l=2

y2l

+ 1
σ 2

(
ρ1

1− ρ21
− ρ2

1− ρ22

) p−1∑
l=1

ylyl+1

+ p
σ 2

(
µ1

1+ ρ1 −
µ2

1+ ρ2
)
ȳ1,p

− p− 2
σ 2

(
µ1ρ1

1+ ρ1 −
µ2ρ2

1+ ρ2
)
ȳ2,p−1

≥ 1
2σ 2

[
µ21

1+ ρ1 (p− (p− 2)ρ1)−
µ22

1+ ρ2 (p− (p− 2)ρ2)
]

− p− 1
2

ln

(
1− ρ22
1− ρ21

)
,

and to Population 2 otherwise.
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The maximum likelihood estimates of µ1,µ2, ρ1, ρ2, and σ 2 are obtained by
solving the following equations. Details can be found in Roy (2002).

(p− 2)ρ1µ1 − pµ1 + pm11 − (p− 2)ρ1m12 = 0,

(p− 2)ρ2µ2 − pµ2 + pm21 − (p− 2)ρ2m22 = 0,

σ 2 = 1
np(1− ρ21)

[(β8ρ21 − 2γ8ρ1 + α8)− n1µ1(β2ρ21 − 2γ2ρ1 + α2)

+ n1µ21((p− 2)ρ21 − 2(p− 1)ρ1 + p)]

+ 1
np(1− ρ22)

[(β9ρ22 − 2γ9ρ2 + α9)− n2µ2(β3ρ22 − 2γ3ρ2 + α3)

+ n2µ22((p− 2)ρ22 − 2(p− 1)ρ2 + p)],

n1(p− 1)σ 2ρ1 − n1(p− 1)σ 2ρ31 − (ρ1(α8 + β8)− γ8ρ21 − γ8)
+ n1µ1(ρ1(α2 + β2)− γ2ρ21 − γ2)
− n1µ21(ρ1(2p− 2)− (p− 1)ρ21 − (p− 1)) = 0,

and

n2(p− 1)σ 2ρ2 − n2(p− 1)σ 2ρ32 − (ρ2(α9 + β9)− γ9ρ22 − γ9)
+ n2µ2(ρ2(α3 + β3)− γ3ρ22 − γ3)
− n2µ22(ρ2(2p− 2)− (p− 1)ρ22 − (p− 1)) = 0,

where

α8 = trW 8, β8 = trW 8 − w8,11 − w8,pp,

γ8 = w8,12 + w8,23 + · · · + w8,p−1p,

α9 = trW 9, β9 = trW 9 − w9,11 − w9,pp,

γ9 = w9,12 + w9,23 + · · · + w9,p−1 p,

W 8 = W 1 + n1W 3,

and

W 9 = W 2 + n2W 4.
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Case 3: �1 
= �2 (σ
2
1 
= σ 22 , ρ1 = ρ2 = ρ)

The quadratic classification rule based on y is given by:

Allocate an individual with response y to Population 1 if

− 1
2(1− ρ2)

(
1
σ 21

− 1
σ 22

) p∑
l=1

y2l + ρ2
p−1∑
l=2

y2l − 2ρ
p−1∑
l=1

ylyl+1


+ 1
(1+ ρ)

(
µ1

σ 21

− µ2
σ 22

)
[pȳ1,p − ρ(p− 2)ȳ2,p−1]

≥ 1
2(1+ ρ)

(
µ21

σ 21

− µ
2
2

σ 22

)
[p− ρ(p− 2)] − p

2
ln
σ 22

σ 21

,

and to Population 2 otherwise.

The maximum likelihood estimates of µ1,µ2, ρ, σ 21 , and σ
2
2 are obtained by

simultaneously and iteratively solving the following equations:

(p− 2)ρµ1 − pµ1 + pm11 − (p− 2)ρm12 = 0,

(p− 2)ρµ2 − pµ2 + pm21 − (p− 2)ρm22 = 0,

σ 21 =
1

n1p(1− ρ2) [β8ρ
2 − 2γ8ρ + α8 − n1µ1(β2ρ2 − 2γ2ρ + α2)

+ n1µ21((p− 2)ρ2 − 2(p− 1)ρ + p)],

σ 22 =
1

n2p(1− ρ2) [β9ρ
2 − 2γ9ρ + α9 − n2µ2(β3ρ2 − 2γ3ρ + α3)

+ n2µ22((p− 2)ρ2 − 2(p− 1)ρ + p)],

and

n(p− 1)(ρ − ρ3)σ 21 σ 22 − σ 22 ((α8 + β8)ρ − γ8ρ2 − γ8)
+ n1µ1σ 22 ((α2 + β2)ρ − γ2ρ2 − γ2)
− n1µ21σ

2
2 ((2p− 2)ρ − (p− 1)ρ2 − (p− 1))

− σ 21 ((α9 + β9)ρ − γ9ρ2 − γ9)
+ n2µ2σ 21 ((α3 + β3)ρ − γ3ρ2 − γ3)
− n2µ22σ

2
1 ((2p− 2)ρ − (p− 1)ρ2 − (p− 1)) = 0.
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Case 4: �1 
= �2 (σ
2
1 
= σ 22 , ρ1 
= ρ2)

The quadratic classification rule based on y is given by:

Allocate an individual to Population 1 if

− 1
2

(
1

σ 21 (1− ρ21)
− 1
σ 22 (1− ρ22)

) p∑
l=1

y2l

− 1
2

(
ρ21

σ 21 (1− ρ21)
− ρ22

σ 22 (1− ρ22)

) p−1∑
l=2

y2l

+
(

ρ1

σ 21 (1− ρ21)
− ρ2

σ 22 (1− ρ22)

) p−1∑
l=1

ylyl+1

+
(

µ1

σ 21 (1+ ρ1)
− µ2

σ 22 (1+ ρ2)

)
pȳ1,p

− (p− 2)
(

µ1ρ1

σ 21 (1+ ρ1)
− µ2ρ2

σ 22 (1+ ρ2)

)
ȳ2,p−1

≥ 1
2

(
µ21

σ 21 (1+ ρ1)
(p− (p− 2)ρ1)− µ22

σ 22 (1+ ρ2)
(p− (p− 2)ρ2)

)

− p
2
ln
σ 22

σ 21

− p− 1
2

ln

(
1− ρ22
1− ρ21

)
,

and to Population 2 otherwise.

The maximum likelihood estimates of µ1, ρ1, σ 21 and µ2, ρ2, σ
2
2 are obtained

by simultaneously and iteratively solving the following equations:

(p− 2)ρ1µ1 − pµ1 + pm11 − (p− 2)ρ1m12 = 0,

(p− 2)ρ2µ2 − pµ2 + pm21 − (p− 2)ρ2m22 = 0,

σ 21 =
1

n1p(1− ρ21)
[β8ρ21 − 2γ8ρ1 + α8 − n1µ1(β2ρ21 − 2γ2ρ1 + α2)

+ n1µ21((p− 2)ρ21 − 2(p− 1)ρ1 + p)],

σ 22 =
1

n2p(1− ρ22)
[β9ρ22 − 2γ9ρ2 + α9 − n2µ2(β3ρ22 − 2γ3ρ2 + α3)

+ n2µ22((p− 2)ρ22 − 2(p− 1)ρ2 + p)],
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n1(p− 1)(ρ1 − ρ31)σ 21 − (ρ1(α8 + β8)− γ8ρ21 − γ8)
+ n1µ1(ρ1(α2 + β2)− γ2ρ21 − γ2)
− n1µ21(ρ1(2p− 2)− (p− 1)ρ21 − (p− 1)) = 0,

and

n2(p− 1)(ρ2 − ρ32)σ 22 − (ρ2(α9 + β9)− γ9ρ22 − γ9)
+ n2µ2(ρ2(α3 + β3)− γ3ρ22 − γ3)
− n2µ22(ρ2(2p− 2)− (p− 1)ρ22 − (p− 1)) = 0.

See Roy and Khattree (2003a) for details.

11.2.3 Some Simulation Results

We apply simulation to study the impact of the different parameters on mis-
classification error rate (MER) when the true variance–covariance matrices
were CS/AR(1). Comparisons are made of the situations when maximum
likelihood estimate was performed under these covariance structures as
opposed to ignoring the structure and taking the covariance matrices as
unstructured. Traditional discriminant function both linear and quadratic
(McLachlan, 1992) are used to calculate the MER for the case of unstructured
variance covariance matrix.
Data are randomlygenerated from the independent p-variate normal distri-

butions with respective means µj (=µj1p) and variance–covariance matrices
�j (σ

2
j , ρj) from the populations j, j = 1, 2, both formoderate (25, 25) and large

(50, 50) samples. The discriminant function is calculated on the basis of mod-
erate and large training samples, and then actual MER is calculated based on
the 2000 test samples drawn from each population.
In order to see the effects of various parameters, a number of combinations

of µ1,µ2, σ 21 , σ
2
2 , ρ1, and ρ2 are taken. The values of ρs are chosen as 0.1, 0.3,

0.5, 0.7, and 0.9 and the number of repeated measures p are chosen as 3, 5,
8, and 10. Numerous simulations were performed to see the effect of these
parameters on MER. Complete details of the simulations and the results are
given in Roy and Khattree (2003a).
Asmentionedearlier, Case1 forCScovariance structurehasbeenstudiedby

Andrews et al. (1986) in the logistic discrimination set up. They have explored
the effect of the value of ρ on the a posteriori odds ratio.Wewill, therefore, not
consider that case here. We study the Case 1 for AR(1) covariance structure.
We observe that for fixed parameters µ1,µ2, σ , and ρ the MER decreases
with p (Table 11.1). In other cases also we observe that for fixed parameters
µ1,µ2, σ 21 , σ

2
2 , ρ1, and ρ2 the MER decreases with p. It is evident from the

Tables 11.2 through 11.4. In all these tables for each value of ρ, the second row
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TABLE 11.1

Covariance Structure AR(1)
(σ 21 = σ 22 = 1,µ1 = 2,µ2 = 0)

(n1,n2) p→ 3 5 8 10
ρ ↓

(50,50) 0.1 5.700 1.875 0.350 0.100
6.150 2.700 0.375 0.225

0.3 8.025 3.875 1.100 0.625
8.450 4.800 1.400 1.000

0.5 10.675 6.800 3.325 2.050
10.900 8.100 3.225 2.775

0.7 13.200 9.975 6.850 5.375
13.025 11.975 7.175 6.125

0.9 15.000 14.375 11.850 11.050
15.225 15.900 12.625 11.925

(25,25) 0.1 5.375 1.950 0.375 0.100
5.950 3.075 0.650 0.450

0.3 7.750 3.800 1.375 0.675
8.475 5.150 2.025 1.275

0.5 10.475 6.600 3.250 2.050
10.850 7.525 4.325 3.525

0.7 12.625 9.875 7.025 5.275
12.800 11.250 7.750 6.825

0.9 14.400 14.225 12.175 11.350
14.975 15.275 12.875 12.700

represents the MER corresponding to the unstructured variance–covariance
matrix.
TheMER decreases with p owing to the fact that additional repeatedmeas-

ures provide additional information. We also expect that after certain point
additional repeated measures do not provide any significant extra inform-
ation, and also that we can see in our simulation result. Decrease in MER
is quite significant when p increases from 3 to 5 and for smaller value of ρ.
Decrease in MER is not significant when p increases from 8 to 10. In fact,
sometimes when p increases from 8 to 10, MER increases little bit for higher
values of ρ. Table 11.4 clearly exhibit this phenomenon. This increase depends
on the combinations of µ1,µ2, σ 21 , and σ

2
2 . This pattern is not strictly followed

in the case of unstructured covariance matrix.
In Cases 2 and 4, MER increases with either ρ1 or ρ2 when the other para-

meters are fixed (Tables 11.2, 11.3, and 11.4). In other cases, when ρ1 = ρ2 = ρ
(say), similar things happen, that is, MER increases with ρ. Onewould expect
this to happen since an increase in ρ means repeated measurements are less
informative and this leads to increase in MER.
In Cases 3 and 4, MER increases with either σ 21 or σ

2
2 when the other para-

meters are fixed. In Cases 1 and 2, when σ 21 = σ 22 = σ 2 (say), similar things
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TABLE 11.2

Covariance Structure: Compound Symmetric
(ρ1 = 0.9, σ 21 = σ 22 = 2,µ1 = 4,µ2 = 0)

(n1,n2) p→ 3 5 8 10
ρ2 ↓

(50,50) 0.1 2.975 1.250 0.550 0.200
3.250 1.700 0.750 0.400

0.3 3.725 2.050 0.975 0.475
4.200 2.575 1.300 0.775

0.5 4.600 3.175 1.525 1.025
5.050 3.925 2.325 1.625

0.7 5.850 5.025 2.925 2.450
6.025 6.200 4.650 4.500

(25,25) 0.1 2.625 1.100 0.750 0.250
3.100 1.600 0.875 0.725

0.3 3.575 1.950 1.125 0.600
4.075 2.725 1.400 1.575

0.5 4.650 2.825 1.575 1.050
4.725 4.675 2.200 3.450

0.7 5.550 4.800 3.150 2.500
6.150 8.150 4.450 6.875

TABLE 11.3

Covariance Structure Compound Symmetric
(ρ1 = 0.9, σ 21 = 1, σ 22 = 2,µ1 = 4,µ2 = 0)

(n1,n2) p→ 3 5 8 10
ρ2 ↓

(50,50) 0.1 1.025 0.325 0.050 0.025
0.975 0.250 0.150 0.025

0.3 1.600 0.525 0.100 0.075
1.650 0.625 0.225 0.175

0.5 2.175 1.025 0.350 0.175
2.375 0.925 0.500 0.275

0.7 2.800 1.700 0.750 0.375
2.925 2.125 1.350 0.950

(25,25) 0.1 0.725 0.225 0.075 0.075
1.125 0.400 0.200 0.075

0.3 1.350 0.275 0.150 0.075
1.550 0.800 0.375 0.400

0.5 1.950 0.550 0.400 0.175
2.300 1.600 0.676 1.050

0.7 2.725 1.300 0.875 0.475
3.075 3.175 1.400 2.600



C5777: “c5777_c011” — 2007/10/27 — 13:03 — page 339 — #17

Classification Rules for Repeated Measures Data from Biomedical Research 339

TABLE 11.4

Covariance Structure Compound Symmetric
(ρ1 = 0.9, σ 21 = 2, σ 22 = 1,µ1 = 4,µ2 = 0)

(n1,n2) p→ 3 5 8 10
ρ2 ↓

(50,50) 0.1 2.300 1.600 0.675 0.525
2.525 1.750 0.900 0.750

0.3 3.075 2.225 1.350 1.100
3.225 2.550 1.450 1.450

0.5 3.750 3.075 1.875 1.950
3.925 3.975 2.450 2.875

0.7 4.650 4.550 2.950 3.575
4.550 5.700 3.700 5.225

(25,25) 0.1 1.850 1.125 0.750 0.675
2.375 1.975 1.075 1.175

0.3 2.650 1.775 1.400 1.250
3.000 2.600 1.650 2.300

0.5 3.275 2.450 1.925 2.000
3.650 5.875 2.150 4.275

0.7 3.975 3.650 2.875 3.600
4.375 9.550 4.025 8.075

happen, that is, MER increaseswith σ 2. MER is not a function of σ 21 /σ
2
2 . When

ρ1 > ρ2, MER is more if σ 21 is larger than σ
2
2 , as it is evident from Tables 11.3

and 11.4. This is also expected here because with less information, large σ 2

leads to increase in MER. For unstructured covariance matrix case also, MER
increases with either σ 21 or σ

2
2 when the other parameters are fixed.

In all the above cases, MER is consistently larger in the case of unstructured
covariance matrix than the CS/AR(1) structured covariance matrix. This is
more evident (roughly 1.5–3 times) in the case of moderate sample and when
the value of p is 5 or more.

11.3 Classification in Case of Multivariate Repeated
Measures Data

Let y represent the vector containing the relevant information of a subject. We
assume that there are q response variables and on each variable observations
are taken over p equidistant time points. Thus, y is a pq × 1 vector with
elements arranged as follows. At first time point all q responses are arranged
one below the other. This is followed by q responses at second time point and
so on. As earlier additional multiple subscripts will be used on y for further
description.
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Let yjit be a q × 1 vector of measurements on the ith individual in the jth
population at the tth time point, j = 1, 2; i = 1, 2, . . . ,nj; t = 1, 2, . . . , p.
Thus, yji = (y′ji1, y

′
ji2, . . . , y

′
jip)
′ is a pq × 1 random vector corresponding to

the ith individual in the jth population. We assume yji ∼ Npq(µj,�j). The
matrix �j is assumed to be pq × pq positive definite. However, as pq can
be large, thereby resulting in a large number of unknown parameters, we
will impose some structure on �j. We thus assume �j = V j ⊗ �j, where
V j and �j, respectively, are p × p and q × q positive definite matrices and
⊗denotes theKroneker product definedbyA⊗B = (aijB). Thematrix�j, j =
1, 2 represents the variance–covariance matrix between themeasurements on
all response variables at a given time point. It is assumed that it does not
depend on a particular time point and is same for all time points. The matrix
V j, j = 1, 2 is the correlation matrix of the repeated measures on a given
response variable and it is assumed to be the same for all response variables.
Thus, cov(yjit) = vjtt�j and cov(yjil, yjim) = vjlm�j, where V j = (vjlm), l =
1, . . . , p; m = 1, . . . , p.
We will discuss CS correlation structure on V j in Section 11.3.1 and AR(1)

correlation structure on V j in Section 11.3.2. We will develop classification
rules under the following four cases:

Case 1: �1 = �2 (V 1 = V 2,�1 = �2),
Case 2: �1 
= �2 (V 1 
= V 2,�1 = �2),
Case 3: �1 
= �2 (V 1 = V 2,�1 
= �2),
Case 4: �1 
= �2 (V 1 
= V 2,�1 
= �2).

Although it is common to assign a covariance structure for repeated meas-
ures, there is noobvious justification to imposea structureon�j. Therefore, no
structure whatsoever on�j will be assumed except that it is positive definite.
As in the univariate case here also possibly there can be some struc-

ture on mean vector. The structured mean vector case, when the mean
remains unchanged over time as well as the unstructured mean vector will
be discussed in each of the following subsections.

11.3.1 Classification Rules with CS Correlation Structure on V

Here we assume V j to have the CS correlation structure. Thus, V j =
(1 − ρj)I p + ρj1p1′p. Since V j must be positive definite, we also require that
−(1/(p− 1)) < ρj < 1. We will further assume that 0 < ρj < 1.
The spectral decomposition of V j yields V j = P�jP

′, where P is an
orthogonal matrix with first column as (1/

√
p)1p and �j is a diagonal matrix

given by

�j =
[
λj1 0
0 λj2I p−1

]
.
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Here λj1 and λj2 (λj1 > λj2) are two distinct eigenvalues of V j. Since the
elements of P do not depend on V j, and λj1 = 1+ (p− 1)ρj and λj2 = 1− ρj,
we make the canonical transformation of the data as,

wji = (P ′ ⊗ I q)yji.

Then wji is distributed as pq-dimensional normal with

E(wji) = (P ′ ⊗ I q)E(yji) = (P ′ ⊗ I q)µj,

and

Cov(wji) =


λj1�j 0 · · · 0
0 λj2�j · · · 0
· · · · · ·
· · · · · ·
0 0 · · · λj2�j

 ,

which is a block diagonal matrix. This transformation simplifies the classific-
ation problem. We present here the two cases.

