


Electric Energy Systems and Engineering Series 
Editors: J. G. Kassakian . D. H. Naunin 



Pei-bai Zhou 

Numerical Analysis of 
Electromagnetic Fields 

With 157 Figures 

Springer-Verlag Berlin Heidelberg GmbH 



Professor Pei-bai Zhou 
Dept. of Electrical Engineering 
Xi'an Jiao-tong University 
Xi'an Shaanxi, 710049, P.R. China 

Library of Congress Cataloging-in-Publication Data 
Zhou, Pei-bai, 1936-
Numerical analysis of electromagnetic fields I Pei-bai Zhou. 
p. cm. - (Electric energy systems and engineering series) 
Inc1udes bibliographical references and index. 

1. Electromagnetic fields - Mathematics. 2. Field theory 
(Physics) - Mathematics. 3. Numerical analysis. 4. Finite element 
method. 5. Boundary element methods. 1. Title. II. Series. 
QC665.E4Z46 1993 92-39200 
530.1'41-dc20 CIP 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concemed, specifically the rights of translation, reprinting, re-use of illustrations, 
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. 
Duplication of this publication or parts thereof is only permitted under the provisions of the 
Gennan Copyright Law of September 9, 1965, in its current version and a copyright fee must 
always be paid. Violations fall under the prosecution act of the Gennan Copyright Law. 

ISBN 978-3-642-50321-4 ISBN 978-3-642-50319-1 (eBook) 
DOI 10.1007/978-3-642-50319-1 

© Springer-Verlag Berlin Heidelberg 1993 

Originally published by Springer-Verlag Berlin Heidelberg New York in 1993. 

The use of registered names, trademarks, etc. in this publication does not impJy, even in the 
absence of a specific statement, that such names are exempt from the relevant protective laws 
and regulations and therefore free for general use. 

Typesetting: Macmillan (India) Ltd., Bangalore, India 
61/3020 - 5 4 3 2 1 0- Printed on acid-free paper 



Series Editors: 

Prof. 1. G. Kassakian 
Massachusetts Institute of Technology, 
77 Massachusetts Ave., Cambridge, MA02139, USA 

Prof. D. H. Naunin 
Institut fUr Elektronik, Technische U niversitat Berlin, 
Einsteinufer 19, W-I000 Berlin 10, FRG 



Introduction to the Electric Energy Systems 
and Engineering Series 

Concerns for continued supply and efficient use of energy have recently be­
come important forces shaping our lives. Because of the influence which 
energy issues have on the economy, international relations, national security, 
and individual well-being, it is necessary that there exists a reliable, available 
and accurate source of information on energy in the broadest sense. Since a 
major form of energy is electrical, this new book series titled Electric Energy 
Systems and Engineering has been launched to provide such an information 
base in this important area. 

The series coverage will include the following areas and their interaction 
and coordination: generation, transmission, distribution, conversion, storage, 
utilization, economics. 

Although the series is to include introductory and background volumes, 
special emphasis will be placed on: new technologies, new adaptions of old 
technologies, materials and components, measurement techniques, control -
including the application of microprocessors in control systems, analysis and 
planning methodologies, simulation, relationship to, and interaction with, 
other disciplines. 

The aim of this series is to provide a comprehensive source of information 
for the developer, planner, or user of electrical energy. It will also serve as a 
visible and accessible forum for the publication of selected research results and 
monographs of timely interest. The series is expected to contain introductory 
level material of a tutorial nature, as well as advanced texts and references for 
graduate students, engineers and scientists. 

The editors hope that this series will fill a gap and find interested readers. 

John G. Kassakian . Dietrich H. Naunin 



Preface 

Numerical methods for solving boundary value problems have developed 
rapidly. Knowledge of these methods is important both for engineers and 
scientists. There are many books published that deal with various approximate 
methods such as the finite element method, the boundary element method and 
so on. However, there is no textbook that includes all of these methods. This 
book is intended to fill this gap. The book is designed to be suitable for 
graduate students in engineering science, for senior undergraduate students as 
well as for scientists and engineers who are interested in electromagnetic fields. 

Objective 

Numerical calculation is the combination of mathematical methods and field 
theory. A great number of mathematical concepts, principles and techniques 
are discussed and many computational techniques are considered in dealing 
with practical problems. The purpose of this book is to provide students with 
a solid background in numerical analysis of the field problems. The book 
emphasizes the basic theories and universal principles of different numerical 
methods and describes why and how different methods work. Readers will 
then understand any methods which have not been introduced and will be able 
to develop their own new methods. 

Organization 

Many of the most important numerical methods are covered in this book. All 
of these are discussed and compared with each other so that the reader has a 
clear picture of their particular advantage, disadvantage and the relation 
between each of them. The book is divided into four parts and twelve chapters. 

The first part deals with the universal concepts of numerical analysis for 
electromagnetic field problems in Chapter 1 and 2. This is a review and exten­
sion of electromagnetic field theory, followed by a general outline of approxi­
mate methods. Green's theorem, Green's function, fundamental solutions and 
equivalent surface sources are the basic tools reviewed in this section. The 
concepts of discretization, error minimization of the approximation and the 
basic principles of numerical methods are introduced before any specific 
method is discussed. 



x Preface 

The following two parts discuss specific methods. Part two is concerned 
with domain methods. It includes finite difference and finite element method. 
Chapter 3 explains the finite difference method. The finite element method is 
discussed in three chapters, designed step by step. Chapter 4 introduces the 
general idea and procedures of the finite element method. Here the matrix 
equation of the finite element method is derived by using the principle of 
Galerkin's weighted residuals. Chapter 5 descibes additional properties and 
applications of the finite element method. The discretization equation is 
derived using the variational principle. The equivalent functionals of different 
types of field problems are derived. The important techniques of domain 
discretizations are dealt with in Chapter 6, because they are used in both the 
finite element method and in other approximate methods. 

Part three outlines boundary methods, as is the solution of integral equa­
tions. Four methods are described in the following four chapters. Chapter 7 
considers the charge simulation method, being one of the simplest based on 
integral equations. The integral equation for problems containing several ma­
terials is in Chapter 8. The specific problem of integration around singularities 
of integral equations is introduced in this chapter. The boundary element 
method is given in Chapter 9. The charge simulation, surface charge simula­
tion and the boundary element methods are special cases of the moment 
method, as is shown in the last chapter. 

The last part of the book discusses the optimization of electromagnetic field 
problems. Optimum design is often the purpose of field analysis. Chapter 11 
describes the mathematical tools used in optimization design. It introduces 
general methods to search for the extremum value of a given objective func­
tion. This chapter also demonstrates the solution methods for the solution of 
algebraic equations derived in parts two and three. The last chapter is the 
application of the combination of all these methods introduced in the text for 
purposes of optimized design. 

Further applications, wider discussion and new techniques are listed in the 
references. 

Summaries 

Each chapter includes a brief summary of its content. Important statements 
are in italic. 

Appendix 

Some related mathematical formulations, approximate algorithms for calcu­
lating special functions, are given in the appendix belonging to each chapter. 

Xi'an, March 1993 Zhou Pei-bai 
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Part One 

Universal Concepts for the Numerical Analysis 
of Electromagnetic Field Problems 

Many of the basic concepts that are used when undertaking numerical analysis 
of electromagnetic field problems are reviewed in this section. The first chapter 
provides the theoretical basis for numerical analysis of electromagnetic field 
problems. The second chapter provides a general outline of the various numer­
ical methods introduced in this book. 



Chapter 1 

Fundamental Concepts of Electromagnetic 
Field Theory 

The solution of many practical electromagnetic field problems can only be 
undertaken by applying numerical methods. Before such a solution can be 
undertaken, it is important that a correct mathematical model be established for 
the problem considered. Maxwell's equations and the associated boundary 
conditions provide the necessary basis for the modelling of practical electromag­
netic problems which are reviewed in this chapter. Further, as Green's theorem, 
fundamental solutions, and equivalent sources are the basic tools used in some 
numerical techniques, they are also presented here. 

1.1 Maxwell's equations and boundary value problems 

In free space, Maxwell's equations and the constitutive equations are: 

aD 
V'xH=-+J at (1.1.1) 

aB 
V'xE =-- ( 1.1.2) at 
V'·B= 0 ( 1.1.3) 

V'·D =p (1.1.4) 

B =J.loH ( 1.1.5) 

D = eoE. ( 1.1.6) 

In the presence of conducting materials. the principle of charge conservation 
is expressed by the relation: 

( 1.1.7) 

The current density J and the electric field E are related by Ohm's law: 

J =')'E. ( 1.1.8) 
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Finally, if the problem involves conducting bodies moving through magnetic 
fields, the total electric field must include a component Ev that is due to the 
velocity effects: 

Ev = v x B. (1.1.9) 

In these equations, H, E are vectors of magnetic and electric field strength, 
B, D are the vectors of magnetic and electric flux density, J is the conduction 
current density and p is the electric charge density. Finally, eo, J.1.0 are the 
permittivity and permeability of the free space while y is the electrical conductiv­
ity of the material. 

In dielectric and magnetic materials, the polarization vector P and the 
magnetization vector M are defined as folows: 

P=D-eoE 

I 
M=-B-H. 

J.1.0 

Maxwell's equations can then be written as: 

aB 
VxE=-­at 

aE (ap ) v x B = J.1.0 eo at + J.1.0 J + at + V x M 

V·B = 0 

I 
V· E = - (p - V . P) . 

eo 

(tUO) 

(l.UI) 

(U.12) 

(U.13) 

(U.l4) 

( l.US) 

In Eq. (1.1.l3) it will be noted that the dielectric and magnetic materials give rise 
to an equivalent current density of the form ap/at + V x M. Similarly, in 
Eq. (U.IS), the dielectric material gives rise to an equivalent volume charge 
density of the form - V . P. 

1.1.1 Potential equations in different frequency ranges [lJ 

Rapidly varying time-dependent fields 

When the time variation of fields is rapid, the electric field and magnetic field are 
coupled to each other. The field distributions are dependent on both time and 
position, E(r, t), B(r, t). The time varying magnetic field induces the rotational 
electric field and the time varying electric field produces the rotational magnetic 
field. All the field quantities are fully dynamic. 

In lossless media and source-free regions it is a simple matter to show that 
E and H satisfy a wave equation. In the case ofE, for example, by taking the curl 
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of Eq. (1.1.2) and then substituting Eq. (1.1.1) for H, it follows that: 

a2E 
V2E - /.I.e at2 = 0 

5 

(1.l.16) 

which is a wave equation for E. Similarly, it can be shown that H satisfies the 
identical equation: 

a2H 
V2H - /.I.e at2 = 0 . (1. l.l 7) 

When solving Maxwell's equation it is often convenient to introduce the scalar 
and vector potential functions cp and A as indicated below: 

aA 
E = - at - Vcp (1.1.18) 

B=VxA. (1.1.19) 

It can then be shown that if the problem involves sources p and J the potentials 
satisfy inhomogeneous wave equations: 

(1.1.20) 

(1.1.21) 

In deriving Eqs. (1.1.20) and (1.1.21) Lorentz's gauge has been assumed: 

acp 
V·A = -/.I.e-at. (1.1.22) 

In the case of lossy media, the wave equation is obtained by using the 
gauge of: 

( 1.1.23) 

The resulting equations have the form: 

2 02cp ocp 
V Cp-/.I.e at2 -/.I.Y-at= -pie (1.1.24) 

(1.1.25) 

The above equations are used for computing waves radiating from antennas, 
waves scattered by material bodies, and waves propagating in wave-guides or 
other electronic devices. 
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Steady-state fields 

When the time variation in a problem is relatively slow, the steady-state 
approximation may be used. The criterion for 'slow' as opposed to rapid 
variation is: 

y ~ wt:, ( 1.1.26) 

where w is the frequency of sinusoid. 
This criterion means that the conducting currents dominate the problem and the 

displacement currents can be neglected. Hence the rotational magnetic field 
induced by the electric field no longer exists. There is no relation between the 
position changing and the time varying field. Hence there is no wave 
transmission. 

Usually, in steady-state field problems, the quantities E(r, t), H(r, t), J(r, t), 
and p(r, t) are time harmonic functions. The field distribution therefore depends 
only on the position and phase delay at each point in space. In this case 
Maxwell's equations are reduced to: 

VxH =J 

Vx E = -jwB 

V·B=O 

V·D=O. 

(1.1.27) 

( 1.1.28) 

(1.1.29) 

(1.1.30) 

When p, yare constants, E and H obey a parabolic diffusion equation: 

V2H =jwpyH 

(1.1.31) 

For such problems it is convenient to employ a magnetic vector potential 
A or an electric vector potential T [2]. The definition of A and T follows directly 
from the Maxwell's equations of V· B = 0 and V· J = 0: 

{
B=VXA 

(1.1.32) 
J = VxT. 

Because of Ampere's law the relationship between the magnetic field strength 
H and the electric vector potential T is given by: 

H=T-va (1.1.33) 

where a is a scalar magnetic potential. Equation (1.1.33) is derived from 
Eqs. (1.1.27), (1.1.32) and V x va = O. Similarity between the two vector poten­
tials A and T is illustrated in Fig. 1.1.1. 

Differential equations for the two vector potentials can be obtained by 
substituting Eqs. (1.1.18), (1.1.19) and (1.1.33) into Maxwell's equations. After 
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y 

-I--}--- X 

a z 

y 

Tx 
-J.+--x 

b z 

Fig. 1.1.13, b. The similarity between the vector potentials A and T 

a simple manipulation the following two equations are obtained: 

V x (tv x A ) + jwyA + yV<p = J s 

V x (~V x T ) + jwp.T - jwp.VQ = 0 

where J s is an imposed current density. 

7 

(1.1.34) 

( 1.1.35) 

The most important application of a steady-state approximation is in determin­
ing the eddy current distribution in conducting regions and in iron cores. Depend­
ing on the material constants, the approximation may be valid up to the X-ray 
frequency range. 

Static and quasi-static fields 

In static fields quantities p, J, E, H are time independent, i.e. a/at = 0 and the field 
distributions arefunctions of positions only. If the frequency is sufficiently low, the 
rotational electric field induced by the magnetic field of the displacement current 
is infinitely small. The field distribution of this case is then in fact a static 
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distribution, it is called 'quasi-static' field. The criterion of quasi-static is L ~ ;,. 
Where A. is the wave length, L is the dimension of the field region. 

In the case of static and quasi-static fields Maxwell's equations reduce to the 
following form: 

VxE = 0, V·o=p, 

VxH =J, V·B=O, 

ap 
V·J= -­at 
V·J =0 

(1.1.36) 

( 1.1.37) 

Based on V x E = 0, V· B = 0, both the scalar electric and magnetic potentials 
ep. epm' and the vector magnetic potential A are introduced in following forms: 

E = - Yep 

B=VxA 

H = - Vepm (in a current free region) . 

( 1.1.38) 

(1.1.39) 

Based on Eqs. (1.1.36), (1.1.37) and (1.1.39), Poisson's and Laplace's equations 
are derived: 

V 2ep = - pie 

V2A = -}lJ 

V 2 epm = 0 . 

(1.1.40) 

(1.1.41) 

(1.1.42) 

Usually, in static and quasi-static cases, Coulomb's gauge is satisfied as 

V·A=O. ( 1.1.43) 

1.1.2 Boundary conditions of the interface 

At the interface of different materials the integral form of Maxwell's equations is 
reduced to: 

n·(8 1 - 8 2 ) = 0 

0·(01- 0 2)=a 

ox (E1 - E2 ) = 0 

o X (HI - H 2 ) = K 

da 
0·(J I -J2)= - dt' 

(1.1.44) 

(L1.45) 

(1.1.46) 

(1.1.47) 

(1.1.48) 

where 0 is the unit normal vector to the interface as shown in Fig. 1.1.2. 
E I , °1• B1 • HIo J I and E 2 , °2 , B2 • H 2 , J 2 are field vectors on both sides of the 
interface, respectively. K and a are densities of surface current and charges. 
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n 
cr 

+ + __ +-'-----"--~:K 

Fig. 1.1.2. Interface boundary conditions of E 
and B 

If the scalar electric potential is chosen as variable, the interfacial boundary 
conditions are: 

(
lPl = lP2 
81 OlPl _ 82 OlP2 = (1 • 

on on 
(1.1.49) 

For a translational symmetric magnetic field the interface boundary condi-
tions are: 

(
AI = A2 

1 oA I _ 1 oA 2 

Jl.I on - Jl.2 on . 
(1.1.50) 

If the magnetic field problems of 3-D cases are considered, the vector 
magnetic potential A is composed of three components, e.g. 

A = An n + At t + Ass (1.1.51) 

where An, At, As are three components of A. t and S are two unit vectors 
orthogonal to the normal direction n. Under Coulomb's gauge, the normal 
component An satisfies: 

( 1.1.52) 

Continuity of the tangential components of the magnetic field strength H is 
expressed by the equation: 

n x (:1 V x AI) = n x (:2 V x A2 ) . ( 1.1.53) 

The above equation can be decomposed into two equations [3]: 

( OAt) = Jl.I (OAt) _ (Jl.l _ 1) cAn 
an I Jl.2 an 2 Jl.2 at (1.1.54) 

(OO~S)I =::(a~S)2 _(::_I)O~n. (1.1.55) 

Equations (1.1.54) and (1.1.55) show that the boundary conditions for a 3-D 
magnetic field are more complicated than for a scalar field. Thus the appropriate 
choice of the mathematical model, the unknown variables, and the gauge 
conditions is significant for the solution of 3-D magnetic field problems. 
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Methods for solving 3-D magnetic field problems are of great interest to 
scientists and engineers. 

1.1.3 Boundary value problems 

The task of determining a solution of a differential equation which is subject to 
certain boundary conditions is called a boundary value problem. Usually bound­
ary conditions can be generalized into three kinds, viz.: 

Dirichlet condition 

Neumann condition 

Robin condition 

CPlr=f(r) 

ocp I = f(r) an r 

( 1.1.56) 

(1.1.57) 

(1.1.58) 

The governing equations corresponding to the above three boundary conditions 
are called Dirichlet, Neumann and Robin, respectively. In these equations,f(r), 
fl (r), f2(r), f3(r) are the known functions. Usually the Dirichlet boundary 
condition is called the essential boundary condition or the boundary condition 
of the first kind. Similarly the Neumann condition is designated the boundary 
condition of the second kind, the Robin boundary condition is called the 
boundary condition of the third kind. In a particular problem the boundary 
condition may be the combination of the first and the second kind. In solving 
a practical problem, the mathematical description of the boundary conditions is 
significant. If the vector magnetic potential is chosen as unknown and con­
sidered in the 2-D case, the following boundary conditions are commonly valid: 

A = 0 along the line of flux density 

oA = 0 along the surface of ferromagnetic material an 

oA = 0 along the line of geometric symmetry. an 

(1.1.59) 

(1.1.60) 

(1.1.61) 

For example, in Fig. 1.1.3(a) and (b), there are two pairs of current-carrying 
conductors, extending the field to infinity. Due to the geometric symmetry, only 
a quarter of the domain needs to be considered. Figure 1.1.3(a) shows that the 
current in the two conductors is in opposite directions, the y-axis is the B-line, 
hence it is A = con st. It can be assumed that A = 0 is on the y-axis. The x-axis is 
a line of geometric symmetry, with B-lines orthogonal to the x-axis. Hence the 
x-axis satisfies the condition of aAlon = O. At infinity lim rA = limited. In 

r-+ 00 

Fig. 1.1.3 (b) the currents in the two conductors are in the same direction, both 
x and y-axes are lines of symmetry, hence these two axes satisfy aAlan = O. 
Figure 1.1.3 (c) shows a model of an electric machine; the stator and the rotator 
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Far away 

A~l ~=O an 

0 I 8 1 X 0 

y 

1- aA =0 

J 'leI - x o 
a b 

Stator a c 

A=O A=const aA =0 1 aY ilr = 

c 

ed 
Rotator Fig. 1.1.3a-c. Boundary conditions of A using 

different cases 

are made of ferromagnetic material. All the B lines are orthogonal to the surfaces 
of the ferromagnetic material, hence these surfaces satisfy 8Aj8n = O. When 
considering the symmetry, only the region of abfedca needs to be classified. The 
boundary conditions of this area are shown in the figure. All the surfaces of the 
magnetic material satisfy 8Aj8n = O. 

The uniqueness theorem proves that the solution of the governing equation 
which is subject to specific boundary conditions is unique no mattc:r which 
method is used. 

1.2 Green's theorem, Green's function, 
and fundamental solutions 

The boundary integral equation methods are suitable for numerical analysis of 
field problems, the reason being is that they depend solely on the modelling of 
the boundaries and the interfacial surfaces. Green's function and fundamental 
solutions are the basic functions used in integral equation methods. The integral 
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equations of any problems arc usually derived from differential equations using 
Green's theorem. 

1.2.1 Green's theorem 

Green's theorem is one of the most useful theorems in solving electromagnetic 
problems. Many of the solution methods, including classical and numerical 
methods, are based on Green's theorem. It is derived directly from the diver­
gence theorem. 

It is well known that 

S V • A dQ = ~ A • dS (1.2.1 ) 
Q 

where Q is a region bounded by a closed surface S. A is a vector function of the 
position. Assume that u and v are two arbitrary scalar functions of the position. 
If u, v and their first and second derivatives are continuous in the space of Q and 
on the surface S, the application of the divergence theorem to the vector uVv 
yields: 

SV·(uVv)dQ = ~(uVv)dS·o. ( 1.2.2) 
Q 

o is the external normal unit vector of the surface S. With S = So, using the 
vector identity 

V·(uVv) = uV 2 v + Vu·Vv 

and noting that 

ov 
uVv·o=u­an 

the divergence theorem of Eq. (1.2.2) is transformed into: 

f(UV 2V + Vu· Vv)dQ = f u ~: dS . 
Q 

This is known as Green's first identity. 

( 1.2.3) 

(1.2.4) 

(1.2.5) 

If the roles of the function u and v in Eq. (1.2.5) are exchanged, the result is: 

f(VV 2U + Vv· Vu) dQ = fv :~ dS . ( 1.2.6) 
Q 

This equation is the symmetric form of Green's first identity. Subtracting 
Eq. (1.2.6) from Eq. (1.2.5) yields: 

f(UV 2V - vV2u) dQ = f( u ~: - v :~) dS . (1.2.7) 
Q 
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This is Green's second identity, frequently referred to as Green's theorem, It is an 
integral theorem involving the gradient of the integrand, This theorem transfers 
a volume integration to a surface integration, 

In a particular case, let 11 = v and u be a solution of Laplace's equation, then 
Eq. (l.2.5) reduces to: 

f (Vuf dQ = fu ~: dS . (1.2.8) 
Q 

By means of Green's theorem the potential at a fixed point P(r) within the 
volume Q can be expressed in terms of a volume integral plus a surface integral 
over S, as: 

1 fP(r') 1 f [1 aqJ a ( 1 ) ] qJ(r) = - - dQ + - - - - qJ - - dS . 
4m; R 411: R an an R 

Q s 

( l.2.9) 

This is an integral equation of potential qJ(r). It does not represent the solution 
of the potential. In this equation p(r') is the density of a volume charge, 
R = I r - r' I, Q is a volume enclosed by the closed surface S, as shown in Fig. 
1.2.l. The process of deriving Eq. (l.2.9) will be given in Sect. l.4.l. 

Equation (1.2.9) demonstrates that the potential qJ(r) in volume Q is determined 
by the volume source density p(r') inside the surface S and the potential qJ and its 
normal derivatives of the first order aqJ/on on the surface s. If there is no charge in 
volume Q, then the potential within the volume is determined by the potential 
qJ and its normal derivatives over the surface, i.e. 

1 f [1 aqJ a ( 1 ) ] qJ(r) = - - - - qJ - - dS . 
411: R an an R 

(l.2.10) 

Thus the surface integral term of Eq. (l.2.9) represents the contributions of the 
sources outside the surface S. In other words, the boundary conditions represent 

s 

z 

r P(X',y',z') 

r' 

)'0=------- Y 

x Fig. 1.2.1. The region of the interior problem 
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the contributions of the sources outside the surface S. This conclusion implies that 
the boundary conditions can also be represented by equivalent exterior sources. 
This is the theoretical foundation of the Charge Simulation Method - where the 
boundary condition is simulated by an equivalent source outside the region of 
interest. If there are no exterior sources the surface integral must vanish. 
Examination of Eq. (1.2.8), indicates that if the function u in Eq. (1.2.R) is 
a harmonic function (e.g. it is the solution of Laplace's equation) and v = 1, then 
Green's second identity is reduced to: 

(1.2.11) 

This means that if u is the potential of an electrostatic field and subject to the 
Neumann boundary condition lou/an Is = g, then the function g has to satisfy the 
following condition: 

f gdS = o. (1.2.12) 

1.2.2 Vector analogue of Green's theorem 

The purpose of this section is to introduce an integral equation in which the 
vector potential A is considered as unknown. The method is based on the 
introduction of a vector identity in Gauss's theorem. Suppose P and Q are 
continuous vector functions of position in volume Q closed by the regular 
surface S, and both P and Q have partial derivatives of first and second order 
over the surface S and in volume Q. Using the divergence theorem 

f V . (P x V x Q) dQ = f (P x V x Q) . dS (1.2.13) 
5 

and expanding the integrand of the volume integral by using the vector identity 

V· (A x B) = B· V x A - A· V x B (1.2.14) 

one obtains 

f (V x P . V x Q - p. V x V x Q) dQ = f (P x V x Q) dS . n . (1.2.15) 
!l 5 

This is the vector analogue of the scalar form of Green's first identity. 
By using the same process as before the vector analogue of a scalar form of 

Green's second identity is obtained: 

f (Q . V x V x P - p. V x V x Q) dQ = f (P x V x Q - Q x V x P) . n dS . 
!l 5 

(1.2.16) 

Applying the vector form of Green's theorem the integral equation for the vector 
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potential A is 

pof.J(r') I i[Bxn (I) 
A(r) = 4n R dQ + 4n J R + (A x n) x V R 

Q S 

-(n.A)V(*)]dS. ( 1.2.17) 

The process of deriving this equation is given in Appendix 1.1. 

1.2.3 Green's function [4, 5J 

In a linear, uniform, and isotropic medium Green's function is a response function 
relating the field point (r) and the source point (r'). Hence Green's function is 
extremely important in field analysis. In this section the definition and basic 
application of Green's function are introduced. 

1.2.3.1 Dirac-delta Function [6] 

Recall the definition of the Dirac-delta function: 

f <5(r - r') = 0 

1 I <5(r-r')dr= I 

r"# r' 

r = r' 

It follows that 

f(r') = S f(r) <5(r, r') dQ 
Q 

where 
<5(r, r') = <5(x -x')<5(y - y')<5(z -z') . 

For an arbitrary operator equation 

Sfu(r) = - f(r') 

the function u can be expressed as 

u(r) = - J fer') Sf - 1 <5(r, r') dQ 

(1.2.18) 

(1.2.19) 

(1.2.20) 

(1.2.21) 

( 1.2.22) 

where Sf represents any operator 1 (e.g. for Poisson's equation Sf = V2) and 
Sf - 1 the inverse operation of the operator Sf. The sequence of J n and Sf can be 
changed since the operator Sf -1 has no effect on the variable r'. Eq. (1.2.22) 
shows that if Sf- 1<5(r, r') is known, then the function u(r) is obtained. 

1 An operator represents a specific operation, it maps a function u into another function f 
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1.2.3.2 Green's function 

It is supposed that Green's function G(r, r') satisfies the equation 

G(r, r') = 2- t -b(r, r') . (1.2.23) 

This means that Green's function is the solution of an operator equation subject to 
an impulse source. Multiplying the operator 2 on both sides of Eq. (1.2.23) from 
the left-hand side yields 

2 G(r, r') = - b(r, r') . (1.2.24) 

If 2 == V2, then 

V2G(r, r') = - b(r, r') . (1.2.25) 

Taking the integral operation on both sides of Eq. (1.2.23) one obtains the 
expression of the inverse operator 2 -1, i.e. 

2- 1 =J2- 1 b(r,r')dQ= -JG(r,r')dQ. ( 1.2.26) 

Thus, the inverse operator of the differential operator is an integral operator in 
which Green'sfunction is the kernel. However, the function G(r, r') is undefined in 
accordance with Eq. (1.2.24). If there is any function g(r), only if 2 g = 0, plus 
G(r, r'), e.g. G(r, r') = G(r, r') + g(r), then Eq. (1.2.24), is still satisfied. Hence 
specific boundary conditions are necessary for the unique determination of 
Green's function. 

Furthermore, if the solution of equation 2 G(r, r') = -b(r, r') under homo­
geneous boundary conditions is known, i.e. if G(r, r'), then the solution of 
equation 2u = funder inhomogeneous boundary conditions can be obtained. 
The reason is that in Green's theorem 

f (u2v - v2u) dQ = f (u :~ - v :~) dS 
Q 5 

if v = G, then Eq. (1.2.7) is transformed to 

f ,( [ oG(r, r') 
[ - u(r) b(r, r') + G(r, r') f(r')] dQ = 'j u(r) an 

Q 5 

, ou(r) ] 
- G(r, r ) a;;- dS. (1.2.27) 

Combining Eqs. (1.2.19) and (1.2.27) yields 

f ,( [ oG(r, r') , ou(r) ] 
u(r') = G(r, r') f(r) dQ + 'j - u(r) an + G(r, r ) a;;- dS. 

Q 5 

(1.2.28) 
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Due to the symmetry of Green's function of Laplacian, i.e. 

G(r, r') = G(r', r) 

Eq. (1.2.28) becomes: 
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(1.2.29) 

f l [ oG(r, r') ou J u(r) = G(r, r') f(r') dQ + J - u(r) on + G(r, r') on dS. (1.2.30) 

Q s 

This equation is Green's third identity. In Eq. (1.2.30) the boundary values of 
u and ou/on on the surface S are involved. For Dirichlet problems, let 
G(r, r')ls = 0, Eq. (1.2.30) then reduces to 

u(r) = f G(r, r')f(r')dQ - fu(r) :n G(r, r') dS . (1.2.31) 
Q 

For Neumann problems, oG(r, r')/on Is = 0, Eq. (1.2.30) reduces to 

u(r) = f G(r, r')f(r') dQ + f G(r, r') ~~ dS . 
Q 

For Robin problems the boundary condition is 

[fl (r) o~~r) + f2(r)u(r) Jis = f3(r). 

Let G(r, r') satisfy the condition 

[f1 (r) OG~~ r') + f2 (r) G(r, r') J Is = ° . 
Substituting Eq. (1.2.33) into Eq. (1.2.31) yields 

u(r) = f G(r, r'} f(r'} dQ + f * f3 (r) G(r, r') dS 
Q 

or 

f ' l 1 oG(r, r') 
u(r) = G(r, r ) f(r') dQ - J h f3 (r) on dS . 

Q 

( 1.2.32) 

( 1.2.33) 

(1.2.34) 

(1.2.35) 

Conclusion: If Green's function for any operator equation with homogeneous 
boundary conditions is known, then the field distribution produced by any continu­
ously distributed sources under inhomogeneous boundary conditions will be given 
by the above integral equations. For example, for Poisson's equation and homo­
geneous boundary conditions, Eq. (1.2.9) is reduced to 

fP(r') 
<p(r) = - G(r, r') dQ . 

1':0 
Q 

(1.2.36) 
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This equation shows that if Green's function of the given operator equation is 
known then the solution under any kind of source distribution can be calculated by 
using Eq. (1.2.36). Therefore Green'sfunction is among the basic toolsfor analysing 
various mathematical-physical problems. 

Green's function of Poisson's equation in a 3-dimensional case in free 
space is 

I 1 
G(r, r ) = 4 I 'I . neo· r -r 

(1.2.37) 

This is the solution of Poisson's equation for a unit impulse source. If the 
influence of the ground is considered, then 

G(r, r/) = -~ (! -~) 
4n6 R Rl 

( 1.2.38) 

where R = Ir -r/l and Rl is the distance from the image source to the observa-
tion point. 

1.2.4 Fundamental solutions 

Regardless of the boundary conditions, the solution of an operator equation 
produced by a unit source in an infinite space is called the fundamental solution and 
it fulfils the following equation: 

.!l' F(r, r/) = - c5 (r - r/) (1.2.39) 

where .!l' is an arbitrary operator. Note that the difference between Green's 
function and the fundamental solution is that Green's function is related to the 
boundary conditions but the fundamental solution is defined in a boundless free 
space. Alternatively, Green's function in a free space is the fundamental solution 
of the same operator equation. The fundamental solution of Laplace's equation 
in 2-D and 3-D cases are derived as follows. 

In 2-D polar coordinates Laplace's equation is expanded to 

~ ~(r dU) = O. 
r dr dr 

Then the solution is 

u=C1 lnr+C2 • 

In a 3-D case the solution of :r (r2 ~~) = 0 is 

C1 
U =- + C2 • 

r 

(1.2.40) 

(1.2.41) 
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Table 1.2.1. Fundamental solutions of different equations in electromagnetic fields [7] 

Governing equation 

Laplace's equation 

V'F+o=O 

Helmholtz equation 

(V'+k')F+o=O 

k 2 = (w2/le - jW/lY) 

Diffusion equation 

IU 
V'F - - - + o(rlo(t) = 0 

k III 
k ~ 1/11,' 

Wave equation 

Fundamental solution 

2-D case 

I I 
F=-In--

2rr Ir -r'l 

I 
F = - Hl1\klr - r'll 

4j 0 

Hili - Hankel function 

-I ( -Ir _r'll) 
F = - exp 

4rrkt 4kt 

-H(t'C-lr-r'll 
F=------

2rrr(I,J/l -Ir - rr) 

3-D case 

I I 
F=---

4rr Ir -r'l 

I 
F = exp(-jklr -r'l) 

4rrlr -r'l 

-I (-lr-r'l l ) 
F=---exp 

(4rrkt)311 4kt 

,,(c ± _lr_~_r'l) 
F=-----

4rrlr - r'l 

With C 1 = -I, C z = 0; C 1 = I, C z = 0 in Eq. (1.2.40) and Eq. (1.2.41), respec­
tively, the fundamental solutions of the 2-D and 3-D Laplace's equations are 

, I 
F(r, r ) = In Ii . ( 1.2.42) 

F(r, r') = * ( 1.2.43) 

The fundamental solutions of commonly used differential equations in electro­
magnetic fields are listed in Table 1.2.1. 

1.3 Equivalent sources 

In numerical analysis the method of equivalent sources is commonly used in 
integral equation methods [8, 9]. In terms of a potential boundary value 
problem as shown in Fig. 1.3.1 (a) the problem is replaced by an equivalent 
problem in which the potential boundary condition is replaced by a distributed 
single layer or double layer source as shown in Fig. l.3.l(b) in free space. The 
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8 
source 

+-+-+ ;\-/ "+ 
/Q 8 "+ -I- '2) ~ 

I 11 r =1 I 
+ + 

11 r =1 

\ equivalent J 
\. surface source / +" "" /-f +-+-+ 

Ilr _00 Ilr =1 
a b 

Fig. 1.3.1a, b. Equivalent single layer source 

equivalent source may be electric or magnetic charges or currents. The charac­
teristics of the layer sources are illustrated in this section. 

1.3.1 Single layer charge distribution 

It is known that ifthe charge is distributed on a surface S with density u, which is 
a bounded and piecewise continuous function of position S, the potential at any 
point not on S is 

1 f u(r') f u(r') , cp(r) = - -dS = -F(r,r )dS 
411: eo R eo 

(1.3.1) 

where cp(r) is a continuous function of u(r'). F(r, r') is the fundamental solution. 
If the point (r) lies on S, the singularity of Eq. (1.3.1) has to be considered. 
A circle with a sufficiently small radius ro circumscribes this point as shown in 
Fig. 1.3.2. 

The potential at any point can be expressed as CPs = CPI + CP2, where CPI is the 
contribution of the charge on the small disk shown in Fig. 1.3.2 and CP2 is the 
contribution of the charge outside the disk. The component lp 1 is 

'0 

cP I = _1_ f ~ dS = ~ f ! , d, = u 0 ' 0 . 
411:eo' 2eo' 2eo 

(1.3.2) 

So 0 

It is a definite value. In Eq. (1.3.2) Uo is the charge density of the small disk; it is 
considered as a constant, CPI is zero while,o tends to zero. Thus CPs = CPI + CP2 is 
still bounded and continuous. The potential produced by a surface charge 
distribution is a bounded, continuous function of position of all points both on and 
off the surface, thus it is continuous across the surface, i.e. 

cP+ = cP- = CPs • (1.3.3) 
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z P(x',y',z') 

x Fig. 1.3.2. Treatment of a singularity 

The subscripts' +' and' -' denote the potential just outside and inside of the 
surface, respectively. 

On the other hand the field intensity 

E(r) = -Vcp(r)= 4~eofa(r')v(k)dS ( 1.3.4) 

is continuous and has continuous derivatives of all orders at any points not on 
the surface. However, the field intensity undergoes an abrupt change across the 
surface S. According to Gauss's law 

(D+-D_)·o=a 

( 1.3.5) 

where D +, D _ , E + , E_ are field vectors outside and inside the surface, 0 is the 
unit vector outward of the normal direction of S as shown in Fig. 1.3.3(a). If the 
surface charge density a(s) is known as a single layer source, it is coincident with 
an inhomogeneous Neumann boundary condition. In other words, the boundary 
value problems with inhomogeneous boundary conditions of the second kind are 
identical to those of a single layer source on the boundary surface. 

For a distributed surface current density similar equations expressed by the 
vector potential A and the magnetic flux density are 

J1.o fK(r') f A(r) = 4n ~ dS = J1.o K(r') G(r, r') ds' . (1.3.6) 

B(r) = :: f K(r') x v(~) dS = J1.o f K(r')V x G(r, r') ds' . (1.3.7) 
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a 
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11 ---G-)~cj>m. 
/ -B-11 ,. 

b 
Fig. 1.3.3a, b. Field discontinuity along the 
single layer source 

K is the surface current density. The interfacial boundary conditions of 8 are 

8+-8_ =JloKxo 

0·(8+-8_)=0 

(1.3.8) 

(1.3.9) 

o x (8 + - 8 _) = JloO x (K x 0) = Jlo [ (0 . 0) K - (0 . K) 0] = Jlo K . 

(1.3.10) 

Hence, there is an abrupt change of the tangential component of 8 as shown 
in Fig. 1.3.3(b). 

1.3.2 Double layer source distributions [10] 

The potential cp induced by an electric dipole p = qd as shown in Fig. 1.3.4(a) is 

cp(r) _ _ q_ (~_~) __ p_ i. (!) _ p cos (rO, d) 
- 4m;o r2 rl - 4m;o iJd r - 4m;or2 

- - _P v(!) -_P v,(!) 
4nBo r 4nBo r 

(1.3.11) 

where rO is an unit vector along the r direction, V' represents the spatial 
derivative of the source point. 

Consider a double layer charge distribution, where the positive charges are 
distributed on the positive side of a closed surface S and the negative charges are 
distributed with a density of -(1 on the opposite side as shown in Fig. 1.3.4(b). 
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P(r) 

b 

Fig. 1.3.4a, b. A double layer charge distribution 

The double layer charge distribution is separated by the infinitesimal distance 
d/. The definition of the dipole moment per unit area is 

r = n lim (ad/) . (1.3.12) 

The potential induced by the double layer source at point P(r) not on the 
surface S is 

dcp(r) = ---dS = -r·V - dS. 1 t cos 0 1 ( 1 ) 
4m:o R2 41t"t:o R 

(1.3.13) 

cos () d . . I h I·d I -2- S IS proportlOna to t e so 1 ang e dw at point P(r), then 
r 

cp(r) = _1_ fi-(r /). v(!) dS = ± _1_ ft dw 
41t"t:o r 41t"t:o 

(1.3.14) 

where dw is the solid angle subtended at point P(r) by surface ds, as shown in 
Fig. 1.3.5. The sign ± depends on which side of the surface S the observation 
point lies. The solid angle is positive, if the radius vector drawn from point (r) to 
the element ds makes an acute angle with the positive normal n of the surface. 

The main characteristic of the double layer distribution is that the potential 
is discontinuous on both sides of the layer. Suppose that the surface S is closed 
and the charge density is uniform. Then t can be taken out from the integral. The 
positive charge lies on the outer side of S so r has the same direction as the 
positive normal of the surface. As the property of the solid angle is 

thus 

and 

§dw = {41t" P inside the surface 
o P outside the surface 

cp+ = 0 cp- = -t/t:o 

( 1.3.15) 

(1.3.16) 

( 1.3.17) 
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Fig. 1.3.5. Solid angle 

Therefore, the potential undergoes an abrupt change of r/eo while the observation 
point is moving from the inner side to the outer side of a double layer source. 

If surface S is not closed, Eq. (1.3.17) is still correct. The reason is that 
a surface Sf can be added to close the surface S. The potential on both sides of 
the surface are superimposed by two parts, the contributions of surface charges 
on S and Sf. The potential produced by the charge on Sf is continuous but the 
potential cP + cpf is discontinuous while the observation point passing through 
the surface S. Thus all the discontinuity is caused by the surface S. Based on the 
properties of a double layer, the boundary value problem with inhomogeneous 
boundary conditions of the first kind (cp = const.) can be represented by a cer­
tain distribution of the dipole layer source. 

The continuity of the field strength due to a dipole layer is discussed below. 
According to Gauss's law, on each side of the surface of the double layer the 

normal derivative of the potential has an abrupt change twice (one is + a and 
the other jump is - a). Hence, En is continuous from one side to the other, i.e. 

or 
ocp+ _ ocp _ _ ocp I 
a;;- - a;;- - on s· 

(1.3.18) 

( 1.3.19) 

However, the tangential component of E may be discontinuous, because the 
potentials undergo an abrupt change on both sides, as shown in Fig. 1.3.6, where 

and 
CP2 - CPl = /).cP+ 

CP3 - CP4 = /).cP-

db is a small length along the surface, cP b ... , CP4 are potentials very close to the 
interface but on the opposite side of the interface as shown with the points 
1,2,3,4 in Fig. 1.3.6. Due to 

( 1.3.20) 
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Fig. 1.3.6. Discontinuity of E, around a double layer source 

Fig. 1.3.7. Equivalent magnetic sheet 

Substituting lpl to lp4 into Eq. (1.3.20) leads to 

r/eo -(r + Vr·db)leo + I1lp_ -l1lp+ = o. 
Then 

I1lp + I1lp _ Vr 
-----= --·t 
db db Do 

and 
(1.3.21) 

where t is an unit vector tangential to the surface S. The abrupt change of E, is 
the abrupt change of E, as the normal component of E is continuous. I.e. 

( 1.3.22) 

Vr is the gradient of r along the surface. If r is uniform then E is continuous. 
For the magnetic scalar potential lpm the corresponding equation is 

( 1.3.23) 

where (J m is the magnetic surface charge density. rm is the surface density of the 
magnetic moment, and is known as the intensity of the magnetic sheet. The 
positive direction of'm is coincident with the current according to the right hand 
rule as shown in Fig. 1.3.7. This means that the effect of the double layer 
magnetic source may be substituted by an equivalent magnetic dipole with 
a magnetic moment IS (IS = rmS). 

For the magnetic vector potential 

A(r) = ~; I M(r')Xv(~)dS ( 1.3.24) 

where M is the intensity of magnetization. A is discontinuous while it is passing 
through a surface with a magnetic moment, i.e. 

(1.3.25) 
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due to 

( 1.3.26) 

and 
(1.3.27) 

Equation (1.3.27) indicates that only if the direction of magnetization is normal 
to the surface the tangential component of A is continuous. 

1.3.3 Equivalent polarization charge and magnetization current 

In dielectrics the potential produced by the dielectric polarization is due to the 
polarization dipoles. According to Eq. (1.3.14) it follows 

IP(r') ( 1 ) q>(r) = -·V' - dQ 
4m:o R 

(1.3.28) 

!l 

where P = Np = Nqd is the polarization vector. By using the vector identity 

V·(fF) = Vf·F + fV·F 

Eq. (1.3.28) is rearranged to 

q>(r) = - V· - dQ - - -- dQ 1 I ' (P) 1 I v' . P 
41tEo R 41tEo R 

!l !l 

=- -P·ndS-- --dQ 1 f 1 1 IV" P 
41tEo R 41tEo R 

s !l 

=- -dQ+- -dS 1 IPb 1 fG"b 
41tEo R 41tEo R 

!l 

where 

Pb = - V'·p 

and 

( 1.3.29) 

( 1.3.30) 

(1.3.31) 

(1.3.32) 

Pb and G"b are the volume and surface density of the polarization. Pn is the normal 
component of the polarization vector. If the polarization is uniform, then Pb = O. 

Similar to Eq. (1.3.13) the magnetic scalar potential produced by the mag­
netic dipole moment is 

(1.3.33) 
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Thus the total scalar potential produced by the magnetization is 

4Jm(r) = 4~ I M(r')· v'(*) dQ. 
Q 

Using the same procedure as in Eq. (1.3.30) one obtains: 

1 I -V'·M 1 i M . o 
4Jm(r) = 4n R dQ + 4n J R dS 

Q 

=- -dQ+ -dS 1 IPm f M·o 
4n R R 

Q 

where 
M =XmH 

-V'·M = Pm 
and Xm is the magnetic susceptability. 

The magnetic vector potential produced by the magnetization is 

A(r) = ~~ I M X v' (*) dQ . 
Q 

Using the vector identity 

v x (fF) = Vfx F + (V.x F)f 

and the divergence theorem in vector form 

J v x F dQ = f dS x F = fox F dS 
Q 

Equation (1.3.39) reduces to 

poIV'XM poI' (M) A(r)=- --dQ-- V x - dQ 
4n R 4n R 

a a 

= Po IV' x M dQ + Po i M x 0 dS 
4n R 4n J R 

a S 

= Po I Jm dQ + Po i Km dS . 
4n R 4n J R 

Q 
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(1.3.34) 

(1.3.35) 

(1.3.36) 

(1.3.37) 

( 1.3.38) 

( 1.3.39) 

(1.3.40) 

(1.3.41 ) 

(1.3.42) 
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Then 

B(r) = V x A(r) = Po f Jm(r') x R dQ + Po r!: K",(r') x R dS 
4n R3 4n J R3 

Jm = V'xM 

Km = Mxn 

Q 

( 1.3.43) 

(1.3.44) 

(1.3.45) 

where Jm, Km are the volume and surface current densities of magnetization. 
Equation (1.3.43) has the same form as Biotsavart's law. Hence, at the interface 
of different materials the discontinuity of B is caused by the surface magneti­
zation current density, i.e. 

(1.3.46) 

where M + and M _ are the intensities of the magnetization on both sides. 
In reality the magnetization current is physical, but the magnetic charge is 

simulated. The equivalent current and the equivalent magnetization charge 
cannot be used simultaneously because they represent the rotational and point 
sources, respectively. 

1.4 Integral equations of electromagnetic fields 

Numerical methods for solving electromagnetic fields can be classified into two 
types: those based on the differential equation or those on the integral equation. 
Applying Green's theorem and Green's function, the differential equations of 
electromagnetic fields can be expressed by the corresponding integral equations. In 
this section only the integral equation of Poisson's equation is derived as an 
example. Other cases such as the integral equations of the interfacial surface of 
different materials and the surface integral equation will be outlined in 
Chaps. 8 and 9. 

1.4.1 Integral form of Poisson's equation 

In Sect. 1.2.3 Green's third identity was shown, viz. 

cp(r) = ff(r')G(r, r')dQ + f [G(r, r') a~~r) - cp(r) aG~~ r')] dS (1.4.1) 

Q 

it is the integral form of Poisson's equation V 2 cp = - f(r'). If G(r, r') is known, 
the solution for any sourcef(r') may be evaluated by Eq. (1.4.1). The two surface 
integrations in Eq. (1.4.1) represent the boundary conditions of the second and 
first kind: they can be replaced by single and double layer sources. 
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For a 3-D static electric field with f(r') = p(r')/e and G(r, r') = 1/4nR 
Eq. (104.1) is equal to Eq. (1.2.9), i.e. 

cp(r) = _1 fP(r') dQ + ~ l [2. ocp(r) - cp(r) ~ (2.)J dS . 
4ne R 4n J R an an R 

Q S 

A significant and important matter is that the surface integration of Eq. (1.2.9) 
has no effect on the outside region of S. The reason is that a single layer source 
produces the discontinuity of ocp/on, i.e. 

( ocp) _ (ocp) = (J/e . 
an + an_ 

A double layer source produces discontinuity of the potential cp, i.e. 

cp+ -cp_ = r/e . 

On the surface the following conditions exist: 

ocp 
e- = (J 

an 

ecp = r 

Substitution of Eq. (1.4.3) into Eq. (1.4.2) yields: 

( DCP) = 0 . en + 

Comparing Eq. (1.3.17) with Eq. (1.404) results in: 

Cp+ = 0 . 

Thus Eq. (1.2.9) is only valid for the region inside the surface S. 

( 1.4.2) 

(1.4.3) 

( 1.404) 

(1.4.5) 

( 1.4.6) 

I t is concluded that one can always close off any portion of the field by i1 surface 
which reduces the field outside the surface to zero. Then the effect of the exterior 
sources on the interior is replaced by the surface source of a single or a double layer 
charge distributed on the boundary surface. 

If the boundary surface is an equipotential surface, i.e. n x E = 0, S0 that the 
dipole moment is zero, the potential inside the surface produced by the outer 
charges is equivalent to a single layer source with the density e(Dcp/on) 

1.4.2 Integral equation for the exterior region 

Handling an exterior problem assume that there is a surface 12 enclosing Q2' In 
the volume Q 2 Green's second identity is 

f ( ocp OG) G--cp- d1. 
an an 

(1.4.7) 

Q, 
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Fig. 1.4.1. The exterior problem 

If r2 tends to infinity, the surface integral f( G~: - qJ ~~) dS tends to zero. 
Equation (1.4.7) then becomes r, 

f (GV2qJ - qJV2G) dQ = - f ( G ~: - qJ ~~) dr . (1.4.8) 

O2 r, 

Considering the definition of Green's function and Eq. (1.2.19) results in 

qJ(r) = f J(r') G(r, r') dQ - f ( G ~: - qJ ~~) dr 
0, r, 

(1.4.9) 

The difference between this equation and that of the interior is the sign in front 
of the term of the boundary integral. 

1.5 Summary 

In this chapter Maxwell's equations are summarized for the different ranges of 
frequencies. The field problems fall into three categories: 

(1) Dynamic electromagnetic field: In this case the field distribution is 
dependent on both position and time. 

(2) Steady-state field. In the case of y ~ we the displacement current is 
neglected. The field distribution is fixed into position and the phase is a function 
of the position. The eddy current problem is the main concern in this range of 
freq uencies. 

(3) Static and quasi-static fields: In these two cases the field distribution is 
solely a function of the position. The electric field and the magnetic field are 
considered separately in different areas. 

Both of the essential and Neumann boundary conditions can be replaced by 
single or double layer sources. These equivalent single and double layer sources 
are very useful in integral equation methods. The characteristic of the single 
layer is that the potential is continuous on the both sides of the layer but the 
discontinuity of the normal derivative of the potential is a/so. a is the density of 
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a single layer source. For the double layer source, however, the normal derivat­
ive of the potential is continuous but the potential exhibits a discontinuity of 
r/f-o, where r is the density of the double layer source. 

Green's theorem 

f(UV 2 V - vV 2 u) dQ = f (u ~: - v ~~) dS 
Q s 

is a basic theorem for deriving the various integral equations. One example is 
given in Sect. 1.4.1. 

Green's function and fundamental solution are defined as: 

!£G(r, r') = - J(r, r') subject to specific boundary conditions 

!£ F (r, r') = - J(r, r') in free space. 

They are the basic tools in solving integral equations. 
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Appendix 1.1 The integral equation of 3-D magnetic fields 

In a static magnetic field the vector potential A satisfies Poisson's equation as 

v x V x A = j1J (A.Ll) 

where j1 is the permeativity of a homogeneous and isotropic medium. A satisfies 
the Coulomb gauge. Similar to the scalar fundamental solution G a vectorial 
fundamental solution Q is chosen to represent the vector potential at the point 
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(r) produced by a unit current density J located at point (r'). For example 

Then 

Q(r, r') = 4:R . 

