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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide useful
reference books for researchers and scientists in academia, industry, and gov-
ernment, and also to offer textbooks for undergraduate and graduate courses
in the area of biostatistics. This book series will provide comprehensive and
unified presentations of statistical designs and analyses of important applic-
ations in biostatistics, such as those in biopharmaceuticals. A well-balanced
summary will be given of current and recently developed statistical meth-
ods and interpretations for both statisticians and researchers or scientists
with minimal statistical knowledge who are engaged in the field of applied
biostatistics. The series is committed to providing easy-to-understand, state-
of-the-art references and textbooks. In each volume, statistical concepts and
methodologies will be illustrated through real-world examples.

In the last decade, it was recognized that increased spending on biomed-
ical research does not reflect an increase in the success rate of pharmaceutical
development. On March 16, 2004, the FDA released a report addressing
the recent slowdown in innovative medical therapies submitted to the FDA
for approval, “Innovation/Stagnation: Challenge and Opportunity on the
Critical Path to New Medical Products.” The report describes the urgent need
tomodernize the medical product development process—the critical path—to
make product development more predictable and less costly. Two years later,
the FDA released a Critical Path Opportunities List that outlines 76 initial pro-
jects (under six broad topic areas) to bridge the gap between the quick pace of
new biomedical discoveries and the slower pace at which those discoveries
are currently developed into therapies. Among the six broad topic areas, bet-
ter evaluation tool (development of biomarker), streamlining clinical trial (the
use of adaptive design methods), and harnessing bioinformatics (the use of
computational biology) are considered the top three challenges for increasing
the probability of success in pharmaceutical research and development.

This volume provides useful approaches for implementation of target
clinical trials in pharmaceutical research and development. It covers stat-
istical methods for various computational topics such as biomarker devel-
opment, sequential monitoring, proportional hazard mixed-effects models,
and Bayesian approach in pharmaceutical research and development. It
would be beneficial to biostatisticians, medical researchers, pharmaceutical
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scientists, and reviewers in regulatory agencies who are engaged in the areas
of pharmaceutical research and development.

Shein-Chung Chow



Preface

This edited volume is a collection of chapters covering some of the important
computational topics with special reference to biomedical applications. Rapid
advances in ever-changing biomedical research and methodological statistical
developments that must support these advances make it imperative that from
time to time a cohesive account of new computational schemes is made avail-
able for users to implement these methodologies in the particular biomedical
context or problem. The present volume is an attempt to fill this need.

Realizing the vastness of the area itself, there is no pretension to be exhaust-
ive in terms of the general field or even in terms of a topic represented by a
chapter within this field; such a task, while also requiring hundreds of collab-
orators, would require a collection of several volumes of similar size. Hence
the selection made here represents our personal view of what the most import-
ant topics are, in terms of their applicability and potential in the near future.
With this in mind, the chapters are arranged accordingly, with the works of
immediate applicability appearing first. These are followed by more theor-
etical advances and computational schemes that are yet to be developed in
satisfactory forms for general applications.

Work of this magnitude could not have been accomplished without the
help of many people. We wish to thank our referees for painstakingly
going through the chapters as a gesture of academic goodwill. Theresa Del
Forn of Taylor & Francis Group, was most helpful and patient with our
repeatedly broken promises of meeting the next deadline. Our families have
provided their sincere support during this project and we appreciate their
understanding as well.

Ravindra Khattree, Rochester, Michigan
Dayanand N. Naik, Norfolk, Virginia
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1.1 Introduction

Microarray technology has quickly become one of the most commonly used
high throughput systems in modern biological and medical experiments over
the past 8 years. For most parts, a single microarray records the expression
levels of several genes in a tissue sample—this number often runs in tens of
thousands. At the end, a huge multivariate data set is obtained containing
the gene expression profiles. A microarray experiment typically compares
the expression data with two or more treatments (e.g., cell lines, experi-
mental conditions, etc.); additionally, there is often a time component in the
experiment. Owing to the relatively high production cost of microarrays,
oftentimes very few replicates are available for a given set of experimental
conditions that pose new challenges for the statisticians in analyzing these
data sets.

Most of the early microarray experiments involved the so-called two-
channel cDNA microarrays where small amounts of genetic materials (CRNA)
are printed on a small glass slide with robotic print heads. The mRNA samples
corresponding to two different treatments are tinted with two different fluor-
escent dyes (generally red and green) and allowed to hybridize (a technical
term for a biological process by which an mRNA strand attaches to the com-
plementary cDNA strand) on the same slide. At the end, the expression values
of the sample under comparison are evaluated with certain specialized laser
scanners. In more recent studies, the oligonucleotide arrays, also known as
the Affymetrix GeneChips®, are becoming increasingly popular. These are
factory-prepared arrays targeted for a particular genome (e.g., rat, humans,
etc.) that contain oligonucleotide materials placed in multiple pairs—called a
probe set (http://www.affymetrix.com/products/system.affx). One of each
pair contains the complementary base sequences for the targeted gene; how-
ever, the other one has an incorrect base in the middle created to measure
nonspecific bindings during hybridization that can be used for background
correction. Expression values are computed by the relative amounts of
bindings (perfect match versus perfect mismatch).

Besides the above two microarray platforms, there exist many additional
choices at present including many custom arrays offered by various man-
ufactures; in addition, serial analysis of gene expression (SAGE), which is
technically not a microarray-based technique, produces gene expression data
as well. Unlike microarrays, SAGE is a sequencing-based gene expression



Microarray Data Analysis 3

profiling technique that does not require prior knowledge of the sequences
to be considered. Another important difference between the two is that, with
SAGE, one does not need a normalization procedure (see Section 1.3) since it
measures abundance or expression in an absolute sense.

Calculating expression itself is an issue with most, if not all, microarray
platforms; in addition, there are issues of normalizations and correction for
systematic biases and artifacts, some of which are discussed in Section 1.3.
In addition, there have been recent studies comparing multiple microarray
platforms and the amount of agreement between them. The very latest set
of results (see, e.g., Irizarry et al., 2005) contradict earlier beliefs about non-
reproducibility of microarray gene expression calculations and concludes that
the laboratories running the experiments have more effect on the final conclu-
sions than the platforms. In other words, two laboratories following similar
strict guidelines would get similar results (that are driven by biology) even if
they use different technologies. On the other hand, the “best” and the “worst”
laboratories in this study used the same microarray platform but got very
different answers.

In this review, we present a brief overview of various broad topics of
microarray data analysis. We are particularly interested in statistical aspects
of microarray-based bioinformatics. The selection of topics is, by no means,
comprehensive partly because new statistical problems are emerging every
day in this fast growing field. A number of monographs have come out in
recent years (e.g., Causton et al., 2003; Speed, 2003; Lee, 2004; McLachlan
et al., 2004; Wit and McClure, 2004), which can help an interested reader gain
further familiarity and knowledge in this area.

The rest of the chapter is organized as follows. Some commonly employed
statistical designs in microarray experiments are discussed in Section 1.2.
Aspects of preprocessing of microarray data that are necessary for further
statistical analysis are discussed in Section 1.3. Elements of statistical machine
learning techniques that are useful for gaining insights into microarray data
sets are discussed in Section 1.4. Hypothesis testing with microarray data is
covered in Section 1.5. The chapter ends with a brief discussion of pathway
analysis using microarrays as a data generation tool.

1.2 Experimental Design

In planning biological experiments, including microarray experiments, the
researcher should be aware of and follow sound statistical principles. Each of
these principles, as outlined below, serves a particular purpose in ensuring a
valid experiment. Properties of a “good” experiment include the absence of
systematic error (or bias), precision, and simplicity (Cox, 1958). The experi-
ment should also permit calculation of uncertainty (error) and ideally have a
wide range of validity.
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Microarray experiments have realistic limitations that must be taken into
account at the design stage. These include the cost of arrays, restrictions on
the number of arrays that can be processed at one time, and the amount of
material necessary to hybridize an array. In addition, there may be little or no
prior information on variability available at the planning stage of a microarray
experiment.

In the discussion that follows, we describe experimental design principles,
primarily as applied to oligonucleotide arrays. Dual-channel arrays require
specialized designs, which are discussed briefly in Section 1.2.7. While the
principles described here are general, in this section we focus mainly on
experiments to detect differential gene expression.

1.2.1 Data from Microarray Experiments

For most purposes, data from a microarray experiment can be described as
multidimensional array of expression values Y. Usually, the first dimen-
sion (row) corresponds to genes or probe sets or ORFs. Depending on the
experiment, the other dimensions may represent replicates (biological and
technical), tissue types, time, and so on.

Usually, a preprocessing or normalization step is applied to the microarray
readouts to calculate an accurate and “unbiased” measure of gene expression
before additional statistical analyses are carried out. We describe various nor-
malization methods in Section 1.3. In addition, certain statistical analysis may
have an implicit normalization step.

1.2.2 Sources of Variation

When designing a microarray experiment, it is essential to be aware of the
many sources of variation, both biological and technical, which may affect
experimental outcomes. Biological variation is essentially that among sub-
jects (i.e., natural subject-to-subject variability). Different subjects from which
samples are obtained are not identical in a multitude of characteristics and
thereby have gene expressions that vary as well. This type of variation occurs
normally and is used as a benchmark when testing for differential expression.
Biological variation is reflected in experimental error.

Technical variation includes errors or effects due to instrumentation, meas-
urement, hybridization, sample preparation, operator, and other factors that
serve to add unwanted variation to the data (Churchill, 2002; Parmigiani etal.,
2003). These factors generally are uncontrolled, meaning that their presence is
not only unintended but also often unavoidable. Technical variation includes
systematic variation among or within arrays. It is described generally as an
array effect. There may also be variation that is the result of how the experi-
ment is designed or carried out; that is, variation that is due to controlled or
identifiable factors. An example is variation due to batch where arrays within
certain groups all share a common effect. Variation of this type usually can
be accounted for through statistical analysis. This type of variation often is
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considered part of technical variation, and attempts can be made to eliminate
it before data analysis.

Several authors, including Spruill et al. (2002), Kendziorski et al. (2005),
and Zakharkin et al. (2005), have attempted to assess relative sizes of several
typical sources of variation in microarray studies through experimentation.
As a word of caution, it should be noted that each of these studies was con-
ducted under a particular set of experimental conditions, and it is unclear to
what extent these results may be generalized.

1.2.3  Principles of Experimental Design

The three primary principles of experimental design, namely randomiza-
tion, replication, and blocking, each have a particular purpose, and are often
attributed to R. A. Fisher. In discussing these principles, it is important to note
that an experimental unit is defined to be the smallest division of experimental
material such that any two units may receive different treatments in the actual
experiment.

Randomization requires that experimental units be randomly allocated to
treatment conditions. The random allocation may be restricted in some way,
for instance, through blocking, depending on the design of the experiment.
Randomization is intended to protect against bias or systematic error. As
emphasized by Kerr (2003), randomization should be applied to minimize
bias induced by technical artifacts, such as systematic variation in arrays
within a batch according to the order in which they were printed. Also,
randomization must take into account processing constraints. For example,
suppose an experiment involving three treatments is run using four arrays
per treatment, and it is possible to process only eight arrays per day. If the
arrays from the first two treatments were processed on Day 1, and the arrays
from the third treatment were processed on Day 2, it may be impossible to
separate a treatment effect (Whereby certain genes are differentially expressed
across treatments) from a day effect (whereby expression levels for all genes
tend to be higher on a particular day). That is, the treatment and day effects
would be confounded.

Replication implies having at least one experimental unit per treatment
condition, and is necessary in order to permit estimation of experimental
error or variance. The microarray literature distinguishes between biolo-
gical and technical replication. Biological replication refers to the number
of independent biological (experimental) units assigned to each treatment
condition, whereas technical replicates arise from repeated sampling of the
same experimental unit and will therefore be correlated (Cui and Churchill,
2003). Increasing replication, in particular biological replication, also provides
a means of increasing power and precision for comparison of treatment
means. In this context, biological replicates are considered “true” replicates,
whereas the technical replicates are subsamples and might be considered
“pseudoreplicates.” Issues related to pseudoreplication have been debated
at length in the ecological literature for more than 20 years (Hurlbert,



6 Computational Methods in Biomedical Research

1984, 2004; Oksanen, 2001). In particular, treating technical replicates as
biological replicates in a microarray experiment tends to underestimate true
experimental error, thus inflating type I error and overstating statistical
significance.

Blocking involves grouping similar units together before assignment to
treatment conditions, with the goal of reducing experimental error. In com-
plete block designs, each treatment is randomly applied at least once within
each block. Blocking accounts for one (or more) major source of extraneous
variability, in addition to the one due to the treatments. If blocking is part of
the experimental design, it should also be incorporated in the analysis.

1.2.4 Common Designs for Oligonucleotide Arrays

The simplest design is one in which two or more treatment groups are to
be compared with respect to differential gene expression, at a particular
time point. The design in which experimental units are assigned to treat-
ments in an unrestricted random fashion is known as a completely randomized
design.

Several authors, including Kerr and Churchill (2001 a,b) and Kendziorski
et al. (2003) have recommended analysis of data arising from microarray
experiments through linear models, provided necessary assumptions, includ-
ing normality and homoscedasticity of model errors are satisfied. Data from
a completely randomized design may be analyzed using a simple one-way
analysis of variance (ANOVA) model for a single gene, with

Y,'j=,l,L+Ti+8i]‘

where Yj; is the background-corrected and normalized intensity (usually
expressed on the log, scale) of a particular gene for the jth experimental unit
assigned to the ith treatment, p is an average intensity level, T; is the effect
of the ith treatment, and the ai]-’s are the model error terms, usually assumed
to be independently and identically distributed with mean 0 and common
variance o (i.e., sgd ~ N(0,02)).

A natural extension to mixed linear models for oligonucleotide microarray
data was proposed Chu et al. (2002a), whereby analyses may be conducted on
a gene-by-gene basis at the probe level, accounting for variation among exper-
imental units within treatments, among arrays within experimental unit, and
among probes for a particular gene within arrays. Following Chu et al. (2002a)
a mixed linear model corresponding to a completely randomized design with
one treatment factor is given by

Yijk =T+ P]‘ + TP,‘]‘ + Ak(,') + &ijk

where Y is the background corrected and normalized measurement at the
jth probe in the kth replicate for the ith treatment, T; is the fixed effect of the
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ith treatment, P/ is the fixed effect of the jth probe, and Ay is the random
effect for the kth array (assuming arrays represent biological replicates) of
the ith treatment. The usual model assumptions are that A ~ N(0,52) and

.. k(i)
e;;;j ~ N(0,0?) with Ak + e ~ N(0,02 + 02) and

o2 +o% if GG,k ={,f,K),
Cov(Aka + gijkrAk’(i/) + Si’,j’,k/) = Jaz ifi=i, k=k,j#7]
0 otherwise,

where ¢ is the variance component associated with variation among arrays
(biological replicates) within treatments.

A design in which blocks account for one extraneous source of variation,
and in which experimental units are randomly applied to treatments with the
restriction that each treatment appears once within each block, is known as
a randomized complete block design. A fixed or random blocking factor may be
easily incorporated into the mixed model above, through the addition of a
main effect and appropriate interaction terms involving the blocks. The mixed
models described here analyze each gene separately. Alternative approaches,
in which all genes are included in a single large mixed linear model, have been
proposed by Kerr and Churchill (2001 a,b), Wolfinger et al. (2001), and Kendzi-
orski et al. (2003). Examples of these models are discussed in Sections 1.3.2.5
and 1.5.2.

More complex designs permit accounting for additional sources of vari-
ation. Recently, Tsai and Lee (2005) describe the use of split plot designs in
the context of two-channel microarray experiments. Designs of this type may
also find application in analysis of data arising from oligonucleotide arrays,
as discussed by Chu et al. (2002a) and Li et al. (2004). For example, consider
an experiment involving rat embryos with two factors: genotype (with three
levels) and developmental stage (with two levels). A practical restriction of
the experiment is that it will be possible to harvest material to hybridize
only one array of each genotype (using pooled samples, discussed below)
for a particular developmental stage at a time. Each of these sets of three
arrays is replicated four times per developmental stage, using a total of 24
arrays. This is an example of a completely randomized design with a split
plot arrangement, which is characterized by the two factors being applied to
different experimental units. Here, the experimental unit for developmental
stage (the whole plot factor) is a set of three arrays, although the experi-
mental unit for genotype (the sub plot factor) is a single array. The model is
given by

Yijk =D,;+ Rk(i) + G]' + DGij + &ijk

where Y is the background corrected and normalized measurement for jth
probe in the kth replicate for the ith developmental stage, D; is the fixed effect
of the ith developmental stage, G; is the fixed effect of the jth genotype, and
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Ry (i) is the random effect for the kth replicate set of three arrays of the ith
genotype. Model assumptions are similar to those for corresponding terms
in the probe level mixed model presented above.

1.2.5 Power/Sample Size Considerations

An important planning issue is the question of how many biological and
technical replicates to include in a microarray experiment. The number of
replicates required to detect a particular size of effect with a pre-specified level
of power depends not only on the several sources contributing to variation
in expression levels, but also on the statistical methods used to determine
differential expression, including the choice of normalization procedure. In
general, biological replicates should be favored over technical replicates when
the objective is to detect differentially expressed genes.

A number of authors, including Lee and Whitmore (2002), Yang et al. (2003),
Gadbury et al. (2004), Jung (2005), Zhang and Gant (2005), and Tibshirani
(2006) have addressed this issue. Desired minimum detectable effect sizes are
often expressed in terms of fold-changes. For example, the objective may be to
identify genes that are up or down regulated to the extent that they exhibit
a twofold increase or decrease in expression levels. To answer the sample
size question, prior knowledge is required with respect to the variance com-
ponents associated with the various levels of the experimental structure for
each gene. Estimates of these variance components may come from previ-
ously conducted similar experiments, or pilot studies. Variance components
are discussed in Section 1.3.1.