11.3.1.1 Classification Rules with Structured Mean Vectors

Here we assume that the mean for a given characteristic remains constant
over time. We assume in population j, for the characteristic c, µjc = δjc1p,
c = 1, . . . , q. So, µjcs are all p × 1 vectors. Therefore, µj = 1p ⊗ δj, where
δj = (δj1, δj2, . . . , δjq)′. Accordingly,

E(wji) = (P ′ ⊗ I q)µj = (P ′ ⊗ I q)(1p ⊗ δj) = P ′1p ⊗ δj = [√pδ′j, 0, . . . , 0]′.

Partition the pq× 1 vector wji into p independent blocks of q× 1 vectors as

wji = [w′ji1,w′ji2, . . . ,w′jip]′,

where wji1, . . . ,wjip are all independent and the first component wji1 of wji is
distributed as q-variate normal with mean vector

√
p δj and the variance–

covariance matrix λj1�j. Further, wji2, . . . ,wjip are identically distributed
as q-variate normal with zero mean vector and with the same variance–
covariance matrix λj2�j, j = 1, 2. Therefore, except for the first component
wji1, the problem reduces to the problem of discriminating between popula-
tionswhen themean vectors for the twopopulations are same and are known.
Bartlett and Please (1963) have studied this problem when the covariance
matrices have CS structure with the same correlation coefficient for the popu-
lations. Geisser (1964), Geisser and Desu (1967, 1968), Enis and Geisser (1970)
consider this problem in Bayesian frameworkwith commonmean vector (not
necessarily the zero vector) and with unstructured covariance matrix.
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We will have two approaches. In Approach 1, to be discussed in
Section11.3.1.1.1, wewill confineanddiscuss the classification rule basedonly
on the first componentwj1. Section 11.3.1.1.2 discusses Approach 2, wherewe
will consider all the independent componentswj1,wj2, . . . ,wjp ofwj to classify
the individuals.

11.3.1.1.1 Classification Rules Based on wj1

Case 1: �1 = �2(V 1 = V 2 = V ,�1 = �2 = �)
Let λ1 = 1 + (p − 1)ρ and λ2 = 1 − ρ are two distinct eigenvalues of V

with λ1 > λ2. Then, wj1 ∼ Nq(
√
pδj, λ1�) in Population j, j = 1, 2. The linear

discriminant rule based on w1 simplifies to,

Allocate an individual with response y to Population 1 if

(δ′1 − δ′2)�−1w1 ≥
√
p
2
(δ′1δ1 − δ′2δ2),

and to Population 2 otherwise.

The population parameters δ1, δ2, and � are unknown and should be estim-
ated on the basis of two training samples of sizes n1 and n2 from the respective
populations. We consider maximum likelihood approach for the estimation.

Maximum Likelihood Estimation of δ1, δ2, and �: As in the univari-
ate case here also, given n1 + n2 = n (say) random observations Y 1 =
(y11, y12, . . . , y1n1) from Population 1 and Y 2 = (y21, y22, . . . , y2n2) from

Population 2, we define W j =
∑nj

i=1(yji − ȳj)(yji − ȳj)′, for j = 1, 2, as the
within sum of squares and cross products matrix for the sample from the
jth population, where ȳ1 and ȳ2 are two sample mean vectors for the two
samples, and ȳj = (ȳ′j1, ȳ′j2, . . . , ȳ′jp)′ is a pq×1 vector, ȳjt represents the sample
mean of q responses at the tth time point in the jth population. Themaximum
likelihood estimates of δ1 and δ2 are obtained in closed forms as

δ̂1 = 1
p
(ȳ11 + ȳ12 + · · · + ȳ1p), (11.2)

and

δ̂2 = 1
p
(ȳ21 + ȳ22 + · · · + ȳ2p). (11.3)

We note that the expressions for δ̂1 and δ̂2 do not involve the unknown
parameters V and � on their estimates. The maximum likelihood estimates



C5777: “c5777_c011” — 2007/10/27 — 13:03 — page 343 — #21

Classification Rules for Repeated Measures Data from Biomedical Research 343

of ρ (and hence V ) and � are obtained by simultaneously and iteratively
solving Equations 11.4 and 11.5.

(p− 1)k0ρ3 + {k0 − (p− 1)k0 + (p− 1)2k3 − (p− 1)k4}ρ2
+ {2(p− 1)k3 − k0}ρ + (k3 − k4) = 0, (11.4)

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlm (yjim − δ̂j)(yjil − δ̂j)′, (11.5)

where k0 = nq(p−1)p, k1 = (ȳ1−1p⊗δ̂1)(ȳ1−1p⊗δ̂1)′, k2 = (ȳ2−1p⊗δ̂2)(ȳ2−
1p ⊗ δ̂2)′ andW = W 1 +W 2 + n1k1 + n2k2. We define k3 = tr(I p ⊗ �−1)W
and k4 = tr(J p ⊗ �−1)W . The algorithm for solving these equations is as
follows:

Algorithm 11.3.1

Step 1: Get the pooled sample variance–covariance matrix for
repeated measures. Say, it isG. Then obtain an initial estim-
ate of ρ as ρ̂o = (1′pG1p − trG)/p(p − 1), and ensure that

0 < ρ̂o < 1. Take V̂ o = (1 − ρ̂o)I p + ρ̂o1p1′p as an initial
estimate of V .

Step 2: Compute �̂ from Equation 11.5.

Step 3: Compute k3 and k4 using �̂ obtained in Step 2.
Step 4: Compute the value of ρ̂ by solving the cubic
Equation 11.4. Ensure that 0 < ρ̂ < 1. Truncate ρ̂ to 0 or 1, if
it is outside this range.

Step 5: Compute the revised estimate V̂ from ρ̂.

Step 6: Compute the revised estimate �̂ from Equation 11.5
using V̂ obtained in Step 5.

Step 7: Repeat Steps 3 to 6 until convergence is attained. This
is ensured by verifying if the maximum of the absolute dif-
ference between two successive values of ρ̂ and the absolute
difference between two successive values of trace of �̂ is less
than a predetermined number ε.

Case 2: �1 
= �2 (V 1 
= V 2,�1 = �2 = �)
Let λj1 = 1+ (p − 1)ρj and λj2 = 1− ρj are the two distinct eigenvalues of

V j with λj1 > λj2, for j = 1, 2. Then, wj1 ∼ Nq(
√
p δj, λj1�) in Population j,
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j = 1, 2. Therefore, the quadratic discriminant rule based on w1 is given by:

Allocate an individual with response y to Population 1 if

− 1
2

(
1
λ11
− 1
λ21

)
(w′1�

−1w1)+√p
(
δ′1
λ11
− δ′2
λ21

)
�−1w1

≥ p
2

(
δ′1�−1δ1
λ11

− δ
′
2�
−1δ2
λ21

)
− 1
2
ln
(
λ21

λ11

)
,

and to Population 2 otherwise.

Themaximum likelihood estimates of δ1 and δ2 are identical to Equations 11.2
and 11.3. The maximum likelihood estimates of ρ1, ρ2, and � are obtained by
simultaneously and iteratively solving the following three equations:

(p− 1)k01ρ31 + {k01 − (p− 1)k01 + (p− 1)2k8 − (p− 1)l8}ρ21
+ {2(p− 1)k8 − k01}ρ1 + (k8 − l8) = 0,

(p− 1)k02ρ32 + {k02 − (p− 1)k02 + (p− 1)2k9 − (p− 1)l9}ρ22
+ {2(p− 1)k9 − k02}ρ2 + (k9 − l9) = 0,

and

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − δ̂j)(yjil − δ̂j)′,

where k8 = tr(I p ⊗ �−1)S1, l8 = tr(J p ⊗ �−1)S1, k9 = tr(I p ⊗ �−1)S2, l9 =
tr(J p ⊗ �−1)S2,S1 = W 1 + n1k1,S2 = W 2 + n2k2, k01 = n1q(p − 1)p and
k02 = n2q(p− 1)p.
The computation algorithm similar to that described in the previous case

can be devised here and for the later cases in this section as well.

Case 3: �1 
= �2 (V 1 = V 2 = V , �1 
= �2)

Here wj1 ∼ Nq(
√
p δj, λ1�j) in Population j, j = 1, 2. Therefore, the

quadratic discriminant rule based on w1 is given by:

Allocate an individual with response y to Population 1 if

− 1
2λ1

w′1(�
−1
1 −�−12 )w1 +

√
p
λ1
(δ′1�

−1
1 − δ′2�−12 )w1

≥ p
2λ1

(δ′1�
−1
1 δ1 − δ′2�−12 δ2)− 1

2
ln
( |�2|
|�1|

)
,

and to Population 2 otherwise.
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Themaximum likelihood estimates of δ1 and δ2 are identical to Equations 11.2
and 11.3. We solve the following equations to obtain themaximum likelihood
estimates of ρ,�1 and �2.

(p− 1)k0ρ3 + {k0 − (p− 1)k0 + (p− 1)2(k5 + k6)− (p− 1)(k5 + k6)}ρ2
+ {2(p− 1)(k5 + k6)− k0}ρ + (k5 + k6 − l5 − l6) = 0,

and

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlm(yjim − δ̂j)(yjil − δ̂j)′, for j = 1, 2,

where k5 = tr(I p ⊗ �−11 )S1, l5 = tr(J p ⊗ �−11 )S1, k6 = tr(I p ⊗ �−12 )S2, and
l6 = tr(J p ⊗�−12 )S2.

Case 4: �1 
= �2 (V 1 
= V 2,�1 
= �2)
Here wj1 ∼ Nq(

√
pδj, λj1�j) in Population j, j = 1, 2. Therefore, the

quadratic discriminant rule based on w1 is given by:

Allocate an individual with response y to Population 1 if

− 1
2
w′1

(
�−11
λ11
− �

−1
2
λ21

)
w1 +√p

(
δ′1�

−1
1

λ11
− δ
′
2�
−1
2

λ21

)
w1

≥ p
2

(
δ′1�

−1
1 δ1

λ11
− δ
′
2�
−1
2 δ2

λ21

)
− 1
2
ln
( |�2|
|�1|

)
− 1
2
ln
(
λ21

λ11

)
,

and to Population 2 otherwise.

Again the maximum likelihood estimates of δ1 and δ2 are identical to
Equations 11.2 and 11.3. The maximum likelihood estimates of ρ1, ρ2,�1,
and �2 are obtained by solving

(p− 1)k01ρ31 + {k01 − (p− 1)k01 + (p− 1)2k5 − (p− 1)l5}ρ21
+ {2(p− 1)k5 − k01}ρ1 + (k5 − l5) = 0,

(p− 1)k02ρ32 + {k02 − (p− 1)k02 + (p− 1)2k6 − (p− 1)l6}ρ22
+ {2(p− 1)k6 − k02}ρ2 + (k6 − l6) = 0,

and

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − δ̂j)(yjil − δ̂j)′, for j = 1, 2.
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11.3.1.1.2 Classification Rules Based on wj1,wj2, . . . ,wjp

In this section classification rules are developed based on all the independ-
ent components wj1,wj2, . . . ,wjp. We can perhaps allocate an individual to
the Population j based on the posterior probability P(j |w1) or P(j |w2), . . ., or
P(j |wp) (McLachlan, 1992). However, eachposteriorprobabilitymaynot clas-
sify an individual in the same way. One way to combine all the information
into a single index is by computing the average posterior probability (assum-
ing equal priors) based on all the posterior probabilities P(j |w1), P(j |w2), . . .,
and P(j |wp) namely,

P(j |w) = P(j |w1)+ P(j |w2)+ · · · + P(j |wp)

p
, j = 1, 2.

Then the classification rule is

Allocate an individual to Population 1 if

the average posterior probability P(1 |w) ≥ 0.5,

and to Population 2 otherwise.

To estimate the average posterior probability P(1 |w)we will use the expres-
sions for the estimation of the population parameters δ1, δ2, λ11, λ12, λ21, λ22,
�1,�2. These have already been discussed in the previous section.

11.3.1.2 Classification Rules with Unstructured Mean Vectors

In this case we do not assume any structure on µj. However, as earlier the CS
structure on V j is assumed. Let P be the matrix as defined in Section 11.3.1
and alsowji as in Section 11.3.1. Since there is no structure on the mean vector
we have

E(wji) = (P ′ ⊗ I q)E(yji) = (P ′ ⊗ I q)µj = ej = [e′j1, e′j2, . . . , e′jp]′, (11.6)

and Cov(wji) is same as in Section 11.3.1. Partitioning the pq × 1 vector wji
as in Section 11.3.1.1, we observe that wji1 is distributed as q-variate normal
with mean vector ej1 and the variance–covariance matrix λj1�j. Each of the
other components wji2,wji3, . . . ,wjip is also q-variate normal with respective
mean vectors ej2, ej3, . . . , ejp, but with the same variance–covariance matrix
λj2�j for j = 1, 2. Furthermore, wji1,wji2, . . . ,wjip are all independent.
As in Section 11.3.1.1.2, we calculate the average posterior probability on

the basis of all the independent components w1,w2, . . . ,wp of w to classify an
individual. The classification rule will be same as in Section 11.3.1.1.2, and
the unknown parameters will be replaced by their MLEs, which will differ in
this case.
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Case 1: �1 = �2(V 1 = V 2 = V ,�1 = �2 = �)
The MLEs of µj’s are µ̂j = ȳj, j = 1, 2. To get the MLEs of ej1, ej2, . . . , ejp we

observe that êj = (P ′ ⊗ I q)µ̂j = [ζ̂ ′j1, ζ̂ ′j2, . . . , ζ̂ ′jp]′ (say). Therefore, the MLE of
ejl is êjl = ζ̂ jl for j = 1, 2; l = 1, 2, . . . , p.
Themaximumlikelihoodestimatesofρ and� areobtainedby simultaneously
and iteratively solving the following equations:

(p− 1)k0ρ3 + {k0 − (p− 1)k0 + (p− 1)2k′3 − (p− 1)k′4}ρ2
+ {2(p− 1)k′3 − k0}ρ + (k′3 − k′4) = 0, (11.7)

and

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlm(yjim − ȳjm)(yjil − ȳjl)′, (11.8)

where the pq×1 vector (yji− ȳj) is partitioned into p blocks of q×1 vectors as

(yji − ȳj) =
(
(yji1 − ȳj1)′, . . . , (yjip − ȳjp)′

)′
.

The quantity k0 is defined in Section 11.3.1.1.1 and W ′ = W 1 + W 2, k′3 =
tr(I p ⊗�−1)W ′ and k′4 = tr(J p ⊗�−1)W ′.
Case 2: �1 
= �2 (V 1 
= V 2,�1 = �2 = �)
As before, the MLEs of µj’s are µ̂j = ȳj and the MLE of ejl is ζ̂ jl for j = 1, 2

and l = 1, 2, . . . , p. The MLEs of ρ1, ρ2, and � are obtained by simultaneously
and iteratively solving the following equations:

(p− 1)k01ρ31 + {k01 − (p− 1)k01 + (p− 1)2k′8 − (p− 1)l′8}ρ21
+ {2(p− 1)k′8 − k01}ρ1 + (k′8 − l′8) = 0, (11.9)

(p− 1)k02ρ32 + {k02 − (p− 1)k02 + (p− 1)2k′9 − (p− 1)l′9}ρ22
+ {2(p− 1)k′9 − k02}ρ2 + (k′9 − l′9) = 0, (11.10)

and

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − ȳjm)(yjil − ȳjl)′, (11.11)

where k′8 = tr(I p ⊗ �−1)W 1, l′8 = tr(J p ⊗ �−1)W 1, k′9 = tr(I p ⊗ �−1)W 2,
and l′9 = tr(J p ⊗ �−1)W 2. The quantities k01 and k02 are defined in
Section 11.3.1.1.1.
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Case 3: �1 
= �2 (V 1 = V 2 = V , �1 
= �2)

Again the MLEs of µj’s are µ̂j = ȳj and the MLEs of ejl is ζ̂ jl for j = 1, 2
and l = 1, 2, . . . , p. The maximum likelihood estimates of ρ, �1, and �2 are
obtained by solving the following equations:

(p− 1)k0ρ3 + {k0 − (p− 1)k0 + (p− 1)2(k′5 + k′6)− (p− 1)(k′5 + k′6)}ρ2
+ {2(p− 1)(k′5 + k′6)− k0}ρ + (k′5 + k′6 − l′5 − l′6) = 0, (11.12)

and

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlm (yjim − ȳjm)(yjil − ȳjl)′, for j = 1, 2, (11.13)

where k′5 = tr(I p⊗�−11 )W 1, l′5 = tr(J p⊗�−11 )W 1, k′6 = tr(I p⊗�−12 )W 2, and
l′6 = tr(J p ⊗�−12 )W 2.

Case 4: �1 
= �2(V 1 
= V 2,�1 
= �2)
With µ̂j = ȳj and êjl = ζ̂ jl for j = 1, 2 and l = 1, 2, . . . , p, the maximum

likelihood estimates of ρ1, ρ2, �1, and �2 are obtained by solving

(p− 1)k01ρ31 + {k01 − (p− 1)k01 + (p− 1)2k′5 − (p− 1)l′5}ρ21
+ {2(p− 1)k′5 − k01}ρ1 + (k′5 − l′5) = 0, (11.14)

(p− 1)k02ρ32 + {k02 − (p− 1)k02 + (p− 1)2k′6 − (p− 1)l′6}ρ22
+ {2(p− 1)k′6 − k02}ρ2 + (k′6 − l′6) = 0, (11.15)

and

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − ȳjm)(yjil − ȳjl)′, for j = 1, 2. (11.16)

11.3.2 Classification Rules with AR(1) Correlation Structure on V

Often the correlation matrix of the repeated measures V j, j = 1, 2 may have
AR(1) structure. That is, for j = 1, 2,

V j =



1 ρj ρ2j · · · ρ
p−1
j

ρj 1 ρj · · · ρ
p−2
j

ρ2j ρj 1 · · · ρ
p−3
j

· · · · · · .
· · · · · · .

ρ
p−1
j ρ

p−2
j ρ

p−3
j · · · 1


.
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The determinant of thismatrix is given by |V j| =
(
1−ρ2j

)p−1, and its inverse is
given by, V −1j = (1−ρ2j )−1[I p+ρ2j C1+ρjC2], where C1 = diag(0, 1, . . . , 1, 0)
and C2 is a tridiagonal matrix with 0 on the diagonal and 1 on the first
superdiagonal and on the first subdiagonal.

11.3.2.1 Classification Rules with Structured Mean Vectors

Case 1: �1 = �2 (V 1 = V 2 = V ,�1 = �2 = �)
The linear classification rule in this case is given by:

Allocate an individual with response y to Population 1 if

(1′pV −1 ⊗ (δ1 − δ2)′�−1)y ≥
1
2
(1′pV −11p)[(δ1 − δ2)′�−1(δ1 + δ2)],

and to Population 2 otherwise.

Maximum Likelihood Estimation of δ1, δ2,V , and �: In this case,

δ̂j =
(∑p

m=1 v
1m
)
ȳj1 +

(∑p
m=1 v

2m
)
ȳj2 + · · · +

(∑p
m=1 v

pm
)
ȳjp(∑p

l=1
∑p

m=1 vlm
) , j = 1, 2,

(11.17)

where V −1 = (vlm). It may be observed that δ̂1 and δ̂2 are both free from
the unknown parameter �. The maximum likelihood estimates δ̂1, δ̂2, ρ̂, and
�̂ are obtained by simultaneously and iteratively solving Equations 11.16
through 11.8.