VXQ=V(_1 )xa 
4nR 

(A. 1.2) 

(A. 1.3) 

(A. 1.4) 

where a is a unit vector along the positive direction of the current. Using vector 
identity 

v x V x Q = V(V 0 Q) - V2Q . (A. 1.5) 

Due to V2Q = 0, one then obtains 

V xVxQ = V(VoQ) = 41n v[aov(*) ] . (A. 1.6) 

Multiplying the vector A to both sides of Eq. (A.1.6) leads to 

A 0 V x V x Q = :n A 0 V [ a 0 V ( *) ] = 41n V -[ a 0 V ( ~ ) A ] (A. 1.7) 

on the other hand, 

(A.I.S) 

Recalling Green's vector identity 

J(QoVx V x P -poVxVx Q)dQ = §(PxVx Q - QxVxP)ondS 
a s 

let P be A, then 

(P x V x Q)on = (A x [ V( 4~R) x a J)- n = no (A x [V( 4~R) x a]) 

= [V(4~R) x a }(nXA) 

= a 0 (n x A) x V(_I_) = a 0 V(_I_) x (A x n) (A. 1.9) 
4nR 4nR 

(QxVxP)on = (_a-XVxA)on = no(_a_XB) =_a_ oBxn 
4nR 4nR 4nR 

(A.1.10) 
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Substituting Eqs. (A.1.7), (A.1.8) into the LHS of Green's vector identity and 
Eq. (A.1.9), with Eq. (A.U 0) into the RHS of Eq. (1.2.16), the result is: 

f(_a j1.J - ~v.[a'V(~)AJ)dQ = ~j1.f~dQ 
4nR 4n R 4n R 

Q Q 

(A.1.11) 

Thus one obtains: 

,l:oxB 
+ j 4nR dS. (A.1.12) 

This singularity is dealt with as the same way which used in Sect. 1.4.1. The 
singular point at r = 0 is circumscribed by a small sphere of radius roo The 
volume Vis now bounded by surface So and S. Due to V(1IR) = - ROIR2, the 
surface integral of Eq. (A.U2) on So is 

~ fRO(A,O)dS + 4 1 2,1: RO x(A x o)dS + _1_,1: ox B dS (A.1.13) 
4nro nro j 4nro j 

and the integrand of the middle term can be transformed to 

RO x (A x 0) = (Ro.o)A - (A'o)RO + A x (Ro x 0). 

Since RO. 0 = 1, RO x 0 = 0 the surface integrals over So reduce to 

~ ,I: AdS + _1_ ,I: 0 x B dS . 
4nro j 4nro j 

s. 

(A.1.14) 

(A.U5) 

Assuming A and B are constants over the small sphere, the result of the integral 
of Eq. (A.U5) reduces to A(r). Introducing this result to Eq. (A.1.12), the result is 

j1. fJ(r') 1 fOX B 1 f [ ( 1 )] A(r) = - -dQ -- --dS -- (oxA)xV - dS 
4n R 4n R 4n R 

Q s s 

(A.1.16) 

This general expression of the vector potential A(r) in integral form includes 
contributions from all sources. It is a Fredholm integral equation of the second 
kind while A(r) is unknown. The three terms of the surface integral represent 
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contributions from the sources outside the surface S: the effect of the surface 
current density 0 x B = 11K: the effect of the dipole moment 0 x A = -11M; and 
the effect of the equivalent magnetic charge density o· A. The vector potential 
A within volume Q is continuous and has continuous derivatives of all orders; 
however, the A and its derivatives exhibit a certain discontinuity across the 
surface. It can be proved as follows: Suppose B_ and B+ denote the vector Bjust 
inside and outside the surface S which satisfy the boundary condition 

(A.U7) 

The first surface integral ofEq. (A.U6) can be regarded as the equivalent surface 
current, i.e. - 0 x B_ = K. Comparing Eq. (A.U6) and Eq. (A.US) it is clear 
that 0 x B+ = 1. The second term of the surface integral is equivalent to the 
vector potential produced by a surface polarization density, e.g. A _ x 0 = 11M. 
Note that the tangential component of A is continuous across surface S only in 
the case of the magnetization being normal to the surfac, i.e. 

o x(A+ - A_) = 11M -1l(o·M)·o = A x 0 -1l(o·M)o. 

Thus 

ox A+ = O. (A.US) 

The last term of the surface integral of Eq. (A.U6) is related to the field 
intensity of a surface charge density (A· 0), i.e. o· (A+ - A_) = o· A_. Thus 

(A. 1.19) 

So far it is proved that on the positive side of the surface S the normal and 
the tangential components of A and the tangential components of B are zero 
everywhere. Furthermore the normal component of B must be zero over the 
positive side of S, because the normal component of the curl A involves only 
partial derivatives in those directions tangential to S. If we apply Eq. (A. 1.16) to 
the region externally to surface S, then A and consequently B are zero every­
where. If we let Q = V(ljR) x a as the Green's function instead of Eq. (1.4.l3), 
the following equation is obtained: 

B(r} = :7tfJXV(~)dQ- 4~ f(OXB}XV(~)dS 
Q 

(A. 1.20) 



Chapter 2 

General Outline of Numerical Methods 

2.1 Introduction 

According to Maxwell's equations, all electromagnetic field problems can be 
expressed in partial differential equations which are subject to specific boundary 
conditions. By using Green's function, the partial differential equations can be 
transformed into integral equations or differential-integral equations. The ana­
lytical solution of these equations can only be obtained in very simple cases. 
Therefore numerical methods are significant for the solution of practical prob­
lems. In numerical solutions the following aspects have to be considered. 

(1) A mathematical model expressed by differential equations, integral equa­
tions, or variational expressions is provided to describe physical states. 

(2) A discretized model is suggested to approximate the solution domain. so 
that a set of algebraic equations is obtained. 

(3) A computer program is designed to complete the computation. 

In designing these steps one should consider: 

(1) Does the mathematical model describe the physical state well? 
(2) Does the approximate solution satisfy the desired accuracy? 
(3) Does the method use the computer sources economically? 

In order to obtain a good method for various engineering problems many 
methods have been developed. 

The purpose of various numerical methods that are used to obtain solutions for 
electromagnetic field problems is to transfer an operator equation (differential or 
integral equation) into a matrix equation. 

In solving field problems the probl.::m can be described by differential or 
integral equations. Consequently, there are two different kinds of solution 
methods: using either differential equations or the integral equations. The 
former is known as the "field" approach or domain method and the second is 
known as a source distribution technique or the boundary method. Hammond 
has interpreted these dual approaches in a historical perspective: 'The history of 
electromagnetic investigation is the history of the interplay of two funda­
mentally different modes of thought. The first of these, the method of electro­
magnetic fields which ascribes the action of a continuum, is associated with such 
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thinkers as Gilbert. Faraday and Maxwell. The second, the method of electro­
magnetic sources, concentrates the attention on the forces between electric and 
magnetic bodies and is associated with Franklin, Cavendish and Ampere .... 
Field problems are conveniently handled by differential equations and sources 
by integral equations.' [1]. Both of these two methods have advantages and 
drawbacks. Reference [2J describes the optimal combination of these two 
methods. No matter of which methods are applied, numerical solution methods 
consist of the following steps: 

The first step is to express the unknown function u(r) contained in the 
operator equation by the summation of a set of linear independent functions 
with undetermined parameters of a complete set sequence, e.g. 

N 

u(r) = L CdJi (2.1.1) 
i = 1 

where Ci are undetermined parameters and tfJi are the terms of basis functions. 
Equation (2.1.1) is called the trial function or approximate solution. If N goes to 
infinity, the approximate solution will tend towards the real solution. 

The second step is to cast the continuous solution domain into a discrete 
form. The resulting set of discretized subdomains consists of a finite number of 
elements and nodes. In this fashion the unknown function with infinite degrees 
of freedom is replaced by an approximate function with finite degrees of 
freedom. 

The third step is to choose a principle of error minimum in order to 
determine the unknown parameters contained in the trial function. This can be 
achieved by employing either variational principles or the principle of weighted 
residuals. After this step is executed, the operator equation is transformed to 
a matrix equation. 

Finally, the approximate solution of a given problem is obtained by solving 
the linear or non-linear matrix equation derived from the third step. 

The finite difference method was the first to be developed [3] from among the 
well-known numerical methods. Here the solution domain is subdivided into many 
nodes in a regular grid. The values of a continuous function within the domain are 
represented by the values in the finite grid nodes. This method can be interpreted as 
a method in which the differential operator is replaced by the difference operator. 
The finite difference method has been used to solve many engineering problems 
since the 1950s. But because of the need generally to use regular grids the 
application of this method is limited. 

By the end of the 1950s, the finite element method was introduced, firstly in 
structural mechanics [4]. The significant difference between the finite difference 
method and the finite element method is that, in this method, the domain is 
discretized by employing a set of small elements with different shapes and sizes. 
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With this approach it is easy to solve a problem having complex geometry and 
different interfacial boundaries to a high degree accuracy. It seems to be one of the 
most efficient methods for the -solution of electromagnetic field problems. As 
both the finite difference method and the finite element method are based on 
differential equations and domain discretization, they are called differential 
methods or domain methods. 

Almost in the same period volume integral equation methods were developed 
for solving static magnetic field and eddy current problems [5]. The volume 
integral method is based on the principle of superposition. First, the source area is 
subdivided into small areas; then the solution in terms of the sum of all such 
elements is sought. This method is simple to understand and easy to solve in the 
case of 2-dimensional problems. However, it is limited to just linear problems. 

In order to reduce the region of discretization boundary integral equation 
methods were rapidly developed. The most typical of these based on the 
boundary integral equation is the boundary element method [6]. The advantage 
of the boundary element method is that only the boundary values are treated as 
being unknowns and only the boundary of the solution domain is discretized. Hence 
this method reduces the dimensions of the size of the problem by one. The pre- and 
the post-data processing is therefore much easier than with the finite element 
method, especially in the case of 3-D problems. 

So far, any 2-D problem can be solved efficiently by one of these methods, 
and there are many well-designed commercial software packages for analysing 
and designing purposes. However, for solving 3-D vector fields, especially in the 
case of problems containing non-linear material or having time-dependent 
solutions, efficient solution methods are still being developed. Another aspect 
which is of interest to engineers is to establish efficient software packages that 
can be used to model complex systems in designing practical electromagnetic 
devices. Reference [7] discusses such prospects of electromagnetic computing. 

As indicated, any such numerical method gives an approximate solution. To 
ensure this ultimately derives to a real solution, the principle of error minimi­
zation should be observed. 

The essential purpose of this chapter is to develop a unified framework for 
the discussion of various numerical methods which are based on the principle of 
error minimization. The differences and the relationships between various 
numerical methods are classified in this chapter. The approximate notations are 
interpreted using concepts of space and operators. 

2.2 Operator equations [8, 9J 

An operator .!l' provides a mapping or transformation, according to which a par­
ticular element u belonging to a subset of the domain Q of a space R is uniquely 
associated with element f belonging to another subset W of space S. This is 
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expressed as 

2'u=f (2.2.1) 

where Q is the domain and W is the range, respectively, of the operator 2'. That 
is 2' maps Q onto W; it represents the mapping between two functions. For 
example, the derivation, integral, gradient, divergence, curl, Laplacian and 
matrix transformations are operators. Basically an operator is simply a certain 
type of function, just as the simple function y = f(x) maps the variable x into the 
variable y. By using the operator notation any differential or integral equation 
can be expressed in a simple, compact notation. In order to understand the 
mapping of the operator the concepts of the 'space' are reviewed in the first 
section. 

2.2.1 Hilbert space 

A space is a collection of elements considered as a whole. The dimension of space 
S is the maximum number of linearly independent elements contained within S. 
Alternatively, the dimension n of S is the number of independent elements 
required to form a basis for S. Any n + 1 element is a dependent set. The space is 
infinite-dimensional if it contains an infinite number of independent elements. 

Metric space 

A space R having the following properties is termed a metric space. Assuming 
f and g are any two elements belonging to space R, there is a distance d between 
f and g which is defined as 

d=d(f,g) 

and which satisfies the following properties 

d( f, g) = d(g, f) 

d(f,g)~O 

d(f,g) = 0 if and only iff= g 

d(f, g):::; d(f, g) + d(f, h) f, g, hER 

where h is another element that belongs to R. 

Linear space 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

A space is called linear if all operations of the elements of the space satisfy the rules 
of vector algebra. The usual function space and vector space are linear spaces. 
The elements fl' f2' ... ,fn of a linear space S are said to be linearly independent 
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if and only if 

adl + adz + ... + anj~ = 0 (2.2.7) 

which implies al = az = ... = an = o. Otherwise the elements are linearly 
dependent. 

Inner product space (unitary space) 

Unitary space is a linear space in which, for any two elements (f, g), there is an 
associated real or complex number defined as 

( f, g) = J f(r)g*(r') dQ (2.2.8) 
Q 

where (,) denotes the inner product and g* is the complex conjugate of g. 
(f, g) is the inner product of f and g in space S and the following relations are 
satisfied: 

(cf, g) = c( f, g) 

(f + g, h) = (f, h) + (g, h) 

(f, g) = (g, f)* = Jg(r) f*(r')dQ 
Q 

(f, f) > 0 if f * 0 

(f, f) = 0 if f = 0 

(2.2.9) 

(2.2.10) 

(2.2.11) 

(2.2.12) 

(2.2.13) 

where c is constant. If ( f, g) = 0, the two elements f, g are orthogonal. If f and 
g are orthogonal and normalized (the norm of the vector which equals 1 is 
normalized), they are orthonormal. An orthogonal set of non-zero elements is 
independent. 

Normed linear space 

In a linear space, the real-value function II f II is defined as the norm of function 
f as follows 

IlfIi=(f,f*)I/Z IIfll>O 

II f II = 0 if and only if f = 0 . (2.2.14) 

If II f II = 1, the element f is normalized. A normed linear space has the following 
properties 

II cfll = lei II fll 

II fl + fd ~ II fl II + II f2 II 

1< u, f) I ~ II U II . II fII . 

(2.2.15) 

(2.2.16) 

(2.2.17) 

Equation (2.2.17) is the Schwarz inequality. It is an important inequality in 
linear space. 



40 2 General outline of numerical methods 

Complete inner product space [10] 

Let ( fn) be a convergent seq uence of points in an inner product space. If for each 
e > 0 there exists some N = N(e) such that for all n, m ~ N the following 
expressions 

II fn - fm II < e (2.2.18) 
and 

lim II fn - f II = 0 (2.2.19) 

are satisfied then the space is called complete inner product space. {fn} is a 
Cauchy sequence. A complete inner product space is one in which all Cauchy 
sequences are convergent sequences. A complete inner product space is called 
a Hilbert space. The Schwarz inequality ensures that the inner product space is 
complete. All elements in a Hilbert space are square integrable. 

Subspace 

The space A is a subspace of S if each element of A is also an element of space S. 
A subspace A of a linear space S is called a linear manifold in S. 

2.2.2 Definition and properties of operators 

An operator represents the relationship between two functions as shown in 
Eq. (2.2.1). The properties of the operator determine the methods used for 
solving the operator equations numerically. 

Linear operator 

If 
2( f + g) = 2f + 2g (2.2.20) 

and 
2(cf) = c2( f) (2.2.21) 

and the domain Q and range Ware linear spaces, then the operator 2 is called 
a linear operator. In Eqs. (2.2.20) and (2.2.21) f and g are two elements, c is 
a constant. 

Symmetric operator 

If 
(2u, v) = (u, 2v) (2.2.22) 

where u, v are any two functions in the space of 2, then 2 is a symmetric 
operator. 
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Positive definite operator 

If 
<Yu, u) > 0 (2.2.23) 

for all u =I- 0 in its domain, Y is positive definite. If the sign> is replaced by ~, 
then Y is positive semi-definite. 

Self-adjoint operator 

The adjoint operator of Y is the operator y* such that 

<Yu, f) = < f, Y*u) (2.2.24) 

where the domain of y* is also that of Y, then y* is the adjoint operator of Y. 
If Y = Y*, Y is termed a self-adjoint operator denoted by ya. Hence a self­
adjoint operator is symmetric but not vice-versa. The bounded operators 
defined in the whole space are self-adjoint. The operators having even power 
such as V2 and V2 + ([P/ot 2 ) are self-adjoint. The operators having odd power 
cannot be self-adjoint. If the kernel of an integral equation is symmetric, then the 
integral operator is self-adjoint. 

Bounded operator 

If 
II Yull :s; M Ilull M:s; ex) (2.2.25) 

then 2' is a bounded operator. The smallest M is called the norm of Y and 
denoted by II Y II. The operator Y in the Hilbert space is bounded. 

Continuous operator 

If Un -+ U, Un and u belong to the same domain and it follows that 

(2.2.26) 

then Y is a continuous operator. A bounded linear operator is continuous and 
vice-versa. 

Completely continuous operator 

If 
(2.2.27) 

or 

then Y is a completely continuous operator (c.c.o.). Every finite-dimensional 



42 2 General outline of numerical methods 

linear operator is a completely continuous operator. A completely continuous 
operator is bounded and the reverse is true for finite-dimensional spaces, 
although not for infinite dimensional spaces. If !I' is a c.c.o., then the adjoint 
operator of !I' will also be c.c.o. 

The identity operator ~ which maps 

(2.2.28) 

in an infinite dimensional space is therefore not completely continuous. 

Inverse operator 

If the mapping !l'u = f is one to one, then the inverse operator exists, i.e. 

(2.2.29) 

The inverse of a linear operator is also linear. Also !I' - 1 is self-adjoint provided 
that the !I' is self-adjoint. The inverse operator exists if the operator is a bounded 
positive definite linear operator. 

The Eigen value of an operator 

If there is a number A and an element u #- 0 and 

!l'u = AU (2.2.30) 

exists then u is called an eigen element (or eigenvector) of operator !f' while A is 
an eigenvalue of !f'. 

Condition number 

Define 
(2.2.31) 

as being the condition number of a linear bounded operator. 

Basis 

A finite or countably infinite set of vectors eh ... , ek ... is a basis of a space if 

(a) the vectors el, ... , ek .... are independent, 
(b) each vector x in the space can be written as a linear combination of a finite 

or infinite number of basis vectors. 

2.2.3 The relationship between the properties of the operators 
and the solution of the operator equations 

Both the approximate approach for the formulation as well as the solution 
methods for the resulting matrix equation are dependent on the properties of the 
differential and integral operators. 
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(1) If !fl is symmetric positive definite, then the operator equation 

!flu=f 

has only one stable solution [8,9]. It means that the solution of the above 
equation is unique. 

(2) If !fl is completely continuous, the inner product < !flu, f) exists [II]. 
Hence, the equivalent functional of the operator equation can be 
determined. 

(3) If!fl is a self-adjoint positive definite operator in the Hilbert space then the 
solution of Eq. (2.2.1) can be approximated by the associated problem which 
minimizes the quadratic functional J(u) [9, II] 

l(u) = (,.:[1u, u) - <u, f) - < f, u) (2.2.32) 

where u is the approximate solution of Eq. (2.2.1). l(u) is a functional. It 
represents mapping from the function space to the value space. 

(4) A separable kernel k(r, r') = L: p(r)q(r') of an integral operator results in 
a completely continuous operator. Thus the approximate solution of such an 
integral equation can be found by using the weighted residual principle. 

(5) If the kernel of the operator is symmetric, the corresponding operator is 
self-adjoint. The solution method for the resulting symmetric matrix is thus 
more convenient than for an asymmetric matrix. 

(6) Self-adjoint operators are symmetric and generate a symmetric system 
matrix which has real eigenvalues. 

(7) If !f is a completely continuous operator, then the resulting matrix is 
positive definite. 

(8) If the inverse operator exists, the solution of the original operator equation is 
ulllque. 

2.2.4 Operator equations of electromagnetic fields 

Electromagnetic field problems may be solved by partial differential equations 
or integral equations. Each approach has its own merits and shortcomings and 
the selection should be based upon individual requirements of the problem [9]. 
In this section, only some typical equations are given and the properties of those 
operators used are analysed. 

Static and quasi-static electromagnetic fields 

It is well known that if the charge distribution is known the potential satisfies 
the following equations: 

or 

cp(r) = fP(r') dQ' = fp(r')G(r,r')dQ' 
4ncr 

Q' Q' 

(2.2.33) 

(2.2.34) 
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where V2 is a differential operator that is both positive definite and self-adjoint. 
Similarly, J Q' G(r, r') dQ' is a Fredholm integral operator of the first kind, while 
G(r, r') is the corresponding kernel. It is obvious that this kernel is symmetric 
and separable. Hence the Fredholm integral operator of the first kind is 
completely continuous and bounded. 

In order to show that the Laplacian operator is self-adjoint consider a suit­
able inner product for the L.H.S. of Eq. (2.2.33) 

<!£'cp, 1/1) = J(-eoV2cp)l/IdQ' 
Q' 

and then use Green's identity: 

(2.2.35) 

(2.2.36) 

In Eq. (2.2.36) let r be a sphere of radius r, while cp and 1/1 are constants up to 
limit r -+ 00. The R.H.S. of the above equation then vanishes within this limit. 
Equation (2.2.36) therefore reduces to 

JI/IV2cpdQ = J cpV21/1dQ. 
a a 

According to the definition of the self-adjoint operator 

it is evident that V2 is self-adjoint, i.e. 

!£' = !£,IZ = _ eo V2 • 

(2.2.37) 

(2.2.38) 

Hence the equivalent functional of the Laplace operator exists and a symmetric 
matrix equation is obtained. 

The self-adjoint property of the integral operator of Eq. (2.2.34) can also be 
proved by the definition of Eq. (2.2.24) and the symmetry of Green's function of 
Poisson's equation as below: 

<.:£u,l> - <u, .:£*1> = J [f*(.:£u) - u(.:£f)*] dQ 
a 

= J Hf*(r) G(r, r')u(r') 
aa 

- u(r)G*(r', r)f*(r')] dQdQ 

= J J [f*(r) G(r, r') u(r') 
all 

- f*(r')G(r', r)u(r)] dQdQ 

=0. 

This result shows that the integral operator J a G(r, r') dQ' is self-adjoint. 
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In case of the interface between different dielectrics with the permittivity of co 
and relative permittivity c" respectively, the equation for the charge density in 
a single layer is given by [12]: 

Cr + 1 Cr - 1 f oG 
5f>IJ(s) = -2- IJ(s) + -- IJ(s') --;- (s, s') ds' = 0 . 

co eo un 
(2.2.39) 

This is a Fredholm integral equation of the second kind. Due to the definition of 
the adjoint operator, the adjoint operator of 5f> given in Eq. (2.2.39) is obtained 

by replacing the kernel (~~ (s, S')) by (~~ (s', S)). In general, the adjoint 

operator of a complex integral operator is one with the kernel replaced by its 
complex-conjugate transpose. For a general curve it is given as 

oG , oG, an (s, s ) :f. an' (s , s) . (2.2.40) 

Hence the integral operator in Eq. (2.2.39) is not self-adjoint. The treatment of 
this kind of operator is given in reference [12]. 

Dijjilsion equations 

For time harmonic electromagnetic fields the problems are divided into two 
kinds: determination and the eigenvalue problems. The determination problem 
is expressed by in-homogeneous Helmholtz equation: 

e = e' - je" 

(2.2.41) 

(2.2.42) 

where the operator is 5f> = (V2 + P2). The difference between Eq. (2.2.41) and the 
Laplacian equation is that the term p2 A is added and J and A are complex 
functions. In Eq. (2.2.42) e is an equivalent permittivity. If p2 is a real constant, it 
can be proved in the same way that the operator (V2 + P2) is a linear continuous 
and symmetric operator. If p2 > 0, the operator is bounded-below. Hence the 
Helmholtz operator 5f> = (V2 + P2) is self-adjoint. 

If the dielectric medium is lossy, the permittivity e is a complex quantity then 
the operator 5f> = (V 2 + P2) is non-self adjoint. The proof is given in [13]. The 
conclusion given in [13] is that for the non-self-adjoint complex operator the 
system equation adopts the same form as in the real self-adjoint case [2, 13]. 
Mikhlin [10] states that an operator needs to be neither self-adjoint nor 
positive-bounded-below to ensure convergence. If the operator possesses a com­
ponent with such properties and given certain uniqueness and completeness 
conditions, then a convergence holds. From the experience of McDonald and 
Weier [2] solutions for such problems seem to converge as well as those 
involving self-adjoint, positive-definite operators. 
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Fast transient fields 

The differential forms of wave equations are 

j)2<p 
V2<p - £11- = _ pit; 

(1t 2 

The operator of these equations is 

a2 
U) _ V2 _ o_ 
J- - fl·· at 2 • 

The integral expression for Eq. (2.2.43) is 

<p = ~ f p(r') G(r, r') dQ' 
Q' 

with 
, exp( - jkl r - r'l) 

G(r,r)= 4 I 'I . 
IT r - r 

2 General outline of numerical methods 

(2.2.43) 

(2.2.44) 

(2.2.45) 

(2.2.46) 

(2.2.47) 

It can be proved that this integral operator is non-self-adjointt. The equivalent 
functional of non-self-adjoint operators are discussed in references [2, 13, 14]. 

2.3 Principles of error minimization 

An approximate numerical solution of a boundary value problem is one that 
minimizes the error of approximation. Any approximation contains two different 
aspects. First, the infinite dimensional space of the real solution is approximated 
by a discretized domain of finite dimensions. Second, the continuous function of 
the real solution is replaced by a simple approximate function such as a poly­
nomiaL Various approximate formulations (e.g. the finite element method, 
boundary element method, method of moments and so on) are developed 
depending on the different choice of error minimization. The approximate 
function, in terms of a trial function or a basis function, could be a pulse 
function, <5 function or polynomials with different orders as shown in Fig. 2.3.1. 

In certain cases the basis functions must be differentiable, integrable and 
must satisfy several continuous conditions as will be discussed in Chap. 6. 

1 ff exp(-J"klr - r'l) * <!L'u, v) = - v*(r)u(r') dQ'dQ 
471 Ir - r'l 

"" 
<u, ,Y?v) = ~ ffv*(r)u(r') exp(jklr - r'll dQ' dQ 

471 Ir - r'l 

"" 
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o(x) P(x) 

Xo 
X X 

Xo 

a _ .. r~(x-xO>dx-l b P(x)=1 

(,('J 
y(x) 

~ ~ 
I I 
I - X X 

XI x2 

c y(x)=a+bx d 

Fig. 2.3. la-d. Examples of basis functions 

2.3.1 Principle of weighted residuals [15] 

The principle of weighted residuals is to minimize the error of approximation in an 
weighted average sense. Consider the following boundary value problems: 

ft?u = f in domain Q 

u I r = tlo on boundary r 1 
I 

gir, = go on boundary r2 

(2.3.1) 

(2.3.2) 

(2.3.3) 

where u and f are elements of the space while 9 is the normal derivative of the 
function u, i.e. 9 = au/un. In Eq. (2.3.1) the operator fe represents a differential 
operation. It may be a positive definite and self-adjoint operator. Alternatively, 
it may be non-self-adjoint in a Hilbert space. 

Using approximate methods, a set of linear independent functions 

" " u = L IX;t/J; = L rL;N; 
;= 1 ;= 1 

is constructed in terms of the exact solution, i.e. 

u = U. 

(2.3.4) 

(2.3.5) 

Then, the residual exists both in the domain and on the boundaries, e.g. 

{ 

RQ = feu -fin Q 

Rl = ~Irl -Uo on r 1 

R2 = gir, -go on r2 

(2.3.6) 
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where Uo and Yo are the given boundary conditions of the first and of the second 
kind. r l , rz are the corresponding boundaries and r l + rz = r. 

In Eq. (2.3.4) the unknown constants CXj are determined by the principle of 
weighted residuals, i.e. 

J RQ W dQ + J R I WI drl + J R z Wz dr2 = 0 (2.3.7) 
Q r, r2 

This means that the residuals are forced to zero in an average sense, where 
W, WI, W2 are weighting functions of both the domain and boundaries, 
respectively. 

If in Eq. (2.3.7) the approximate solution is chosen to satisfy the boundary 
conditions, then Eq. (2.3.7) reduces to 

J RQ WdQ = o. (2.3.8) 
Q 

On the other hand, if the approximate solution is chosen to satisfy the function 
in the domain, then Eq. (2.3.7) reduces to 

J RI WI drl + J Rz Wz dr2 = 0 . (2.3.9) 
r, r, 

These two cases correspond to the boundary method and to the domain 
method, respectively. 

The substitution of Eq. (2.3.4) into Eq. (2.3.8) leads to 

N 

L cxj(!f'Nj, Wj) = (f, Wj). (2.3.10) 
j= 1 

It is possible to obtain, through manipulation, the following algebraic equation: 

K{cx}=B. (2.3.11) 

The unknown constants contained in the trial function are obtained by solving 
the above matrix equation. Thus the approximate solution is found. 

Many different methods are derived corresponding to different choices of 
the criterion of weighted residuals. For instance, the sub-domain method, 
the collocation method, the least square method, the Galerkin method and the 
method of moments are all based on the principle of weighted residuals. These 
several criteria were unified by Crandall [16] as the method of weighted 
residuals. Collatz n 7] called them error distribution principles. 

2.3.2 Orthogonal projection principle [18-20J 

One view of numerical methods for solving a linear operator equation is that they 
represent a linear projection of the exact solution onto a certain finite dimensional 
linear space. Some of the projection methods are orthogonal while others can be 
termed non-orthogonal. An orthogonal projection is one that minimizes a certain 
error norm. The reason is explained in the following subsections. 
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x 

/\ ------y 

~ Fig. 2.3.2. Projection of a vector 

2.3.2.1 Projection operator 

Taking a 2-D case, the projection of x onto the line generated by y is the vector 
xp = (x, e)e, where e is the unit vector lying on the line y. The decomposition 
x = xp + z is unique where z is orthogonal to y, as shown in Fig. 2.3.2. 

In an n-D space let f be an arbitrary element of a Hilbert space A and let 
B be a subspace of A. Then f can be decomposed uniquely as f = g + k, where 
g is in the subspace B which is 'closest' to f while k is perpendicular to B. The 
element g is called the 'projection' of f on B. From a geometrical view point g is 
the point where the 'plumb line' from f to B intersects Band b (b = II f - gil) is 
the length of that line. 

Thus it is possible to define the projection operator f!li in A by 

(2.3.12) 

A linear operator f!li which maps the whole of a Hilbert space A onto a particular 
subspace B is called a projection operator only if it maps the elements of B onto 
themselves, i.e . . 0"(u) = u for all U E B. 

2.3.2.2 Orthogonal projection 

A projection f!li is said to be an orthogonal projection if, for all elements u in space 
A and all v in subspace B, exists then 

(u - f!liu, v) = 0 . (2.3.13) 

This indicates that the residual u - f!liu is orthogonal to all u in the subspace B. 
The orthogonal projection f!li of a Hilbert space onto a subspace is unique. The 
length of the residual II u - f!liu II is the minimum distance from u to the subspace 
B. The proof for this conclusion is referred to in [19]. 

Concerning the function u in space A, which has a finite norm and constructs 
its orthogonal series in terms of the functions IjJ 1, IjJ 2, ... , it can be shown that 
the summation 

(2.3.14) 

is convergent in the mean. Let 

(2.3.15) 
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Therefore Ul is the orthogonal projection of u onto subspace B only if 

an = <u, I/ln) (2.3.16) 

where {I/l 1, ... , I/l n} = S is a set of n elements of A. It is assumed that S is 
a linearly independent set. 1 The set S is said to form a basis of A. 

Let the difference between u and u 1 be 

Uz = U - Ul . 

Therefore U2 is orthogonal to any function from the subspace B since 

<uz, I/lk) = <u, I/lk) - <Ul, I/lk) = ak - <I.anl/ln, I/lk) 

(2.3.17) 

(2.3.18) 

This means that if the function U is approximated by its orthogonal projection in 
the subspace, then the error is orthogonal to the subset I/lk. 

Let 

Uz = e, (2.3.19) 
then 

<e, w) = o. (2.3.20) 

This equation illustrates that, if the basis jimction I/lk is chosen as the weighting 
function, the method is satisfying the condition of orthogonal projection and the 
error of the approximation is minimum. 

In terms of a geometrical explanation assume that the elements (1. and fi are 
in space A and B, respectively. Then in the case of y = (1. + [1, y is in space A + B. 
Next define a projection operator P(y) = (1.. Since the domain of f!J> is a linear 
space of A + B, the range of :jb is the linear space of A. Therefore lines or planes 
passing through the origin of the coordinates are subspaces of a three-dimen­
sional space. Suppose A and B are one-dimensional subspaces as shown in 
Fig. 2.3.3(a), then the space A + B is on the x-y plane. Thus y is on the x-y 

1I 

a b 

Fig. 2.3.3a, b. Geometrical explanation of the projection method 

, A linearly independent set satisfies (1.,1/1, + (1.21/12 + ... (1..1/1. = 0 
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plane. Recall that the approximate solution u is the orthogonal projection of 
u onto the subspace U. Hence Fig. 2.3.3(b) demonstrates that the residual e is 
orthogonal to all w in subspace ii. 

2.3.2.3 Orthogonal projection methods 

If the approximate solution u and the error e are orthogonal to each other, as 
shown in Fig. 2.3.3(b), then the error e is minimum. In other words, the error norm 
for the orthogonal projection is smaller than the error normfor the non-orthogonal 
projection. This is clear by comparing Fig. 2.3.3(a) and (b). The mathematical 
proof is given in reference [20]. Most of the weighted residual approach uses an 
orthogonal projection method which ensures that the error tends to zero. 

2.3.2.4 Non-orthogonal projection methods 

In the collocation method the Dirac-delta function b(r, r') is chosen as the 
weighting function. Since the b function is not square integrable, it cannot be an 
element of a Hilbert space. Thus the inner product does not exist. Instead of an 
inner product a bilinear functional is defined as 

[(e, w) = J ewdQ . (2.3.21 ) 
fJ 

Let Pi represent the locations of the N collocation points, therefore substitution 
of Pi into the operator equation leads to 

!£u( Pd - f( Pd = 0 1 sis N . (2.3.22) 

Hence the matrix equation of the collocation method is derived by the bilinear 
functional! 

J [!£u(Pd - f(PdJ b(r - rddQ = 0 . (2.3.23) 
f} 

Thus the residual is zero at N specified points. As N increases the residual is zero 
at more and more points and presumably approaches zero everywhere. 

2.3.3 Variational principle [15, 21] 

Many problems in engineering may be characterized by the variational prin­
ciple. For example, the electric energy is minimum if the system is stable. This 
minimum-energy principle is mathematically equivalent to Laplace's equation 

1 If the bilinear functional is symmetric and positive definite, then this functional becomes an inner 
product. 
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in the sense that a potential distribution which satisfies Laplace's equation also 
minimizes the energy, and vice-versa. Hence, the field distribution can be 
obtained using the principle of minimum energy. In general, the variational 
method is to find an extreme function of a functional corresponding to a certain 
problem. The functional of a Poissonian problem subject to the Dirichlet 
boundary condition is expressed by 

f I(cp) = ~!(t:1 Vcpl2 - 2pcp)dQ 

1 cplr, = CPo . 
(2.3.24) 

If the function cp(r) minimizes the functional I(cp), then cp(r) is the solution ofthe 
given boundary value problem. 

The variational method is in many respects similar to the method of 
weighted residuals. The solution of Eq. (2.3.24) is expanded in terms of a trial 
function with unkown constants which are determined by forcing the functional 
/ (cp) to be stationary or minimized or maximized with respect to these undeter­
mined constants. 

If an operator is symmetric and positive definite, then the function u mini­
mizes the functional [9J, i.e. 

o 0 
-~ /(u) = -:;-[(2J u, u) - (u,f) - (f, u)J = 0 
caj oaj 

(2.3.25) 

where aj are the constants included in the approximate solution (Eq. (2.3.4». By 
solving Eq. (2.3.25) to determine the parameter aj, the required approximate 
solution u is obtained. The operator in Eq. (2.3.25) may be either differential or 
integral [14, 22]. 

The variational approach uses proof of convergence for the solution. By 
contrast, convergence of the solution is not generally guaranteed when using the 
principle of weighted residuals. However, some problems are not characterized 
by the variational principle. In electrical engineering both the weighted residuals 
and the variational principle are used to derive the approximate solutions of 
a problem. 

2.4 Categories of various numerical methods 

Most of the numerical methods are based on the principle of weighted residuals 
or the variational principle. Both principles force the error between the real and 
the approximate solution to approach zero. The variational method is based on 
the equivalent functional of the governing equation. The weighted residual 
approaches are based on the operator equation directly. In fact, these two 
methods are unified. 

As discussed in Sect. 2.3.1, if the unknown function is replaced by the 
approximate solution, the residuals may be produced both in the domain or on 
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the boundaries. For convenience. trial functions are chosen so that one of these 
sets of residuals vanishes. For instance, using domain methods, the selection 
requires a trial Junction that satisfies the boundary conditions exactly so that the 
boundary residuals vanish. On the other hand, using boundary methods the bound­
ary conditions are not satisfied by the approximate solution. Rather the differential 
equation itself is satisfied exactly. The third approach is a mixed one, in which 
neither the differential equation nor the boundary conditions are satisfied. 
Based on different choices regarding the principle of minimum error and 
discretization, many different methods have been developed to date. In the later 
part of this book all these methods are discussed using either differential 
equation methods (domain methods) or integral equation methods (boundary 
methods). In domain methods the discretization will be carried out within all of 
the domain. By contrast, in the boundary methods only the boudary of the 
domain needs to be discretized. Therefore in such cases the dimensionality of the 
problem is reduced by one. 

H the category is dependent on the approximate principle, there is another 
kind of classification as listed in the following subsections. Applying the advan­
tages of both domain and boundary methods these mixed methods are very 
useful for certain practical problems, as shown in references [23-25]. 

2.4.1 Methods of weighted residuals 

The weighted residual approach covers all numerical methods. Based on the 
choice oj different weighting Junctions, basis Junctions and the approach to discret­
ization different methods are Jormulated. 

2.4.1.1 Method of moments 

The method oj moments is a general Jorm oj weighted residuals. In the theory of 
mathematics the method of moments is an interior weighted residual method in 
which the power series is chosen as the weighting function. In electromagnetic 
field theory which was originally used by Harrington [26], no matter which kind 
of weighting functions are chosen, the weighted residual methods in the interior 
regions are called moment methods. In fact it makes no difference where interior 
region or boundary region are considered. The process of the method of 
moments is as follows. After substituting the approximate solution 

n 

U = L rxiljJi (2.4.1) 
i= 1 

into an operator equation and assuming that the residuals are zero, then a set of 
algebraic equations are generated as follows: 

n 

L rxi<Wm, ff'ljJi) = <Wm,J) m = 1,2 .... , n . (2.4.2) 
i= 1 
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This can be written in matrix form: 

(2.4.3) 

where 

k .. =[<\~1' filt/Jl> 
IJ • 

<Wn,filt/Jl> 

(2.4.4) 

(2.4.5) 

where t/Ji are the basis functions. The weighting function Wj may be a pulse 
function, a (j function or any other continuous function with a higher order, as 
described in Chap. to. This method is widely used for solving fast transient field 
problems because of the flexible choice of the weighting function. In the method 
of moments discretization will be executed in the domain or on the boundary. If 
only the boundary is discretized, the method of moments is the same as the 
boundary element method. In reference [27] Harrington explains the relation­
ship between the method of moments, the boundary element method, Galerkin's 
methods and so on. 

2.4.1.2 Galerkin's finite element method 

If the weighting functions are chosen to be the same as the basis function, i.e. 

(2.4.6) 

then the method is known as Galerkin finite element method. Here N j is the 
interpolation function of the approximate solution. This approach was first 
published by Galerkin Bubnov in 1915. With this method the solution of 
a partial differential equation can be obtained without using the Ritz method 
(see Sect. 5.4.1). 

According to Eq. (2.4.2), after discretizing the domain, the coefficients of the 
element matrix for the LHS of Eq. (2.4.3) are 

kfj= SVNi·VNjdS (2.4.7) 
d 

where the subscript Ll of the integral represents the subarea of the triangular 
element and the superscript e represents element. 

Using Galerkin finite element method the trial functions are chosen as a set 
of complete functions. Thus the residuals are forced to be zero by letting the 
residual be orthogonal to each member of a complete set of functions. The con­
vergence of the Galerkin weighted approximation was proved in reference [18]. 
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Due to the nature of the inner product the Galerkin form is a weak 
formulation. It reduces the requirements for continuity of the approximate 
function by one. It was shown in 1940 that the Galerkin method can also be used 
to solve the Fredholm integral equation. Examples are given in references 
[28,29]. 

2.4.1.3 Collocation methods 

The method of collocation is another special case of a moment method. It is also 
called the point matching method. The coefficients (Xi in the approximate solution of 
Eq. (2.3.4) are determined by satisfying the governing equation at certain specific 
points. The collocation method corresponds to the method of moments if the 
Dirac-delta function is chosen as the weighting function, i.e. 

J [2'u(P) - f(P)J<5(r - ri)dQ = 0 . 
n 

The residual equals zero only in some specific points and not in the average 
which means in the whole domain. The accuracy depends on the number and 
the distribution of the matching points. The matching points may be chosen on 
the boundary or within the domain. Therefore the method may be categorized 
as being either a domain method or a boundary method. The charge simulation 
method discussed in Chap. 7 is one of the collocation methods. The advantages 
of this method are: 

(1) There are no inner products to be calculated. 
(2) Usually the resultant algebraic equations have fewer terms than the corre­

sponding equations for Galerkin approximation, especially if the matching 
points are chosen to be on the boundary. The accuracy of the solution is 
sensitive to the position of the collocation points. 

2.4.1.4 Boundary element methods 

In the boundary element method the fundamental solution is chosen as the weight­
ing function. If in Eq. (2.3.7) it is 

oW 
W 1 =a;' 

then Eq. (2.3.7) is simplified to 

f R(u)WdQ = f Rdu)oo~dr + f R2(u)Wdr. 

n f, f2 

(2.4.8) 

(2.4.9) 
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After the boundary of the problem domain is discretized by elements, the matrix 
form of the boundary element equation is 

H{u} = G{~~} (2.4.10) 

where u and aul an are known and unknown variables of the boundary nodes. H, 
G are two coefficient matrices of the order N x N (N is the total number of 
boundary nodes) estimated by integrations. The detailed procedure is given in 
Chap. 9. 

2.4.2 Variational approach 

As indicated in Sect. 2.3.4, an equivalent functional exists for a self-adjoint 
operator. The function which minimizes the equivalent functional is the solution of 
the corresponding operator equation. Thus the first step of a variational method is 
to construct an equivalent functional I(u) by Eq. (2.2.32). The next step is to 
assume an interpolation function 

n 

U = I (XjN j 
j= 1 

in terms of the unknown function contained within the functional 

I(u) = f f(x, y, z, u, u~, 1I~, u;x, 1I;Y' ... )dQ . (2.4.11 ) 
Q 

The undetermined parameters (Xj are obtained by minimizing the functional 
I (1I), i.e. 

aI(u)=O. 
a(Xj 

(2.4.12) 

For example, let the operator be Laplacian operator and let it be subject to the 
inhomogeneous boundary conditions of the second kind, i.e. 

- V 2 11 = pie 

au 
an = g(s) . 

According to Eq. (2.2.32) the equivalent functional is derived by 

I(lI) = (_V211, 1I) - 2(u,f) 

= - f u(V· Vu)dQ - 2f ufdQ . 
Q Q 

(2.4.13) 

(2.4.14) 

(2.4.15) 
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Applying the vector identity V· (uv) = Vu· v + uV· v and letting v = Vu, then 
Eq. (2.4.15) becomes 

flU) = - J V·(uVu)dQ + JVu'VudQ - 2J ufdQ 
a a a 

= J I Vul 2 dQ - 2/£ J updQ - fug(s)dr . (2.4.16) 
a a r 

Equation (2.4.16) is the equivalent functional for the boundary value problem 
described by Eqs. (2.4.13) and (2.4.14). After discretization and using the ex­
tremum principle (Eq. (2.4.12)) the following matrix equation is obtained: 

[K]{a} = {b}. (2.4.17) 

The coefficients of the matrix and the column vector of Eq. (2.4.17) are 

k'{j = JV N j • VNjdS (2.4.18) 
d 

bj = ~Pj f NjdS . (2.4.19) 

d 

Equation (2.4.18) is exactly the same as Eq. (2.4.7). It is apparent that the 
boundary conditions of the second kind are automatically satisfied in the 
process of variation. 

If Eqs. (2.4.13) and (2.4.14) are expressed in integral form, i.e. 

Ip(r) = f~G(r, r')p(r')d V' + f~G(r, s')O'(s)dr' 
e e 

(2.4.20) 

a r 

the second term of the RHS of Eq. (2.4.20) is given as the boundary condition, i.e. 

f~G(S' s')O'(s)dS' = g(s). (2.4.21 ) 

Because the kernel G(r, r') = (1/4rrlr - r'l) is symmetric, by using the same 
procedure as was used to derive Eq. (2.4.16) the equivalent functional is 

f(lp) = f O'(s) f~G(S, o5')O'(o5')dS' dS - 2 f O'(s)g(s)dS . (2.4.22) 

s' 

Supposing 

" 
0'(05) = L ajO'j (2.4.23) 

i = 1 

the coefficients of the element matrix and the RHS of the matrix equation are 



58 2 General outiine of numerical methods 

obtained thus: 

(2.4.24) 

Se Se 

bi = S lXig(s)dS . (2.4.25) 
s. 

In the integral equation method the singularities of the integral must be handled 
specifically [28]. 

If the operator is non-self-adjoint there are several ways to find a generalized 
functional. McDonald [2J defined a modified self-adjoint operator !f' to replace 
a non-self-adjoint operator of an interface problem where 

!f'u = <!.fu, G) (2.4.26) 

and G is the Green function of the problem concerned. 
In reference [13J an adjoint formulation derived from the quadratic func­

tional for a self-adjoint operator was extended to solve the integral equation 
with a non symmetric kernel and for non-self-adjoint partial differential 
equations. 

2.5 Summary 

1. The numerical solution of an operator equation is to approximate the 
continuous information contained in the exact solution using discrete values. Thus 
it is appropriate to refer to numerical methods as being discretization methods. 

2. The approximate solution of an operator equation 

!fu =f uEQc A 

is constructed by using a set of linearly independent elements IjJk in the subspace 
of A, i.e. 

k=l 

The set S = {1jJ(, ... ljJb ... ljJn} is said to form a basis of space A. In both the 
weighted residual approach and the variational principle the approximate solution 
is an orthogonal projection of the real solution from the original space A onto 
subspace B. Hence they satisfy the minimum error principle. 

3. Based on the type of governing equation both the differential equation 
methods and integral equation methods can be developed. 

4. The weighted residual approach or the variational principle provide two 
means for satisfying the minimum error principle. By using different choices for 
the weighting function a series of numerical methods have been developed. 
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5. Another approach in developillg numerical solution methods is to replace the 
continuous function by discrete values at a large number of grid nodes. The grid 
nodes may be on the boundary of the solution domain or on the whole domain. 
This gives rise both to boundary methods and domain methods, respectively. In 
the domain methods the residuals are zeroes on the boundary. In boundary 
methods the residuals are zeroes in the domain. 

6. The properties of the discretized algebraic equation are dependent on the 
properties of the operator. The symmetric positive definite operator leads to 
a symmetric matrix equation and good results can easily be obtained. 

7. From the theoretical viewpoint the functional exists only for the self­
adjoint operator. However, when dealing with the problems of electromagnetic 
fields, the equivalent functional can be developed for non-self-adjoint operators 
by several means. 
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Part Two 

Domain Methods 

Domain methods are based on differential equations and on discretization of the 
whole domain by regular grids or elements. The finite difference method (FDM) 
and the finite element method (FEM) are the most familiar domain methods. In 
both FDM and FEM variational principles or the principle of weighted resid­
uals are used to derive algebraic equations for the partial differential equations 
corresponding to a specific problem. 

There are four chapters in this part. Chapter 3 is concerned with the finite 
difference method. The finite element method is discussed in three chapters. 
Chapter 4 describes the general procedures used in the finite element method. The 
discretization equations at nodes are derived by using weighted residuals. 
Chapter 5 concentrates on using the variational principle to derive the equiva­
lent functional and the finite element equations of various boundary value 
problems. The properties of the finite element method are revealed clearly by 
using the minimization principle of the functional. Further applications such as 
the open boundary problem are also described in Chap. 5. Important techniques 
of element discretization are classified in Chap. 6. 



Chapter 3 

Finite Difference Method 

3.1 Introduction 

The finite difference method (FDM) is an approximate method for solving 
partial differential equations. It has been used to solve a wide range of problems. 
These include linear and non-linear, time independent and dependent problems. 
This method can be applied to problems with different boundary shapes, 
different kinds of boundary conditions, and for a region containing a number of 
different materials. Even though the method was known by such workers as 
Gauss and Boltzmann, it was not widely used to solve engineering problems 
until the 1940s. The mathematical basis of the method was already known to 
Richardson in 1910 [1] and many mathematical books such as references [2 and 
3] were published which discussed the finite difference method. Specific refer­
ence concerning the treatment of electric and magnetic field problems is made in 
[4]. The application of FDM is not difficult as it involves only simple arithmetic 
in the derivation of the discretization equations and in writing the correspond­
ing programs. During 1950-1970 FDM was the most important numerical 
method used to solve practical problems ([5-7]). With the development of high 
speed computers having large scale storage capability many numerical solution 
techniques appeared for solving partial differential equations. However, due to 
the ease of application of the finite difference method it is still a valuable means 
of solving these problems ([8-11]). 

Similar to other numerical methods, the aim of finite difference is to replace 
a continuous field problem with infinite degrees of freedom by a discretized field 
with finite regular nodes. The partial derivatives of the unknown function are 
approximated by the difference quotients at a set offinite discretization points. The 
original partial differential equation is then transformed in to a set of algebraic 
equations. The solution of these simultaneous equations is the approximate solution 
of the original boundary value problem. 

In this chapter discretization equations of Poissonian problems both in transla­
tional symmetrical and ax i-symmetrical coordinates are discussed. The solution 
of a diffusion equation with linear and non-linear parameters is presented. 
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Several specific discretization formulations for various types of boundary condi­
tions and interfacial conditions arc developed. Iterative methods to solve matrix 
equations derived by FDM are introduced. Examples are given for solving 
electrostatic and diffusion problems. Finally, the relationships between finite 
difference equations and the variational principle, together with the approaches 
weighted residuals, are discussed in the last section. 

3.2 Difference formulation of Poisson's equation 

Finite difference methods are used in both 2-D and 3-D cases. Difference 
equations for 3-D cases are the extensions of 2-D problems. Hence the difference 
equations for 2-D cases are developed first in this section. 

3.2.1 Discretization mode for two-dimensional problems 

The basic idea of FDM is to replace the derivatives of an unknown function by 
the difference quotients of unknown functions. The form of finite difference 
equations depends on the form of the domain discretization. Assume that 
a two-dimensional area Q is bounded by the contour T, the potential function 
u within the domain Q satisfies Poisson's equation and is subject to the Dirichlet 
boundary condition as shown below: 

V 2 u = F(x, y) in domain Q 

ulr = g(r) on boundary T . (3.2.1) 

In principle Q can be divided into an arbitrary grid as shown in 
Fig. 3.2.1 (a)-(e). In order to simplify matters the square grid shown in Fig. 
3.2.1 (a) is adopted. Depending on the application uniform or non-uniform 
rectangular grids shown in Fig. 3.2.1 (b) and (c) are used. For some specific 
demands the triangular grids (Fig. 3.2.1 (d)) are considered. For problems with 
circular boundaries the polar grids shown in Fig. 3.2.1 (e) are used. 

In Fig. 3.2.1 the distances between grid lines are called steps or mesh lengths 
while each intersection of grid lines is called a node. After the domain is sub­
divided into grids the continuous function is replaced by a great number of 
discretized values at these nodes. 

3.2.2 Difference equations in 2-D Cartesian coordinates 

After the grid has been specified, the derivatives of the unknown function are 
approximated by taking the difference quotients of the function related to several 
adjacent nodes. Based on the definition of the difference and the difference 
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quotient several methods can be used to derive the discretization formulations. 
In this section Taylor's series are used to derive the difference equations. 

In order to obtain a general discretization formula and to simplify 
this discussion for boundary discretization a non-uniform mesh shown in 
Fig. 3.2.2(a) is considered first. 
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Assume that the distances between two branches of parallel lines are differ­
ent as shown in Fig. 3.2.2(a). Any node O(xo, Yo) together with its four adjacent 
nodes E(XE' YE), N(XN' YN), W(xw, Yw), S(xs, Ys) constructs an asymmetric 
five-pointed star. Let uo(xo, Yo) be the potential value of node 0 and 
UE, UN, uw, Us the potentials at the nodes E, N, W, S, the potential Uo of node 
o can then be expressed in terms of the potential values of the nodes E, N, W,S. 
The result is derived as follows. 

If the function u(x) and its derivatives aul ax, aZul ax2 , •.• are continuous in 
x, then u(x) can be expanded by the Taylor's series: 

_ (au) 1 (aZu) 2 1 (a 3 u) 3 u(x + Llx) - u(x) + ax Llx + 2! axz (Jx) + 3! ax3 (Llx) 

(3.2.2) 

or 

u(x - Llx) = u(x) - - Llx + - - (LlX)2 - - - (JX)3 ( au) 1 (aZu) 1 (a 3 u) 
ax 2! ax2 3! ax 3 

(3.2.3) 

where Llx is a small increment of the variable x. 
Let 

Llxw = Xo - Xw = hw . (3.2.4 ) 

Substitution of the above two expressions into Eqs. (3.2.2) and (3.2.3), 
respectively, yields: 

UE = Uo + (;:)0 hE + ;! G:~)o (hE)Z + ;! G:~)o (hd 

(3.2.5) 

( au) 1 (a 2u) 2 1 (a 3 u) 3 Uw = Uo - - hw + - -2 (hw) - - -3 (hw) ax 0 2! ax 0 3! iJx 0 

+ ~!G:~)o (hW)4 (3.2.6) 

where hE is a forward step while hw is a backward step. Similarly, if u is 
a function of the variable y, the following two expressions are obtained: 

(3.2.7) 
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Us = Uo - hs(~:)o + ~h~G~.~)o - ;!(~:~)o (hS )3 

+ ~G:~)o (hN)4 (3.2.8) 

where hN, hs are foreward and backward steps in the y direction. Forming the 
h2 

sum of r:J. times Eq. (3.2.5) and - h~ r:J. times Eq. (3.2.6), yields 

( h~) ( h~) ( h~)(au) UE - h?v Uw = 1 - h?v Uo + hE + hw ax 0 

1 2 (a 3u) 1 2 2 2 (a4 u) + 3!hE(hE + hWhE) ax3 0 + 4!hE(hE - hw) ax4 0 . 