In the context of an ANOVA model, Lee and Whitmore (2002) present
several approaches for calculation of power and sample size, and outline
applications of their methods to some standard experimental designs. Their
methods account for control of the false discovery rate (FDR) due to mul-
tiple testing. Multiple testing issues are discussed in detail in Section 1.5.
Gadbury et al. (2004) introduce the concept of expected discovery rate (EDR),
and propose corresponding methods for power and sample size calculations
adjusting for EDR. The web-based resource Power Atlas (Page et al., 2006),
available at www.poweratlas.org, implements this methodology, currently
for experiments involving just two groups, but with anticipated expansion.
This resource is designed to provide researchers with access to power and
sample size calculations on the basis of a number of available data sets,
which may be used in lieu of conducting a pilot study to generate variance
component estimates.

Recently, Tibshirani (2006) has proposed a sample size determination pro-
cedure requiring less stringent assumptions than other currently available
methods. This method does not assume, for instance, equal variances or
independence among genes. This approach may be implemented using the
significance analysis of microarrays (SAM) software (Chu et al.,, 2002a) to
obtain estimates of both the FDR and false negative rate (FNR) as a function
of total sample size through a permutation-based analysis of pilot data.
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1.2.6 Pooling

The primary motivation for pooling is to reduce the effect of biological variab-
ility and improve cost effectiveness. It is important to stress, as do Kendiorski
et al. (2005) and Zhang and Gant (2005), that pooling may artificially reduce
the effects of biological variability, so that statistical significance is overstated.
Disadvantages of pooling include difficulty in estimating appropriate vari-
ance components, and loss of information on individuals. However, in many
experiments, such as developmental studies involving extraction of tissues
from mouse embryos, the amount of available RNA per individual is limit-
ing. Therefore, an approach involving either pooling of embryo tissue or RNA
amplification is necessary. A potential problem with amplification is that it
tends to introduce noise, and may be nonlinear, in that all genes may not be
amplified at the same rate.

One of the issues associated with the design and analysis of microarray
experiments is the question of whether, and under what conditions, the pool-
ing of RN A samples before hybridization of arrays can be beneficial. Although
originally controversial (Affymetrix, 2004), it is now generally acknowledged
that pooling can be useful in certain circumstances (Allison et al., 2006).

Various authors, including Kendziorski et al. (2003, 2005), Peng et al. (2003)
and Zhang and Gant (2005) have discussed effects of pooling from a statistical
perspective. Kendziorski et al. (2005) considered “M on 1,” pooling schemes,
in which mRNA from M = n, x n subjects was used to hybridize n, arrays
(n subjects per pool). On the basis of an experiment involving 30 female rats
to compare the effects of a number of pooling schemes empirically, they con-
cluded that there is little benefit to pooling when variability among subjects is
relatively small, but suggest that pooling can improve accuracy when fewer
than three arrays are available per treatment condition. In experiments with
three or more arrays available per treatment condition, pooling is only likely
to be beneficial if a large number of subjects contribute to each pool.

Pooling relies on the assumption of biological averaging, that is, that the
response for each individual contributes equally to the average calculated
for the pool. For example, if each array is hybridized with mRNA from n
individuals, and the concentration of mRNA transcripts from kth individual
for the ith gene in the jth pool is Yjj, the concentration of the ith gene’s
transcripts in the jth pool will be

1 n
v
k=1

if biological averaging holds. There has been some debate as to whether this
assumption is realistic. However, Kendziorski et al. (2005) observed that bio-
logical averaging occurred for most, but not all, genes involved in their exper-
iment and argue that there is some support for the validity of this assumption.

Kendziorski et al. (2005) also introduce the notion of equivalent designs, and
illustrate this concept through comparison of the various pooling schemes
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considered in their experiment. Two designs are considered to be equivalent
if they lead to the same average estimation efficiency. This is an important
cost-related consideration, in that it may be possible to reduce the number of
arrays required to achieve a desired level of precision. However, two designs
equivalent in average efficiency do not necessarily provide similar precision
for individual genes.

1.2.7 Designs for Dual-Channel Arrays

Dual-channel, or spotted cDNA arrays, requires the use of specialized
designs, which are discussed only briefly here. Interested readers may con-
sult Rosa et al. (2005) for further details. The two most common classes of
these designs are the reference designs and the loop designs (Kerr and Churchill,
2001a,b; Churchill, 2002; Kerr, 2003).

Despite reported advantages of loop designs, reference designs are still
commonly used in practice. The term reference design refers to the fact that
at least one sample is included in the experiment, to which all other samples
are compared with respect to hybridization. There are several variants of this
type of design. Steibel and Rosa (2005) describe three of these, and assign
each a distinct name. The first of these, the classical reference design (Kerr and
Churchill, 2001a) employs replicates of the reference sample. In contrast, the
common reference design uses only a single reference sample as the basis for
comparison. Yet another variant is the replicated reference design, where the
reference is biologically relevant, and is considered to be a control treatment
with replicates.

The basic loop design was proposed by Kerr and Churchill (2001a,b) and is
essentially a balanced incomplete block design. In such designs, the number
of treatments is greater than the block size. It is used when three or more treat-
ments are to be compared using two-channel microarrays. In the microarray
context, each two-channel microarray is viewed as a block of size two. Treat-
ments are then compared with each other in a multiple pairwise fashion laid
out in a daisy chain (e.g., 1 vs. 2, 2 vs. 3, 3 vs. 1). Variants of the loop design
include connected loop design (Dobbin et al., 2003), where the same biological
sample is used in two arrays connected in a daisy chain but with different dye
(channel) and interwoven loop design. In the later, the efficiency of comparison
is improved by creating additional (multiple) links amongst the treatments to
be compared (e.g., 1vs.2,2vs.3,3vs.4,4vs.1,1vs.3,2vs. 4,3vs. 1,4vs.2).

Among the reference designs, the classical reference design is generally
considered to have lower statistical efficiency than other forms of reference
designs. Templeman (2005) compared several design alternatives for two-
channel arrays with respect to precision, power, and robustness, assuming
a mixed model analysis and a single treatment factor. He found that except
for cases with minimum replication (two replicates per treatment) the loop
designs were superior to the reference designs in terms of smaller stand-
ard errors for treatment comparisons, higher power, and greater robustness.
Although the loop designs were found to be more sensitive to missing arrays,
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the interwoven loop design is reported to be more robust to missing arrays
than the classical loop design, and yet more statistically efficient than the
common reference design. Vinciotti et al. (2005) also performed an experi-
mental comparison of the common reference vs. the classical loop design,
and found that loop designs generally have much higher precision. On the
basis of further simulation studies they concluded that, for a given sample
size, the classical loop design will have higher power than the common refer-
ence design to detect differentially expressed genes, while minimizing type I
error.

Advances are continually being made in the area of improved designs
for multichannel arrays. Recently, Wit et al. (2005) describe a procedure to
find near-optimal interwoven loop designs, using the A-optimality criterion.
Steibel and Rosa (2005) propose a blocked reference design, which tends to be
more efficient and less expensive than common reference designs. Woo et al.
(2005) present preliminary guidelines for efficient loop designs for three- and
four-color microarrays.

1.3 Normalization of Microarray Data

There are different factors that contribute to variation in the observed data
from microarray experiments. Typically, this variability is characterized as
being of two types: biological and technical, as discussed in the previous
section.

Normalization is broadly defined as any technique meant to remove or
account for technical variation in the data before statistical testing or ana-
lysis. Less noise in the data, as reflected in the estimate of experimental error,
translates into a stronger capability to detect differential expression (i.e., treat-
ment effects) of smaller magnitudes (see also Parrish and Spencer, 2004). If
technical variation can be removed, substantially reduced, or adjusted out,
the power of statistical tests will be enhanced.

Normalization procedures mainly involve revising the observed data
before statistical analysis in an effort to remove the technical variability. This
relies on the assumptions that most genes should not be affected by the treat-
ment or condition under study and that the other factors affect all or most
genes in the same or similar manner. The particular assumptions depend on
the method used for normalization. In the simplest case, revision of the data
based on these assumptions may be the only alternative for reducing technical
variation. In essence, normalization is a mechanism to “borrow” information
from other variables in order to correct identifiable deficiencies in the data.
The objectives of normalization also may be achieved in part by incorporating
into statistical models used to analyze the data adjustment terms correspond-
ing to known effects. This does not require assumptions about how most genes
are affected by various factors and the analysis typically is conducted on a
gene-by-gene basis.
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FIGURE 1.1
Panel (left) showing sample data as box plots with one of four being stochastically lower; Panel
(right) showing similar box plots after normalization.

To illustrate, consider an experiment involving eight subjects, each corres-
ponding to a unique array, who are allocated to two treatments, with four
arrays per treatment. No other experimental conditions are controlled. The
experimental error is based on the variation observed among arrays treated
alike. The objective is to test for differential expression for all genes indi-
vidually using a t-test. This can be done without normalization. If there is
no systematic variation, this approach is valid and correct. Now suppose the
conduct of the experiment was such that some of the arrays were affected in a
manner that caused all expression readings on an affected array to be under-
estimated. This could be detected by comparing the collective distribution of
gene expression values for each array. If one array had a distribution differing
in location or dispersion characteristics compared to the majority of arrays,
it might be possible to adjust all the values on the affected array so that the
resulting distribution was consistent with the other arrays. Failure to make
such an adjustment would result in excessive variability making its way into
the error term used for testing (i.e., the denominator of the ¢ statistic would
be inflated) (see Figure 1.1).

Continuing with this example, suppose the arrays were processed in groups
of two, each group being on a different day; therefore, on each day, one
array from the first treatment and one from the second treatment were
used. The design now has an identifiable controlled factor, DAY, which is
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FIGURE 1.2

Panel (left) showing four groups of two box plots with some variability before normaliza-
tion; Panel (middle) showing after within-group normalization; Panel (right) showing overall
normalization.

a “block” effect. The experimental error now corresponds to variation due to
interaction of DAY and TREATMENT (denoted DAY x TREATMENT), and
the appropriate test in the ANOVA setting is an F-test. The effect of DAY
can be adjusted out through the linear model used for analysis; however, any
other systematic variation that impacts arrays will not be adjusted unless nor-
malization is done. In this situation, normalization could be accomplished by
comparing distributions and adjusting all expression values, as above, but
doing so within each DAY grouping, followed by an ANOVA that accounts
for the effect of DAY. An alternative approach is to apply a normalization
method on all arrays simultaneously so as to achieve similar distributions
within each array. In this case, the effect of DAY is presumably removed, and
a t-test is then applied (see Figure 1.2).

Background effects may or may not be addressed by a given normalization
procedure. Such techniques are directed primarily toward the objective of
removing local bias, but they may also serve to reduce variability in certain
situations, including those where spatial variability exists. In general, back-
ground effects may be relatively large for low expression values, and thus
smaller expression values may be more significantly impacted by background
correction methods. Methods such as robust multiarray average (RMA) (Bol-
stad et al., 2003) attempt to estimate the conditional expectation of the true
gene expression level given the observed measurement.
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1.3.1 Normalization and Its Implications for Estimation of Variance
Components

The experimental design that is employed determines how treatment effects
are tested. There are a few simple designs that are commonly used with
microarray experiments, but others may be more complex. Consider the fol-
lowing example where there are two treatments (k = 2), three biological
(i.e., experimental) units per treatment group (n = 3), and two arrays per
experimental unit (r = 2).

It is helpful to consider the expected mean squares and the associated vari-
ance components in relation to how normalization impacts on them. These
are considered for single-channel arrays.

In this design, there are two variance components: one due to variation
among biological units treated alike within treatment groups (which gives rise
to an estimate of “experimental error”) and one due to variation among arrays
within biological units. Using multiple arrays for each biological unit allows
for better precision when estimating the biological unit response. Variation
among arrays within units gives rise to what would normally be termed
“measurement error.” The correct test to use for assessing the differential
effect of treatments is to form an F ratio of the mean squares for “Treatments”
and “Among units (Trt).”

Strictly, from an analysis standpoint, there is no requirement to normal-
ize the data. If many arrays could be used for each biological unit, variation
among arrays would be merely a nuisance and would not impact signific-
antly on the test for treatment effect. On the other hand, normalization could
be used to try to eliminate or decrease the measurement error and thereby
improve the power of the test.

As shown in Table 1.1, in the case where there is only one array per exper-
imental unit ( = 1), the variance component for measurement error o2 still
exists, however it is not distinguishable mathematically from the unit-to-
unit variance component o2. Normalization attempts to remove unwanted
variation by adjusting (typically) all the values for some arrays so that their
characteristics are more similar to those of the other arrays. The net desired
impact is to decrease measurement error substantially, but it may also lower
the estimate of the among units variance (i.e., among biological units treated
alike). When normalization is applied, it modifies an observation on an array,
and hopefully this modification corrects measurement error. The correction

TABLE 1.1

Expected Mean Squares for Nested Design

Source DF Expected Mean Square
Treatments k-1=1 Qmt + 707 + 07
Among Units (Trt) k(n—-1) =4 ro2 + o2

Arrays (Units Trt)  kn(r—1) =6 o2
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will also impact on the mean of the arrays within biological units, and if it is
such that the variation among the means of arrays within biological units is
also reduced, then the impact shows up as a reduction in the estimate of the
among units variance component, a smaller experimental error term, a larger
F (or t) statistic, and a smaller p value. This is considered appropriate so long
as the normalization procedure does not improperly deflate the true variance
component associated with biological units treated alike. Current methods
do not ensure that such super-deflation does not occur. Each particular
normalization method carries with it explicit or implied assumptions.

1.3.2 Normalization Methods

Several methods for performing normalization have appeared in the microar-
ray literature. In this section, some but not all of these are discussed. Some
methods use a baseline array to establish a reference point to which other
arrays are adjusted, whereas other methods use the “complete data” from all
arrays simultaneously. Each method has characteristics that may be advant-
ageous in different circumstances, but there is no agreement on which method
is best for most situations. Some of the important and more relevant methods
are presented here.

1.3.2.1 Method Based on Selected Invariant Genes

If it can be assumed that genes in a known set are unaffected by the treatment,
subjects, or other factors present in the experiment, they can be used to make
adjustments to other gene expression values (Gieser et al., 2001; Hamalainen
etal., 2001). Such a list is generally specified before the experiment is conduc-
ted (Vandesompele et al., 2002) and, in fact, some microarrays are designed
with so-called “housekeeping,” “control,” or “reference” genes. Usually, the
values of all gene expression values on a given array are corrected so that
the means of the reference genes for each array are all equal. This method
can be simply defined as follows. Let m; = mean of the expression values
of the housekeeping genes on array i. Adjust the values from array i (i > 1)
according to

i = yij — (mj —m).

The result is that all arrays then will have the same mean for the
housekeeping genes.

1.3.2.2 Methods Based on Global or Local Values

Expression values can be adjusted so that every array will have the same
mean or, equivalently, average signal intensity. In one approach, an array is
chosen arbitrarily as a baseline reference array and the following adjustments

are made:
y(m)
* baseline
Y =Yi (W)

1
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where yl(m) is the mean of all the expression values for the ith array and yg:s) cline

is the mean of all the expression values for the selected baseline array (Affy-
metrix, 2002). The means can be ordinary or robust (e.g., trimmed means).
GeneChip uses a scaling factor (SF) similar to above except that the numerator
can be an arbitrary value (e.g., 500) and the means are 2% trimmed means.
This approach is termed linear scaling and is based on an assumption of a
linear relationship between corresponding values from the two arrays.

Nonlinear scaling approaches modify the linearity assumption to allow
nonlinear relationships. In a method proposed by Schadt et al. (2001), a set
of invariant genes is identified on the basis of rank order of the expression
values from each array compared to the baseline array. They use a generalized
cross-validation smoothing spline algorithm (Wahba, 1990) and produce a
transformation of the form

yij = fiip-
where f; represents the nonlinear scaling function. This algorithm was imple-
mented in dChip software (Schadt et al., 2001). As alternatives, a piecewise
running median regression can be used (Li and Wong, 2001) and locally-
weighted regression (loess) can be used on probe intensities (Bolstad et al.,
2003).

A third approach involves adjusting expression values so that all arrays
have the same mean. Array-specific values can be added to all expression
values within the arrays that will make the array means or medians all equal.
In this method, one array may be selected as a reference array and the intensity
values on the other arrays are adjusted so that their means equal the mean of
the reference array. This approach also can be implemented by using the mean
of the array means (or the median of the array medians) as a target value and
then making adjustments to values on all arrays. This process is represented as

v =vij+ ™ —y")

where y;; is the expression value (or its logarithm) for array i and gene j, yfm)
is the mean (or median) for array i, and y™ is the mean of the array means
(or median of array medians) computed over all arrays.

Further adjustments can be made so that all arrays have the same variabil-
ity. The expression data can be scaled so that all arrays have the same or nearly
the same variance, range, or other similar measure. From a distribution per-
spective, this method is meant to obtain the same dispersion characteristics
in the data from the different arrays. This is implemented simply by apply-
ing a scaling adjustment for each array, in the form of a multiplication factor.
In addition, a location adjustment can be incorporated as above. As is com-
monplace, the scaling constants can be based on the interquartile range (IQR)
and a location adjustment can be based on the median, thereby giving the

adjusted response as
D,
yij = (y,-j - yfm)) x <5> +y™

1



Microarray Data Analysis 17

where D; represents the selected measure of dispersion for the ith array and
D is the mean, median, or maximum of the D; values over all arrays. If the
IQR is used, all arrays will have approximately the same IQR after adjust-
ment. Quasi-ranges other than the IQR (which is based on the 25th and 75th
percentiles) could be used. For example, the normal range is based on the
2.5th and 97.5th percentiles.

1.3.2.3  Local Regression Methods

The M vs. A (MvA) plot (Dudoit et al., 2002) is a graphic tool to visualize
variability as a function of average intensity. This plots values of M (differ-
ence of logs) vs. A (average of logs) for paired values. These are defined
mathematically as

[log, (yﬁjl)) + 10gz(yf]~2

2

)
1 )

2
M; = Iogz(yfj ) — logz(yfj )) and Aj =

for array i and gene (or probe) j. With two-channel arrays, the pairing is based
on the data from the same spot corresponding to the red and green dyes.
A loess smoothing function is fitted to the resulting data. Normalization is
accomplished by adjusting each expression value on the basis of deviations,
as follows:

log, (v ) = Aj+05M; and log,(y?") = Aj — 0.5M;

where M]/. represents the deviation of the jth gene from the fitted line. This is

a within-array normalization.