−2n(p− 1)qρ3 + c3ρ2 + [2n(p− 1)q− 2c1 − 2c2]ρ + c3 = 0, (11.18)

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlm (yjim − δj)(yjil − δj)′, (11.19)

where c1 = tr(I p ⊗ �−1)W , c2 = tr(C1 ⊗ �−1)W , c3 = tr(C2 ⊗ �−1)W and
W = W 1 +W 2 + n1k1 + n2k2, k1 = (ȳ1 − 1p ⊗ δ̂1)(ȳ1 − 1p ⊗ δ̂1)′, and k2 =
(ȳ2 − 1p ⊗ δ̂2)(ȳ2 − 1p ⊗ δ̂2)′.
The computations can be carried out by the following algorithm.

Algorithm 11.3.2

Step1:Get the initial pooled samplevariance–covariancematrix
for repeatedmeasures. Say it isG�. Get theaverageof thefirst
superdiagonal elements ofG�, say, ρ1�. Then get the average
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of the second superdiagonal elements of G�, say, ρ2� and so
on. The initial estimate of ρ is obtained as

ρ̂o =
(
(ρ1�)

p−1 + (ρ2�)(p−1)/2 + (ρ3�)(p−1)/3 + · · · + ρp−1�
p− 1

)1/p−1
,

and thus V̂ o, an initial estimate of V is obtained by replacing
ρ by ρ̂o.

Step 2: Compute δ̂1 and δ̂2 from Equation 11.16.
Step 3: Compute k1 and k2.

Step 4: Compute �̂ from Equation 11.18.
Step 5: Compute c1, c2, and c3.
Step 6: Compute the value of ρ̂ by solving the cubic
Equation 11.17. Ensure that 0 < ρ̂ < 1. Truncate ρ̂ to 0 or 1,
if it is outside this range.

Step 7: Compute the revised estimate V̂ from ρ̂.
Step 8: Repeat steps 2 through 7 until convergence is attained.
This is ensured by verifying if the maximum of the absolute
difference between two successive values of ρ̂, and the L1
distance between two successive values of δ̂1 and δ̂2, and the
absolute difference between two successive values of trace
of �̂ is less than a predetermined number ε.

Case 2: �1 
= �2 (V 1 
= V 2,�1 = �2 = �)
The quadratic classification rule is given by

Allocate an individual with response y to Population 1 if

− 1
2
y′[(V −11 − V −12 )⊗�−1]y + (1′pV −11 ⊗ δ′1�−1 − 1′pV −12 ⊗ δ′2�−1)y

≥ 1
2
[(1′pV −11 1p)(δ′1�

−1δ1)− (1′pV −12 1p)(δ′2�
−1δ2)] − q

2
ln
( |V 2|
|V 1|

)
,

and to Population 2 otherwise.

The maximum likelihood estimates of δ1, δ2, ρ1, ρ2, and � are obtained by
simultaneously and iteratively solving the following equations:

δ̂j =
(∑p

m=1 v
1m
j

)
ȳj1 +

(∑p
m=1 v

2m
j

)
ȳj2 + · · · +

(∑p
m=1 v

pm
j

)
ȳjp(∑p

l=1
∑p

m=1 v
lm
j

) , j = 1, 2,

(11.20)
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− 2n1(p− 1)qρ31 + d3ρ21 + [2n1(p− 1)q− 2d1 − 2d2]ρ1 + d3 = 0, (11.21)

− 2n2(p− 1)qρ32 + e3ρ22 + [2n2(p− 1)q− 2e1 − 2e2]ρ2 + e3 = 0, (11.22)

and

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − δj)(yjil − δj)′,

where S1 = W 1 + n1k1, S2 = W 2 + n2k2, d1 = tr(I p ⊗ �−1)S1, e1 = tr(I p ⊗
�−1)S2, d2 = tr(C1⊗�−1)S1, d3 = tr(C2⊗�−1)S1, e2 = tr(C1⊗�−1)S2, and
e3 = tr(C2 ⊗�−1)S2.
The computation algorithm similar to that described in the previous case

can be devised here and for the later cases in this section as well.

Case 3: �1 
= �2 (V 1 = V 2 = V ,�1 
= �2)

The quadratic classification rule is given by

Allocate an individual with response y to Population 1 if

− 1
2
y′[V −1 ⊗ (�−11 −�−12 )]y + [1′pV −1 ⊗ (δ′1�−11 − δ′2�−12 )]y

≥ 1
2
(1′pV −11p)(δ′1�

−1
1 δ1 − δ′2�−12 δ2)− p

2
ln
( |�2|
|�1|

)
,

and to Population 2 otherwise.

The maximum likelihood estimates of δj, j = 1, 2 are identical to
Equation 11.16. Thus, the maximum likelihood estimates of δ1, δ2, ρ,�1, and
�2 areobtainedbysolving the followingequations, alongwithEquation11.16.

− 2n(p− 1)qρ3 + (f3 + g3)ρ2 + [2n(p− 1)q− 2(f1 + g1)− 2(f2 + g2)]ρ
+ (f3 + g3) = 0, (11.23)

and

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlm(yjim − δj)(yjil − δj)′, j = 1, 2,

where f1 = tr(I p ⊗ �−11 )S1, g1 = tr(I p ⊗ �−12 )S2, f2 = tr(C1 ⊗ �−11 )S1, f3 =
tr(C2 ⊗�−11 )S1, g2 = tr(C1 ⊗�−12 )S2, and g3 = tr(C2 ⊗�−12 )S2.
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Case 4: �1 
= �2 (V 1 
= V 2,�1 
= �2)

The quadratic classification rule is given by

Allocate an individual with response y to Population 1 if

− 1
2
y′(V −11 ⊗�−11 − V −12 ⊗�−12 )y + (1′pV −11 ⊗ δ′1�−11 − 1′pV −12 ⊗ δ′2�−12 )y

≥ 1
2
[(1′pV −11 1p)(δ′1�

−1
1 δ1)− (1′pV −12 1p)(δ′2�

−1
2 δ2)]

− p
2
ln
( |�2|
|�1|

)
− q
2
ln
( |V 2|
|V 1|

)
,

and to Population 2 otherwise.

The maximum likelihood estimates of δj, j = 1, 2 are identical to
Equation 11.19. The maximum likelihood estimates of δ1, δ2, ρ1, ρ2,�1, and
�2 are obtained by simultaneously and iteratively solving the following
equations along with Equation 11.19.

− 2n1(p− 1)qρ31 + f3ρ21 + [2n1(p− 1)q− 2f1 − 2f2]ρ1 + f3 = 0, (11.24)

− 2n2(p− 1)qρ32 + g3ρ22 + [2n2(p− 1)q− 2g1 − 2g2]ρ2 + g3 = 0, (11.25)

and

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − δj)(yjil − δj)′, j = 1, 2.

11.3.2.2 Classification Rules with Unstructured Mean Vectors

The classification rules for eachof the four casesmentioned in the introduction
and the corresponding computational schemes for the maximum likelihood
estimation of the unknown parameters are given below.

Case 1: �1 = �2(V 1 = V 2 = V ,�1 = �2 = �)
The linear classification rule is given by:

Allocate an individual with response y to Population 1 if

(µ1 − µ2)′(V ⊗�)−1y ≥ 1
2
(µ1 − µ2)′(V ⊗�)−1(µ1 + µ2),

and to Population 2 otherwise.

The MLEs of µj are µ̂j = ȳj, j = 1, 2. The maximum likelihood estimates of ρ
and � are obtained by solving the following two equations:

−2n(p− 1)qρ3 + c′3ρ
2 + [2n(p− 1)q− 2c′1 − 2c′2]ρ + c′3 = 0,
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and

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlm(yjim − ȳjm)(yjil − ȳjl)′,

where c′1 = tr(I p ⊗ �−1)W ′, c′2 = tr(C1 ⊗ �−1)W ′, c′3 = tr(C2 ⊗ �−1)W ′,
W ′ = W 1 +W 2, andW j, j = 1, 2 are defined before.

Case 2: �1 
= �2 (V 1 
= V 2,�1 = �2 = �)
The quadratic classification rule is given by

Allocate an individual with response y to Population 1 if

− 1
2
y′[(V −11 − V −12 )⊗�−1]y + [µ′1(V 1 ⊗�)−1 − µ′2(V 2 ⊗�)−1]y

≥ 1
2
[µ′1(V 1 ⊗�)−1µ1 − µ′2(V 2 ⊗�)−1µ2] + q

2
ln
( |V 1|
|V 2|

)
,

and to Population 2 otherwise.

As in the previous case µ̂j = ȳj, j = 1, 2. Themaximum likelihood estimates of
ρ1, ρ2, and� are obtained by solving Equations 11.20 and 11.21 after changing
d1, e1, d2, d3, e2, and e3 byd′1, e

′
1, d
′
2, d
′
3, e
′
2, and e

′
3, respectively, and the following

equation:

�̂ = 1
np

2∑
j=1

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − ȳjm)(yjil − ȳjl)′,

where d′1 = tr(I p⊗�−1)W 1, e′1 = tr(I p⊗�−1)W 2, d′2 = tr(C1⊗�−1)W 1, d′3 =
tr(C2 ⊗�−1)W 1, e′2 = tr(C1 ⊗�−1)W 2, and e′3 = tr(C2 ⊗�−1)W 2.

Case 3: �1 
= �2 (V 1 = V 2 = V ,�1 
= �2)

The quadratic classification rule is given by

Allocate an individual with response y to Population 1 if

− 1
2
y′[V −1 ⊗ (�−11 −�−12 )]y + [µ′1(V ⊗�1)

−1 − µ′2(V ⊗�2)
−1]y

≥ 1
2
[µ′1(V ⊗�1)

−1µ1 − µ′2(V ⊗�2)
−1µ2] +

p
2
ln
( |�1)|
|�2)|

)
,

and to Population 2 otherwise.

Again µ̂j = ȳj, j = 1, 2. The maximum likelihood estimates of ρ, �1, and �2
are obtained by solving Equation 11.22 after changing f1, g1, f2, f3, g2, and g3
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by f ′1, g
′
1, f
′
2, f
′
3, g
′
2, and g′3 and the following two equations:

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlm(yjim − ȳjm)(yjil − ȳjl)′, j = 1, 2.

Here f ′1 = tr(I p⊗�−11 )W 1, g′1 = tr(I p⊗�−12 )W 2, f ′2 = tr(C1⊗�−11 )W 1, f ′3 =
tr(C2 ⊗�−11 )W 1, g′2 = tr(C1 ⊗�−12 )W 2, and g′3 = tr(C2 ⊗�−12 )W 2.

Case 4: �1 
= �2 (V 1 
= V 2,�1 
= �2)

The quadratic classification rule is given by

Allocate an individual with response y to Population 1 if

− 1
2
y′(V −11 ⊗�−11 − V −12 ⊗�−12 )y + [µ′1(V 1 ⊗�1)

−1 − µ′2(V 2 ⊗�2)
−1]y

≥ 1
2
[µ′1(V 1 ⊗�1)

−1µ1 − µ′2(V 2 ⊗�2)
−1µ2] + p

2
ln
( |�1)|
|�2)|

)
+ q
2
ln
( |V 1|
|V 2|

)
,

and to Population 2 otherwise.

As in the previous cases µ̂j = ȳj, j = 1, 2. The maximum likelihood equations
of ρ1, ρ2,�1, and �2 are obtained by simultaneously and iteratively solving
Equations 11.23 and 11.24 after changing f1, g1, f2, f3, g2, and g3 by f ′1, g

′
1, f
′
2, f
′
3,

g′2, and g′3 and the following two equations:

�̂j = 1
njp

nj∑
i=1

p∑
l=1

p∑
m=1

vlmj (yjim − ȳjm)(yjil − ȳjl)′, j = 1, 2.

11.3.3 A Simulation Study

To study the impact of the incorrect correlation structure on the MER when
the actual correlation structure is AR(1) and estimating and performing clas-
sification by assuming some other simple correlation structure, such as CS,
we use simulated data sets. To get a comparative picture we also study the
result parallelly when the actual correlation structure is AR(1) and estimating
and performing classification by assuming it as AR(1). We assume the struc-
ture of the mean vectors to be µj = 1p ⊗ δj, j = 1, 2, where δ1 = (2, 1, 1)′, and
δ2 = (0, 1, 0)′. The variance–covariance matrices to be �j = V j ⊗ �j, j = 1, 2,
where V j = V j(ρj), has AR(1) structure. We study the impact of the correl-
ation coefficient ρj’s by assuming its values as 0.1, 0.3, 0.5, 0.7, and 0.9. The
values of p are chosen as 3 and 5. The variance–covariance matrices �1 and
�2 are taken as

�1 =
2 1 2
1 4 3
2 3 5

 , and �2 =
1 0 0
0 1 0
0 0 1

 .
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TABLE 11.5

MERs for the Simulated Data in Case 1
δ1 = (2, 1, 1)′, δ2 = (0, 1, 0)′

(n1,n2)→ (20,20) (50,50)

ρ ↓ p→ Estimated Covariance 3 5 3 5
Structure

0.1 AR(1) 10.075 5.925 10.125 6.200
CS 10.175 5.875 10.175 6.075

0.3 AR(1) 13.275 9.200 13.200 9.375
CS 13.225 9.100 13.275 9.375

0.5 AR(1) 15.975 12.475 16.050 13.025
CS 16.425 12.925 16.575 13.225

0.7 AR(1) 18.075 16.250 18.425 17.075
CS 18.575 17.075 18.950 17.350

0.9 AR(1) 20.825 20.150 20.825 20.425
CS 20.875 20.425 21.075 21.000

Training samples of sizes (n1,n2) = (20, 20) and (50, 50) and test samples
of sizes (2000, 2000) are generated from pq-variate normal populations
Npq(µj,�j), where�j is defined in Section 11.3. On the basis of these samples,
we estimate (δ1, δ2), (�1,�2), and (ρ1, ρ2) using the maximum likelihood
method under CS correlation structure and also under AR(1) correlation
structure as discussed in Sections 11.3.1 and 11.3.2. Using these estimates,
the classification is performed separately on the test samples of size 2000
from each of the two populations and the MERs are calculated. Tables 11.5
through 11.8 show the MERs when the actual correlation structure is AR(1)
and we estimate it as AR(1) and as well as CS. The tables reveal that the MER
increases if the actual correlation structure is AR(1) and we estimate them
as CS, and if the value of ρ ≥ 0.5, in particular. That is, with higher correl-
ation coefficient the MER increases under wrong assumption of correlation
structure. Increase in MER under wrong assumption of correlation structure
is very prominent for the cases when �1 
= �2 (Tables 11.7 and 11.8). We
anticipate this, since in this case a large number of parameters are estimated.
We notice that for both small and large sample sizes, the larger value of p

(=5) corresponds to smallerMER. This is expected asmore repeatedmeasures
would provide more information. Further as ρ increases MER increases. As
mentioned inRoyandKhattree, (2005b) the classification rule forCase 2under
CS covariance structure is not balanced. Therefore, Table 11.6 only displays
the MER under AR(1) correlation structure.
For p = 3, we notice that there is notmuch change in theMERs for incorrect

assumption of the correlation structures for Case 1, but not in Cases 3 and 4.
We see that MER for incorrect classification increases with ρ, especially for
large p. This fact is evident from Tables 11.7 and 11.8. So, we feel that for
large number of repeated (p) measures, checking the structure of correlation
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TABLE 11.6

MERs for the Simulated Data in Case 2
ρ2 = 0.9, δ1 = (2, 1, 1)′, δ2 = (0, 1, 0)′

(n1,n2)→ (20,20) (50,50)

ρ ↓ p→ Estimated Cov 3 5 3 5
Structure

0.1 AR(1) 2.325 0.600 2.400 0.350
0.3 AR(1) 3.800 1.350 4.050 0.900
0.5 AR(1) 5.900 2.750 6.175 1.825
0.7 AR(1) 10.600 7.875 10.900 5.950

TABLE 11.7

MERs for the Simulated Data in Case 3
δ1 = (2, 1, 1)′, δ2 = (0, 1, 0)′

(n1,n2)→ (20,20) (50,50)

ρ1 ↓ p→ Estimated Cov 3 5 3 5
Structure

0.1 AR(1) 3.125 2.125 3.300 1.100
CS 4.050 3.050 4.150 2.950

0.3 AR(1) 4.150 2.925 4.225 1.850
CS 5.150 4.100 5.375 3.800

0.5 AR(1) 4.900 3.900 5.075 2.400
CS 6.175 5.600 6.225 4.975

0.7 AR(1) 5.800 5.125 5.875 3.000
CS 7.075 7.300 7.300 6.400

0.9 AR(1) 6.975 5.900 6.650 3.575
CS 8.375 9.475 8.175 8.275

structure on repeated measures before applying the classification rules is of
crucial importance, especially when the autoregressive correlation coefficient
ρ is large.
With the help of simulation study, we have shown that the MER decreases

with the number of repeated measures p, for both univariate and multivari-
ate repeated measures data. This is due to the fact that additional repeated
measures provide more information. We also expect that after certain point
additional repeated measures do not provide any significant extra informa-
tion and thiswas observed in our simulation results. We have also shown that
MER increases with ρ. One would expect this to happen since an increase in
ρ means repeated measurements are less informative.
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TABLE 11.8

MERs for the Simulated Data in Case 4
ρ2 = 0.9, δ1 = (2, 1, 1)′, δ2 = (0, 1, 0)′

(n1,n2)→ (20,20) (50,50)

ρ1 ↓ p→ Estimated Cov 3 5 3 5
Structure

0.1 AR(1) 0.375 0.450 0.225 0.050
CS 2.675 3.625 2.200 2.050

0.3 AR(1) 0.650 0.550 0.375 0.125
CS 3.400 4.325 2.825 2.200

0.5 AR(1) 1.125 0.850 0.775 0.250
CS 4.000 4.875 3.775 2.600

0.7 AR(1) 2.400 2.050 1.925 0.550
CS 5.050 5.375 5.300 3.300

11.4 Tests for Structures

In the previous section, we provided classification rules under various struc-
tures. How does one know that a particular structure is applicable? This calls
for developing some appropriate statistical tests for the structures, which we
have considered in the previous section. Tests are obtained under likelihood
ratio criterion (Roy and Khattree, 2003b).

11.4.1 Test Specifying the Mean Vector

We assume that the covariance matrix � has the covariance structure � =
V ⊗ � where V and �, respectively, are p × p and q × q positive definite
matrices. We assume V to have the CS correlation structure with 0 < ρ < 1.
Under these assumptions we may want to test the null hypothesis on mean.

(1) H1 : µ = 1p ⊗ δ versus K1 : µ unstructured,

where δ = (δ1δ2, . . . , δq)′. The null hypothesis implies that mean remains
constant over time for all characteristics. The likelihood ratio �1 for testing
H1 is given by

�1 = |V̂ o|−(qn/2)|�̂o|−(pn/2)e−(1/2) tr(V̂ o⊗�̂o)
−1W s

|V̂ |−(qn/2)|�̂|−(pn/2)e−(1/2) tr(V̂⊗�̂)−1S
,
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where ȳ = (ȳ′1, ȳ′2, . . . , ȳ′p)′ is the samplemeanvector, S =
∑n

i=1(yi−ȳ)(yi−ȳ)′
andW s = S + n(ȳ − 1p ⊗ δ̂)(ȳ − 1p ⊗ δ̂)′; V̂ o, �̂o are the maximum likelihood
estimates of V and � under H1 and V̂ , �̂ are those under no restrictions.
When n is large the sampling distribution of−2 ln�1 is well approximated

by a χ2ν1 distribution, where ν1 = q(p− 1).
The maximum likelihood estimate of δ is given by

δ̂ = 1
p
(ȳ1 + ȳ2 + · · · + ȳp).