(3.2.9) 

Neglecting the terms containing the partial derivatives of the order higher than 
three, which is valid if hE, hw, hN, hs are small, results in 

( Uu) hw hE - hw hE - ~ UE + Uo - Uw 
,ux 0 - hE(hE + hw) hEhW hw(hE + hw) 

(3.2.10) 

and 

( au) hs hN - hs hN 
uy 0 ~ hN(hN + hs)UN + hNhS Uo - hs(hN + hs)us . 

(3.2.11 ) 

These expressions show that the partial derivatives of the first order of the 
functions u(x) and u(y) at any node 0 are approximated by algebraic 
equations. If 

(3.2.12) 

then Eqs. (3.2.10) and (3.2.11) reduce to 

(3.2.13) 

(:;)0 ~ UN2~y Us . (3.2.14) 

These equations indicate that the first order derivatives of the function are 
approximated by expressions of the central difference quotients of the first order. It 
means that the first order partial derivatives of the function U at any point '0' is 
dependent on the function value of its neighbouring nodes and the step length. 
The accuracy of the central difference quotient is higher than the forward and 

the backward difference quotient (::)0 ~ UE ~ Uo or (::)0 ~ Uw ~ Uo (these 

are obtained directly from Eqs. (3.2.5) or (3.2.6)). The reason will be interpreted 
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in Sect. 3.5.2. In Eqs. (3.2.13) and (3.2.14) the accuracy is higher if the length of 
h is smaller. 

On the other hand the summation of a times Eq. (3.2.5) and (hE/ hw)a times Eq. 
(3.2.6) is 

I 2 2 (03U) 1 3 3 (04U) + 3!hE(hE - hw) OX3 0 + 4!hdhE + hw) OX4 0 . 

(3.2.15) 

Ignoring the terms containing hE and hw to the power higher than three the 
following expressions are obtained: 

(3.2.16) 

(3.2.17) 

If the forward and the backward steps in the x, y directions are identical, 
respectively, e.g. hE = hw = h., hN = hs = hy, then the above two equations 
reduce to 

02U UE - 2uo + Uw 
~;:: h2 
uX • 

(3.2.18) 

22U UN - 2uo + Us 

vyl ;:: h; (3.2.19) 

Equations (3.2.18) and (3.2.19) express that the second order partial derivatives of 
the function are simplified by the difference quotients. 

By introducing Eqs. (3.2.16) and (3.2.17) into Eq. (3.2.1) the discretization 
form of Poisson's equation is 

(3.2.20) 
with 

1 1 
aE=----

hdhE + hw) 
aw =.,-----:----

hw(hE + hw) 

1 
OCN=----

hN(hN + hs) 
1 

as=.,-------
hs(hN + hs) 

(3.2.21) 

ao = - (hE~W + h~hJ . 
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F 0 is the source density of point O. Equation (3.2.20) is the general discretization 
form of Poisson's equation corresponding to the discretization form of an 
asymmetric five-pointed star. This form is rarely required, but any simple 
expressions can be derived immediately from Eq. (3.2.20). In the case of 
hE = hw = hx and hN = hs = hy the discretization equation at node 0 is 

UE - 2uo + Uw UN - 2uo + Us 

h2 + h 2 =Fo· 
x y 

(3.2.22) 

If 
(3.2.23) 

then 
(3.2.24) 

This is the commonly used difference equation of the Poissonian problem at node 
o discretized by a symmetric jive-pointed star. For generalization purposes 
Eq. (3.2.24) can be written in a generic form: 

Ui,j = *(Ui+ l,j + Ui,j+ 1 + Ui-l,j + Ui,j-l - h2 F 0) . (3.2.25) 

The subscripts of the sequence i,j are shown in Fig. 3.2.2(b). 
For the Laplace's equation Eq. (3.2.24) reduces to 

Uo = HUE + UN + Uw + Us) 

= ±(Ui+l,j + Ui,j+l + Ui-l,j + ui,j-d· (3.2.26) 

This equation shows that the potential value of any point is the average of the 
potentials of its jlmr neighbouring points. Equation (3.2.26) is the symmetric jive­
point difference equation of Laplacian problems. 

If triangular grids are adopted (Fig. 3.2.1 (d)), the discretization formula at 
point 0 is 

1 2 
Uo = (j(UE + UNE + UNW + Uw + Usw + USE - II F 0) . (3.2.27) 

If 3-D cases are considered, the above classification may be easily extended to 
a seven-node star, then 

(3.2.28) 

where UF and UB are the potentials of the front and the back points of point O. 
All of the above discretization equations are derived using Cartesian coor­

dinates. The next subsection discusses the problem in the case of a discretization 
in polar-coordinates. 

3.2.3 Discretization equation in polar coordinates 

If the problem involves circular boundaries, the polar coordinates (shown in 
Fig. 3.2.3) arc applied for convenience. 
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Fig. 3.2.3. Five-pointed star in polar coordinates 

In polar coordinates Laplace's equation is expanded to 

(3.2.29) 

The approximate expressions of au/or, 02u/or2, 02U/iJ02 can be obtained by 
replacing variables rand () in the approximate expressions of au/ax, 02U/OX2 
and iJ2U/oy2. Introducing these approximations into Eq. (3.2.29) the following 
equation is obtained: 

(XE(UE - uo) + (Xw(uw - uo) + (XN(UN - uu) (1 + ~:) 

+ (Xs(us - uo) (1 - ~;) = 0 (3.2.30) 

where (XE, ... , (xs have the same values as given in Eq. (3.2.21). In general the 
position of a five-pointed star is expressed by double subscripts i, j. Let r = ih 
(i = 1,2, .. ) and 0 = jbfJ(j = 0, 1,2, ... ) and by using a similar process as in 
Eq. (3.2.20), the following equation is obtained: 

(3.2.3\ ) 

This equation can be rewritten to 

(1 - ~)Ui-I'i + (1 + ~)Ui+ I,i - 2[ 1 + (ib~)2 }i'i 

1 1 
+ (ib())2Ui,i-1 + (ib())2Ui,i+1 = 0 (3.2,32) 

If the region is far away from the origin of the coordinates and it is assumed that 
the angle between any two radical lines is an equalized small value and the 
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radius r varies as a geometric series which satisfies the relationship 

r + hE = _r_ = fJ 
r r - hw 

then Eq. (3.2.30) is reduced to Eq. (3.2.26). 
The reason is explained as follows [12]. 
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(3.2.33) 

If in Fig. 3.2.3 ON = Os = 0 (0 is small), then hN = hs = h = rO. Assume that 
the coef'ficien t of (us - uo) and (UN - uo) are equal to the coef'ficien ts of 
(uw - uo) and (UE - uo), respectively, i.e. 

1 hw +-
2r 

2(rO)2 hw(hw + hE) 

hE 
1--

2r 
2(rO)2 hE(hE + hw) 

the solutions of the above equations are then 

r + hE r 
Now the terms -- and --h- can be expressed as 

r r- w 

r + hE = 1 + ~[O + (4 _ ( 2)1/2] 
r 2 
r 1 

r-hw 1-~[-O+(4_02)1/2] 
2 

(3.2.34) 

(3.2.35) 

(3.2.36) 

Comparing these two expressions, if 0 is small enough, the difference between 
r + hE r 
-- and --h- becomes very small and it follows that 

r r- w 

r + hE r ( 0) --~--=fJ=1+0 1+- . 
r r - hw 2 

(3.2.37) 

The error of Eq. (3.2.37) depends on the value of O. If 0 = 150, then the error is 
less than 0.41 %; if 0 = 7,SD, then the error is less than 0.039%. Thus if an 
appropriate value of 0 is chosen and the radius varies as a geometric series subject 
to ratio /3, then the difference formulation in the areafar awayfrom the origin of the 
coordinates is the same as the one obtained in rectangular coordinates. 
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3.2.4 Discretization formula of axisymmetric fields 

In cylindrical coordinates it can be assumed that the z-axis of the coordinates 
coincides with the axis of symmetry. The potential distribution is independent of 
the coordinate 0, i.e. eu/eO = O. Thus the expression of Laplace's equation 
becomes 

e2u 1 eu e 2 u 
-+--+-=0. 
er2 r er ez2 (3.2.38) 

The mesh discretization in the r-z plane shown in Fig. 3.2.4 is similar to that of 
the x-y plane. 

By using the same method in deriving the difference equation as in 
Sect. 3.2.2 and supposing hr = hz = h the difference equation in the r-z plane is 

(I + ~)UE + UN + (I -~)uw + Us - 4uo = h2Fo . 
2ro 2ro 

(3.2.39) 

Let r = ih(i = 1,2, ... ). The general formula of the node i,j is then 

ui.j=~[(1 +~)Ui+l.j+Ui.j+l +(I-~)Ui-l.j+Ui.j-l-h2FoJ. 
(3.2.40) 

If i is very large, Eq. (3.2.40) is identical with Eq. (3.2.25). It shows that, for 
axisymmetrical problems if the area is far away from the axis, the field distribution 
is almost identical to the field distribution in Cartesian coordinates. 

Concerning the points located on the axis of symmetry, i.e. r = 0, the term 

1 2u . fi' . h . . - - then becomes mde mte. By usmg t e extremum pnnclple 
r i;r 

( eu) 

lim(~ ~u) = lim~ = (~2~) . 
r-O r (J r-O (r) (jr r={) 

Equation (3.2.38) reduces to 

a2u a2u 
2;J2+:i2=F. 

cr uZ 

I I I I I 
I I I I i 
I I I I I 
I :O(r,z)-
I 
I I I I I I 

oL---------------
. r Fig. 3.2.4. Grid nodes in r-z plane 

(3.2.41 ) 
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Since the field is symmetric to the axis, the difference formula of the points 
located on the axis is 

(3.2.42) 

All the above formulations are derived for solving problems in linear and 
uniform materials. 

3.2.5 Discretization formula of the non-linear magnetic field 

If the reluctivity v( v = 1/ /l) of a given material is a function of the magnetic flux 
density, Poisson's equation for the magnetic vector potential in a 2-D case is 

o~x(v~:) + :y(v~~) = - J. (3.2.43) 

Assuming that the current density and the reluctivity of the medium are 
constant in the area of each mesh, the discretization equation can be derived by 
the same method as discussed in Sect. 3.2.2. The result [13] is 

with 
1 

ctN = 2hN (vNhE + vwhw) 

1 
cts = -h (vshw + vEhE) 

2 E 

(3.2.44) 

(3.2.45) 

(3.2.46) 

In the solution of a non-linear problem an under-relaxation factor {3 of v may be 
introduced in some cases to accelerate the iteration as in 

v(n+ 1) = (V(n+ 1) _ V(n»){3 + V(n) • (3.2.47) 

The experience of solving the problem as shown in reference [14] indicates that 
an appropriate relaxation factor of v yields a better rate of convergence than 
a constant relaxation factor such as {3 = 0.1. The relaxation factor depends on 
the value of the flux density. 

3.2.6 Difference equations for time-dependent problems 

Applying the difference quotient of time, a I-D diffusion equation is considered 
as an example, i.e. 

a2u au 
ox2 = a ot . (3.2.48) 
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Fig. 3.2.5. Discretization of a 1-D time 
dependent problem 

The variables of x and t at any point are shown in Fig. 3.2.5. The time iteration 
and the position iteration are indicated by the superscript and the subscript, 
respectively. Thus the expressions of the Taylor's series for t and x are 

( au)" (Llt)2 (a2u)" 
uj+i = uj + LIt at j + 2! --ai2 j (3.2.49) 

( au)" (LlX)2 (a2u)" 
urn = uj + Llx ax j + ~ ax2 j . (3.2.50) 

By using the forward time difference quotient of the first order and the centred­
space difference quotient of the second order, Eq. (3.2.48) is transferred to 

uj+i - uj 1 Uj+i - 2uj + Uj-i 
LI t ~ (LlX)2 

This equation can be rearranged to 

with 
uri = CUj+i + (1 - 2C)uj + CUj-i 

LIt 
C--­- a(Llx)2 . 

(3.2.51) 

(3.2.52) 

(3.2.53) 

Equation (3.2.52) is known as an explicit formulation; the new value uj+ 1 can be 
evaluated by the three nodal values at the nth iteration. The steps LIt and Llx 
must satisfy Eq. (3.2.53). Notice that the constant 2C must be less than 1, 
otherwise the iteration will be broken. In addition, if C < 1/2 is satisfied, the 
solution can be convergent but the error could be oscillated. If C < 1/4, the 
solution will not oscillate but the penalty is that the LIt must be very small [15]. 
Comparison with Eq. (3.2.51) shows that a stable solution is obtained if an 
implicit formulation [15] is used. 

If the spatial derivative of a function is approximated at time n + 1, i.e. 

(3.2.54) 
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then Eq.· (3.2.51) is transformed to 

U't I - ui 1 uj: t - 2uj + I + uj ~ t 

LIt ~ (LlX)2 
(3.2.55) 

This is an implicit iterative formulation. The fundamental difference between 
Eqs. (3.2.51) and (3.2.55) is that in Eq. (3.2.51) there is only a single unknown 
u't I. It can be evaluated by a simple iteration. In Eq. (3.2.55), at the (n + l)th 
iteration of time, the nodal values of three neighbouring nodes are unknowns. 
They cannot be solved directly from Eq. (3.2.55). Hence Eq. (3.2.55) is called the 
implicit form of a difference equation. The implicit formulation contains a set of 
alg~braic equations. Introducing Eq. (3.2.55) into Eq. (3.2.48) yields 

Cui~t + (1 + 2C)uj+1 - Cui:t = uj. (3.2.56) 

This equation is applied to all interior nodes except the points lying on the 
boundary which must be modified to reflect the boundary conditions. The 
solution of Eq. (3.2.56) may be derived using different methods. 

The well known Crank-Nicolson equation provides an alternative implicit 
scheme which has the accuracy of the second order in both space and time. The 
difference approximation is developed at the midpoint of the time increment, i.e. 
the temporal derivative of the first order is approximate at t" + t by 

eu uJ+ I - uj 

et LIt 
(3.2.57) 

The second order derivative of space is determined on the midpoint by 
averaging the difference approximation at the beginning (t") and the end (t"+ I) 
of the time increment, i.e. 

_0 _u _ _ Uj+ 1 - Uj Uj_1 + -'uJ=-·+_I_-__ u-=-j----;;-__ u=-j-_1 ;,2 1[" 2"+" "+1 2"+1+ "+IJ 
ex 2 - 2 (LlX)2 (LlX)2' 

(3.2.58) 

Introducing Eq. (3.2.57) and (3.2.58) into Eq. (3.2.48) the Crank-Nicolson 
equation can be expressed as [16]: 

(3.2.59) 

When {3 = 1. Eq. (3.2.59) becomes 

2[a(LlX)2 + IJ U"+I - U"ttl - U~~II = B" LIt J J J 
(3.2.60) 

where 

B" " 2" " 2 (LlX)2 " = Uj+1 - Uj + Uj_1 + a--Uj. 
LIt 

(3.2.61 ) 
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Therefore, if the implicit equation is adopted, algebraic equations have to be 
solved in the process of each iteration, but a more accurate result is obtained. 

In Eq. (3.2.59), if f3 = 0, Eq. (3.2.59) is the same as Eq. (3.2 51). If f3 = 1, 
Eq. (3.2.54) is called an O'Brien equation. 

3.3 Solution methods for difference equations 

In order to select the solution method to solve the discretization equations the 
characteristics of the algebraic equations have to be examined first. 

3.3.1 Properties of simultaneous equations 

A Dirichlet problem as shown in Fig. 3.3.1 is used as an example to cLssify the 
properties of the matrix equation derived by using the finite difference method. 

In Fig. 3.3.1 the solution region Q is subdivided into a square grid and 
boundary nodes are assumed to be identical with the nodes of the grid. For 
simplicity, the source term is considered as a constant. The algebraic equations 
of the nine interior nodes are 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

4u. -U2 0 
- u. 4U2 -U3 

-U2 4uJ 

-u. 0 0 
0 -U2 0 
0 0 -U3 
0 0 0 
0 0 0 
0 0 0 

u=100 
V 
/ 

3 6 9 
/ 

/ 

/ 

2 5 8 / 

/ 

1 4 7 / 

/ 

////////// / 

u=O 

-U4 0 0 0 0 0= -h2FO 

0 -us 0 0 0 0= -h2FO 

0 0 -U6 0 0 O=100-h2Fo 
4U4 -us 0 -U7 0 0= -h2FO 

-U4 4us -U6 0 -us 0= -h2FO 

0 -us 4U6 0 0 -U9 = 100 -h2FO 

- U4 0 0 4U7 - Us 0= -h2FO 

° - Us 0 -U7 4us -U9 = - h2FO 
0 0 -U6 0 -us 4U9 = 100- h2Fo 

(3.3.1) 

Fig. 3.3.1. A Dirichlet problem subdivided by square meshes 
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These equations can be written in a matrix form: 

Ku = B (3.3.2) 

where 

4 -1 -1 
-1 4 -1 -1 

-1 4 -1 
-1 4 -1 -1 

K= -1 -1 4 -1 -I (3.3.3) 
-I -I 4 -1 

-I 4 -I 

-I -1 4 -1 

-1 -1 4 

and u is a column vector consisting of nine unknown potentials at nine interior 
nodes. The RHS of Eq. (3.3.2) are known boundary values and sources as given 
in Eq. (3.3.1). It can be found that matrix K has the following properties: 

(a) K is a banded sparse matrix. The maximum non-zero terms of any row is 5. 
(b) The order of matrix K is equal to the total number of unknown potentials at 

the interior nodes. 
(c) The distribution and the values of the elements ofK are regular. In the case 

of a uniform medium the value of each diagonal element is 4; all the othe' ~ are - 1. 
(d) The matrix K is positive definite, but not always symmetric. The symmetry 

is destroyed if the grid nodes are not coincident with the boundary. 

The Gauss-elimination method is a simple and easy way to be used to solve 
Eq. (3.3.2). Due to the large sparsity of the matrix the Gauss-elimination method 
is not economical. The sparsity of the matrix should be considered during the 
solution process. 

Compared with the direct method, iterative solution methods have many 
advantages for solving difference equations. Since the distribution of the ele­
ments of matrix K is regular, the matrix need not to be stored. So the memory 
requirement of the computer is considerably decreased. But the convergent 
speed of the iteration then becomes an important problem. The successive 
over-relaxation iteration is the common method to solve the finite difference 
equations. 

3.3.2 Successive over-relaxation (SOR) method 

Recall Eq. (3.2.26) 

Ui.j = a(Ui+l.j + Ui.j+l + Ui-l.j + ui.j-d· 
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The function value of each node is determined by the values of its four 
neighbouring nodi!s. If the initial estimate of the potential u~J) is given, the first 
approximate values u~~j can be calculated by Eq. (3.2.26). This means each new 
value of the potential at the centre of the star is determined by the previous 
iterative values at its four adjacent nodes. While this formula is used as an 
iterative process, two arrays with dimensions of N (the total number of interior 
nodes) have to be stored. One is for storing the previous values of each node, the 
other is for storing the current values of the nodes. This procedure is a basic 
iteration method known as the Jacobian iterative method. 

However, it is noted that when i,j are increased from 1 to Nand 1 to M, the 
iterative sequence of Eq. (3.2.26) is a scanning of the nodes from the left-hand to 
the right-hand column starting from the bottom row to the top in each column. 
According to this procedure the iterative formulation can be modified to: 

(3.3.4) 

In this equation the new approximate values ui~l.j and ui.J~! are used in the 
(n + 1)th iteration as soon as they are available. This method is called the 
Gauss-Seidel iteration. It is more economical than the Jacobian method; only 
one complete array of potentials needs to be stored. It requires half the memory 
than in case of the Jacobian method. 

Unfortunately, if the total number of the nodes is large, the convergence 
speed of the Gauss-Seidel iteration is still too slow. The over-relaxation method 
is one of the most generally effective, stahle and successful methods to accelerate 
the convergence speed. 

The over-relaxation method is based on the estimate of the correction 
required to evaluate ui.J! in Eq. (3.3.4). First the residual of the function values 
between two iterations is defined as 

R. . = u~ -+:1 - un . 
t. J 1, J l. J . (3.3.5) 

Then the new iterative value of the potential is determined as the sum of the old 
value and the residual R i• j multiplied by an acceleration factor ex.. This can be 
expressed by the following equation 

ui.j! =u?j+ex.R i • j 1 <a<2. (3.3.6) 

The factor ex. is an acceleration convergence constant called a relaxation factor 
which determines the degree of the over-relaxation. It is greater than 1 and less 
than 2. If a = 1, Eq. (3.3.6), reduces to Eq. (3.3.4). If ex. = 2, the iteration becomes 
divergent. Therefore there is an optimum acceleration factor ex.o. At this value the 
convergence rate is greatly increased. The difficulty is that the optimum acceler­
ation factor is extremely problem dependent; there is no general method to 
estimate its value. In case of a Poissonian problem in which a rectangular region 
is subdivided into a square grid with (p + 1) and (q + 1) nodes on each side the 
optimum factor ao can be estimated by the following equation [3J 

(1 l)t 
ex.o = 2 - n(2)t p2 + q2 (3.3.7) 
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Table 3.3.1. The influence of the acceleration 
factor (r. = 10- 5, 
Acceleration factor. 7. 

1.00 
1.50 
1.70 
1.76 
1.763' 
1.78 
1.80 
1.90 
1.92 

Iterative times. N 

609 
228 
127 
96 
94 
83 
86 

153 
892 
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If the problem domain is a square and subdivided into a square grid, then 

2 
eto = ----;-7"" 

I + sinG) . 

(3.3.8) 

For an area of arbitrary shape, the equivalent rectangular area can be used to 
estimate the optimum acceleration factor. 

In order to show the effect of the relaxation factor et the Dirichlet boundary 
value problem shown in Fig. 3.3.1 is used as an example. Assume p = 30, q = 24, 
and the convergence criterion of iteration as £ = I. E - 5 (the relative error of 
potential of each node). The iterative times and the relaxation factor are listed in 
Table 3.3.1. 

The table shows that 1.78 is the optimum relaxation factor. 1.763* is 
calculated by Eq. (3.3.7), it is very close to the optimum value. With p = 40 and 
q = 24 the optimum acceleration factor is eta = 1.78 at N = 102. eta is exactly 
equal to the value which is calculated by Eq. (3.3.7). Hence Eq. (3.3.7) is an 
approximate estimate. 

In general, for a stable convergence process, the number of iterations 
N depends on the largest error f. at any node and the factor F [4]: 

N = - F (log e) . (3.3.9) 

In this equation F is known as the asymptotic rate of convergence, it is 
a function of the boundary conditions, the number of nodes, and the particular 
type of difference equations. A more detailed discussion is given in reference [8]. 

Even though the initial value can be given arbitrarily, it will influence the 
speed of convergence. The proper estimation of the initial value is helpful 
in obtaining good convergence, especially in solving non-linear and time­
dependent problems. The result may be divergent if the initial value is not 
appropriate. 

As the successful over-relaxation (SOR) method is simple, flexible and 
relatively quickly convergent, it is the most useful method. However, it is a point 
iterative method. Other rapidly convergence methods include line iterations, 
block iterations, and alternating directions implicit (ADI) methods [2, 17, 18]. 
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Table 3.3.2 Iterations of different methods (0 = 10- 1°) 

Method 

Gauss-Seidel 
SOR 
ADI 

Time/iteration cycle 

k·4p" 
k·7pl 

k.7p 2 

No. of iteration 

840 
70 
25 

In the block iteration method the nodes are no longer treated seperately but in 
lines or blocks. In ADI method nodes are treated line by line, but the direction of 
the sweep oflines across the mesh is alternated (in each iteration there is a sweep 
in the x-direction and a sweep in the y-direction). Reference [4J gives the 
number of iteration by using different methods for solving the Dirichlet problem 
in a square region with (p + 1)2 nodes. Some of the data are listed in Table 3.3.2 
to show the efficiency of the different methods. k and p are constants. The table 
shows that the number of iterations in using SOR or ADI is much less than with 
the Gauss-Seidel iteration. Other effective iterative methods for specific prob­
lems are given in [19]. 

If the speed and the size of a computer are sufficient, direct solution methods 
are still faster than iterative methods. 

3.3.3 Convergence criterion 

In the iterative process the residual R~~~ is defined by 

Rl~~ = u~~ j 1) - ul~~ . (3.3.10) 

The convergence criterion gives that the residuals RI~~ at every interior node 
become less than a predetermined error e. Note that if the residual Ri • j becomes 
small the convergence rate becomes very slow. In this case the iteration times 
can be used as a criterion for stopping the calculation. 

On the other hand, the choice of either the absolute residual or the relative 
residual should also be carefully considered. To solve static problems the 
relative error should be taken. When solving time-dependent problems if the 
solution of the problem itself becomes very small the relative error becomes very 
large; consequently the absolute error is considered. 

3.4 Difference formulations of arbitrary boundaries 
and interfacial boundaries between different materials 

In the former sections discussions have been limited to homogeneous media 
which are subject to Dirichlet boundary conditions and where the grid nodes are 
identical with the boundaries. In more general cases there are different materials 
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Fig. 3.4.la-e. Different types of the lines of symmetry 

and the grid nodes may not be coincident with the boundary or the interfacial 
boundaries. The formulations for these cases will be discussed in this section. 

3.4.1 Difference formulations on the lines of symmetry 

Consider the case shown in Fig. 3.4.1 (a); the grid nodes are coincident with the 
symmetric line. The points 0, N, S lie on the line of symmetry. 

Due to symmetry a fictitious point E is placed on the symmetric position of 
point W. With UE = Uw it is found that 

(3.4.1 ) 

If the line of symmetry is diagonal to the grids as shown in Fig. 3.4.I(b), then 

Uo = H2(us + uw) - h2 F 0] . (3.4.2) 

with UN = Uw and UE = Us. 

In Eqs. (3.4.1) and (3.4.2) h is the distance between the lines of the square grid. 
If the line of symmetry is parallel to, but not coincident with, the grid line as 

shown in Fig. 3.4. 1 (c), then with UE = Uw and PI + P2 = I, Eq. (3.2.24) becomes 

P~U;2 + UN + Us - 2(1 + Pl1pJuo - h2FO = 0. (3.4.3) 

If PI = P2 = t, this equation reduces to 

(3.4.4) 

3.4.2 Difference equation of a curved boundary 

There are problems where the grid nodes are not located on the boundary of the 
domain, as shown in Fig. 3.4.2. 
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Fig. 3.4.2. Discretization model for a curved boundary 

According to Eqs. (3.2.5), (3.2.6) the following equations exist: 

(3.4.5) 

(eu) 1 2 (02 U) 
Uw = Uo - h - + -II - . ox 0 2 ox2 0 

(3.4.6) 

By using similar procedures as derived in Eq. (3.2.16) and (3.2.17) one obtains: 

02 U 1 [2 2 2 ] 
iJx2 = h2 /31 (1 + /31) UE + (I + /3 d Uw - /J I Uo (3.4.7) 

02 U 1 [2 2 2 ] 
iJy2 = 112 /32(1 + /32) UN + (I + /32) Us - /32 Uo (3.4.8) 

Introducing the above equations into Poisson's equation the difference equation 
at point 0 is 

2UE 2UN 2uw 2us ----+ + +---
/3dl + /3d /32(1 + /32) (I + /3d (I + /3d 

-2(~ + ~)uo = hFo 
/31 /32 

(3.4.9) 

with /31, /32 ~ I. It is obvious that the program for solving problems with curved 
boundaries needs quite a little complicated program. 

3.4.3 Difference formulations for the interface of different materials 

Now the case is considered where the interface between two different materials is 
coincident with the grid lines shown in Fig. 3.4.3. Nodes 0, N, S are located on 
the interface of two regions having different permeabilities J1.. and J1.b. Let A. and 
Ab denote 2-D magnetic vector potentials in the region a and b, respectively. 
Assume that only region a carries current distributed with uniform density J, 
region b is free of current. Thus the magnetic vector potential A. in region 
a satisfies Poisson's equation V 2A. = - J1..J. In region b Ab satisfies Laplace's 
equation V2 Ab = O. 
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Fig. 3.4.3. Grid nodes located on the interface 
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If both two regions are considered as fulfilling permeabilities J1a and J1b, 
respectively, then the difference equation at node 0 is 

(3.4.10) 
or 

(3.4.11) 

The subscripts 'a' and 'b' represent that the region fulfills with material with 
permeability, Pa and J1b, respectively. However, the potentials Aa E and Abw are 
fictitious. they can be eliminated by the following interface boundary conditions 

(3.4.12) 
and 

I 1 
-(Aa - Aa ) = -(Ab - Ab ). 
Pa E W J1b E W 

(3.4.13) 

Forming the sum of Pa' J1b times Eqs. (3.4.10) and (3.4.11), respectively, and 
considering the boundary conditions of Eqs. (3.4.12) and (3.4.13) the difference 
equation of node 0 is: 

1 ( 2 2K K , ) Ao=- --Ab +AN+--Aa +As---h-Fo (3.4.14) 
4 I+K E I+K W I+K 

with 
t 

K=~. (3.4.15) 
J1a 

If region h is a ferromagnetic material where the lines of the magnetic flux 
density are orthogonal to the ferromagnetic surface, i.e. iJA/iJn = 0, then 

Ao = i(2Aw + AN + As -.: h2Fo). (3.4.16) 

In accordance with the same method used before the formulations for other 
interfacial boundary conditions are given in Fig. 3.4.4. 

If in Fig. 3.~.4(a) and (b) both regions satisfy Laplace's equation and if 
J1a ...... 00 then 

This case usually occurs in electromagnetic devices. 

e 
t For 2·D electrostatic fields A is replaced by rp and K = ~. 

eb 

(3.4.17) 
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Fig. 3.4.4a, b. Different cases of interfacial boundaries 

3.5 Examples 

Example 3.5.1. Calculate the potential distribution in a grounded slot as shown 
in Fig. 3.3.1. 

Due to the symmetry only half of the domain is considered. The potential 
distribution in the slot is given in Fig. 3.5.1. 

Example 3.5.2. Assume that an infinitely long steel plate of a 2-D thickness 
(shown in Fig. 3.5.2) is immersed in a uniform magnetic field H = - Hmsinwtk. 
Calculate the magnetic distribution in the ferromagnetic plate. 

H component of the field satisfies the partial differential equation as follows: 

(}2H (}H 
(}x2 = J.I.}'at (3.5.1) 

where J.I. and yare the permeability and the conductivity of the steel. The finite 
difference form of the above equation was given in Eq. (3.2.51). If J.I. and y arc 
constants, the distribution of the H field may be easily calculated by Eq. (3.2.51). 
The iteration times of the computation are strongly dependent on the initial 
values. In the case of Hm = 6000 Aim, y = 5 X 106 S/m, J.I. = 156J.1.o, w = 314, 
D = 2.5 mm, assume that the time step is LIt = T1360, the step of position is 
Llx = 0.1 mm. The computation results of the magnetic field strength on the 
plane at x = 2.5, 2.2, 1.9, 1.6, 1.3, 1.0(mm) are shown in Fig. 3.5.3. They still vary 
sinusoidally. The results show that Hmax at these points is decaying according to 
the exponential function. The phases of these curves are retardant on each other, 
as shown in Fig. 3.5.4. In this figure the horizontal axis represents the real 
component of H and the vertical axis represents the image component of H. At 
the surface of the plate, the image component is zero. The curve shown in 
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Fig. 3.5.1. Potential distribution in 2-D slot 
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Fig. 3.5.2. A conducting plate immersed in a uniform 
magnetic field 
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Fig. 3.5.3. Field distribution in linear conducting plate 
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Fig. 3.5.5. Field distribution in non-linear conducting plate 

Fig. 3.5.4 is the locus of the end point of the vector H. It represents the phase 
delay of the induced field in different positions of the plate. 

If the permeability J1 of the plate is non-linear and it varies according to the 
following function: 

H 
B=----

156 + 0.59H 
(3.5.2) 

then the magnetic field strengths on the plane of x = 2.5, 2.1, 1.7, 1.3, 0.9, 0.5, 
0.1 (mm) are shown as the seven curves of Fig. 3.5.5. 
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Fig. 3.5.6. Iterative procedures for non-linear diffusion equation 
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Due to non-linear permeability, all these curves are non-sinusoidal. The 
distortion is much stronger if the planes are far away from the surface. During 
the process of iteration, the times of iteration are extremely dependent upon the 
initial values of the iteration. The flow-chart of the computation is given in 
Fig. 3.5.6. To solve this problem, the implicit iterative formulation must be used. 

3.6 Further discussions about the finite difference method 

In Sect. 3.2, finite difference equations of a partial differential equation were 
developed using Taylor's series. The discretization equations can also be derived 
by particular physical principles, weighted residual approaches or variational 
principles. In this section these methods will be investigated. The error norm of 
FDM is also examined in this section. 

3.6.1 Physical explanation of the finite difference method 

In FDM the region being analysed is divided into a number of regular lumps 
shown in Fig. 3.6.1. Each of these interior lumps is assumed to have a constant 
value of the pertinent field variable. Figure 3.6.1 shows that the centre point of 
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a small area is a representation of this area. The surface lumps are one half the 
size of the interior lumps. The corner lumps are one-fourth of the size of interior 
lumps. According to this kind of discretization, the finite difference equation can 
be derived directly from the lumped parametric model by the physical meaning 
for different fields. 

In consideration of a 2-D static magnetic field, the four centre points 1, 2, 3, 
4 of a symmetric grid are shown in Fig. 3.6.2. 

Assuming that the magnetic flux density along the lines 12, 23, 34,41 are 
constants, respectively, and they can be approximated by the first order differ­
ence quotients of the magnetic potentials, i.e. 

(3.6.1) 

So using Ampre's law §Hdl = 0 along the contour 12341, the following equation 
then holds 

AE + AN + Aw + As - 4Ao = 0 . (3.6.2) 

For a static electric field or a steady current field, the five-point difference 
formulation can be derived by using the principle of the continuity of the electric 
flux density D or by the continuity of current density J. In heat transfer 
problems, the difference equation can be derived by the conservation of heat. 

3.6.2 The error analysis of the finite difference method 

As the high order terms of Taylor's series are neglected, the truncation error is 
presented. In order to analyse the error influenced by the step length of 
discretization, multiply Eqs. (3.2.5) and (3.2.6) by rand p, respectively, which 
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results in 

rUE = ruo + rph (~u) + -2\ r(phf (~2 ~) + ~ r(pW (~3 ~) 
uX o. LX 0 3. uX 0 

+ -41, r(ph)4 (~4~) 
. ex 0 

(3.6.3) 

pUw = pUo - prh (ou) + ~ p(rW (~2 ~) _ ~ p(rW (e 3 ~) ox 0 2! (;X 0 3! ex 0 

+ ~ p(rh)4 G:~)o (3.6.4 ) 

where hE = ph, hw = rh, p and r :s; I. Subtraction of Eq. (3.6.4) from Eq. (3.6.3) 
and consideration of the assumption p = r = I, yields 

(3.6.5) 

where 

(3.6.6) 

This equation shows that the truncation error of the difference quotient of the first 
order is proportional to h2• If the partial derivatives of the higher order are 
neglected directly from Eq. (3.2.5), the difference formulation of ou/ex is 

1 
au = UE - Uo O(h) 
ox h + (3.6.7) 

(3.6.8) 

It shows that the truncation error is proportional to h. Consequently, the 
accuracy of the central difference quotient of the first order is higher than the 
forward difference quotient or the backward difference quotient of the first order. 

In a similar manner, the summation of Eq. (3.6.3) and Eq. (3.6.4) is 

h2 02 u 
r(uE - uo) + p(uw - uo) = 2 ox 2 [rp(r + p)] 

+ ~ h4 pr(p3 + r3) (04 u) . 
4! ox4 0 

(3.6.9) 

If p = r = 1, the second term of RHS in Eq. (3.6.9) vanishes, then the error 
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contained in (0 2 U/OX 2 ) is proportional to h2, i.e. 

~2..!!. = UE + Uw - 2uo 0 h2) ox2 h2 + ( . 

where 
2 (p-r)03 u 

O(h) = 3! -h- ox3 • 

(3.6.10) 

(3.6.11 ) 

(3.6.12) 

The error contained in the second order derivative is proportional to h. There­
fore, the errors introduced by using an asymmetric star is greater than those 
introduced by using symmetric one. Hence the merit of symmetric star is that not 
only can it be used more easily but more accurate results will be obtained. 

Since the error contained in 02U/OX2 is proportional to h2 , will a more 
accurate result be obtained if a smaller h is chosen? Equation (3.2.24) shows that 
the value of the potential at any point is influenced by the potentials only in its 
immediate neighbourhood. As the number of grids becomes very large, the nodes 
become closer and closer, and the change offunction between neighbouring points 
becomes very small, thus any further reduction of h becomes unimportant. Refer­
ence [20] gives practical examples to explain this point of view. 

The truncation error can be reduced by using the discretization formula of 
a nine-pointed star, as shown in Fig. 3.6.3. The nodes NE, NW, SW, SE are at 
the diagonal corner of the star O-E,N,W,S. By using a similar manipulation as 
before the following equation is obtained. 

4(Ul + U3 + Us + U7) + U2 + U4 + U6 + Us - 20uo + 6hFo = 0 (3.6.13) 

3.6.3 t Difference equation and the principle 
of weighted residuals [21J 

It has been shown in Sect. 2.3.1 that the weighted residual approach accords to 
the following principle 

S WRdQ = 0 (3.6.14) 
il 

where W is the weighting function and R is residual of the approximation. In 
a point matching method, the Dirac-Delta function c5(x - xo)c5(y - Yo) is 
chosen as the weighting function. Let 

N 

U ~ L NiUi = NEUE + NNUN + Nwuw + Nsus + Nouo 
i~ 1 

t It is advised to read this section after Chap. 4. 

(3.6.15) 
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NW N ~ NE 

w 
0 

E 

sw s S E Fig. 3.6.3. A nine-pointed star of 2-D case 

where N E, NN, N w, Ns and No are shape functions which satisfy the following 
relationships 

NE = H(~ + I} 

NN = !ri(t/ + I} 

N w = H(~ - I} 

Ns = !ri{t/ - I} 

No = (1 - ~)(1 + ~) + (l - t/)(1 + t/) . 

In these equations, the local coordinates ~, t/ are defined as 

Substitution of Eq. (3.6.16) into Eq. (3.6.15) and consideration of 

a2 U 1 a2 U 1 
ax2 = h2 a~2 = h2 (UE + Uw - 2uo) 

a2 u 1 iJ 2 u 1 
ay2 = h2 at/2 = h2 (UN + Us - 2uo) 

yields 
1 

tlo = 4(UE + Uw + UN + Us} . 

This is the difference equation of a five-pointed symmetric star. 

3.6.4 Difference equation and the variational principle [llJ 

(3.6.16) 

(3.6.17) 

(3.6.18) 

(3.6.19) 

The finite difference equation can also be developed using the variational 
principle. For example, the corresponding functional of Laplace's equation is 

(3.6.20) 

where Qe is a small region of the mesh shown in Fig. 3.6.4. It consists of areas 
0123,0345,0567 and 0781. Assume that hE = hw and hN = hs, on segments 0-1 
and 0-5 au/ax are constants (UE - uo)/hE and (uw - uo)/hE, respectively, and on 
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4t- -3 -,2 
I I 

Uw ~S +-...,,0+-.. 1.... UE 

6~ -7 ~8 

Us Fig. 3.6.4. A small region for deriving the difference equation 

segments 0-3 and 0-7 oujOy are constants of (UN - uo)/hN and (us - uo)/hN , 

respectively. Thus the integrations in area 0123 are 

hN/2 hE/2 hN/2 

f G:Y dxdy = f dy f G:Y dx = h2E f (::Y dy 
0123 0 0 0 

(3.6.21 ) 

f (OU)2 hfE/2 hfN/2(OU) 2 II hf
E /2(OU)2 

oy dxdy = dx oy dy = ; oy dx 
0123 0 0 0 

= hEhN (UN - uo)2 
4 hN 

(3.6.22) 

Similarly, Eqs. (3.6.21) and (3.6.22) are to be found in areas 0345, 0567 and 0781. 
Substitution of these equations into Eq. (3.6.20) yields 

J(u)lo. = hE;N[ (UN ~ UoY + (UE ~ UoY + (uw h~ UoY 

+ (UN h~ UoY + (us ~ uoY + (uw ~ uoY 

(3.6.23) 

By definition of the variational principle, the extremum of the functional is the 
solution of the original partial differential equation; i.e. let oJ (u)/ouo = 0, and 
suppose hE = hN, the five-point difference equation as Eq. (3.2.24) is obtained. 

3.7 Summary 

In this chapter a number of finite difference equations are derived to satisfy 
various requirements (different field problems, coordinates and boundary condi­
tions). In summary the FDM, presented in Sects. 3.1 to 3.4, is suitable for 
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obtaining an approximate solution within a regular domain. Reference [II] 
indicates that the FDM is more efficient than the FEM by a factor of 2 in 
computer storage for calculating the propagation constants and fields of a di­
electric wave guide. For solving 3-D problems within a cubic volume, the FDM 
is still considered to be an efficient method. 

If a region containing different materials and complex shapes, then the 
programs are more complex. If the field contains rapid changes of the gradient, 
then the accuracy declines. In these cases, the finite element method is preferred. 

For solving a time-dependent problem, the variation of time is approxi­
mated by a backward difference quotient. This quotient is iterated together with 
the iteration of the positions. The iterative methods are used to solve the 
difference equations. For 2-D problems, because of the large size of the grids, 
line iteration, block iteration or the alternative iteration techniques should be 
considered. 
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Chapter 4 

Fundamentals of Finite Element Method (FEM) 

4.1 Introduction 

The main idea behind FDM is the approximation of the derivative operations 
au/ax and 02 u/ax2 by the difference quotients .1u(x)/ .1x and .1 2 u(x)/ .1x2, which 
reduces the partial differential equation to a set of algebraic equations. The 
application of FDM has two serious limitations. First, the regular steps of 
hx , hy, h= which construct an array of grid nodes in the x, y, z directions are not 
suitable for a field with a rapidly changing gradient or for problems having 
a curved boundary. Second, different formulae must be derived for specific 
interfaces between different media and for the various shapes of boundaries. 

The concept of finite element analysis can be dated back to the 1930s [1] and 
was originally developed to handle problems in structural mechanics. The 
technology of finite element analysis has advanced rapidly since the middle of 
the 1950s. The term 'finite element' was first used by Clough in 1960 [2]. The 
method has grown exponentially since then, expanding into almost all areas of 
scientific and engineering disciplines including solid and fluid mechanics, struc­
tural analysis, heat transfer, electromagnetics and even medical sciences. The 
earliest and the most comprehensive book introducing FEM was contributed by 
Zienkiewicz [3]. 

In the area of electromagnetic fields, the earliest application of FEM was 
used by Winslow to calculate the magnetic field in 1967 [4]. In 1970s, Silvester 
and Chari published the first paper [5] to expound FEM by use of the 
variational principle for electromagnetic field problems and in 1980 wrote the 
first book [6] to introduce the finite element method for the analysis of 
electromagnetic field problems. Now, many sophisticated software packages, 
such as MAGNET [7], ANSYS [8J, TOSCA and Elektra [9], are available for 
analysis of electrical engineering problems of static and time varying fields. 
FEM has become a powerful and necessary tool for CAE (computer aided 
engineering). The method is now presented in text books for graduate and 
undergraduate students in many countries (see references [10-15]). 

The basic idea of F EM is to divide the solution domain into a number of small 
interconnected subregions, called 'elements', as shown in Fig. 4.1.1. This shows 
that the discretization form of FEM is quite different from FDM (dashed line 
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Fig. 4.1.1. Discretization form of FEM 

represents the mesh used in FDM). The shape and the size of elements are 
arbitrary, so it is flexible to fit the different shape of the boundary. The density of 
the elements may easily be adjusted according to the problem. The behaviour of 
the unknown function within the element is approximated by an interpolation 
function. By using the weighted residuals approach or the variational principle, the 
partial differential equation is reduced to a sparse, banded, symmetric and positive 
definite matrix equation. The values of the unknownfunction are represented by all 
of the nodal values of the elements which are solved from the matrix equation. The 
remarkable advantage of FEM is the flexibility of the method. It is particularly 
well suited to problems with complicated geometries and complicated distribution 
of media. This method can be used for time-dependent, linear or non-linear and 
two-dimensional or three-dimensional problems. 

The contents of FEM are discussed in the three chapters. In this chapter, in 
order to avoid variational concepts, the matrix equation of finite elements is 
derived using the weighted residual approach, and a general survey of the 
methods is illustrated by solving a static potential problem in the following 
sections. The variational finite element method and the problem of high order 
approximation are discussed in Chaps. 5 and 6. 

4.2 General procedures of the finite element method 

The method contains the following steps. 

(1) Discretize the solution domain into sub-regions by elements. Within the 
elements, select an appropriate approximate function in terms of the unknown 
function included in the partial differential equation. If the element is a triangle, 
then the unknown function u within an element is approximated by the nodal 
values Uj, Uj, um , and the shape functions NL i.e. 

ue = L N:Uk (k = i,j, m) (4.2.1) 
k 

where i,j, m are vertices of the triangle shown in Fig. 4.2.1 and Ue is the function 
within the element. 

(2) Derive the element matrix equation using the principle of weighted 
residual or the variational principle. For a triangular element where is no charge 
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Fig. 4.2.1. A triangle element 

density, the element matrix equation is presented as 

[ ~:: ~~ ~:: 1 J~:) = 0 
kmi kmj kmm 1 Um 

(4.2.2) 

(3) Assemble the element matrix equation at every node of the domain to 
form a system matrix equation 

Ku=B (4.2.3) 

where u is a column matrix with order N (N is the total number of nodes) 
containing all the nodal values of the domain. The global matrix K is a sparse, 
symmetric and positive definite matrix with order N x N. It is also called an 
assembled matrix, system matrix or stiffness matrix. The name 'stiffness' comes 
from mechanics. The column matrix B includes the source term included in 
Poisson's equation and the known boundary conditions. 

(4) Solve Eq. (4.2.3) to obtain the discretized function values on every node. 
(5) Make additional computation if desired. For example, in potential field 

problems, the field strength, forces, parameters (resistance, capacitance, induc­
tance) are normally of interest. 

As an example of the method, a two-dimensional Poisson's equation subject 
to mixed boundary conditions as shown in Eq. (4.2.4) is considered. 

(4.2.4) 

where Q is the domain of the problem and r 1, r 2 are two parts of the boundary 
nr = r 1 + r 2). The matrix equation will be derived in following sub-sections. 

4.2.1 Domain discretization and shape functions 

To discretize the domain into subregions (finite elements) is the first step in F EM. 
This is to replace the solution domain with infinite degrees offreedom by a system 
having afinite number of degrees offreedom. The shapes, sizes and the configura­
tions of the elements may be of very different types and these will be discussed in 
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Chap. 6. Here a three-node triangular element is chosen as an example to 
illustrate the complete procedures of the method. 

The second step is to choose a trial function to approximate the behaviour of 
the unknowlI function within the element. Usually the polynomial is adaptable, 
because it is easy to differentiate and integrate and it can approximate any 
function if the polynomial contains enough terms. For example, a linear poly­
nomial is used, 

(4.2.5) 

where at represents the unknown function U within the element. It is assumed 
that the potential varies linearly depending on the coordinates x, Y and the field 
strength is uniform in a small element. The unknown parameters lXI, IX2, IX3 in 
Eq. (4.2.5) will be determined by the nodal parameters Uk, Xb Yk (k = i,j, m) of 
the element. 

Substitution of the nodal values Uj, Uj, Um and the nodal coordinates (xj, yd, 
(Xj, Yj), (xm, Ym) into Eq. (4.2.5), yields 

Thus 

1 Uj = IXI + IX2Xj + IX3Yj 

Uj = IXI + IX2Xj + IX3Yj 

Um = IXI + IX2Xm + IX3Ym 

The expansion of the above equation is 

1 
IXI = 2S [ulxjYm - xmYj) + uAxmYj - XjYm) + um(XjYj - xjYd] 

1 
= 2S [ajuj + ajuj + amllm] 

1 
IX2 = 2S [Uj(Yj - Ym) + lIAYm - yd + um(Yj - Yj)] 

1 
= 2S [bjuj + bjuj + bmum] 

1 
IX3 = 2S [lIj(xm - Xj) + Uj(Xj - Xm) + IIm{Xj - xd] 

1 
= 2S [CjUj + CjUj + cmum] 

(4.2.6) 

(4.2.7) 

(4.2.8) 

t In order to simplify the symbol, the' - ' is omitted in the following text, u is used to express the 
approximate solution. 
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where S is the area of the triangle having vertices i,j, m, i.e. 

1 
Xi Yi 1 

S=- Xj Yj = "2(bicj - bjc;) . 
2 

Xm Ym 

In Eq. (4.2.8) 

Yj I 
Ym 

= XjYm - xmYj 1
1 Yj I bi = - 1 Ym = Yj - Ym 

c· = 11 Yj I = x-x· , 1 Ym m J 

bj = Ym - Yi 

bm = Yi - Yj 

Cj = Xi - Xm 

Cm = Xj - Xi 

Substitution of Eq. (4.2.10) into Eq. (4.2.5) results in: 

1 
u(x, y) = 2S [(ai + bix + CiY)Ui + (aj + bjx + CjY)Uj 

+ (am + bmx + cmy)umJ . 

The above equation can be written to 

u(x, y) = L N~Uk (k = i,j, m) 
k 

or 

u(x, y) ~ ~ N: u. ~ [Nf Nj N~l {:d ~ [N:l{ un 

99 

(4.2.9) 

(4.2.10) 

(4.2.11) 

(4.2.12) 

where the functions N'f. are called shape functions. The superscript e denotes the 
'element', the subscript k denotes the vertices of the element. For a three-node 
triangle, k = i,j, m, there are three shape functions, Ni, N j, N m' The junction 
U within the element is a linear combination of the shape functions and the three 
nodal values of the triangle. In addition, the linear interpolation polynomial 
(Eq. 4.2.5» is now expressed by the shape functions as Eq. (4.2.12). These shape 
functions are expressed as: 

1 
Ni(x, y) = 2S(ai + bix + CiY) 

1 
Nj(x, y) = 2S(aj + bjx + CjY) (4.2.13) 

1 
Nm(x, y) = 2S(am + bmx + cmy) . 
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Notice that 

Yj 1_ xii 
Ym I 

x Y 
Xj Yj = 2L1 Pjm 

Xm Ym 

where L1 Pjm is the area of triangle Pjm, P is any point inside the triangle shown in 
Fig. 4.2.1, hence Ni = L1pjm/S. In a similar manner, N j = L1Pim/S, N m = L1 Pij /S, 
thus, 

(4.2.14) 

Consequently the shape functions of the vertices of 3-node triangle are: 

node i 

Ni(Xb Yi) = I, 
Nj(Xi, yd = 0, 
Nm(Xb yd = 0, 

nodej 

Ni(Xj, Yj) = 0, 
Nj(xj, Yj) = I, 
Nm(xj, Yj) = 0, 

node m 

Ni(xm, Ym) = 0 
NAxm, Ym) = 0 
N m(xm, Ym) = I. 

These results can be denoted by the Kronecker function, e.g. 

NZ(x, y) = bij = g} :: ~ . 
On the vertices of the triangle, the shape functions are 
element, the shape function varies linearly. 

4.2.2 Method using Galerkin residuals 

(4.2.15) 

or zero, within the 

When the unknown function of Poisson's equation (4.2.4) is substituted by an 
approximate function u = L N~Uk in each element, the residual R' is unavoid-
able, i.e. k 

(4.2.16) 

If the residual R in the whole domain tends to zero, then u can be regarded as an 
acceptable approximate solution. As mentioned in Sect. 2.2, because of the 
broad choices of the principle of error minimization, there are many different 
methods to derive the finite element equation. The most often used principle of 
error distribution in deriving the finite element equation is known as Galerkin's 
criterion. According to Galerkin's method, the weighting functions are chosen to be 
the same as the shape functions, i.e. 

f WRdQ = Jl f WkR'dQ = 0 (4.2.17) 

Q Q. 
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where 

(4.2.18) 

M is the total number of elements of the problem domain. In the next sub­
section, the finite element equation is derived using this principle. 