The MvA plot can be used in single-channel arrays by forming all pairs of
arrays to generate MvA plots; this method is known as cyclic loess (Bolstad
et al., 2003). The proposed algorithm produces normalized values through
an iterative algorithm. This approach is not computationally attractive for
experiments involving a large number of arrays.

1.3.2.4  Quantile-Based Methods

Quantile normalization forces identical distributions of probe intensities for
all arrays (Bolstad et al., 2003; Irizarry et al., 2003a; Irizarry et al., 2003c;
Irizarry et al.,, 2003b). The following steps may be used to implement this
method: (1) All the probe values from the n arrays are formed into a p x n
matrix (p = total number of probes on each array and n = number of arrays),
(2) Each column of values is sorted from lowest to highest value, (3) The values
in eachrow are replaced by the mean of the values in that row, (4) The elements
of each column are placed back into the original ordering. The modified probe
values are used to calculate normalized expression values.



18 Computational Methods in Biomedical Research

1.3.2.5 Methods Based on Linear Models

Analysis of variance models have been used to accomplish normalization as
an intrinsic part of the statistical analysis in two-channel arrays (Kerr et al.,
2000). These can incorporate effect terms for array, dye, treatment, and gene,
as in:

Yijkg =W+ Ai + Tj + Di + Gg + AGig + TGjg + eijig

where p is the mean log expression, A; is the effect of the ith array effect, T; is
the effect of the jth treatment, Dy is the effect of the kth dye, G, is the gth gene
effect, and AG;; and TGj, represent interaction effects. Testing for differential
expression is based on the TG interaction term. Normalization is achieved
intrinsically by inclusion of the array, dye, and treatment terms in the model.
A mixed-effects linear model has been proposed for cDNA data (Wolfinger
et al.,, 2001) in which the array effect is considered random, and data
normalization is intrinsic to the model, as above. This model is given by

Yijg =W + A+ T]' + ATi]‘ + Gg + AGig + Tng + ejjq.

To deal with computational issues, the authors recommended fitting the
following model and then utilizing its residuals for effects analysis:

Yiig = W + A+ T]' + AT,‘]' + To(ij)-

The residuals are the normalized values and are treated as the dependent
variables in the model

Tijg = Gg + AGig + TG]g + Cijg
which can be written for specific genes as
D 4D T )

The approach also may be used with single-channel arrays. A probe-level
mixed-effects model has been described (Chu et al., 2002b). Other normaliz-
ation methods have been proposed that involve ANOVA and mixed-effects
models (Chen et al., 2004) as well as subsets of the genes.

1.3.2.6  Probe Intensity Models

The RMA method (Bolstad et al., 2003) includes background adjustment based
on convolution of gamma and normal distributions, quantile normalization
of probe intensities, and a probe-level linear model fitted using robust tech-
niques. This isimplemented in Bioconductor R-based software (Bioconductor,
2003).

Wu and Irrizary (2005) described a modification of the RMA method,
termed GCRMA, in which the G-C base content of probes (based on probe
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sequence information) is taken into account. This approach differs from RMA
only in the way the background adjustment is done. Higher G-C content
relates to probe affinity and is associated generally with increased binding.
Probe-level models (PLM) effectively fit models involving a probe effect
and an array effect to probe intensity data on a probe-set-by-probe-set basis.
This is implemented in Bioconductor R-based software known as affyPLM.

1.4 Clustering and Classification

Various clustering and classification methods are routinely used with microar-
ray gene expression data. Both clustering and classification are strategies to
group data (units) into collections that are similar in nature. In the machine
learning literature, clustering methods are also known as unsupervised learn-
ing since no prior knowledge of the underlying grouping is utilized. In the
microarray context, clustering has been primarily used as an exploratory tool
to group genes into classes with the hope that the genes in a given cluster will
have similar biological functions or cellular role. Classification, on the other
hand, uses a training set of units whose group memberships are known. In
the microarray context, this has been used mostly for classifying tissues (e.g.,
cancer vs. noncancer) using their gene expression profiles. In this section, we
present an overview of some aspects of these techniques that are important
for microarray data analysis.

1.4.1 Clustering

Microarray data involves expression on levels of thousands of genes, often
recorded over a set of experiments resulting in a collection of expression
profiles. A natural step in summarizing this information is to group the genes
according to the similarity—dissimilarity of their expression profiles. Second,
one of the central goals in microarray or expression data analysis is to identify
the changing and unchanging levels of gene expression, and to correlate these
changes to identify sets of genes with similar profiles. Finally, even in well-
studied model systems like the yeast Saccharomyces cerevisine or bacterium
Escherichia coli (found in our waste and sewage) the functions of all genes
are presently unknown. If genes of unknown function can be grouped with
genes of known function, then one can find some clues as to the roles of
the unknown genes. It is, therefore, desirable to exploit available tools for
clustering and classifications from numerical taxonomy and statistics (Sokal
and Sneath, 1963; Hartigan, 1975).

In some earlier microarray experiments, (DeRisi et al., 1997; Cho et al.,
1998; Chu et al., 1998) a mainly visual analysis was performed in grouping
genes into functionally relevant classes. However, this method is virtu-
ally impossible for more complicated and large-scale studies. In subsequent
studies, simple sorting of expression ratios and some form of “correlation
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distance” were used to identify genes (Eisen etal., 1998; Roth et al., 1998; Spell-
man et al., 1998). Hierarchical clustering Unweighted Pair Group Method
with Arithmetic mean (UPGMA) with correlation “distance” (or dissimilar-
ity) is most often used in microarray studies after it was popularized by the
influential paper by Eisen et al. (1998). One nice feature of a hierarchical clus-
tering is that it produces a tree of clusters, also known as a dendrogram, which
can be cut at various heights to see the resulting clusters. Datta (2001) intro-
duced a novel dissimilarity measure between a pair of genes, in the presence
of the remaining genes, on the basis of partial least squares (PLS) modeling
gene expressions. Model-based clustering is another well-known technique
that has been used for grouping microarray data (McLachlan et al., 2002).
This technique is based on modeling the expression profiles by mixtures
of multivariate normal distributions. The Gene Shaving algorithm (Hastie
et al., 2000) allowed genes to be in more than one cluster at the same time.
Sharan and Shamir (2000) introduced a novel clustering algorithm on the
basis of a graph-theoretic concept. Also, there exists another noteworthy, but
more complex algorithm (based on a self-organizing neural network) called
SOM (self-organizing maps, Kohonen, 1997) which seems to have gained
popularity in clustering microarray data.

Besides the clustering techniques mentioned above, there exist numerous
clustering algorithms in statistics and machine learning literature dating back
to premicroarray days. Many of them are available in statistical packages such
as S-Plus and R. Thus, a microarray data analyst has many choices of cluster-
ing methods when it comes to grouping genes; for example, partition methods
such as K-means (Hartigan and Wong, 1979), divisive clustering method Diana
(Kaufman and Rousseeuw, 1990) and fuzzy logic-based method Fanny (Kauf-
man and Rousseeuw, 1990) are all applicable. All these clustering algorithms
have their own merits and demerits. Their results might appear to be substan-
tially different as well even when applied to the same data set of expression
profiles. We take the following illustration from Datta and Arnold (2002)
where a yeast data set (Chu et al., 1998) is clustered using five different clus-
tering techniques (Figure 1.3). Thus, there is a need for careful evaluation of
clustering algorithm given a particular data set. There exist a few approaches
regarding the selection of a clustering algorithm and validation of the results
for microarray data.

Kerr and Churchill (2001c) used a linear model (ANOVA) and residual-
based resampling to access the reliability of clustering algorithms. Chen et al.
(2002) compared the performances of a number of clustering algorithms by
physical characteristics of the resulting clusters such as the homogeneity
and separation. Yeung et al. (2001) introduced the concept of Figure of Merit
(FOM) in selecting between competing clustering algorithms. FOM resembles
the error sum of squares (ESS) criterion of model selection. Datta and Datta
(2003) selected six clustering algorithms of various types and evaluated their
performances (stability) on a well-known publicly available microarray data-
set on sporulation of budding yeast, as well as on two simulated data sets.
Here we provide a brief description of the stability measures introduced in
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(See color insert following page 207.) The genes were clustered into seven groups using their
expression profiles during sporulation of yeast; five different clustering algorithms were attemp-
ted (Adapted from Datta, S. and Arnold, J. (2002). In Advances in Statistics, Combinatorics and
Related Areas, C. Gulati, Y.-X. Lin, S. Mishra, and J. Rayner, (Eds.), World Scientific, 63-74.)

Datta and Datta (2003) in order to select an algorithm that produces the most
consistent results. The evaluation measures were general enough so that they
can be used with any clustering algorithm.

Let K be the number of desired clusters. Datta and Datta (2003) suggested
that the performance of an algorithm be investigated over an entire range of
“suitable” K values. The basic idea behind their validation approach was that
a clustering algorithm should be rewarded for stability (i.e., consistency of
clusters it produces). Suppose expression (ratio) data are collected over all
the genes under study at various experimental conditions such as time points
T1, T2, ..., T;. An example of such temporal data is the sporulation of yeast
data of Chu et al. (1998). In that case K was around 7 (Chu et al. used K = 7)
and number of time points | = 7. Thus, consider a setup where the data values
are points in the I dimensional Euclidean space R". Foreachi = 1,2, ... ,I, one
repeats the clustering algorithms for each of the I data set in R'~! obtained by
deleting the observations at experimental condition (e.g., time) T;. For each
gene g, let C8/ denote the cluster containing gene g in the clustering on the
basis of data set with time T; observations deleted. Let C8 be the cluster in
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the original data containing gene g. Each of the following validation measures
could be used to measure the stability of the results produced by the clustering
algorithm in question. For a good clustering algorithm, one would expect
these stability measures to be small.

1. The average proportion of nonoverlap measure is given by

1 & n(C$' N C0)

ViK) = M ZZ (1 e > .
g=1i=1

This measure computes the (average) proportion of genes that are

not put in the same cluster by the clustering method under consid-

eration on the basis of the full data and the data obtained by deleting

the expression levels at one experimental condition at a time.

2. The average distance between means measure is defined as

M
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where X ;0 denotes the average expression profile for genes across
cluster C80 and X, denotes the average expression profile for
genes across cluster C$. This measure computes the (average) dis-
tance between the mean expression values (usually, log transformed
expression ratios in case of cDNA microarrays) of all genes that are
put in the same cluster by the clustering method under considera-
tion on the basis of the full data and the data obtained by deleting
the expression levels at one time point at a time.

3. The average distance measure is defined as

1
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where, d(xg, Xgr) s a distance (e.g., Euclidean, Manhattan etc.)
between the expression profiles of genes g and g’. This measure com-
putes the average distance between the expression levels of all genes
that are put in the same cluster by the clustering method under con-
sideration on the basis of the full data and the data obtained by delet-
ing the expression levels at one experimental condition at a time.

Figure 1.5 illustrates the average proportion of nonoverlap measures for
a number of existing clustering algorithms applied to two sets of simu-
lated data. The simulated data sets were generated by adding varying
degrees of random noise to a set of expression profiles (shown in Figure 1.4).
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(See color insert following page 207.) The average proportion of nonoverlap measure for various
clustering algorithms applied to simulated data sets.

S-Plus codes used to compute the above measures are available in the
supplementary website of the Datta and Datta (2003) paper http://www.
louisville.edu/~s0datt02/WebSupp/Clustering /SUPP /SUPP.HTM. In each
plot, a profile closer to the horizontal axis indicates better performance over
the usable range of Kvalues.

Another approach of validating clustering results is to check whether the
statistical clusters produced correspond to biologically meaningful functional
classes. To this end, Datta and Datta (2003) compared the expression profiles
of different statistical clustering algorithms with the model profiles of some
functionally known genes. For the details, readers are referred to Datta and
Datta (2003). A novel validation measure combining statistical stability and
biological functional relevance was proposed in Datta and Datta (2006a). In
yet another attempt (Datta and Datta, 2006b), results were validated through
the gene ontology (GO) databases.

1.4.2 Classification

Unlike clustering, a classification algorithm is generally used to group tis-
sue samples (e.g., cancer and noncancer) using their gene expression profiles
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FIGURE 1.5
(See color insert following page 207.) Two simulated datasets of gene expressions were created
by adding random noise to a model profile.

when partial knowledge is available about this grouping. In general, the goal
of a classification technique is to predict class membership for new samples
(test samples) with the knowledge of the training set (set of samples for which
the classes are known).

1.4.2.1 Dimensionality Reduction

The vast amount of raw gene expression data leads to statistical and ana-
lytical challenges for using a classification algorithm to group samples into
correct classes. The central difficulty in classification of microarray data is
the availability of a very small number of samples in comparison with the
number of genes in the sample. This violates the operating assumption of the
classical statistical discriminant analysis procedures such as the linear dis-
criminant analysis (LDA) and the quadratic discriminant analysis (QDA) or
the nonparametric regression-based Neural Network procedure.

One might first attempt to reduce the number of “features” to be used in a
classification algorithm from the raw gene expression profiles. For example,
one might calculate the first few principal components (PCA) of the covari-
ates (gene expressions) and then discriminate the samples on the basis of the
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principal components (Dudoit et al., 2000; Su et al., 2003; Datta and Delap-
idilla, 2006). PLS is another useful tool in constructing latent variables that
can then be used for classification (Nguyen and Rocke, 2002a,b). Datta and de
Padilla (2006) used PLS for feature selection, together with traditional classi-
fication algorithms such as linear discrimination and quadratic discrimination
to classify multiple tumor types from proteomic data. van’t Veer et al. (2002)
applied a binary classification algorithm to cDNA array data with repeated
measurements and classified breast cancer patients into good and poor pro-
gnosis groups. Their classification algorithm consists of the following steps.
The first step is filtering, in which only genes with both small error estim-
ates and significant regulation relative to a reference pool of samples from
all patients are chosen. The second step consists of identifying a set of genes
whose behavior is highly correlated with the two sample types (e.g., up-
regulated in one sample type but down-regulated in the other). These genes
are rank-ordered so that genes with the highest magnitudes of correlation
with the sample types have top ranks. In the third step, the set of relevant
genes is optimized by sequentially adding genes with top-ranked correlation
from the second step. However, this method involves an ad hoc filtering step
and does not generalize to more than two classes. Another feature reduction
technique is to consider only the genes that are deemed to be differentially
expressed genes under different experimental conditions. Zhu et al. (2003),
Wagner et al. (2004), Izmirlian (2004), and Datta and de Padilla (2006) used a
similar approach to select the important features (mass to charge ratios) for
mass spectrometry data before a classification algorithm is used.

1.4.2.2  Classification Algorithms

The literature of classification algorithms is vast. In the previous section we
have mentioned about LDA (Fisher, 1936) and QDA. In addition to these two,
logistic regression for two classes and log-linear models for more than two
groups are also widely used. There are many more relatively modern classifi-
ers some of which are discussed very briefly in the remainder of this section.
The R-libraries (http://www.r-project.org) “class” and “MASS” contain a
number of popular classifiers.

The neural network is a two-stage regression/classification model and is
represented by a network diagram. Loosely speaking, it is modeled after the
concept of neurons in the brain. It consists of at least three layers of nodes:
the input layer, the hidden layer, and the output layer. For technical details,
please refer to Hastie et al. (2001). The R function nnet (available in the library
by the same name) fits a single hidden layer neural network.

k-nearest neighbor classification(k—NN) method is a nonparametric clas-
sifier (Devijver and Kittler, 1982; Ripley, 1996) on the basis of nonparametric
estimates of the class densities or of the log posterior. The k-NN classifier
finds k nearest samples in the training set and takes a majority vote among
the classes of these k samples. We end this subsection by discussing three
relatively new classification algorithms one of which (the Shrunken Centroid
classifier) is developed primarily for classifying microarray datasets.
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Support vector machine (SVM) (Vapnik, 1995; Burges, 1998; Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001 §4.5, 12.2, 12.3) is a new
generation classifier that has been reported to be very successful in a wide
variety of applications. For two classes, a binary classifier constructs a hyper-
plane separating the two classes (e.g., cancer from noncancer samples). The
basic idea of SVM is to map the data into a higher dimensional space and then
find an optimal separating hyperplane. SVMs are large-margin classifiers; that
is, they solve an optimization problem that finds the separating hyperplane
that optimizes a weighted combination of the misclassification rate and the
distance of the decision boundary to any sample vector. For further details,
the reader may consult the tutorial paper by Burges (1998) or the book by Cris-
tianini and Shawe-Taylor (2000). Brown et al. (2000) used SVM for classifying
microarray data of budding yeast S. cerevisiae and compared the performance
by other standard classification algorithms (e.g., Fisher’s LDA). SVM was
performed better than all the non-SVM methods compared in the paper.

Random Forest (Breiman, 2001) classification is an extension of classifica-
tion trees (Breiman et al., 1984) by integrating the idea of bagging. Random
Forest constructs many classification trees using different bootstrap samples
of a fixed size m from the original data. To classify a new object from an input
vector (collection of variables) it runs the input vector to each and every tree in
the forest. Each tree gives a classification. The forest chooses the classification
having the most votes (over all the trees in the forest). About one-third of the
cases are left out of the bootstrap sample and not used in the construction of a
particular tree. The samples left out of the k-th tree are run through the kth tree
to get a classification. In this way, a test set classification is obtained for each
case in about one-third of the trees that can be used to assess the accuracy of
the classifier. Note that the Random Forest algorithm automatically finds the
most important features/variables in order to classify the data by computing
an estimate of the increase in error rate of the classifier had that variable not
been used.

Finally, the nearest shrunken centroid classification introduced by Tibshir-
ani et al. (2002) first computes a shrunken centroid for each class where each
standardized centroid is shrunk towards the overall centroid. A test sample
is classified into the class whose shrunken centroid is closest to, in squared
distance, the gene expression profile of that sample. The shrinkage can reduce
the effect of noisy genes resulting in higher accuracy of the resulting classi-
fier. It is available under the PAM (Prediction Analysis for Microarrays, not
to be confused with the clustering algorithm of the same acronym) package
(http:/ /www-stat.stanford.edu/~tibs/PAM/).