The quantities �̂o and ρ̂o are obtained by solving the following equations:

(p− 1)k0ρ3 + {k0 − (p− 1)k0 + (p− 1)2s1 − (p− 1)s2}ρ2
+ {2(p− 1)s1 − k0}ρ + (s1 − s2) = 0,

and

�̂ = 1
np

n∑
i=1

p∑
l=1

p∑
m=1

vlm (yim − δ̂)(yil − δ̂)′,

where s1 = tr(I p ⊗�−1)W s and s2 = tr(J p ⊗�−1)W s.
Thus, the maximum likelihood estimates of V say V̂ o is given as V̂ o(ρ̂o) =

(1− ρ̂o)I p + ρ̂o1p1′p.
The maximum likelihood estimates of � and ρ say, �̂ and ρ̂ are obtained

by solving the equations,

(p− 1)k0ρ3 + {k0 − (p− 1)k0 + (p− 1)2s3 − (p− 1)s4}ρ2
+ {2(p− 1)s3 − k0}ρ + (s3 − s4) = 0,

and

�̂ = 1
np

n∑
i=1

p∑
l=1

p∑
m=1

vlm(yim − ȳm)(yil − ȳl)′,

where s3 = tr(I p ⊗�−1)S and s4 = tr(J p ⊗�−1)S.
Therefore, MLE of V is, say, V̂ = V̂ (ρ̂) = (1− ρ̂)I p + ρ̂1p1′p.

11.4.2 Test Specifying the Covariance Matrices

It is well known that the difference between covariance matrices, may affect
the performance of the classification rule. The choice between the linear or
quadratic classification rules can be made following a test for equality of
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the two correlation matrices V 1 and V 2 and the two covariance matrices �1
and �2. We assume �1 = V 1 ⊗ �1 and �2 = V 2 ⊗ �2. The parameters
µ1,µ2,�1, and �2 are all assumed to be unknown.
We will construct the likelihood ratio tests for the following hypotheses of

interest

(2) H2 : �1 = �2 = � (say) versus K2 : �1 
= �2,

V j = V (ρ), j = 1, 2 compound symmetric matrices.

(3) H3 : �1 = �2 = � (say) versus K3 : �1 
= �2,

V j = V j(ρj), j = 1, 2 compound symmetric matrices.

(4) H4 : V 1 = V 2 = V (say), �1 = �2 = � (say)
versus

K4 : V 1 
= V 2, �1 
= �2

V j = V j(ρj), j = 1, 2 are compound symmetric matrices.

The likelihood ratio �2 is given by

�2= |V̂ o|−(qn/2)|�̂o|−(pn/2)e−((1/2) tr(V̂ o⊗�̂o)
−1W ′)

|V̂ |−(qn/2)|�̂1|−(pn1/2)|�̂2|−(pn2/2)e−((1/2)tr(V̂⊗�̂1)−1W 1)e−((1/2) tr(V̂⊗�̂2)−1W 2)
.

The degrees of freedom ν2 for the null distribution of −2 ln�2 is given by,
ν2 = q(q+ 1)/2.
The maximum likelihood estimates ρ̂o and �̂o under H2 are obtained by

simultaneously and iteratively solving Equations 11.6 and 11.7 and the max-
imum likelihood estimates of ρ̂, �̂1, and �̂2 under K2 are obtained by solving
the Equations 11.11 and 11.12.
Now the likelihood ratio test statistic �3 is given by

�3 =
{|V̂ 1o|−(qn1/2)|V̂ 2o|−(qn2/2)|�̂o|−(pn/2)e−((1/2) tr(V̂ 1o⊗�̂o)

−1W 1)

× e−((1/2) tr(V̂ 2o⊗�̂o)
−1W 2)

}{|V̂ 1|−(qn1/2)|V̂ 2|−(qn2/2)|�̂1|−(pn1/2)

× |�̂2|−(pn2/2)e−((1/2) tr(V̂ 1⊗�̂1)
−1W 1)e−((1/2) tr(V̂ 2⊗�̂2)

−1W 2)
}−1.

The degrees of freedom ν3 for the null distribution of −2 ln�3 is given by,
ν3 = q(q+ 1)/2.
The maximum likelihood estimates of ρ̂1o, ρ̂2o, and �̂o are obtained by

simultaneously and iteratively solving the Equations 11.8, 11.9, and 11.10.
The maximum likelihood estimates ρ̂1, ρ̂2, �̂1, and �̂2 are obtained by

simultaneously and iteratively solving the Equations 11.13, 11.14, and 11.15.



C5777: “c5777_c011” — 2007/10/27 — 13:03 — page 360 — #38

360 Computational Methods in Biomedical Research

The likelihood ratio �4 is given by

�4 =
{|V̂ o|−(qn/2)|�̂o|−(pn/2)e−((1/2) tr(V̂ o⊗�̂o)

−1W ′)}{|V̂ 1|−(qn1/2)|V̂ 2|−(qn2/2)

× |�̂1|−(pn1/2)|�̂2|−(pn2/2)e−((1/2) tr(V̂ 1⊗�̂1)
−1W 1)e−((1/2) tr(V̂ 2⊗�̂2)

−1W 2)
}−1.

The degrees of freedom ν4 for the null distribution of −2 ln�4 is given by,
ν4 = (q(q+ 1)/2)+ 1.
The maximum likelihood estimates ρ̂o and �̂o are obtained from

Equations 11.6 and 11.7 and those of ρ̂1, ρ̂2, �̂1, and �̂2 are obtained from
Equations 11.13, 11.14, and 11.15.
See Roy (2006b), for similar hypotheses testing when both V 1 and V 2 have

AR(1) correlation structures.

11.5 Two Examples

To illustrate the previous results, two real data sets are considered. The first
of these data sets is of relatively smaller in size, whereas the second one is
moderate in size. The data sets have very different features and as it turns
out, would require different covariance structure assumptions.

EXAMPLE 1
Dental data: The first data set is from Timm (1980, Table 7.2). The data
were originally collected by T. Zullo of the School of Dental Medicine at the
University of Pittsburgh. There are nine subjects in each of two orthopedic
adjustment group (k = 2,n1 = 9,n2 = 9). Three measurements at three
different time points (p = 3) were made on each of q = 3 characteristic to
assess the change in the vertical position of the mandible. The problem here
is to classify an unknown subject into one of the two orthopedic populations.
Clearly, appropriate assumptions on the correct structure on themean vectors
aswell as the covariance structuresonboth thepopulationsarevery important
for selecting the classification rules. Thus, we test whether the data set has a
structure on mean (Hypothesis 1) as well as test Hypotheses 2, 3, and 4 for
covariance structures given by

(V 1 = V 2,�1 = �2), (V 1 
= V 2,�1 = �2), or (V 1 = V 2,�1 
= �2).

In this data set the correlation matrices V 1 and V 2 of the repeated meas-
ures have CS structures with p values 0.3344 and 0.3068, respectively. From
Table 11.9 we see that the data set probably has unstructured mean vector
in each population. Also, from Table 11.10 we see that the data set possibly
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TABLE 11.9
Testing Results for Hypothesis 1
for Dental Data

Hypothesis Population p Value

1 1 0.0004
2 ≈0

TABLE 11.10
Testing Results for Hypotheses
2, 3, and 4 for Dental Data

Hypothesis p Value

2 ≈0
3 0.0376
4 ≈0

has the covariance structure (V 1 
= V 2,�1 
= �2), because all the hypotheses
stated above are rejected.
Thus, we assume the data aremultivariate normalwithmean vectorµj and

covariance matrix �j = V j ⊗ �j, j = 1, 2. The maximum likelihood estimates
of µ1 and µ2 in the two populations are

µ̂1 = [118.2222, 63.2222, 24.6667, 121.7222, 64.0000, 25.1667, 122.9444,
65.6111, 25.1111]′,

and

µ̂2 = [122.7778, 64.2778, 24.0000, 125.7222, 66.0000, 24.2222, 127.2778,
67.1667, 24.2889]′,

respectively. The maximum likelihood estimates of �1 and �2 in the two
populations are

�̂1 =
58.6154 16.2587 −8.0093
16.2587 17.7243 0.6180
−8.0093 0.6180 23.2864

 ,
and

�̂2 =
51.5092 37.5211 7.4671
37.5211 38.8700 6.1830
7.4671 6.1830 14.1340

 ,
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TABLE 11.11
Classification Table for Dental Data when the Mean Vector is
Unstructured and Repeated Measures has CS Structure

Case 1 Case 2 Case 3 Case 4

Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 Pop1 Pop2

Pop1 6 2 7 2 3 0 7 1
Pop2 3 7 2 7 6 9 2 8

and these appear to be different. TheMLEs of ρ1 and ρ2 are 0.9266 and 0.9931,
respectively, and they also appear to be different to some extent. Therefore,
V̂ 1 and V̂ 2 appear to be different.
The classification results of theDental data for all the four cases for unstruc-

tured mean vectors and CS correlation structure on the repeated measures
are shown in Table 11.11. The table consists of four confusionmatrices corres-
ponding to four cases mentioned in the introduction. The rows are predicted
categories of the dependents and columns are true categories of the depend-
ents. The MERs for the four cases under the CS correlation structure are
27.78%, 22.22%, 33.33%, and 16.67%, respectively.We see thatMER is smallest
inCase 4whereV 1 
= V 2 and�1 
= �2 (the situationwe suspectedon thebasis
of our hypothesis testing) and when the assumption of unstructured mean
vector is adapted. A total of 7 out of 9 subjects (77.78%) from Population 1,
and 8 out of 9 subjects (88.89%) from Population 2 were classified correctly.

EXAMPLE 2
Osteoporosis data: The data are from a clinical study in the prevention of
osteoporosis. Bone mineral density (BMD) in gm/cm2 was measured on
patients at the baseline visit and then for four subsequent follow-up visits,
every 6 months, for 2 years (p = 5). The BMD assessments are obtained at
different anatomic locations namely spine, radius, femoral neck, and total hip
(q = 4). This data set has two treatment groups consisting of 21 patients in one
treatment group, and 23 patients in the other treatment group. Complete data
were observed only on 32patients; 13 patients are in one treatment group, and
19 patients are in the other treatment group. There were ten investigators for
this study. In this section we will analyze only the complete data set, that is,
we will consider two populations with n1 = 13 and n2 = 19. We will use the
incomplete data set along with the investigator information as a covariate in
Section 11.6. In the complete data set after testingwe conclude that the correl-
ation matrices V 1 and V 2 of the repeated measures have CS structures with
p values 0.9697 and 0.9648, respectively. From Table 11.12 we see that the data
set probably has an unstructured mean vector in each population. Also, from
Table 11.13 we see that the data set is likely to have the covariance structure
(V 1 = V 2,�1 = �2).
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TABLE 11.12
Testing Results for Hypothesis 1
for Osteoporosis Data

Hypothesis Population p Value

1 1 ≈0
2 0.0015

TABLE 11.13
Testing Results for Hypotheses 2,
3, and 4 for Osteoporosis Data

Hypothesis p Value

2 0.0463
3 0.4239
4 0.0594

Assuming unstructured mean vectors the maximum likelihood estimates
of µ1 and µ2 in the two populations are

µ̂1 = [1.0718, 0.7941, 0.8818, 0.9185, 1.0906, 0.7932, 0.8841,
0.9313, 1.1069, 0.7942, 0.8839, 0.9394, 1.1075, 0.7834,

0.8841, 0.9410, 1.0989, 0.7902, 0.8878, 0.9425]′,
and

µ̂2 = [1.1118, 0.8112, 0.8664, 0.9541, 1.1325, 0.8149, 0.8633, 0.9605,
1.1458, 0.8116, 0.8622, 0.9657, 1.1481, 0.8220, 0.8751, 0.9673,

1.1549, 0.8184, 0.8742, 0.9691]′,
respectively. The maximum likelihood estimates of �1 and �2 in the two
populations are

�̂1 =


0.0170 0.0013 0.0081 0.0057
0.0013 0.0051 0.0016 0.0013
0.0081 0.0016 0.0167 0.0050
0.0057 0.0013 0.0050 0.0066

 ,
and

�̂2 =


0.0201 0.0015 0.0084 0.0079
0.0015 0.0062 0.0010 0.0010
0.0084 0.0010 0.0193 0.0101
0.0079 0.0010 0.0101 0.0112

 .
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TABLE 11.14
Classification Table for Osteoporosis Data when the Mean
Vector is Unstructured and Repeated Measures has CS
Structure

Case 1 Case 2 Case 3 Case 4

Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 Pop1 Pop2

Pop1 12 2 6 1 10 2 9 1
Pop2 1 17 7 18 3 17 4 18

TABLE 11.15
Classification Table for Osteoporosis Data when the Mean
Vector is Unstructured and Repeated Measures has AR(1)
Structure

Case 1 Case 2 Case 3 Case 4

Pop1 Pop2 Pop1 Pop2 Pop1 Pop2 Pop1 Pop2

Pop1 9 2 10 4 9 3 9 3
Pop2 4 17 3 15 4 16 4 16

Theseappear tobequite close to eachother. Themaximumlikelihoodestim-
ates of ρ1 and ρ2 are 0.9711 and 0.9637, respectively, and they also appear to
be close. Therefore, V̂ 1 and V̂ 2 appear to be close. The classification results of
the complete Osteoporosis data with CS correlation structure on the repeated
measures are shown in Table 11.14. The MERs for the four cases under the
CS correlation structure, respectively, are 9.37%, 25.00%, 15.62%, and 15.62%.
We observe that the MER is smallest in Case 1 when V 1 = V 2 and �1 = �2
(the situation we suspected on the basis of our hypothesis testing) and when
assumption of unstructured mean vector is adapted. A total of 12 out of 13
subjects (92.31%) from Population 1 and 17 out of 19 subjects (89.47%) from
Population 2 were correctly classified.
The assumption of the Kronecker product structure on the covariance

matrix � is necessary for both the data sets since we do not have enough
observations in both the data sets to estimate the parameters in �. In the
Dental data set the number of unknown parameters in the unstructured � is
45, whereas we have only 9 observations in each population. For the Osteo-
porosis data set the number of unknown parameters in unstructured� is 210
andwe have only 13 and 19 observations in the two populations, respectively.
For comparison sake, classification results of the complete Osteoporosis

data with AR(1) correlation structure on the repeated measures, and under
unstructured mean vector assumption is shown in Table 11.15. The overall
MERs in the four cases are 18.75%, 21.87%, 21.87%, and 21.87%, respectively.
We observe that most of the times the MERs in each of the four cases are
more than the corresponding MERs with the CS correlation structure on the
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repeatedmeasures. This suggests that in the context of classification, assump-
tion of incorrect structure may lead to very high MERs. This was already
addressed in the previous section, through a simulation study.

11.6 Multivariate Repeated Measures Data with Missing Values

Missing observations are almost inevitable in longitudinal studies. Missing
values frequently occur in biomedical and biological data as observations are
lost, not recorded, or experimental units inadvertently dropout owing to a
variety of reasons. It is customary to fill in the missing values in some way.
Discarding data with missing components can result in appreciable informa-
tion loss, andmay bias the results if the subjects, who provide complete data,
are not representative of the population. Early approaches to missing values
problems simply ignored them or replaced them with some plausible values
(e.g., mean values or regression predictions) calculated over the observations
present. Another way to handle missing values is to develop some learning
algorithms that can deal with the missing values in some meaningful way.
A third approach is to impute all missing values in the first phase. Imputation
although solves or appears to solve the missing data problem, it may have
an undesirable consequence in that it can dampen the relationships among
variables or can artificially inflate the correlations between the variables.
Multiple imputation provides a useful strategy for dealing with missing

values. Instead of filling in a single value for eachmissing value, Rubin’smul-
tiple imputation procedure (Rubin, 1987, 1996) replaces each missing value
with a set of plausible values that represent the uncertainty about the right
value to impute. Thesemultiple imputed data sets are then analyzed by using
standard procedures for complete data and results from these analyses are
then combined. Roy (2006a) has shown, in the case of multivariate repeated
measures data, that multiple imputationmethod is not the best choice of ana-
lysis for all missing data problems as it introduces noise; especially when
there is some special structure in the data. Roy has studied the classification
problem with special reference to multivariate repeated measures data with
missing values, as well as covariates in amixed effects model setup under the
mechanism of missing at random (MAR), that is, when the probability that a
value is missing depends only on the observed variable, and time point val-
ues of the individual, but neither on the missing variable nor on the missing
time point values of the individual. Covariate information was first used in
the discrimination function in 1948 by Cochran and Bliss. They found that
by using the covariates the MER was improved in their examples. However,
Cochran and Bliss did not handle missing values. Later, Lachenburch (1977)
worked on covariance adjusted discriminant functions. However, his work
did not result in a satisfactory performance in case of incomplete data. Dis-
criminant analysis on incomplete data on a single variable with covariates
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and in the mixed model setup for a repeated measures scenario, was first
studied by Tomasco et al. (1999). Here we briefly present a solution to this
problem using an approach that builds on the ideas promoted by Tomasco
et al. (1999), and Laird andWare (1982). Complete details are available in Roy
(2006a).
Let the randomvariable yi denote the response of interest for the ith subject,

i = 1, 2, . . . ,n. As before suppose each individual is observed on q response
variables and each variable is observed over p time points. Thus, yi is a vec-
tor as described in Section 11.3 with many patients having missing values.
Suppose the ith patient has (pq − ri) number of missing values; then yi is a
ri-dimensional vector, 1 ≤ ri ≤ pq.
Consider a linear mixed-effects model as described by Laird and Ware

(1982)

yi = Xiβ + Zibi + εi,
bi ∼ Nm(0,D),

εi ∼ Nri(0,�i),

where b1, b2, . . . , bn, ε1, ε2, . . . , εn are all independent, and y1, y2, . . . , yn are
also independent. The matrices Xi and Zi are ri × l and ri × m dimensional
matrices of known covariates; β is a l-dimensional vector containing the fixed
effects; bi is the m-dimensional vector containing the random effects (RE);
and εi is an ri-dimensional vector of residual components. The variance–
covariance matrix D is a general (m × m) dimensional matrix, and �i is a
(ri × ri) covariance matrix that depends on i only through its dimension ri.
It is clear that yi ∼ Nri(Xiβ,ZiDZ

′
i + �i). For complete data, ri = pq and

�i = V ⊗�. For the ith subject with pq− ri missing values we define

�i = dimri(V ⊗�),

which is an ri× ri submatrix obtained from V ⊗� by retaining only the rows
and columns corresponding to nonmissing observations. The number of RE
and the form of Zi can be chosen to fit the observed covariance matrix for the
ith individual as:

Cov(yi) = ZiDZ
′
i + dimri(V ⊗�).