4.2.2.1 Element matrix equations 

Combination of Eqs. (4.2.17) and (4.2.16), leads to 

Because 

f f [ 02U 02U ] 
we WdQ = L [N:F ox2 + oy2 + fix, y) dQ = 0 . 

II Q. 

~([N:F ou) = [N:F 02U + ~[NZF oU 
ox ox ox2 ox ox 

(4.2.19) 

(4.2.20) 

the two terms in the volume integral of the middle term of Eq. (4.2.19) can be 
written as 

f e T 02 ufO ( T OU ) [NkJ ox2 dxdy= ox [N:] ox dxdy 
Q. Q. 

f 0 ]T OU - -[NZ -dxdy 
ox ax 

(4.2.21 ) 

f Oe T OU 
- -[NkJ -dxdy. 

oy oy 
Q. 

Substitution of Eq. (4.2.21) into Eq. (4.2.19) and consideration of parameter 
p (reluctivity or permittivity) of the material appearing in the LHS of the 
differential equation, Eq. (4.2.19) becomes 

,,{ f [0 T OU 0 T Ou] L. - p' -[ND - + -[N:] - dxdy 
ox ox oy oy 

Q. 

f[ 0 ( T Ou) 0 ( e T Ou)] + oX [ND P ox + oy [NkJ P oy dxdy 
Q. 

+ f [N:F fix, y)dXdY} = 0 . (4.2.22) 

Q. 
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Remember the column vector [Nn consists of three terms; the above equation 
implies three equations at each node. By using 2-D Green's theory 

f e: + ~;) dxdy = f[p cos (n, i) + Q cos (n, j)] dr (4.2.23) 

a, r 

. au au . 
and lettmg PNk ax = P, PNk ay = Q (k = i,j, m), the second mtegral of the LHS 

of Eq. (4.2.22) is transferred to a boundary integral, i.e. 

(4.2.24) 

Then Eq. (4.2.19) becomes 

+ f Nkf(x, y)dxdy . (4.2.25) 

a, 

Recalling Eqs. (4.2.13) and (4.2.11), the partial derivatives of Nk and u with 
respect to x, yare 

{ aNk=~bk ax 2S 
(k = i,j, m) 

aNk 1 
-=-Ck oy 2S 

(4.2.26) 

and 

(4.2.27) 
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Substitute Eqs. (4.2.26), (4.2.27) into Eq. (4.2.25), and assume that in each 
elements f(x, y) is a constant, and consider that 

f dxdy = S 

J 

f.x dxdy = ~(Xi + Xj + xm) = is 
J 

f ydxdy = ~(Yi + Yj + Ym) = yS 
.J 

(4.2.28) 

where i = !(Xi + Xj + xm), Y = t(Yi + Yj + Ym). Then at node i, the result is: 

(4.2.29) 

where 

k. = L(b2 + c2 ) 
II 4S 1 1 

f3 
K .. = -(bb· + c·c·) 

I) 4S I) I) 
(4.2.30) 

Consider that 

(4.2.31) 

and apply the same procedure to the nodesj and m, the final element equation of 
this triangle is: 

r 

- (kjiUi + kjjuj + kjmum) + ~ f(x, y) + A,f3Nj au dF = 0 
3 r an 

(4.2.32) 

[' 

S A, au 
- (kmiUi + km~uj + kmmum) + '3 f(x, y) + rf3N m an dF = 0 . 

[' 

In these equations, the term (S/3) f(x, y) is the effect of the forcing function 
presented in the RHS of Eq. (4.2.4). The boundary integral terms in Eq. (4.2.32) 
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Fig. 4.2.2. An element along 
the boundary 

represent the non-homogeneous boundary conditions of the second kind. If one 
edge of the element (for instance, the edge jm) is located on the boundary, as 
shown in Fig. 4.2.2, the shape functions along the edge jm are: 

(4.2.33) 

Then 

(4.2.34) 

and 

(4.2.35) 

where 92(S) = ou I is the given boundary condition of the second kind. Then on s 

Eq. (4.2.32) can be written as 

where 

S 
Pi = 3f (x, y) 

1 1 
Pj = Pm = -3f (x,y)S + -/3ljm92(S). 2 " 

(4.2.36) 

(4.2.37) 

For Laplace's equation (f(x, y) = 0) and homogeneous boundary conditions of 
the second kind (92(S) = 0), Pi = Pj = Pm = 0, Eq. (4.2.36) is simplified to: 

or 

[ 
kii 
kji 
kmi 

bibj + CiCj 

bJ + cJ 
bmbj + CmCj 

(4.2.39) 
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where 

Fig. 4.2.3. Discretization of a 2-0 domain 

bibj + CiCj 

b; + c; 
bmbj + CmCj 
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(4.2.40) 

Equation (4.2.40) is the expression of the element matrix, it shows that Ke is 
a symmetric matrix of the order of 3. The diagonal elements are always positive. 
The value of each element of Ke is dependent on the coordinates of the vertices of 
the element and the material parameters f3 (for the electric field, f3 = E, for the 
magnetic field, f3 = 1/J.1.). The formulation for evaluating the coefficients of the 
element matrix can be synthesized as 

krs = ksr = !(brbs + crcs) r, s = i,j, m (4.2.41) 

Example 4.2.1. The domain of a 2-D Laplacian problem is shown in Fig. 4.2.3. 
Subdivide the domain into eight triangular elements. The coordinates of the 
nodes are obtained with the dimension shown in Fig. 4.2.3. Using Eq. (4.2.40), 
the coefficients of the element matrix equation for elements 1 and 2 are: 

[ 
0.5 - 0.5 

f3 - 0.5 1.0 
0.0 - 0.5 

0.0] lUI) - 0.5 X U2 = 0 

0.5 Us 

(4.2.42) 

and 

[ 
0.5 0.0 

f3 0.0 0.5 
- 0.5 - 0.5 

-0.5] lUI) - 0.5 X Us = 0 
1.0 U4 

(4.2.43) 

During evaluation of the element matrix, the sequence of i,j, m in each element 
should be taken counterclockwise so that the area of each triangular element is 
positive. 
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4.2.2.2 System matrix equation 

The system matrix is the combination of the element matrices. The principle for 
assembling the element matrices into a system matrix is based on the property of 
compatibility. It means that at every node the nodal value of the unknown 
function of each element is the same no matter the node belongs to which 
element. This requirement has a simple physical meaning. In scalar potential 
field, for example, the potential value is unique at any point. Hence the nodal 
value is related with all the elements connected at one node. In other words, the 
nodal value of each node is the assembly of values contributed by all the 
connected elements. The procedures for assembling the system matrix of the 
problem shown in Fig. 4.2.3 are as follows. 

Assume the element matrix is of the order n x n (for a three-node triangle 
element, n = 3) and the global matrix is of the order N x N (N is the number of 
the total nodes of the domain). First expand the element matrices to the global 
matrix of the order N x N by adding zeros in the remaining locations. Then add 
the coefficients in the corresponding positions of the global matrix according to 
the address denoted by subscripts i,j. For instance, first the elements of system 
matrix of the order N x N are set to zero. Second, put the coefficients of the 
matrix of element I at suitable positions according to the subscripts; the result is 

0.5 -0.5 0 0 0.0 0 0 0 0 
-0.5 1.0 0 0 -0.5 0 0 0 0 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0.0 -0.5 0 0 0.5 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

In this matrix, except for the coefficients of element 1, all the elements are zeros. 
Third, the matrix of element 2 is added to the above matrix according to the 
corresponding address of the coefficients. After the elements matrix of 1 and 2 is 
added, the system matrix is 

1.0 -0.5 0 -0.5 0.0 0 0 0 0 
-0.5 1.0 0 0 -0.5 0 0 0 0 

0 0 0 0 0 0 0 0 0 
-0.5 0 0 1.0 -0.5 0 0 0 0 

0.0 -0.5 0 -0.5 1.0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
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It is obvious that the matrix is still symmetric and the diagonal elements are 
dominant. The generic formulation of the assembly is 

M 

K = L Ke (4.2.44) 
e=1 

where M is the total number of elements. For Example 4.2.1, the global matrix is 

kit k12 k14 k15 
k21 k22 k23 k25 k26 

k32 k33 k36 
k41 k44 k45 k47 k48 
k51 kS2 k54 k55 k56 k58 k59 

k62 k63 k65 k66 k69 
k74 k77 k78 
k84 k85 kS7 kss k89 

k95 k96 k98 k99 

Each element of the matrix is assembled by the following rules: 

{
kii = L kfi 

L 

kij = L kfj 
p 

L, is the total number of triangles 
connected to node i 

P is the number of elements which 
contain edge ij 

(4.2.45) 

(4.2.46) 

For instance, in Fig. 4.2.3 six triangles (the elements 1,2, 3, 6, 7, 8) are joined at 
node 5. This means that these six elements have contributions to node 5. Hence 
the element k55 is added by five terms. On the other hand, two elements, 2 and 3, 

contain edge 45, hence k45 consists of two terms. These are given in Eq. (4.2.47) 
as follows 

{k55 = Wd + kW + Wd + k~6d + k~7d + k~sd 
k45 = k~2d + k<Jd 

(4.2.47) 

where the superscripts (I), (2), .•• denote the numbers of triangles. The subscripts 
denote the number of nodes. This kind of assembly is based on the sequence of 
elements. It is executed in computer programs. The program is a recurrent 
procedure according to the sequence of element (e = J, M). For each element 
calculate S, a;, bi , Ci, Kss> Krs and sum them as in Eq. (4.2.47). The calculation of 
the element matrix and the stiffness matrix is therefore carried out at once. If 
there are different media in the solution domain, the numbering of the elements 
should be sequential according to the different materials one by one. 

Each node connects with a very limited number of nodes of the whole 
domain. The system matrix is not only a symmetri.: but also a sparse and banded 
matrix. It contains a great number of zero elements and the diagonal elements of 
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the matrix are positive (k ii > 0) and dominant, and all the values of the sequent 
subdeterminant are positive. Hence the system matrix is a positive definite matrix. 

In contrast to FDM, the maximum non-zero element of each row is in­
definite. Usually the non-zero elements of each row are less than 9. However, the 
range occupied by the non-zero elements may be a large number as it depends 
upon the sequence in which the nodes are numbered. For example, in 
Fig. 4.2.4(b), the largest range of non-zero elements occupied has nine columns. 
If the subdivision is increased in the direction of the wide side of the domain, 
then the range of the non-zero elements occupied will also be increased. The 
range of non-zero elements occupied is described using the term 'bandwidth' 
(B W). B W is defined as: 

BW= D + 1 (4.2.48) 

where D is the maximum difference between the numbers of the two vertices of 
a certain element. For instance, in Fig. 4.2.4(a), the maximum difference of the 
nodal number is D = 7 - 1 = 8 - 2 = 13 - 7 = ., . = 6, then the bandwidth is 
BW = 6 + 1 = 7. In Fig. 4.2.4(b), BW = 9. Consequently, the format of the 
numbering of nodes strongly influences the bandwidth and the computer 

5 

4 

3 

2 

xm 

a 

b 

21 26 31 

35 

Ym 

Fig. 4.2.4a, b. Dilferen t seq uence of the 
nodal number 
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memory directly. Hence, in practice, a technique used to optimize the ordering of 
nodes in order to minimize the bandwidth is necessary [15]. 

Incidentally, the assembly of the system matrix can also be executed accord­
ing to the sequence of nodes [13]. 

4.2.2.3 Storage of the system matrix 

According to the different methods used to solve the matrix equation, usually 
two strategies are employed to store the stiffness matrix: skyline (envelope) 
storage and non-zero elements storage. 

When the stiffness matrix is symmetric, banded and non-zero terms are 
clustered around the main diagonal. Only the terms within the bandwidth of the 
upper or lower triangle matrix need to be stored. In the envelope method, the 
terms between the first non-zero element and the diagonal element of each row are 
stored. This storage scheme results in a 'ragged' edge profile, called the envelope or 
skyline of the matrix, as shown in Fig. 4.2.5. This is the corresponding system 
matrix of the problem shown in Fig. 4.2.2. In this model, certain zero terms are 
still contained in the array AK(IS) which occupy space in the computer memory. 
This storage is needed when using the Gaussian elimination method to solve 
matrix equations. The reason will be understood in next section. 

In the envelope method, IS is the total dimension of the array AK which 
stores the coefficients of matrix K. IS equals the summation of the numbers 
between the first non-zero term to the diagonal element of every row. For instance, 
in Fig. 4.2.5, IS = 1 + 2 + 2 + ... + 5 = 33. As the dimension of the array 
AK is counted, the address of the diagonal elements are memorized by an 
additional one-dimensional array N D(LO). In Fig. 4.2.5, N D(9) = 1, 3, 5,9, 14, 
19,23,28,33. The dimension of the array N D is the total number of nodes. Using 
this method, a considerable amount of computer memory is saved. In Example 
4.3.1, the total amount of nodes is 870 and the elements of the matrix is 
870 x 870 = 756900. When the envelope method is used, the order of array AK 
is 25287; it is only 3.34% of the whole matrix. In Example 4.5.2, the total number 
of nodes is 1066, but IS = 28137, so it is 2.48% of the whole size of the 
matrix. 

However, when solving the matrix equation, the positions of kii' kij should be 
recovered by using the array N D first. For example, the diagonal element in the 
fourth row (k44 ) is stored in the ninth position of the array AK. In general, the 
position of kii in A K is denoted by p, then p = N D(i). The position of kij in array 
AK is also to be found after the position of diagonal elements have been 
determined. Assume the lower triangular elements are stored, the position of 
a non-diagonal element kij (if i > j) in AK is denoted by q; first to find the 
location p of kii , then q = p - (i - j). If j > i, it indicates kij is located in the 
upper triangle. According to kij = kji and the rule of storage, only kij is stored. 
Hence the location of kjj is determined first, i.e. p = N DU), then the address of 
kjj is q = p - U - i). These results can be proved as shown in Fig. 4.2.5. 
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Therefore in any program used to solve problems, the coefficients of the matrix 
must be recovered first. 

If the iterative method is used to solve the matrix equation, all the zero 
elements have no relation to the calculation of iteration, hence no zero elements 
need to be stored. In the computation and storage of the system matrix, the first 
non-zero element of each row is removed to the left side of the matrix. For 
instance, the matrix shown in Eq. (4.2.45) is altered to 

k II k12 kl4 k ls 0 0 0 

k21 k22 k23 k 2S k26 0 0 

k32 k33 k36 0 0 0 0 

k41 k44 k 4S k 47 k48 0 0 
K'= kSl k52 k54 kS5 kS6 k58 kS9 (4.2.49) 

k62 k63 k65 k66 k69 0 0 

k74 k77 k78 k74 0 0 0 

k84 k85 k87 kS8 kS9 0 0 

k95 k96 k98 k99 0 0 0 J 

In the alternative matrix K', the maximum number of columns depends on the 
maximum number of the neighbouring nodes connected to a certain node. For 
instance, in Fig. 4.2.3, node 5 connects with other six nodes, hence the maximum 
column of K' is 7. Because the zero elements are not considered, the positions of 
the elements in the new matrix K' are confused. Therefore an additional 2-D 
array is used to record the number of columns which the elements located in the 
original matrix K. This matrix is shown as below. 

2 4 5 0 0 0 
1 2 3 5 6 0 0 
2 3 6 0 0 0 0 

4 5 7 8 0 0 
AD= 1 2 4 5 6 8 9 (4.2.50) 

2 3 5 6 9 0 0 
4 7 8 0 0 0 0 
4 5 7 8 9 0 0 
5 6 8 9 0 0 0 

The evaluation of these two matrices is carried out as follows. If k ij is non-zero, 
then it is put in column p, i.e. kip = kij and aip (element of AD = j. In this method, 
although an additional matrix is required, the column of matrix AD (usually less 
than 9) is much smaller than the column of the original matrix, especially for 
problems having a large number of nodes. 
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Consequently, the real non-zero elements storage is much more economical 
than skyline storage for saving the computer memory. But the disadvantage is 
that more complex programming is required to keep track of the terms stored 
and more computational time is needed when using the iterative method. These 
two methods to store the matrix coefficients are chosen depending upon the size 
of the problem to be solved. 

4.2.2.4 Treatment of the Dirichlet boundary condition 

For the problem subject to the Dirichlet boundary condition, the nodal value of 
those nodes located on the boundary are known. The known value must be 
removed to the RHS of the matrix equation. The system matrix and the column 
vector of the RHS are modified by the following way. 

Assume that the node m is located on boundary r 1 and its potential value is 
U o. It means that the equation of m row in the simultaneous equations is 

Hence let bm = U 0, bm be the element of column matrix in the RHS of the matrix 
equation. For the LHS of the matrix equation, the diagonal element of the mth 
row is replaced by 1 and other elements in the mth row and mth column are filled 
by zero. The other terms in the RHS of the matrix equation become 

Then the matrix equation 

Ku = B 

(4.2.51) 
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is changed to 

kll k lz ···0 ... k llV 

kZI k zz ···0 '" kZN 

o 0 ···0 
X 
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UI b l - klmVO 

bz - k2m V O 

(4.2.52) 
Um Vo 

UN bN - kNmVO 

If the number of nodes subject to known boundary values of the first kind is 
denoted by LOI, then repeat the above procedure LOI times to yield the 
equation 

(4.2.53) 

In this approach, the dimension of the column matrix u is not reduced by 
introducing the known potential values of the boundary and the size of matrix 
K is unchanged. The advantage of this method is that the construction of the 
system matrix is unchanged and the computer program is independent of the 
specific geometry. If there are homogeneous boundary conditions of the first 
kind, in order to deduct the equations Um+i = 0, the best way is to number these 
nodes at the bottom of the nodal sequence, then Eq. (4.2.52) becomes 

kll ... klmO ···0 UI hi 

kml ... kmmO 0 Um bm 
x (4.2.54) 

0 0 ···0 0 
0 

0 ···0 0 UN 0 

Then the dimension of the matrix equation to be solved is reduced by the order 
of N - (m + 1). 

Similarly, if all the nodes are numbered sequentially according to 
the interior nodes and boundary nodes, for example, the number of interior 
nodes are 1, ... , N, and the boundary nodes having known potentials are 
N + I, ... , No, then the finite element equation for this Laplacian problem can 
be altered to 

N 

L kijuj = 
j=1 

(4.2.55) 

Thus the order of simultaneous equations is according to the number of interior 
nodes. 
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4.3 Solution methods of finite element equations 

The matrix equation derived by FEM is symmetric and positive definite. All the 
main sub-determinants have positive values. Therefore the solution of the finite 
element equation exists and is unique. The matrix equation to be solved is 

KX=B (4.3.1) 

The solution algorithms of linear matrix equations can generally be classified as 
direct methods and iterative schemes. The over-relaxation iteration and the 
conjugate gradient method are two well known schemes using iterative methods. 
The results obtained from the iterative method are the limiting value of a se­
quence of approximations. The direct methods include Gaussian elimination 
and Cholesky's decomposition. The direct methods are considered as an exact 
solution from the theoretical point of view. Due to the rounding off errors 
produced by computation, the results are still approximate. A brief introduction 
of the various methods is given in this section. More detailed information is 
found in references [13-17]. 

4.3.1 Direct methods 

4.3.1.1 Gaussian elimination method 

The Gaussian elimination method is a common method used to solve symmetric 
and unsymmetric matrix equations. It consists of two steps: forward elimination 
and backward substitution. Equation (4.3.2) is used as an example to describe 
the process. 

(4.3.2) 

The first step is to transfer the matrix into an upper triangular matrix; it is called 
forward elimination. Divide the elements of the first row by the first element 
(including the column matrix of the right-hand side) so that the first element of 
the diagonal is 1. Then subtract a multiple of the first equation from the second 
and the third to obtain zeroes below the diagonal in the first column. This 
procedure is diagrammed as: 

rowal 
rowa2 
rowa3 

12] 14 
12 
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al/4 ..... row bl 

[~ 
3/4 1/2 

a2 - 3 x (bl) ..... row b2 11/4 -1/2 
a3 - 2 x (bl) -+ row b3 -1/2 7 

The above calculation can be formulated by 

{ 
kl . = kl ./k 11 

1J J ( . = 1 2 ". N) 
b1 - b /k } " , 

1 - 1 11 

{ kij = kij - kLx kil 

bl = bi - kitbl 

(i, j = 2, 3, ... , N) 

(i = 2, 3, ... , N) 

!J 
(4.3.3) 

(4.3.4) 

N is the order of the matrix, bi are the elements of the column matrix of the RHS 
of Eq. (4.3.1). After this step, all the elements in the first column are zeroes except 
the first element. 

Repeat the same procedure, until an upper triangular matrix and a new 
column matrix are obtained. 

row bl 

row b2/ il.l 

..... row cl 

..... row c2 o 1 [
1 3/4 

- 2/11 , 
1/2 ] 

row b3 + c2/2 ..... row c3 o 0 76/11 

Then the matrix equation of (4.3.2) becomes 

[
1 3/4 

o 1 

o 0 

1/2 ] { Xl} { 3 } -2/11 X X2 = 20/11 . 

76/11 X3 76/11 

{ ~0/11}. 
76/11 

(4.3.5) 

It is obvious from Eq. (4.3.5) that X3, X2, Xl are obtained by the back­
substitution from the last equation to the first. The results of Eq. (4.3.5) are: 

X3 = 1 

X2 = ¥t + -Ax3 = 2 

Xl = 3 - h2 - !X3 = 1 . 

The general formulation of the back-substitution is: 

- b(i) "k(i) (. - 1 N) Xi - i - ~ ijXj 1- , ... , . (4.3.6) 

Generally, in order to overcome the problem where the pivot element is zero or 
a very small number, a rearrangement of the elements is necessary. At the kth 
stage in the elimination, the rows are rearranged to ensure that the coefficient 
with the largest absolute value in the kth column in the lower triangle is on the 
leading diagonal. Thus a search is made in the kth column of the coefficient 
matrix, beginning at row k and ending with the last row N. 
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However. in solving the matrix equation of FEM, the diagonal elements are 
pivotal and it is not necessary to search for a pivot in the elimination. Because of 
the symmetry of the matrix, only the lower or upper triangular elements need to 
be calculated. 

During the process of elimination, the coefficients of the matrix are changed 
in each step. Some zero elements may be evaluated as non-zeroes. Only the 
zeroes before the first and after the last non-zero element of each row and 
column are always zeroes. Hence only the zeroes before the first and after the 
last non-zero elements need not be stored. Therefore the skyline storage of 
non-zero elements fits the Gaussian elimination method. 

4.3.1.2 Cholesky's decomposition (triangular decomposition) 

The Gaussian elimination method transforms the original matrix into a triangu­
lar matrix. It has been proved that if the matrix K is a symmetric and positive 
definite matrix, then K can be uniquely decomposed into two triangular ma­
trices, e.g. 

K = UU T (4.3.7) 

U is a lower triangular matrix, the transposition of U is an upper triangular 
matrix. 

[

:11 ] [Ull UZ1 un1] 
U = 21 U22 U T = U22 . , 

Un1 Unn Unn 

(4.3.8) 

The elements of U are obtained by the following equations: 

n 

I Uim U jm = kij (j = 1, 2, ... , i; i = 1, 2, ... ,n) (4.3.9) 
m=l 

(i = j + 1, ... , n) (4.3.10) 

(j = 1, 2, ... , n) (4.3.11) 

Let UTX = g. Once the equation Ug = B is solved, the solution is obtained by 
solving the equation: 

UTX = g. (4.3.12) 

In order to avoid the computation of a root square, Eq. (4.3.7) is decomposed 
by 

K = LDLT. (4.3.13) 
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Since D is a diagonal matrix, then LD is 

LD= 

The elements of D and L are 

In general, 

d1 = kll 

121 = k2dd 1 
In1 = kndd 1 
d2 = k22 - l~ld1 
132 = (k32 - 131d112d/d2 

i-I 

d; = kii - I limdmljm (i = 1,2, ... , n) 
m:::l 

i-I 

iij = (kij - I limdmljm}/d j 

m=l 

dn 

(j = 1, 2, . . . , i-I; i = 1, 2,. . . . , n) . 

(4.3.14) 

( 4.3.15) 

(4.3.16) 

(4.3.17) 

Using Eqs. (4.3.16) and (4.3.17), the elements of Land D may be calculated. Then 

KX = LDUX = B. (4.3.18) 

Let 
X~DUX (4.3.19) 

then 

LX=B. (4.3.20) 

x is easy to obtain from Eg. (4.3.19). In the procedure ofCholesky's decomposi­
tion, the vector B on the RHS is unchanged, it is useful to decrease the crror. 
Using this method to solve Eq. (4.3.2), the procedures are as follows: 

d 1 = kll = 4 

121 = k2dd 1 = 3/4 

131 = k3dd1 = 1/2 

dz = k22 -1~ldl = 11/4 

132 = (k32 - 131 dzl z d/dz = - 2/11 

d3 = k33 - 131 d1131 - 13zdzl32 = 76/11 
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thus 

x = {12 S 76/11}T 

then X is obtained by Eq (4.3.19), i.e. 

[
411/4 ][1 3/4 _~~~I]{x}={~2 }. 

76/11 1 76/11 

The result is: 

X={1 2 IV 
Appendix 3 of references [IS] and [17] provides the computer program of 

Cholesky's decomposition. 
A great advantage of this method is that if the problem to be solved has 

different values of the RHS, then only the solver of the matrix equation is 
repeated. 

4.3.2 Iterative methods 

Iterative methods have the advantage that the sparseness of the coefficient 
matrix is utilized. Only the nonzero elements are stored and which leave them 
unchanged during iteration. At each step of the iteration, a single row of the 
system matrix is used in the calculation. The total system matrix need not to be 
stored. The structure of the matrix K plays no influence in iterative methods. 
Thus the optimal ordering of nodes is not necessary. Consequently, for a large 
system, the iterative method is more suitable. 

A simple example of the iterative method is shown as below: 

{ SXI - 2X2 = 8 
(4.3.21) 

3xI - 20X2 = 26. 

Equation (4.3.21) can be written as 

{XI} [0 O.4J {XI} { 1.6} 
X2 = O.1S ° X2 + -1.3 . 

(4.3.22) 

This method proceeds from some initial 'guess' {x}O and defines a sequence 
of successive approximations {X}I, {X}2 .... which converge to the exact 
solution. Suppose the initial value of {XlI is {x}(O) = {O,O}T. Substitution of 
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Eq. (4.3.22) into Eg. (4.3.21) yields 

{
Xl}(1) [0 
X2 = 0.15 

O.4J {O} + { 1.6} = { 1.6} o 0 -1.3 -1.3 

Subsequently 

(4.3.23) 

The matrix M is called the iterative matrix; it is unchanged in each iteration. 
When k ..... (fJ lim (X)(k) = (x)*, the iterative procedure is convergent. For the 

k-XJ 

above example, the approximate values of each step are: 

k I 2 3 4 5 6 
Xl O. 1.6 2.12 1.9928 1.99856 2.00432 
X2 O. -1.3 -1.06 -0.9964 -1.00108 -1.000226. 

The differences of the approximate solution between adjacent steps are reduced 
as the number of iterations, k, is increased. When k = 6, X\6) - X\5) = 0.001872, 
and X~6) - X~5) = 0.000854. If these differences are less than a predetermined 
criterion c, then {X}(k) is accepted as the solution of Eq. (4.3.18). 

4.3.2.1 Method of over-relaxation iteration [16] 

The difference of the iterative method used in FDM and FEM is that in FDM 
the coefficients are recognized by double subscripts; in FEM, the coefficients are 
recognized by a single subscript. In FEM, the nth equation of a finite element 
equation is 

i-I N 

L kijuj + kiiUi + L kijUj = bi . 
j;l j;i+l 

In iterative formulation, the above equation is altered to 

U\m+l) = _ [i~l k .. u(m+l) + ~ k-·u(m) - b.J/k oo 

t ~ I) J 1... I) J , II 

j;l j;i+l 

i = I, ... , N (4.3.24) 

where N is the order of the matrix equation. When m ..... (fJ, u\m) must be 
convergent to the real solution. Usually a permissible error c is given as the 
convergence criterion. If the adjacent iterative value of each node is less than c, 
then the iteration is stopped. In order to increase the iterative speed, the over­
relaxation iterative formula is used: 

(4.3.25) 
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where 

ii(m+ I) = _ [i~1 k .. u<m+ I) + ~ k··u(m) - b.J/k-. 
I L I)) L I) ) I U 

j=1 j=i+1 

i = 1, ... , N (4.3.26) 

and tI. is an accelerative factor, 1 < tI. < 2. The factor tI. is very problem depen­
dent, as discussed in FDM. Usually the iterative methods take more computing 
time than direct methods. 

4.3.2.2 Conjugate-gradient method (CGM) 

The conjugate gradient scheme is used for the solution of sparse positive definite 
symmetric matrix equations of the type KX = B. Detailed concepts of the 
conjugate gradient method will be explained in Sect. 11.4.2. or can be found in 
references [15, 16]. Only the formulae are listed here. 

To solve equation KX = B, assume an initial vector Xo, then the residual is: 

ro = KXo - B. (4.3.27) 

The initial direction Po to search the minimum of the function F(X) = KX - B 
(the minimizer of F(X) is the solution of KX = B) is chosen to coincide with 
ro, i.e. 

Po = ro . 

Then the successive estimate of the next approximation of X is: 

where 

Then 

PTri 
tl.i= --T--' 

Pi Kpi 

ri+ 1 = ri + tl.iKPi 

pT Kri+ 1 
Pi+1 = ri+1 - T -K Pi' 

Pi Pi 

(4.3.28) 

(4.3.29) 

(4.3.30) 

(4.3.31) 

(4.3.32) 

The directions Pi are selected so as to make successive residuals orthogonal to 
each other, i.e. 

rTri+I=O. (4.3.33) 

In this process, error is removed in one independent search direction at a time 
and not reintroduced subsequently. After N steps there is no direction left in 
which correction is required. The resulting solution is therefore the exact 
solution. The iteration is stopped when KX i + 1 - B < e. 

Another efficient iterative method is the Preconditioned Conjugate Gradient 
Method (PCGM). It can improve the condition number of the matrix equation 
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and is regarded as a good method for solving large systems. Detailed procedures 
are given in references [15, 16, 18, 19]. 

4.4 Mesh generation 

In mesh generation, the following principles should be satisfied: 

(1) Nodes are placed within the region and on the boundary wherever the 
field distribution is located. The density of nodes should be high in those areas 
where the function varies rapidly; the elements could be large while the field is 
uniform. 

(2) The elements cannot overlap or overspill, or leave empty spaces. All of 
the elements must be well proportioned. For instance, it is important that there 
is no great disparity between the edge lengths in one element, i.e. sharp corners 
in each element must be avoided. In other words, equilateral triangles are better 
than long narrow triangles. 

(3) Nodes may not be placed on the side of adjacent elements, e.g. 
Fig. 4.4.\(a) is improper, (b) is proper. 

(4) For a region composed of different materials, the parting lines of the 
materials should be represented by the boundaries of elements, as shown in 
Fig. 4.4.\(c). 

(5) In order to reduce computer storage, the bandwidth of the system matrix 
should be as small as possible. Thus the numbering scheme of the nodes should 
be circulated from the narrow side to the wide side. For example, the ordering of 
nodes in Fig. 4.2.4(a) is better than that in Fig. 4.2.4(b). The general technique of 
the optimized numbering of nodes is explained in references [15, \9]. 

(6) The local numbering of the vertices of each element must be counter­
clockwise, as shown in Fig. 4.4.2, otherwise the area of the triangle will be 
negative. 

Mesh generation and data construction of mesh information are the most 
annoying problems encountered when using FEM. They consist of a topological 
description of the meshes and the coordinates of the nodes. For instance, in 

a b c 

Fig.4.4.1a-c. Proper and improper nodes 
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j~1 rn 
rnA 

1 J Fig. 4.4.2. The sequence of local nodes of a pair triangle 

calculating the coefficients of the matrix, the coordinates of the vertices of each 
node is necessary. The coordinates of nodes is given by x(NO),y(NO). NO is. the 
global numbering of nodes. Hence the relationship between the number of 
global nodes (1,2, ... , NO) and the ordering of local number (i, j, m) is 
necessary information when calculating the element coefficients. The input data 
is a set of arrays I(EO),1(EO), M(EO) and x(NO),y(NO). I(EO) denotes the node 
i of every element. 1(EO), M(EO) are nodes 1, M of every element. In Fig. 4.2.3, 
the arrays of I(EO), 1(EO) and M(EO) are 

I: /1,5,4,8,2,6,5,9/ 

M: /5,1,8,4,6,2,9,5/. 

The arrays of x(NO), y(NO) are: 

1: /2,4,5,7,3,5,6,8/ 

x: /0., 1., 2.,0., I., 2., 0., 1., 2./ y: /0.,0.,0., 1., 1.,1., 2., 2., 2./ . 

The arrays of I(EO), 1(EO), M(EO) can also be expressed by a two-dimensional 
array 11M (k, EO). The first number in the parentheses denotes the number of 
i, j, m. The second number in the parentheses denotes the number of elements. 
For example, in Fig. 4.2.3, 11M (1, 1) = I, I1M(2, I) = 2, I1M(3, \) = 5 and so 
on. If there are hundreds or thousands of nodes, the preparation of the data 
input is very tedious and time consuming. If the input data contains errors, it 
will result in a waste of labour and computer resources. Consequently, auto­
matic mesh generation is very important. It is a special technique including 
graphics. In this section only a simple method of mesh generation is described. 

4.4.1 Mesh generation of a triangular element 

Two steps are included in generating a mesh module: a logical step and 
a geometric step. The logical step describes the relationship between the global 
number and the local number of the nodes of each element. A geometric step 
gives the geometric coordinates of every node in the module. For convenience, 
the logical step and the geometric step associated with a module of a structure 
are set up together within a major logical step. 

In order to explain the basic algorithm, a rectangular domain (Fig. 4.2.4(a» 
is chosen as an example. Assume that the lengths of the two edges of a rectangu­
lar area are X m and Ym , Nx and Ny are defined as the number of divisions in 
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x and Y directions, respectively. Depending upon the node density, the lengths of 
the segments in both the x and y directions are selected. Then the total number 
of nodes (LO) and elements (LEO) are 

LO = (Nx + 1) x (Nv + 1) 

LEO = 2Nx x Ny . 

(4.4.1) 

(4.4.2) 

If the nodal number is arranged column by column, as shown in Fig. 4.2.4(a), 
then the nodal number of point P at the intersection of Ni row and N j column is 

(4.4.3) 

If the nodal number is arranged row by row, as in Fig. 4.2.4(b), then 

The global coordinates of Np are 

Xp = XI + (Nj - l)x(XM - xd/Nx 

Yp=YI +(Ni -l)x(Y,w-yd/Ny 

(4.4.4) 

(4.4.5) 

where XI, YI are the coordinates of an initial point. In Fig. 4.2.4(a), assume 
Xm = 6cm, Ym = 4cm, let Nx = 6, Ny = 4, and XI = 0, YI = 0, for node P, 
Ni = 3, N j = 4, then 

Np = (4 - I) x (4 + I) + 3 = 18, x(18) = 3 cm, y(18) = 2cm. 

To define the logical code of the elements and nodes, the elements are divided 
into two types, as shown in Fig. 4.4.2: an upper triangle and a lower triangle. The 
nodal code of each element is memorized by a two-dimensional array I J M (k, E). 
The following formulations are used to construct the global code of a pair of 
triangular elements. If the codes are numbered column by column, then: 

E = 2Ny x (Nj - I) + 2Ni - I 

U M(I, E) = U M((~ - I) x (Ny + 1) + N i, E) 

UM(J, E) = UM(I + Ny + \,E) 

UM(M, E) = UM(J + 1, E) 

E=E+l 

UM(I, E) = U M(M(E - 1), E) 

UM(J, E) = UM(/(E - 1) + 1, E) 

U M(M, E) = U M(/(E - 1), E) . 

(4.4.6) 
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If the codes are numbered row by row, then 

E = 2Nx X (Ni - 1) + 2Nj - 1 

IJM(I, E) = IJM«Ni - l)x(Nx + 1) + Nj. E) 

IJM(J, E) = IJM(I + Nx + 1 + 1, E) 

IJM(M, E) = IJM(J - 1, E) 
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E=E+l (4.4.7) 

IJM(I, E) = IJM(I(E - 1), E) 

IJM(J, E) = IJM(I + 1, E) 

IJM(M, E) = IJM(J + Nx + 1, E) 

For instance, in Fig. 4.2.4(a), IJM(I, 19) = (12,19), IJM(J, 19) = (17,19). 

4.4.2 Automatic mesh generation 

The former section gives a simple idea of mesh generation in a rectangular 
domain. Actually, automatic mesh generation should be capable of producing 
a valid finite element mesh for any geometry without user intervention. It should 
be able to change the position of nodes automatically, delete elements and 
rearrange the topological relation in an attempt to improve the element ge­
ometry. As an example, in the package MAGNET 2-D, when the coordinates 
(x, y) of the vertices of the polygon, shown in Fig. 4.4.3(a) and the division 
numbers on each edge are input, then the meshed model is displayed on the 
screen automatically as shown in Fig. 4.4.4(b). During the process of the 
connection of nodes, the obtuse angle must be avoided. Many schemes exist for 
optimizing the connection. All these schemes try to make connections yielding 
triangles as close to equilateral as possible. The well known Delaunary criterion 
[20] is one of the most commonly used principles in mesh generation. Detailed 
methods may be found in references [18] and [20-22]. 

Generally, automatic mesh generation consists of the following steps: 

(1) Subdivide the domain into several sub-regions in which the material is 
homogeneous and determine the density of the elements in each region. 

(2) Subdivide each sub-region into triangles, as shown in Fig. 4.4.3(b), join 
all these subregions into a whole. It is imperative that the nodes at the common 
sides of each sub-region be coincident. 

In order to obtain faster and more accurate results, the more advanced 
method such as adaptive mesh generation has been developed ([23-28]). Im­
provement of the mesh is not only concerned with geometrical aspects of the 
mesh but also with the errors of the results. The size of element depends on 
the different variations of the field. In the process of adaptive mesh generation, 
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(l,4) (2.5,4.2) 

(-2,2.5) 
(4.5,3) 

(0,0) 

a 

b 

Fig. 4.4.3a,h. Automatic mesh generation by using MAGNET 2-D 

the finite element model is generated iteratively. Potential distribution is cal­
culated sequentially beginning with a coarse mesh, the mesh is then refined in 
locations where the greatest error exists. The error estimation may be based on 
the complementary variational principle [25J, the energy minimum [26J or on 
computing the residual in the finite element solution directly [27]. 

4.5 Examples 

Example 4.5.1. A 2-D Laplacian problem subject to Dirichlet boundary condi­
tion in a rectangular domain is chosen as an example to illustrate the essential 
feature of the finite element method. Due to its symmetric property, half of the 
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Fig. 4.5.1. A 2-D Laplacian problt:m 
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Fig. 4.5.2. Equipotential lines of Fig. 4.5.1 
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domain, shown in Fig. 4.5.1, is considered. The problem is then stated by 

1 :,~:; o/Ilj = 0 

~: I T2 = 0 

(4.5.1) 

This is a problem having mixed boundary conditions. Boundaries Tb T3 satisfy 
boundary conditions of the first kind and boundary T2 satisfies a homogeneous 
boundary condition of the second kind. The associated finite element equation 
IS: 

K{o/} =0 (4.5.2) 

The domain is subdivided into a non-uniform triangular element; the steps in 
x and y directions are 8 * 2.0, 16 * 0.5, 5 * 0.2 and 4 * 4.0, 9 * 2.0, 10 * 0.5, 5 * 0.2, 
respectively. The total number of nodes is LO = 30 x 29 = 870. Among these 87 
nodes are boundary nodes with known potentials of 1 V and 0 V. These data 
are given by arrays LUO and UO. The total number of elements is 
LEO = 2 x 28 x 29 = 1624. 

The homogeneous boundary condition of the second kind on Tz is satisfied 
automatically, hence the boundary nodes on T2 are not dealt with specifically. 
After the matrix equation is solved, the potential value at each node is obtained. 
If the distribution of the equipotential line is of interest, the coordinates of equal 
potential lines are obtained by the linear interpolation or Lagrange interpola­
tion. The potential distribution of Fig. 4.5.1 is shown in Fig. 4.5.2. 

If the domain consists of different materials as shown in Fig. 4.5.3, the edges 
of the element must be coincident with the interfacial line. The result shows that 
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Fig. 4.5.3. Refractive phenomenon at the 
interface of different materials 
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aA -an =0 

Fig. 4.5.4. B lines within the ferromagnetic 
conductor 

the equipotential lines are condensed into the upper part with smaller 
permittivity. At the interface, the field is refracted according to the ratio of the 
permittivities. 

Example 4.5.2. Plot the distribution of B lines of a long current carrying 
ferromagnetic conductor (/1 = 400/10) with a rectangular cross-section. 

Solution. Due to the symmetry, one quarter of the domain, shown in Fig. 4.5.4, 
is subdivided into 2000 triangular elements and 1066 nodes. Because /1 ~ /10' the 
magnetic field is assumed within the conductor. The boundary of the conductor 
is assumed as an equipotential line of A = O(A = A=), the two symmetric lines 
satisfy oA/on = O. In each element, the current density is assumed as !Jeing 
constant. For a 2-D case, the equipotential lines of A consist of the B-lines. By 
using the program as before, the B lines are drawn in Fi.g 4.5.4. 

Example 4.5.3. Consider the influence of a ferromagnetic plate near a pair of 
rectangular current carrying conductor with infinite length. 

Solution: This is an open boundary problem. It means the field may extend to 
infinity. To simplify the calculation, an artificial boundary, shown by the 
contour a, b, c, d in Fig. 4.5.5, is assumed as the boundary at infinity where 
A = O. Due to symmetry, half of the domain is to be analysed. Using transla­
tional symmetry, the scalar potential A= is chosen as the variable to be cal­
culated. The boundary conditions of the solution domain are given in Fig. 4.5.5, 
and the solution of the B lines are plotted in the same diagram. The result shows 
the tangential component of the flux density along the surface of the steel plate is 
almost zero. This is because the permeability of the plate is 10/10' Another 
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=0 

A=O 

c d 
Fig. 4.5.5. Solution of an open boundary problem 

conclusion is that the artificial boundary will influence the result of calculation. 
In other words, the accuracy of the solution is limited by the assumed zero 
boundary. In general, if the artificial boundary is sufficiently large, the accuracy 
is enough. This can be defined as when the solution considered does not change 
when the zero boundary is removed. A more advanced method to deal with the 
open boundary problem is introduced in the next chapter. 

4.6 Summary 

In this chapter, general procedures of the finite element method to solve 
a potential problem are illustrated. In order to avoid using the functional and its 
variations, a matrix equation of finite elements is derived by the principle of 
weighted residuals. To illustrate the basic idea of the method, a 3-node tri­
angular element is used as discretization elements. Formulations for calculating 
the coefficients of a matrix equation of a 2-D translational symmetric problem 
are given. The coefficients of this element matrix depends on the parameter of 
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the material and the coordinates of the vertices of the element, i.e. 

in the electrical field, f3 = I: (permittivity of dielectric). 
The formulations for calculating an axisymmetric problem will be given in 

the next chapter. The solution methods for solving algebraic equations are 
introduced. 

The disadvantages of FEM are: 

(1) Like FDM, if the problem to be solved is unbounded, then an artificial 
boundary must be assumed or a special process is required (this will be 
introduced in the next chapter). 

(2) The pre- and post-data processing are more complex than for the finite 
difference method and integral equation methods (these will be introduced in 
part three). Because the whole region has to be discretized, a tremendous 
number of nodes and elements are required. 

The variational finite element method and matrix equations of other electro­
magnetic field problems are discussed in Chap. 5. The high order elements will 
be introduced in Chap. 6. If the suitable mesh discretization is adapted, accuracy 
of the method is high. 
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Chapter 5 

Variational Finite Element Method 

5.1 Introduction 

In general, most of the problems in engineering and science can be described by 
variational principles. For instance, the principle of least action exists in mech­
anics and electrodynamics [1]. In electrostatic fields, Thomson's theory [2] 
states that the electric energy is minimum if the system is in equilibrium. In 
classical thermodynamics, the entropy remains at maximum for any equilib­
rated isolated system. 

Variational expressions succinctly summarize the governing equations of 
these problems and provide a means for an approximate solution. Therefore the 
solution of any boundary value problem is characterized by a function which 
yields an extremum (minimum, maximum) value or is stationary to a related 
functional I (u)t. From a historical point of view, variational problems (to find the 
extremum function of a functional) are solved by the solution of their equivalent 
Euler's equations (differential equation). 

However, the development of high-speed digital computers has enabled the 
numerical solution of many variational problems. Hence a partial differential 
equation can be solved using the approximate method of its equivalent variational 
prohlem. One of the most prominent methods is the variational finite element 
method. The classical variational formulation of a continuum problem has 
advantages over the differential formulation for obtaining an approximate 
solution. The reasons are as follows. 

First, as indicated in Chap. 2, the extremum function of a functional is the 
solution of the corresponding operator equations. In potential problems, the 
unknown function contained in the equivalent functional of the problem has lower 
order derivatives than those contained in differential equations and consequently 
an approximate solution can be sought in a large number of functions. For 
example, Poisson's equation subject to Dirichlet boundary conditions is math­
ematically expressed as: 

{
V2<p = - pie in Domain Q 

<Plr = Vo on Boundary r . (5.1.1 ) 

t In this book, symbol I represents functional. 



5.2 Basic concepts of the functional and its variations 131 

The equivalent functional of Poisson's equation, subject to the Dirichlet bound­
ary condition, is equivalent to a constrained functional expressed by: 

lJ(<P) = ShIV<p12dQ - Sp<pdQ 
!1 !1 

<Plr=Uo · 

(5.1.2) 

The second equation of Eq. (5.1.2) is the constrained condition of the equivalent 
functional J(<p). It shows that J(<p) contains only the first order derivative of 
<p [the equivalence of Eqs. (5.1.1) and (5.1.2) was proved in Sect. 2.4.2J, while the 
second order partial derivative of <p is contained in the partial differential 
equation. 

Second, some problems may possess reciprocal variational formulations. This 
means that when describing a physical problem one functional has to be minimized 
and another functional of a different form has to be maximized. In such cases one 
may find the upper and lower bounds on the functional. This has important 
engineering significance. For instance, it can be used to calculate the parameters 
of electromagnetic fields [3,4]. 

Third, in variational formulations, it is possible to treat complicated interfacial 
boundary conditions as natural boundary conditions. (This property will be 
proved in Sect. 5.3.) 

Finally,from the mathematical point of view, with variationa/formulations, it is 
easy to prove the existence of the solution. It is proved, if the operator!£' of the 
operator equation (!£'u = f) is symmetric and positive definite, then this equa­
tion has only one solution [5]. 

The variational finite element method is based on the principle of the 
variations. The process in the variational finite element method is to find 
equivalent variations of the physical problem first, then to minimize the equiva­
lent functional approximately to obtain a set of algebraic equations. The 
solution of these simultaneous equations is the approximate solution of the 
problem to be solved. 

The basic concepts of the functional and its variations are reviewed in 
Sect. 5.2. The equivalent functionals for electromagnetic field problems are 
derived in Sect. 5.3. During the derivation of the functionals, it is shown that the 
boundary conditions of the second and third kind are included in the equivalent 
functional. The discretized finite element equations of various electromagnetic 
field problems are derived in Sect. 5.4. Finally, some special problems such as the 
solution of open boundary problems and problems containing conductors with 
free potentials are discussed in the last section. 

5.2 Basic concepts of the functional and its variations 

The theory and calculus of the functional and its variations are beyond the scope 
of this book. Without becoming too involved with mathematical difficulties, 
some basic concepts offunctionals and their variations are reviewed briefly. For 
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the complete theory offunctionals and variations, the reader may refer to any of 
the references [5-9]. 

5.2.1 Definition of the functional and its variations 

5.2.1.1 The functional 

The function y = f(x) or y = f(x 1, X2, ... , Xn) expresses the relationship be­
tween a set of variables (Xl, ... , xn) and a set of numbers. Therefore, afunction 
is a mapping connecting one space of numbers to another space of numbers. 

Afunctional is a different kind of mapping. It relates a set offunctions to a set of 
numbers. For instance, what is the shortest length between the two points A and 
B of a curve shown in Fig. 5.2.1(a)? What is the minimum surface suspended 
between two circular wire loops as shown in Fig. 5.2.1 (b)? 

Obviously, the length is a number. It is determined by the shape of the curve 
which is a function of the variable X, i.e. the length of the curve is expressed by: 

B H B 

L(y) = f dl = fJdx 2 + dy2 = f Jl + (dyjdx)2dx 
A A A 

x. 

= f Jl + (y')2dx . (5.2.1) 

This equation means that the length of the curve depends on the function 
y = f(x) and its derivative of the first order. The value of L(y) depends on the 
argument of function y(x). Hence L(y) is called a functional. Therefore, the 
functional is a real or complex value, it is the function of a function, not a function 
of variable. In electrostatic fields, the field intensity E (r) is a function of coordin­
ates, the potential difference U between two points and the electrostatic energy 
We included in volume Q are functions of the field strength, i.e. 

H 

U = fE(r)dl (5.2.2) 
A 

Y 
B 

A~ S 

I 

a b 

Fig. S.2.la, b. A planar curve and a curved surface 
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(5.2.3) 

Consequently, the U and We are functionals which are determined by a vector 
function E(r). Once the function E(r) is specified, the functional W(E) is evalu­
ated. Equation (5.2.1) can be expressed in a generic form: 

XB 

I(y) = S F(x,y,y')dx . (5.2.4) 

Usually, the functional is expressed by an integral. In Eq. (5.2.4), F is the 
integrand of the functional. 

In two-dimensional cases, the functional is expressed as: 

where 

I(u) = S F(x,y,u,UX,Uy,Uxx,uyy)dxdy 
a 

u = f(x, y), Ux = au/ox, uy = ou/oy, 

(5.2.5) 

(5.2.6) 

In the notation of operators, the functional is a special operator. It is defined as 
that the operator SaFdQ which maps its domain Q onto a set of real or complex 
numbers called functionals. The domain of a functional is the space of admis­
sible functions which may be restricted to satisfy certain continuity restrictions 
or boundary conditions. Thus, a functional assigns every element u E Q F to 
a certain number I(u). Hence all concepts and results of an operator are valid for 
the functional. For example, the stationary property of a functional is analogous 
to the stationary property of a function. 

It is known that the point Xo is a stationary point, if the function y(x) is 
stationary at point xo, i.e. dy(x)/dxlx;xo = 0 or 

lim y(xo + ct) - y(xo) = 0 
IJ. 

ct is a predetermined infinitesimal value. 
Similarly, the derivative of a functional is defined as: 

lim I(y + ctlJ) - I(y) = 0 
ct 

where 

(5.2.7) 

(5.2.8) 

(5.2.9) 

IJ is zero at two endpoints A and B in Fig. 5.2.1(a). The concept of the variation of 
a functional will be illustrated by comparison of the variation of a function. 
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5.2.1.2 The differentiation and variation of a function 

The differentiation of a simple function y = f(x) is defined as: 

I.e. 

Thus 

'() I' LI Y Y x = 1m -
LIx~O Llx 

Lly 
- = y'(x) + a (when .1x -+ 0, a -+ 0) . 
Llx 

Lly = y'(x)Llx + aLlx = dy + adx = dy + O(Llx) 

(5.2.10) 

(5.2.11) 

where aLlx is an infinitesimal of a high order. When l.1xl is small enough dy is 
the approximation of LI y. This means that the differentiation of a function is the 
principal value of the increment of the function. The high order derivatives of y(x) 
are obtained by expansion of Taylor's series. The incremental of the function 
y caused by the variable x is derived as 

y(x + dx) - y(x) = y'(x) dx + ~ y" (x) dx 2 + ... + ~ yn(x) dxn (5.2.12) 
2! n! 

where neglecting the high order derivatives yields: 

dy(x) = y'(x) dx . (5.2.13) 

In Eq. (5.2.13) dy(x) is the principal value of the increment of the funhion 
y = j(x), it is the first order derivative of function y(x). Similarly, the second 
order derivative and the nth order derivative are: 

d 2y(x) = y" (x)dx2 

dny(x) = yn(x) dxn . 

The definition of the variation of function is: 

by = Y(x) -Yo(x) = aYf(x) 

(5.2.14) 

(52.15) 

(5.2.16) 

where by is the increment of y(x) in the functional J(y), i.e. J(y') = J(y + by). 
This equation represents that if y(x) is changed from Yo(x) to Y(x), then 
Y(x) - Yo(x) is called the variation of y(x) at Yo(x), where a ~ 1, 1J(x) E[XA' XBJ 

is any acceptable function defined in the domain under consideration. The 
symbol b (which reads 'the variation of') is used in calculus of the variations to 
indicate the various functions. The difference between the derivation and vari­
ation is that the variation of the function is concerned with the parameter a not 
the variable x. 

One important property of the variation of function is that the sequence of 
the variation and the derivation can be alternated with each other, i.e. 

d(by) = b(dy) . (5.2.17) 
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y 

'--_1-____ --'-_ X Fig. 5.2.2. Variation of a function 
XA Xo 

This is because 

d dY dy d d 
c5yx = c5-y = - - - = -(Y - y) = -c5y. 

dx dx dx dx dx 
(5.2.18) 

This property is useful in deriving the equivalent functional in field problems 
in the sections to follow. 