1.4.2.3  Accuracy of Classification

There are several methods for calculating the error rate of a classifica-
tion algorithm (e.g., resubstitution, leave-one-out cross validation, k-fold
cross validation, repeated cross validation and .632 bootstrap/bias corrected
bootstrap, etc.). In microarray studies, use of a proper method of estimation
of classification error is particularly important since typically one has a small
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sample size. Ulisses and Edward (2004) provide a comprehensive comparison
of numerous estimation methods of classification error.

Resubstitution error is usually low biased for more complex algorithms. k-
fold cross validation method is unbiased and leave-one-out is nearly unbiased
for the error estimation. However, they all have high variability. The variance
of the k-fold cross validation approach gets worse as k increases. On the other
hand, the standard bootstrap resampling method (Efron, 1979) has reduced
variability but high bias. However, the .632 bootstrap (Efron, 1983) method
has low bias and low variability at the same time. Bias-corrected bootstrap
also has low bias and low variability.

1.5 Detection of Differential Gene Expressions

One of the major goals of typical microarray studies is to determine the list
of genes whose expression profiles are different among two or more sets of
tissue samples usually collected under different experimental conditions. For
example, in the colorectal cancer data set studied in Datta and Datta (2005),
there were three types of tissues corresponding to normal, adenoma, and
carcinoma cells in colon cancer patients. A major difficulty in using classical
multivariate statistical methods is that the dimension of an expression data
vector is huge, often exceeding tens of thousands, and at the same time, there
are only a limited number of samples.

A rather impressive collection of statistical papers has emerged in this area
over the past six or so years. As a result, the selective review presented here
is by no means comprehensive. Although we attempt to present the devel-
opment in this area in a systematic manner, it is not necessarily chronologic
and reflects our own bias in selection of the highlighted papers. More com-
prehensive accounts and lists of references can be obtained in some recent
books that have been written in the area of statistical analysis of microar-
ray data such as McLachlan et al. (2004) and Lee (2004). The collection of
methods for the detection of differential gene expression generally fall into
two categories, namely those that are designed specifically for the microar-
ray studies, including adaptation of known methods (Ideker et al., 2000; Kerr
et al., 2000, 2002; Efron et al., 2001; Newton et al., 2001; Tusher et al., 2001;
Dudoit et al., 2002; Efron and Tibshirani, 2002; Ge et al., 2003; Lee et al., 2003;
Reiner et al., 2003; Storey and Tibshirani, 2003; Zhao and Pan, 2003, etc.) and
those that are applicable to multiple testing in general such as Westfall and
Young (1993), Benjamini and Hochberg (1995), Storey (2002), Efron (2004),
Datta and Datta (2005).

1.5.1 Fold Change

Mostly nonstatistical in nature, this has been the most favorite method of the
biologists and medical researchers where genes are ordered by the magnitude
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of the ratio of their gene expressions in the two samples (often referred to as
fold change). The problem with this approach is that there is no provision to
recognize that different genes may have different natural variability (scale) in
their expression values. In addition, genes declared important or significant
by an arbitrary threshold of their fold change do not control any of the various
statistical error rates associated with multiple testing procedures.

1.5.2 The Two Sample t-Test and its Variants

Use of a two-sample t-test is statistically more appropriate for ranking genes
in terms of their significance than the fold change approach. Usually a log-
transformation is first applied to the normalized and preprocessed gene
expressions to stabilize their variability and then the t-statistic is computed
for the j-th gene as

b Y1 — Yo

]
1,1
5 n +n2

where, fori =1, 2, 7,7 is the average log-expression of the jth gene for the ith

(1.1

tissue type, n; is the number of tissue samples of type i and 5]2 is the pooled

sample variance of the jth gene log-expression levels across both tissue types.
Genes are ranked by absolute |f;| and all genes exceeding a threshold are
declared to be significantly differentially expressed.

Sometimes, one may choose to pool sample variance across all genes as
well under the assumption that the log-transformed expression values have
constant variance. This leads to a gene specific statistic t as above except that
an overall s is used in place of s;.

A modified t-statistic is used in the SAM method of Tusher et al. (2001)
where a constant « is added to the denominator of Equation 1.1 leading to
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This was done so that one does not get a large t-statistic simply because a
gene has low sample variance (which is a likely outcome given that one deals
with tens of thousands of genes in a microarray study). Of course, the null
distribution of t]’. is no longer a t distribution. In SAM, one rejects for large

t =

positive or negative values of t]/. — Eot]/. where Eot]/. is an estimate of the null
expectation of #; calculated using a null bootstrap (resample without regard

to tissue type labels) or by a null permutation method (where pseudo data are
generated by permuting the samples ignoring the tissue type labels). A similar
“regularization” of the sample variance appears in the Bayesian methods of
Baldi and Long (2001). The tuning parameter « is selected in a data-based
way using a fairly complex algorithm. Then a set of MAD (median absolute
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difference from the median) values v of the t]f are computed over grids of s;

and then the coefficient of variation of v is minimized.
Comparison of gene expressions for more than two tissue types is achieved
by an ANOVA formulation of log-transformed gene expressions

Yik = u+Gi+ Vi + (GV)j; + ik (1.2)

where i denotes tissue types, j denotes genes, and k denotes replicates.
We assume that the gene expressions have been normalized so that array
effects, and so forth, have been taken out. Here u stands for an overall mean
log-expression and G and V denote the tissue and gene main effects. Our
interest lies in testing the behaviors of the interaction terms GV. The null
hypothesis of no differential expression for gene j across all tissue types
corresponds to Hp: (GV)i]- = 0, for all i and the null hypothesis of no dif-
ferential expression of gene j between tissue types i1 and 7, is given by H":
(GV);yj — (GV);,; = 0. These are easily tested in the framework of the ANOVA
model Equation 1.2 by classical methods and the genes can be ranked by the
corresponding F or t-statistics. This technique has been popularized by Gary
Churchill and his colleagues (Kerr et al., 2000; Kerr and Churchill, 2001 a,b;
Kerr et al., 2002 etc.) in the microarray context. Note that this analysis is dif-
ferent from the per gene one way ANOVA model introduced in Section 1.2.4.

1.5.3 Adjustments for Multiple Testing

Let us, for simplicity, consider a balanced design so that n; = n, = n/2, say.
Under the assumption of normality of the log-expression, the t-statistic in
Equation 1.1 has a student’s t- distribution with n — 1 degrees of freedom
leading to a p value for the j-th gene comparison pj = 2{1 — F;_2(|t]~ D}, where
F!_, is the cumulative distribution function of a t distribution n — 2 degrees
of freedom. If genes for which p; < 0.05 were declared to be significantly
differentially expressed, then for a typical microarray data involving 10,000
ormore genes, on the average about 500 genes will be declared to be significant
even if the complete null hypothesis were true (i.e., none of the genes were
actually differentially expressed). In other words, the procedure would lead
to too many false positives. This simple illustration demonstrates the need
for the global control of error rates in microarray studies.

In general, if a gene that is not differentially expressed but it is declared to be
significant by the statistical test, a type 1 error is committed. On the other hand,
if the test fails to show significance for a truly differentially expressed gene, a
Type Il error is made. By overall or the family-wise type 1 error rate, we mean
the probability of declaring at least one gene to be significant when none of the
genes is truly differentially expressed. The classical Bonferonni procedure is
generally not suitable for microarray studies since it would only declare genes
to be significant for which p; < @/g, where « is the desired overall type 1 error
probability and g is the total number of genes on the microarray. Since g is
typically huge, this ratio is too small to have significance for most genes
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(if any) making the procedure too conservative to have any practical utility.
As amiddle ground, a more appropriate type 1 error control procedure can be
used including the Holm (1979) procedure that first orders the p values and
then declares p(;) to be significant if p(j) < «/(¢ — j + 1). For most microarray
studies, the Holm procedure will be proved to be conservative as well and
the following procedure developed by Westfall and Young (1993) has been
advocated by Dudoit et al. (2002). It also orders the p values and then uses
resampling (or permutation) under the null to judge significance as described
in the following algorithmic steps:

1. Step 1: Find the rank orders r; = such that |t,| > --- > [t | and let
u; = |t,],1 < i < g be the ordered absolute test-statistics.

2. Step 2: Let Y be the matrix of log-expression values where each
column consists of the set of expression profiles for all genes cor-
responding to a single sample and the first 771 columns corresponds
to group 1 and the remaining columns correspond to group 2. Per-
mute the columns of the matrix Y and label the first n; columns of
the permuted matrix as group 1 and the rest as group 2. For each
gene (i.e., row) j, Calculate the t test-statistics denoted t]’f with the

permuted data and reorder the absolute values as
M; = |t:‘g|, uj = max(u;, , |tfl,|), forg>i>1.

3. Step 3: Repeat Step 2 over all possible permutations and denote the
u’ values by

ui(1),---uj(B), where B = (n1 + np)!

4. Step 4: Compute ﬁr, = B! 213:1 I(uf(l) > u;) and monotonize them
as S ‘ o
P =B, P =maxP,, P, ) forl<i<g

Genes 1 - - - 1, would be declared significant, given an overall type 1 error
probability o where m = max{k: Pf:l] <al.

Recently, Datta and Datta (2005) demonstrated that even the Westfall and
Young procedure is too conservative for microarray applications. They pro-
pose a modification to this procedure where an empirical Bayes calculation is
incorporated first to change the p values before resampling. They show that
the modified procedure can enhance the overall sensitivity although main-
taining the type 1 error rate. Further details of this procedure are described
in Section 1.5.5.

1.5.4 False Discovery Rate

Besides controlling the overall type 1 error rate, one can consider several other
performance measures in the context of microarray studies. See Dudoit et al.
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(2003) for a comparative review of various error rates for several commonly
used multiple testing procedures. The following error rates are often used to
judge the performance of multiple tests.

Sensitivity: Expected proportion among differentially expressed genes that
were declared significant

Specificity: Expected proportion amongst nondifferentially expressed genes
that were not declared significant

False discovery rate (FDR): Expected proportion amongst genes declared
significant that were not differentially expressed

False nondiscovery rate (FNR): Expected proportion amongst genes declared
not significant that were differentially expressed

In particular, the use of FDR has become the standard in microarray stud-
ies lately largely owing to the influential paper by Benjamini and Hochberg
(1995) that offers a very simple procedure for controlling the FDR on the basis
of uncorrected P-values. Let r; the rank orders of the ordered P-values so that
P, =P, 1 <i < g. Letq be the desired upper bound on the FDR; usually g is
taken to be between 5% and 10%. This Benjamini-Hochberg procedure (ori-
ginally introduced by Simes, 1986) declares genes r1 - - - 1y, to be significantly
differentially expressed where

m = max{k: Px < gk/g}.

In more recent works, additional variants of the FDR have been introduced
such as the positive FDR (Storey, 2002, 2004) and the conditional FDR (Tsai
etal., 2003) and procedures for estimating and controlling these in microarray
settings have been proposed. When one declares all genes with marginal p
values less than or equal to « to be significant, Storey’s estimates for the FDR
and the pFDR are given by

FDR = 2
F(a)

and
o

Flyl =1 —a)]’

respectively, where 7 estimates the number of nondifferentially expressed
genes and E(a) is the observed proportion of tests (genes) with marginal p
values less than or equal to .

In the context of p-FDR, Storey (2004) defined the gene specific g-value
that is, roughly speaking, the p-FDR of procedures that declare genes whose
statistics are as extreme as that corresponding to this particular gene to be
significant.

Efron (2005) introduced the term local FDR to indicate the posterior
probability that a given gene is null (i.e., nondifferentially expressed). Assum-
ing a two-component mixture model for the Z-scores (obtained by normal



32 Computational Methods in Biomedical Research

transformation of the p values),

f@) =nfoz) + 1 — mfi2),

where fy and f; are the densities of the null (nondifferentially expressed) and
non-null genes, respectively, and = is the proportion of null genes, Efron
defined the local FDR(l) at Z = z as

IFDR(2) = 7fo(2)/f2).

It has the property that the averages (expectation) of IFDR values for all
genes whose Z values are less than or equal to z equals to the FDR of the
procedure that declares all genes with Z values < z to be significant. Ploner
et al. (2006) generalized the idea of a local FDR to a tow-dimensional local
FDR by considering the joint densities of a two dimensional statistic Z;, Z;

2dIFDR(z1,22) = 7fo(z1,22)/f (21, 22)-

They proposed using the t-statistic and the logarithm of its standard errors
as the two components Z1 and Z,.

1.5.5 Procedures-Based on p Values

There are a number of recent attempts to control some global error rates
on the basis of a set of uncorrected p-values. The BH procedure described
above falls under this category. An advantage of such procedures is that
a user can use them after obtaining the list of p values from their favorite
microarray data analysis software that generally produces marginal or uncor-
rected p values. Allison et al. (2002) modeled the set of uncorrected p values
obtained from a microarray experiment by a finite mixture of beta distribu-
tions, where the first component was taken to be uniform in order to model
the null distribution. Thus, majority of the genes would correspond to the
first component. They estimated the number of mixture components. In par-
ticular, in a two-component model, they ranked genes on the basis of their
posterior probability of belonging to the second (i.e., non-null component).

Pounds and Morris (2003) also modeled the marginal p values by a two-
component mixture of a uniform and a beta. They were able to estimate the
FDR under this model scenario if one rejects all null hypotheses for which the
marginal p values were below a given threshold. By inverting this relation-
ship, their BUM procedure produces a list of significant genes corresponding
to a given FDR level. See, however, Datta and Datta (2005) for a cautionary
note.

More recently, Pounds and Cheng (2004) introduced the SPLOSH proced-
ure that provides a more accurate FDR control. More importantly, since it is
based on nonparametric function estimation techniques, it is expected to be
more robust and work well even if the mixture of beta model is not accurate.
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Datta and Datta (2005) took a different approach from the papers men-
tioned above. Instead of controlling the FDR, they attempted to control the
overall type 1 error rate following a version of the Westfall and Young pro-
cedure that involved sampling from the uniform distribution. However, first,
they transformed the set of p values by applying a normality (inverse cdf)
transformation followed by computing a new set of statistics; this new set
of statistics computes the empirical Bayes estimates of the location para-
meter 6; in a simple normal location model z; = CID_l(pj) ~ N(;,1) using
nonparametric function estimation

— h2 {Zf\i1 (Z]' —z)¢ (ZJ;ZI'>}
{25\11 ¢ (Zf;Zi)}

where ¢ is the standard normal pdf and / is a user specified bandwidth.

In effect, each p value borrows strength from an overall evidence against
the complete null hypothesis since the second term in the right-hand side
of Equation 1.3 is an estimate of the derivative of the logarithmic marginal
density (log f)’ and its stochastic behavior under the complete null hypo-
thesis will be different from its behavior under the alternative. We use the
following real data example from Datta and Datta (2005) to illustrate this
effect. Figure 1.6 shows a scatter plot of this term for a colorectal cancer
data set where normal tissue gene expressions were compared with that for
carcinoma tissues. We can see that for potentially informative genes (say,
those corresponding to negative z;) it tends to be below the diagonal line

, (1.3)
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FIGURE 1.6

Scatter plot of derivative of empirical log density against transformed p-values for the “normal
vs. carcinoma” comparison in a colorectal cancer data; the solid plots its theoretical values under
the complete null.
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(the theoretical values when the complete null is true) indicating an overall
presence of “differentially expressed genes” corresponding to a given z level.

Datta and Datta (2005) showed that their empirical Bayes screening (EBS)
procedure has substantially higher sensitivity than the standard step-down
approach for multiple comparisons at the cost of a modest increase in the FDR.
The EBS procedure also compared favorably when compared with existing
FDR control procedures for multiple testing (namely BH and BUM).

1.5.6 Empirical Bayes Methods

Empirical Bayes methods have a natural place in multiple decision problems
where each component decision problem can be thought of as a realization
of a Bayesian decision problem, and determining differences in microarray
gene expression is no exception. Besides the EBS procedure mentioned above,
there have been more traditional attempts to use empirical Bayes techniques in
the microarray context. Generally speaking, such approaches differ from the
full Bayesian approaches in that data-based estimates are used to determine
parameters at a certain stage of modeling the priors. At the end, generally,
an estimate of the posterior probability that a particular gene is differentially
expressed is calculated.

Newton et al. (2001) modeled the expression levels in the two channels
of a cDNA microarray with gamma priors and used Bayesian and empirical
Bayesian techniques to identify differentially expressed genes in two tissue
types. Efron et al. (2001) formulated the distribution of normalized statistics
as a two-point nonparametric mixture (as stated in Subsection 1.5.4), where
one distribution corresponds to the null genes and the other to differentially
expressed genes. They provided methods to nonparametrically estimate both
components and the mixing proportion that in turn yielded estimated pos-
terior probabilities for each gene being differentially expressed. Datta et al.
(2004) used the empirical Bayes idea to adjust certain t-test statistics obtained
from an ANOVA model to determine differential gene expressions.

1.6 Networks and Pathways

Microarray technology enables us to acquire the knowledge of genome-wide
expression. Hence, this comprehensive information on gene-expression can
serve as an important tool to understand the underlying biological system
through genetic networks. Several attempts have been made to infer the inter-
relationships of the genes through unsupervised cluster analysis. A main
purpose of using cluster analysis in this context is not only to group the
genes but also to correlate clusters with pathways (Zien et al., 2000). Several
references of cluster analysis applied to gene expression data are provided
in Section 1.4 of this document. However, there are different approaches to
detect the activities of all genes in consort (regulatory network). Datta (2001)
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used PLS method, Raychaudhuri et al. (2000) used PCA, and Spellman et al.
(1998) used Fourier analysis to unravel the consorted activities of all genes.
Other series of attempts to synthesize pathways using gene expression data
are Boolean networks (see, e.g., Liang et al.,, 1998) and Bayesian networks
(e.g., Friedman et al., 2000; Yamanaka et al., 2004, etc.).