The new linear classification rule in this case is,

Allocate the ith individual with response yi to Population 1 if

(µ1i − µ2i)′(ZiDZ
′
i + dimri(V ⊗�))−1

(
yi −

1
2
(µ1i + µ2i)

)
≥ 0,

and to Population 2 otherwise,

(11.26)
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where µ1i and µ2i are the subject specific ith subject means in Population 1
and in Population 2 respectively. The parameters µ1i, µ2i, D, V , and � are
unknown, and should be estimated from independent training samples, n1
and n2, from the respective populations. The sample version of the classific-
ation rule is obtained by replacing µ1i, µ2i, D, V , and � by their maximum
likelihood estimates. This can be readily done using commonly available
software (such as Proc Mixed in SAS) which fit the mixed effects models.
To demonstrate the potential of the new classification rule (Equation 11.25)
we use the Osteoporosis data set described in the previous section. We have
already tested and accepted in Section 11.5 the hypothesis that � = V ⊗ �,
with V as CS structure. For illustration, we will use the investigator informa-
tion as the covariate in themodel. The classification resultswithCS correlation
structure on V on the repeated measures for the complete data and for the
incomplete data for bothwithout/with RE are given in Tables 11.16 and 11.17,
respectively. This new classification rule is found to be as good as the classi-
fication rule that is described in Section 11.3.1.2. In fact, introduction of the
random effect marginally improves the performance. The overall model can
be selected byAkaike’s Information Criterion (AIC) and by−2 log-likelihood
(smaller is better). Tables 11.18 and 11.19 respectively give the values of the
AIC and −2 log-likelihood, and the MERs for all combinations of covariates
and RE of the models. The covariate information, however, does not improve
theMER. This indicates that the investigator is not a very informative covari-
ate for classification purpose, even though AIC and−2 log-likelihood criteria
have been improved slightly. See Roy (2006a) for more details.
UsingMI procedure of SAS (Version 9.1) for multiple imputation we create

themultiply imputed data set. MedianMER and its range on the five imputed

TABLE 11.16
Classification Table for Complete
Data by our Proposed Method

No RE RE

Pop1 Pop2 Pop1 Pop2

Pop1 12 2 12 1
Pop2 1 17 1 18

TABLE 11.17
Classification Table for Incomplete
Data by our Proposed Method

No RE RE

Pop1 Pop2 Pop1 Pop2

Pop1 16 4 16 4
Pop2 5 19 5 19
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TABLE 11.18

MERs for Complete Data by our Proposed Method

Case MER
Number Covariates RE AIC −2 log-likelihood (%)

1 No No −2602.9 −2704.3 9.375
2 No Yes −2611.2 −2715.2 6.250
3 Yes No −2654.7 −2774.7 9.375
4 Yes Yes −2655.5 −2777.5 9.375

TABLE 11.19

MERs for Incomplete Data by our Proposed Method

Case MER
Number Covariates RE AIC −2 log-likelihood (%)

1 No No −3382.9 −3484.9 20.455
2 No Yes −3383.0 −3487.0 20.455
3 Yes No −3434.2 −3554.2 20.455
4 Yes Yes −3433.7 −3555.7 20.455

TABLE 11.20

Median MERs for Multiply Imputed Data by our Proposed Method

Case MER
Number Covariates RE AIC −2 log-likelihood (%) Range

1 No No −3059.1 −3161.6 27.273 11.364
2 No Yes −3060.1 −3164.1 25.000 13.636
3 Yes No −3131.4 −3251.4 31.818 11.364
4 Yes Yes −3128.6 −3250.6 34.091 13.364

data sets are reported in Table 11.20. We see that the median MER from mul-
tiply imputed data sets is greater than the MER on the incomplete data set.
This suggests us to use the new classification rule directly on the incomplete
data set rather than imputed and complete data set. This is also confirmed by
the increase of AIC and the −2 log-likelihood values in all four cases for all
five imputed data sets. A comparison of Tables 11.19 and 11.20 suggests that
multiple imputation is not, in fact, efficient in this case.

11.7 Concluding Remarks

This chapter summarizes some of the recent work on discrimination and
classification in the context of univariate andmultivariate repeatedmeasures
data. The work extends the classical discriminant analysis but at the expense
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of computational complexity that is added by the extra dimension in which
extension ismade. Thefirst authorhaswrittenextensiveSAScodes (Roy, 2002)
to solvemost of the problems discussed here. However, while these codes are
functional and with minor modifications can analyze a large variety of data
sets, there is a genuine need for more efficient and user-friendly algorithms
and corresponding computer codes to solve these problems. We hope that
this review provides a platform for the development of these algorithms.
It must be added that only one specific aspect of this classification problem

has been addressed here. Issues pertaining to variable selection as well as
time point selection have not been considered in the present work. These
are important issues as it is well known in the classical discriminant analysis
that it is possible for the performance of the classification rule to go down
as more variables are added. The same issue is likely to appear here with
respect to variables as well as repeated measures. Work on these issues is
under progress.
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12.1 Introduction

Statistical methods for analyzing longitudinal data are important tools in bio-
medical research. The phrase “repeated or longitudinal data” is used for data
consisting of responses taken on subjects or experimental units at different
timepoints or undermultiple treatments. Suchdata occur commonly inmany

371
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scientific disciplines especially in biomedical studies. Although longitudinal
data can be viewed as multivariate data, there are some key differences
between the two.Multivariate data is usually a snapshot of different variables
taken at a single time point, whereas longitudinal data consists of snapshots
of the same variable taken at different time points. Thus, even though there
are similarities between the two types, the data analysis goals are usually not
the same and each pose different challenges and require different approaches
for statistical analysis. Much research has already been done on multivari-
ate continuous response variables using linear models and the multivariate
normal distribution. Modelling multivariate discrete data is difficult because
there is not a singlemultivariate discrete distribution as prominent as themul-
tivariate normal distribution that has nice properties. For discrete univariate
outcomes, exponential dispersion families are among the most popular and
widely studied probability models. These statistical models that relate the
random outcomes or responses to covariates are useful to understand vari-
ation in responses as a function of the covariates. We begin this chapter with
a brief discussion of these models and maximum likelihood (ML) estimation
of model parameters.

12.2 Univariate Exponential Dispersion Models

Suppose we have a collection {yi, i = 1, . . . ,n} of univariate observations or
responses of a dependent variable as well as vectors of observations {xi, i =
1, . . . ,n} on some covariates or explanatory variables taken on n independent
subjects. The simple linear model that relates the response variables with the
explanatory variables is given by

yi = x′i β + εi, (12.1)

where β is the vector of unknown regression coefficients and the εi’s are
assumed to be independent, normal random variables with zero mean and
constant variance. This traditional simple linear model has been used extens-
ively in statistical data analysis but has several limitations. First, the response
variables yi could be proportions with range 0 to 1, yet x′i β is free to vary
andmay not fall within this range. Second, the response variables yi could be
binary or counts so that the assumption of normality for εi is invalid. Third,
it may not be realistic to assume that the variance of yi is a constant. For
example, if yi represents Poisson counts then the variance and the mean are
equal.
To overcome the aforementioned limitations, Nelder and Wedderburn

(1972) proposed a class of exponential dispersion families. A probabilitymass
function or probability density function of a random variable yi is said to be
a member of the exponential dispersion family if it can be written in the form

f (yi; θi,φ) = exp
[
yiθi − b(θi)

φ
+ c(yi,φ)

]
, (12.2)
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TABLE 12.1

Canonical Link and Variance Functions

Distribution Canonical Link Function Variance Function τ (·)

Poisson Log ηi = log(µi) µi

Binomial Logit ηi = log
[

µi
ni − µi

]
µi

[
1− µi

ni

]
Normal Identity ηi = µi 1

Gamma Reciprocal ni =
1
µi

µ2i

Inverse Gaussian Reciprocal2 ηi =
1

µ2i

µ3i

where θi is the canonical form of the location parameter and φ is the scale
parameter of the family. For the probability distribution (Equation 12.2) we
can verify that the mean E(yi) = µi = b′(θi) and Var(yi) = φ b′′(θi). The func-
tion τ(µi) = b′′(θi) is known as the variance function. In the generalized linear
model we assume that the distribution of the ith sample outcome yi is a mem-
ber of the exponential dispersion family. Further, the relationship between
the mean µi and the linear predictor ηi = x′iβ is given by µi = g−1(ηi), where
function g is known as the link function. The link function is a monotonic
and differentiable function. If θi = ηi, then the generalized linear model is
called the canonical model, and the corresponding link function g defined
by g−1(θi) = b′(θi) is called the canonical link function. Table 12.1 has the
canonical link and variance functions for some of the standard distributions.

12.2.1 Parameter Estimation

Thepopular and efficientmethodof estimating the unknown regressionpara-
meter β and the scale parameter φ in the generalized linear model is the
method of ML. The ML estimate need not be unique in general. However,
for the models with canonical link functions the ML estimate of the loca-
tion parameter is unique, which is obtained maximizing the log likelihood
function

log [L(θi,φ; yi)] =
n∑

i=1

[ [yiθi − b(θi)]
φ

+ c (yi,φ)
]
. (12.3)

Recall thatµi = b′(θi) and g(µi) = ηi = x′iβ. A common procedure to get the
ML estimate of β is to use the Newton–Raphson iterative algorithm. Starting
with a trial value β0 for β, at the rth step of the iterative algorithmwe compute

β̂r = β̂r−1 −H−1S.
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The gradient vector S, also known as the score function, is given by

S = ∂ log[L(θi,φ; yi)]
∂β

=
n∑

i=1

[
yi − µi

φ

]
∂θi

∂µi

∂µi

∂ηi
xi

=
n∑

i=1

[
yi − µi

φ

]
1

τ(µi)

1
g′(µi)

xi.

The Hessian matrix H consists of the second order partial derivatives of
Equation 12.3 with respect to β. In matrix notation H = XWX′, where X =
(x1, . . . , xn) and W is the diagonal matrix with ith diagonal

wi =
[
yi − µi

φ

]
∂2θi

∂η2i

− 1
φ τ(µi)

(
1

g′(µi)

)2
.

The asymptotic covariance matrix of the ML estimate of β is the inverse of
the information matrix I = −E(H) = X [−E(W)]X′.

12.3 Extensions to Longitudinal Data

Our discussion so far has been focused on data that consists of one response
or one observation on each subject. We now turn our attention to the analysis
of data that consists of several measurements taken on each subject. Such
data occur in longitudinal studieswhere individuals aremeasured repeatedly
through time or in cross-sectional studies where measurements are taken
on each subject under several treatment plans. Many cross-sectional studies
arise from cross-over trials where the covariates tend to be fixed and not time
varying. Unlike cross-sectional studies, in longitudinal studies the covariates
tend to change over time within individuals. The primary interest in these
studies is to distinguish changes over time within individuals.
During the last two decades several methods based on extensions of

univariate generalized linear models were developed for the analysis of
longitudinal measurements. We will discuss some of these in the next few
sections. Thesemethodsdonot specify the jointprobabilitymodel, but instead
assume only a functional form for the marginal distributions for the repeated
measurements and specify a covariance structure for thewithin subjectmeas-
urements. The covariance structure across time isusually treatedas anuisance
parameter, though it can be important in some situations. The estimation
methods exploit the independence across subjects to obtain consistent estim-
ates of the parameters and their asymptotic standard errors. The earliest and
the most popular method for analyzing longitudinal data is the method of
generalized estimating equations (GEE) the details of which are presented in
the next section.
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12.4 Generalized Estimating Equations

Suppose that instead of yi we have a vector Yi = (yi1, . . . , yiti)
′ consisting

of ti repeated measurements taken on the ith subject. Associated with each
measurement yij we also have a vector of covariates xij = (xij1, . . . , xijp)′,
1 ≤ j ≤ ti, 1 ≤ i ≤ n. Here, we assume that the marginal distribution
of yij belongs to the exponential dispersion family so that E(yij) = µij and
Var (yij) = φ τ(µij), where φ > 0 may be a known constant or an unknown
scale parameter. And as before g(µij) = x′ij β, where β = (β1, . . . ,βp)′ is a
p-dimensional vector of regression coefficients. Because the repeated meas-
urements on each subject are correlated, Liang and Zeger (1986) proposed
the GEEs, which adjust for the within subject correlation. This method does
not specify a multivariate distribution for Yi but makes an assumption con-
cerning the within subject correlation, in the form of a “working correlation”
matrix Ri(α), which is parametrized by a vector α = (α1, . . . ,αq)′ of dimen-
sion q, and does not depend on themarginal means. It is treated as a nuisance
parameter, but is crucial to efficient estimation of the regression parameter.
We thus have E(Yi) = µi(β) and Cov (Yi) = φ �i(β, α), where µi(β) =
(µi1, . . . ,µiti)

′. The covariance matrix �i(β,α) = A1/2
i (β)Ri(α)A

1/2
i (β), where

Ai(β) = diag (τ (µi1), τ(µi2), . . . , τ(µiti)) is the diagonal matrix of variances of
theyij’s. In theGEEmethod theparametersβ andα areobtainedbyan iterative
procedure starting with a trial value β0 for β and estimating α by the method
of moments using the residuals Zi(β0) where Zi(β) = A−1/2i (β) (Yi − µi(β)),
1 ≤ i ≤ n. Next an updated estimate of β is obtained solving the generalized
estimating equation

n∑
i=1

D′i(β)A
−1/2
i (β)R−1i (α)Zi = 0, (12.4)

where Di(β) = ∂µi(β)/∂β
′. The iterative procedure is continued until the

estimates converge. Software for this estimation procedure is now available
in popular statistical packages including SAS, Splus, STATA, and SPSS.
Since the introduction of the GEE method by Liang and Zeger (1986),

numerous authors have extended and suggested different versions of the
method. Most of these versions use the same estimating Equation 12.4 but
differ in estimation of the correlation parameter. Noteworthy to mention is
the method of Prentice (1988) for analyzing correlated binary data, who sug-
gested replacing the moment estimate of α by another estimating equation,
known as GEE1. Prentice and Zhao (1991) gave a single GEE type estimating
equation treating both β and α as a single parameter, known as the GEE2
method, which includes GEE and GEE1 as special cases. Finally, Hall and
Severini (1998) suggested a unified approach for simultaneously estimating
all the three parameters β, α, and φ. Their approach uses ideas from exten-
ded quasi-likelihood and is known as the Extended Generalized Estimating
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Equation method (EGEE). However, Hall (2001) has shown that the EGEE
approach is a special case of GEE1. In particular, EGEE amounts to estimating
the correlation parameter by maximizing the Gaussian likelihood function.
We will study the Gaussian method of estimation in detail in Section 12.5.
See Sutradhar (2003) for an extensive list of GEE-related acronyms with and
without subscripts.

12.4.1 Shortcomings of the GEE Method

The GEEmethod has been popular for analyzing longitudinal data because it
bypasses the difficult problem of specifying the full likelihood and the com-
putationally challenging problem of obtaining the ML estimates. However,
despite its popularity the GEEmethod has several shortcomings. It falls short
of the purpose itwas introduced—that is, to handle correlated data efficiently.
The GEE method has pitfalls in theoretical and in software implementations,
particularly in the estimation of the correlation parameters.
Crowder (1995) was the first to identify these pitfalls in the GEE method.

He argued with simple examples that the working correlation, when mis-
specified, lacks a proper definition and thus causes a breakdown of the
asymptotic properties of the estimation procedure. See the discussion on
page 57 in Crowder (2001). Further, even if the working correlation is cor-
rectly specified there is no guarantee that the moment estimate of α will fall
within the set of feasible values, that is, α may not fall in the range where the
correlation matrix is positive definite (Shults and Chaganty, 1998). Lindsey
and Lambert (1998, pp. 465–467) outlined a long list of drawbacks with the
GEE procedure. Lee and Nelder (2004, pp. 224–225) have argued that for cor-
related errors there is no general quasi-likelihood such that GEEs are score
equations. Because of the lack of a likelihoodbasis, theydonot regardGEEs as
being a proper extension of Wedderburn’s (1974) quasi-likelihood approach
to analyze models with correlated observations.
Thereare additionalproblemswith theGEEmethodwhenapplied tobinary

data. From Godambe’s (1960, 1991) optimal estimating equation theory, it
follows that the estimate of the regression parameter β is efficient only if
the working correlation is the true correlation of the repeated measurements.
However, for multivariate binary distributions the range of the correlations
depends on the marginal means, so that the working correlation cannot in
general be the true correlation of the data. See Chaganty and Joe (2004, 2006).
Furthermore, there is no parametric multivariate binary distribution where
the means and variances are functions of the covariates but the correlations
are not. Therefore, the GEE framework may be inappropriate for analyzing
correlated binary data.
Anothermajor problemwith the GEEmethod is the absence of an objective

function that is being minimized (maximized). Such an objective function,
if it exists, is useful in testing adequacy or goodness of fit. A solution
to this problem was given by Crowder (2001). He suggested the use of
the Gaussian likelihood function as an objective function to estimate the
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correlation parameters. This method is known as Gaussian Estimation (GE).
We will discuss this method in the next section.

12.5 Gaussian Estimation

The Gaussian method of estimation was originally introduced by Whittle
(1961) as a generalmethod for estimating the parameters in time series data. It
was brought into the limelight byCrowder (1995) for the analysis of correlated
binomial data, and more recently by Crowder (2001) as a general procedure
and an alternative to the GEE method. Here the parameters α and φ are
estimated bymaximizing the Gaussian (normal) log likelihood. Fixing β, this
amounts to minimizing the objective function

n∑
i=1

{
log |φ Ri(α)| + 1

φ
Zi(β)

′ R−1i (α)Zi(β)

}
.

Differentiation leads to the estimating equations

n∑
i=1

tr

[
∂R−1i (α)

∂αj
(Zi(β)Zi(β)

′ − φ Ri(α))

]
= 0 for j = 1, . . . , q, (12.5)

and

φ̂ =
∑n

i=1 Zi(β)
′ R−1i (α)Zi(β)∑n
i=1 ti

. (12.6)

Thus, the Gaussian method of estimation involves solving Equations 12.4
and 12.5 recursively using φ̂, starting with a trial value for β.

12.6 Quasi-Least Squares Estimation

An alternative method of estimating the correlation parameters is the quasi-
least squares (QLS) that was developed in the three papers Chaganty (1997),
Shults and Chaganty (1998), and Chaganty and Shults (1999). Unlike the
method of moments, for continuous data this method yields an estimate of α
such that Ri(α) is positive definite. The method is motivated by the principle
of generalized least squares and the theory of unbiased estimating equations.
Here starting with a trial value for β we first solve the equations

n∑
i=1

Zi(β)
′ ∂R
−1
i (α)

∂αj
Zi(β) = 0, 1 ≤ j ≤ q, (12.7)
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and get an estimate α̃ of α. Next we get the QLS estimate α̂ of α solving the
equation

n∑
i=1

bi (̃α,α) = 0, (12.8)

where bi (̃α,α) = (bi1(̃α,α), . . . , biq(̃α,α))′ and bij (̃α,α) = tr((∂ R−1i (α)/

∂αj)|α=α̃Ri(α)), for j = 1, . . . , q. And as beforeweupdate the value of β solving
Equation 12.4 using α̂. The procedure is repeated until convergence. Finally,
the scale parameter could be estimated as in the GE method.

12.7 Asymptotic Distributions

In this section we will obtain the asymptotic distribution of the Gaussian
and the QLS estimates, as n → ∞. The following theorem due to Yuan and
Jennrich (1998) is fundamental for establishing the asymptotic distributions
for any unbiased estimating equation approach.

THEOREM 12.7.1
(Yuan and Jennrich). LetZi, 1 ≤ i ≤ n, be independent randomvectors of dimensions
ti generated from distributions fi(Zi, θ0), 1 ≤ i ≤ n. Assume that ti ≤ t for all i and
θ0 ∈ �, which is a subset of Rk. Let the multivariate functions hi(Zi, θ), 1 ≤ i ≤ n,
taking values in Rk, satisfy the six regularity conditions stated in the Appendix. If
θ̂ is the solution of the unbiased estimating equation

1
n

n∑
i=1

hi(Zi, θ) = 0, (12.9)

then we have

(θ̂ − θ0) is AMVN

(
0,
[I(θ0)]−1M(θ0)[I(θ0)]−1

n

)
. (12.10)

The matrices I(·) and M(·) are defined in the Appendix. In practice I(θ0)
and M(θ0) are unknown and we can estimate them as

I(θ̂) = 1
n

n∑
i=1

E
[
∂hi(Zi, θ)

∂θ ′

]∣∣∣∣
θ=θ̂

and M(θ̂) = 1
n

n∑
i=1

Mi(θ̂). (12.11)

To establish the asymptotic normality of the Gaussian estimates, we
first note that the three estimating Equations 12.4, 12.5, and 12.6 used in
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that method can be rewritten as
∑n

i=1 hmi(Zi, θ) = 0, where hmi(Zi, θ) =
K′mi(θ) ξi(θ) and

Kmi(θ) =
[
R−1i (α)A−1/2i (β)Di(β) 0

0 bi1(α) bi2(α) . . . biq(α) vec(R−1i (α))

]
,

bij(α) = vec

(
∂ R−1i (α)

∂αj

)
, 1 ≤ j ≤ q,

ξi(θ) =
(

Zi
vec
(
Zi Z′i − φ Ri(α)

)) .
The asymptotic distribution of the Gaussian estimates follows as a con-

sequence of Theorem 12.7.1 and it is given below.