5.2.1.3 Variation of the functional 

The definition of the variation of a functional is similar to the derivation of 
a function y. The variation of a functional I [y(x)] caused by the variation of 
function y is expressed by: 

X2 X2 X2 

I(y + c5y) - I(y) = f F(x, Y + c5y)dx - f F(x, y)dx = f ~~ c5ydx 
Xl XI Xl 

1 fX2(iPF ) + 2i oy2 (c5y)2 dx + ... 
XI 

1 2 
= c5I(y) + 2ic5 I(y) + .... (5.2.19) 

Therefore the first order variation (usually simplified as a variation) of the 
functional is: 

fX1 0F 
c5I(y) = oy c5ydx (5.2.20) 

XI 

where c5I (y) is the principal value of the increment of a functional. The variation 
of the first order of functional I (y) depends on c5y linearly. Similarly, the second 
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order variation and the nth order variation of the functional are: 

(5.2.21) 

and 

JX2 iJ"F 
J"/(y) = oyn (by)" dx . (5.2.22) 

XI 

The second order variation of functional J2 I (y) depends on the quadratic 
variation of the function. Comparing Eq. (5.2.21) with Eq. (5.2.14), the operation 
for the variation is similar to the operation for the derivative. The variation of the 
first and second order of a functional are extensions of the derivatives of functions. 
For example, if the integrand of a functional is F(x) = i(x), then the increment 
of a functional is: 

b b 

LJI = J[F(x) + Jy]dx - J F(x)dx 
a a 

b b 

= J[y2(X) + 2y(x)Jy + (Jy)2]dx - Jy2(x)dx 
a a 

b b 

= J2y(x)bydx + J(Jy)2dx = c5I(y) + O(Jy) (5.2.23) 
a a 

where 
b 

JiJF c5I(y) = iJy Jydx . (5.2.24) 

a 

The first term of the RHS of Eq. (5.2.23) is a linear functional. The second term of 
the RHS of Eq. (5.2.23) is an infinitesimal of a high order. Thus the variation of 
a functional is also the principal value of the increment of the functional. 
According to the extremum condition of a function, the extremum condition or 
the stationary condition of a functional is: 

b/(y) = 0 (5.2.25) 

i.e. the first order variation of the functional being equal to zero is the necessary 
condition under which the functional has its extremum function. 

If J2 /(y) < 0, the function is maximum, if J2 /(y) > 0, the function is 
minimum. 

5.2.2 Calculus of variations and Euler's equation 

In the conventional method of variations, the extremal function of the functional 
is solved by the equivalent Euler's equation. In numerical approaches, the 
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differential equation is solved by the equivalent variational problem. Hence the 
relations between the differential equation and the variation are discussed in this 
section. 

5.2.2.1 Euler's equation [10] 

Consideration of the functional consists of the first derivative of a function y, e.g. 

X2 

I(y) = f F(x,y,y')dx . (5.2.26) 

Let <5y = CXl](x), <5y' = cxl]'(x). Then, the variety of the integrand of the functional 
is: 

. ~ , ~') ') of ~ of ~, 02 F ~ ~ , 
of = F(x,y + uy,y + uy - F(x,y,y = iJy uy + oy'uy + oyoy'uyuy 

1 [02F 02F ] + 2! oy1 (<5y)2 + oy'2 (<5y')2 + ... 

[ oF OF,] cx 2 [02F 2 o2F ,2)] 2 ) 
= cx oy I] (x) + iJy' I] (x) + 2! oi I] (x)+ oy'2 I] (x + ... (5.2. 7 

Comparing Eq. (5.2.27) with Eq. (5.2.20), the variation of the first order of the 
functional is: 

IX2 

[iJF OF] IX2 

[OF d (OF)] M(y) = cx iJy I](x) + Oy,I]'(x) dx = cx I] oy - dx oy' dx 
XI XI 

OFI X=X2 

+ CXl]-;-; . 
uy x=x, (5.2.28) 

By using the extremum condition M(y) = 0, the extremal function y(x) of the 
functional I(y) is thus obtained. In Eq. (5.2.28), as cx is a constant, I](x) is an 
arbitrary function. Instead of M(y) = 0, the following equations must be satis­
fied: 

of(x,y,y'j = ~(OF(X'y,y'») 
oy dx oy' 

(5.2.29) 

I](x) of(x,~, Y') I = 0 
oy x=x, 

I](X) DF(X'.;'Y')I = 0 . 
oy X=X2 

(5.2.30) 

These equations are equivalent to Eq. (5.2.25). Hence the solution of the 
variational equation equals the solution of the differential equation (5.2.29) 
subject to the additional condition (5.2.30). Equation (5.2.29) can be written as: 

d 
Fy - dxFy. = 0 (5.2.31) 
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This is called the Euler-Lagrange Equation. It was proved by Euler in 1755 and 
independently by Lagrange, also in 1755. Therefore, any variational problem of 
the first order is equivalent to solving Euler's equation subject to the additional 
conditions of Eq. (5.2.30). Equation (5.2.30) includes two cases: if I](xd = 0, 
I](X2) = 0, e.g. y(xd = A, y(X2) = B (Fig. 5.2.1(a)), then Eq. (5.2.29) and 
Eq. (5.2.30) are equivalent to the boundary conditions of the variational prob­
lem of the first kind. If I](xd =1= 0, I](X2) =1= 0, e.g. y(xd, y(X2) =1= const, then the 
variational problem corresponds to: 

and 

of _ ~ (OF) _ 0 
oy dx oy' 

(5.2.32) 

(5.2.33) 

These two equations represent the variational problem of the second kind. 
Therefore, in association with I] = 0 or I] =1= 0, the fixed boundary value 

problem of variation equals the boundary value conditions of the first kind of 
Euler's equation. The free boundary value problem of variation is equal to the 
boundary value conditions of the second kind of Euler's equation. 

If the functional contains the second derivatives of the function, i.e. 

XR 

fry) = J F(x,y,y',y")dx (5.2.34) 

then the corresponding Euler's equation is: 

d d 
Fy - d-Fy' + d-Fy" = o. x x 

(5.2.35) 

5.2.2.2 Euler's equation for multivariable functions 

Consider that the functional consists of the function u = f(x, y, z) and its partial 
derivatives of the first order, e.g. 

Let 

then 

f(u) = JF(x,y,z,u,uX'uy,u z ) dxdydz. 
n 

bu = Ct.1](x, y, z) 

(5.2.36) 

(5.2.37) 
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f[ OF of of OF] 
= ct ou'1 + oux'1x + oUy'1y + oUz '1= dQ 

II 

= ctf[~~'1 + (:~i + :~j + :: k}V'1]dXdYdZ (5.2.38) 
II 

Using the vector identity: 

AoVu =Vo(uA) -uVoA (5.2.39) 

and Gauss's theorem: 

s V 0 AdQ = fA 0 dS (5.2.40) 
[J S 

Eq. (5.2.38) results in: 

(j[(u) = ctf'1 [OF _ ~ (OF) _ ~(OF) _ ~(OF)JdQ OU Ox oUx oy OUy oz oUz 
II 

+ ct l '1[OF(n oi) + ~F(noj)+ OF(nok)]dS. J oUx CUy oU z 
(5.2.41) 

Thus the variational equation (j[ (u) = 0 is equivalent to Euler's equation: 

of 0 (OF) 0 (OF) 0 (OF) OU = ax oUx + oy OUy + oz oUz 
(5.2.42) 

subject to the additional condition: 

[CF 0 of 0 of k JI '1 -:)-(n o,) + -(noJ) + -(no) = O. ( Ux OUy ou= x. y. ZE U 

(5.2.43) 

If the functional consists of the partial derivative of the second order, then 
Euler's equation is: 

(5.2.44) 

subject to the additional condition: 

{
o [OF 0 ( of )J . [OF 0 (OF)J no, '1 - - '1- - + J '1 - - '1- -xouxx ox oUxx Youyy oy OU yy 

[ oF O(OF)J} + k '1-- - '1- - = 0 . -oUzz oz oUzz 
( 5.2.45) 
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5.2.2.3 The shortest length of a curve 

The aim of this section is to find an extremum function y(x) which minimizes the 
following functional: 

x. 
I(y) = SJI + (y')2dx (5.2.46) 

by using Euler's equation. 
Let 1J(x) represent a function of x which is zero at the end points XA and XB 

and has a continuous derivative to the first order in the interval of XA and XB' 
The function Y(x) is defined by: 

Y(X) = y(x) + CX1J(x) (5.2.47) 

where y(x) is the desired extremum and cx ( ~ I) is a parameter. Because of the 
arbitrariness of 1J(x), Y(x) represents any curve drawn between the points A and 
B as shown in Fig. 5.2.2. The purpose is to pick one curve out of all these curves 
Y(x), which satisfies Eq. (5.2.46). Based on the definition of the variation of the 
function, I is a function of parameter cx. If cx = 0, then Y(x) = y(x) is the desired 
extremum, i.e. the result is determined by: 

dI/dcxla~O = ° . (5.2.48) 

Substituting Eqs. (5.2.46) into (5.2.48) leads to: 

( dl) IX" 1 1 (d Y') 
dcx a~O= 2(1 + (y')2)1/22Y d; dx. (5.2.49) 

Since 
Y'(x) = y(x) + CX1J'(x) (5.2.50) 

and 
d Y'/dcx = 1J'(x) . (5.2.5 1) 

Substituting Eq. (5.2.50), (5.2.51), into Eq. (5.2.49) and letting dl/dcx equal zero at 
cx = 0, leads to: 

( dl) = IX. /(X)1J'(x) dx = ° . 
d:x a~O J1 + (/)2 

XA 

(5.2.52) 

Integration of Eq. (5.2.52) by parts results in: 

(dI) I - y' ( ) IX. _ IX'.,(X) ~ ( / )dX. (5.2.53) 
dcx a~O - Jl + (/)2 1J x x, x," dx Jl + (i)2 

The first term on the RHS of Eq. (5.2.53) is zero because at the end points 
1J(x) = 0. Consider the second term on the RHS of eq. (5.2.53) and recall that 1J(x) 
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is an arbitrary function. The integral e: I] (x)f(x) dx will be zero only if the 
functionf(x) is zero, i.e. 

d ( y' ) 
dx ) 1 + (y')2 = 0 . 

(5.2.54) 

Integration of Eq. (5.2.54) with respect to x, results in 

y' 
----r==::;: = const 
)1 + (y')2 

(5.2.55) 

or 
y' = const (5.2.56) 

then 
y = Ax + B. (5.2.57) 

The above equation shows that y(x) is a straight line as expected. 
This process shows that the solution of a variational problem is equivalent to 

solving the differential equation (Eq. (5.2.54» which is Euler's equation of the 
variational problem (Eq. (5.2.46». In FEM, the problem is dealt with in different 
way: the solution of a partial differential equation is obtained by finding the 
extremum function of an equivalent functional. The first step is to find the 
equivalent functional of the operator equation. Then the extremum soilltion of 
the functional is also the solution of the operator equation. 

5.2.3 Relationship between the operator equation and the functional 

Variational expressions can be established by the physical problem directly, or 
can be derived by a differential or an integral equation. For an operator 
equation 

.P(u) = r (5.2.58) 

only if the operator .P is positive definite and self-adjoint may the equivalent 
functional exist and can be determined by: 

leu) = <.P(u), u) - <u, r) - < r, u) . 

This can be proved in the following ways [8, 11]: 
(a) If v(v = u + 1]) is the solution of Eq. (5.2.58), then lev) > leu). 
(b) If u satisfies Eq. (5.2.59), then u is the solution of Eq. (5.2.58). 

Proof (a): 

lev) = <.Pv, v) - <v, r) - < r, v) 

= [<.Pu,u) - <u,r) - <r,u)] + <.PI], 1]) 

+ [<.Pu,,,) - < r, 1])] + [<.PI], u) - <1],0] . 

(5.2.59) 

(5.2.60) 
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In consideration of the symmetry and the positive definite of the operator fE, the 
following conditions exist 

Then 

I(v) - I(u) = <fEl], 1]) + <fEu - f, 1]) + <I], fEu - f) 

= <fEl], 1]) > 0 . 

Hence /(u) = min. 

Proof (b): 

Let v = u +atl (a is a complex number), by assumption 

(5.2.61) 

M = I(v) - I(u) = <fEal], al]) + <fEu -f,al]) + <aI], fEu - f) ~ o. 
(5.2.62) 

If a ~ 0, then M = min. If a is a real number, then 

JI = a2 <fEl],l]) + a<2"u - f, 1]) + a<l], 2"u - f) 

= a2 <fEl], 1]) + aRe<2"u - f, 1]) . 

If a = ja, then 

JI = a2 <2"I], 1]) - ja<2"u - f, 1]) + ja<l], 2"u - f) 

= a2 <fEl], 1]) + alm<2"u - f,l]) . 

(5.2.63) 

(5.2.64) 

Based on lim iMljoa = 0, only if 2" is bounded operator, then <2"1],1]) is also 
~~O 

bounded and <2"u - f, 1]) =0, a2<ift/, 1]) ~ O. Then 2"u = f. Hence if must be 
positive definite. 

If 2" is a real operator, u and f are real functions, then 

I(u) = <fE(u), u) - 2<u,f) . (5.2.65) 

Consequently, the equivalent functional I(u) of an operator equation can be 
derived by Eq. (5.2.59). 

5.3 Variational expressions for electromagnetic 
field problems [12] 

In electromagnetic field theory, the differential equations of the continuum 
problems are more well known than the variational expressions. In general, with 
electromagnetic field problems it is possible to find a corresponding functional. 
A variational equation can be derived by the differential equation or be set up 
on the basis of energy balance without knowing the differential operator. In this 
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section, variational expressions of electromagnetic field problems will be derived 
in different ways. 

5.3.1 Variational expressions for Poisson's equation 

5.3.1.1 Mathematical manipulation [13] 

The boundary value problem of Poisson's equation subject to different bound­
ary conditions is expressed by: 

cp I r, = Vo boundary condition of the first kind (5.3.1) { 

2'(cp) - I = 0 in Q 

acp 
II (r) cp + an = I2(r) boundary condition of the third kind 

where 2' = V 2. It was proved that if 2 is a definite self-adjoint operator, its 
functional exists. 

Multiplying the first equation of Eq. (5.3.1) by the first order variation of cp, 
(6cp), and integrating the result over the domain yields: 

S 6(p[2«(p) - fJdQ = 0 . (5.3.2) 
n 

The purpose of this step is to manipulate the resulting expression (Eq. (5.3.2)) 
into a form that allows the variational operator 6 to be moved out of the 
integral, i.e. 

6 S cp [2' (cp) - fJ dQ = 0 . (5.3.3) 
n 

Then, the integral is a functional written by: 

J(cp) = S cp[2(cp) - fJdQ . (5.3.4) 
n 

Apply the vector identity: 

V·(uv) = Vu·v + uV·v 

letting u = 6cp and v = Vcp, and noting that V 2cp = V . Vcp, one obtains: 

6cpV ·Vcp = V'(6cpVcp) - V(6cp)·Vcp. (5.3.5) 

Substitution of Eq. (5.3.5) into Eq. (5.3.2) and consideration of the assumption 
2(cp) = V 2cp, leads to: 

HV'(bcpVcp) - V(bcp)·Vcp - bIcp]dQ = O. (5.3.6) 
n 
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The first term of Eq. (5.3.6) can be transformed into a surface integral using 
Green's theorem. Then Eq. (5.3.6) becomes 

f JqNqmds - SV(JqJ) 0 VqJdQ - S JfqJdQ = 0 . (5.3.7) 
{J {J 

where n is a unit vector normal to the surface S of domain Q. Since qJlr = Uo 
then JqJ =0 on the surface and Eq. (5.3.7) is reduced to: 

J[V(JqJ) 0 VqJ + Jh]dQ =0. (5.3.8) 
{J 

By noting that V(JqJ) 0 VqJ = t J (VqJ 0 VqJ) Eq. (5.3.8) leads to: 

J S [!(VqJ°VqJ) + h]dQ = O. (5.3.9) 
{J 

Hence the equivalent functional of Eq. (5.3.1) is: 

I(qJ) = S [1(VqJ)2 + h] dQ (5.3.10) 
{J 

subject to qJlr= Uo . 
This is the equivalent functional of Poisson's equation subject to Dirichlet 

boundary conditions. In comparison of this equation with Poisson's equation, it is 
clear that the order of the derivative of function qJ contained in the equivalent 
functional is reduced by one. 

If the boundary condition of the third kind (aqJ/an = f2 - fl qJ) is substituted 
into Eq. (5.3.7), one obtains: 

(5.3.11) 

Consideration of that f = - pie, thus the corresponding functonal is: 

(5.3.12) 

where the boundary condition of the third kind is included in the functional. For 
inhomogeneous boundary conditions of the second kind aqJ/an = f2' fl = 0, 
then: 

I(qJ) = S hlVqJI 2 dQ - S pqJdQ - S ef2qJdS . (5.3.13) 
{J {J S 

If aqJ/an = 0, then 

/(qJ) = S h IVqJI 2dQ - SpqJdQ . (5.3.14) 
{J {J 
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Equations (5.2.10), (5.3.12), (5.3.13) and (5.3.14) are functionals of Poisson's 
equation subject to different boundary conditions. These equations can be 
written in a unified form, i.e. 

This equation represents a constraint variational problem. Hence, the problem 
subject to Dirichlet boundary conditions corresponds to a constrained functional. 
All other boundary conditions (Neumann and Robin) are contained in the equiva­
lent functionals. 

Alternatively, Euler's equation of Eq. (5.3.15) can be derived from the 
following procedures. Rewrite the functional in Eq. (5.3.15) in the form of 

If [(a~)2 (a~)2 (V~)2J I(~) = 2 e ax + ay + az dQ 
a 

. h d fi . . f -I() I· F(~ + c5~) - F(~) - d . accordmg to tee mtlOn 0 () ~ = 1m , ()~ = (11], an m 
a-O (1 

(c~ )2 (V~)2 (v~) consideration of ax + (11]x = ax + 2 ax (11]x + (121];, then 

+ fefl~1]dS - fef21]dS 
s s 

= f(eV~' V1] - p1])dQ + fefl~1]dS - f ef21]dS 
ass 

= e f(V'(1]V~) -1]V2~)dQ - f p1]dQ + ~e(fll](p - f21])dS. 
a a s 

If (jJ(~) = 0, the following equations must be satisfied 

(5.3.16) 
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Thus, it is proved that Eq. (5.3.15) is the equivalent functional of Poisson's 
equation with inhomogeneous boundary conditions of a different kind. It is 
obvious that the homogeneous or inhomogeneous boundary conditions of the 
second and the third kind are automatically satisfied in the process of variations 
where the divergence theorem can be used. Hence the boundary conditions of tile 
second and third kind, called natural boundary conditions, do not need to be dealt 
with in finite element methods. This is an important advantage of F EM. In other 
words, the boundary conditions of the second and third kind are automatically 
satisfied using the variational approach. The only exception is where boundary 
conditions of the first kind are considered as a constrained condition of the 
variational equation. 

For axisymmetric fields, the functional of Poisson's equation is 

I (~) = 2n f ~ [e [ (~~ r + (~~ r ] -2p~ }drdz 
n 

+ 2n f eGfl~2 -f2~ )rdT 
r 

(5.3.17) 

~I Ii = g(r, z) . 

5.3.1.2 Physical manipulation 

In electrostatic fields, the energy is a functional of potential ~, i.e. 

WA~) = ~fD'EdQ = ~ f 1V~12dQ. (5.3.18) 
n n 

According to Eq. (5.2.18) 

bW.(p) = W.(~ + b~) - W.(~) = e J V~· Vb~dQ (3.3.19) 
n 

By using vector identity and then 

V~·Vb~ = V·(b~V~) - b~V·V~. (5.3.20) 

Substitution of Eq. (5.3.20) into Eq. (5.3.19), leads to: 

bW.(~) = e f V ·(b~V~)dQ + f eb~V· EdQ 
n n 

= f eb~ ~: dS + f c5~pdQ (5.3.21) 

n 
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where S is the boundary surface of the domain and n is the unit length of the 
normal direction of surface. Equation (5.3.21) demonstrates that the incremental 
of energy b It;, in the domain equals the incremental of energy due to the volume 
charge p and the surface charge (J. Substitution of the third kind of boundary 
condition into Eq. (5.3.21), yields: 

Mt;,(q» = ~t:bq>(f2 - flq»dS + J pbq>dQ. 
S il 

Combining Eqs. (5.3.19) and (5.3.22), the result is: 

t:JVq>bVq>dQ - ~t:bq>(f2 - fl(p)dS - J pbq>dQ = O. 
il S il 

(5.3.22) 

(5.3.23) 

This is the variational expression of Poisson's equation with boundary condi­
tions of the third kind. In other words, the equivalent functional is: 

l(q» = is I: JVq>JzdQ + ~ t: 0:/1 q>Z - f2q» dS - J pq>dQ . 
il S il 

Of course this equation is exactly the same as Eq. (5.3.12) 

5.3.2 Variational expressions for Poisson's equation 
in piece-wise homogeneous materials 

(5.3.24) 

Since Gauss's theorem is used in proving the self-adjoint property of the 
Laplacian operator 2', the variational equation (5.3.24) cannot be extended to 
the case where the permeabilities are discontinuous at the interface, S, shown in 
Fig. 5.3.1. 

Using Eq. (5.3.24) in both areas of Q 1 and Qz respectively leads to 

I dq» = 1 S I: JVq>J 2dQ + ~ t: (1.it q>z - fzq» dT - J pq>dQ (5.3.25) 
fll lj + S UI 

and 

lz(q» = 1 S t:JVq>J 2dQ + f 1:(1flq>z - fzq»dT - J pq>dQ. (5.3.26) 
il2 F2 + S il2 

Fortunately, at the interface S, the normal directions of the boundary are 

Fig. 5.3.1. Piece-wise uniform domain 
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opposite to each other, and which satisfies: 

( o<p) I (0<P) I el - = e2 -on L on s+ 

(S.3.27) 

Combining Eqs. (S.3.2S) and (S.3.26) to Eq. (S.3.27), and considering the edge of 
the discretized elements along the interface, then the variational expression of 
Poisson's equation in piece-wise uniform materials are: 

M(<p)=! f e!V<p!2dQ- f p<pdQ- f ed;!t<p2-f2<p)dr 
III + Il2 III + III Tl + Ii 

= min. (S.3.28) 

where r1 and r2 are boundaries of region 1 and 2, respectively. It is obvious that 
the interfacial boundary conditions at the interface are automatically satisfied in 
the variational approach. 

5.3.3 Variational expression for the scalar Helmholtz equation 

Neglecting the displacement current, Maxwell's equations are reduced to: 

V x H = Js + Je 

oB 
VxE=--ot 
V·H=O 

V·E= O. 

(S.3.29) 

By introducing the vector potential A and considering III the case of 
sinusoidal excitation, the Helmholtz equation is: 

(S.3.30) 
where 

(S.3.31) 

and J. is the imposed current density. 
Using formula (S.2.S9), the functional corresponding to the Helmholtz 

equation is: 

= fV 2A.AdQ + ftFA.AdQ + 2fJ1Js AdQ. (S.3.32) 
Il Il Il 

Applying the vector identity: V 2 A = V (V· A) - V x V x A and Green's theorem 
( 1.2.1S): 

f (V x p. V x Q - p. V x V x Q)dQ = fP x V x QdS 
Il S 
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Eq. (5.3.32) becomes: 

J(A) = J A·V(V·A)dQ - JVxA·VxAdQ + J p2A.AdQ 
n n n 

+ J 2jLJs AdQ + ~A x V x AdS. (5.3.33) 
n s 

Considering a 2-D case, Az is replaced by A and the Coulomb gauge 
V· A = 0 is used, then Eq. (5.3.33) reduces to: 

= f F(x, y, A, Ax, Ay) dxdy + fA ~~ dS (5.3.34) 
n 

where Ax, Ay are partial derivatives with respect to x and y, respectively. 
If the problem is subject to Dirichlet boundary conditions, then the func­

tional is a constrained functional: 

+ lA oA dS 
J on 
s 

Air = g(s) . (5.3.35) 

If the problem is axisymmetric, then the equivalent functional is [12]: 

oA A2} 
+2A- +- dQ Or r 

where A =As, J =JI}. 

(5.3.36) 

The variational expression of the Helmholtz equation in linear media can 
also be derived by the extremum principle of energy. 
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5.3.4 Variational expression for the magnetic field 
in a non-linear medium [14] 

In this section, the discussion is treated in a different way. Assume that the 
corresponding functional of a specific partial differential equation is given, then 
proving the Euler's equation of the known functional is just the partial diffcren­
tial equation which is to be solved. 

A 2-D non-linear boundary value problem is represented by: 

(5.3.37) 

A = const 

where A = A=. The equivalent variational problem of Eq. (5.3.37) is: 

B 

J(A) = f (f..!. BdB )dXdY - f lA: dxdy + f ~(~/I Al - IlA )dr 
!l oJl. !l rJl. 

1 

= min (5.3.38) 

AIr, = const . 

Now, the problem is to prove that Euler's equation of (5.3.38) is the first 
equation of (5.3.37). Based on the definition of variation of a functional: 

o c5I(A) = a/[A(x, y) +oc<5AJI,,=o 

B 

= {:oc[f(f ~ BdB )dXdY - f lAdxdy 
!l 0 !l 

+ f ~ GliAl - IlA )dr ] } /"=0 = O. 
Ii 

(5.3.39) 

of of oB oA of oB 
Because ooc = oB oA ooc = oB oA bA, then 

B 

c5I(A) = f o~ (f ~ BdB) ~~ c5Adxdy - f l<5Adxdy 
!l 0 !l 
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(5.3.40) 

By considering the relationship between B and A, the following equations are 
obtained. 

oA 
B=--

y ax (5.3.41) 

then 

(5.3.42) 

and thus 

. f (lOA o(t5A) 1 oA O(bA)) f (jJ = - - -- + - - -- dxdy - JbAdxdy 
J.I. ax ax J.I. oy oy 

il il 

+ f ~(flA - f2)bAdr = 0 . 
r l 

(5.3.43) 

The first integral term of the above equation can be expressed by: 

f [0 (lOA ) 0 ( 1 oA. )] - - - bA + - - - bA dxdy 
ox J.I. ox oy J.I. oy 

il 

f [0 (lOA) 0 (lOA)] 
= ox ~ ox + oy ~ oy bAdxdy 

il 

+ f (~ oA o(t5A) + ~ oA O(bA)) dxdy . 
J.I. ox ax J.I. oy oy 

il 

(5.3.44) 

Using Green's formula 

f (~~ + °o~) dxdy = f [N cos(n, i) + M cos(n, j)] dr 
il r 

(5.3.45) 
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the LHS of Eq. (5.3.44) is transformed to a surface integral, i.e. 

J [ 0 (lOA ) a (lOA )] - --bA +- --bA dxdy 
ox ~ ox oy ~ oy 

u 

J [ loA . 1 oA . ] 
= ~ ox bA· cos(n, I) + ~ oy bA· cos(n, J) dr 

r 

f I oA = - -t5Adr. 
~ on 

r 

If A = const on r 2 , then bA = O. Equation (5.3.46) then reduces to: 

--bAdr= --bAdr. f 1 oA f I oA 
~ on ~ on 

r r, 

Combining Eqs. (5.3.43), (5.3.44) and (5.3.47) results in: 

J [0 (lOA) a (lOA) ] M = - - - - + - - - + J t5Adxdy ax ~ ox oy ~ oy 
u 

Therefore, the following equations must be satisfied: 

AIr, = const 

(5.3.46) 

(5.3.47) 

(5.3.48) 

(5.3.49) 

This proves that Eq. (5.3.37) is Euler's equation of the functional given in 
Eq. (5.3.38). 

The variational expressions for the integral operators are discussed in 
reference [12J. 
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5.4 Variational finite element method 

It has been shown in Sect. 5.2 that to solve a partial differential equation subject to 
the given boundary conditions is equivalent to solving a variational problem. This 
problem is to find an extremum function of the functional subject to the given 
constraints. This equivalence is based on the fact that the functional is maximum, 
minimum or stationary only when the corresponding Euler's equations and the 
corresponding boundary conditions are satisfied. Before the development of 
digital computers, only simple variational problems could be solved by the Ritz 
method, the Galerkin method or the orthogonal series method. With digital 
computers, numerical methods are developed rapidly. The extremum of a func­
tional can be found by using numerical methods. 

5.4.1 Ritz method 

The Ritz method is used for the variational approach. The unknown solution is 
assumed in terms of a summation of series which is called trial function. The trial 
function consists of unknown parameters, Ci , and basis functions, !/Ii' For 
example, the approximate solution is expressed as: 

n 

u = L Ci!/li (i = 1, ... , n) . (5.4.1) 
i= 1 

Substituting the trial function into the functional allows the functional to be 
expressed in terms of unknown parameters. Differentiating the functional with 
respect to these parameters and then setting to zero gives: 

oJ(Ci!/lJ = 0 . 
oC i 

(5.4.2) 

If there are N unknown parameters, there will be N simultaneous equations to 
be solved to obtain these unknown parameters. In this method. the trialfunction 
is defined over the whole solution domain and satisfies at least some and usually all 
the boundary conditions. The accuracy of the approximate solution depends on 
the choice of the trial function. The approximation improves with the size of the 
trial function family and the number of adjustable parameters. If the trial 
functions are part of an infinite set of functions they are capable of representing 
the unknown function to any degree of accuracy. If the form of the solution can 
be guessed, the trial function should be close to that imaged solution. 

Example 5.4.1. Find the function u(x) which satisfies the differential equation 

d2 u 
dx2 = - f(x) = - 2 (5.4.3) 
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subject to 

u(a) =A, u(b) = B . 

Solution. u(x) is a continuous function in the closed region [a, b]. This problem 
is equivalent to the problem of finding the function u(x) which minimizes the 
functional 

b 

l(u) = J[~ (~~y -f(X)U(X)JdX. (S.4.4) 

a 

According to the Ritz method, the solution of Eq. (S.4.4) is approximately 
represented by a trial function of the form: 

n 

u(x) = Cll/tdx) + Czl/tz(x) + .... + Cnl/tn(x) = L Cil/ti(X) (S.4.S) 
i= I 

where C i are unknown parameters to be determined. I/ti should be selected in 
such a way that u(x) satisfies the boundary conditions. If A = B = 0, the simplest 
trial function is chosen as: 

u(x) ~(x - a) (x - b) (C l + Czx + C3 XZ + ... + Cnxn- l). (S.4.6) 

To avoid the tedious calculation, let 

u(x) = C dx - a) (x - b) . (S.4.7) 

Substituting Eq. (S.4.7) into Eq. (S.4.4) and minimizing the functionall(u) with 
respect to the parameter C 10 leads to: 

hence 

thus 

ol(u) a Jb {I z [JZ } eC
I 

= aC
I 

lC I 2x-(a+b) -2C1(x-a)(x-b) dx=O 
a 

C 1 [!(a Z + ab + bZ ) - (a + b)l] = 2 [t(a2 + ab + bZ ) 

- !(a + b)2 + ab] 

u(x) = - (x - a) (x - b) . 

This result is exactly the same as the analytic solution of Eq. (S.4.3). For this 
problem, the lower order approximation is sufficient to obtain a satisfactory 
result. 

The advantage of the Ritz method is that the order of the derivatives of the 
function contained in the functional is reduced by one compared to the differen­
tial equation. However, if the shape of the boundary is complicated, it is hard to 
choose a trial function which satisfies the boundary conditions. The finite 
element method is an improvement of the Ritz method. It subdivides the whole 



5.4 Variational finite element method 155 

domain into a large number of elements, then the trial functions only need to be 
satisfied in each element. Hence it is much easier to choose the approximate 
function than in the Ritz method. 

5.4.2 Finite element method (FEM) 

The F EM and the Ritz method are essentially the same. Both use a trialfunction as 
an approximate solution and determine the parameter:s included in the trial 
functions by making the functional minimum, maximum or stationary. The main 
difference between these two methods is that the assumed trial functons in the Ritz 
method are defined over the whole domain which satisfy the boundary conditions. 
In FEM, the trial functions are defined only within the elements, notfor the whole 
domain. Hence the trial function in FEM only has to satisfy certain continuity 
conditions within elements. The elements generated in FEM are simple in shape 
but collectively can represent very complex geometries. Hence FEM is far more 
versatile than the Ritz method. In other words, FEM becomes a special case of 
the Ritz method when the piecewise continuous trial functions obey certain 
continuity and completeness conditions. 

5.4.2.1 Domain discretization 

The principle of domain discretization is the same as that described in Sect. 4.4. 
For 2-D problem, the simplest shape of the element is a triangle (3-node) or 
a quadrangle (4-node). 

For first order triangular elements (3-node), the trial function is assumed to 
be a linear function of x and y 

3 

u(x, y) = (Xl + (X2 X + (X3Y = L NZUk 
k=l 

= 2~[(ai +bix +CiY)Ui + (aj +bjx +CjY)Uj 

+ (am + bmx + CmY)UmJ (5.4.8) 

where the subscripts i,j, m are the vertices of the triangle. This equation in­
dicates that the function u within the element depends on the nodal values, Uk> 

and the nodal coordinates. The constants in Eq. (5.4.8) are the same as those 
derived in Chap. 4, i.e. 

1 
ai : XjYm - XmYj 
aj - XmYi - XiYm 

am = XiYj -XjYi 

bi = Yj -Ym 

bj = Ym -Yi 

bm=Yi-Yj 

(5.4.9) 
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The shape functions N~ contained in Eq. (5.4.8) are: 

1 
Nf (x, y) = 2S (ai + bix + CS) 

1 
Nj(x, y) = 2S (aj + bjx + CjY) (5.4.10) 

1 
N':,.(x, y) = 2S (am + bmx + cmy) . 

In axisymmetric coordinates, the trial functions and the shape functions are: 

3 

u(x, y) = !Xl + !X2r + !X3 Z = L N~Uk (5.4.11) 
k=l 

1 
Nf(r, z) = 2S (ai + bir + Ci Z) 

1 
Nj(r, z) = 2S (ai + bir + Ci Z) (5.4.12) 

1 
N"",(r, z) = 2S (ai + bir + Ci Z) • 

The next step of FEM is to substitute the trial function into the equivalent 
functional and to determine the constant values Uk by the principle of variations. 

5.4.2.2 Finite element equation of a Laplacian problem 

The equivalent functional of Laplace's equation in a 2-D case is: 

(5.4.13) 

Ie(CP) = J -ieiVcpl2dxdy in Q e (5.4.14) 
s. 

where IAcp) is the functional within each element. Assume 

3 

cp(x, y) = !Xl + !X2X + !X3Y = L NkCPk (5.4.15) 
k=l 
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and consider that: 

(5.4. I 6) 

The compact form of Eq. (5.4. I 6) is: 

(5.4.17) 

where 

(5.4.18) 

and S is the area of ,dijm' Substitution of Eq. (5.4. I 7) into Eq. (5.4.14) leads to: 

Ie (qJ) = S 1 E {V qJ } T {V qJ } dxd y = -h S [Be { (P } F [Be { qJ } ] dxd y 
s~ Sf.! 

(5.4.19) 

where 

(5.4.20) 

Since Be is a constant matrix, the integration of Eq. (5.4.19) is easy to evaluate, 
I.e. 

(5.4.21) 

where Ke is the symmetric 3 x 3 element coefficient matrix. The functionals in 
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5~ _______ ~4 

CD 
CD 

3 
Fig. 5.4.1. Discretization of a 2-D problem 

2 

elements 1, 2 and 3 of Fig. 5.4.1 are: 

1 
lP5} Ke, !::l Ie, (lP) = 2 {lPl lP2 

1 ~,} K., !::l Ie,(lP) = 2 {lP5 lP2 
(5.4.22) 

1 ~,} K" !::) Ie,(lP) = 2 {lP2 lP3 

where 

r'" 
kW klfl] 11 

_ (I) k(l) k(l) Ke, - k21 22 25 
k(l) k(l) k(l) 

51 52 55 

[ k'" 
k(2) 

k¥l ] 22 24 

K = k(2) k(2) klj-J e2 42 44 

kW. k(2) k(2) 
54 55 

(5.4.23) 

[ k'" 
k(3) kW] 22 23 

Ke3 = kIll k(3) k(3) 
33 34 . 

k(3) k<td k<tJ 42 

Substituting Eq. (5.4.22) into Eq. (5.4.13) gives the total functional: 

3 1 5 5 

I(lP) = e~1 Ie(lP) = 2 i~1 j~1 KijlPilPj 

1 T 
= 2 [lPl lP2 lP3 lP4 lP5] K[lPl lP2 lP3 lP4 lP5] (5.4.24) 
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where 

kll k12 0 0 k ls 

k21 k22 k23 k24 k2S 
K= 0 k32 k33 k34 0 (5.4.25) 

0 k42 k43 k44 k4S 
kSI kS2 0 kS4 kss 

The elements of the system matrix are the sum of the relevant coefficients of the 
element matrix, e.g. k22 = kW + kW + k'ii, k24 = Wl + k~31, and so on. 

Using the extremum condition of the functional: 

oI(cp) = 0 
oCPj 

the system matrix equation is: 

K{cp}=O. 

(5.4.26) 

(5.4.27) 

Equation (5.4.27) is the finite element equation of a Laplacian problem. K is 
a sparse, symmetric and banded matrix of a size N x N. (N is the total number of 
nodes.) The diagonal clements of the matrix are pivotal compared to the others 
and all of the values of the sub-determinates of the matrix are positive. Hence 
K is a positive definite matrix. This result can also be obtained by the property of 
the 'operator'. If the operator is completely continuous, the resulting matrix is 
positive definite. This property is sufficient to guarantee the convergence of the 
solution of the matrix equation. 

For a 2-D Poisson's equation, the equivalent functional is: 

Eo 

= II(cp) - 12 (cp) = L [Ie,(CP) - I. 2 (cp)] . (5.4.28) 
e=1 

The first term in the square bracket of Eq. (5.4.28) is the same as the RHS of 
Eq. (5.4.19). The second term in the brackets of this equation is expanded as 
follows: 

(5.4.29) 

According to the extremum principle of a functional: 

(5.4.30) 
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lfthe charge density p' within the elements is assumed uniform, then the integral 
of Eq. (5.4.30) is: 

{P}e = f p'[Ney dxdy = ~ p' f ~ 1 (5.4.31) 

~ II 
where S is the area of the triangle. The formulation of the integration can refer to 
Eqs. (4.2.28) and (4.2.31). Then the finite element equation is: 

K{¢} = {P} 
where 

Eo 

{P} = L {P}e' 

For an axisymmetric problem 

since 

then 

f I [(o<p)2 (C<p)2] J(<p) = 2: e a; + OZ ·2nrdrdz 
s 

Ke = 2n f B{Berdrdz 
s. 

[ 
bl + cl 

2ne 
= -(rO) b·b· + C·C· 4S J I J I 

bmbi + CmCi 

bibj + CiCj 

hJ + CJ 
bmbj + CmCj 

The parameters ab bb Ck(k = i,j, m) are similar to Eq. (5.4.9), i.e. 

1 ai = rjZm - r mZj aj = r mZi - riZm am = riZj - rjZi 
bi = Zj - Zm bi = Zm - Zi bm = Zi - Zj 

Ci = r m - rj Cj = ri - r m Cm = rj - ri 

The element of the column matrix {P} is: 

{P}e = 2n f p'[NJ{rdrdz =~ Sp'(ri + rj + rm) f ~ 1 
~ II 

~ 2; SP"o in 

(5.4.32) 

(5.4.33) 

(5.4.34) 

(5.4.35) 

(5.4.36) 

(5.4.37) 

(5.4.38) 
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5.4.2.3 Finite element equation for 2-D magnetic fields 

The problem of 2-D static magnetic fields are described by: 

+ f ~ ( ~ 11 A 2 - 12 A ) dl = min 
I, 

(5.4.39) 

A [" = g(L) 

where A = Az , r 1, r 2 are the contours of the boundary with the boundary 
conditions of the first and second kind, respectively. Compare the first integral 
of Eq. (5.4.39) with Eq. (5.4.28); the difference is A -> rp, 1/ J1. -> e, J -> p. The 
boundary integral of Eq. (5.4.39) has been discussed in Sect. 4.2.2.1. 

Therefore rewrite the first equation of (5.4.39) as: 

I(A) = L [Ie, (A) + I e2 (A) + I e3 (A)] 
e 

where 
Ie,(A} = 1{A};K{A}e. 

Consider in cylindrical coordinates, the elements of matrix Ke as: 

211: ro 
K~s = K~r = - ·-4 (brbs + eres) (r, s = i,j, m) . 

J1 S 

The second part of Eq. (5.4.40) is: 

, 211: , 
Ie2 (A) = 211:J AoroS = 3 J rOS(Ai + Aj + Am} 

211: , 
3J roS 

(5.4.40) 

(5.4.41) 

(5.4.42) 

211: 3 J'roS = {A}I{P}e (5.4.43) 

211: 
3 J'roS 

For inhomogeneous boundary conditions of the third kind, the contribu­
tions of the boundary value are only given by the boundary edges of the element 
which lies on the boundary such as the edge jm in Fig. 4.2.2. Suppose the vector 
potential along the edge of each element varies linearly, i.e.: 

I ( I ) I A=Aj+(Am-Aj)~= 1-~ Aj+~Am 

= (1 - t)Aj + tAm (5.4.44) 
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Then the third part of (5.4.40) is: 

I .. (A)=2rr f ~(~/IA2_/2A )rdl 
Jm 

(5.4.45) 

Integration of Eq. (5.4.45), and substitution of the boundary conditions II and 

12 by using the average value Ila,f2a along the edge jrn, thus the total matrix 
corresponding to the Ie2 (A) and Ie3(A) is: 

P" I 

(5.4.46) 

The element matrix coefficients considering of the element along the in­
homogeneous boundary is: 

where the 10 is the length of the edge, i.e. 

(5.4.48) 

Then the final equation is obtained: 

K{A} = {P} . (5.4.49) 

If the axisymmetric field is calculated and the flux density B is of interest, the 
relationship between B and A is noted. 

aA 
B=--

r az 
A aA 

B-=-+-
- r ar 

(5.4.50) 
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where A = A r . The first equation of Eq. (5.4.39) becomes: 

J(A) = f 2~ B2 rdrdz - 2n f JArdrdz 
{1 {1 

+ 2n f ~ ( ~ II A 2 - 12 A ) r dl = min . 
r 2 

(5.4.51) 

The first integral term of Eq. (5.4.51) is the magnetic energy stored in the region 
with unit length along the z-axis. If the potential A is assumed by a linear 
function, i.e. 

then 

(5.4.52) 

2 2 2 2 2 Ao (Ao)2 B = Br + B: = 1X3 + 1X2 + 21X2 - + -
ro ro 

(5.4.53) 

where 

(5.4.54) 

lXI, 1X2, 1X3 are similar to Eq. (4.2.8). 

5.4.2.4 Finite element equation for non-linear magnetic fields 

The equivalent variational problem corresponding to the magnetic field with 
non-linear permeability is: 

J(A) = f{[~ (~ OA) + ~ (~ OA)] - 2JA} 2nrdrdz or 11 or GZ 11 GZ 
Q 

,+:1(1 2 ) . + J ~ 2" IIA - 12A dl = mm 
Ii 

(5.4.55) 

Air! = const. 

To avoid the repetition of tedious formulae, the assumption is made that the 
problem statisfies the homogeneous boundary condition of the second kind, and 
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in each element the permeability is a constant. Thus 

iJ I Eo a I Eo f [ a (1 a 3 ) - = L _e = L - - - L N'k A 
aAk e~laAI e~l ar J.1. ark~l 

JJ. 

a (I a 3 )] + -a - -a L NfA 2nrdrdz. 
z J.1. z k~ 1 

(5.4.56) 

If k = i, 

(5.4.57) 

The formulations of krs(r, s = i,j, m) satisfy the recurrence form and are ex­
pressed as follows [14J: 

[ ro 1 S ] 
k~s = k~r = 2n 4S (brbs + crcs) + 6" (br + bs) + 9ro 

r, s = i,j, m . (5.4.58) 

The coefficients of the global matrix are the summation of the element 
matrices, i.e. 

Eo I 
Kij = L - k ij . 

e~ 1 J.1.e 
(5.4.59) 

The total matrix equation is: 

K{A}-{P}=O (5.4.60) 

where 

Eo 

Pi = L Pi i = 1,2, ... , No 
e~l 

2nS 
Pi = -3- JerO . (5.4.61) 

Equation (5.4.60) is a non-linear matrix equation. It can be solved by function 
minimization methods discussed in Chap. 11 and the method introduced in 
reference [15]. The non-linear expression of B(H) can refer to reference [16]. 

5.4.2.5 Finite element equation for Helmholtz's equation (2-D case) 

The equivalent functional of a Helmholtz equation in 2-D with homogeneous 
boundary conditions is: 
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+ jWIl}' A 2 ] dxdy - f IlJ Adxdy 
il. 

Eo 

I [Ie, (A) + Ie,(A)] . (5.4.62) 
e=1 

Compared with Eq. (5.4.38), only the term of Sse jWIlY A 2 dxdy is added, thus 

= ~ f [Be{A}e]T[Be{A}e]dxdy 
u. 

- [322 f ([N]e{A}JT([N]e{A}e}dxdy 
s. 

= ~ {A}'; Ke { A } e - ~2 {A}'; He { A } e . (5A.63) 

In Eq. (5.4.63), Ke is the same as in Eq. (5.4.21). Let 

(5.4.64) 

where [N] •. is the shape function of a first order triangular element. Then 

hr' = S NrNsdxdy = S(1 + brs }/12 (r, S = i,j,m) (5.4.65) 
s. 

b ={1 r=s 
rs 0 r #- s . (5.4.66) 

The process of integration is given in reference [12]. The integration in 
Eq. (5.4.65) is carried out using area coordinates. 

The last term in Eq. (5.4.62) is the same as the matrix {P} e in Eq. (5.4.33) with 
p replaced by the current density J. After extremization, the finite element 
equation is: 

K{A} - [32H{A} = {P} . (5.4.67) 

This is an eigenvalue equation. The solution method of this equation is dis­
cussed in references [12, 17, 18]. 
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5.5 Special problems using the finite element method 

5.5.1 Approaching floating electrodes by the variational 
finite element method 

As previously mentioned, there are three kinds of the boundary conditions. 
Suppose an uncharged conductor or a charged conductor with total charge of 
Qo is immersed in the electric field, as shown in Fig. 5.5.1. 

The potential of these conductors are unknown constants denoted by 
tpF (called floating potentials). The value of tpF depends on their positions and 
the imposed field strength. At the boundary of these electrodes, the following 
condition is satisfied 

(5.5.1 ) 

where Q is the total charge on the electrode. It is proved [19J that the equivalent 
functional of the problem is: 

Q y (5.5.2) ! /(tp) = f~ [(~~)2 + (~tp)2J dxdy - fptpdQ - QtpF = min 

Q 

(P 11'0 = tpo 

tp IrF = (PF 

where r 0 satisfies the Dirichlet boundary condition, and r F is the boundary of 
the floating conductor. If Q = 0, the discretization of Eq. (5.5.2) is: 

J( (p) = 1 { 4>} TK { 4>} - { 4>} T [PJ 

{4>}={tpl tp2.··tpn tpl, ... tp1rn ... tpN-I tpN}T. 

(5.5.3) 

(5.5.4) 

Assume the nodal numbers of the floating electrodes are inserted between the 
others. n is the nodal number counted before the floating electrodes. Where the 
subscripts II, 1m are the first and last nodal number of the floating electrode, 
respectively, N is the total number of the nodes of the problem. By using the 

Fig. 5.5.1. Charged or uncharged conductor emerged in 
an exterior field 
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Fig. 5.5.2. Field distortion due to an uncharged conductor 

condition oIjoepi = 0, i = 1, ... , n, n + 1m + 1, ... , N, one obtains the follow­
ing equations: 

N 

L (5.5.5) 
;= I j=n+ I j=n+l",+ I 

For the nodes i, i = II, ... 1m, only one independent equation is obtained by 
oIjoepi = 0, i.e. 

n n+lm n+lm 

L L L kijepj 
j=1 i=n+1 j=n+ 1 i=n+ 1 

N n+lm 

+ L L kijepj = ° . (5.5.6) 
j=n+l",+ 1 i=n+ I 

Solve Eq. (5.5.5) and (5.5.6) simultaneously; the solution is then obtained. 

Example 5.5.1. A long square conductor is enclosed in a grounded slot, as 
shown in Fig. 5.5.2. Using the above formulations, the field distortion by the 
square conductor is shown in the same figure. 

5.5.2 Open boundary problems 

5.5.2.1 Introduction 

The variational method is not suitable for an infinite domain. The reason is that 
the variational method requires the operator to be positive definite. How to 
solve open boundary problems by using FEM has already been discussed in 
many papers. A good summary for solving the open boundary problems of 
different field problems is given in reference [20]. The simplest method is that of 
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truncation. Other methods are ballooning [21], infinite element [22, 23], both 
mapping and infinite elements [24], mixed FEM and analytical methods [25], 
mixed FEM and BEM [26J. 

The method of truncation employed uses an infinite domain for a large but 
within a finite range. This is then considered as an approximation of the infinite 
domain. This method is simple but is uneconomical and computationally 
inefficient and, could even be inaccurate. The accuracy depends on the area of 
truncation. This method cannot be used in dynamic problems. The introduction 
of the terminating boundary leads to a reflection of waves by these boundaries. 
Consequently, the solution obtained from any such model is no longer be the 
original progressive wave problem. 

In mapping, the domain z of the physical problem is mapped onto an image 
domain W. Then an infinite domain is mapped on to a small bounded domain. 
The standard FEM is then used in a finite domain W. 

The mixed method combines both the advantages but avoids the dis­
advantages of the two methods. 

In this section the ballooning method is chosen as an example to demon­
strate the solution of an open boundary problem. The others can be found in the 
references. 

5.5.2.2 Ballooning method 

In the ballooning method, the whole space of the problem is divided into two 
parts. The inner part is closed by the boundary, r 0, and the outer part is 
extended to infinity, as shown in Fig. 5.5.3. 

The inner part denoted by Qj in Fig. 5.5.3, contains the complex geometry, 
different materials and the area where the field distribution is of interest. In the 
outer part, the region is separated into several layers, D 1 , D2 , • •• ,Dn, the outer 
boundary of these layers are r 1, r 2, ... , r n' In these layers all the elements are 

Centre point 

Fig. 5.5.3. Discretization scheme 
for ballooning method 
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subdivided by the radial lines that start from one centre point. This ensures that 
the elements in each annular are similar to the next and the layers are able to be 
blown up rapidly. Thus the exterior boundary of the annular regions is extended 
to infinity by the speed of I]2n, where I] is a constant. In the inner part, the 
conventional finite element mesh is used and a matrix Ki is established as usual. 

In the annular region D I, the matrix equation is: 

[ K::~ K::~] [<pro] = K(l) [<pro] = 0 (5.5.7) 
K21 K22 <Pr, <Pr, 

where <Pro, <Pr, are nodal potentials of the boundary r 0 and r I. In the annular 
region D2 , the matrix equation is: 

[~~: ~~:] [:~J = K'[:~J = o. (5.5.8) 

In a 2-D case, K'll = KW. Combination of Eqs. (5.5.7) and (5.5.8) leads to: 

[Ki:i Ki:d] [<pro] = K(2) [<pro] = o. 
Kii K~d <Pr2 <Pro 

(5.5.9) 

The above equation shows that the boundary r I is eliminated. After repeating 
these recursive procedures, all of these interface boundaries are eliminated and 
the exterior region is extended to infinity. The recursive matrix is summarized 
as: 

[
K(n) 0] [K(n) A(n)K(n) K(n+l) _ II _ 12 21 

- 0 K(n) K(n) A(n)K(n) 
22 Zl 21 

(5.5.10) 

where 

(5.5.11) 

Finally, combining the interior matrix Ki and the recursive matrix K(n+ 1), results 
Ill: 

(5.5.12) 

For an axisymmetric field, the matrix K'll = I]K\li. Therefore, 

[ 
K(n) 0 ] [K(ln2) A (n) K(zn1) Kn+1 = 011 

1] 2" - 'K (n) - 2n - I A(n) K(n) 
22 I] 21 

In this case 

A(n) = (K(n) + I] zn-'K(n»)-l. (5.5.14) 

By using these formulations, the field distribution of the 220 k V zinc-oxide 
arrester was obtained (Fig. 5.5.4) [27]. 
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5.6 Summary 

5 Variational finite element method 

Fig. 5.5.4. Potential distribution of a 220 k V zinc-oxide 
arrester 

The variational finite element method has been discussed in this chapter. It was 
shown that the extremum function of the functional is the solution of the 
corresponding Euler's equation of the functional. In variational FEM, the 
solution of the partial differential equation is obtained by solving the variation 
of the equivalent functional of the physical problem described by a partial 
differential equation or an integral equation. 