Kauffman (Kauffman, 1969, 1974; Glass and Kauffman, 1973) introduced
the Boolean network. However, it has recently been adapted for gene expres-
sion data by Shmulevich et al. (2002). In this model, gene expression is quant-
ized to only two levels: ON and OFF. Also, the expression level (state) of one
gene (node) is completely determined by the values of other nodes by some
underlying Boolean function. Thus, a Boolean network B(N, F) is defined in
terms of a set of nodes (genes) N = {x1, ..., x,} and Boolean functions F =
(fi, - .., fu)- Each x; represents the state (expression) of gene i, where x; = 1
represents the fact that gene i is expressed and x; = 0 means it is not expressed.
The model is represented in the form of directed graph. Connectivity of one
node to the other is updated synchronously in an iterative procedure.

Bayesian networks are another tool for connecting genes using their expres-
sion patterns. Bayesian networks (Pearl, 1988; Friedman et al., 2000), model
the dependence structure between different genes using the expression levels.
A Bayesian network analysis can indicate some causal relationship in the
data (in particular genes in terms of their expression levels). A Bayesian
network for X is a pair BN = (D, P). The first component, D, denotes a direc-
ted acyclic graph (DAG) whose vertices correspond to the random variables
x1, ... Xy (expression levels of several genes), and the edges represent direct
causal dependencies between the variables. The graph D involves some con-
ditional independence assumptions (Markov assumption) as follows: each
variable x; is independent of its nondescendants given its parents. The second
component of the network pair, namely P, represents the set of parameters
that quantifies the network and describes a conditional distribution for each
variable (gene expression), given its parents in D. Together, these two com-
ponents specify a unique distribution on x1, ... x,,. The graph D represents
conditional independence assumptions that allow the joint distribution to be
decomposed, taking a minimum number of parameters. Using a Bayesian
network, we might be able to answer many types of questions that involve
the joint probability (e.g., what is the probability of X = x, the expression of
a gene, given observation of some of the other gene expressions?) or inde-
pendencies in the domain (e.g., are X and Y independent once we observe
Z?). The Bayesian network literature contains a suite of algorithms that can be
used to answer such questions efficiently by exploiting the explicit structural
representation (Pearl, 1988; Jensen, 1996).

Lastly, we want to mention that it is important to evaluate these synthesized
pathways with respect to already known pathways. Kurhekar et al. (2002)
measured the impact of gene expression levels from a series of microarray
experiments on metabolomic and regulatory pathways. They introduce the
concept of a pathway scoring method. The basic idea behind it is as follows.
A gene that is positively expressed at a certain time point or in a particular
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sample in a biological experiment indicates that the cell requires the particular
protein coded by the gene. In this way, significant induction of the genes in a
known pathway shows that the pathway has been used more often than say
at the reference time point or in the reference cell. The significant repression
of many genes in a known pathway in similar biological experiments reveals
the deactivation of that specific pathway. In this way, it is possible to measure
the effect of a biological process on different biochemical pathways with the
help of gene expression data.

1.7 Concluding Remarks

In this chapter, we present a mostly nonmathematical overview of various
statistical analyses of microarray gene expression data. Many of these tech-
niques, notably, clustering, classification, and multiple testing can also be
applied to other high-throughput data such as proteomic data obtained using
mass spectrometer (Satten et al., 2004). As mentioned earlier, this review is not
comprehensive—the subject is still moving in various directions. We have not
reviewed papers that combine microarrays with other clinical end points, for
example, survival times (Datta et al., 2007). In the future, we might see more
and more studies where multiple forms of large-scale biological data (SNP,
microarrays, proteomic mass-spectra) will be analyzed together and efforts
in this direction are already under way (CAMDA, 2006, 2007 Conferences,
http:/ /www.camda.duke.edu).

References

Affymetrix (2002). Statistical Algorithms Description Document. Affymetrix Inc, Santa
Clara, CA. http://www.affymetrix.com/support/ technical/ whitepapers/
sadd- whitepaper.pdf

Affymetrix (2004). Sample pooling for microarray analysis: A statistical assessment of
risks and biases. Technical note, Affymetrix Inc, Santa Clara, CA.

Allison, D. B., Cui, X., Page, G.P, and Sabripour, M. (2006). Microarray data analysis:
From disarray to consolidation and consensus. Nat. Rev. Genet., 7, 55-65.

Allison, D. B., Gadbury, G. L., Heo, M., Fernandez, ]. R,, Les, C.-K., Prolla, J. A., and
Weindruch, R. (2002). A mixture model approach for the analysis of microarray
gene expression data. Comput. Stat. Data Anal., 39, 1-20.

Baldi, P. and Long, A. D. (2001). A Bayesian framework for the analysis of microar-
ray expression data: Regularized t-test and statistical inferences of gene changes.
Bioinformatics, 17, 509-519.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser B, 57, 289-300.

Bioconductor. (2003). Methods for Affymetrix Oligonucleotide Arrays (affy). The
Bioconductor Project, Version 1.2. http:/ /www.bioconductor.org.



Microarray Data Analysis 37

Bolstad, B. M., Irizarry, R. A, Astrand, M., and Speed, T. R. (2003). A comparison
of normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics, 19, 185-193.

Breiman, L. (2001). Random forests. Technical Report 567, Statistics Department,
University of California, Berkeley, CA.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. (1984). Classification and
Regression Trees. Wadsworth, Belmont, CA.

Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W,, Furey, T. S.,
Ares, M., and Haussler, D. J. (2000). Knowledge-based analysis of microarray
gene expression data by using support vector machines. Proc. Natl. Acad. Sci.
USA, 97, 262-267.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Disc., 2, 121-167.

Causton, H. C., Brazma, A., Quackenbush, J., and Kokis, S. (2003). Microarray Gene
Expression Data Analysis: A Beginner’s Guide, Blackwell Science, Malden, MA.
Chen, G, Jaradat, S. A., Banerjee, N., Tanaka, T. S., Ko, M. S. H., and Zhang, M. Q.
(2002). Evaluation and comparison of clustering algorithms in analyzing ES cell

gene expression data. Stat. Sinica, 12, 241-262.

Chen, J. J., Delongchamp, R. R., Tsai, C. A., Hsueh, H. M., Sistare, F.,, Thompson, K.
L., Desai, V. G., and Fuscoe, J. C. (2004). Analysis of variance components in gene
expression data. Bioinformatics, 20, 1436-1446.

Cho, R. J., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L.,
Wolfsberg, T., et al. (1998). A genome-wide transcriptional analysis of the mitotic
cell cycle. Mol. Cell, 2, 65-73.

Chu, G., Narasimhan, B., Tibshirani, R., and Tusher, V. (2002a). Significance analysis
of microarrays (SAM) software. http:/ /www.stat.stanford.edu/"tibs/SAM/
Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein D., and Brown, P. O. (1998). The

transcriptional program of sporulation in budding yeast. Science, 282, 699-705.

Chu, T. M., Weir, B., and Wolfinger, D. (2002b). A systematic statistical linear modeling
approach to oligonucleotide array experiments. Math. Biosci., 176, 35-51.

Churchill. G. A. (2002). Fundamentals of experimental design for cDNA microarrays.
Nat. Genet. Suppl., 32, 490-495.

Cox, D. R. (1958). Planning of Experiments. Wiley, New York, NY.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines,
Cambridge University Press, Cambridge.

Cui, X. and Churchill, G. A. (2003). Statistical tests for differential expression in cDNA
microarray experiments. Genome Biol., 4, 210.1-210.10.

Datta, S. (2001). Exploring relationships in gene expressions: A partial least squares
approach. Gene Expression, 9, 257-264.

Datta, S. and Arnold, J. (2002). Some comparisons of clustering and classification
techniques applied to transcriptional profiling data. In Advances in Statistics, Com-
binatorics and Related Areas, C. Gulati, Y.-X. Lin, S. Mishra, and J. Raynen (Eds.)
World Scientific, 63-74.

Datta, S. and Datta, S. (2003). Comparisons and validation of statistical clustering
techniques for microarray gene expression data. Bioinformatics, 19, 459-466.
Datta, S. and Datta, S. (2005). Empirical Bayes Screening (EBS) of many p-values with

applications to microarray studies. Bioinformatics, 21, 1987-1994.

Datta, S. and Datta, S. (2006a). Validation of statistical clustering using biological

information, In Proceedings of INTERFACE 2005 (CD-ROM).



38 Computational Methods in Biomedical Research

Datta, S. and Datta, S. (2006b). Methods for evaluating clustering algorithms for gene
expression data using a reference set of functional classes. BMC Bioinformatics,
7,397.

Datta, S. and de Padilla, L. M. (2006). Feature selection and machine learning with mass
spectrometry data for distinguishing cancer and non-cancer samples. Statistical
Methodology (Special Issue on Bioinformatics), 3, 79-92.

Datta, S., Le-Rademacher, J., and Datta, S. (2007). Predicting patient survival from
microarray data by accelerated failure time modeling using partial least squares
and LASSO. Biometrics, 63, 259-271.

Datta, S., Satten, G. A., Benos, D. J.,, Xia, J., Heslin, M. J., and Datta, S.
(2004). An empirical Bayes adjustment to increase the sensitivity of detect-
ing differentially expressed genes in microarray experiments. Bioinformatics, 20,
235-242.

DeRisi, J. L., Iyer, V. R,, and Brown, P. O. (1997). Exploring the metabolic and genetic
control of gene expression on a genomic nomic scale. Science, 278, 680—-686.

Devijver, P. A. and Kittler, J. (1982). Pattern Recognition: A Statistical Approach.
Prentice-Hall, London.

Dobbin, K., Shih, J. H., and Simon, R. (2003). Statistical design of reverse dye
microarrays. Bioinformatics, 19, 803-810.

Dudoit, S., Fridlyand, J., and Speed, T. P. (2000). Comparison of discrimination meth-
ods for the classification of tumors using gene expression data. Technical report
576, Mathematical Sciences Research Institute, Berkeley, CA.

Dudoit, S., Popper, J. S., and Boldrick, J. C. (2003). Multiple hypothesis testing in
microarray experiments. Statistical Science, 18, 71-103.

Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2002). Statistical methods
for identifying differentially expressed genes in replicated cDNA microarray
experiments. Stat. Sinica, 12, 111-139.

Efron, B. (1979). Bootstrap methods: Another look at jackknife. Ann. Statist. 7, 1-26.

Efron, B. (1983). Estimating the error rate of a prediction rule: Some improvements on
crossvalidation. J. Amer. Statist. Assoc. 78, 316-331.

Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null
hypothesis. |. Amer. Statist. Assoc., 99, 96-104.

Efron, B. (2005). Local false discovery rates. Preprint.

Efron, B. and Tibshirani, R. (2002). Empirical Bayes methods and false discovery rates
for microarrays. Genet. Epidemiol., 23, 70-86.

Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. (2001). Empirical Bayes analysis
of a microarray experiment. J. Amer. Statist. Assoc., 96, 1151-1160.

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis
and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95,
14863-14868.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann.
Eugenics, 7, 179-188.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian networks
to analyze expression data. J. Comp. Biol., 7, 601-620.

Gadbury, G. L., Page, G. P, Edwards, J., Kayo, T.,, Prolla, T. A., Weindruch, R.,
Permana, P.A., Mountz, J. D., and Allison, D. B. (2004). Power and sample size
estimation in high dimensional biology. Stat. Methods Med. Res., 13, 325-338.

Ge, Y. Dudoit, S., and Speed, T. P. (2003). Resampling based multiple testing for
microarray data analysis. TEST, 12, 1-44 (with discussion pp. 44-77).



Microarray Data Analysis 39

Gieser, P, Bloom, G. C., and Lazaridis, E. N. (2001). Introduction to microarray exper-
imentation and analysis. In Methods in Molecular Biology, Biostatistical Methods,.
S. W. Looney (Ed.), Humana Press, 184, 29-49.

Glass, L. and Kauffman, S. A. (1973). The logical analysis of continuous non-linear
biochemical control networks. J. Theor. Biol., 39, 103-129.

Hamalainen, H. K., Tubman, J. C., Vikman, S., Kyrola, T., Ylikoski, E., Warrington, J.
A., and Lahesmaa, R. (2001). Identification and validation of endogenous refer-
ence genes for expression profiling of T helper cell differentiation by quantitative
real-time RT-PCR. Anal. Biochem., 299, 63-70.

Hartigan, J. A. (1975). Clustering Algorithms, Wiley, New York, NY.

Hartigan, J. A. and Wong, M. A. (1979). A k-means clustering algorithm. Appl. Stat.,
28, 100-108.

Hastie, T., Tibshirani, R., Eisen, M. B., Alizedah, A., Levy, R., Staudt, L., Chan, W. C,,
Botstein, D., and Brown, P. (2000). Gene shaving as a method for identify-
ing distinct sets of genes with similar expression patterns. Genome Biol., 1(2),
research0003.1-0003.21.

Hastie, T., Tishbirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer, New York, NY.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. . Stat.,
6, 65-70.

Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experi-
ments. Ecol. Monogr., 54, 187-211.

Hurlbert, S. H. (2004). On misinterpretations of pseudoreplication and related matters:
A reply to Oksanen. OIKOS, 104, 591-597.

Ideker, T., Thorsson, V., Siegel, A. F, and Hood, L. (2000). Testing for differentially
expressed genes by maximum-likelihood analysis of microarray data. J. Comp.
Biol., 7, 805-817.

Irizarry, R. A., Bolstad, B. M., Collin, F.,, Cope, L. M., Hobbs, B., and Speed, T. P. (2003a).
Summaries of Affymetrix GeneChip® probe level data. Nucleic Acids Res., 31,
elb.

Irizarry, R. A., Gautier, L., and Cope, L. An R package for analysis of Affymetrix oli-
gonucleotide arrays. In: Parmigiani, R. I. G., Garrett, E. S., and Ziegler, S. (Eds.).
(2003b) The Analysis of Gene Expression Data: Methods and Software, pp. 102-119,
Springer, Berlin.

Irizarry, R. A., Hobbs, B., Collin, F,, Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U.,
and Speed, T. P. (2003c). Exploration, normalization, and summaries of high
density oligonucleotide array probe level data. Biostatistics, 4, 249-264.

Irizarry, R. A., Warren, D., Spencer, F,, Kim, I. F, Biswal, S., Frank, B. C., Gabrielson, E.,
etal. (2005). Multiple laboratory comparison of microarray platforms. Nature Met.,
2, 329-330.

Irizarry, R. A., Gautier, L., and Cope, L. (2003b). An R package for analysis of Affy-
metrix oligonucleotide arrays. In The Analysis of Gene Expression Data: Methods and
Software, R. I. G. Parmigiani, E.S. Garrett, and S. Ziegler (Eds.), Springer, Berlin,
102-119.

Izmirlian, G. (2004). Application of the random forest classification algorithm to a
SELDI-TOF proteomics study in the setting of a cancer prevention trial. Ann. N.Y.
Acad. Sci., 1020, 154-174.

Jensen, F. V. (1996). An Introduction to Bayesian Networks, University College London
Press, London.



40 Computational Methods in Biomedical Research

Jung, S. H. (2005). Sample size for FDR-control in microarray data analysis. Bioinform-
atics, 21, 3097-3104.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed
genetic nets. |. Theor. Biol., 22, 437-467.

Kauffman, S. A. (1974). Homeostasis and differentiation in random genetic control
networks. Nature, 224, 177-178.

Kaufman, L. and Rousseeuw, P. J. (1990) Fitting Groups in Data. An Introduction to
Cluster Analysis. Wiley, New York, NY.

Kendziorski, C., Irizarry, R. A., Chen, K. S., Haag, J. D., and Gould, M. N. (2005). On
the utility of pooling biological samples in microarray experiments. Proc. Natl.
Acad. Sci. USA, 102, 4252-4257.

Kendziorski, C., Zhang, Y., Lan, H., and Attie, D. (2003). The efficiency of pooling
mRNA in microarray experiments. Biostatistics, 4, 465—477.

Kerr, M. K. (2003). Design considerations for efficient and effective microarray studies.
Biometrics, 59, 822-828.

Kerr, M. K., Afshari, C. A., Bennett, L., Bushel, P., Martinez, N. W., and Churchill,
G. A.(2002). Statistical analysis of a gene expression microarray experiment with
replication. Stat. Sinica, 12, 203-217.

Kerr, M. K. and Churchill, G. A. (2001a). Experimental design for gene expression
microarrays. Biostatistics, 2, 183-201.

Kerr, M. K. and Churchill, G. A. (2001b). Statistical design and the analysis of gene
expression microarray data. Genet. Res., 77, 123-128.

Kerr, M. K. and Churchill, G. A. (2001c). Bootstrapping cluster analysis: Assessing the
reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. USA,
98, 8961-8965.

Kerr, M. K., Martin, M., and Churchill, G. A. (2000). Analysis of variance for gene
expression microarray data. J. Comp. Biol., 7, 819-838.

Kohonen, T. (1997) Self-Organizing Maps, Second Edn. Springer-Verlag, Berlin.

Kurhekar, M. P, Adak, S., Jhunjhunwala S., and Raghupathy, K. (2002). Genome-
wide pathway analysis and visualization using gene expression data, PSB02,
462-473.

Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M., and Mallick, B. K. (2003). Gene
selection: A Bayesian variable selection approach. Bioinformatics, 19, 90-97.

Lee, M. L. T. (2004). Analysis of Microarray Gene Expression Data. Kluwer, Norwell,
Massachusetts.

Lee, M. L. T. and Whitmore, G. A. (2002). Power and sample size for microarray
studies. Stat. Med., 21, 3543-3570.

Li, C.and Wong, W. H. (2001). Model-based analysis of oligonucleotide arrays: Expres-
sion index computation and outlier detection. Proc. Natl. Acad. Sci. USA, 98, 31-36.

Li, H., Wood, C. L., Getchell, T. V., Getchell, M. K., and Stromberg, A. J. (2004). Ana-
lysis of oligonucleotide array experiments with repeated measures using mixed
models. BMC Bioinformatics, 5, 209.

Liang, S., Fuhrman, S., and Somogyi, R. (1998). REVEAL, A general reverse engin-
eering algorithm for inference of genetic network architectures. In Proc. Pacific
Symposium on Biocomputing, 3, 18-29.