THEOREM 12.7.2
Let θ = (β, α, φ) and θ̂m = (β̂m, α̂m, φ̂m) be the Gaussian estimates. If hmi(Zi, θ)’s
satisfy the six regularity conditions then we have

√
n(θ̂m− θ) is asymptotically mul-

tivariate normal with mean 0 and covariance matrix�m(θ) = I−1m (θ)Mm(θ)I−1m (θ),
where

Im(θ) = 1
n

n∑
i=1

K′mi(θ)∇i(θ),

Mm(θ) = 1
n

n∑
i=1

K′mi(θ)�i(θ)Kmi(θ),

∇i(θ) = E
[
−∂ξi(θ)

∂θ

]

=
[
A−1/2i (β)Di(β) 0

0 φci1(α) φci2(α) . . . φciq(α) vec(Ri(α))

]
,

cij(α) = vec

(
∂Ri(α)

∂αj

)
, 1 ≤ j ≤ q.

and �i(θ) = Cov (ξi(θ)).

To derive the asymptotic distribution of the QLS estimates we first note
that the estimating equations 12.4, 12.7, 12.8, and 12.6 can be rewritten as∑n

i=1 hqi(Zi, θ) = 0, where hqi(Zi, θ) = K′qi(θ)ξi(θ) and

Kqi(θ) =
[
R−1i (α)A−1/2i (β)Di(β) 0

0 b1i (̃α) b2i (̃α) . . . bqi (̃α) vec(R−1i (α))

]
.

Theorem12.7.3 establishes theasymptoticdistributionof theQLSestimates.
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THEOREM 12.7.3
Let θ = (β,α,φ) and let θ̂q = (β̂q, α̂q, φ̂q) be the QLS estimates. Assume that for
each α, there exists α̃ such that

n∑
i=1

tr

(
∂R−1i (α)

∂α

∣∣∣∣∣
α=α̃

Ri(α)

)
= 0.

Under the regularity conditions 1–6 of Theorem 12.7.1 we have
√
n(θ̂q − θ) is

asymptotically multivariate normal with mean 0 and covariance matrix �q(θ) =
I−1q (θ)Mq(θ)I−1q (θ), where

Iq(θ) = 1
n

n∑
i=1

K′qi(θ)∇i(θ)

Mq(θ) = 1
n

n∑
i=1

K′qi(θ)�i(θ)Kqi(θ),

and ∇i(θ), �i(θ) are as in Theorem 12.7.2.

In general, the Gaussian estimate α̂g and the QLS estimate α̂q are not the
same. For example the following results can be found in Chaganty (2003).
When ti = t for all i, Zi’s are multivariate normal with mean 0 and Ri(α) has
an AR(1) structure then

√
n(̂αg − α) d−→ N

(
0,

t(1− α2)2
(t− 1) (2α2 + t(1− α2))

)
,

√
n(̂αq − α) d−→ N

(
0,

t(1− α2)− (1− α2t)
(t− 1)2

)
. (12.12)

12.8 Analysis of Longitudinal Binary Data

The two estimation methods for the correlation parameter described in
Sections 12.5 and 12.6 are mainly applicable for analyzing continuous lon-
gitudinal data. It is well known that for binary variables the range of the
correlation depends on the marginal means. Both estimating equation meth-
ods do not take into account these bounds and can result in invalid estimates.
For analyzing longitudinal binary data we recommend using the multivari-
ate probit model originally proposed by Ashford and Sowden (1970). This
method iswidely used in econometrics (Chib andGreenberg (1996), Chib and
Greenberg (1998)), genetics (Mendell and Elston (1974)), and psychometrics
(Maydeu-Olivares (2001), Muthén (1978)), but neglected in biostatistics and
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medical statistics (Lesaffre and Molenberghs (1991)). The basic idea behind
the multivariate probit model is that there exists a latent random vector Li
distributed as multivariate normal with mean 0 and correlation matrix �(γ )
such that Yi = I(Li ≤ x′i β), where I(·) is the indicator function. The para-
meter γ is known as the latent correlation. Lesaffre and Kaufmann (1992)
have established existence and uniqueness of the ML estimates for the mul-
tivariate probit model. Recently, Chaganty and Joe (2004) have shown that
the ML estimate of β for this model is more efficient than the GEE estimate.
As an example we consider the data studied in Preisser and Qaqish (1999)

and made available publicly by the authors at http://www.bios.unc.edu/
j̃preisse/ for further analysis by the readers. See page 578, Preisser and
Qaqish (1999). The data is froma randomized clinical trial conducted to assess
the Guidelines for Urinary Incontinence (UI) Discussion and Evaluation as
adopted by primary care providers. The goal was to identify factors among
urinary incontinentmen andwomen age 76 and older that could predict their
dichotomous response to the question: “Do you consider this accidental loss
of urine a problem that interferes with your day to day activities or bothers
you in other ways?” This question was put to a total of 137 patients from
38 practices. In this example, the practices are independent and treated as
subjects or clusters. The observations within practices are treated as equicor-
related measurements. The binary response yij of the jth patient from the ith
practice, equals 1 if the patient is bothered and 0 if not. There are six covari-
ates: (1) age; (2) gender (male or female); (3) the number of leaking accidents
in a day (dayacc); (4) severity of the leak, takes 1 = the leak creates a mois-
ture, 2 = wet their underwear, 3 = trickle down the thigh, 4 = wet the floor,
(severe); (5) number of times they go to the toilet to urinate (toilet); and (6) an
indicator variable for female. The age variable is centered at 76 and scaled
down by 0.1.
Table 12.2 contains the parameter estimates obtained using logit link func-

tion and equicorrelated structure for the three methods of estimation: GEE,
GE, and QLS. The last two columns contain the estimates and standard

TABLE 12.2

UI Data: Parameter Estimates

GEE GE QLS Probit

Parameter Estimates S.E. Estimates S.E. Estimates S.E. Estimates S.E.

Intercept −3.054 0.959 −2.929 0.959 −2.996 0.959 −1.759 0.683
Female −0.745 0.600 −0.782 0.591 −0.762 0.596 −0.425 0.341
Age −0.676 0.561 −0.694 0.556 −0.684 0.558 −0.383 0.340
Dayacc 0.392 0.093 0.381 0.092 0.386 0.092 0.228 0.053
Severe 0.812 0.359 0.802 0.357 0.808 0.358 0.485 0.197
Toilet 0.108 0.099 0.106 0.098 0.107 0.098 0.054 0.047
α 0.093 — 0.153 0.074 0.120 0.076 0.288∗ 0.215

∗ Latent correlation.



C5777: “c5777_c012” — 2007/10/27 — 13:03 — page 382 — #12

382 Computational Methods in Biomedical Research

errors for the multivariate probit model. We have used PROC GENMOD to
obtain the estimates for the GEE method, which does not give the stand-
ard error for the estimate of α. The GEE estimates can be found also in
Table 12.2, page 576 in Preisser and Qaqish (1999). Note that the estimates
of the regression parameter obtained by the first three methods are similar.
Using the estimates of the regression parameter we calculated the upper
bound for the correlation parameter as given on page 204 for the equicor-
related structure in Chaganty and Joe (2006). The upper bound for α is 0.0175
for GEE, 0.0195 for GE, and 0.0185 for the QLS. Clearly, the estimate of α
is out of bounds for the three methods and thus the validity of the estim-
ates is in doubt. On the other hand the multivariate probit model, which
has a sound theoretical basis, yields regression parameter estimates that are
different from the other methods. The standard errors are also uniformly
smaller for the multivariate probit model, and hence it is preferable. A soft-
ware package “mprobit” for fitting the multivariate probit model is available
at http://cran.r-project.org/src/contrib/PACKAGES.html.

12.9 Analysis of Longitudinal Poisson Counts

The Poisson distribution has been a commonmarginalmodel for longitudinal
count data. Similar to binary variables, the range of the correlation between
two dependent Poisson variables depends on the marginal means through
Fréchet bounds. These bounds are not in closed form, but they canbeobtained
numerically. We will see that the bounds are a little more flexible than they
are for binary variables, since the support of Poisson variables is not a set of
cardinality two, but it is countably infinite.
In recent years a method due to Sim (1993) for simulating a multivariate

Poisson distribution with given means and correlations has gained popular-
ity. Here we will discuss a slight generalization of Sim (1993)’s algorithm.
This algorithm, when successful, leads to a complicatedmultivariate Poisson
distribution. ML estimation is intractable for this complexmultivariate distri-
bution and theremaybe aneed tousemethodsbasedonestimating equations,
like Gaussian and the QLS estimation. We will use simulated data gener-
ated using Sim’s algorithm to compare performance of the two estimating
methods.

12.9.1 Correlation Bounds for Poisson Variables

LetY1 andY2 be twoPoisson randomvariableswithmeansλ1 andλ2. Suppose
that Fi(yi) denotes the marginal cumulative distribution function of Yi and
the joint cumulative distribution function of (Y1, Y2) is denoted by F(y1, y2).
The nonparametric range of the correlation between Y1 and Y2 comes from
the Fréchet bounds

FL(y1, y2) ≤ F(y1, y2) ≤ FU(y1, y2), (12.13)
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where FL(y1, y2) = max(0,F1(y1) + F2(y2) − 1) and FU(y1, y2) =
min(F1(y1),F2(y2)). The correlation coefficient corresponding to the joint
distribution FU(y1, y2) is given by

ρU(λ1, λ2) = 1
λ1λ2

∞∑
y1=1

∞∑
y2=1

min[F1(y1)(1− F2(y2)),F2(y2)(1− F1(y1))],

(12.14)

and the correlation coefficient corresponding to the joint distribution
FL(y1, y2) is

ρL(λ1, λ2) = 1
λ1λ2

∞∑
y1=1

∞∑
y2=1
−min[(1− F1(y1))(1− F2(y2)),F1(y1)F2(y2)].

(12.15)

The range of the correlation between Y1 and Y2 is given by the interval
[ρL(λ1, λ2), ρU(λ1, λ2)]. Figure 12.1 shows the complex behavior of this range
as a function of log(λ2/λ1) for various values of λ1. The curves below the
x-axis are the graphs of ρL(λ1, λ2) and the corresponding graph of ρU(λ1, λ2)
is above the x-axis. The complex behavior of these graphs poses difficulty in

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

–7 –5 –3 –1 1

log(�2/�1)

�1

ρ

0.0039
1

0.0156
4

0.0625
16

0.5
64

3 5 7

FIGURE 12.1
Bivariate Poisson: Feasible region for the correlation.
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incorporating the bounds on the correlation in estimation procedures. The
next lemma gives some properties of the functions ρU(λ1, λ2) and ρL(λ1, λ2).

LEMMA 12.9.1
Let Y1 and Y2 be two Poisson random variables with means λ1 and λ2 respectively.
Assume without loss of generality λ1 ≤ λ2. Let ρL(λ1, λ2) and ρU(λ1, λ2) be the
correlations corresponding to the distribution functions FL(y1, y2) and FU(y1, y2),
respectively. Then we have

(a) ρU(λ1, λ2) ≤ 1√
λ1λ2

(
(λ2 − λ1)2

2
+ λ1

)
,

(b) ρL(λ1, λ2) = −√λ1λ2, if λ2 ≤ log(2).

PROOF If (Y1,Y2) is distributed as FU(y1, y2) then,

E(Y1 Y2) =
∞∑

y1=1

∞∑
y2=1

min[F1(y1), F2(y2)],

where Fi(yi) = P(Yi ≥ yi) for i = 1, 2. Since, λ2 ≥ λ1, and the Poisson family
possesses TP2 property we have F2(y2) ≥ F1(y2) ≥ F1(y1) for y1 ≥ y2. Now

E(Y1 Y2) =
∞∑

y1=1

y1∑
y2=1

min[F1(y1),F2(y2)] +
∞∑

y1=1

∞∑
y2=y1+1

min[F1(y1),F2(y2)]

=
∞∑

y1=1
y1F1(y1)+

∞∑
y2=2

y2−1∑
y1=1

min[ F1(y1),F2(y2)]

≤
∞∑

y1=1
y1F1(y1)+

∞∑
y2=2

(y2 − 1)F2(y2). (12.16)

The first term on the right-hand side of Equation 12.16 is

∞∑
y1=1

y1F1(y1) =
∞∑

y1=1
y1 P(Y1 ≥ y1) =

∞∑
y1=1

∞∑
y=y1

y1 P(Y1 = y)

=
∞∑
y=1

y∑
y1=1

y1 P(Y1 = y) =
∞∑
y=1

y(y + 1)
2

P(Y1 = y)

= (E(Y2
1)+ E(Y1))

2
= λ21

2
+ λ1. (12.17)
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Now the second term on the right-hand side of Equation 12.16 is

∞∑
y2=2

(y2 − 1)F2(y2) =
∞∑

y2=1
y2F2(y2)−

∞∑
y2=1

y2P(Y2 = y2)

= λ22
2
+ λ2 − λ2 = λ22

2
. (12.18)

Substituting Equations 12.17 and 12.18 in Equation 12.16 we get

E(Y1Y2) ≤ λ21 + λ22
2
+ λ1. (12.19)

It is easy to verify inequality (a) using Equation 12.19. The proof of (b) is
simple. When 0 ≤ λ1 ≤ λ2 ≤ log(2), we have P(Yi = 0) = e−λi ≥ 0.5 for
i = 1, 2. Hence 2 Fi(y) ≥ 1 or equivalently Fi(y) ≥ (1− Fi(y)) for all y ≥ 1 and
i = 1, 2. Therefore,

F1(y1)F2(y2) ≥ (1− F1(y1))(1− F2(y2))

and Equation 12.14 simplifies to

ρL(λ1, λ2) = −1√
λ1λ2

∞∑
y1=1

∞∑
y2=1

(1− F1(y1))(1− F2(y2)) = −λ1λ2√
λ1, λ2

= −√λ1, λ2.
This completes the proof of the lemma.

There are situations where the range of the correlation between Y1 and Y2
could be very narrow. For example, when λ1 = λ2 = λ converges to zero,
the random variables Y1 and Y2 converge to zero in probability and thus
the range of the correlation between Y1 and Y2 converges to the singleton
set {1}. On the other hand for fixed λ1, we have limλ2→∞ ρU(λ1, λ2) = 0 and
limλ2→0 ρL(λ1, λ2) = 0. Therefore, for fixed λ1 when λ2 is too large or too small
the range of the correlation becomes a singleton set containing zero.

12.9.2 Multivariate Poisson

Unlike the multivariate Gaussian distribution, which is uniquely determ-
ined by the marginal means and covariance matrix, there can be several
multivariate distributions with marginals as Poisson and a specified covari-
ance matrix. In the bivariate case we can easily construct a joint distribution
with specified correlation in the feasible region by taking a linear combin-
ation of the Fréchet lower and upper bounds given in Equation 12.13. For
higher dimensions, Bernoulli random variables play an important role in
the construction of multivariate Poisson distributions with given means and
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correlations. In particular, the binomial thinning operator, which has been
extensively used in modelling reliability data involving imperfect repairs
[see Barlow and Proschan (1975)], provides the foundation for simulating
multivariate Poisson distributions.
Let M be a nonnegative integer valued random variable and 0 < θ < 1 be

fixed. The binomial thinning of M with θ , is a random variable denoted by
θ �M that equals in distribution to

∑M
i=0 Ii, where I0 = 0 and Ii, i = 1, 2, . . . ,M

are i.i.d. Bernoulli (θ) random variables independent of M. The binomial
thinning is closed within the class of Poisson distributions as shown in the
next lemma. Joe (1996) and Zhu and Joe (2003) have developed approaches to
construct nonstationary Poisson time series models by exploiting this closure
property of the binomial thinning operator. See also Joe (1997). It is easy to
establish the following lemma.

LEMMA 12.9.2
Let M be a Poisson random variable with mean λ. Then,

1. θ �M is distributed as Poisson random variable with mean θλ.

2. Cov (θ1 �M, θ2 �M) = θ1θ2λ.

for all θ , θ1 and θ2 ∈ (0, 1).

Using the binomial thinning operator, we now introduce a constructive
definition for themultivariate Poisson distribution. This is a slight generaliza-
tion of Sim’s (1993) algorithm. LetZ1,Z2, . . . ,Zq be independently distributed
randomvariables such thatZk isPoissonwithmeanλk , 1 ≤ k ≤ q. Let� = [θjk]
be a (p× q)matrix of constants, 0 < θjk < 1. Define

Yj =
q∑

k=1
θjk � Zk for j = 1, 2, . . . , p. (12.20)

Then Y = (Y1,Y2, . . . ,Yp) is distributed as multivariate Poisson with mean
vector µ = (µ1,µ2, . . . ,µp)

′. It is clear from the definition, the conditional
probability mass function of Yj given (z1, . . . , zq) is

P(yj; z) =
∑

W∈Az(yj)

q∏
k=1

(
zk
wk

)
θ
wk
jk (1− θjk)zk−wk , (12.21)

where Az(y) = {W = (w1,w2, . . . ,wq) : wk ∈ N,wk ≤ zk and
∑q

k=1 wk = y}.
Therefore, the unconditional joint probability mass function of Y is

P(y) =
∑

z

{ p∏
i=1

P(yj; z)

}{ q∏
k=1

e−λkλzkk
zk!

}
. (12.22)
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Using Lemma 12.9.2, we can check that the moment generating function
of Y is given by

M(t) = E

 p∏
j=1

etjYj


= Ez

 p∏
j=1

q∏
k=1

etj(θjk�Zk)


= Ez


q∏

k=1

p∏
j=1

[
θjke

tj + (1− θjk)
]Zk

 . (12.23)

Further, the moment generating function (12.23) can be written as

M(t) =
q∏

k=1
exp{λk(eSk(t) − 1)} (12.24)

where Sk(t) =
∑p

j=1 log[θjketj+(1−θjk)]. The representation (12.24) shows that
the moment generating function of Y is equal to the joint moment generating
function of q independently distributed Poisson random variables centered
at (S1(t), . . . ,Sq(t)). Also, Sk(t) can be viewed as the joint cumulant generat-
ing function of p independently distributed Bernoulli random variables. The
central moment generating function of Y is given by

K(t) = E[exp(t′(Y − µ))]

=
q∏

k=1
exp{λk(Uk(t)− 1)}, (12.25)

where Uk(t) = eSk(t) − ∑p
j=1 θjktj. Moments up to order four of the mul-

tivariate Poissonmass function (12.22) are needed to calculate the asymptotic
relative efficiencies of the estimating methods GE and QLS. These can be
obtained by differentiating the central moment generating function (12.25).
We will need the following derivatives to obtain simplified expressions for
the higher ordermoments. Note thatUk(t) can also bewritten as the following
power-series:

Uk(t) =
∞∑

d1=0
. . .