The discussion started by deriving the equivalent functional of various 
electromagnetic field problems. The functional of the differential equation was 
derived by energy minimization or by using a mathematical approach. In doing 
this, the related concepts of the functional and variations were reviewed first. 

It has been shown that the boundary conditions of the third kind (including 
the boundary conditions of the second kind) are contained in the equivalent 
functional for problems where the divergence theorem can be used. Therefore, 
the homogeneous boundary conditions of the second kind and the interface 
boundary conditions of different materials are automatically satisfied in the 
mean or in a least square sense in the process of finding the extremum of 
the functional. These boundary conditions need not be dealt with in the 
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discretization process of the matrix equation; only the Dirichlet boundary 
condition is considered as a constraint on the functional. This is one of the most 
important advantages of FEM. 

The equivalent functionals of some electromagnetic problems are derived 
in Sect. 5.3. 

The method for dealing with some advanced problems,. such as the open 
boundary problem and the problem containing floating conductors, are dis­
cussed in the last section. These methods complete the applications of FEM. 
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Chapter 6 

Elements and Shape Functions 

6.1 Introduction 

Domain discretization is one of the most important steps in many numerical 
methods to solve boundary value problems. In finite element method (FEM), the 
whole domain is discretized by elements. In boundary element method (HEM) 
the boundary of the domain is discretized by elements. The choice of the 
geometry of the element and the form of the approximating function to repre­
sent the behaviour of field variables (such as the potential cp, field strength 
E H and so on) within each element are both extremely important. They 
strongly influence the accuracy of the results, the computing time and the 
software engineering of computer programs. Hence the problem of element 
discretization is a generic problem and is common to element approximate 
methods as well as FEM. Hence element discretization techniques are discussed 
in one chapter. 

It has been shown in former chapters (4 and 5) that a matrix equation is used 
for the solution of partial differential equations. The coefficients of the matrix 
are calculated via the partial derivatives of the shape functions. Hence the 
expressions of shape functions of various elements are the first to be formulated 
in the use of FEM. The shape functions of a 3-node triangular element, 
corresponding to linear approximation, has been introduced in Chaps. 4 and 
5 to convey the principles underlying FEM. To obtain more accurate results and 
to solve different problems, many different kinds of elements and approximating 
functions can be used. For instance, both theory and experience indicate that, 
for many two dimensional problems, it is best to subdivide the problem region 
into the smallest possible number of large triangles, and to achieve the desired 
accurate solution by using high-order polynomial approximations on this very 
coarse mesh. 

This chapter intends to provide the principles required to construct the various 
shape functions belonging to Lagrange and Hermite polynomials. For easy to 
evaluate element coefficients, the shape functions of different elements are 
formulated in local coordinates. The most effective elements belonging to the 
isoparametric family with linear and high order interpolations are the main 
topic in this chapter. 
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6.2 Types and requirements of the approximating functions 

The functions used to represent the behaviour of field variables specified by the 
governing equations are called interpolation functions or approximating functions. 
In element discretization methods, the approximating function u(x, y) is defined 
for each element. It is expressed by the following equation: 

m m 

u(x, y) ~ u(x, y) = L rJ.k I/Ik (x, y) = L rJ.kNk(X, y) (6.2.1 ) 
k~l k~l 

In Eq. (6.2.1), rJ.k are undetermined parameters. They may be the value of 
potentials or other physical quantities defined in a governing equation, hence 
they are called generalized coordinates. As shown in Chaps. 4 and 5, rJ.k are nodal 
values of a potential. I/Ik is a set of independent basis functions. Thus, the 
approximating function is a linear combination of a set of discretized values and 
the basis functions. 

In the method using weighted residuals, the interpolation function needs to 
ensure that 

S RWdQ = 0 (6.2.2) 
Q 

where R is the residual due to the approximation and W is a weighting function. 
This equation guarantees that the integral of the weighted residuals over the 
whole domain approaches zero. 

In the variational principle, the generalized coordinates are determined by 
the extremum principle: 

(6.2.3) 

where I(u) is the equivalent functional of the problem to be solved. In other 
words, these two methods have to ensure that the approximate solution must be 
convergent to the exact solution. Hence the interpolation function needs to 
satisfy some requirements discussed in the following subsection. 

6.2.1 Lagrange and Hermite shape functions 

In F EM, there are two categories of elements known as Lagrange and Hermite. 
The former takes the values of the field variables at nodes of the element as being 
the unknowns. The latter takes both the unknown function and its partial derivative 
as unknowns. Thus, a Hermite element contains more than one unknown at each 
node. Usually the symbol Nf is used to represent the degrees of freedom (in 
structural machanics, the number of unknowns is called the degrees of freedom) 
at each node. Nf = 1 represents the Lagrange element, Nf > 1 indicates the 
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Hermite element. For example, for a 1-0 problem, if Nf = 2, it means the values 
of the function and its first order derivative are the unknowns at each node. 
Applying this rule to electrostatic fields, if the potential qJ and its first order 
partial derivatives oqJjox, oqJjoy are to be solved simultaneously then a Her­
mite element should be used. 

6.2.2 Requirements of the approximating functions 

Both in the method of weighted residuals and in the variational formulations, the 
derivatives of the unknowns contained in the integrand of the functional and the 
weighted residual formulations (Eq. (4.2.22)) is one order less than that which 
appears in differential equations. These formulations are called weak formulations. 
For example, the equivalent functional of Poisson's equation, V 2 U = f, is 

(6.2.4) 

The problem of first order derivatives of the unknowns contained in a weak 
formulation is called CO-continuous. To solve this type of problem only the 
approximating function itself needs to be continuous within the element and 
along the side of adjacent elements. Hence a first order interpolation function as 
used in Chaps. 4 and 5 can be chosen as the approximating function. In a similar 
manner, a CI-continuous problem is the one whose weak formulation contains 
at most second-order derivatives. In general, if there are derivatives of the order 
(n + I) contained in the integrand of the element equation, the problem is 
C"-continuous. (Most of the potential problems in electromagnetic fields belong 
to CO-continuous problems.) 

In order to obtain convergent results as the element size is reduced to z~ro, 
the approximating function has to satisfy both compatibility and completeness, 
[1--4]. 

(a) Compatibility requirement 

Compatibility means that the field variable and its partial derivative up to one 
order less than the highest-order derivative appearing in the weakformulation must 
be continuous aiong the element interfaces. In Eq. (6.2.l), t/lk(X) is constructed such 
that the generalized coordinates at any node of the common side of adjacent 
elements are the same regardless from which element the node is approached. In 
this case the generalized coordinates ak and the interpolation function t/lk(X) are 
compatible. The elements exhibiting these characteristics are called conforming 
elements. Those that do not satisfy this requirement are said to be non­
conforming elements. If a linear function u(x, y) = al + (J.2X + (J.3Y is used as the 
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b 
Fig. 6.2.1a, b. A confirming element a 

approximate function to solve a 2-D problem, the continuity of the zero order 
derivatives along the element interfaces is satisfied, but the first order derivatives 
along the element interfaces are discontinuous. 

The above requirement is illustrated in Fig. 6.2.l(a) by considering the 
surface of the conductor. There are two linear elements. The value U2 is the same 
whether it is obtained by element 1 or 2, but the derivative at node 2 is 
discontinuous. Figure 6.2.1(b) uses different kinds of shape function which 
ensures the continuity of the derivative as well. 

(b) Completeness requirement 

Completeness requires that within the element the partial derivatives of the 
interpolation function must be continuous in the same order as contained in the 
weak formulations of the problem. During the process of mesh refinement the 
interpolation function must remain unchanged. In other words for a CO-continuous 
problem the approximating function must be capable of representing both a con­
stant value of unknown function and a constant partial derivative of the highest 
order appearing in the weak formulation as the element size reduces to zero in 
a limited case. These properties ensure the approximate solution is convergent to 
the exact solution if enough numbers of elements are used in the whole domain. 

The completeness requirement can be explained physically. For instance, the 
uniform value of the field variable is the most elementary type of variation. Thus 
the interpolation function must be able to give a constant value of the function 
and its partial derivative appearing in the functional as the element is reduced to 
zero. For example, in electrostatic fields, if the potential is considered as 
unknown, then only o({J/ox, o({J/oy are contained in the functional, hence it is 
a CO-continuous problem. If the linear function ({J = a + bx + cy is chosen as 
the interpolation function, when the element is reduced to a point, then ({J = a, 
which is a constant and in addition o({J/ox, o({J/oy are also constants as required. 

To construct elements and interpolation functions to achieve CO continuity 
is not especially difficult but the difficulty increases rapidly when high order 
continuity is desired. Fortunately, analysts have developed a variety of elements 
applicable to many different types of problems. Each type of element in the 
catalogue is characterized by several features. These are the shape of the 
element, the number of nodes, the type of nodal variables and the type of 
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interpolation function. If anyone of these characterizing features is lacking, the 
description of an element is incomplete. 

The complete polynomials with a specific order such as the following expres­
sions satisfy the compatibility and completeness requirements 

u(X, y) = C(l + C(2X + ct3Y 

ll(X, y) = ct l + C(2X + ct3Y + C(4X2 + C(sxy + C(6y 2 . 

(6.2.5) 

(6.2.6) 

The bilinear approximating (four node quadrilateral) and the incomplete third­
order polynomial (9 node triangle) are appropriate for 2-D problems, because 
they are always complete polynomials of one variable. That polynomial func­
tions have been widely used as the approximating function is due to the 
following reasons: 

a) The polynomial functions are inherently continuous. 
b) It is possible to improve the accuracy of the results by increasing the 

order of the polynomial. Theoretically, a polynomial of infinite order corre­
sponds to the exact solution. 

c) The polynomial is easy to differentiate and integrate. 

6.3 Global, natural and local coordinates 

In Chaps. 4 and 5, the shape functions of the first order triangular element are 
derived in Cartisian coordinates. The real positions of every node in the chosen 
coordinates are called global coordinates. If a high order polynomial is chosen 
as the approximating function, the derivation of the shape function will be more 
complicated and consequently the derivation of the element matrix equation is 
also cumbersome. The use of local coordinates will simplify any calculation of 
the element matrix greatly for any kind of elements. 

6.3.1 Natural coordinates 

In natural coordinates [3], the position of any point of the element is defined by 
a dimensionless quantity which varies between ° and 1. At the end nodes of the 
element, the natural coordinate is either I or 0, within the element, it varies. These 
values are independent of the geometry of the element only on the location of point. 
The use of natural coordinates is illustrated in the following subsections. 

(a) Linear elements in a one-dimensional case 

Consider a one-dimensional problem. The whole region [a, b] is subdivided into 
N straight line filaments with different lengths. Assume the end nodes of any 
element are denoted by Xi and Xj as shown in Fig. 6.3.1(a). 
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The position of any point P within the element is expressed by: 

(Xj - X)Xi (x - x;)Xj 
x = + = Ll Xi + L2Xj 

Xj - Xi Xj - Xi 

177 

(6.3.1) 

where the two dimensionless coefficients Ll and L2 , are defined as natural 
coordinates, i.e. 

X·- X LI(X) = _J __ 

Xj - Xi 
and 

X-x· 
L 2(x)=--' 

Xj - Xi 
(6.3.2) 

where Ll and L2 are ratios of lengths. At node i, Ll = 1, L2 = ° and at node j, 
Ll = 0, L2 = 1. They automatically vary between ° and 1. The natural coordin­
ates Ll and L2 may be interpreted as weighting functions relating the coordin­
ates of the end nodes to the coordinates of any interior point. From the 
definition of Eq. (6.3.2) Ll and L2 must satisfy the following constraint. 

(6.3.3) 

Hence only one of the natural coordinates is independent. 
Equation (6.3.1) expresses that the position of any interior point is the linear 

combination of the natural coordinates and nodal values. Ll and L2 are called 
the shape functions of a 1-0 linear element. For a 1-0 linear element there are 
two shape functions but only one of them is independent. At the end nodes of the 
element, the shape functions are equal to those of the natural coordinates. 

Furthermore, if the unknown function varies linearly along the element as 
shown in Fig. 6.3.2, then the function u is expressed by 

u(x) = (Xl + (X2 X = [1 x] {:J (6.3.4) 

At nodes i and j, u(x) becomes 

(6.3.5) 

Inverse of the above equation yields 

(6.3.6) 
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I : 
! ! Fig. 6.3.2. Linear interpolation for a I-D case 

Substitution of this equation into Eq. (6.3.4) gives 

[ 1 XiJ-I {Ui} Xj - X X - Xi u=[1 xJ =--u-+--u-
1 'Xj Uj Xj - Xi I Xj - Xi } 

(6.3.7) 

i.e. 

(6.3.8) 

where Ui and Uj are values of the unknown function at the end nodes. Conse­
quently, the value of the function along the element can be expressed in terms of 
the nodal values and the natural coordinates as given in Eq. (6.3.8). Examination 
of Eqs. (6.3.1) and (6.3.7) shows that both the coordinates X and y and the 
function u have the same formulations expressed by the natural coordinates 
LI and L 2. This kind of element is called an isoparametric element. 

(b) Linear elements in a two-dimensional case 

In a 2-D triangular element, any point within the element is determined by three 
natural coordinates L], L2 and L3 [5J 

1
L1 =.1]/Ll 

L2 = .1 2/ .1 

L3 = .13/.1 

(6.3.9) 

where .1 is the area of triangle ijm and .1], .12 and .13 are the areas of triangles 
Pjm and Pmi, Pij, respectively, as shown in Fig. 6.3.3(a). L], L2 and L3 are called 
natural or area coordinates. They represent the ratios of areas. Each of these 
have values varying from 0 to 1 and satisfy the following constraint. 

(6.3.10) 

Only two of the natural coordinates are independent. All points located on a line 
parallel to any edge of the triangle have the same natural coordinates as shown 
in Fig. 6.3.3(b). The natural coordinates of the nodal points and the middle 
points of each edge are shown in Fig. 6.3.3(c) 

at node i LI=1 

at nodej LI = 0 

at node m LI = 0 

L3 = 0 

L3 = 0 

L3 = 1 . 

(6.3.11) 
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Fig. 6.3.3a-<. Natural coordinates 
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In Fig. 6.3.3(a) if node P is located on line ij, then the area .1 J = 0, thus 
LJ = .1J/.1 = 0, hence line ij is the axis of LJ = 0. 

The relationship between the natural coordinates and the global coordinates 
of a 3-node triangular element are classified as below. The area of the triangle is 
determined by the coordinates of the three vertices: 

Xi Yi 
I s=- Xj Yj (6.3.12) 
2 

X", y", 

The areas of the three subordinate triangles are given by 

s· = ~l; , 2 
1 

~J ] = ~ [(XjYm - xmYJ ) + x(Yj - Ym) + y(xm - Xj)] 

Xm y", 

X 

(6.3.13) 
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Substitution of Eqs. (6.3.12) and (6.3.13) into Eq. (6.3.9), gives the three 
natural coordinates 

1 
Li(X, y) = (a. i + bix + ciy)/2S 
Lj(x, y) = (aj + bjx + Cjy)/2S 

Lm(x, y) = (am + bmx + cmy)/2S 

(6.3.14) 

where S is the area of triangle ijm. The formulae of ab bk and Ck (k = i,j, m) are 
the same as those given in Eq. (4.2.10). Comparison of Eq. (6.3.\4) and Eq. (4.2.13) 
shows that the shape functions of a 3-node triangle are the same as those of the 
natural coordinates of the same triangle. In other words, the shape functions of 
a 3-node triangle can be expressed by area coordinates as follows: 

Ni=Li (6.3.15) 

The global coordinates of any point within the element is now linearly 
related to the natural coordinates as follows 

{
X = LiXi + Ljxj + Lmxm ~ ~ LkXk (k = i,j, m) 

y - LiYi + LjYj + LmYm - L LkYk 
k 

Li + Lj + Lm = I . 

These equations can be expressed in matrix form 

x = [Li 

(6.3.16) 

(6.3.17) 

A similar conclusion has been shown in the linear element in a 1-0 case. 
If the function u within the element is assumed to be various and linearly 

dependent upon the coordinates x and y, then 

(6.3.18) 

The derivation of au/ax and au/ay can be calculated in natural coordinates as 
follows 

{ au=~.aLi+~.aLj+ au .aLm 
ax aLi ax aLj ax aLm ax 
au au aLi au aLj au aLm -=-.-+-.-+-.-
ay aLi ay aLj ay aLm ay 

(6.3.\9) 
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where 

{ 

OLk bk 
-;;; = 2S 
O (k = i,j,m). 

Lk Ck 
-=-oy 2S 

Because the interpolation functions are assumed to be linear, hence the partial 
derivatives of natural coordinates to the variables of coordinates are constants. 

(c) Linear element in a three-dimensional case 

By extending the natural coordinates defined in a 2-D case, the natural coordin­
ates in a 3-D case are defined as the ratios of volumes. Figure 6.3.4 shows 
a tetrahedral element. Any point P inside the tetrahedron is expressed by the 
natural coordinates LIo L2, L3 and L4. They are defined as: 

V 
Li = ~ i = I, 2, 3, 4 (6.3.20) 

subject to 

L1 + L2 + L3 + L4 = 1 (6.3.21) 

where V is the volume of tetrahedron 1234 and Vb ... , V4 are volumes of the 
sub-tetrahedra P234, P341, P421 and P 123, respectively. Hence 

at node I: L1 = \, L2 = 0, L3 = 0, L4 = ° 
at node 2: L1 = 0, L2 = \, L3 = 0, L4 = ° (6.3.22) 
at node 3: L1 = 0, L2 = 0, L3 = I, L4 = ° 
at node 4: L1 = 0, L2 = 0, L3 = 0, L4 = \ . 

The global Cartesian coordinates and the natural coordinates are related by: 

(6.3.23) 

2 
4 

3 Fig. 6.3.4. Natural coordinates for a 3·0 case 
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The solution of Eq. (6.3.23) is shown in the results of L 1 , L 2 , L3 , and L4 • For 
example 

I 
LI = 6V(u l + blx + CIY + dlz) 

[ 
X2 Y2 Z2 Yz Z2 

I 
- X3 Y3 Z3 Y3 Z3 X 
6V 

X4 Y4 Z4 Y4 Z4 

Xl Z2 X2 Y2 

, ] + X3 Z3 Y- X3 Y3 (6.3.24) 

X4 Z4 X4 Y4 

where the volume V is determined by the position of nodes 1,2,3 and 4, i.e. 

XI YI ;:1 

I X2 Y2 ;:2 
(6.3.25) V=-

6 X3 Y3 Z3 

X4 Y4 Z4 

To simplify the expression, thc natural coordinates for a tctrahedron arc 

I 
Li = 6V(ui + bix + CiY + diz), i = 1,2,3 and 4 . (6.3.26) 

The constants U2, ... , d4 are obtained via a cyclic permutation of subscripts 
1,2,3 and 4 as in Eq. (6.3.23). Since the constants in Eq. (6.3.26) are cofactors of 
the determinant of Eq. (6.3.25), only thc appropriate sign + ve or - vc should bc 
given before each term. Equation (6.3.26) is valid only when the nodes are 
numbered counterclockwise from node l. 

In summary of the previous section, the natural coordinates are defined to be 
the ratios of lengths, areas or volumes corresponding to the one, two and three 
dimensional cases, respectively. 

6.3.2 Local coordinates 

As shown in the previous sections, for linear elements in 1-0,2-0 and 3-D cases, 
there are 1, 2 and 3 independent natural coordinates. In order to simplify the 
evaluation of the derivatives of the shape function, it will be convenient to define 
a set of local coordinates. In Fig. 6.3.5(a), let the line of Ll = 0 denote the 1]' axis 
and the line of L2 = 0 denote the ~' axis. Then the relationship between the 
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b 

Fig.6.3.5a--c. Local coordinates for a 2-D case 

coordinates of ~', 11' and the natural coordinates are 

ri' = Ll 

~'= L2 

I - ~' - 11' = L3 

1] 

c 

Furthermore if the coordinate transformation is defined as: 

then 
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(6.3.27) 

(6.3.28) 

(6.3.29) 

The coordinates ~ - 11 are called local coordinates. This transformation allows an 
arbitrary shaped triangle and a curvilinear triangle (Fig. 6.3.5(b)) into a right 
angled triangle as shown in Fig. 6.3.5(c). 

Here the discussion is limited to a 2-D case. The extension of local coordi­
nates to one- and three-dimensional cases is straightforward. The construction 
of the shape functions of various elements in local coordinates will be given in 
the next section. 

6.4 Lagrange shape function 

It is indicated in Sect. 6.2, the degrees of freedom at each node could be 1,2 or 
even more. When Nf = 1, the shape function is called a Lagrange polynomial or 
a Lagrange shape function. It is used to analyse problems where only the nodal 
values of the function u need to be determined. In this case, the problem requires 
the continuity of u at the element interfaces. The normal derivative of u at these 
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N200 

a b 

(n,O,O) 

(O,n,O) (O,2,n-2) (O,I,n-l) (O,O,n) 

n=3 

c Fig. 6.4. la-c. Shape function in local coordinates 

boundaries is discontinuous. This polynomial has been defined as CO continu­
ous. In the following subsections, the Lagrange shape functions of triangular 
and quadrilateral elements with different orders will be derived in local 
coordinates. 

6.4.1 Triangular elements 

As shown in Sect. 6.3, the number of shape functions is coincident with the 
number of the nodes. For example, there are three shape functions for a 3-node 
triangular element. For a 6-node triangle, there are 6 shape functions. 

Silvester [6] pointed out that the shape functions of a nth-order triangular 
element can be expressed by the following systematic formulae 

Napy(Ll' Lz, L3) = Na(Ld' Np(L z)· N y(L3) 

1 
na (nLl - i + I) Na(Ld = . . a ~ 1 
,= 1 I 

Na(Ld = 1 a = 0 . 

The subscripts a, f3 and yare integers satisfying the constraint of 

a+f3+y=n 

(6.4.1 ) 

(6.4.2) 

(6.4.3) 
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where n is the order of the interpolation polynomial of the approximating 
function. For NfJ(L2) and N y(L3)' the formulae have the same form as those in 
Eq. (6.4.2). 

A 3-node element is now used to explain the use of Eq. (6.4.2). It should be 
recalled that for a 3-node element, the order of the approximating function is 
n = 1. Hence ex + fJ + y = 1. Considering node 1 in Fig. 6.4.1(a), the shape 
function is designated as N loo(a = 1, fJ = 0, y = 0). From Eq. (6.4.1) and Eq. 
(6.4.2), 

Using the same treatment at node 2 and 3, similar results are obtained: 

N olo(L I , L 2, L 3) = N o(L I) - N I (L 2) - N 0(L3) = L2 

NoodLI' L 2, L3) = No(Ld - N o(L 2) - N dL3) = L3 . 

These results are identical to those given in Eq. (6.3.15). 

(6.4.4) 

(6.4.5) 

( 6.4.6) 

With the above method, the shape functions of a 6-node triangular element 
(n = 2) shown in Fig. 6.4.I(b) may be obtained more easily by the following 
manipulations. Designate node 1 as N afJy = N 200 , then 

N 200 = N2(Ld- N o(L2)-No(L3) 

N,(Ld = TI (2LI ~ i + 1) = (2LI - 1 + 1) 
i= I I 1 

( 2LI - 2 + 1) 
- 2 = L I(2L I - 1) (6.4.7) 

Np(L2) = 1 

N y (L3) = 1 

Hence N 200 = LI (2LI - 1). Similarly, for node 2,3,4,5 and 6, the shape fun-
ctions are: 

N 020 = No(Ld-N2(L2)-No(L3) 

= (2L2 - 1 + 1)-1/2(2L2 - 2 + I) = L2(2L 2 - 1) 

N002 = L3(2L3 - 1) 

N llO = NdLd-NdL2)-No(L3) = 2L I(2L 2) = 4LIL2 

NOli = 4L2 L3 

NIOI=4LIL3' 

Equation (6.4.8) can be summarized as 

i = 1,2,3 

(6.4.8) 

(6.4.9) 
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These are shape functions of a 6-node triangular element. It should be noted, 
that the area coordinates Lb L2 and L3 are determined by the position of the 
nodes. The shape functions of N 5, N 6 are the permutations of N 4 as shown in 
Eq. (6.4.9). It can be seen clearly that the area coordinates, often referred to as 
the natural coordinates are very useful for constructing the shape functions. The 
shape functions of a 9-node triangular element can be obtained by the same 
formulae with the help of Fig. 6.4.1 (c). 

6.4.2 Quadrilateral elements 

Figure 6.4.2(a) shows a rectangular element with lengths 2a and 2b. It can be 
mapped to local coordinates as a square element (Fig. 6.4.2(b)) by the trans­
formation equation 

x - Xo 
~=--

a 
y - Yo 

'l=-b-' (6.4.10) 

In local coordinates, the shape function of the quadrilateral element can be 
constructed according to the following formula 

Ni = (Ii fJ)(IXl + IX2~ + IXJ'l + IX4~2 + IX5~'l + IX6'l2 + IX7~2'l 
J= 1 

(6.4.11 ) 

y 

(-1, lJ <1,1) 

t 
4 3 

2b 
(Xo,yo) 

t 
x ~ 0 

L-2a 
1 2 

(-1, -lJ <1,-lJ 

a b 

4 
4 

ll t 
3 

3 0 
I 

1 2 
c d 

Fig. 6.4,2a-il. Transformation of a quadrilateral element 
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where 

_ {G j node i is not located on the edge j . _ 
Fj -. (j - 1,2,3,4) . 

1 node i IS located on the edge j 

( 6.4.12) 

Assume N is the total number of nodes of the element. The number of terms 
contained in the second parenthesis of Eq. (6.4.11) is N - nh n[ is the nodal 
number on two edges which cross at node i. G[ - G4 are symbols to express the 

----

equations of the four edges, 12,23, 34,41, e.g. 

G[ = 1] + 1, 

G3 = - 1] + 1, 

Gz = - ~ + 1, 

G4 = ~ + 1 . ( 6.4.13) 

Consider a 4-node quadrilateral element corresponding to the bilinear 
interpolation function 

(6.4.14) 

Then the function value and the coordinates within the element are expressed by 
shape functions and the nodal values as: 

4 

X(~, 1]) = L Njxj 
j= [ 

4 

Y(~, 1]) = L N j Yj . (6.4.16) 
j= [ 

Using Eqs. (6.4.11) and (6.4.12), the four shape functions N [ to N 4 are evaluated 
as follows 

due to N = 4, n[ = 3, 

Nd~,1])=G2G3Ct[ =(-~+ 1)(-1]+ l)a[ 

N2(~' 1]) = G3G4 Ct[ = (~+ 1)( - 1] + I)Ct[ 

N 3(~' 1]) = G[ G4 Ct[ = (~ + 1)(1] + I)Ct[ 

N4(~' 1]) = G[ G2 Ct[ = ( - ~ + 1)(1] + I)Ct[ . 

(6.4.17) 

(6.4.18) 

(6.4.19) 

(6.4.20) 

At node 1, N d -I, -1) = 1. Substitution of this condition into Eq. (6.4.17), 
yields Ct = t. Consequently, the four shape functions of a 4-node quadrilateral 
dement become 

Nd~, 1]) = (l -~)(l - 1])/4 

N2(~' 1]) = (l +~)(l - 1])/4 

N3(~' 1]) = (1 + ~)(1 + 1])/4 

N4(~' 1]) = (1 - ~)(1 + 1])/4 . (6.4.21) 
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T] 

4 73 _--+---'"1 

8 

5 2 Fig. 6.4.3. 8-node quadrilateral el~ment 

At the four corners, the following equations hold 

Ni(~i' ''Ii) = 1 (i = 1,2,3,4) 

Ni(~j, I'/j) = 0 (i =I j,j = 1,2,3,4) . 

Equation (6.4.21) can be simplified as 

Nf = (l + ~i~)(1 + l'/il'/)/4 (i = 1,2,3,4) 

[~i] = [ -I - IY 
[I'/i] = [-I -I lY . 

(6.4.22) 

(6.4.23) 

By using the transformation of coordinates, the curved sided quadrilateral 
element (Fig. 6.4.2(c)) also can be mapped to the local coordinates as a square 
element (Fig. 6.4.2(d)). For a 8-node quadrilateral element as shown in Fig. 6.4.3, 
the 8 shape functions can be obtained by the same method. The formulations of 
these shape functions are given in the table of Appendix 6.1. 

6.4.3 Tetrahedral and hexahedral elements 

The simplest element in 3-dimensional cases is the [our node tetrahedron 
(Fig. 6.4.4(a)). A linear approximating function for u within the element is 

u(x, Y, z) = IXl + IX2X + IX3Y + IX4Z • 

A quadratic approximating function corresponding to Fig. 6.4.4{b) is 

u(x, y. z) = IXl + IX2X + IX3Y + IX4Z + IXsX2 + iX6y2 + iX7Z2 

+ iX8XY + IX9YZ + IXlOXZ . 

(6.4.24) 

(6.4.25) 

The shape functions of these elements are obtained by the following equation 
similar to Eq. (6.4.1) 

(6.4.26) 

(6.4.27) 
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Fig. 6.4.4a-d. Elements in a 3-D case 
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b 

d 

Figures 6.4.4(c) and (d) show the hexahedral element by using linear and 
quadratic interpolation functions, the shape functions are determined by 

(6.4.28) 

If a linear interpolation function is used, then 

(6.4.29) 

Detailed formulations are listed in Appendix 6.2. 

6.5 Parametric elements 

According to the type of the approximating functions of the field variables and 
the geometry, there are three types of elements: isoparametric element, sub­
parametric element and super-parametric element. 

The isoparametric element is defined as the unknown function and the coordi­
nates of geometry are approximated by the shape functions with the same order. 
For example in a 3-node triangle, the function u and the coordinates are 
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approximated in the same form, e.g. 

where 

u(x, y) = al + a2x + a3Y = LNkUk 
k 

3 

X = L NkXk 
k=1 

3 
k = i,j, m 

Y = L NkYk 
k=1 

(6.5.1) 

(6.5.2) 

(6.5.3) 

The comparison of Eq. (6.5.1) and Eqs. (6.5.2) and (6.5.3) shows that the 
interpolation function for u(x, y) has the same form and the same order as the 
expressions for the coordinates x and y, which both contain 3 unknown 
parameters, Uk or Xb Yk. If the parameters are the nodal values of the function, 
the formula becomes the approximate expression of the function u. If the 
parameters are the values of the nodal coordinates, the formulae represent the 
actual coordinates. The element which exhibits these properties is called an 
isoparametric element. In other words,for an isoparametric element, the interpo­
lation function for the unknowns within any element has the same shape function 
Nk as those in the coordinates. 

It is not necessary to use an interpolation function with the same order when 
describing both the geometry and field variable of an element. For a sub­
parametric element, the order of the shape function of the coordinates is lower than 
that of the unknown function itself. On the other hand, for a superparameter 
element, the order of the interpolation function of the unknown is lower than that of 
the coordinates. In some cases, the subparametric element is beneficial. 

When a 3-node isoparametric triangle is chosen as a subdivision unit. It is 
assumed that the unknown function u varies linearly in each element. Hence the 
derivative of function u becomes a constant within the element. Therefore, the 
derivative of function u is discontinuous both at the nodes and along the edges 
of the element. In general, this leads to unsatisfactory results. In order to 
increase the accuracy of the results, a high order interpolation function is 
considered. Examples for these polynomials are 

u(X, y) = al + a2x + a3Y + a4x2 + asxy + a6y2 

u(x, y) = al + a2x + a3Y + a4x2 + asxy 

+ a6y2 + a7x3 + asx2 y + a9xy2 + alOy3 . 

(6.5.4) 

(6.5.5) 

Equations (6.5.4) and (6.5.5) are complete polynomials of the second and third 
order, respectively. By increasing the order of the interpolation function, the 
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form of the polynomial can be expressed by the Pascal triangle as shown below: 

zero order 

first order 

second order 

third ordc:r 

fourth order ct.!! X4 

It has been shown in Sect. 4.2.1 that the parameters ct.!, ... , ct., are deter­
mined by the nodal values Uk and the nodal coordinates Xk and Yk' In the 
isoparametric finite element method, 6-node or IO-node elements are associated 
with the second or third order interpolation function. This allows evaluation of 
the parameters ct.!, . .. , ct.6 or ct.!, . .. , ct.!o' In order to satisfy the interelement 
continuity condition, the number of nodes along each side of the element must 
be sufficient to determine the variation of function along that side uniquely. If 
a quadratic interpolation function is assumed to retain the quadratic behaviour 
along the sides of the element, three nodes are required at each side. For a cubic 
interpolation function, four nodes are necessary along each side of the element. 
Hence Eqs. (6.5.4) and (6.5.5) correspond to a 6-node triangle and lO-node 
triangle, respectively. Consequently, the order of the interpolation function and 
the number of nodes of the element are matched to each other. In 2-D cases, the 
relationship between the order of polynomial and the numbers of nodes is given 
by: 

Til) 

P,(x, y) = I. ct.kXii i + j :s; n . 
k=! 

(6.5.6) 

For a complete polynomial P,(x, Y), the number of terms in the summation is 

nZ) = (n + I)(n + 2)/2 . (6.5.7) 

As an example, 

for n = I, T\Z) = 3 p!(x, y) = ct.! + ct.ZX + ct.3Y (6.5.8) 

for n = 2, TiZ) = 6 and so on. 
The use of the isoparametric element results jn the simplest derivation of 

finite element equations. 

6.6 Element matrix equation 

The solution of FEM is based on the element equation. After the equivalent 
functional is found and the form of the discretization element is chosen, the 
coefficients of the element matrix can be evaluated. 
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6.6.1 Coordinate transformations, Jacobian matrix 

Section 6.3.3 shows that by using the coordinate transformation, a straight sided 
element in local coordinates corresponds to a curved sided element in global 
coordinates. Hence any curved boundary of the problems may be simulated by 
the curved element and all the computations carried out conveniently using 
local coordinates. In Sects. 6.4.1 to 6.4.3, the shape functions are constructed 
using local coordinates ~, I] and (. The relationships between local and global 
coordinates are 

n 

X = L Ni(~' I])Xi 
i = 1 

n 

y = L Nj(~, I])Yi (6.6.1 ) 
i= 1 

n 

u(~, 1]) = L Ni(~' I])Uj . 
i= 1 

It has been shown in Sect. 4.2.2.1 that during the calculation of the coeffic­
ients of the element matrix, the partial derivatives of auf ox, ou/ oy, oNj ox and 
oNJoy must be evaluated. The relationship between aNjox, oNjoy, and 
oNdo~, aNjol] are related by a Jacobian matrix J which is derived below 

{
aNi} [O.~ OY] {aNi} {aNi} a~ ac; c~ ax ax 

= = J aNi ox oy aNi aNi 
- - - - -al] 01] 01] Dy ay 

(6.6.2) 

where 

(6.6.3) 

This is called a Jacobian matrix. Hence the Jacobian is the transformation 
coefficient between the global and local coordinates. The inverse matrix of [J] is 

then 

oy ] o~ 

~~ 
(6.6.4) 

(6.6.5) 
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Substitution of Eq. (6.6.1) into Eq. (6.6.3) and evaluation of the determinant 
of the Jacobian for 3-node triangular element gives 

ox oy 
-

IJI = 
o~ o~ IXj - Xi Yj - Yi I = 2S . (6.6.6) 
ox oY 

-
Xm - Xi Ym - Yi 

Oil oil 

This result shows that for a 3-node isoparametric element, the Jacobian is 
constant, and is identical both for the field variables and coordinates. Therefore 
the derivation of the element matrix may be easily obtained. 

6.6.2 Evaluation of the Lagrangian element matrix 

For 2-D Poissonian problems, the equivalent functional is 

I(qJ) = LIe(qJ) = L f Hel VqJI2 - 2pqJ]dxdy 
J 

(6.6.7) 

Substitution of the approximating function of qJ into Eq. (6.6.7) yields 

(6.6.8) 

Ie2 = f 2p ktl NkqJkdxdy . 
J 

(6.6.9) 

According to the extremum principle 

(6.6.10) 

(6.6.11) 

the coefficients of the element matrix are 

k = f (ONk oNq oNk ONq)d d 
kq e ox ox + oy oy x y. 

J 

(6.6.12) 
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Since for a linear shape function oNk/ox and oNk/oy are constants, the evalu­
ation of the integration of Eq. (6.6.12) is easy. If a high order interpolation 
function is used, the integrand in Eq. (6.6.12) is complicated. In order to simplify 
the calculation and to set up a general program in FEM, the coefficients of 
the element matrix for higher-order shape functions are calculated in local 
coordinates. 

The relationship of the integration of an infinite small element between the 
global and local coordinates is 

J dxdy = J IJI d~d'1 . (6.6.13) 

This is because 

(6.6.14) 

where a and b are two infinitesimal vectors shown in Fig. 6.6.1. The components 
of the vectors are 

ax = lim [x(~ + Ll~, '1) - x(~, '1)] = ~x d; 
J~-O ~ 

Q y = lim [y(~ + Ll~, '1) - y(~, '1)] = ~.~ d~ 
J~-O <; 

ux 
bx = U'1 d'1 

uy 
by = U'1 d'1 . 

Substitution of Eq. (6.6.15) into Eq. (6.6.14) yields 

AX oy uy ax 
ds = I a x b I = - d~ . - d'1 - - d~ . - d'1 = I J I dN'1 . 

u~ 0'1 o~ 0'1 

Substitution of Eq. (6.6.16) into Eq. (6.6.12), gives 

1 1 - ~ f f (ONk oNq oNk ONq) kZ = g -.-+-.- IJldN'1· q ax ax oy oy 
o 0 

y 

oL--------------- X 
Fig. 6.6.1. Coordinate transformation 
of an infinitesimal area 

(6.6.15) 

(6.6. \6) 

(6.6.17) 
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For a quadrilateral element, the formula is 

-1 -1 f f (aNk ONq aNk aNq) k;; = e -.-+-.- IJld~dlJ. q ax ax ay ay 
-1 -1 

(6.6.18) 

In Eq. (6.6.17) and Eq. (6.6.18), the partial derivatives are given by 

(6.6.19) 

To evaluate aNk/ax, aNk/ay and to integrate Eq. (6.6.18) manually is 
a teious task. To ease computation, Silvester has provided an universal matrix 
[7-9] method which will be described in the following section. 

6.6.3 Universal matrix 

The evaluation of the element matrix is calculated by the following equations: 

aNk = t aNk a(i = t !2 aNk 
ax i=1 a(i ax i=1 2S iJC 

(6.6.20) 

where 

Ci = Xi+2 - Xi+l . (6.6.21) 

The subscript 'i' is changed cyclically around the three vertices of the triangle. 
The combination of Eqs. (6.6.12), (6.6.20) and (6.6.21) is rewritten as: 

(6.6.22) 

The double summation of Eq. (6.6.22) can be reduced to a single summation if 

t i + 1 = j, i + 2 = m 
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y 

Fig. 6.6.2. Relationship between the variables 
o L--'-----'-_-c._ X for proof of Eq. (6.6.23) 

the following relationships are introduced 

bjb j + CjCj = - 2Scot 9m 

bl + cl = 2S(cot 9j + cot 9m) . 

(6.6.23) 

(6.6.24) 

These equations can be derived with the help of Fig. 6.6.2. A more detailed 
process is given in Appendix 1 of [9]. 

Then 

kkq = 2~ J! cot 9j f [ ( a;jk - ~~ ) ( aa~jq - ~~) ] dCd(m' (6.6.25) 

In Eq. (6.6.25), the value in the square brackets is dimensionless, they are 
independent of the geometry of the triangle and only depend on the approxima­
tion function. Hence, the stiffness element coefficient matrix [kJe may be 
expressed as: 

3 

[kJe = L cot 9i Qj . (6.6.26) 
i= ! 

To calculate Qj, the integration in Eq. (6.6.25) is evaluated by using the following 
formula [9J 

! ! -~2 

f (i (z ds = 2S f f (i(z d(! d(2 = 2S (m :~ n~ 2)! . (6.6.27) 

o 0 

For a 3-node triangular element 

[kl'~'{~[~ _: -:Jcot9.+~l-~ ~ -11 ~ cot 92 

+ ~[ 
1 -1 

~ j cot ~ } -1 1 

0 0 

3 

= e L Qi cot 9i . (6.6.28) 
i= ! 
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1 2 3 3 2 2 3 

T 
0 -:] 3[ I 0 

-I 1 2[ I -1 

~l 2 0 1 0 0 o . 3 -1 1 

3 0 -1 2 -1 0 1 1 0 0 

Fig. 6.6.3. The permutation of Q; 

Due to the property of natural coordinates, when QI is calculated, Qz and 
Q3 are the permutations of the first matrix Q I. This is shown in Fig. 6.6.3. Using 
this rule, the computation time may be greatly reduced and no numerical 
integration will have to be repeated. 

For a high order element, define a vector N = [N 1 N z ... N 6J to express the 
shape function, then 

oN = ~[(1(2(1 -I) 4(I(Z 4(1(3 (z(2(z -I) 4(Z(3 (3(2(3 -1)J 
o( 1 0(1 

= [4~ 1 - 1 4~ 2 4~ 3 0 0 OJ 

[ -: 0 o 0 0 

~] = [(I (z (3J 4 0 0 0 

-I 0 4 0 0 

(6.6.29) 

[~ 
4 0 -I 

o 0] (1N 
~=[(I (z (3J 0 0 3 o 0 
()~z 

0 0 -1 4 0 

(6.6.30) 

[0 0 4 0 0 -I] uN 
(J ~=[(1 (z o 0 0 0 4 -I . 

C~3 o 0 0 0 0 3 

(6.6.31) 

An important observation is that these matrices in Eq. (6.6.29) to Eq. (6.6.31) are 
independent of the shape of the triangle and so are called universal matrices. The 
elements of the matrix contained in Eq. (6.6.29) can be denoted by double 
notations as shown in Fig. 6.6.4(a). The rotating sequence of the nodes are 
shown in Fig. 6.6.5. Then the elements in the matrices of Eqs. (6.6.30) and (6.6.31) 
are obtained by using (b) and (c) shown in Fig. 6.6.4. After the computation, the 
matrix Ql of a 6-node triangular element is 
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1 2 3 4 5 6 6 3 5 

1 [ ] 
0 0 0 0 01 T 

4 0 
2 -1 4 0 0 0 ~J 

1 0 0 0 
3 -1 0 4 0 0 2 0 0 0 

a 

4 5 2 6 3 1 

r 0 4 0 0 -I] 3 0 0 0 0 4 -I 

1 0 0 0 0 0 3 

c 

Fig. 6.6.4a-<:. The permutation of element matrices 

1 

2 

4 
5 6 

a 

4 

6f1<----------1 
3 

1 

2 4 

-1 0 

~] 3 0 
-I 4 

b 

6 

3 

2 4 

b 

c Fig. 6.6.5a-<:. The rotating sequence of the nodes 

0 

0 8 symmetry 

1 0 -8 8 
Ql =-

6 0 0 0 3 

0 0 0 -4 8 

0 0 0 -4 3 

The matrices Q2 and Q3 will be obtained by rotation. 

(6.6.32) 
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Finally, the computation of the element coefficient requires only the calculation 
of the coefficients bi and Ci which are of the first order element. The universal 
matrices of axisymmetric field are given in Appendix A.6.3. 

The construction of an element matrix of quadrilateral elements can also be 
obtained by the universal matrix method [3, 8]. For axisymmetric fields the 
universal matrix can also be derived [10]. 

6.7 Hermite shape function [2, 8] 

As indicated in Sect. 6.4, the Lagrange polynomial only ensures the continuity of 
the unknown function at the nodes and along the edge of element. It will result 
in discontinuity of the derivatives of the function. In order to overcome this 
limitation, the derivatives of the unknowns are included in an approximating 
scheme. The Hermite polynomial achieves this objective as it incorporates both the 
values and its derivations are specified as the unknowns directly at the nodes of 
element. It is CI-continuous element. It ensures the continuity of unknowns and its 
normal derivatives along the side of element. For example, in an one-dimensional 
linear element for a potential problem, both u and au/an at two end nodes are 
assumed as unknowns and are continuous between neighbouring elements. 

6.7.1 One-dimensional Hermite shape function 

A Hermite shape function of order n in a one-dimensional Cartesian coordinate 
is denoted as Hn(x). It is a polynomial of the order 2n + 1 of variable x. For the 
first order Hermite shape function, n = 1, H I (x) is used to represent the first 
order approximation of the Hermite shape function. It represents a cubic 
approximate of x i.e. 

(6.7.1) 

This is because at two terminal nodes of the linear element both u and au/ ax are 
assumed as unknowns, they can be used to determine the four constants IXI -1X4' 

If the interpolation function u(x) is expressed by the shape functions 

(6.7.2) 

then the four constants IXCIX4 or the four shape functions HAl - H~2 can be 
determined. In Eq. (6.7.2), the superscript 1 denotes the first order of the Hermite 
interpolation, the first subscripts 0 and 1 express the zero and the first order 
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derivatives, the second subscripts 1 and 2 express the end nodes 1 and 2. The 
column matrix {uf represents the four unknowns at two end nodes, i.e. 

{u} = {::,} 

uxz 

where 

and 

In writing the first derivative of Eq. (6.7.1), one obtains: 

au z 
- = ctl + 2ct3X + 3ct4X . ox 

(6.7.3) 

(6.7.4) 

Substitution of the four nodal values u 1> Uz and ux " U X2 into Eq. (6.7.1) and 
Eq. (6.7.4) yields 

(6.7.5) 

By using the coordinate transformation ~ = x - xI/I, I = Xl - XI and express­
ing the four shape functions by Nl, Nl, N1, Nt i.e. 

[NJH = [H~I Ht I H~l HtzJ = [Nt Nt Ni Ni] (6.7.6) 

then the four shape functions are formulated by 

Nt = 1 - 3e + 2~3 Nt = (~ - 2e + ~3) 1 

N1=3e-2~3 Ni=(-e+¢3)1. (6.7.7) 

They are the cubic functions of local coordinates. 
The above procedures complete the analysis of a first order Hermite shape 

function of 1-0 case. It can be expanded to derive the formulations for a 2-D 
triangular element. 

6.7.2 Triangular Hermite shape functions 

In 2-D cases, the 3-node triangle is the basic element for domain discretization. 
To ensure the continuity of the function u and its normal derivatives au/on along 
the side of the element, the first order Hermite element is considered. According 
to the analysis in above section, the first order Hermite element represents the 
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cubic interpolation function which is used to approximate the unknown func­
tion. In a 2-D case, the complete cubic interpolation function is: 

u(x, y) = IXI +IXzX + IX3Y + IX4XZ +iXsxy + IX6YZ + IX7X3 + iX8X2y 

(6.7.8) 

where there are ten constants IXI-IXIO to be determined. However, for a 3-node 
triangle, there are 3 variables (u, au/ax, au/ay) in each node. Thus the total 
degrees of freedom of a 3-node triangular element is 9. This is inefficient when 
determining the ten constants as constructing the Cl-continuious element is 
difficult to achieve. Instead the unknowns at each node (u, cu/ax, 
aU/aY)k (k = i,j, m), can be used to determine the 9 shape functions. However 
according to Zienkicwiez, the constraint conditions of the ten constants are 

2 Ctl IXi) - it IXi + 2IXlO = 0 . (6.7.9) 

Then the 9 shape functions can be determined. Suppose in each element 

3 

u(x, y) = L (NkUk + NkUkx + NkUky) . (6.7.10) 
k=l 

At node i 

N i = 1 
aN· 
-'=0 
ax 

aN 
-'=0 
ay 

Ni =0 
aNi 

I aNi =0 -= 
ax ay 

(6.7.11) 

Ni =0 
aN· aNi 
-'=0 -= 1 
ax ay 

At node j and m there are similar conditions as in Eq. (6.7.11). In local 
coordinates, Eq. (6.7.10) is then written as 

u(¢, IJ) = L [Nk(¢' IJ)Uk(¢, IJ) + Nk(¢' IJ) Uk~(¢' IJ) + Nk(¢' IJ)Uk~(S' IJ) ] 
k 

where 
(6.7.12) 

au ax au ay 
u~ = ax a¢ + aya¢ = u;cx~ + Uyy~ 

au ax au oy 
u~ = -a -;- + -a -a = u;cx~ + Uyy~ 

x VIJ Y IJ 
(6.7.13) 

U;c, uy, x~, y~, x~ and y~ are partial derivatives of u, x, y with respect to x, y and 
¢.IJ, respectively. N, N are shape functions with respect to U;c and uy. Substitu­
tion of Eq. (6.7.13) into Eq. (6.7.12), yields 

u(¢, IJ) = L [Nkuk + (NkX~ + NkX~)U;c + (NkY~ + NkY~)Uy]. (6.7.14) 
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Comparison of Eq. (6.7.14) and Eq. (6.7.10) shows that the relationships between 
the global coordinates and local coordinates are 

Nk(x, y) = Nk(~' 1]) 

Nk(x, y) = Nk(~' 1])x~ + Nk(~' 1])x~ (k = i,j, m) . 

Ndx, y) = Nk(~' 1])Y~ + Nx(~, 1])y~ (6.7.15) 

.. f h OUi OUi OUj OUj oUm oUm 
SubstItutIOn 0 t e nodal value Ui, Uj' Um , ox' oy' aX' oy' ax' ay into 
Eq. (6.7.14) via the manipulation yields: 

Ni = L'f(3 - 2Li) + 2L1L2L3 (i = 1,2,3) 

Ni = L'f L2 + 0.5 L1L2L3 (i = 1,3) 

N2 = L~(L2 - 1) - L1L2L3 
- 2 . Ni=LiL3+0.5L1LzL3 (/=1,2) 

(6.7.16) 

These are the 9 shape functions of a 2-D first order Hermite element. In the 
above equations, 

(6.7.17) 

6.7.3 Evaluation of a Hermite element matrix 

By following the same procedures as those used for deriving the Lagrange 
element matrix, [Nk] is substituted by [Nk]H([Nk]H which are composed of 
three terms, Nk , Nk and Nk), then Eq. (6.6.12) becomes: 

k e _ f {[(aNi aNi aNi) aNi (aNi aNi aNi) aNi] "- e -+-+- -+ -+-+- -
'1 AX OX OX ox oy oy oy oy 

J 

+ _'+_'+_' _1+ _'+_'+_' _1 [(ON, aN· oN.) aN· (ON- aN· ON.) ON.] 
ax ax ax ax ay ay ay ay. 

[(aNi aNi aNi) aNj (aNi aNi aNi) aNj]} d d + -+-+- -+ -+--'--=+- - x y ax ax ax ax ay ay ay ay 

(6.7.18) 
The complete formulation will be obtained by the following steps: 

a) To develop the derivatives of N; Ni N; with respect to ~ and 1]. 
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. .. aNi aNi aNi aNi 
b) Usmg the relatIOnship between 8;' a and -af' a' then Eq. (6.7.18) 

can be expressed by Y '1 

kij = J f(~, '1)IJI d~d'1 . (6.7.19) 
j 

The integration of Eq. (6.7.19) is carred out numerically. The efficiency of the 
triangular Hermite shape function is verified by the following example: 

Example 6.7.1. Two coaxial cylindrical electrodes subject to Dirichlet boundary 
conditions are shown in Fig. 6.7.1(a) where Udr=R, = 100, u21r=R2 = 0. 

Solution. The region is subdivided by a Lagrange or Hermite triangular element 
as shown in Fig. 6.7.1(b). The relative errors of the field strength using Lagrange 
and Hermite shape functions are given in Table 6.7.1. 

The advantage of the Hermite shape function is that not only a higher accuracy 
of the field strength obtained but while the Hermite interpolation is used, the 

symmetry conditions ~ul = 0, and ~ul = ° are substituted in the matrix 
uX ",:0 uy y=O 

u=o 

o~----~--+----

OL---~~~~~~---J 

a b 

Fig. 6.7.1a, b. An example of Hermite element 

Table 6.7.1. Comparison between a Lagrange element and a Hermite element 

Shape function 

Lagrange 

Hermite 

No. of nodes and elements 

200 nodes, 342 elements 
600 nodes t , 1062 elements 

200 nodes, 342 elements 

Max. error of E(%) 

32.5 
8.2 

8.0 

t Near the inner conductor, the density of the elements are increased. 
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equation as a constraint condition, hence Ey = 0, and Ex = 0 on the x and y axis 
are satisfied. But these conditions cannot be guaranteed in Lagrange shape 
function. The problem is that the CPU time of the Hermite shape function is 3 or 
4 times longer than the Lagrange shape function. 

Hermite shape functions for a quadrilateral element are discussed in 
reference [11]. In the case of three-dimensional elements, satisfaction of C 1 

continuity is quite difficult and practically no such element has been used in the 
references cited. 

6.8 Application discussions 

Isoparametric elements are widely used to solve various problems. The choice of 
the order of the interpolation function depentis on the requirements. The linear 
element usually obtains good results for some purposes. Figure 6.8.I(a) shows 
the flux distribution around a pair of coils near a ferromagnetic plate. However, 
the flux density along the surface of the plate is discontinuous as shown in 
Fig. 6.8.I(b). This phenomenon is caused by using the linear interpolation 
function to approximate the vector potential. Then the derivative of the 

.') 02E-4 

oL-80----i 

a b 

Fig. 6.8.1a, b. Discontinuity of flux density obtained by a linear element 
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potential within each element is a constant. If a more accurate result for the 
field strength is expected, higher order elements, are needed. 