McLachlan, G.]J., Bean, R. W.,, and Peel, D. (2002). A mixture model-based approach
to the clustering of microarray expression data. Bioinformatics, 18, 1-10.

McLachlan, G. J., Do, K-A., and Ambroise, C. (2004). Analyzing Microarray Gene
Expression Data, ]. Wiley & Sons, Hoboken, New Jersey.



Microarray Data Analysis 41

Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K. W.
(2001). On differential variability of expression ratios: Improving statistical infer-
ence about gene expression changes from microarray data. J. Comp. Biol, 8, 37-52.

Nguyen, D. V. and Rocke, D. M. (2002a). Tumor classification by partial least squares
using microarray gene expression data. Bioinformatics, 18, 39-50.

Nguyen, D. V. and Rocke, D. M. (2002b). Multi-class cancer classification via partial
least squares with gene expression profiles. Bioinformatics, 18, 1216-1226.

Oksanen, L. (2001). Logic of experiments in ecology: Is pseudoreplication a pseudois-
sue? OIKOS, 94, 27-38.

Page, G. P, Edwards, J. W., Gadbury, G. L., Yelisetti, P, Wang, J., Trivedi, P., and Allison,
D. B. (2006). The PowerAtlas: A power and sample size atlas for microarray
experimental design and research. BMC Bioinformatics, 7, 84.

Parmigiani, G., Garrett, E. S., and Ziegler, S. (Eds.) (2003). The Analysis of Gene
Expression Data: Methods and Software, Springer, Berlin.

Parrish, R. S. and Spencer, H. J. (2004). Effect of normalization on significance testing
for oligonucleotide microarrays. J. Biopharm. Stat., 14, 575-589.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco.

Peng, X., Wood, C. L., Blalock, E. M., Chen, K. -C., Landfield, P. W., and Stromberg,
A.J. (2003). Statistical implications of pooling RNA samples for microarray
experiments. BMC Bioinformatics, 4, 26.

Ploner, A., Calza, S., Gusnanto, A., and Pawitan, Y. (2006). Multidimensional local
false discovery rate for microarray studies. Bioinformatics, 22, 556-565.

Pounds, S. and Cheng, C. (2004). Improving false discovery rate estimation, Bioinform-
atics, 20, 1737-1745.

Pounds, S. and Morris, S. W. (2003). Estimating the occurrence of false positives
and false negatives in microarray studies by approximating and partitioning the
empirical distribution of p-values. Bioinformatics, 19, 1236-1242.

Raychaudhuri, S., Stuart, J. M., and Altman, R. B. (2000). Principal components
analysis to summarize microarray experiments: Application to sporulation time
series. In Proc. Pac. Symp. Biocomput, 455-466.

Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed
genes using false discovery rate controlling procedures. Bioinformatics, 19,
368-375.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks, Cambridge University
Press, Cambridge.

Rosa, G. J. M,, Steibel, ]. P, and Tempelman, R. J. (2005). Reassessing design and ana-
lysis of two-colour microarray experiments using mixed effects models. Comp.
Funct. Genom., 6, 123-131.

Roth, F. P,, Hughes, J. D., Estep, P. W., and Church, G. M. (1998). Finding DNA regulat-
ory motifs within unaligned non-coding sequences clustered by whole-genome
mRNA quantitation. Natl. Biotechnol., 16, 939-945.

Satten, G. A., Datta, S., Moura, H., Woolfitt, A., Carvalho, G., De, B. K., Pavlopoulos,
A., Carlone, G. M., and Barr, J. (2004). Standardization and denoising algorithms
for mass spectra to classify whole-organism bacterial specimens. Bioinformatics,
20, 3128-3136.

Schadt, E. E,, Li, C,, Ellis, B., and Wong, W. H. (2001). Feature extraction and normal-
ization algorithms for high-density oligonucleotide gene expression array data.
J. Cell. Biochem. Suppl., 37, 120-125.



42 Computational Methods in Biomedical Research

Sharan, R. and Shamir, R. (2000). CLICK: A clustering algorithm with applications to
gene expression analysis. Proc. Int. Syst. Mol. Biol. 8, 307-316.

Shmulevich, I, Dougherty, R., Kim, S., and Zhang, W. (2002). Probabilistic
boolean networks: A rule-based uncertainty model for gene regulatory networks.
Bioinformatics, 18, 261-274.

Simes R.]. (1986). Animproved Bonferroni procedure for multiple tests of significance.
Biometrika, 73, 751-754.

Sokal, R. R. and Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. Freeman,
New York, NY.

Speed, T. (Ed.) (2003). Statistical Analysis of Gene Expression Microarray Data, CRC Press,
Boca Raton, FL.

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B,,
Brown, P. O., Botstein, D., and Futcher, B. (1998). Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol. Biol. Cell, 12, 3273-3297.

Spruill, S. E., Lu, J., Hardy, S., and Weir, B. (2002). Assessing sources of variability in
microarray gene expression data. Biotechnigues, 33, 916-920; 922-923.

Steibel, J. P.and Rosa, G.J. M. (2005). On reference designs for microarray experiments.
Statistical Applications in Genetics and Molecular Biology, 1 (4) Article 36.

Storey, J. D. (2002). A direct approach to false discovery rates. J. Roy. Statist. Soc. Ser B,
64, 479-498.

Storey, J. D. (2004). The positive false discovery rate: A Bayesian interpretation and
the qvalue. Ann. Statist., 31, 2013-2035.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genome-wide studies.
Proc. Natl. Acad. Sci. USA, 100, 9440-9445.

Su, Y., Murali, T., Pavlovic, V., Schaffer, M., and Kasif, S. (2003). RankGene: Identific-
ation of diagnostic genes based on expression data. Bioinformatics, 19, 1578-1579.

Templeman, R. J. (2005). Assessing statistical precision, power, and robustness of
alternative experimental designs for two color microarray platforms based on
mixed effects models. Vet. Immunol. Immonop., 105, 175-186.

Tibshirani, R. (2006). A simple method for assessing sample sizes in microarray
experiments. BMC Bioinformatics, 7, 106.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002) Diagnosis of multiple
cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA,
99, 6567—-6572.

Tsai, C. A., Hsueh, H. M., and Chen, J. J. (2003). Estimation of false discovery rates in
multiple testing: Application to gene microarray data. Biometrics, 59, 1071-1081.

Tsai, . W. and Lee, M. L. T. (2005). Split plot microarray experiments: Issues of design,
power and sample size. Applied Bioinformatics, 4, 187-194.

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microar-
rays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA, 98,
5116-5121.

Ulisses, M. B. and Edward, R. D. (2004). Is cross-validation for small-sample
microarray classification? Bioinformatics, 20, 374-380.

Vandesompele, J., Preter, K. D., Pattyn, F.,, Poppe, B., Roy, N. V., Paepe, A. D., and
Speleman, P. (2002). Accurate normalization of real-time quantitative RT-PCR
data by geometric averaging of multiple internal control genes. Genome Biol., 3,
research0034.1-0034.11.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York, NY.



Microarray Data Analysis 43

van't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart A. A.,, Mao, M,,
Peterse, H. L., et al. (2002). Gene expression profiling predicts clinical outcome of
breast cancer. Nature, 415, 530-536.

Vinciotti, V., Khanin, R., D’ Alimonte, D., Liu, X., Cattini, N., Hotchkiss, G., Bucca, G.,
et al. (2005). An experimental evaluation of a loop versus reference design for
two-channel microarrays. Bioinformatics, 21, 492-501.

Wagner, M. D., Naik, D. N., Pothen, A., Kasukurti, S., Devineni, R. R., Adam, B,
Semmes, O. ]., and Wright, G. L. Jr. (2004). Computational protein biomarker
prediction: A case study for prostate cancer. BMC Bioinformatics, 5, 26.

Wahba, G. (1990). Spline methods for observational data. CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia.

Westfall, P. H. and Young, S. S. (1993). Resampling Based Multiple Testing: Examples and
Methods for p-value Adjustment, Wiley, New York, NY.

Wit, E. and McClure, ]. (2004). Statistics for Microarrays: Design, Analysis and Inferenc,
Wiley, New York, NY.

Wit, E., Nobile, A. and Khanin, R. (2005). Near-optimal designs for dual channel
microarray studies. Appl. Stat., 54, 817-830.

Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel, P,
Afshari, C., and Paules, R. S. (2001). Assessing gene significance from cDNA
microarray expression data via mixed models. J. Comp. Biol., 8, 625-637.

Woo, Y., Krueger, W., Kaur, A., and Churchill, G. (2005). Experimental design for three-
color and four-color gene expression microarrays. Bioinformatics, 21, i459-i467.

Wu, Z. and Irizarry, R.A. (2005). Stochastic models inspired by hybridization theory
for short oligonucleotide arrays. J. Comp. Biol., 12, 882-893.

Yamanaka, T., Toyoshiba, H., Sone, H. , Parham, F. M., and Portier, C. J. (2004). The
TAO-Gen algorithm for identifying gene interaction networks with application
to SOS repair in E. coli. Environ. Health Persp., 112, 1614-1621.

Yang, M. C. K,, Yang, J. J., McIndoe, R. A., and She, J. X. (2003). Microarray exper-
imental design: Power and sample size considerations. Physiol. Genomics, 16,
24-28.

Yeung, K., Haynor, D. R., and Ruzzo, W. L. (2001). Validating clustering for gene
expression data. Bioinformatics, 17, 309-318.

Zakharkin, S., Kim, K., Mehta, T., Chen, L., Barnes, S., Scheirer, K. E., Parrish, R. S.,
Allison, D. B., and Page, G. P. (2005). Sources of variation in Affymetrix microarray
experiments. BMC Bioinformatics, 6, 214.

Zhang, S. D. and Gant, T. W. (2005). Effect of pooling samples on the efficiency of
comparative experiments involving microarrays. Bioinformatics, 21, 4378—-4383.

Zhao, Y. and Pan, W. (2003). Modified nonparametric approaches to detecting differ-
entially expressed genes in replicated microarray experiments. Bioinformatics, 19,
1046-1054.

Zhu, W., Wang, X., Ma, Y., Rao, M., Glimm, J., and Kovach, J. S. (2003). Detection of
cancer-specific markers amid massive mass spectral data. Proc. Natl. Acad. Sci.
USA, 100, 14666-14671.

Zien, A., Kueffner, R., Zimmer, R., and Lengauer, T. (2000). Analysis of gene expression
data with pathway scores. In Proc. ISMB, 407-417.






2

Machine Learning Techniques for
Bioinformatics: Fundamentals and
Applications

Jarostaw Meller and Michael Wagner

CONTENTS
21 Introduction ... 46
2.2 Molecular Biology ............ccoooiiiiiii 47
2.3 Machine Learning ..............coooiiiiiiiiiii 48
2.4 Machine Learning in Practice ....................o 49
2.4.1 Problem Representation ...................ccooiiiiiiiii. 50
2.4.2 Training and Testing Data Selection ............................ 51
2.4.3 Model Validation ................oo 51
2.4.4 Feature Selection and Aggregation ............................. 52
245 Supervised versus Unsupervised Learning .................... 53
2.4.6 Model Complexity ..........cocooiiiiiiiiiiiiiii 55
2.5 Examples of Modern Machine and Statistical Learning
Techniques ... 55
2.5.1 Linear Discriminant Analysis and Support Vector
Machines ............ocooiiii 55
2.5.2 Linear Regression and Support Vector Regression ........... 57
2.5.3 Neural Networks for Classification and Regression .......... 58
2.5.4 Hidden Markov Models .............ccooiiiiiiiii, 59
2.6 Applications of Machine Learning to Structural Bioinformatics .... 61
2.6.1 Secondary Structure Prediction .....................o 61
2.6.2 Solvent Accessibility Prediction ......................ol 61
2.6.3 Structural Predictions for Membrane Proteins ................ 63
2.6.4 Computational Protocols for the Recognition of
Protein-Protein Interaction Sites ........................ 65
2.6.5 Phosphorylation as a Crucial Signal Transduction
Mechanism ..........coooiiiiiiiiiii 66

45



46 Computational Methods in Biomedical Research

2.6.6 Assessment of Functional and Structural Consequences of

MUtationS ...ttt 66
2.7 Computational Gene Identification ........................ 67
2.8 Biomarkers, Drug Design, and QSAR Studies ......................... 69
2.9 ConclUuSIiONS ...oooiiiiiii 70
REfOIOINCES ..ottt e 71
]

2.1 Introduction

This chapter presents an overview of applications of machine and statistical
learning techniques to problems arising in the area of molecular biology and
medicine. As such, the methods and applications discussed here fall into the
general area of bioinformatics, which is concerned with the computational ana-
lysis and interpretation of data regarding biological systems and processes.
This is an active and still relatively young field of research with great potential
of advancing both basic and applied biomedical research.

The Human Genome Project (Venter et al., 2001), which was completed
recently, and its extensions such as the HapMap (International HapMap
Consortium, 2003) project dealing with genetic variability in human pop-
ulations, have triggered an enormous growth of data and research that
aims at elucidating fundamental questions in medicine, biochemistry, genet-
ics, and molecular biology. In particular, the availability of DNA sequence
information has enabled the large-scale analysis of correlations between
genetic variations and, for example, differences in susceptibility to diseases or
other medically relevant outcomes. Machine learning-based approaches are
capable of capturing complex correlations between relevant descriptors (or
“features”), such as genetic mutations, and observed outcomes, such as can-
cer survival time. Capturing and characterizing such correlations can lead
to successful prediction of various aspects of molecular systems. For a gen-
eral overview of applications of machine learning in bioinformatics, see, for
example, Baldi et al. (2000) and Mjolsness and DeCoste (2001).

We start this chapter with a very brief overview of central problems, data
sources, and measurement techniques being used in molecular biology and
genomics. This is followed by a discussion of machine learning approaches
and some aspects of general importance regarding their applications to
problems arising in molecular biology, such as the importance of data repres-
entation, model selection and validation, alternative learning algorithms, and
their interplay with hypothesis generation and further experimental studies.
We are necessarily brief and selective; rather than providing a comprehensive
overview of the field, we discuss what we believe to be crucial elements of
successful applications of machine learning and data mining techniques in
bioinformatics.
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2.2 Molecular Biology

Modern molecular biology and genomics are generating massive amounts
of data that need to be transformed into knowledge and understanding of
molecular systems and processes in the context of medicine and other applic-
ations. This data can be organized according to the different types of biological
systems it pertains to and the experimental techniques that were used. The
Central Dogma of Molecular Biology states that the information encoded
by genes (coding fragments of DNA sequences) is transcribed by a com-
plex molecular machinery into complementary messenger RNA molecules.
These in turn are translated by another complex molecular machinery (the
ribosome) into proteins, which form the building blocks of life. Recent tech-
nological advances now allow one to obtain high-throughput measurements
and comprehensive snapshots of living systems at the level of the (whole) gen-
ome (DNA sequence), the transcriptome (messenger RNA expression levels),
and the proteome (protein structure, protein expression, and protein interac-
tions). Examples of these experimental advances include large-scale DNA
sequencing and resequencing techniques, genome-wide microarray-based
gene expression profiling, mass spectrometry-based protein characteriza-
tion, high-throughput techniques to identify protein interactions as well as
structural techniques such as x-ray crystallography and nuclear magnetic
resonance (NMR). Although the amount of data generated by these various
techniques is invariably large, their fundamental nature is very different in
each case and requires significant domain insight for their analysis to result
in truly meaningful conclusions.

For example, the data produced by DNA sequencers consists of strings of
letters representing the four nucleotides in DNA. This type of data is essen-
tially static in nature and is characterized by the presence of point mutations
(one nucleotide in a certain position is replaced by another). The length of the
sequence of interest can vary considerably and can reach billions of letters
for whole-genome analyses, with point mutations observed approximately
every few hundred letters. Sample sizes of resequencing projects that aim
at estimating population-wide genetic variability can involve tens of thou-
sands of individuals. Complicating factors that may need to be addressed in
order to interpret sequence data include sequencing errors, the presence of
two (nonidentical) copies of each chromosome in diploidal organisms, length
polymorphisms such as the presence of short repetitive segments and the need
for ancestral information.

Messenger RNA expression levels (the abundance of particular mRNA
molecules in a sample), on the other hand, are represented by real num-
bers. Current technologies allow for simultaneously measuring genome-wide
expression levels of tens of thousands of genes and their variants. Unlike DNA
sequence, mRNA expression levels are very dynamic in nature: any given
gene may be “turned off” at some point in time (or in some tissue type),
or it can be highly abundant under other conditions or in other cell types.
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Expression profiling at the mRNA level, and in particular observed differ-
ences in relative abundance in different sample types such as cancer versus
healthy cells, are nowadays used to capture “molecular phenotypes” that res-
ult from different interpretations by the cells of the static DNA information in
response to different physiological conditions. Given the large dynamic range
of mRNA expression, it is especially important to consider the technical and
biological variability, which requires careful experimental design in order to
allow for statistically (and biologically) meaningful conclusions. Therefore,
sample sizes, which presently rarely exceed one hundred, are likely to grow
quickly as the cost of the technology continues to decrease.

Yet another data type is provided by structural analyses of macromolec-
ules present in cells, and in particular protein structure data. In order to
perform its physiological function, a protein typically needs to adopt a well-
defined three-dimensional (3D) structure. Mutations in the genome can result
in changes of the primary protein sequence, which in turn may affect the 3D
structure and function of that protein. Techniques such as x-ray crystallo-
graphy provide atomically detailed snapshots of macromolecular structures
that can be used to elucidate functional implications of point mutations, for
instance. Structural data are thus very different in nature compared with, say,
gene expression data; individual atoms in a protein are characterized by their
approximate coordinates in 3D space. Furthermore, some classes of proteins
such as membrane proteins are difficult to resolve structurally, which limits
the number of available data points.