∞∑
dp=0

p∏
j=1

 t
dj
j

dj!π
(dj)
jk

− p∑
j=1

θjktj, (12.26)
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where

π
(d)
jk =

{
1 if d = 0
θjk otherwise.

Therefore, for all dj = 0, 1, . . . ; j = 1, 2, . . . , p such that
∑p

j=1 dj ≥ 1 we have

U(d)
k (t) = ∂

∑p
j=1 djUk(t)

∂td11 . . . ∂t
dp
p

=

∞∑

r1=0
. . .

∞∑
rp=0

p∏
j=1

 t
rj
j

rj!π
(rj+dj)
jk

− δ(d)k (t), (12.27)

where

δ
(d)
k (t) =

{
θjk if dj = 1 and dj′ = 0 for all j′ �= j

0 otherwise.

Differentiating Equation 12.25 with respect to tj1 we get

∂K(t)
∂tj1

= ωj1(t)K(t) (12.28)

where

ωj1(t) =
q∑

k=1
U(d1)

k (t)λk

and d1 = ej1 (j1th unit vector in Rp). The covariance matrix of Y can be
obtained by differentiating Equation 12.28 with respect to tj2 and substituting
t with 0 as

∂2K(t)
∂tj1∂tj2

=
{
ωj1(t)ωj2(t)+ ω(2)j1j2

(t)
}
K(t), (12.29)

where

ω
(2)
j1j2
(t) =

q∑
k=1

U(d2)
k (t)λk
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and d2 = (ej1 + ej2). Therefore, the elements of Cov(Y) = � are given by

σj1j2 = Cov(Yj1 ,Yj2)

= ω
(2)
j1j2
(0)

=
q∑

k=1

p∏
l=1

π
(d2l)
lk λk for all 1 ≤ j1, j2 ≤ p. (12.30)

Differentiating Equation 12.29 with respect to tj3 we get

∂3K(t)
∂tj1∂tj2∂tj3

=
{
ωj1(t)ωj2(t)ωj3(t)+ ωj1(t)ω

(2)
j2j3
(t)+ ωj2(t)ω

(2)
j1j3
(t)

+ωj3(t)ω
(2)
j1j2
(t)+ ω(3)j1j2j3

(t)
}
K(t), (12.31)

where

ω
(3)
j1j2j3

(t) =
q∑

k=1
U(d3)

k (t)λk

is defined using Equation 12.27 and d3 = (ej1+ ej2+ ej3). Let ζ = vec((Y−µ)×
(Y − µ)′). A typical element of Cov(ζ , (Y − µ)) = τ is given by

τj1j2j3 = Cov((Yj1 − µj1)(Yj2 − µj2), (Yj3 − µj3))

= ω
(3)
j1j2j3

(0)

=
q∑

k=1

p∏
l=1

π
(d3l)
lk λk . (12.32)

Similarly, differentiating Equation 12.31 with respect to tj4 we get

∂4K(t)
∂tj1 . . . ∂tj4

=
{
ωj1(t)ωj2(t)ωj3(t)ωj4(t)+ ω(2)j1j2

(t)
[
ω
(2)
j3j4
(t)+ ωj3(t)ωj4(t)

]
+ω(2)j1j3

(t)
[
ω
(2)
j2j4
(t)+ωj2(t)ωj4(t)

]
+ ω(2)j2j3

(t)
[
ω
(2)
j1j4
(t)+ ωj1(t)ωj4(t)

]
+ωj1(t)ω

(3)
j2j3j4

(t)+ωj2(t)ω
(3)
j1j3j4

(t)+ωj3(t)ω
(3)
j1j2j4

(t)+ωj4(t)ω
(3)
j1j2j3

(t)

+ω(4)j1j2j3j4
(t)
}
K(t),

where

ω
(4)
j1j2j3j4

(t) =
q∑

k=1
U(d4)

k (t)λk
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is defined using Equation 12.27 andd4 = (ej1+ej2+ej3+ej4). A typical element
of the matrix Cov(ζ ) = κ is given by the following equations:

κj1j2j3j4 = Cov((Yj1 − µj1)(Yj2 − µj2), (Yj3 − µj3)(Yj4 − µj4))

= ω
(2)
j1j3
(0)ω(2)j2j4

(0)+ ω(2)j2j3
(0)ω(2)j1j4

(0)+ ω(4)j1j2j3j4
(0)

= σj1j3σj2j4 + σj1j4σj2j3 +
q∑

k=1

p∏
l=1

π
(dl4)
lk λk . (12.33)

Finally, the covariance matrix of first and second order standardized
deviations is

� = Cov(ξ) = D−1/2(σ )VD−1/2(σ ), (12.34)

where

ξ = D−1/2(σ ) ξ∗,

ξ∗ =
(

(Y − µ)
ζ − vec(�)

)

V =
(
� τ ′
τ κ

)
,

D(σ ) = diag (σ11, . . . , σpp, σ 2
11, σ11σ22, . . . , σppσ(p−1)(p−1), σ

2
pp). Note that V is

the covariance matrix of ξ∗.
We can use the constructive definition to simulate multivariate Poisson

vectors with a fixed covariance matrix �. The first step in this approach is
to find a q dimensional vector λ and (p × q) matrix � as a function of �
satisfying Equation 12.30. In general there could be more than one solution
to Equation 12.30. This is often the case when the covariance matrix � is
structured or the targeted value of q is greater than p. For example, when
� = φR(α) and R(α) = (1− α)Ip + αJp, we can check that the choices

{λ1 = φ[(1− α)1′p α]′, �1 = [Ip 1p]},

and

{λ2 = φ1(p+1), �2 = [(1−
√
α)Ip

√
α1p]}

satisfy Equation 12.30. In the above Ip is the identity matrix of order p, 1p is
a column vector of ones of order p, and Jp = 1p1′p. The selection of pair (λ,�)
introduces additional constraints on feasibility of the � matrix. The study of
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the mappings of� to (λ,�) is an important problem, whose solution will not
be pursued here.

12.10 Epileptic Seizure Data

In this sectionwe study the performance of the GE andQLS estimationmeth-
ods for the multivariate Poisson model described in Section 12.9.2. For the
simulations we will use a model fitted for a real life data using some well
established methods. Leppik et al. (1985) conducted a 2 × 2 randomized
double-blinded crossover clinical trial to study the effectiveness of anti-
epileptic progabide drug on 59 patients suffering from simple or complex
seizures. At each of the four successive postrandomization visits the number
of seizures occurring during the previous 2 weeks were reported. The four
pre-crossover responses are in Thall and Vail (1990, Table 2, p. 664).
Inspection of the data clearly indicates that the patient with id #207 is an

outlier, since the baseline and the first visit seizure count is more than 100. As
a preliminary analysis we have fitted the log-linear model that was given by
Thall and Vail (1990) for the mean responses

log(µij) = β0 + baseiβ1 + trtiβ2 + (base× trt)iβ3 + ageiβ5 + visit4jβ6,
(12.35)

where base = log(0.25 × baseline seizure count), trt is a binary indicator
for inclusion in treatment group, age = log(age of patient) and visit4 is a
binary indicator for the fourth visit. The Gaussian and QLS estimates with
and without patient #207 are given in Tables 12.3 and 12.4. The results with
patient #207 included are different from the results without that patient. For
example, we can see from the tables, the treatment and the baseline-treatment
interaction become insignificant if we exclude patient #207.

TABLE 12.3

Seizure Data: Gaussian Estimates

With Patient #207 Without Patient #207

Parameter Estimate S.E. p Value Estimate S.E. p Value

Intercept −2.7729 0.9489 0.0035 −2.3407 0.8766 0.0076
Base 0.9499 0.0974 0.0000 0.9505 0.0973 0.0000
trt −1.3401 0.4272 0.0017 −0.5206 0.4164 0.2112
Base × trt 0.5627 0.1742 0.0012 0.1383 0.1941 0.4763
Age 0.9011 0.2756 0.0011 0.7722 0.2550 0.0025
Visit4 −0.1611 0.0656 0.0140 −0.1479 0.0763 0.0527
α 0.1906 0.2731 0.4853 0.1819 0.2765 0.5106
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TABLE 12.4

Seizure Data: QLS Estimates

With Patient #207 Without Patient #207

Parameter Estimate S.E. p Value Estimate S.E. p Value

Intercept −2.7939 0.9561 0.0035 −2.3579 0.8838 0.0076
BASE 0.9504 0.0987 0.0000 0.9509 0.0983 0.0000
trt −1.3386 0.4296 0.0018 −0.5196 0.4185 0.2145
Base × trt 0.5633 0.1749 0.0013 0.1388 0.1947 0.4758
Age 0.9066 0.2772 0.0011 0.7768 0.2567 0.0025
Visit4 −0.1611 0.0656 0.0140 −0.1479 0.0763 0.0527
α 0.3582 0.2547 0.1596 0.3393 0.2621 0.1955

For our simulationswe have used Equation 12.35. To avoid additional vari-
ability of estimates, patient #207 was excluded from our simulations. Details
of the simulations are described in the following steps:

1. We fixed the true parameter β = β0, where

β0 = (−2.3579, 0.9509,−0.5196, 0.1388, 0.7768,−0.1479)′

is the QLS estimate for the epileptic seizure data obtained using
an exchangeable correlation structure and excluding patient with
id #207.

2. For the true correlation matrix we used the exchangeable struc-
ture and later repeated the whole simulation procedure for both
the autoregressive andmoving average correlation structures of the
first order.

3. We varied the true correlation parameter α from 0 to αmax in
increments of 0.0125, where αmax is the upper extreme of feasible
region.

4. For each value of α, N = 5000 datasets consisting of 59 multivari-
ate Poisson random vectors were simulated using the algorithm
described in Section 12.10.1.

5. For the ith simulated data setwe calculated θ̂mi and θ̂qi , theGaussian
and QLS estimates of θ , respectively. We also computed the cov-
ariance matrices Ĉov(θ̂mi) = �m(θ̂mi) and Ĉov(θ̂qi) = �q(θ̂qi).
In calculating these matrices we have used formulas given by
Equation 12.34 for the � matrix.

6. The infeasibility or divergent solution probability is estimated for
eachof the estimates θ̂m and θ̂q as theproportionof times the estimate
did not converge or the estimate is deemed to be inconsistent. The
infeasible/divergent cases were discarded from further analysis.
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7. The joint asymptotic relative efficiency of θ̂q with respect to θ̂m is
computed using the trace and determinant of the matrix

� =
 1
Nc

Nc∑
i=1

�q(θ̂qi)


−1 1

Nc

Nc∑
i=1

�m(θ̂mi)

 , (12.36)

where Nc is the number of simulated data sets that yielded conver-
gent estimates for both Gaussian and the QLS methods.

8. We calculated the coverage probability for simultaneous confidence
region of the Gaussian method as

1
Nc

Nc∑
i=1

I
(
(θ̂mi − θ0)′�̂−1mi (θ̂mi − θ0) ≤ χ2

K+q,0.05
)
, (12.37)

where I(·) is the indicator function. The coverage probability for
QLS method is calculated similarly.

12.10.1 Simulation Results

In this section, we report the findings of our simulations. Consider first the
case where the true correlation structure is equicorrelated (EQC). Figure 12.2
contains the plots of estimated probabilities (proportions of simulated data
sets) as a function of α, where the Gaussian andQLS estimates of θ = (β,α,φ)
did not converge or the final values of the estimates are deemed to be invalid.
It is clear from the plots, both the Gaussian and QLS methods have sim-
ilar infeasibility problems. The estimated probabilities are low when α is in
the interior of the feasible range. On the other hand, the proportions of invalid
estimates are high when α is close to zero; the reason being the estimate of α
could be negative in this case and Sim’s algorithm is valid only for positively
correlated Poisson variables and negative estimates of α are automatically
discarded.
Figure 12.3 contains plot of simultaneous coverage probability of the 95%

confidence ellipsoids as defined in Equation 12.37 for both the Gaussian and
QLSestimates. The coverageprobabilities for theQLSmethodare closer to the
nominal level compared to the coverage probabilities of theGaussianmethod
over awide range of α. Thus, when the true structure is exchangeable, confid-
ence ellipsoids constructed using QLS are preferable than those constructed
using the Gaussian method. Table 12.5 contains the asymptotic relative effi-
ciencies of QLS estimates with respect to the Gaussian estimates. We have
presented efficiencies for two regression coefficients; β̂0 is the coefficient of
a time independent covariate, and β̂5 is the coefficient of a time dependent
covariate. Table 12.5 shows that the QLS estimate of the regression coefficient
for time independent covariate is more efficient, whereas the opposite is true
for the regression coefficient of time dependent covariate.
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TABLE 12.5

EQC: ARE of QLS versus GE

α0 Nc β̂0 β̂5 α̂ �1 ν1 �2 ν2

0.02 2294 1.0059 0.99765 0.99474 1.0277 6.0274 1.0226 7.0234
0.12 4516 1.0119 0.99421 0.96431 1.0548 6.0538 1.0173 7.0237
0.22 4826 1.0205 0.98673 0.89914 1.0922 6.0894 0.9782 7.0026
0.32 4801 1.0300 0.97402 0.80735 1.1295 6.1243 0.8981 6.9547
0.42 4488 1.0344 0.96027 0.70581 1.1375 6.1326 0.7771 6.8680
0.52 3842 1.0356 0.94502 0.60452 1.1258 6.1232 0.6453 6.7612
0.56 2991 1.0374 0.93672 0.57174 1.1258 6.1241 0.6063 6.7300

1.15

1.11

1.06

1.02
0.000 0.200 0.400 0.600

6.02

6.06

��

α

6.10

6.14

FIGURE 12.4
EQC: ARE of β̂q vs. β̂m.

Our simulations also show that the QLS estimate of α is less efficient than
the Gaussian estimate, and furthermore, the efficiency is decreasing as α
increases. However, for the regression parameter, the efficiency of the QLS
method as measured by the determinant (!1) or the trace (ν1) criteria of the
submatrix of � defined in Equation 12.36, is better than the Gaussian estimate
over the entire feasible range of the correlation parameter α. Plots of these effi-
ciencies are in Figure 12.4. Note that the efficiencies are increasing functions
of α. Hence, when the regression parameter is of primary interest, the covari-
ates are time independent or mixed, and the correlation is exchangeable but
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the parameter α is treated as a nuisance parameter, then QLS is preferable
over the Gaussian method.
Table 12.5 also shows the overall efficiency of the QLS estimates of the

regression and correlation parameters with respect to the Gaussian estim-
ates, as measured by the determinant (!2) or the trace criteria (ν2) of the
matrix � defined in Equation 12.36. For small values of α, the overall per-
formance of the QLS is better than the Gaussian estimates. But when there
is a strong correlation, Gaussian estimates tend to be more efficient than the
QLS estimates.
Simulation results concerning infeasibility, coverage probabilities of the

confidence ellipsoids, and the asymptotic relative efficiencies of the regres-
sionparameterwhen the true correlation structure isfirst order autoregressive
(AR(1)) are presented in Figures 12.5 through 12.7, respectively. Table 12.6
contains asymptotic relative efficiencies for the AR(1) structure, similar to the
ones that we presented for the exchangeable case in Table 12.5. An examina-
tion of the figures and the table of efficiencies shows that the behavior of the
QLS method with respect to Gaussian method is very similar to that when
the true correlation is exchangeable. Though not reported here, we also per-
formed simulations when the true correlation is moving average of order one
(MA(1)). The behavior of the efficiency of the QLS estimate of the regression
parameter in this case is different from the other structures. The efficiency as
a function of α is approximately concave with amaximum in a neighborhood
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TABLE 12.6

AR(1): ARE of QLS versus GE

α0 Nc β̂0 β̂5 α̂ �1 ν1 �2 ν2

0.02 2328 1.0045 0.99881 0.98929 1.0213 6.0212 1.0107 7.0115
0.12 4254 1.0068 0.9977 0.97061 1.0323 6.0319 1.0025 7.0057
0.22 4812 1.0122 0.99443 0.92653 1.0565 6.0554 0.97865 6.99
0.32 4867 1.0171 0.98917 0.85847 1.0765 6.0745 0.91908 6.9467
0.42 4847 1.0221 0.98087 0.77332 1.0941 6.0913 0.83091 6.8822
0.52 3948 1.0286 0.96797 0.68886 1.1145 6.111 0.74001 6.8185
0.54 3381 1.0313 0.96383 0.67498 1.1243 6.1202 0.72904 6.8138

of α = 0.3, and the efficiency is more than over the entire range of α. When
the true structure is MA(1), the coverage probabilities of the Gaussian estim-
ates are closer to the nominal level than the coverage probabilities of the QLS
estimates.
In summary, the simulation results show that for commonly used correla-

tion structures, when the covariates are time independent or mixed the QLS
estimate of the regression parameter as a whole is more efficient than the
Gaussian estimate. But if all the covariates are time varying or if the correla-
tion parameter is not a nuisance parameter, theGaussianmethod is preferable
over QLS.

12.11 Appendix

The following are the regularity conditions needed for Yuan and Jennrich
(1998) theorem:

1. The multivariate distributions fi(Zi, θ0) exist for 1 ≤ i ≤ n.
2. For each i, E (hi(Zi, θ0)) = 0 and Var (hi(Zi, θ0)) =Mi(θ0); and let

1/n
∑n

i=1 Mi(θ0)→M(θ0), asn→∞. Assume thatM(θ0) is positive
definite.

3. For all λ ∈ Rk of length one there exists positive numbers B and δ

such that for all i E [(λ′ hi(Zi, θ0))2/(1+ λ′Mi(θ0)λ)]1+δ ≤ B.
4. For each i, hi(Zi, θ) is twice differentiable almost surely on �.
5. For each θ ∈ �, 1/n

∑n
i=1 E [∂hi(Zi, θ)/∂θ ′] → I(θ) as n → ∞.

Assume that I(θ0) is nonsingular.