The accuracy of a quadratic element is higher than a linear element in 
general. An example of a one-dimensional case is given in reference [2]. That 
example also shows that the contribution of the cubic element has no significant 
effect. Usually the quadratic element is the better choice to obtain accurate 
results. A comparison of high order polynomial elements for solving a 2-D 
Laplacian problem is given in [11]. The comparative study ofisoparametric and 
subparametric elements of a higher order element is given in [12]. 

In calculating the field strength of an axisymmetric problem, the 8-node 
quadrilateral element gives a more accurate solution than the 3-node triangular 
element. An example is shown in Table 6.8.1. The values given in the table 
are the field strengths on the conductor surfaces and on the three interfaces (on 
the right hand side of the interface) of the different conducting materials 
(rl : r2: r3: r4 = 1000: 100: 10: 1) shown in Fig. 6.8.2. The results show that the 
quadrilateral element is much more suitable than the 3-node triangular element. 

Generally speaking, the increase in the number of elements will result in 
a more accurate solution for any given problems. However there will be a certain 
number of elements beyond which the accuracy cannot be improved by a signifi­
cant amount. Reference [1] gives an example. 

In some 3-D cases, if the hexahedron element is used to solve the problem in 
a cubic volume, the subparameter element (the function is approximated by 
quadratic function but the geometry is approximated by linear function) is 
preferred. It reduces the computation time and the good results are obtained. 
The comparison of subparametric and isoparametric elements to solve a 
nonlinear electromagnetic problem is discussed in [13]. 

In order to obtain more efficient results to solve some specific problems, 
several special elements are used. For example, the exponential shape function 
[14] and the spline function [15] are used to solve the eddy current problem. 
The edge element [16-20] is used to solve 3-dimensional vector problems. These 
new techniq ues are beyond of the purpose of this book. References are provided 
for the readers who are interested in these problems. 

Table 6.8.1. A comparison of an 8-node quadrilateral element and a 3-node triangular element 

Theoretical E (Vjmm) 8.6707 0.2890 0.01 734 0.001239 0.000963 
results 
Triangular E (Vjmm) 5.9467 0.2549 0.016~2 0.001189 0.001049 
element (160) dE (%) - 31.4 - 11.8 -6.2 -4.0 8.9 
Triangular E (V/mm) 6.9910 0.2689 0.01664 0.001205 0.000999 
element (640) dE (%) - 19.4 -7.0 - 3.8 -2.7 3.7 
Quadrilateral E (V/mm) 8.0101 0.2769 0.01703 0.001227 0.000954 
element (25)1 dE (%) -7.6 -4.2 - 1.6 - 1.0 -0.9 

t The region having the conductivity ofYI is divided into ten 8-node quadrilateral elements, each of 
the other regions is divided into five 8-node quadrilateral elements. 
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Interface 

<p=ov 

6.9 Summary 

6 Elements and shape functions 

Fig. 6.8.2. Comparison of the accuracy of 
different elements for an axisymmetrical problem 

In FEM the coefficients of the element matrix are dependent upon the formula­
tion of the shape functions. Hence the construction of the shape function is one 
of the key steps in the use of the finite element method. 

The formulations of the shape functions are based on the geometry of the 
element, the order of the interpolation function and the degrees of freedom of the 
nodes. The Lagrange shape function considers only the value of the function as 
unknowns, it is CO-continuous. The Hermite shape function considers both the 
value of the function and its derivatives as unknowns, it is a Cl-continuous 
element. In this chapter both the construction of the shape function of CO and 
C1-continuous elements have been discussed. 

An universal recurrence formulation to construct Lagrange elements has 
been introduced. For these elements, the number of shape functions are identical 
to the number of nodes. For high-order triangular elements, the universal matrix 
is very useful to construct the element matrix. A great number of numerical 
integrations are eliminated. 

Using the coordinates transformation, any curved element can be trans­
formed into a regular shape in local coordinates. This technique ensures that 
any curved boundary can be modelled very well. The isoparametric elements 
may conveniently be used because for both the coordinates and the function 
variables the Jacobian is identical. 

The choice of different kinds of elements are discussed in Sect. 6.8 and given 
in the references. 
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Appendix 6.1 Lagrangian shape functions for a 2-D case 

Geometric figure 

3-node triangle 

6-node triangle 

Interpolation function Shape functions 

U= IX I+ IX 2XIX 3Y NI=I-~-lJ 

U = IXI + IX2 + IX3Y 
+ IX4XY + IXSX2 

+ IX6y2 

N2 = ~ 

N3 = lJ 

N d~, '1) = (I - ~ - '1) 
[2(1 - ~ -lJ) - 1] 

N2(~' '1) = ~(2~ - I) 

N 3(~' lJ) = lJ(2lJ - I) 

N4(~' lJ) = 4~(1 - ~ -lJ) 

Ns(~, lJ) = 4~lJ 

N 6(~' lJ) = 4lJ(1 - ~ - lJ) 
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4-node quadrilateral U = IXI + IXIX + :t3XY 

+ IX4Y 

8-node quadrilateral U = IXI + IXIX + IX3Y 

+ IX4XY + IXSXI + IX6yl 

+ IX7Xly + IXsxl 

6 Elements and shape functions 

N I = 1/4(1 - ~)(1 - 'I) 

NI = 1/4(1 + ~)(1 - 'I) 

N3 = 1/4(1 + ~)(1 + 'I) 
N4 = 1/4(1 - ~)(l + 'I) 

Ni = 1/4(1 + ~i~)(1 + 'Ii 'I) X 

(~i~ + 'Ii 'I - 1) i = 1,2,3,4 

Ni = 1/2(1 - e) (1 + f/if/) i = 5, 7 

Ni = 1/2(1 - 'II) (1 + ~i~) i = 6, 8 

[~a = [ - 1 1 1 - 1 0 1 0 - IY 
[I]i] = [ - 1 -1 1 1 - I 0 1 or 

Appendix 6.2 Commonly used shape functions for 3-D cases 

Geometric figure Interpolation function Shape function 

4-node U = IXI + IXIX + IX3Y NI=I-~-I]-( 

tetrahedron + IX4XY NI = ~ 
N3 = 'I 
N4 = ( 

IO-node U = IXI + IXIX + IX3Y + Ct4Z N I = [2 (1 - ~ - 'I - () - I] x 

+ asxy + Ct6YZ + IX7XZ (1 - ~ - 1'/ - 0 
tetrahedron + IXsXI +:t?yl + IXIOZ2 NI = (2~ - 1)~ 

N 3 = (21'/ - 1) I] 

N4 = (2( - 1)( 

N5 = 4~1'/ 
N 6 = 4(1 - ~ - I] - O~ 

N7 = 4(1 - ~ - 1'/ - ()f/ 

Ns = 4(1 - ~ - I] - (K 
N9 = 41]( 

N lo = 4~( 

8-node U = IXI + IX2X + IX3Y Ni = 1/8(1 + ~i~)(1 + I]if/) x 
hexahedron + IX4Z + IX5XY + IX6YZ (1 + CO i = 1,2, ... , 7,8 

+ IX7XZ + IXsXYZ 
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20-node 

hexahedron 

U = CXI + CX2X + CX3Y + cx6i 

+ CX4Z + CXSX2 + CX6y2 

+ ... + cxsxy + .. , 
+ CXIIX2y + CX2oz2xy 

Ni = 1/8(1 + ~i~)(1 + '1i'1)(1 + ~i~) 
i = 1, 3, 5, 7, 13, 15, 17, I 

Ni = 1/4(1 - ~2)(l + '1i'1)(1 + ~i~) 
i = 2, 6, 14, I 

Ni = 1/4(1 - (2)(1 + ~i~)(l + '1i'1) 
i = 9, 10, II, I 

Ni = 1/4(1 - '12)(1 + ~i~)(1 + ~i~) 
i = 4,8, 16,2 

Appendix 6.3 The universal matrix of axisymmetric fields 

The equivalent functional of scalar Helmholtz equation: (V2 + k2 ) U = 9 is: 

/(U) = f 'ltr( pVu· Vu - k2u2 + 2 ug) dQ (A.6.3.1) 
Q 

Because the coordinate r is included within the integration, the calculation of the 
coefficients of element matrices will be complicated than which of the 2-0 case. 
Suppose the coordinates of rand Z are approximated by: 

{ r = rl + (r2 - rd~ + (r3 - rd'1 
(A.6.3.2) 

Z=ZI +(z2-zd~+(Z3-zd'1 

By using the same step as used in 2-0 case, the following equation is obtained. 

I I-r 

~ f f {~ (ONk oNq ONk ONq) 2 ~ 'It L. ri L. p - - + -." - Uk - 2k L. N k N qUk 
j=1 k=1 or or o~ OZ k=1 

o 0 

+ 2 ktl NkNqYk} ~j drdz = 0 (A.6.3.3) 

. ONk oNq ONk oNq . 
Substitute the terms of -, -, -:;--, - and the parameters cot 0i In to 
b .. ld or or uZ OZ a ove equatIOn Yle s: 

n 3 n n 

/3 L L Qiq cot OJ Uq - 2k2 L TkqUq + 2 L Tkqgq = 0 (A.6.3.4) 
k=1 j=1 k=l k=1 

where 

o 0 

(A.6.3.5) 
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1 1-~, 

Tkq = IJI it1 'i f f ~iNkNqd~2d~3 
o 0 

(A.6.3.6) 

The matrix Q1 of the first order triangle is: 

1 ((0, 0, 0), ( 0, 0, 0), ( 0, 0, 0) ) 
Q1 = (; (0,0,0), ( 1, 1, I), ( - 1, - 1, - 1) 

(0,0,0), ( - 1, - 1, - 1), ( 1, I, 1) 

and so on. Where 'I> '2, '3 are the global coordinate of the vertices of the 
triangle. The universal matrix of QI, Q2, Q3 and T are summarized below: 

QI = 1/6\Q2 = 1/6 (1,1,1) ( 0, 0, 0), ( - 1, - 1, - I) 
( 0, 0, 0), ( 0, 0, 0) 

(0,0,0), ________ ( 1, 1, 1) 

(0,0,0), ( 1, I, I), 
(0, 0, 0), ( - I, - I, - I), ( 1, 1, I) 

Q3 = 1/6\T= 1/120 6, 2, 2), (2,2, I), (2,1,2) 
(2,6,2), (1,2,3) 

I, I, I)~ (2,2,6) 
( - 1, - I, - I), (1, 1, I), 

( 0, 0, 0), (0, 0, 0), (0, 0, 0) 

The universal matrices Q 1 and T of the second order triangular element of 
axisymmetric field are: 

Q' = 1/30' \Q2 = 1/30 

(9,3,3), ( 0, 0, 0), ( 2, 1, 2), ( 3, - 2, - 1), ( - 3, 2, 1),(-11,-4, -5) 

( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0) 

(0,0,0), ( 3, 3, 9), ( 1, 2, - 3), (-1, -2, 3), ( -5, -4, -11) 

(0,0,0), ( 3. 9, 3), ( 8, 24, 8), ( - 8, - 24, -8), ( -4, 0, 4) 

(0,0,0). ( 1, 2, 2), ( 3, 3, 9), ( 8, 24, 8), ( 4, 0, - 4) 

(0, 0, 0), ( - 2, 3, -1), ( 2, 1, - 3), ( 24, 8, 8), ( 16, 8, 16) 

(0, 0, 0), ( - 4, - 11, - 5), ( - 4, - 5, - 11), ( 0, -4, 4), ( 8, 16, 16), 

(0,0,0), ( 2,- 3, 1),( -2,-1, 3), ( - 24, - 8, - 8), ( 0, 4, -4), ( 24, 8, 8) 
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Q3 = 1/30. \ T = 1/2520 

( 242. 6, 6), (-4, -4, I), (-4, I, -4), ( 12, -8, -4), ( -4, -12, -12), ( 12, -4, -X) 

( 6, 242, 6), ( I, -4, -4), ( -8, 12, -4), ( -4, 12, -8), (-12, -4, -12) 

9, 3, 3), ( 6, 6, 242), (-12, -12, -4), ( -4, -8, 12), ( -8, -4, 12) 

2, 2, I), ( 3, 9, 3), ( 96, 96, 32), ( 32, 48, 32), ( 48, 32, 32) 

0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 32, 96, 96), ( 32, 32, 48) 

( - 11, - 5, - 4), ( - 5, - 11, - 4), ( 0, 0, 0), ( 16, 16, 8), ( 96, 32, 96) 

( -3, I, 2), (- I, 3, - 2), ( 0, 0, 0), ( 4, -4, 0), ( 8, 8, 24), 

3, -I, -2), ( I, - 3, 2), ( 0, 0, 0), ( -4, 4, 0), ( -8, -8,-24), ( 8, 8, 24) 



Part Three 
Boundary Methods 

Electromagnetic field problems can be handled both in different or in integral 
equatioins. Integral equations are very difficult to solve analytically. Hence 
different equations are now more familiar to have been in use for a long time. 
Now numerical methods are available to solve the integral equations for 
engineering applications. Integral equation methods may use volume integral 
equations or boundary integral equations. The most important advantages of 
boundary integral equation methods are as follows 

(1) They reduce the dimension of the problem. The data preparation and 
storage are easier than that required for the differential equation methods. 

(2) Errors caused by the approximation will be averaged out in the integral 
sense, but errors will be increased in the derivative process. 

(3) Integral equation methods may obtain more accurate results of the field 
strength at the boundary. 

(4) Integral equation methods are more convenient to solve open boundary 
problems and inverse problems. 

Hence these methods have been developed more rapidly and are more 
widely used in recent years. However, there are a few problems with these 
methods, namely: 

(1) Fundamental solutions are usually used in integral equation methods 
but these are hard to obtain in some cases. 

(2) Numerical integrations are time consuming. 
(3) Singular integrals must be taken care of. 
(4) The solution of the integral equations may not converge as compared 

with variational techniques. 
(5) The resulting matrices are dense and often ill-conditioned. Hence the 

solution of these matrix equations is not easy as compared with the matrix 
equations of the finite element method. 

Here the emphasis is on boundary integral equation methods. Both the 
simple and more complicated cases are considered. Charge simulation and the 
surface charge simulation methods are given in the Chaps. 7 and 8. The 
generalized boundary element method is introduced in Chap. 9, and the method 
of moments is treated last as it includes all of the other methods. 



Chapter 7 

Charge Simulation Method 

7.1 Introduction 

According to the uniqueness theorem of electromagnetic fields, if a solution satisfies 
Laplace's equation or Poisson's equation and all the corresponding boundary 
conditions, no matter how that solution is obtained - even if guessed - it is the only 
solution of the specified boundary value problem. For example, the field distribu­
tion of an isolated charged spherical conductor equals the field distribution of 
a point charge if it is located at the centre of the sphere and its charge equals the 
total amount of surface charge of the sphere. This point charge is called the 
equivalent charge or simulated charge of the original charged conductor. Thus 
the distributed charge on the conductor surface is replaced by a lumped 
fictitious point charge. It should be noted that the region of interest is now the 
region outside the sphere. In other words, the fictitious simulated charges must 
be placed outside the space in which the field is under consideration. 

Early in the 1950s, Loeb [1] used a set oflumped charges to analyse the field 
distribution of a rod-plane gap. At that time he obtained the solution without 
using a computer. Later on during 1968-1969 Abou-seada and Nasser [2,3] 
used a digital computer to calculate the potential distribution of the same 
problem. Almost at the same time, Steinbigler published a more complete 
procedure which he called the charge simulation method (CSM) in his doctoral 
thesis [4]. The basic concept of the CSM is to replace the distributed charge of 
conductors and the polarization charges on the dielectric interfaces by a large 
number of fictitious discrete charges [5]. The magnitudes of these charges have 
to be calculated so that their integrated effect satisfies the boundary conditions 
exactly at a selected number of points on the boundary. From this point of view, 
the CSM is called a point matching method, it is one kind of equivalent source 
method. Starting with the 2nd ISH (International Symposium on High Voltage 
Engineering), in Zurich in 1975, many papers have been discussing the use of 
CSM. Now, it is regarded as an effective and simple method for solving 
Laplace's or Poisson's equations. It proved to be successful for many high­
voltage field problems. It is applicable to any system that includes one or more 
homogeneous media. A special advantage of this method is its good applicabil­
ity to three-dimensional field problems without axial symmetry. It is a practical 
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method for engineering design [6] and for the optimum design of electrode 
contours [7,8] and insulator interfaces [9]. Recently, the application of CSM 
has been extended to the analyse of two-dimensional elasticity problems [10], 
and to the Stefan problem which is a free boundary problem [11]. 

In this chapter, both the conventional charge simulation method and the 
optimized charge simulation method are discussed. The error analysis of this 
method is also classified in Sect. 7.7. 

7.2 Matrix equations of simulated charges 

The first step oj the CSM is to find out the equivalent simulated charges by the 
charge simulation equation. These charges are always located outside the domain 
where the field distribution is calculated. Once these lumped charges are deter­
mined, the solution oj potential and field strengths anywhere in the domain are 
computed by the analytical Jormulations and the superposition principle. 

7.2.1 Matrix equation in homogeneous dielectrics 

Matrix equations in the charge simulation method are discussed in the following 
cases. 

7.2.1.1 Governing equation subject to Dirichlet boundary conditions 

Figure 7.2.1 shows a rod-plane electrode, the potential distribution of this field is 
obtained by solving the partial differential equation subject to the given bound­
ary conditions as follows 

V 2 cp = 0 in domain Q 

CPir, = Vo on boundary r 1 

cp 11'2 = 0 on boundary r 2 . 

r-
G 

) ) ) )) ) ) ) J ) ) ) ) ,\2, ) ) 
<j>=O Fig. 7.2.1. Rod-plane electrode configuration 

(7.2.1) 
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One could also solve this problem by using the corresponding integral equation 

qJ = _1_ f O"(r') ds' 
411:1: R 

(7.2,2) 

s' 

where O"(r') is the surface charge density on the electrode, s' is the area where 
surface charges are located, R = I r - r'l, r' is the position of the sources and r is 
the position of the observation point where the potential will be calculated, 

Applying CSM, the unknown distributed surface charges are replaced by a set 
of lumped simulated charges in such a way that the known potentials on the 
boundaries are satisfied, Thus, if the types and the positions of the simulated 
charges are assumed, the values of these charges are determined by the known 
boundary conditions on the electrode surface, For example, 

(7,2,3) 

where qJt is the known potential of point 1 on boundary r I, Plj is the potential 
coefficient between the boundary point 1 and the jth simulated charge Qj' and 
j = 1,2, ' , . , N is the sequence of the simulated charges, N is the total number 
of simulated charges, In order to determine the magnitude of charges Qj' 
N boundary points (collocation points or matching points) must be 
selected i.e. 

(7,2.4) 

If Q I equals 1, P II is the potential of point 1 produced by charge Q I, the total 
potential of point 1 is the sum of the potentials produced by N charges. 
Equation (7,2.4) is expressed as a matrix equation 

(7,2,5) 

This is a matrix equation of the simulated charges. Here { qJ} is a known column­
matrix with N components, {Q} is an unknown column matrix with N compon­
ents and P is a square matrix of the order N x N, When the types and the 
positions of simulated charges and the positions of collocation points have been 
selected, the potential coefficient matrix P can be calculated and then the 
unknown charges {Q} are uniquely determined, The only requirement is that 
the type of simulated charges must be such that the potential produced by these 
charges can be expressed by an analytical formulation, In the case where the 
positions of the simulated charges or collocation points are changed, the 
magnitudes of the simulated charges will be different. Thus the substitution is 
not unique, A large number of different sets of solutions is possible, 

t The bold character represents the matrix. 
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7.2.1.2 Governing equation subject to Neumann boundary conditions 

If the problem is a Neumann boundary problem, then the surface charge 
distribution or the field strength along the boundary is known. In this case, the 
matrix equation of simulated charges is expressed as 

{E} = [F]t {Q} (7.2.6) 

Equation (7.2.6) is a vector matrix equation where {E} is a column vector and 
[F] is a vector matrix of the order N x N. It is defined as a field strength 
coefficient matrix with a similar meaning as the potential coefficient matrix P. In 
2-dimensional rectangular coordinates, Eq. (7.2.6) can be separated into two 
scalar matrix equations 

(7.2.7) 
{Ey} = Fy{Q} 

This kind of formulation is suitable for use in the optimized contour design of 
electrodes. 

7.2.1.3 Mixed boundary conditions and free potential conductors 

In the problem with mixed boundary conditions, the Dirichlet boundary condi­
tion applies to one part and the Neumann boundary condition applies to 
a different part of the boundaries e.g. 

(7.2.8) 

In this case, the matrix equation is the combination of Eq. (7.2.5) and Eq. (7.2.6). 
They are 

{ P{Q} = {cp} on r 1 

[FJ{ Q} = {E} on rz . 
(7.2.9) 

An especially important case in practical problems is the existence of free 
potential conductors. For instance, when an aeroplane flies acorss a charged 
cloud, the induced potential on the plane is unknown. In this case, the right 
hand side of Eq. (7.2.5) is an unknown constant. But it is obvious that the total 

t In a 2-D case, the element of F consists of two components, hence the vector matrix is denoted 
by [F]. 
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induced charge on the conductor surface is zero, i.e. 

f~: = o. 

Thus the sum of the simulated charges of this electrode must be zero. Hence an 
additional equation is required which is 

M 

L Qk=O (7.2.10) 
k=l 

where Qk are the discrete simulated charges within the conductor with free 
potentials. This equation combined with Eq. (7.2.5) compensates the missing 
potential value in (7.2.5). The matrix equations for a free boundary problem are 
then extended to 

{P{Q} = {cp} 
L Qk = 0 k = 1, ... , M 

(7.2.11) 

where M is the total number of conductors with free potentials. 

7.2.1.4 Matrix form of Poisson's equation 

The three cases discussed have yielded equivalent matrix equations of a 
Laplacian problem. If there are space charges in a linear medium and the 
distribution of the space charges is known, by using the principle of superposi­
tion, the matrix equation is 

P{Q} + Ps{Qs} = {cp} (7.2.12) 

where {Q} is column vector of space charges and Ps is potential coefficient 
related to the space charges. As p. and {Qs} are known, they can be multiplied 
and moved to the RHS of Eq. (7.2.12). It is important that matrix P should not 
be enlarged whether the space charge exists or not. The charge simulation 
method is convenient here. 

I :v--- "leader channel" 
~ , ) simulated electrode 

'r ; ; ; ; ; ; ; ) ) ; ; ) ; tP~6 Fig. 7.2.2. Physical model of a breakdown discharge 
in a rod-plane gap 
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If the space charge distribution is not known, a reasonable physical model 
may be used. For example simulating a creepage discharge path when break­
down occurs in a long air gap, one could assume a constant potential gradient 
along the channel and the leading creepage path will then be considered as 
a quasi-electrode is shown in Fig. 7.2.2 by the line of dashes. 

Once the contour points at the boundary of the electrode and quasi­
electrode (with different potentials) are selected, then the matrix equation is 
established. Simulated charges having an identical number as the contour points 
are arranged at the electrode and quasi-electrode. Thus the matrix size of the 
potential coefficient P is enlarged. 

7.2.3 Matrix equation in piece-wise homogeneous dielectrics 

Figure 7.2.3 shows an axisymmetric problem with different dielectrics, each one 
being uniform. The region abcda is the cross section of a dielectric disk with 
a permittivity of Gb' The permittivity of the other space is Ga' 

Due to the uniform polarization of the homogeneous dielectric, there are no 
volume polarization charges inside the dielectric, only surface polarization 
charges exist on the interface. In the charge simulation method, the surface 
polarization charges are considered as a single layer source. This causes the: 
discontinuity of the field strength but the tangential component of the field 
strength and therefore the potential on both sides of the dielectrics are 
continuous. Based on the principle of CSM, the surface charge of the elec­
trode is simulated by Q(j), j = 1, ... , N. The polarization charge of the inter­
face of different dielectrics (the contour abcd) is simulated by Qa(j) 
(j=N+l, ... , N+Na) and Qb(j) (j=N+Na+l, ... , N+Na+nb) on 
both sides of the region with permittivities Gb and Ga , respectively. This is because 
to calculate the field in the region with permittivity Ga , the simulated charges 
must be placed outside this region, hence the simulated charges Q(j) and Qb(j) 
are used to calculate the field in the region with permittivity Ga' Similarly, Q(j) 
and Qa (j) are used to calculate the field in the region with permittivity Gb. N, N a 
and N b are the total number of simulated charges within the conductor and on 
both sides of the interface. If there are N charges within the electrode, then the 
matching points on the electrode surface are also N. If the matching points on 

~
'Icctrode 

------Q <jJ=Uo ----
b e. -------- Q. c 

a~~d ; ) ; ; 
<jJ=0 Fig. 7.2.3. Simulated charges in multi-dielectrics 
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the interface are N d, then the simulated charges on both sides near the interface 
are 2Nd • The total unknown charges, N + 2Nd , are solved by the identical 
equations of N + 2Nd • To ensure the interfacial boundary conditions are satis­
fied, 2Nd equations are obtained by the following conditions: 

(17.2.13) 

Here the subscripts a and b indicate different regions with different permittivities 
of ea and eb, and n indicates the normal direction of the interface. Therefore, 
sufficient boundary conditions are provided to solve the unknown simulated 
charges. These equations are: 

N N+N a N N+Na+Nb 

I PijQ(j) + I PijQa(j) = I PijQ(j) + I PijQb(j) 
j=l j=N+l j=l j=N+Na +l 

(7.2.14) 

To calculate the potential in either region a or b, the permittivity of material is 
LO, hence the second equation of (7.2.14) is simplified to: 

N+N a N+Na+Nb 

I PijQu(j)- I PijQb(j) = 0 . (7.2.15) 
j=N+ 1 j=N+Na + 1 

A typical example is presented in reference [12]. It shows a dielectric sphere 
with permittivity Ea placed in an uniform electric field within a material with 
permittivity of eb. When EalEb < 6, the error of the field strength is less than 
0.1 %. The drawback of this method is, that in case of more than two different 
materials, the number of simultaneous equations is increased rapidly, especially 
in the case of complicated shapes of the dielectric interface. In the latter case, 
more computer time is required. The surface charge simulation method 
(Chap. 8) is more convenient than the charge simulation method. 

7.3 Commonly used simulated charges 

The most commonly used simulated charges are point, line and ring charges. 
Combining these charges, a great number of different shapes of electrodes can be 
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simulated. In some special cases, elIiptic cylindrical or elIipsoidal surface charges 
can be used as simulated charges. The computation formulae of point, line, ring 
and elIiptic cylinder charges are given in this section. Formulas for a disk charge 
and other shapes can be found in references [14] and [13], respectively. 

As many engineering problems are axisymmetric, cylindrical coordinates are 
used to express the commonly used formulations. The influence of the ground or 
any other grounded conductor plane is shown by images. To make the contents 
simple only the formulation for calculating the potentials are listed in the 
contents. The formulations of the field strengths are given in Appendices 
A.7.I-A.7.4. 

7.3.1 Point charge 

In axisymmetric problems, a point charge Q is located at point (r', z') and its 
image - Q is located at point (r', - z'), as shown in Fig. 7.3.1. 

The potential at any point P(r, z) is expressed as: 

Q [1 1 J 
qJp = 4m; J(r - r')2 + (z - Z')2 - J(r - r')2 + (z + z'f . (7.3.1) 

If the source point and the field point are both located at the axis, i.e. r = r' = 0, 
then Eq. (7.3.1) is simplified as: 

qJp = 4;e [IZ ~ z'l - Iz ~ z'IJ (7.3.2) 

For a 3-D case, 

Q [ 1 
qJp = 4ne J(x - X')2 + (y - /)2 + (z - Z')2 

- J(x - X')2 + (y ~ /)2 + (z + z'? J 
where (x, y, z) and (x', y', z') are the field point and source point, respectively. 

z 
• P(r,z) 

Q(r',z') 

0,.-1-------- r 

-Q(r' ,-z') 
Fig. 7.3.1. A point charge Q and its image -Q 
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P(r,z) 

--~~7------------r 

Fig. 7.3.2. A line charge and its image 

7.3.2 Line charge 

A line charge of length I lies on the z-axis of cylindrical coordinates shown in 
Fig. 7.3.2. 

Assume the density of the line charge is ),Cjm. Then the potential at any 
point P(r, z) is 

A [ ZI - Z + C Zo + z + FJ 
qJp = - In + In . 

4rrc Zo - z + D z 1 + z + G 
(7.3.3) 

If I -> 00, then 

qJp = ~ In Zo + z + F 
4rre Zo - z + D 

(7.3.4) 

The formulations of the constants C, D, F, G are listed in Appendix A.7.2 

7.3.3 Ring charge 

A filamentary circular loop with radius ro carrying a uniform charge density 
). Cjm lies on the plane z = 0 shown in Fig. 7.3.3. 

The potential at any point P(r, z) is 

1 i ).dl 
qJp = 4rre JR + C (7.3.5) 

Z 

"'::-r:i+-H----- r 

Fig. 7.3.3. A ring charge 
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where 

(7.3.6) 

and C is a constant, it is determined by the position of the zero reference of the 
potential. Then the final result is 

qJ =!L ~ [K(k)] + C 
4ne n f3 

(7.3.7) 

where 

(7.3.8) 

lk2 = (r + ::;20 + Z2 

f32 = (ro + r)2 + Z2 

20 = n - IX . 

(7.3.9) 

K (k) is a complete elliptic integral of the first kind. 
Consider now, that both the ring charge and its image are as shown in 

Fig. 7.3.4 and the zero potential is chosen on the symmetrical plane, then: 

(7.3.10) 

where 

IXI = [(r + ro)2 + (z - ZO)2]1/2 IX2 = [(r + 1"0)2 + (z + zo)2]1/2 

200 k l =-- k2 = 200. (7.3.11) 
IX1 IX2 

The approximate formulae for calculating elliptic integrals are given in 
Appendix A.7.5 [15]. 

z 

Fig. 7.3.4. A ring charge and its image 
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7.3.4 Charged elliptic cylinder 

A charged elliptic cylinder is shown in Fig. 7.3.5(a). 
The expansion form of Laplace's equation in elliptic cylindrical coordinates 

(Fig. 7.3.5(b)) is [16] 

(7.3.12) 

If the cylinder is infinitely long and the surface of the ellipse is an equipotential 
surface, then the potential <p is independent of the variables z and the "'. 
Equation (7.3.12) is simplified to 

d 2 <p 
dYf2 = 0 (7.3.13) 

then 
<p = AYf + B . (7.3.14) 

Let 
Yf = Yfa' 

consequently, 

Vo A. 
<p = -- (Yf - Yfb) = -2 (Yf - Yfb) • 

Yfa - Yfb n8 
(7.3.15) 

According to the coordinate transformations between Cartesian coordinates 

/ 
/ 

/ 
/ 

/Y 

/ /--r-r-__ 

a b 

Fig. 7.3.5a, b. An elliptic cylinder in Cartesian coordinates (x, y, z) and in elliptic cylindrical 
coordinates (", 1/1. z) 
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and the elliptic cylindrical coordinates 

{
X = IcoshlJ cosljl 
y = IsinhlJ sinljl 
Z=Z 

the following equation is obtained 

(/c~hIJY + (/Si~hIJY = 1 

where I is the focal length of the ellipse 

. j(X2+y2_P)±J(P_X2_y2)2+4Py2 
smhlJ = 2j2 = A 

(7.3.16) 

(7.3.17) 

lJ=sinh- 1 A=ln(A+JA 2 + 1). (7.3.18) 
Let 

then 
(7.3.19) 

hence 
A. 

cp = K - -In [} (s + (S2 - 12)1/2)] 
2nf. 

(7.3.20) 

where K is a constant depending on the reference. Consider that/ 2 = a2 - b2, if 
a = b, i.e. 1= 0, Eq. (7.3.20) represents the potential produced by a charged 
cylinder of infinite length. If a = b = 0, Eq. (7.3.20) represents the potential 
induced by a charged plate with a width of 2a and zero thickness which is 
reduced by an elliptic cylinder. The thin plate is used to simulate the field 
produced by the conductors with sharp edges. 

7.4 Applications of the charge simulation method 

General procedures of CSM are shown in Fig. 7.4.1. 
In the fourth step of the diagram, Gauss's elimination method is used to 

solve the simultaneous equations. This is due to the fact that the coefficient 
matrix of the simulated charges is a full and asymmetric matrix. 

According to the method used, some possible problems must be considered. 
(1) Is the solution of the simulated charges {Q} stable? 

In CSM, the matrix of the simulated charge equations is easy to be ill­
conditioned. For example, if the number of the simulated charges is too large or 
the relative distance between the simulated charges and the matching points is 
too small, then the coefficients of two parallel rows or columns of the matrix are 
very close. Thus the matrix could be ill-conditioned. If the matrix is ill-condi-
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Yes 

No 

Fig. 7.4.1. Flow-chart or CSM 

tioned then the solution is not the real solution of the problem. A simple way to 
check this possibility is by giving a small perturbation to the matrix. If the 
solution remains stable then it is an acceptable solution. Otherwise the positions 
or the number of the simulated charges have to be adjusted. 
(2) Does the solution matrix {Q} satisfy the whole boundary? 

As the positions of the simulated charges are determined arbitrarily and the 
number of matching points are very limited compared with a continuous 
boundary it is possible that the solution matrix {Q} does not match the whole 
boundary condition very well. In this case, the initial positions of the simulated 
charges or the matching points on the boundaries have to be adjusted or the 
number of the discretized charges have to be increased in such a way that the 
given boundary conditions are satisfied. A measure of the accuracy of the results 
may be shown as the potential error on the surface of the electrode or the 
continuity condition of the tangential component of the field strength on the 
interface of different dielectrics. 
(3) In order to improve the accuracy of the solution or to overcome the slight 
ill-conditioned of the matrix, double precision computation is advised. 

Once an adequate number of simulated charges have been selected the field 
distribution in the whole domain is computed by using analytical formulations 

• 
<pj = L PijQj 

j= 1 

• 
E j = L (f",ij Qji + h,ijQjj) 

j= 1 

(7.4.1) 

(7.4.2) 

where the bold characters 'i' and 'j' are unit vectors of the x and y axes. 
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Example 7.4.1. Find the equivalent simulated charges of the rod-plane elec­
trodes, shown in Fig. 7.2.1. Assume the radius of the cylindrical rod is 1 cm. 

Solution. The simulated model is shown in Fig. 7.4.2. The influence of the 
ground is replaced by an image. The surface charge density is larger on the top of 
the rod- and becomes smaller when the surface of the rod is far away from the 
ground. To simulate this field, a point charge is assumed at the centre of the 
hem i-sphere of the rod and a set of line charges are placed along the axis of the 
rod. The starting point of these line charges with half infinite length and different 
densities are located at different positions as the symbol' . ' shows in Fig. 7.4.2. 

Assume the starting positions of line charges are Zj and the charge densities 
are Aj(j = 1,2, ... , N - 1). The matching points on the conductor surface are 
indicated by the symbol' x '. Then the simulated charge equations are expressed 
as: 

A1 

~{U [ p" 
P12 

p,. ] A2 
P21 P22 P2n X (7.4.3) 

An-1 
Pn1 Pnn 

Qo 
where 

I (Zj + Zi) + Jr; + (Zj + zy 
p .. = n 

') (Zj - Zi) + Jr; + (Zj - zy 
C = 1, ... , n ) 

j = 1, ... ,n - 1 

1 1 
Pin = - (i = 1, ... , n) 

Jr; + (zn - zd2 .Jr; + (zn + zy 
(7.4.4) 

q,=u o 

Fig. 7.4.2. Simulated model of a rod-plane gap 
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and rj and Zj are the coordinates of matching points, Zn is the position of point 
charge. These two formulae include the influence of the ground by considering 
the image charges. The results of (7.4.3) mUltiplying the factor 41t1:0 is the real 
value of the simulated charges. The calculation results are shown in Tables 7.4.1 
and 7.4.2. 

Examining Table 7.4.1, one should note that: 

(1) The line charges are alternatively 'positive' and 'negative' so that several 
semi-infinite line charges are equivalent to a line sour.ce having non-uniform 
charge density. 

(2) The magnitudes of the simulated charges are changing as well as the 
different gap lengths between the rod and the grounded plane. 

Table 7.4.2 shows that if the positions of the simulated charges are fixed but 
the gap length between the rod-plane is changed, then the accuracy is different. 
For example, as the ratio GJR is decreased, the maximum potential error on the 
surface of the rod is increased. This indicates that for different dimensions of the 
electrode the positions of the simulated charges should be changed. Desired 
accuracy could be obtained if a reasonable number of simulated charges and 
matching points are selected. 

It is imperative that the matching points must cover the region of interest. 
Otherwise the simulation is meaningless. 

Example 7.4.2. A charged sphere is close to a grounded plane as shown in 
Fig. 7.4.3, find the capacitance of this system. 

Solution. Eight ring charges are located on the fictitious sphere surface with 
radius Rc and two point charges are placed on the two poles of the same sphere. 
Both the simulated ring and point charges are indicated by'· -.' and' . ' in 
Fig. 7.4.3. The matching points on the conductor surface are indicated by , x '. 
After running the program written according to the diagram shown in Fig. 7.4.1, 
the amplitude of each simulated charge is obtained. Assume Uo = 1 Y, then the 
capacitance is the summation of these charges, i.e. 

10 

C = 41t1:0 L Qj 
j=1 

= 41t1:0( -1.06647 + 1.04015 - 0.43989 + 0.36833 + 0.43692 

-0.49344 + 1.13355 - 1.10882 + 0.60225 + 0.64069) 

= 41t1:0 x (1.11127) = 1.23587pf 

The relative error is 9.39 x 10- 2 % (the accurate result is calculated by image 
method). The relative errors of the potential and the field strength along the 
conductor sphere are shown in Fig. 7.4.4. 

Example 7.4.3. Determine the breakdown voltage of a sphere-plane gap under 
impulse voltage. 
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Table 7.4.2. The calculated potential value along the electrode surface 

Gap length (GjR) 

Potential values 
on half hemi-
sphere (V) 
(each point 
0.2 radian apart) 

max. error (%) 

Potential values 
on rod (V) 
(The distance between 
each point 
is 2cm) 

Max. error'(%) 

5.0 

0.99999997 
0.99999423 
0.99998317 
0.99997959 
0.99999078 
1.00000151 
0.99997106 
0.99989623 

0.01 

0.99999997 
1.00547751 
0.99999995 
1.02159402 
1.02647452 
0.99543609 
0.99140996 
0.99999991 
1.01062371 
1.02003660 

2.6 

x - contour point 
~-- - ring charge 

• - point charge 

I . 
;;;;;;.>};l;;},;;}// 

$=0 

20.0 200.0 

1.00000000 1.00000000 
0.99999529 0.99999927 
0.99998642 0.99998962 
0.99998449 0.99998791 
0.99999409 0.99999559 
0.99999919 0.99999947 
0.99996412 0.99997186 
0.99989541 0.99991749 

0.011 0.008 

1.00000000 1.00000000 
1.00588382 1.00504270 
0.99999998 1.00000070 
1.01411101 1.00991230 
1.01733291 1.01229780 
0.99673632 0.99826051 
0.99415117 0.99631070 
1.00000000 1.00000000 
1.00722890 1.00459242 
1.01363741 1.00865760 

1.7 1.2 

Fig. 7.4.3. Simulated charges in a charged 
sphere 

Solution. When the voltage is applied to the sphere, the initial field strength is 
calculated by CSM. Assume that an electron exists at one point, according to the 
theorem of air-discharge, the equivalent number of electrons K is determined by: 

Jx. 
K = e x; ~dx (7.4.5) 

where ex represents the coefficient of effective ionization. It is dependent on the 
field strength E(ex/ P = Ae-B(E/P». Xi> Xe are the starting and ending positions of 

the ionization, for instance in Fig. 7.4.5, KG = eSg adx. Assume a set of ring 
charges is used to simulate the space charges, as shown in Fig. 7.4.5, the field 
strength is calculated repetitively. The results coincide well with the measured 
value. 
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When the number of electrons K at the end of the electron avalanche, e.g. the 
point W is larger than a given number K o, the self-sustained discharge occurs., 
Then the breakdown voltage is obtained. The results are presented in 
Table 7.4.3 [\7]. 

A<P -5 
AE XfO 

Fig. 7.4.4. Relati~e errors of potential and field strength distribution along the half sphere 

• 0 

Fig. 7.4.5. Physical model of a breakdown discharge 
between the sphere-plane gap 

Table 7.4.3. The breakdown voltage of the sphere-plane gap 

Kind of gas Gap distance 
(cm) 

Air 2.0 
SF. 2.0 

Radius of sphere 
(cm) 

3.0 
7.5 

7.5 Coordinate transformations 

Calculated value 
(kV) 

58.9 
158.0 

Measured value 
(kV) 

59.0 
\69.1 

In order to simplify computation, j::oordinate transformations are usually used 
in numerical calculation. Remember in finite element method, transformations 
between global and local coordinates are used so that the same formula is used 
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to calculate the coefficients of every element matrix. In CSM, to simulate the 
complicated shape of the boundary, many line and ring charges are placed in 
different positions and ways. To use the identical formulation to the one in 
Eqs. (7.3.1) to (7.3.15), transformation of the coordinates is required. 

7.5.1 Transformation matrix 

First, a two-dimensional case as shown in Fig. 7.5.1 is considered. 
The coordinates of an arbitrary point P in x' - 0' - y' plane are x' and y', 

and x and y in the xOy plane. If the axes of x' and y' are rotated by angle a in 
clockwise direction and move it parallel to the x and y axes, then these two 
coordiante systems are coincident. Hence, the relationship between (x, y) and 
(x',y') is 

{x:} = T {x - xo} 
y y - Yo 

or { X - xo} = T- 1 {x:} 
y - Yo Y 

(7.5.1) 

where a is the angle between x-axis and x'-axis in the xOy plane, 

T = [ co. SIX sinaJ 
-SIna cosa 

(7.5.2) 

and T is a transformation matrix. It is a skewed t matrix. This relationship can 
be extended to the 3-dimensional case: 

lXI) lX - xo ) y: = T Y - Yo 
z z ~ Zo 

where 

[ 
cosa cosf3 

T = -sina 
- cos a sin f3 

YY~' .p 

Yo --0', --1---­
I 

x' 

0'-----'------- x 
Xo 

sina cosf3 
cosa 

-sina sinf3 

~inf3 ] 

cosf3 

Fig. 7.5.1. Coordinate transformations 

(7.5.3) 

(7.5.4) 

t A skewed matrix has elements which are symmetrical about the principal diagonal, but are 
opposite in sign. 
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Here, f3 is the angle between the x-axis and the x' -axis in the xOz plane. Equation 
(7.5.3) can also be expressed in an inverted form by [Tr I. 

It should be noted that the transformation matrix is an orthogonal matrix. 
This is because 

T - I T [coso: =T = 
sino: 

TTT = [~ ~J = I 

-sino: ] 
coso: 

Hence the inverse matrix T- I is easy to be obtained. 

7.5.2 Inverse transformation of the field strength 

(7.5.5) 

(7.5.6) 

Figure 7.5.2 shows that a curved electrode surface is simulated by three short 
line charges. The length of each line charge is /(1), /(2\ /(3), respectively. Due to 
coordinate transformations, each line charge is located on the axis of y(1), y<2), 
y(3), therefore the formulation given in Sect. 7.3.2 can be used directly, i.e. 

(i) _ A(i) lei) - yei) + J(X(i»)2 + (l(i) _ y(i»)2 + (Z(i»)2 

cp - 4ne In _ y(i) + J(X(i»)2 + (y(i»)2 + {Z(i»)2 

(i = 1,2,3). (7.5.7) 

Notice that the coordinates of x, y and z must be transferred to the coordinates 
of xCi), y(i) and z(i). Then the potential at any point is given by the superposition of 
cp(1), qP), qP), i.e. 

y 

o 

3 

cp = L cp(i) 
i: I 

However, the field strength is the derivative of 

Ccp(i) ocp(i) ocp(i) 

OX(i) , oy(i) , oz(i) . 

(7.5.8) 

X Fig. 7.5.2. The application of coordinate transformations 
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They are calculated in different coordinates; the total results of the field strength 
must be added vectorally in the same coordinates, i.e. 

lE ) lE(1)) lE(2)) E: = T(l)T Erl) + T(2)T Er2) 

Ez E~l) E~2) 

lE(3) ) 

+ T(3)T Er3 ) 

E(3) 
z 

(7.5.9) 

Here the superscript represents the number of different coordinates such as 
1, 2, 3 shown in Fig. 7.5.2. 

7.6 Optimized charge simulation method (OCSM) 

It was stated in Sect. 7.2 that if the number of unknown fictitious simulated 
charges is N, then the number of matching points on the boundaries has to be 
the same number N in order to ensure the matrix is of the order N x Nand 
a unique solution is obtained. If high accuracy is required, the number of 
matching points has a large value, thus the size of the matrix equation becomes 
large. The consequence is that more computer storage and computing time are 
required. The more serious problem is that the matrix might be ill-conditioned. 
If the number of matching points are increased, but the simulated charges are not 
increased correspondingly, then superparametric equations are obtained. This 
means that the matrix equation has the order of M x N (M > N). The solution 
method usedfor superparametric equations is the one which finds the minimizer of 
the matrix equation. This method will be discussed in Chap. 11. Another problem 
in using CSM is that the positions of the simulated charges are obtained by 
experience. If the shape of the boundary is simple, the simulated charges are 
easily placed and a good result is obtained. If the shape of boundary is 
complicated, the locations of the simulated charges are difficult to find. It is 
desirable to determine the suitable positions and amplitudes of the simulated 
charges automatically. This method is called the optimized charge simulation 
method (OCSM). It was provided by Yializes in 1978 [18]. This section concen­
trates on discussing this topic. 

7.6.1 Objective function 

The purpose of OCSM is to find the equivalent lumped sources which best 
replace the distributed surface charges. This means that the error between the 
real potential qJa and the simulated value qJc (which is calculated by the 
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simulated charges), should be as small as possible. If the errors are zero, then the 
calculated value <Pc is the solution of the problem, e.g. if 

({)ai - ({)ci = 0 i = 1,2, ... ,00 (7.6.1 ) 

the simulation is completely successful. Actually it is impossible. Usually the 
average mean square error F of the potentials along the whole boundary 
approaching zero is considered as a criterion, i.e. 

(7.6.2) 

If 
F(X) = min (7.6.3) 

it means that the simulated potentials along the whole surface satisfy the 
governing equation and the given boundary conditions. By combining 
Eq. (7.6.2) and (7.6.3) and approximating the resultant equation in a discretized 
form, Eq. (7.6.3) leads to: 

M 

F(X)= L (({)ai-({)cY=min (7.6.4) 
i; 1 

where M is the number of discretization points along the boundary. The 
function F is called the objective function, X is a column vector of design 
variables of the objective function. 

According to Eq. (7.2.5) 

(7.6.5) 

after the type and the number of the simulated charges are chosen, the design 
variables of Eq. (7.6.4) could be either the positions or the amplitudes of the 
simulated charges or both of them. The positions of the matching points can 
also be chosen as design variables. Usually, the number of the simulated charges 
is less than the number of the matching points and the influence of the simulated 
charges is stronger than the influence of the matching points. Consequently, the 
positions or both the positions and the amplitudes of the simulated charges are 
chosen as the design variables. 

In order to have a valid substitution, simulated charges must be located 
outside the region of interest. Hence Eq. (7.6.4) must be completed by the 
constrained conditions as follows 

{ F(X) = L(({)ai - ({)cY = min ~: I, ... , M 
!(r) <g(r) j-l, ... ,N 

(7.6.6) 

The second equation of Eq. (7.6.6) is a constrained condition of the objective 
function F(X), it limits the positions of the simulated charges to be inside 
a desired region. Here r is the position vector of the simulated charges. Therefore 
the optimized charge simulation method is a constrained optimization problem 
(see Chap. 11). 
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7.6.2 Transformation of constrained conditions 

The solution of the constrained optimization problem is more complex than in 
unconstrained optimization. In the charge simulation method, the constrained 
condition is that the simulated charges must be placed inside the conductors or 
outside the region under consideration. Hence a simple transformation function 
such as a sinusoidal function, which has the properties of - 1 ::s; sinx ::s; 1 and 
o ::s; sin2 x ::s; 1 can be used to transform the constrained optimization problem into 
an unconstrained optimization problem. 

For example, there is a charged spherical conductor over a grounded plane, 
as shown in Fig. 7.7.1. Two point charges Qb Q2 are used to simulate the surface 
charge of the sphere. The design variables of the objective function are positions 
and magnitudes of these two point charges. They are HI, H2 and Q1, Q2' If 
a new variable X is introduced and used to express HI, H2 and Qb Qz, i.e. 

{

H I = H + O.9R sinxi 

Hz = H ~ O.9R sinx2 

QI = K(smx3) 

Q2 = K(sinx4) 

(7.6.7) 

then the design variables of the objective function F are XI, Xz, X3 and X4, i.e. 

{
F(X) = i~1 (({Jai - ({JcY = min 

{X} = {Xl X2 X3 X 4 }T 

(7.6.8) 

where !vi is the number of matching points on the conductor surface. Equation 
(7.6.8) is an unconstrained optimization problem, the positions of the simulated 
charges are limited to be inside the sphere by the first two equations of 
Eq. (7.6.7). In Eq. (7.6.7), K is an arbitrary constant. 

7.6.3 Examples 

Example 7.6.1. Calculate the capacitance between the sphere-plate electrode as 
given in Example 7.4.2 by OCSM. 

Solution. In Fig. 7.6.1, assume that H = 5 cm, R = 1 cm, and V Q = 1 V. The 
influence of the grounded plane is taken into account by the symmetric image 
charges -QI and -Q2' the potential of the arbitrary point on the spherical 
surface is 

({J (r, z) = _1_ x [Q 1 ( 1 + --,===1 ===7) 
4ncQ Jrz + (z - Hd2 Jr2 + (z + HtJ2 

+ Q2 ( 1 + 1 )]. 
Jrz + (z - H Z)2 Jr2 + (z + H2)2 

(7.6.9) 
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I' H; r 
) ; ) )) ) ; ) ; ) ;) ) ) ) )) ) 

q,=o Fig. 7.6.1. An example of OCSM 

Substitution of Eq. (7.6.9) and (7.6.7) into Eq. (7.6.8) yields the formulation to 
calculate the objective function F(X). The gradient of this objective function 
F(X) can be expressed in analytical form. If the initial value of the design 
variable is assumed as 

{X} = {0.012 -0.2 0.05 O.Ol}T 

when M = 25, after 6 iterations the objective function F decreases to 
1.43842 x 10 - 6. In this case 

{

H 1 = 5.016549 cm 
H2 = 4.821025 cm 
Ql = 4mlo x 1.074916C 

Q2 = 4nBo x 0.036231 C 

(7.6.10) 

Based on the solution of eqn. (7.6.10), the capacitance of this system is: 

C = Ql + Q2 = 1.235733 pf. 

In comparison with the classical result, the relative error is - 8.02 x 10 - 2 %. 
During the process of optimization, an unconstrained optimization method, 
called DEP method is used. Details of the DFP method are given in Chap. 11. 

Example 7.6.2. Field distribution of a transformer bushing. 

Solution. A simplified figure of a transformer bushing is shown in Fig. 7.6.2 by 
the heavy solid line. 

Suppose that the potential along the bushing decreases linearly. The gro.uping of 
the simulated charges in each part of this problem is shown in Table 7.6.1. There 
are 96 simulated charges and 172 design variables. 

The objective function F is 

M [ N. N. +Nz J2 M 
F =.2: .2: (Pi,j)1 Qj + . 2: (Pi,i)' Qj - <Pai =.2: (1;)2 

.=1 )=1 )=N.+l .=1 

(7.6.11) 

where N 1 is the number of line charges, N 2 is the number of ring charges. (Pi,j)1 
and (Pi,j), are potential coefficients of line and ring charges, respectively. <Pai is 
the known potential on the boundary. The derivative of the objective function (it 
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Table 7.6.1. The grouping of simulated charges and matching points 

Component Contour points Simulated charges Design variables 

Lead 41 20 line charges 20 
Electrode 30 14 ring charges 28 
Bushing 41 21 ring charges 42 
Grounded cylinder 81 41 ring charges 82 

is needed in the process of optimization) can be obtained analytically 

M 

G = VF = - 2 L !i(Vfd (7.6.12) 
i=1 

N, N, +N, 

J; = I (Pi.j)l Qj + L (Pi.j). Qj - qJai = qJci - qJai (7.6.13) 
j=1 j=N+1 

Using Eqs. (7.3.4) and (7.3.10), a set of partial derivative terms is obtained. 