At the same time, there are common aspects of these data sets in the con-
text of the applications of machine learning that basically pertain to finding
correlations between features in the data and other observables. In particu-
lar, and in the case of DNA sequence data, the features of interest might be
point mutations in a specific gene, whereas in the case of expression data the
relative abundances of the mRNA encoded by that gene would be of interest.
Finally, in the case of protein structures, a feature that might be of functional
consequence might be the evolutionary conservation of an individual amino
acid residue in a protein sequence across related species. These “features” can
then be analyzed for correlations with phenotypes such as disease states. Such
plausible correlations, as identified by computational data analyses, can in
turn form the basis for formulating testable hypotheses. For example, putat-
ive biomarkers of disease states can be identified for further experimental
and clinical validation. We stress that conclusions obtained by analysis of any
single data set are necessarily tentative; subsequent biological validation is
required in order to provide ultimate verification and give credence to any
computational findings. One of our goals in this chapter is to illustrate this
interplay through a number of examples and specific applications.

2.3 Machine Learning

The essence of machine learning is to learn from well-characterized sample
data in order to subsequently make predictions for new data instances. This
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definition is deliberately general and is inclusive of many techniques that
arose from related fields such as data mining and statistical learning. A wide
array of machine learning approaches and techniques has been developed
over the past decades with applications in such varied fields as robotics,
speech recognition, expert decision support systems, and bioinformatics.
For a comprehensive introduction to this area of research, we refer the
reader to the excellent monographs by Mitchell (1997) and Hastie et al.
(2001).

A common aspect of machine learning techniques is the fact that they
use a so-called training set (well-characterized sample data) to fit paramet-
ers for their different underlying models and formulations. The quality of
the model can (and should) then be evaluated on independent test data
sets. Machine learning techniques are also rather generic and typically not
application-specific, which implies that it is a priori difficult to predict which
technique is likely to be most successful for a particular application. On
the other hand, machine learning methods are critically dependent on the
input data being appropriately represented. Therefore, as mentioned before,
domain knowledge is essential for making informed choices regarding rep-
resentation of the problem and the choice of the machine learning technique.
In this chapter, using several specific examples, we illustrate the importance
of careful considerations for each of these issues.

Successful examples of machine learning applications in bioinformatics
include gene prediction from primary DNA sequence (Krogh et al., 1994;
Burge and Karlin, 1998) and prediction of protein secondary structures from
the amino acid sequence (Rost and Sander, 1994b; Jones, 1999; Adamczak
et al., 2005). In the first case, the input data consist of DNA sequence frag-
ments and the output is the predicted location of a coding region, whereas
in the latter case the input is given by amino sequence and the output is
the predicted local conformation of the protein chain. Machine learning
methods are also being used for prediction of protein—protein interactions,
membrane domains, posttranslational modifications and other functionally
relevant characteristics of proteins and other macromolecules (see, e.g., Krogh
etal., 2001; Fariselli et al., 2002; Bigelow et al., 2004; Blom et al., 2004; Caoetal.,
2006). Furthermore, various machine and statistical learning approaches are
being used to analyze microarray gene expression data (see, e.g., Alizadeh
et al., 1998; Eisen and Brown, 1999; Primig et al., 2000; Medvedovic et al.,
2004), protein expression data, correlations between genotypes (patterns of
variations in genomic sequences) and phenotypes, such as disease subtype,
and so forth. In this review, we will focus on applications of machine learn-
ing techniques to selected problems that pertain to sequence, expression and
structural data analysis.

2.4 Machine Learning in Practice

Our objective is to illustrate what we believe to be important considerations
when applying learning algorithms to problems in bioinformatics. Rather
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than provide an exhaustive list of algorithms (we only list a few commonly
used modern paradigms in the following section), we discuss “soft” issues
that often have a large impact on the success or failure of an application.

2.4.1 Problem Representation

A crucial element of any machine learning application (and one that is espe-
cially important in bioinformatics) is the choice of an appropriate problem
representation. Many problems allow for different data representations, and
this early decision that must be made before a learning model is chosen can be
critical. Many learning algorithms require numerical input data, which leads
to the problem that a numerical representation for categorical data needs to
be found.

A typical and common example concerns the representation of protein
sequence information; this is required for, for example, various problems
in the area of protein structure prediction. Proteins are linear molecules of
amino acids, ranging from a few tens of residues to thousands. There are
twenty amino acids in the protein “alphabet,” and so one (naive) way of
encoding a protein sequence is to encode each amino acid in a 20-dimensional
unit vector. The overall protein sequence of length n can thus be written as
a binary vector of length 20 x n. A second approach is to quantify physico-
chemical properties of amino acid residues such as their hydrophobicity, size,
and polarity. An alternative, which has proven in several instances to lead to
significantly better results for protein structure prediction problems (Hansen
et al., 1998; Jones, 1999; Cuff and Barton, 2000; Chen and Rost, 2002), is
to take the sequence of interest and perform a multiple sequence alignment
(Rost and Sander, 1994b) against a database of other known proteins. Multiple
sequence alignments (such as those obtained by Psi-BLAST) find evolution-
arily related proteins, and they yield an alternative way of representing a
protein sequence: the position specific substitution matrix (PSSM). A PSSM
consists of log-odds mutation rates for each amino acid in homologous pro-
tein. A successful option to represent protein sequence has been not only
to use the (also 20-dimensional) substitution rate vector as representation
for an amino acid, but to extend the number of descriptors for that amino
acid by including the substitution vectors of other residues that are within a
certain distance in the linear sequence. This way one captures not only the
identity of the amino acid, but also a characterization of a part of its local
environment. Depending on the size of the “sliding window” one chooses,
this leads to a large number (hundreds) of descriptors for one amino acid,
which in turn can lead to difficulties in case the number of samples is small
(discussed subsequently). Finding the optimal representation, thus, requires
significant insight both into the problem at hand (e.g., protein chemistry) as
well as machine learning. It has been observed before that this choice often
has a much more significant effect on the final prediction accuracy compared
with, to say, the choice of machine learning algorithm.
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2.4.2 Training and Testing Data Selection

Machine learning algorithms, as mentioned earlier, “learn” from data, and in
particular, they use a “training” data set to fit parameters to models that can
then be used to draw inferences about new data points. Much care must be
taken in order to choose this training data, as poor choices can lead to poor
performance of the predictor. In particular, there are two important criteria
for choosing training data. Training instances should account for naturally
occurring variability, which is the case if it is chosen as a random sample
from the underlying distribution. This is often impossible to guarantee, espe-
cially when sample sizes are small as is the case when biological samples are
involved. However, precautions should be taken in order to avoid uninten-
ded biases in data that can arise, for example, when samples were not treated
uniformly before being assayed. The second criterion, which is somewhat
related to the first, is the avoidance of redundancy in the training set. If very
similar “objects” (in the most general case) are included in the training set,
then the learning algorithms will likely have difficulty distinguishing them,
which can lead to a phenomenon called “overfitting.” In this case, a learning
algorithm will be adapted too specifically for the training data and will likely
not perform well in general for new data (poor generalization). Furthermore,
cross-validation methods (discussed subsequently) will yield overly optim-
isticaccuracy estimates on redundant training sets; this is a common problem
with many papers that have appeared in the literature. In the particular case of
protein sequences, redundancy can be avoided, for example, by ensuring that
no two sequences share significant sequence similarity. Failure to ensure non-
redundancy will likely negatively affect the quality of the resulting predictor.

2.4.3 Model Validation

Although the accuracy of a learning algorithm on the training set is certainly
one measure of interest, a realistic performance estimate can only be obtained
by checking a model’s accuracy on an independent test set. Similar with the
choice of training sets, care must be taken with test sets in order to avoid
redundancies that can lead to biased estimates. If sufficient high-quality data
are not available, as is often the case with biological data, then k-fold cross-
validation can be used: the available data set is split into k sets, k — 1 are
used for training and the remaining one for testing. This can and should be
done randomly and many times over in order to obtain converged estimates
of the average prediction accuracy as well as its variance (see, e.g., Wagner
et al., 2004b). A special case is when k = 7, the number of data points, which
is also called leave-one-out cross validation, which is often used in the case
that only tens of data samples are known. If sufficient data is available, then
10-fold or 5-fold cross-validation is a reasonable choice. A second, sometimes
controversial, consideration in this area is the choice of accuracy measure. In
the case when the prediction is a numerical value (we will discuss prediction
types in more detail in a later paragraph), one can use classical measures



52 Computational Methods in Biomedical Research

such as the root mean squared error, the mean absolute error, and the correl-
ation coefficient. No single one of these measures should be overinterpreted,
and, in particular, two additional data points are required in order to provide
context for an accuracy measurement: the standard deviation of the estimate
and the “baseline accuracy,” that is, the accuracy a trivial predictor would
achieve. If cross-validation experiments are performed, then it is informative
to report on estimates for average accuracies as well the estimated standard
deviations in order to assess whether an apparent improvement in accuracy
over a competing method is truly significant or not. We will illustrate this
using examples in a later section. If the predictor is discrete in nature (e.g.,
diseased versus healthy), then the classification accuracies, sensitivity, spe-
cificity, and the Matthews correlation coefficient are natural choices. Receiver
operating characteristic curves are commonly used in the field to illustrate
the quality of machine learning algorithms, as they show the trade-off curve
between the sensitivity and specificity of a predictor. One reasonable goal to
aim for is to achieve roughly equal accuracy on both the test and training sets,
as this is an indication of stability and robust performance.

2.4.4 Feature Selection and Aggregation

With billions of nucleotides in DNA, tens of thousands of genes, hundreds of
thousands of protein and protein variants and order of magnitude, and more
protein-protein interactions, molecular biology is very high-dimensional.
High-throughput technology has allowed us to obtain various snapshots into
this complexity, and these snapshots are invariably high-dimensional. When
wanting to apply machine learning algorithms to this data, one is often (but
not always) faced with the “large p, small n” problem; a small set of samples
(data points) is characterized by a very large number of descriptors for each
sample. By the way these data look in table form, they are often referred
to as “short and fat.” Dimension reduction (also called feature selection in
machine learning) is essential in this context, as otherwise any model using
this data will necessarily have more parameters than data points. A second
motivation for feature selection is that one desired outcome of modeling bio-
logical data is often an increased understanding as to which features (DNA
sequence features, mRNA expression levels, structural elements) are the most
important ingredients that influence a measured outcome (disease versus
nondisease status, secondary structure element, etc.) and which are irrelev-
ant. In order to enable meaningful interpretation and also to prioritize the
subsequent validation experiments, it is essential that the final list of features
used in the model thus be reasonably small. (This is often called the prin-
ciple of parsimony.) Viewed this way, feature selection can often actually be
the primary goal of interpreting biological data, with the machine learning
algorithm merely providing estimates as to how predictive the selected group
of features might be.

The literature on feature selection is vast, as this is a challenging
combinatorial problem of high practical importance. The difficulty arises



Machine Learning Techniques for Bioinformatics 53

fundamentally as a consequence of the fact that (1) features are rarely inde-
pendent but rather have a complex dependence structure and (2) biological
phenomena are rarely single factor events but rather often depend on the
interaction and simultaneous occurrence of events. This introduces a combin-
atorial nature to the problem: whereas a single feature (e.g., DNA mutation)
might not be a good predictor of, say a biological phenomenon (e.g., a com-
plex disease), a combination of a specific subset of features might well contain
valuable information. The number of possible subsets is exponential in the
number of features, which implies that typically heuristics and approxima-
tions have to be used. We also note that the feature selection problem is not
independent of the learning task: some feature subsets might have good pre-
dictive value with one particular learning method, although another method
might not be able to extract sufficient information from the same feature set.

Care should be taken to apply feature selection techniques to the training
set only and not on the entire data available; otherwise bias is introduced in
the evaluation on test sets. In a k-fold cross-validation setting one is then faced
with reselecting features k times. From the stability of the k feature sets one
can gauge how robust the overall algorithm is; the development of principled
methods to combine the k selection sets is still an open research area.

Rather than give details, we mention that there are several ways in which
feature selection methods can be characterized: filter methods versus wrapper
methods, and univariate versus. multivariate. Filter approaches are ones that
are independent of a learning algorithm; they are typically applied to the data
like a preprocessing step. As a simple, but often quite effective example, we
mention the so-called F-score that was used in (Dudoit et al., 2002) microarray
data classification. Wrapper approaches to feature selection are integrated
with the learning method; for example, the learning algorithm iteratively
determines the relative importance of different features by discarding vari-
ables that do not contribute significantly to the model (e.g., the support vector
machine [SVM] method discussed later in this chapter); as such they tend to
be more computationally involved.

Finally, we mention another strategy to deal with the high-dimensionality
of biological data: feature aggregation techniques. Traditional statistical tech-
niques such as principal component analysis (PCA), for example, can be used
to determine the mutually orthogonal directions that account for the largest
proportions of the overall variance in the data (Garrido et al., 1995; Romero
etal., 1997; Hastie et al., 2000; Hastie et al., 2001; Bair and Tibshirani, 2004; Du
et al., 2006). The resulting principal component vectors (that correspond to
weighted linear combinations of features) can subsequently be used as input
for machine learning methods. As with feature selection methods, it is crucial
to compute the PCA decomposition on training data only, as otherwise the
evaluation on the test set would necessarily be biased.

2.4.5 Supervised versus Unsupervised Learning

There are two fundamentally different paradigms in machine learning, both
of which find ample applications in bioinformatics. In the first case, also called
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unsupervised learning or clustering, the task is to discover structures in the
primary data by grouping similar data points into clusters. Approaches differ
mainly in their choices of similarity measure (i.e., the underlying metric) and
the actual clustering algorithm. Well-known approaches include k-means and
hierarchical clustering. By clustering genes from microarray expression data
under different conditions, for example, one can hope to discover coregulated
genes, that is, genes that require the same transcription factors. Coregulation
of genes is often also taken as an indication of functional similarity or potential
interaction of protein product, which motivate the need for robust clustering
algorithms that can prioritize further experimental validation. One difficulty
with clustering is that it is generally very difficult to evaluate the quality of one
solution versus another. Clustering is a discovery algorithm (structure in data
is revealed), and it is unclear how clusters can be validated without resort-
ing to experimental (wetlab) techniques. Furthermore, the most commonly
used clustering procedures are, however, rather ad hoc in nature and incap-
able of separating statistically significant patterns from artifacts of random
fluctuations and uncertainty in the data. Moreover, clustering approaches
based on statistical modeling of the data often require the number of pat-
terns to be specified in advance. One promising approach that circumvents
this problem is the Bayesian infinite mixtures model (IMM) based clustering.
IMM applies “model-averaging” and offers credible assessments of statist-
ical significance of detected patterns (Medvedovic and Sivaganesian, 2002;
Medvedovic et al., 2004). This “model-averaging” approach also allows one
to circumvent effectively the problem of identifying the “correct” number of
patterns. Furthermore, these models are capable of directly modeling various
sources of experimental variability as well as accounting for noninformative
features (i.e., context specificity of different patterns).

The other class of learning algorithms are so-called supervised learning
methods. As implied by the name, these algorithms use a training set (a
“gold standard”) where the “answer” (e.g., in the form on a response vari-
able such as a phenotype, a protein fold, or a gene sequence) is given. The
learning algorithm’s task can thus be viewed as trying to approximate the
function that takes the primary data (e.g., protein sequence) as input and
yields the output of interest (e.g., the type of secondary structure adapted
by the protein in its native state). There are essentially two types of response
variables that machine learning methods can handle. If the variable is con-
tinuous is nature (e.g., the degree to which an amino acid residue is exposed
to solvent in a native protein structure), then regression-type methods are
generally used. This includes simple ordinary least-squares regression, con-
strained least-squares regression as well as more involved methods such as
support vector regression (SVR) and neural network (NN) regression. We
will elaborate on some of these in later subsections. On the other hand, if the
response variable is discrete or categorical (e.g., the type of secondary struc-
ture conformation a residue adopts in a native fold, a-helix, -strand, or coil),
then the problem is also called a classification problem and a different arsenal
of methods is applicable. For classification problems, a further distinction can
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be made between binary problems (those with only two classes) and multi-
class problems. Some classification methods are only suitable for two-class
problems; heuristics such as majority voting algorithms need to be applied in
the multiclass case. As mentioned earlier, the validation measures will also
necessarily change depending on the nature of the response variable.

2.4.6 Model Complexity

Finally, we want to bring up a last consideration for machine learning
methods: the complexity of the model used. Model complexity can be roughly
defined as the number of free internal parameters that are optimized when
the model is trained. Another view is split complexity into the degree of
nonlinearity of the model and the number of parameters (features) by which
the input data is described. Although nonlinear models are generally more
powerful in the sense that they can capture more complex relationships
between the input data and the response variable, they also suffer from pit-
falls and dangers that need to be weighed carefully. If the number of internal
parameters (including the number of features of the input data) is signific-
antly greater than the number of samples in the training set, then any method
is likely to suffer from overfitting: the method may have good accuracy on the
training set but will not generalize well. This situation is all too frequent with
high-dimensional biological data, with possible remedies including careful
feature selection (as mentioned in a previous subsection) and the use of the
simplest model that achieves balanced accuracy in the sense that the accuracy
measures on the training and test sets are roughly equal.

2.5 Examples of Modern Machine and Statistical
Learning Techniques

The field of machine learning has produced a myriad of different algorithms
that is impossible to completely survey in a short chapter. Instead, we rather
focus on briefly introducing a few of the most successful methods that are
commonly applied to problems in bioinformatics (for a comprehensive intro-
duction to these and other statistical learning approaches, see, for example,
Hastie et al., 2001). As emphasized in the previous chapter, there are numer-
ous other very important issues besides the choice of algorithms that influence
the quality of a machine learning approach to real-world problems. Never-
theless, the choice of learning algorithm is certainly a critical one, especially
in the all-too-frequent cases where the signal in the data is weak.

2.5.1 Linear Discriminant Analysis and Support Vector Machines

Linear models are commonly used to solve classification problems (as well as
regression problems discussed later). These models are attractive because of
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their simplicity and ease of interpretation of their results. In particular, they
involve roughly as many parameters as there are features, thus facilitating
extrapolation from a limited number of sample data points. The essence of
these methods is that they find a hyperplane in the vector space X that separ-
ates vectors of one group (for example, samples from individuals affected by
a disease) from another group (healthy samples). A hyperplane w’x + g = 0
for samples x € X may be found using many algorithms so that samples from
the two groups lie on two different sides of the plane:

w'x+p <0 forxeGroupl 2.1
wl'x 4B >0 forxe Group?2 .