6. Suppose that |∂2(λ′hi(Zi, θ))/∂θ∂θ ′| ≤ T for all i and for all λ ∈ Rk

of length one. Here | · | denotes the determinant.
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352–354
with CS correlation structure on V,

340–348
with structured mean vectors,

341–346
with unstructured mean vector,

346–348
with missing values, 365–368
simulation study, 354–357

tests for structures
covariance matrices, 358–360
mean vector, 357–358

univariate data, 325
with compound symmetric

covariance structure, 326–330

discrimination with AR(1) covariance
structure, 330–336

simulation results, 336–339
Classification trees, 121
Clinical trials, Bayesian approach, 238–242

designs, 240
operating characteristics, 241
two-agent-dose-finding design, 241–242

Clustered survival data, 300–302
Clustering methods, 19–23, 54, 70; see also

Unsupervised learning method
stability measures, 21

Common environmental factor, 314
Common reference design, 10–11
Complete randomization, 6, 265
Compound symmetric covariance

structure, 326–330
Compound symmetry (CS), 324
Computations

Gibbs-EM implementation, 306–307
simulation, 307–308

Conditional reference set, 267
Conditional tests, 287–293

asymptotic results, 288–289
information fraction for, 292–293
sequential monitoring procedure,

287–288
Conjugate Bayesian analysis, 219–223

dynamic linear modeling, 221–222
GLIMS, 222–223
linear mixed model, 222
linear modeling, 220–221

Connected loop design, 10
Cox proportional hazards model, 236
Cox regression models, 297
Cross-sectional studies, 374
Cross-validation method, 122
CS correlation structure on V, 340–348

classification rules with
with structured mean vectors,

341–346
with unstructured mean vector,

346–348
Cyclic loess, 17

D
Dendrogram, 20
Detroit breast cancer study, 91–95
Deviance information criterion (DIC)

component, 200
Diabetic retinopathy study, 154
Dimension reduction, 52, 112

principal component method, 113–114
Disease mapping, 237–238
Disease-free survival analysis, 162–163
Dizygotic (DZ) twins, 314
DNA sequence, 47, 48



C5777: “c5777_c013” — 2007/10/27 — 13:04 — page 403 — #3

Index 403

Duke lung cancer data, 123–125
Dynamic generalized Linear Models

(DGLM), 138
Dynamic linear modeling, 221–222

E
Eastern Cooperative Oncology Group

(ECOG), 301
EM algorithm, 305
Empirical Bayes screening (EBS)

procedure, 34
Escherichia coli, 19
Expected discovery rate (EDR), 8
Extended Generalized Estimating

Equation method (EGEE), 375–376

F
False discovery rate (FDR), 8, 243

controlling, 247–249
Figure of Merit (FOM), 20
Filter method, 53
Fisher’s canonical discriminant analysis,

117–118
Frailty, 231

model extensions, 235–236
specifications, 233
univariate models, 297–300

Fréchet bounds, 382

G
Gamma/gamma hierarchical model,

244–246
Gaussian estimation, 377, 393
Gaussian quadrature, 225
Gene Shaving algorithm, 20
Generalized estimating equations (GEE),

374, 375–377
shortcomings of, 376–377

Generalized Hidden Markov Model
(GHMM), 69

Generalized linear models (GLIMS),
222–223

Gibbs sampler, 224, 228–229
Gibbs-EM implementation, 306–307
Graph-theoretic concept, 20

H
Hidden Markov Models (HMMs), 59–60,

68–69
Hierarchical Bayesian changepoint model,

199–200
Highly active antiretroviral treatment

(HAART), 198
HIV data

CD4 cells rebound, random
changepoint model, 198

ACTG 398 data analysis, 201–206
DIC, use, 200
hierarchical Bayesian model, 199–200

censored HIV-1 RNA, 190–198
for acute infection subjects, 194–198
EM algorithm for N/LME, 191–194

log-likelihood function, 193
nonlinear function, 193–194

statistical issues, 189–190
Homogeneous Markov process, 156
Housekeeping genes, 15
Human Genome Project, 46
Hypothesis testing, Bayesian approach,

219

I
Infinite mixtures model (IMM), 54
Information fraction

complete randomization, 273–274
general urn design, 274–275
for unconditional tests, 292–293

Institute for Survey Research, 300
Integral approximation, 224–226
International Classification of Disease

(ICD), 133
Interquartile range (IQR), 16–17
Interwoven loop design, 10, 11

K
K inspections, 270–272

unconditional tests, 275–276
Kalman filter (KF), 148–149, 222

algorithm, 137
Kaplan–Meier model, 181, 202
Kernel method, 117
k-nearest neighbor classification (k−NN)

method, 25

L
Laird–Ware model, 191
Laplace approximation, 225, 306
Least squares (LS) approach, 57
Least squares support vector machine

(LSSVM), 70
Lindeberg condition, 267–268, 269, 281,

282
Linear discriminant analysis (LDA),

55–56, 116, 117, 122
Linear models, 18, 220–221
Linear mixed model (LMM), 222, 317
Linear scaling approach, 16
Local quadratic trend model, 132

autocovariances, 149–150
Local regression methods, 17
Logic regression, 79, 89–91
Logrank scores, 268
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Longitudinal data; see also Multivariate
repeated measures data

asymptotic distributions, 378–380
binary data analysis, 380–382
epileptic seizure data, 391–

simulation results, 393–398
extensions to, 374
Gaussian estimation, 377, 393
generalized estimating equations (GEE),

374, 375–377
shortcomings of, 376–377

Poisson counts analysis, 382–391
correlation bounds for Poisson

variables, 382–385
multivariate Poisson, 385–391

quasi-least square estimation, 377–378,
393, 395

univariate exponential dispersion
models, 372–374

parameter estimation, 373–374
Loop design, 10
Louis formula, 306

M
Machine learning methods

for cancer diagnosis and
prognostication, 77

artificial neural networks, 83–86
survival data, 86–87

Detroit breast cancer study, 91–95
logic regression, 89–91
random forest, 87–88

survival data, 88–89
tree-based method, 79–81

survival data, 81–83
Machine learning techniques, in

bioinformatics, 48
applications

functional and structural
consequences of mutations,
66–67

high resolution structure for
membrane proteins, 63–65

phosphorylation, as crucial signal
transduction mechanism, 66

protein–protein interaction sites,
65–66

secondary structure prediction, 61
solvent accessibility prediction, 61–63

biomaker, 69–70
computational gene identification,

67–69
drug design, 69–70
practice, 49

feature selection and aggregation,
52–53

model complexity, 55

model validation, 51–52
problem representation, 50
supervised versus unsupervised

learning, 53–55
training and testing data selection, 51

QSAR study, 69–70
statistical learning

HMM, 59–60
LDA, 55–56
LS, 57
NN for classification and regression,

58–59
SVM, 56–57
SVR, 57–58

MALDI-TOF (matrix assisted laser
desorption/ionization-time of
flight), 105, 106

Markov chain arguments, 155, 228
Markov chain Monte Carlo (MCMC), 198,

202, 212, 224
over model spaces, 229–230

Martingale residuals, 79, 88
survival tree based on, 92, 93

Mass spectrometry-based protein
profiling, 104

bagging algorithm, 121
baseline subtraction methods, 109–110
boosting algorithm, 121
classification trees, 121
of complex biological samples, 105–106
data description, 107–109
dimension reduction, 112

principal component method, 113–114
Duke lung cancer data, 123–125
Fisher’s canonical discriminant

analysis, 117–118
nearest-neighbor methods, 118–119
nonparametric discriminant

procedures, 116–117
normalization of intensities, 111
parametric discriminant procedures,

115–116
peak alignment, 111–112
peak identification and extraction

preprocessing techniques, 110
peak selection method, 112, 114–115
prostate cancer data, 125–127
quality control issues, 127–128
random forest, 121–122
support vector machines, 119–120
validation techniques

bootstrap method, 122–123
cross-validation method, 122

Maximum likelihood estimators (MLEs),
138

Mean squared error (MSE), 138
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Metropolis–Hastings algorithm, 224,
227–228

Microarray data analysis, 2, 243–249
classification method, 23–27

accuracy, 26–27
algorithms, 25–26
dimensionality reduction, 24–25

clustering method, 19–23
differential gene expression, detection,

27
EBS, 34
false discovery rate, 30–32
fold change, 27–28
mutiple testing, adjustment for, 29–30
procedures-based on p values, 32–34
two-sample t-test, 28–29

experimental design, 3–4
data, 4
for dual-channel arrays, 10–11
for oligonucleotide arrays, 6–8
power/sample size considerations, 8
sources of variation, 4–5
principles, 5–6
pooling, 9–10

gamma/gamma hierarchical model,
244–246

multiplicity correction, 247–249
network and pathway, 34–36
nonparametric Bayesian model, for

differential gene expression,
246–247

normalization, 11–13
global or local values, 15–17
linear models, 18
local regression methods, 17
probe intensity models, 18–19
quantile-based methods, 17
selected invariant genes, 15
variance components, estimation,

14–15
probability of expression model, 247

Misclassification error rate (MER), 336–337
Missing at random (MAR), 365
Mixed effects model, for classification, 324
Mixed-effects linear model, 18
Model-averaging” approach, 54
Molecular biology, 47–48
Monozygotic (MZ) twins, 314
Monte Carlo based inference, 226–230

Gibbs sampler, 228–229
MCMC over model spaces, 229–230
Metropolis–Hastings algorithm,

227–228
public domain software, 230
rejection method, 226–227
weighted resampling method, 227

Monte Carlo Expectation-Maximization
(MCEM) algorithm, 190, 306, 307

Monte Carlo integration, 225–226
Monte Carlo via Importance sampling,

226
mRNA expression, 47–48
Multicenter clinical trial, 311–313
Multilayered perceptron” (MLP), 58–59
Multiple failure time data analysis
SAS® software

application, 161
base model, estimation, 164–166
BMT_SH data set, 162, 163
counting process-style input,

multiple record, 167–171
death or relapse intensity, 178–180
disease-free survival, analysis,

162–163
plotting survival curves, 171–175
stratum-specific analysis and

multiple events, 175–178
transition probability, computation,

180–183
variable selection, 166–167

multistate model, 156
example, 159–161
regression model, 157–158
transition intensity, 156–157
transition probability, 156–167,

158–159
Multiple imputation, 190, 365
Multiplicative intensity model, 155
Multiplicity correction

false discovery rate, controlling,
247–249

Multistate model, 156
example, 159–161
regression model, 157–158
transition probability

estimation, 158–159
and intensity, 156–157

Multivariate repeated measures data,
classification in, 324, 339

with AR(1) correlation structure on V,
348–354

with structured mean vectors,
349–352

with unstructured mean vectors,
352–354

with CS correlation structure on V,
340–348

with structured mean vectors,
341–346

with unstructured mean vector,
346–348

with missing values, 365–368
simulation study, 354–357
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Multivariate survival times, shared frailty
models for, 231–235

baseline hazard function, 232
frailty specifications, 233
positive stable shared frailty model,

233–235
MvA plot, 17

N
National Cancer Institute (NCI), 132
National Center for Health Statistics

(NCHS), 132
cancer mortality data, 133–134

National Institutes of Health (NIH), 131
Nearest-neighbor methods, 118–119
Nelder–Mead algorithm, 142
Nelson–Aalen estimator, 181
Neural network (NN), 25, 70

for classification and regression, 58–59
Newton–Raphson iterative algorithm, 373
nnet package, 92
Nonhomogeneous Markov process, 156
Nonlinear scaling approach, 16
Nonnucleoside reverse transcriptase

inhibitors (NNRTI), 201
Nonparametric Bayesian model, 250

for differential gene expression, 246–247
Nonparametric discriminant procedures,

116–117
Nonparametric maximum likelihood

estimation (NPMLE), 306
Nonsequential case, 269–270

randomization test properties in,
281–282

Nonsynonymous SNPs (nsSNPs), 67
Normal approximation, 224
Normalization, 11–13

of intensities, 110
of microarray data

global or local values, 15–17
linear models, 18
local regression methods, 17
probe intensity models, 18–19
quantile-based methods, 17
selected invariant genes, 15
variance components, estimation,

14–15
Normalized statistic, 269

O
Oligonucleotide microarray, 6–8
Overfitting, 51

P
Parameter estimation under, 304–306

Parametric discriminant procedures,
115–116

Partial least squares (PLS), 25
Peak selection method, 112, 114–115
Peptide mass fingerprinting (PMF), 106
Permuted block design, 266, 283
Phosphorylation

as crucial signal transduction
mechanism, 66

Position specific substitution matrix
(PSSM), 50

Positive stable shared frailty model,
233–235

Posterior distribution, 213, 216–217
Prediction Analysis for Microarrays

(PAM), 26
Prediction error rate, 89
Predictive distribution, 217–218
Principal component method, 113–114
Prior distribution, 213, 216–217
Probability of expression (POE) model,

247
Probe intensity models, 18–19
Probe set, 2
Probe-level models (PLM), 18–19
PROC FORECAST (PF) model, 132, 134–135

application, 138–141
tuned and untuned, comparison,

142–143, 144
Proportional hazards mixed-effects

models, 302
clustered survival data, 300–302
computations

Gibbs-EM implementation, 306–307
simulation, 307–308

interpretation under, 303–304
multicenter clinical trial, 311–313
parameter estimation under, 304–306
twin data, 313–317
univariate frailty models, 297–300

Proportional hazards model, 82, 154
Prostate cancer data, 125–127
Pruning, 81
Public domain software, 230

Q
QSAR study, 69–70
Quadratic discrimination method, 116
Quadrature approximation, 225
Quantile-based methods, 17
Quasi-least square (QLS) estimation,

377–378, 393, 395

R
R calculations, 278
R code, 92, 97, 222
Radialbasis function (RBF), 59
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Random effects model, 184, 205, 246, 301,
302–303, 313; see also Prior
distribution

Random forest, 79, 87–88, 121–122
classification, 26
software, 92
survival data, 88–89

Randomization, of experimental design, 5
Randomization tests see under Sequential

monitoring
Randomized complete block design, 7
Recurrence-free survival (RES), 91
Reference design, 10
Regression model, 154, 156–157
Rejection method, 226–227
Relative solvent accessibility (RSA), 62–63
Replicated reference design, 10
Replication, of experimental design, 5–6
Residual maximum likelihood (REML),

306
Restricted randomization, 265–266
Reversible jump MCMC (RJMCMC)

algorithm, 229
Robust multi array average (RMA)

method, 18–19
Robustness measures, 217
Root mean squares of relative prediction

errors (RMSPE), 142
RPART package, 92
Rubin’s multiple imputation procedure,

365

S
Saccharomyces cerevisiae, 19
Sampling importance resampling (SIR),

227
Sampling model, 213
SAS® software

application, 161
base model, estimation, 164–166
BMT_SH data set

variables, 162, 163
counting process-style input,

multiple record, 167–171
death or relapse intensity, 178–180
disease-free survival, analysis,

162–163
plotting survival curves, 171–175
stratum-specific analysis and

multiple events, 175–178
transition probability, computation,

180–183
variable selection, 166–167

calculations, 278–280
multistate model, 156

example, 159–161
regression model, 157–158

transition probability
estimation, 158–159
and intensity, 156–157

SAS™, 132
Savage scores, see Logrank scores
Score functions, 90, 267–269, 271
Secondary structure prediction, 61
SELDI (surface-enhanced laser

desorption/ionization), 106
Self-organizing map (SOM), 20
Semiparametric proportional hazards

model, 82
Sequential monitoring

asymptotic results, for unconditional
randomization

K inspections, 270–272
nonsequential case, 269–270

conditional tests, 287–293
asymptotic results, 288–289
information fraction for, 292–293
sequential monitoring procedure,

287–288
discussion of calculation, 276–280

R calculations, 278
SAS calculations, 278–280

information fraction
complete randomization, 273–274
general urn design, 274–275

K-inspection unconditional tests, 275–276
under population model, 262–264
randomization tests, 265–267
score functions, 267–269
unconditional tests, for three common

designs, 280–286
monitoring plan development,

283–285
permuted block design, 283
stratified block design, 283–284
stratified general urn design,

284–285
randomization test properties, in

nonsequential setting, 281–282
Serial analysis of gene expression (SAGE),

2–3, 243
Shared frailty models, for multivariate

survival times, 231–235
baseline hazard function, 232
frailty specifications, 233
positive stable shared frailty model,

233–235
Shrunken centroid classification, 26
Significance analysis of microarrays

(SAM) software, 8, 28, 243
Sim’s algorithm, 382
Simple rank scores, 268
Single nucleotide polymorphisms in

coding regions (cSNPs), 66–67
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Single time-point model, 86
Solvent accessibility prediction, 61–63
Spending function, 264
Split plot designs, 7
SsfPack2.2, 138, 142
State space model (SSM), 136–138

application, 138–141
tuned, 141–142

and untuned, comparison, 142–143,
144

Statistical learning techniques, 55
machine learning

HMM, 59–60
LDA, 55–56
LS, 57
NN for classification and regression,

58–59
SVM, 56–57
SVR, 57–58

Stratified block design, 267, 283–284
Stratified general urn design, 284–285
Stratified urn design, 267
Structural equation modelling, 314
Structured mean vector, 341–346, 349–352
Supervised learning, 68, 78

versus unsupervised learning, 53–54, 78
Support vector machine (SVM), 26, 56–57,

70, 119–120
Support vector regression (SVR), 57–58
Surveillance, Epidemiology and End

Results (SEER) program, 134
Survival analysis for models, Bayesian

approach
frailty model extensions, 235–236
shared frailty models, for multivariate

survival times, 231–235
univariate survival times, 230–231

T
Three-dimensional(3D) structure, 48
Transition probability

computation, 180–183
estimation, 158–159
and intensity, 156–157

Tree cost-complexity, 81
Tree-based method, 78, 79–81

survival data, 81–83
t-statistic, 28, 246
t-test, 12, 13, 28–29
Tuning parameters, 141
Twin data, 313–317
Two-agent-dose-finding design, 241–242

Two-sample log-rank statistic, 83
Two-sample t-test, 28–29

U
Unconditional reference set, 267
Unconditional tests, for three common

designs, 280–286
monitoring plan development, 283–285

permuted block design, 283
stratified block design, 283–284
stratified general urn design, 284–285

randomization test properties, in
nonsequential setting, 281–282

Uniform prior, 216
Unique environmental factor, 314
Univariate exponential dispersion models,

372–374
parameter estimation, 373–374

Univariate frailty models, 297–300
Univariate repeated measures data,

classification in, 324, 325
with compound symmetric covariance

structure, 326–330
discrimination with AR(1) covariance

structure, 330–336
simulation results, 336–339

Univariate survival times, 230–231
Unstructured mean vectors, 346–348,

352–354
Unsupervised learning method, 78
Unsupervised learning, 19

versus supervised learning, 53–54
Unweighted Pair Group Method with

Arithmetic mean (UPGMA), 20
Urn design, 266, 274–275

stratified general urn design, 284–285

V
van der Waerden scores, 268
Veterinary study, 154
Vietnam Era Twin (VET) Registry, 300

W
Wavelet transformations, 114
Weighted least squares, 110
Weighted resampling method, 227
WinBUGS, 202
Wrapper method, 53

Z
Zygosity, 315
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COLOR FIGURE 1.3
The genes were clustered into seven groups using their expression profiles during sporulation of
yeast; five different clustering algorithmswere attempted. (Adapted fromDatta, S. andArnold, J.
(2002). In Advances in Statistics, Combinatorics and Related Areas, C. Gulati, Y.-X. Lin, S. Mishra,
and J. Rayner, (Eds.), World Scientific, 63–74.)

Model temporal profiles

–4
–2

0
2

4
–4

–2
0

2
4

–4
–2

0
2

4

0 2 4 6

Time (hours)

Simulated dataset 1

8 10 12

0 2 4 6

Time (hours)

Simulated dataset 2

8 10 12

0 2 4 6

Time (hours)

8 10 12

lo
g_

2(
ex

pr
es

si
on

 r
at

io
)

lo
g_

2(
ex

pr
es

si
on

 r
at

io
)

lo
g_

2(
ex

pr
es

si
on

 r
at

io
)

COLOR FIGURE 1.4
The average proportion of nonoverlap measure for various clustering algorithms applied to
simulated data sets.
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COLOR FIGURE 1.5
Two simulated datasets of gene expressions were created by adding random noise to a model
profile.
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COLOR FIGURE 2.1
Comparison of experimentally observed (PDB structure lq4k, chain A, two upper rows) and
predicted (using the SABLE (From R. Adamczak, A. Porollo and J. Meller, Proteins, 56, 753–767,
2004.) server, lower rows) structures of polo kinase PIki. Helices are indicated using red braids,
beta-strands are indicated using green arrows and loops are shown in blue. The relative solvent
accessibility is represented by shaded boxes, with black boxes corresponding to fully buried
residues. Sites located in known protein–protein interaction interfaces are highlighted using
yellow, whereas residues corresponding to polymorphic sites are highlighted in red and Xs
represent fragments unresolved in the crystal structure. Figure generated using the POLYVIEW
server (http://polyview.cchmc.org).
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COLOR FIGURE 8.1
Malaria in Pará: log-relative risk’s March 1997 posterior median when βt ∼ N(0, σ 2t In) and
σ 2t ∼ Log-normal(log(σ 2t−1), τ2). For instance, Anajás county highest risk may be owing to its
proximity to several rivers and to the island of Marajó.