One particularly well-known linear discriminant method is Fisher’s linear
discriminant analysis (LDA) (Hastie et al., 2001). A second example that has
enjoyed tremendous popularity and success is the (linear) SVM, which may
be regarded as a generalization of LDA classifiers and is based on a learning
algorithm that uses only vectors close to the decision boundary to “support”
the orientation of the hyperplane (including misclassified vectors). As a con-
sequence SVMs are less sensitive to outliers. SVMs have emerged in the last
10 years as powerful machine learning tools and have shown excellent per-
formance in the context of bioinformatics for classification problems (e.g.,
Brown et al., 2000; Furey et al., 2000) The motivation for the SVM separating
hyperplane stems from the desire to achieve maximum separation between
the two groups. SVMs solve an optimization problem that maximizes the mar-
gin, that is, the distance between the separating hyperplane and the closest
correctly classified data vector. This margin is inversely proportional to the
norm of the normal vector ||w||, which means that this term should be minimal.
At the same time, SVMs optimize the training accuracy by minimizing the
sum of violations of the constraints (Equation 2.1), resulting in the following
overall formulation:

min [[w| + Cl|€]]
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Here C is a trade-off parameter between the generalization term |w| and
the training misclassification term ||£|| that must be chosen a priori. The SVM
problem (Equation 2.2) is, in general, an optimization problem that can be
solved with standard methods. Using (also standard) optimization duality
theory one can show that the number of constraints that are satisfied with
equality at the optimal solution is small, which implies that only a few data
points actually influence the hyperplane defined by (w, B). Linear SVMs are
suitable for solving very large-scale problems since they can be solved very
efficiently on parallel computers (Wagner et al., 2004a; 2005) and thus allow
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for the kinds of extensive cross-validation experiments necessary to obtain a
reliable classifier.

Finally, we mention briefly that SVMs can be extended using nonlin-
ear kernel functions (e.g., Schoelkopf and Smola, 2002) that compute inner
products (w, x) in high-dimensional spaces. Kernel SVMs thus still compute
maximum margin linear separating hyperplanes, but these now can cor-
respond to nonlinear separation boundaries in the original feature space.
A number of kernels are commonly used, including polynomial kernels
k(w,x) = (w'x + B)P and radial basis function (RBF) kernels for which
k(w,x) = exp(—|lw — x||?/o). More sophisticated kernels, reflecting some
prior knowledge about the specific problem analyzed, have been designed
(Leslie et al., 2003), and, in particular, recent years have seen the development
of specialized string kernels for particular bioinformatics applications.

There are a number of SVM software packages available, both in commer-
cial packages and as open-source software. One particular package that can
be recommended for its numerical stability and computational efficiency is
libsvm (Fan et al., 2005), which is freely available for researchers over the
Internet. Other packages and a wealth of background information on SVMs
is available at http:/ /www.support-vector.net.

2.5.2 Linear Regression and Support Vector Regression

If the response variable is quantitative as opposed to categorical then regres-
sion approaches are needed. If the data are given by vectors x; and the
corresponding response variable is y;, then the straightforward ordinary
least squares (LS) approach computes weights w and a scalar g such that
the squared prediction error is minimized:
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The SVR approach, which is closely related to SVMs for classification, offers
a more flexible solution to the regression problem, overall numerical effi-
ciency, and applicability to large-scale problems. In particular, the so-called
e-insensitive SVR models allow for the error measure to be defined in a flexible
way, for example, reflecting the expected level of errors by varying error bars,
g, for different types of training examples that may differ in their characterist-
ics (Wagner et al., 2005). SVR models can be seen as extensions of LS models
where an ¢-insensitive penalty function is minimized instead of the sum of
squared errors (see, e.g., Hastie et al., 2001). For the purposes of these con-
siderations, we restrict ourselves to stating the overall optimization problem
that is solved by SVRs, which reads

min |lw]| + Cl|&]|
(2.3)
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Here C is again ana priori penalty parameter that balances the regression error
term ||£] and the regularization term |[w|| (that corresponds to the margin
maximization term for SVMs). If (@, B) denotes the optimal SVR solution to
Equation 2.3, then the predicted outcome for a new data point characterized
by x; is given by §x = @ x; + . To compare and contrast with the standard LS
approach, note that the term w? x; + 8 —y; in the constraints corresponds to the
objective function for LS. SVRs will penalize this deviation through the slack
variable &; if it exceeds ¢, which is an error insensitivity parameter that must be
set by the user a priori. In addition, SVRs generally use the 1-norm to penalize
the regression error |£||; and are thus less outlier sensitive, which again is
especially advantageous in many bioinformatics applications with noisy data.
Finally, we also mention that although C and ¢ are typically chosen as fixed
parameters, there is no real reason not to allow them to be functions of y;,
choosing different error insensitivities &; = £(y;), depending on the expected
(or naturally occurring) error for the response variable y;. These ideas were
successfully applied in a number of protein structure prediction contexts; see,
for example, Wagner et al., 2005.

2.5.3 Neural Networks for Classification and Regression

Another solution that goes beyond LDA is provided by NNs, which can gen-
erate arbitrary nonlinear decision boundaries by addition of many simple
functions. This is typically achieved by a multistage transformation, which
may be represented graphically as a network (directed graph) of intercon-
nected layers of “computing” nodes that integrate input signals from the
previous layer. In particular, the input features (attributes) are represented by
individual nodes in the input layer and are subsequently transformed into
a new set of features using several hyperplanes, wy, corresponding to the
hidden layer nodes (here, for simplicity, we assume that only one hidden
layer is used). In other words, the inputs for the hidden layer nodes are linear
combinations of the original N features with the coefficients of the linear com-
bination, wy, associated with connections between input node i and hidden
layer node k. The hidden layer nodes transform such defined inputs using
some functions fy (x) = s(w{x + wj), where the scalar functions s(-) are usu-
ally chosen to be logistic functions. Thus, they have a sigmoidal shape with
output bounded by maximum and minimum values. As a result, the outputs
are in general nonlinear functions of inputs.

There is a distant analogy between the activity of biological neurons that
sum input signals weighted by the strength of synaptic connections and send
output signals that are bounded by some maximum values. For this reason,
such nodes are called artificial neurons or perceptrons. A number of these
nodes connected to the same input form a layer that transforms the input
vector to the vector of hidden layer activities H. Connecting input and hidden
and output nodes form a network representation of such function, and this is
called a neural network. If the sigmoidal-shape functions are used for all layers,
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then this network is called a “multilayered perceptron” (MLP). If the hidden
layer functions are of Gaussian or similar type, then the network is called
RBF network (Duda and Hart, 1973; Ripley, 1994; Hassoun 1995). In general,
MLP and RBF neural networks are basically function-mapping systems for
classification and regression that can learn how to associate numerical inputs
with arbitrary outputs, changing their internal parameters.

The training of NNs typically involves minimizing the following error
function:

SSE(w) = Y ar(y) (Fi(w) — yi)°

where {j; denotes the predicted value of the variable of interest, given the
parameters w of the network (weights and biases), and y; represents the target
value imposed in the training. In analogy to the error insensitivities ¢;, the
weights a(y;) can be chosen to reflect uncertainties associated with the target
values. Many training algorithms have been devised to find parameters w that
fit inputs to the desired outputs. One standard example of a commonly used
training algorithm is the so-called back propagation algorithm. The important
pointis that the training of NNs involves an attempt to solve a global nonlinear
optimization problem, which is inherently difficult and requires heuristics
such as different starting points and exit strategies from local minima. It is
also difficult to assess the quality of a NN configuration, that is, to estimate
how far from the global optimum one is. This is in stark contrast to SVMs that
solve a convex optimization problem with a unique minimum and are thus
computationally more efficient and less prone to overfitting.

On the other hand, NNs are very flexible and in general accurate if trained
properly. Furthermore, they can be used for either classification or regression
problems. For classification problems, NNs can be designed to have several
output nodes, each one indicating the strength of prediction for a class. For
regression problems, NNs typically have a single output node that emits a
real-valued predictor for the quantity in question. We note that the number of
free parameters that need to be chosen during the training phase for NNs can
typically be large, depending on the number of activation nodes in the hidden
layers and the topology of the network, thus requiring a comparatively large
number of training samples in order to avoid overparametrization. This is in
contrast to linear models that in general only have as many model parameters
(weights) as there are features in the data representation. However, if a suf-
ficient number of training instances is available and the models are carefully
trained, then NNs are often the methods of choice. (see, e.g., the upcoming
section on protein secondary structure prediction).

2.5.4 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used probabilistic machine
learning techniques based on a finite state machine representation of the
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structure (“grammar”) of a “language” that is to be modeled. In the
case of bioinformatics the language typically relates to genomic DNA
sequence or protein sequences, with the corresponding “grammars” encod-
ing, for example, the exon/intron/intergenic region constitution of genomic
sequences from a given genome or, say, the membership of an amino acid
sequence in a family of evolutionarily related proteins. There is a vast liter-
ature covering methodology and numerous applications of HMM models;
for an excellent review of HMM developments and applications we refer the
reader to Durbin et al. (1998).

HMMs are characterized by a set of “states” as well as the transition prob-
abilities between these states. Furthermore, HMMSs can emit letters in states
(from which the words of the “language” are assembled), and the emission
probabilities for each letter depend on the underlying state the HMM is in.
Finally, the Markov property dictates that the subsequent state the HMM
transitions to depends on its current state alone. An HMM may thus be viewed
as a machine that generates sequences—each trajectory that follows a number
of states through transition arrows generates a sequence.

Given transition and emission probabilities for an HMM, one can com-
pute a total probability that a particular sequence was emitted by that HMM.
Conversely, given a number of well-characterized training instances (e.g.,
conserved protein sequences belonging to the same family) one can design
an HMM by choosing a topology as well as transition and emission prob-
abilities that maximize the likelihood that these sequences were generated
by the HMM. There are several algorithms to perform this “training” (choice
of model parameters based on well-characterized data); the most success-
ful ones are based on variants of the well-known expectation-maximization
(EM) algorithm. We refer the reader to Durbin et al. (1998) for technical
details.

We would like to comment that the availability of various HMM pack-
ages for development and training of such models contributed significantly
to the widespread use of HMM and similar statistical learning techniques
in bioinformatics. For example, the HMMer package (Durbin et al., 1998;
http:/ /hmmer.janelia.org), a general-purpose HMM simulator for biological
sequence analysis, which is available freely for academic use, can be used,
among other applications, in gene finding and discovery of new patterns in
genomic sequences.

In this part of the chapter, we discuss several applications of machine
learning approaches in bioinformatics. We start the discussion with applica-
tions to structural bioinfomatics, including canonical examples of secondary
structure and solvent accessibility prediction for amino acid residues in
proteins. Next, we present the problem of gene prediction and applic-
ations of HMMs to that problem. Finally, we briefly discuss issues
related to drug design and applications of machine learning techniques
to prediction of quantitative structure-activity relationship (QSAR) in this
context.
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2.6 Applications of Machine Learning to Structural
Bioinformatics

2.6.1 Secondary Structure Prediction

In order to perform their function, proteins typically adopt a specific 3D struc-
ture that remains stable under a range of physiological conditions. This is
known as the folding process, in which an extended or unfolded protein
conformation undergoes a series of conformational transitions into the fol-
ded (compact) structure. As part of this process, regular local conformations
known as secondary structures emerge. These ordered local structures include
a-helices and B-strands that are largely defined by local propensities of amino
acid residues with nonlocal contacts between residues additionally stabilizing
(or destabilizing) such local conformations. One of the first successful applica-
tion of machine learning techniques in the field of protein structure prediction
was the prediction of secondary structures in proteins (Qian and Seinowski,
1988; Rost and Sander, 1994a). (See also Figure 2.1 for an illustrative example
of secondary structure prediction.)

In their pioneering work Rost and Sander (1994a) demonstrated the import-
ance of the multiple alignment representation and used NNs to train a
successful classifier capable of assigning each residue to one of the three
classes (helix, B-strand or coil) with over 70% classification accuracy. In related
work, Rost and Sander (1994b) proposed to extend this approach to predict
relative solvent accessibility (RSA), which quantifies relative solvent exposure
compared with an extended conformation. Since then many different machine
and statistical learning techniques have been devised and used to improve
secondary structure prediction (for a recent review see, e.g., Przybylski and
Rost, 2002). In fact, increasingly accurate prediction methods, which achieve
about 80% accuracy for classification into three states (Eyrich et al., 2001;
Przybylski and Rost, 2002; Adamczak et al., 2005) have already and signi-
ficantly contributed to the improved performance of fold recognition and de
novo protein structure prediction methods (Fischer et al., 2001; Venclovas
et al., 2001; Schonbrun et al., 2002).

2.6.2 Solvent Accessibility Prediction

The solvent accessible surface area of an amino acid residue in a protein struc-
ture is another important attribute that, if known, can be used to facilitate
and enhance the overall structure prediction in fold recognition or de novo
folding simulations (Fischer et al., 2001; Venclovas, 2001). For example, glob-
ular proteins in aqueous solution are characterized by the formation of a
hydrophobic core, which is shielded from the solvent. Therefore, estimates
of the solvent accessibility can be compared with the solvent accessible sur-
face areas observed in known protein structures and can thus help identify
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FIGURE 2.1

(See color insert following page 207.) Comparison of experimentally observed (PDB structure
1q4k, chain A, two upper rows) and predicted (using the SABLE (From R. Adamczak, A. Porollo
and J. Meller, Proteins, 56, 753-767, 2004.) server, lower rows) structures of polo kinase PIki.
Helices are indicated using red braids, beta-strands are indicated using green arrows and loops
are shown in blue. The relative solvent accessibility is represented by shaded boxes, with black
boxes corresponding to fully buried residues. Sites located in known protein—protein interaction
interfaces are highlighted using yellow, whereas residues corresponding to polymorphic sites
are highlighted in red and Xs represent fragments unresolved in the crystal structure. Figure
generated using the POLYVIEW server (http://polyview.cchmc.org).

the most compatible structural template in fold recognition. Similarly, in
folding simulations the search through the space of all possible conforma-
tions can be biased toward those conformations that are consistent with the
predicted pattern of solvent accessibility (Adamczak et al., 2004). In addi-
tion, identifying surface exposed residues is an important step in recognition
of protein—protein interaction interfaces and may help classify functional
effects of mutations (Glaser et al., 2003). The problem of predicting RSA
appears to be more difficult than prediction of secondary structures (Rost and
Sander, 1994b; Adamczak et al., 2004). The reasons RSA prediction methods
are comparatively less successful lie primarily in the nature of the problem,
but to some extent they are also rooted in the way the problem is typically
solved.
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The RSA of an amino acid residue in a protein structure is a real num-
ber between 0% and 100%, with 0% RSA corresponding to fully buried and
100% RSA to fully exposed residues, respectively, that represents the solvent
exposed surface area of this residue in relative terms. The level of solvent
exposure is weakly conserved in families of homologous structures (Rost and
Sander, 1994b; Adamczak et al., 2004). Using PFAM multiple alignments for
protein families, it has been estimated that the average correlation of the
RSAs for pairs of equivalent residues in homologous structures is equal to
0.57 (Adamczak et al., 2004). Thus, contrary to the prediction of secondary
structures, the highly variable real valued RSA does not support the notion
of clearly defined distinct classes of residues and suggests that a regression-
based approach is appropriate for this problem. In light of these difficulties,
it is striking that most existing RSA prediction methods cast this problem
within the classification framework, attempting to predict whether a given
amino acid exceeds some (arbitrary) RSA threshold and would thus be pre-
dicted to be “exposed,” as opposed to “buried.” Recent examples of such
attempts to further improve the RSA prediction include both feed forward
(Ahmad and Gromiha, 2002) and recurrent NN (Pollastri et al., 2002), as well
as SVM-based (Kim and Park, 2004) approaches.

In an effort to go beyond the classification paradigm and provide real val-
ued RSA predictions we recently developed several alternative regression
based models, including standard LS, linear SVR and NNs-based nonlinear
models. This allowed us to investigate the prediction limits of the simplest
kinds of regression models (linear models) on the same dataset, perform
extensive cross-validation and feature selection with these simple models
and use the results to assess the relative benefits of the more involved nonlin-
ear NNs (Adamczak et al., 2004; Wagner et al., 2005). In order to represent an
amino acid residue we used evolutionary information as encoded by PSSMs
and we trained our methods using a large set of representative and nonre-
dundant protein structures. In rigorous tests, following an evaluation of
automatic protein structure prediction (EVA)-like methodology (Eyrich et al.,
2001) for evaluation of the accuracy of secondary structure prediction meth-
ods (see http:/ /cubic.bioc.columbia.edu/eva for details.), the new NN-based
methods achieved significantly higher accuracy than previous methods from
the literature, with mean absolute errors between 15.3% and 15.8% RSA and
correlation coefficients between observed and predicted RSAs of about 0.64—
0.67 on different control sets. In two state projections (e.g., using 25% RSA
as a threshold between buried and exposed residues), the new method out-
performed current state-of-the-art classification-based approaches, achieving
an overall classification accuracy of about 77% (for details see Adamczak
et al., 2004). These estimates of the accuracy have since been confirmed by
independent studies (see, e.g., Garg et al., 2005).

2.6.3 Structural Predictions for Membrane Proteins

Although high-resolution structural data for soluble proteins and their inter-
actions are relatively abundant (and quickly growing), it is not the case for
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membrane proteins. Owing to difficulties in applying experimental tech-
niques, such as x-ray crystallography or NMR, the number of high resolution
structures of membrane proteins that have been solved to date is still very
limited. From January 2006, there were only 129 unique integral membrane
proteins with known 3D structures in the Protein Data Bank, of which 101
were a-helical membrane protein and 28 were B-barrel and other membrane
proteins (http://blanco.biomol.uci.edu/mpex/). On the other hand, it is
estimated that integral membrane proteins constitute about 20%-30% of all
proteins in the sequenced genomes (Wallin and von Heijne, 1998). The compu-
tationa