OqJi = _1_ ~ In Zl.j - Zi + C 
c)'j 4ne i= I ZO,j - Zi + D ' 

OqJ· -x M I 
-'=-'I-
OZO,j 4ne i= I D 

OqJi _ 1 ~ K(k) 
-0---2 2 L. --, 

Q.,j n e i = I IX I 

OqJi _ Q.,j ~ (Zi - Z.,j) E(k) 
- 2 L.. 2 OZ.,j 2n e i= I IXI fJ I 

OqJi _ Q.,j ~ [r~-rL+(Zi-Z.,j)2]E(k)-fJIK(k) 
or.,j - 4n2erO,j i=1 IXdI; 

(7.6.14) 

The meaning of each constant in Eq. (7.6.14) is the same as that defined in 
Sects. 7.3.2 and 7.3.3. In eq. (7.6.11), the ring charges are constrained inside the 
electrode by the transformation function 

(7.6.15) 

where Re is the radius of the electrode. 
If all the positions and the values of the simulated charges are chosen as the 

design variables, and all the initial values of these variables are assumed to be 
zero, the initial value of the objective function is 0.81 x 106 • When the objective 
function decrease to 78.09 the errors on the 180 contour points are less than 1 %. 
If the iteration process is continuous, the value of the objective function will be 
decreased continuously. If the iteration is stopped, the potential distribution 
around the electrode is shown in Fig. 7.6.2. 
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In this case, because the number of design variables are very large, 
Cholesky's decomposition (see Chap. 11) is introduced to improve the DFP 
program. The computer program called VA09A [19] is used. 

7.7 Error analysis in the charge simulation method 

7.7.1 Properties of the errors 

If a Laplacian problem with Dirichlet boundary conditions 

V 2 qJ=O 
qJi. = f(s) (7.7.1) 

is solved by CSM, the solution qJAr) must satisfy Laplace's equation, i.e. 

V 2qJc = 0 . 

Let etp(r) represent the potential error, i.e. 

etp(r) = qJ~(r) - qJc(r) 

(7.7.2) 

(7.7.3) 

where qJAr) is the accurate solution of Eq. (7.7.l). After taking the gradient and 
divergence operation of both sides of Eq. (7.7.3), one obtains: 

V· Vetp(r) = V· V [(pJr) - qJc(r)] 

Substitution of Eq. (7.7.1) and (7.7.2) into Eq. (7.7.4), yields 

V 2 etp(r) = O. 

(7.7.4) 

(7.7.5) 

This equation demonstrates that the error function of the potential still satisfies 
Laplace's equation, hence the error function is a harmonic function. It has the 
following properties: 

(a) The maximum or minimum value always appears on the boundaries. 
(b) The derivative of any order of the harmonic function exists and is 

continuous. 

Thus the error distribution is stable and smooth. Furthermore, consider that 
the fundamental solution of two-dimensional or three-dimensional Laplace's 
equations are In l/r or 1/4nr, respectively. Since the error distribution in region 
Q varies as the function ofln l/r or l/r. Consequently the error inside the region 
satisfies the requirement if the errors on the boundaries are controlled. 

It is well known that the field strength of a static and quasi-static electric 
field satisfies Laplace's equation 

(7.7.6) 

The properties of each component of Eq. (7.7.6) in Cartesian coordinates are 
similar to the error properties of the potential. 
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According to Eq. (7.7.5), if the error distribution is known along the 
boundary, the error function can be calculated for the whole domain [20]. 

7.7.2 Error distribution pattern along the electrode contour 

On matching boundaries, the maximum error appears in the middle between two 
matching points. The reason is that the potential error at matching points is zero. 
For a smooth contour, the error distribution along the boundary could be 
dependent on 

(7.7.7) 
or 

e = em sinnd (7.7.8) 

as shown in Fig. 7.7.1, where n is the number of discretization points, d is the 
distance between two matching points and em is the maximum error in each 
period. This result has been verified by obtaining the error distribution of the 
sphere-plane electrode as shown in Fig. 7.4.4. This figure also shows that the 
error of the potential is smaller than the error of the field strength. Let us define 
an average error eav in a mean root square sense, e.g. 

(7.7.9) 

where ej are relative errors at every point. The average error of the potentials 
and field intensities along a half circular path are (eq»av = 5.48 x 10- 6 and 
(edav = 25.52 x 10- 6 , respectively. The ratio of(eE)av/(eq»av is 4.65. It shows that 
the error of field strength is several times that of the error of potentials. These 
results are obtained when the radius of the ring charges are various from 
'1(Rc/R) = 0.2-0.5. If '1 = 0.8, and the matching points are arranged as before 
and the errors of the potentials and field strengths increase rapidly. The max­
imum error of the potential is 2.983 x 10- 3 , the maximum error of the field 
strength is 2.36 x 10- 2. In general, it is possible that the error of field strength is 10 
times that of the potential [5]. 

~ o ~ 
d 

a b 

Fig. 7.7.1a, b. Two different patterns of error distribution 
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7.7.3 Factors influencing the errors 

The number and position of simulated charges have a significant irifluence on the 
accuracy, as mentioned in Sect. 7.7.2. The positions of the matching points also play 
an important role. In Example 7.4.2, 8 ring charges are arranged on a circle with 
radius Rc = 0.2 R. If the matching points are not located on the same radial line 
as the simulated charges (see Fig. (7.7.2(a)), then the potential error distribution 
is shown by curve 'a' in Fig. 7.7.3. The largest errors appear at the point M and 
A. The potential error at two poles, Nand S, is zero, as they are matching points. 
If the matching points and the simulated charges are located on the same radial 

~~~ 
~=-\ 
. I 

~~/ 

s s s 

b c 

x - contour point 
• - source point 

Fig. 7.7.2a-i:. Different arrangements of the matching points versus the simulated charges 

2.0· 

M A 

-2.0 

Fig. 7.7.3. Potential error distribution versus the different arrangement of the matching points 
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lines as shown in Fig. 7.7.2(b), the error distribution is shown by curve 'b' in 
Fig. 7.7.3. The errors along the semicircle are very small except in the region 
near the two poles. The reason is that these points are out of the range of the 
matching points. If the matching points are not located on the same radial line 
as the simulated charges, as shown in Fig. 7.7.2(c), the error distribution is 
pictured by curve 'c' in Fig. 7.7.3. The error is larger than in the case of 
Fig.7.7.2(b). 

Based on the above numerical results, usually the simulation charges and the 
matching points are placed on the same orthogonal line of the electrode 
contour, and usually the factor F is selected between 1.2 to 2.St. In Example 
7.4.2, when Rc = 0.2R and Rc = O.5R, the factor F is 2.3 and 1.4. If Rc = 0.8, the 
factor F is 0.57. The factor F is defined as 

OA 
F=­

AB 
(7.7.10) 

where OA is the distance between the simulated charge and the contour point, 
and AB is the distance between two adjacent matching points as shown in 
Fig. 7.7.4. Reference [12] indicates that the value of factor F is influenced by the 
number of simulated charges. If the number of simulated charges is large, the 
factor F should be higher. 

For OCSM, the error distribution of the potential and the field strength of 
the sphere-plane electrodes are shown in Fig. 7.7.5. This case illustrates that the 
error distribution is more even than the one obtained from the general CSM. In 
Fig. 7.7.5, another important phenomena is that the positions of the maximum 
error of the p!Jtential and field strength are almost at the same place. The ratio of 
the average error of the field strength and the potential is: 

8.507 X 10- 4 = 3.568 . 
2.384 x 10 4 

It is smaller than the ratio obtained by using the conventional charge simulation 
method. 

B 

a 

o 
a Fig. 7.7.4 Relative positions of matching points and 

simulated charges 

t This value depends upon the geometry; Reference [12] suggests from 0.2-1.5. 
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7.8 Summary 

CSM is efficient for calculating the electric field with fairly simple programs and 
little computing time. The surface charges of the electrodes and the polarization 
charges on the interface of different dielectrics are replaced by a set of discrete 
simulated charges. The types and positions of the simulated charges are predeter­
mined. The mangitudes of these equivalent charges are determined by the 
boundary conditions on the collocation points of the boundary. Hence CSM is 
one of the collocation methods and can be classified as an equivalent source 
method. 

The main advantages of this method are: 

(1) It can be used to solve open boundary problems and is easily applied to 
three-dimensional problems. 

(2) The solution domain does not need to be discretized, the troublesome of 
pre- and post-data processing is avoided. It is easy to calculate the potential and 
the field strength at any point of interest. 

(3) Accurate results are obtained, as there is no truncation error. Higher 
accuracy is obtained in the field strength especially on the electrode surface than 
with FDM and FEM as no approximate numerical derivative is computed. 
If the continuous condition of the tangential component of the electri~ 

intensity of interfacial surface is introduced, the accuracy will be further 
increased [21]. 

(4) Compared to other boundary methods, such as the boundary element 
method, numerical integration and singularization of the integrand are not 
required, so fast economical calculation is obtained. Reference [22] gives com­
parison of a CSM and BEM, one example shows that the CPU time of BEM is 
5.6 times than that of CSM. 

(5) The distinctive advantage of CSM is that the estimation of error is 
simple. Only the errors on the boundaries need to be examined. 

(6) The method can be extended to solve static and quasi-static magnetic 
field problems by using the equivalent current source [23]. 

A comparison between CSM, FEM, and FDM to solve static electric field 
problems is presented in reference [24]. 

One disadvantage of CSM is that errors are dependent on the location of the 
simulation charges especially for problems with a complicated shape. Except for 
OCSM, an additional charge system [25] is suggested to improve accuracy. To 
capitalize on the advantages of various methods, a combination of FEM and 
CSM may be applied effectively in some cases [26]. 
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Appendix 7.1 Formulations for a point charge 

The field strength at any point P(r, z) produced by a point charge is: 

E = _ o<p =JL[r-r' _r-r'] (A.7.U) , or 4ne C( p 

Ez = - ~~ = 4;e [z ~ z' _ Z ~ Z'] (A.7.1.2) 

C( = [(r - r')2 + (z - Z,)2]3/2 P = [(r - r')2 + (z + Z')2]3/2 . 

If r = r' = 0, then 

E, = ° (A.7.1.3) 

Q [1 I] 
EZ =4ne (Z-Z,)2-(Z+Z,)2 . (A.7.1.4) 

Appendix 7.2 Formulations for a line charge 

A. [Zl - Z Zo - Z Zo + Z Zl - ZJ 
E, = 4m:(zl - zo) c;:- -~ + -y;- - Gr (A.7.2.l) 

A. [1 I 1 IJ 
E= = 4ne(ZI - zo) C - D - F + G (A.7.2.2) 

C = [r2 + (Zl - z)2r/2 
D = [r2 + (zo _ Z)2]1/2 
F = [r2 + (zo + Z)2]1/2 
G = [r2 + (Zl + Z)2]1/2 . (A.7.2.3) 

If 1 --+ 00, then 

A. [r r J 
E, = 4ne D(zo - Z + D) - F(zo + Z + F) 

(A.7.2.4) 

Ez = - ~ [~ + ~J . 
4ne F D 

(A.7.2.S) 



Appendix 7.4 Formulations for a charged elliptic cylinder 

Appendix 7.3 Formulations for a ring charge 

where 

E = _JL~{[r~-r2+(Z-ZO)2]E(kd-f3iK(kd 
r 4nc nr Ct. l pi 

_ [r~ - r2 + (z - ZO)2] E(k2) - f3;K(k 2)} 

!X2f3; 

Ez = JL ~ [(Z - Zo) ;(kd _ (z + Zo) ;(k2)] 
47re7r !Xlf3 l !X2f3 2 

1</2 

E(k) = S Jl-k2 sin 2 8d8 
o 
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(A.7.3.1) 

(A.7.3.2) 

(A.7.3.3) 

l!Xl = [(r + ro)2 + (z - Zo)2]1/2 !X2 = [(r + rof + (z + ZO)2]1/2 

f3i = (r - ro)2 + (z - Zo)2 f3; = (r - ro)2 + (z + Zo)2 (A.7.3.4) 

2Fro 2Fro k l =--- k 2 =--· 
!Xl !X2 

E(k) is a complete elliptic integral of the second kind. 

Appendix 7.4 Formulations for a charged elliptic cylinder 

where 

I Vo 
E= - Vcp = --a~ 

f Jcosh2'1- cos 2 1jJ '1- '1b 

E = --+--A (x -f x + f) 
x 47reJs2 _ /2 Rl R2 

f R i = (x - f)2 + y2 

ls=1(R l +R2 ). 

(A. 7.4.1) 

(A.7.4.2) 

(A.7.4.3) 

(A.7.4.4) 
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Appendix 7.5 Approximate formulations for calculating 
K(k) and E(k) [15, 27J 

,,/2 

E(k) = f de 
o }1 - k 2 sin 2 e 

Let k 1 = 1 - k2 , the Hastings polynomial approximations are 

n n 

K(k) = L atk t1 - Ink1 L btkt1 + sdk) 
t=O t=O 

n n 

E(k) = 1 + L ctk t1 - Ink1 L dtkt1 + s2(k) . 
t=O t=O 

(A.7.5.l) 

(A.7.5.2) 

When n = 4, the constants at, b" Ct and dt are given in the following table. 

a b C d 

0 1.38629436112 0.5 
1 0.09666344259 0.12498593597 0.44325141463 0.24998368310 
2 0.03590092383 0.06880248576 0.06260601220 0.09200180037 
3 0.03742563713 0.03328355346 0.04757383546 0.04069697526 
4 0.01451196212 0.00441787012 0.01736506451 0.00526449639 

In Eqs. (A. 7.5.1) and (A. 7.5.2), I s(k) I ~ 2 x 10- 8. These approximations are very 
easy and fast to calculate the K(k) and E(k), the drawback is that the error is not 
uniform for the different variable of 'k'. More accurate results can be obtained if 
the arithmetic-geometrical mean polynomials are used, especialy when k is 
greater than 0.9. The formulations are 

Let 
aO = 1, 

then 

b = k 1/2 
o l' 

an=!(an-1 +bn-d, 

when Cn -+ 0, then 

K(k) = ~ 
2an 

E(k) = K(k) [ 1 -! (c~ + 2ci + 22C; + ... + 2n c;)] . 



Chapter 8 

Surface Charge Simulaton Method (SSM) 

8.1 Introduction 

The surface charge simulation method (SSM) is similar to the charge simulation 
method (CSM). In these methods, the real source distribution is simulated by 
a great number of accumulated or surface charges. They are both convenient for 
solving open boundary and 3-D problems. SSM can solve field problems that 
cannot be solved by CSM and also those that can. Using SSM one can obtain 
solutions to problems containing a number of dielectric materials and problems 
having thin electrodes. Hence SSM is a more general method than CSM. One 
could also consider it to be a kind of boundary element method, or a method of 
equivalent source. 

The basic concept of SSM is to simulate the real charges distributed on the 
surface of the electrode and the polarization charges on the interfaces of dielectrics 
by the equivalent sources of a single or double layer on the surface. The equivalent 
surface charge density is determined by known boundary conditions. After the 
equivalent surface charge density is found, the potential and the field strength at 
any point can be calculated. As the unknown distributed charges are located on 
the surface of the electrodes and the interfaces of the dielectrics, it is not 
necessary to find the locations and characteristics of the simulated charges as is 
the case when using CSM. The disadvantages of SSM are that there are more 
unknowns and consequently CPU-time is increased. It should be also noted that 
SSM requires faster methods to calculate the many integrals and singular 
integrals involved in integral equations. 

The original idea of SSM might even have been known to Maxwell [1] when 
he manually calculated the capacitance of an isolated square metal plate with 
the dimensions 1 m x 1 m by solving the corresponding integral equation. He 
divided the plate into 36 square elements and assumed the charge density to be 
constant in each element. He found that the capacitance of the plate to be 
40.13 pf. This is an accurate result compared with today's results [2]. Since 
Maxwell's work, no significant publications then appeared for about 90 years. 
Early in the 1970s, Singer used the surface charge simulation method to 
calculate the field distribution of a high voltage insulator [3]. Recently another 
doctoral thesis was written by Shuji Sato [2]. He deals with 3-D problems by 
using SSM. 
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Now the SSM is well known and is used to solve 2-D and 3-D electric [4J 
and magnetic [5J problems. It is especially useful in electron optics [6] where 
many thin electrodes are used for focusing. In optimal shape design of electric 
apparatus, the SSM is more suitable as the tool for field analysis [7-9]. 

8.1.1 Example 

Consider an isolated and very thin plate with dimensions 2a x 2b as shown in 
Fig. 8.1.1. When the plate is charged to a potential of 1 V, the charge density 
distribution a(x', y') is not uniform. According to Coulomb's law, the potential 
of any point P(r) is 

b a () fd 'fa(X',y')d' 
<p r = y 4neR x. (8.1.1) 

-b -a 

This is the Fredholm integral equation of the first kind, where a(x', y') is not 
known, R is the distance between the source point r' and field point r, i.e. 
R2 = [(x - X')2 + (y _ y')2 + (z - Z')2]. 

Subdivide the plate into M square elements (Fig. 8.1.1(b)) with the dimen­
sions 2e x 2e, shown in Fig. 8.1.1(c). The continuous distributed charge density of 
each element is assumed as a constant (the potential of each element is also 
assumed constant and is represented by the potential of the centre point), thus 

y 

1 
a(x',y') 
<jl=lV 

4 I 8 ~ I 

3 
2b 0 

L 
x 

2 

1 

a 2a b 

T] 

2e 0 '---+---

c 2e Fig. 8.1.1a-c. An isolated plate charged to 1 V 
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a(x', y') can be taken out of the integral operator, then Eq. (8.1.1) becomes 

M f 1 <p(r) = L aj(x',y') 4-- dSj ' 
j=1 rreR 

(8.1.2) 

In consideration of the boundary condition that the potential of the plate is 1 V, 
Eq. (8.1.2) can be expressed as: 

Equation (8.1.3) can be written in a matrix form 

where 

P{a}={<p} 

e e 

Pij = f f dxdy 
4rreR ij 

-e -e 

e e 

Pii = f f 4drr~~i . 
-e -e 

-a::::;;x::::;;a 

-b::::;; y::::;; b. 
(8.1.3) 

(8.104) 

(8.1.5) 

(8.1.6) 

The subscripts i,j represent the field point and the source point, respectively. Pij 
represents the potential of element 'i' induced by an unit charge density located 
at the element 'j'. As the charge is assumed to be concentrated at the centre of 
element 'j', and the potential of element 'i' is represented by the potential at the 
centre point of the sub-element, then 

Sj p .. ---
I) - 4rreRij 

(8.1.7) 

where Sj is the area of element 'j'. Rij is the distance between the centre point of 
element 'i' and 'j'. 

To calculate the coefficient Pii, it is considered that the charge is distributed 
on a square surface. The coefficient Pii is evaluated analytically, i.e. 

e e - f f dxdy - 2e 1/2 _ 0.2806 rc; 
Pii- 4 (2 2)1/2-- ln(1+2 )---ySi' rreo x + y rreo eo 

(8.1.8) 

-e -e 

If the element is not a square, an equivalent circle can be used to calculate the 
coefficient Pii, i.e. the potential at the centre of the circle is 

a 2" 

Pii = -l-f f rdedr = 0.2821 A . 
4rre r eo 

(8.1.9) 

o 0 
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Fig. 8.1.2. Charge distribution of an 
isolated plate 

After programming the above equations, the solution of Eq. (8.1.4) yields the 
surface charge distribution of a square isolated plate as shown in Fig. 8.1.2. The 
charge densities on the four corners of the plate are much higher than elsewhere. 

8.2 Surface integral equations 

The potential integral equation of a Poisson's equation has been derived in 
Sect. lA. In this section, the surface integral equations of interfacial boundaries 
are derived. 

8.2.1 Single layer or double layer integral equations 

The surface charge simulation method or the magnetic surface charge simula­
tion method is based on surface integral equations. They may be described by 
single or double layer source. For a single layer source, the potentials on both 
sides of the layer are continuous, but the normal derivative of the potential 
suffers an abrupt change, i.e. 

({J+ = ({J- (8.2.1) 

o({J+ o({J-
-----=-(J/eo· 
an an 

(8.2.2) 

This abrupt change is considered on both sides of the inter-surface S, i.e. 

~ [O({J + + o({J - ] = o({J I 
2 an On on s 

thus 

O({J+ (J O({JI 
a;;- = - 2eo + On s 

(8.2.3) 

o({J- (J O({JI 
a;;- = + 2eo + On s 

(8.2A) 
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cr(S) 
I-_-_--:EO 

Eo 

a b 

Fig. 8.2.1 a, b. Single and double layer source 

As the point r approaches the surface and considering the Eq. (1.3.1) 

J 
u(r') , Ju(r') " <p(r) = --ds = - G(r, r )ds 

41teoR eo 
s' s' 

one obtains 

a<p! = =+= u(r) + Ju(r') aG(r, r')! ds' . 
an ± 2eo eo an s 

(S.2.5) 

s' 

Note that the subscript' ± ' represents the point which approaches the 
surface from the opposite side as shown in Fig. S.2.1. 

For a double layer source, as discussed in Sect. 1.3.2, the potential is 
discontinuous at surface S but the normal derivative of the potential is 
continuous, i.e. 

r(r) 
<p+ - <p- =­

eo 

a<p+ = a<p_ = a<p! . 
an an an s 

(S.2.6) 

(S.2.7) 

By using a similar procedure, the corresponding equation of eq. (S.2.5) is 

( )1 r(r) Jr(r') aG(r, r')! d ' <pr+=+-+-- s. 
- - 2eo eo an s 

(S.2.S) 

s' 

Equations (S.2.5) and (S.2.S)are Fredholm integral equations of the second kind. 
In these equations, the different sign of + ve, - ve before each term of the RHS 
is due to the different normal directions of both the interior and exterior region. 

8.2.2 Integral equations of the interfacial surface [10, 11] 

Recalling Eqs. (1.2.30) and (1.4.9) and consider both the interior and the exterior 
(represented by -ve and +ve) problems, these are 
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( ) = f[G( ,)OqJ_ _ OG(r,r')]d' qJ- r r,r on qJ- on s (8.2.9) 

s' 

qJ+ (r) = f G(r, r')f(r')dv' - f [G(r, r'/:n+ - qJ+ OG~~ r') ]dS', (8.2.10) 

v' s· 

In eq. (8.2.10), the first term of the RHS is the potential produced by source 
density inside the surface, while the second term represents the single layer 
source and the third term is the effect of the double layer source. For Eq. (8.2.9), 
there is no direct contribution from the source density, it occurs indirectly by 
interface conditions 

In the exterior region when r -+ r., as discussed in Sect. 1.3.2, the contribu­
tions to the potential qJ+ due to the impressed source density and the equivalent 
single layer source remain continuous, i.e. 

lim qJ'(r.) = fP(r') G(r.,r')ds' 
r- r, eo 

(8.2.11) 

s' 

. f oqJ+ f oqJ+ I hm G(r, r') -",-ds = G(r., r')-;- ds 
r-r. un un s 

(8.2.12) 

s' s' 

where the term qJ'(r) denotes the potential produced by the impressed source. 
However, the contribution to qJ + (r) due to the equivalent double layer 

source is discontinuous, i.e. 

I· f ()oG(r,r')d' qJ+(rs ) f (,)oG(r.,r')d' 
1m qJ + r '" s = -2- + qJ + S '" S . '-r. un un 

(8.2.13) 

s' s' 

Therefore, in a limited case such as r -+ r. 

qJ+(rs )= ' ()+f (,)iJG(r.,r')d '-fG( ,)oqJ+1 d' (8214) 2 qJ+ rs qJ+ S an s rs,r an s s. ., 
~ ~ 

In a similar case, if the point P moves from the domain OJ to the boundary, 

lim qJ _ (r) = qJ - (rs) (8.2.15) 
f-rl 

I· f (') oG(r., r')d ' qJ - (rs) f (') oG(r., r')d ' 1m qJ - r '" s = - -2- + qJ - s '" S 
'-for, un un 

(8.2.16) 

s' s' 

I· fG( ,)oqJ-d' fG( ,)oqJ-(s)d' 1m r,r -;- s = r.,r -",- s . 
,-r, un un 

(8.2.17) 

s' s' 
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The resultant equation is 

cp_(rs) = _ f (') oG(r.,r')d ' + fG( ') oCP-(s)d ' cP - r :l s r., r :l s. 2 un un 
(8.2.18) 

s' s' 

Using the interface boundary conditions 

(8.2.19) 

ocp+l_ Ocp_1 
e+:l - e_ :l 

un s un s 
(8.2.20) 

multiply Eq. (8.2.14) by e+ and Eq. (8.2.18) by L, respectively, then add these 
two equations and by considering the Eqs. (8.2.19) and (8.2.20), one obtains 

( ) _ 2e+ '( )+(e+ -L)f ()oG(r.,r')d' cp rs - cp rs cp r s 
e+ + L (e+ + L) on (8.2.21) 

s' 

and 

(8.2.22) 

In magnetostatic fields, 

2J1.-, (J1.- - J1.+) f oG(r.,r'), 
(Pm(rs ) = CPm(rs ) + ( ) CPm(r) 0 ds 

J1.+ + J1.- J1.+ + J1.- n 
(8.2.23) 

s' 

these are Fredholm integral equations of the second kind. These equations are 
very useful for solving the problems containing multiple materials as used in 
references [12, 13]. Where af is an imposed charge density, and cp'(rs ), and 
cp~(rs) are potentials induced by imposed source terms. 

8.3 Types of surface boundary elements 
and surface charge densities 

8.3.1 Representations of boundary and charge density 

Two different kinds of discretization are required. One deals with the discretiz­
ation of the boundary surface and the other deals with the distributed charge 
density. In a 2-D case, the boundary could be subdivided by thin plate or an 
arced thin plate with infinite length. The cross-section of this element is a short 
line or arc as shown in Fig. 8.3.1. These are called linear or circular elements. For 
an axisymmetric problem, the subelement consists of filament ring charges. 
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In 3-D problems, the surface of the boundary could be a plane or a part 
of a cylinder or any other curved surface [4]. The charge density of these 
subelements can also be constant or represented by any other functions. Here, to 
avoid the many special functions, only constant and linear charge distributions 
on linear and circular elements in a 2-D case are discussed. Other functions like 
the Fourier-type and Tchebycheff-type expansions are described in references 
[2, 14]. 

8.3.2 Potential and field strength coefficients for 
2-D and axisymmetrical problems 

In 2-D cases, the sub-element of the boundary could be a thin plate or an arced 
thin plate of infinite length. The cross-section of a thin narrow plate and of an 
arced plate in the x-y plane are shown in Fig. 8.3.1. 

The potential at any point P(Xi' yd produced by these elements is 

(8.3.1 ) 

where ).(Xj, Yj) represents the line charge density. The constant C' in Eg. (8.3.1) is 
determined by the potential reference point. If the image source is considered 
and the symmetric plane is chosen as a potential reference point, then Eg. (8.3.1) 
is altered to 

(8.3.2) 

For an axisymmetric field, the sub-element could be a frustum of a cone or 
a spherical segment as shown in Fig. 8.3.2(a) and (b). For simplicity, in this 
chapter, these elements are called ring elements with a linear or arced lateral 
surface. 

y y 

A~ A~YJ) 

B B 

0 x 0 x 

a b 

Fig. 8.3.1a, b. Cross-section of subelements in translational symmetric cases 
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A 
I 
I 

, / 

'\. I / 
'- ' / ...... -+ -/' - -

a b 

Fig. 8.3.2a. b. A ring element 

The potential induced by these elements is 

where 

[ 4rirj JI/2 
kj = 2 2' 

(ri + rj) + (Zi - Zj) 

K (k j) is the elliptic integral of the first kind [15]. 

8.3.2.1 Planar element with constant or linear charge density 

If ,1,(e) is constant, Eq. (8.3.\) is simplified to: 

B 

A(ej)f 1 , 
CfJij = -- In 2 2 dl + C . 

47tB (Xi - Xj) + (Yi - Yj) 
A 

259 

(8.3.3) 

(8.3.4) 

To obtain a generalized formula to calculate the integral, the coordinate 
transformations are used and the relationship between X-Y and x"-y" (as shown 
in Fig. 8.3.3) is, 

{X"} [ cosO( sinO( J {X' } 
y" = - sinO( coso( y' 

X2 - XI 
cosO( =---

, Xl + X2 
X =x---2-

. Y2 - Yl 
SInO( = I 

, Yl + Y2 
Y =Y- 2 ' 

(8.3.5) 
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y y' y" 

.~----x· 

x" 
AJ 

Y" I 
AJ• 1 

x" 
A( -1/2) 0 B( V2) 

o~---------------------- x 

a b 

Fig. 8.3.3a, b. Transformation of coordinates 

where the axis x" is along the length of the element, and 1 is the length of the 
element, 12 = (X2 - xd2 + (Y2 - yd2. As 

then 

dl = JI + (~~r dx = JI + tg 2 adx = secadx 

dx" = cosadx + sinadx = secadx = dl 

A(e) 
q>"-­

I) - 4ne 

1/2 

J In (" ")2 1 (" ")2 dx" + C' . x - Xi + Y - Yi 
-1/2 

(8.3.6) 

The distance between the source point (Xj, Yj) and the observation point (x;, y;) is 
unchanged during the transformation of coordinates, i.e. 

(x - xY + (y - yy = (x" - xi') + (Y" _ y;')2 . 

The integration of Eq. (8.3.6) yields 

Aj(e) 
q>ij = -4-pij . 

Ttl: 

The components of field strength in the coordinates x" 0 Y" are 

then 

(3.3.7) 

(8.3.8) 

(8.3.9) 

(8.3.10) 
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The formulations for evaluating the coefficients of Po ,f;' and J;' are given in 
ij ij 

Appendix A.S.l, Eq. (A.S.1.l) to (A.S.1.4). 

To avoid discontinuities of the charge density between adjacent elements as 
shown in Fig. S.3.4(a), a linear charge (density) distribution is used as shown in 
Fig. S.3.4(b). 

In Fig. S.3.4(b), let 

Ij + I - I I - Ij 
A(e) = Ij + I _ Ij Aj + Ij + I _ Ij Aj+ I . (S.3.11) 

Substitute Eq. (S.3.11) into Eq. (S.3.1) and consider Eq. (S.3.7), this yields: 

1/2 

Aj f x~ - x" " " 2 ,,2 II 

qJij = - 4- " " In [(x - Xi) + Yi ] dx 
rrf. X2-XI 

-1/2 

1/2 

- ~. I In [(x" - X~')2 + /'2]dx" +C' k f x" - x" 
41C€ X2 - x~ l' ~ 

-1/2 

= ~p~~) + Aj+1 p~2) 
4rrc I} 4rrc I} 

(S.3.12) 

Using the derivation of Eq. (S.3.9), the components of the field strength in the 
x"-y" plane are: 

{ E~ .. = ~ /;'(1) + Aj+ I. /;'(2) 
'J 4rrc 'J 4rrc 'J 

k A·+I E" = -} J.,"(l) + _}_j;"(2). 
Y'J 4rrc Y'j 4rrc X'j 

(S.3.13) 

Th r I t· f (1) (2) 1,,(1) 1"(2) J.,"(l) d 1"(2) . . A d· e lormu a IOns 0 Pij' Pij '}X'} '}X'j 'Yij an }Y'j are gIven III ppen IX 
A.S.I, Eqs. (A.S.1.S), (A.S.1.6), and (A.S.1.9) to (A.S.l.12). 

r---l 
I 

~ 
I I I I 
I I I I 
I I I I 

o~~~--~~--~~--~--

Ii li.1 

a 

o~1 ~~~~i __ ~~ __ ~~ ___ 
Ii li.1 

b 

Fig. 8.3.4a, b. Distribution of constant and linear charge density 



262 8 Surface charge simulation method 

8.3.2.2 Arced element with constant or linear charge density 

An arced element in the X-Y and x'-y' planes are shown in Fig. 8.3.5(a) and (b). 
The formulation of coordinate transformations are given in Eqs. (8.3.14) to 
(8.3.16) 

{ X: = x - Xo 
Y = Y - Yo 

(8.3.14) 

{ 

Xo = (xt - x5)(Y2 - Y3) -(x~ - X5)(YI - Y3) -(Yl - Yl)(Yl - Y3)(Y3 - yd 
2(Xl - X3)(Yl - Y3) - 2(X2 - X3)(YI - Y3) 

(y~ - Y5)(xl - X3) -(YI - Y~)(X2 - X3) -(Xl - X2)(X2 - X3)(X3 - xd 
Yo = 2(XI - X3)(Y2 - Y3) - 2(X2 - X3)(YI - Y3) . 

Let 

y 

0 
a 

-1 

c 

y~ Yl - Yo 1/11 = arctg-;- = arctg.::....-=----=...::. 
Xl Xl - Xo 

Y2 Y2 - Yo 
1/12 = arctg-;- = arctg . 

X2 X2 - Xo 

xz,yz 

'\' y' I y' 

L~ x,.Y, X·z.y·z I ./'/' 

/~\ x·].y\ 

--- . x 
xo,Yo 

/ 

/ - 'JI] 
X 

1-

0 
b 

I . ~ 
+1 o 

Fig. 8.3.Sa-c. Coordinate transformations 
of an arced element 

(8.3.15) 

(8.3.16) 

x' 
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If A(e) is a constant, then 

1/12 

Aj(e) f I [(' ')2 (' ')2] R d,l, C' AAe) (S 3 17) l{Jij = 4ne n x - Xi + Y - Yi 0 'I' + = - 4ne Pij . .. 
1/1, 

It is easy to integrate if the local coordinate (~, '1) are introduced, i.e. suppose 

then 

A 
=-p .. 4ne I} 

f Ex,) = 4~e fxu 

lEy,) = 4~e !,ij . 

2 

Y = L NkYk k = 1,2 
k=l (S.3.1S) 

~E( -1, +1) (S.3.19) 

(S.3.20) 

(S.3.21) 

The integration of Eq. (S.3.20) is evaluated either numerically or analytically. 
The analytical results are given in Appendix A.S.2, Eqs. (A.S.2.4), (A.S.2.7) and 
(A.S.2.S). 

If the charge distribution is linear, then 

(S.3.22) 

1 

Aj f " 2" 2 ({Jij = - 4ne N1ln[(L.,Nkxk- X;) +(L.,NkYk-Y;) ]Rod~ 
-1 

1 

-~;e1 f N2In[(LNkxk-x;)2+(LNkYk-y;)2]Rod~+C' . 
-1 

_ ~ (1) + Aj + 1 (2) - 4 p.. 4 p ... ne '} ne I} 
(S.3.23) 
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The formulations of p(l), p(2) are found in Appendix A.8.2, Eqs. (A.8.2.9), and 
I J I J 

(A.8.2.1O). 

8.3.2.3 Ring element with linear charge density 

For a axisymmetric field, the boundary surface is subdivided by a number of 
ring elements. The base of the ring element is a filamentary ring charge. When 
calculating the potential induced by the ring element, the elliptic integral has to 
be solved. As the integration path dl is a curve as shown in Fig. 8.3.6(a), these 
integrals are cumbersome. To reduce the CPU-time for the numerical integra­
tion, parabolic curves are recommended to replace the curved contour [3, 16]. 
The variables of the integration are reduced by using the following equations 

Z = a + br + cr2 e ~ 45° 

r = a + bz + cz2 0 Z 45° 

(8.3.24) 

(8.3.25) 

(8.3.26) 

By using Eqs. (8.3.24) and (8.3.25), the variable of integration in <Pi j is only 
'r' or 'z'. 

Assuming that the charge density is linearly distributed, i.e. 

substitution of Eqs. (8.3.24) and (8.3.27) into Eq. (8.3.3), leads to 

Since 

or 

I j + I 

1 f K(kd <Pi' = - A ·(e)r·--dl + C 
J m; J J (Xl 

I j 

[2 = (rj+ 1 - rj)2 + (Zj+ 1 - Zj)2 

d[ = [1 + (b + 2cr)2] 1/2 dr 

(8.3.27) 

(8.3.28) 
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z 
Z I 

f j +1,Zj+l 

A(e) 
r 0 

a b 

Fig. 8.3.6a, b. A parabolic curve of a ring element 

when the symmetric plane is chosen as a potential reference, then C = 0, 

Zj + 1 

+ )'j+ t f [K(k d _ K(k z)] 
m;(zj+l-zJ IXI IXz 

Zj 

x(a + hz + cz)z[1 + (b + 2cz)Zr/Z(z - zj)dz (8.3.29) 

where 

(8.3.30) 

In Eq. (8.3.29) K(k d and K (k2) are elliptic integrals of the first kind, the 
parameters a, band c are determined by the following equations, e.g. 

{

rj = a + bZj + czJ 

rj+ I/Z = a + bzj + 1/2 + CzJ+ 1/2 

rj+1 = a + bZj + 1 + CZJ+I 

(8.3.31 ) 

where rj' Zj' rj+ 1/2, Zj+ 1/2, rj+ I and Zj+ I are coordinates of each element. 
Let 

(8.3.32) 

then 

(8.3.33) 
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Equation (8.3.29) is rewritten to 

The range of the integration is changed to - 1 to + 1 where 

The field strength is: 

o<p 
E =--

rlJ or 

I 

X(Z"+I - z)dx - _1- [HI - Hz](a + bz + CZZ) A."+ I f 
J 4m:r 

-I 

x [1 + (b + 2cz)Zr/2 (z - zj)dx 

E = _ o<p 
ZIJ oz 

1 

= - ~ f [H3 - H4](a + bz + cz 2 )[1 + (b + 2CZ)Z]I/2 
21[8 

-I 

(8.3.34) 

(8.3.35) 

(8.3.36) 

(8.3.37) 

(8.3.38) 

The integrations of Eqs. (8.3.34) (8.3.37) and (8.3.38) are calculated numerically. 
All the formulations of the constants a, b, c and HI to H4 are listed in 
Appendix A.8.3, Eqs. (A.8.3.1) to (A.8.3.8). 
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8.3.3 Elements for 3-D problems 

In 3-D cases, the curved boundary is discretized by a great number of surface 
elements, these may be a planar triangle, curved triangle, cylindrical element, or 
any quadrangular element [16]. 

8.3.3.1 Planar triangular element 

The simplest element for 3-D problems is the 3-node planar triangle. Assume the 
surface charge density is expressed by a linear function of the x and y coordin­
ates, e.g. 

then 
a(e) = a + bx + cy 

f a(e) 
q>(r) = -dxdy. 

4n:e 
s. 

In Eq. (8.3.39), the constants a, band c are determined by 

(8.3.39) 

(8.3.40) 

(8.3.41 ) 

where (xi,yd, (Xj, Yj), (xm' Ym) and ai, aj' am are coordinates and charge 
densities of the three vertices of the triangle. Equation (8.3.40) can be evaluated 
numerically or analytically. The analytical integration formulae are given in 
Appendix 6 of reference [16]. 

8.3.3.2 Cylindrical tetragonal bilinear element 

In order to avoid discontinuity of the charge density along the boundary of the 
element and the resulting jump phenomenon, the charge density is assumed to 
be linear along the boundary. For a cylindrical element, as shown in Fig. 8.3.7, 

z 

'-f---- Y 

x 
Fig. 8.3.7. Cylindrical tetragonal element 
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the surface charge density has a nonlinear distribution at the surface of the 
element e.g. 

aj(z, 1/1) = ao + a[ z + ct21/1 + 1X3 zl/l . (8.3.42) 

Using the notations a(z[,l/Id, a(z[, 1/12), a(z2' 1/12), a(z2,l/Id to denote the 
charge densities at the vertices of the element, the parameters 1X0, IX 1> 1X2, 1X3 are 
determined by knowing the charge densities and the coordinates of the four 
vertices of the element, i.e. 

I 
a(z, 1/1) = N{a(zl> I/Id[Z21/12 - Z21/1 -1/I2Z + I/Iz] 

+ a(z[, 1/12)[ -Z21/12 - Z21/1 -I/I[z -I/Iz] 

+ a(z2' 1/12)[Z[I/I[ - z[1/I -I/I[z + I/Iz] 

+ a(z2' I/Id [-Z[1/I2 + z[1/I + 1/12Z -I/Iz]} (8.3.43) 

where N = (Z2 - zd (1/12 - 1/1 d. Substitution of these equations into Eq. (8.3.40) 
leads to 

+ IX[ [JAz2) - I.(z[)] + (ct[ZO + 1(0) [lc(Z2) - Ic(zd]}. (8.3.44) 

In Eq. (8.3.44), I" I" I"" I",z represent the four integrals. These integrals have no 
analytical solution. Reference [14] states that if point P is situated near the 
surface, an approximate solution is possible as shown in the Appendix of 
reference [14]. 

8.3.3.3 Isoparametric high order element 

For problems with a curved boundary, curved triangular and tetragonal ele­
ments with a high order interpolation function may be used in the same way as 
in FEM. These elements are used to the optimum design of insulators in 
reference [9]. 

Both the charge density and coordinates of a point are expressed by the local 
coordinates 

l
a(~, '1) = L Nj(~, '1)aj 

x(~, '1) = L Nj(~, '1)Xj 

Y(~, '1) = L Ni~, '1)Yj 

z(~, '1) = L Nj(~, '1)Zj 

(8.3.45) 

where Nj(~' '1) are shape functions as was defined in Chap.6 and 'j' is the 
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sequential number of the nodes. The potential at any observation point P(Xi' yd 
produced by one element is 

1 f O'j ds 
({>ij = 41!c [(Xi - XJ2 + (Yi - YY + (Zi - zy]1/2 

s· 

(8.3.46) 

lor orl where ds = c~ x 0' IJ d ~ . dlJ = IJ I d~ dlJ (refer to Fig. 6.6.1). In eq. (8.3.46) 

F (~, IJ) = [(I NjXj - XY + 0:: NjYj - YY 

+ (I NjZj - zyr /2 

OX oy oz 
o~ o~ o~ 

ax oy oz 
J= 

DIJ VIJ DIJ 

By using Gauss integration 

K .. = _I I ~ w W Nj(~m' IJ.) IJI 
'J 41!C m =1.=1 m • F(~m,IJ.) 

(8.3.47) 

(8.3.48) 

(8.3.49) 

(8.3.50) 

where ~m' IJ. are coordinates along the path of integration, Wm and W. are 
weighted coefficients of the integration. 1m and I. are the numbers of the 
integration points. 

8.3.3.4 Spline function element 

Reference [17] provides a spline function to approximate both the shape of the 
contour and the charge density, i.e. 

{

O' = f(t) = a"t: + b"t: + c"t + d" 
X - f(t) - axt + bxt + cxt + dx 

Y = f(t) = ayt3 + byt2 + cyt + dy 

(8.3.51 ) 
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where t is a parameter. Using a high order spline function, the complex contours 
can be represented. A more detailed application is given in reference [17]. 

8.4 Magnetic surface charge simulation method 

The presence of magnetization of magnetic materials can be simulated by all 

equivalent magnetic surface charge, even if it is impractical. It has been derived in 
Sect. 1.3, that the scalar magnetic potential produced by the magnetization of 
the material is 

1 f V'·M 1 fM.n 
CfJ (r)=-· ---dQ'+- --ds' 

m 4n R 4n R 
fl' s' 

= ~ f PmdQ' + ~lO'mds' 
4n R 4n J R 

(8.4.1) 

fl' s' 

where 
R=lr-r'l· (8.4.2) 

M is the magnetization vector, O'm is the magnetic surface charge density and n is 
the positive normal direction of the surface. Suppose that the magnetization of 
the material is uniform, then Pm = O. The magnetic field caused by the magnetiz­
ation is 

Hm = - grad CfJm = - V(41nf~dS) (8.4.3) 

s 

The total magnetic strength H is composed of two parts, i.e. 

(8.4.4.) 

Hc is the magnetic field strength induced by the impressed current. After 
discretization of the surface, Eq. (8.4.4) can be approximated as 

H- = H -- V - ds 1 If (O'm j ) , 
I Ci 4n R (8.4.5) 

s 

where the subscript 'j' denotes the field points. Multiplying both sides of 
Eq. (8.4.4) by n, the normal direction of the interface, one obtains 

1 IN f (O'm j ), H· = H· - - n· V - ds . 
In CIn 4 R 

n j= 1 
s' 

(8.4.6) 
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The second term of the RHS of Eq. (8.4.6) includes the fields H mns and H mno' they 
are due to the magnetization of element 'i' itself and due to the magnetization of 
all the other elements except the element 'i', i.e. 

(8.4.7) 

The field strength H c and the H mno are continuous on both sides of the interface. 
However the values of Hmns on both sides of the interface are equal but in the 
opposite directions. 

By using the interfacial boundary conditions 

n·(B2 - Bd = 0 

n x(Hz - Hd = 0 
I.e. 

thus 

(8.4.8) 

(8.4.9) 

(8.4.1 0) 

For the component Hmn" the corresponding magnetization charge density is 

(8.4.11 ) 

therefore 

~ In .. V(~)dS = ~ . 
4n: I R 2 

Sl 

Introducing the susceptibility Xm to express magnetic field strength yields 

1 1 
H in = -Min = -ami (8.4.12) 

Xm Xm 
hence 

( 1 1) L ami I ( 1) I a . - + - + - n·· V - ds = H . 
ml 2 4 I R Cln • 

Xm i*i n: 
(8.4.13) 

Sj 

Consider that Xm = J1.r - 1, Eq. (8.4.13) is written to 

J1.2 + J1.l '" ~ famidS _ 
---- am + ~ - Hcn 
2(J1.z - J1.d i*i on 4n:R 

(8.4.14) 
s 

this is the Fredholm integral equation of the second kind. It is used to calculate 
the magnetic field due to the magnetization of the material. This result can also 
be obtained from Eq. (8.2.22) by using the analogy between the electric and 
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magnetic field. After using the technique of discretization, Eq. (8.4.14) is trans­
formed to 

The elements of matrix Pare 

J.l.2 + J.l.l p .. = 
11 2(J.l.2 - J.l.l) 

If the 3-node triangular element is used, i.e. 

O"m(e,l1) = 1X1 + 1X2e + 1X311 = L. Nk (e,l1)O"mk 

then 

(8.4.15) 

(8.4.16) 

(8.4.17) 

(8.4.18) 

(8.4.19) 

Solve Eq. (8.4.15) to obtain {O"m}, then the magnetic flux density is calculated by: 

r B" = J.l.o(Hex - 41 :1
0 .f fO"m ds ) 

1t vXJ=l R 

( IoN f'i 0" ) 
By = J.l.o Hey - - - L ~ds . 

41t OXj=l R 
(8.4.20) 

( IoN 'fiO" ) 
Bz = J.l.o He. - - - L. ~ds 

41tOX j =1 R 
SJ 

An example of this method is given in [18]. Another application of this method 
is shown in Example 8.6.4. 

8.5 Evaluation of singular integrals 

One of the drawbacks of the methods of integral equations including SSM is the 
presence of singular integrals. The use of SSM requires the solution of improper 
numerical integrals. The numerical solution of improper integrals is either 
inaccurate or requires considerable CPU time. The calculation of a singular 
integral depends on the property of the kernel of the integral. The kernels of an 
integral equation are composed of two kinds: either indicating weak singularity 
or strong singularity. If the singularity can be removed by transformation of the 
function or by changing the variables, it is called weak singularity; otherwise it is 
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a strong singularity. For instance, the kernel In(r) includes a weak singularity 
and the kernel l/r includes a strong singularity. In 2-D electromagnetic prob­
lems, the singularities are usually of a logarithmic type. The integration over 
these singularities is generally evaluated analytically or at least by partially 
analytical procedures which require tedious series expansions. Generally speak­
ing, known techniques are used depending on the degree of singularity of the 
integrand. Several methods are introduced in this section. 

8.5.1 The semi-analytical technique 

If the integrand f(x) of the following equation 

1 

F = ff(x)dx (8.5.1 ) 

o 

is singular when x = 0, rewrite the integral as follows: 

1 1 1 

F = f f(x)dx = f [f(x) - h(x)Jdx + f h(x)dx (8.5.2) 

000 

where 

lim If(x) - h(x)1 = M < r:IJ • (8.5.3) 
X~O 

The first integral of Eq. (8.5.2) is a regular integral, it can be evaluated by 
Gaussian quadrature. The second integral of Eq. (8.5.2) must be an analytical 
integral. Here hex) is a function added to remove the singularity. Thus the 
technique removes the essential singularity and separates the integration into 
two parts. For example, 

F = flOg [ sin (~x ) ] dx 
o 

f { log [ sin (~x ) ] - log (~x ) } dx + H 
o 

(8.5.4) 

where 

(8.5.5) 

The first integration on the RHS of Eq. (8.5.4) is computed by Gaussian 
quadrature, the second part is analytically integrable as shown in Eq. (8.5.5). 
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If there are a number of possible functions for a given f(x) to remove 
singularities, it is recommended to choose the one for which the value M in 
Eq. (8.S.3) becomes zero. This method requires the evaluation offewer functions 
than the method using geometrical intervals. This technique was used to handle 
the singularity of Green's function in a 2-D case in reference [7]. Another 
example treats the singularities of a Fourier-type charge distribution composed 
of linear and circular elements [2]. It is also used in the example given in 
Sect. 10.4.2. 

8.5.2 Method using coordinate transformations 

The aim of coordinate transformations is to alternate the singular integral into an 
analytically integrable function. When the observation point Pi is located on the 
source segment j, as shown in Fig. 8.S.1(a), Eq. (8.3.47) cannot be evaluated 
numerically. Let the observation point Pi be at the origin of the polar coordin­
ates (p - ()), shown in Fig. 8.S.1(b), then the integration of the area 1234 is 
subdivided into eight elements as shown in Fig. 8.S.1(c). The integration of each 
element can be calculated analytically in p - () coordinates. 

The coordinates transformation methods are usually used to remove any 
singularity, one example is shown in Example 3 of Sect. 8.6, another example can 
be seen in [19]. 

3 

2 4 

a 

3 

2 4 

c 

e 

r 
e o k::::.-----..::::......-__ ~-- p 

b 

Fig. 80S. la-c. Method using coordinate 
transformations. a Singular point; b polar 
coordinates; c eight equivalent triangular in­
tegration 
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8.5.3 Numerical technique 

One of the numerical integrations of logarithmic singularity is given in [15]. 
Another method was provided by Kasper [20]. If the integrand can be written as 

1 
F (x) = f(x) In N + g(x) (8.5.6) 

where f(x), g(x) remains regular, then the integral can be calculated by updated 
Gauss numerical integration as below 

h 

f F(x)dx = h JI J.Li[ F(Pi h) + F( -Pi h)] 
-h 

where the parameters are 

PI = 0.067 2230 4110 

P2 = 0.441 8550 6300 

P3 = 0.870 0987 6121 

J.LI = 0.211 6130 9257 

J.L2 = 0.470 7574 6449 

J.L3 = 0.317 6294 4294 . 

8.5.4 Combine the analytical integral and Gaussian quadrature 

(8.5.7) 

Separate the singular integrand into two parts, one part containing the remov­
able singularity which can be calculated analytically and the other by regular 
integration. An example is given in Example 8.6.1. 

In general, the methods for dealing with integrations around singularities 
requires experience. Many authors have their own method to handle these 
problems as shown in references [10, 20-24]. Only the bases are introduced in 
this section. 

8.6 Applications 

Example 8.6.1 The field distribution of a pair of spherical electrodes 

A pair of charged spherical electrodes is chosen as an example to examine the 
accuracy of SSM. In Fig. 8.6.1, S = 2 cm, R = 0.524194 cm. Each spherical 
electrode is subdivided into six ring elements. Assume for each element that the 
charge distribution is linear. The matrix equation of {a} is: 

Pta} = {± Vo/2} . (8.6.1) 

The elements of P are calculated using Eq. (8.3.29). The singular integration 
included in Pii is handled as follows 
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r 

Z---r~~-r----~O~---~ 
r-----S----Iv 

Fig. 8.6.1. A pair of charged spherical conductors 

Subdivide the ring element into two parts, A and B, as shown in Fig. 8.6.2. 
For this singularity, the small area A containing the point 'i' and )' is ap­
proximated as a rectangular surface with dimensions of 2fJR x dl. The potential 
at point T produced by the charge density (f of this small area can be calculated 
analytically. If the charge density of this small part is a constant, then the results 
of integration are 

(8.6.2) 

where 
a = fJR b = d112. (8.6.3) 

The potential at point 'j' produced by the charge of the remaining part B is: 

Ij + 1 

I f F(k,9) CPB = -- --- d(e)dl 
neo oc 1 

(8.6.4) 

I) 

where F(k, 9) is an incomplete elliptic integral 

(11.-{l)/2 

f doc 
(8.6.5) 

o 

TJ 

a b 

Fig. 8.6.2a, b. Integration around singularity, a Subdivision of an element into parts A and 8; 
b Local coordinates of area A 
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Table 8.6.1. Validation of SSM 

Position SSM Analytical solution Errors 

r (m) z (cm) E, (kV/cm) E, (kV/cm) E, (kV/cm) E, (kV/cm) of E, (%) 

0 0 0 5.564980 0 5.555555 0.169 
2.0 0 0 1.214454 0 1.200000 1.203 
4.0 0 0 0.244404 0 0.240495 1.624 
0 0.4 0 6.891321 0 6.896591 0.076 

The approximate evaluation of the incopmplete elliptic is referred in [15]. The 
comparative results of SSM and the analytical solution are shown in Table 8.6.1. 

Example 8.6.2 Field distribution in a vacuum switchgear 

Figure 8.6.3(a) shows a model of a vacuum switchgear r-axis is the axis of the 
symmetry, where 0 is the main electrode, 5 is the insulating envelope and 6 is the 
end plate. The thin electrodes 1,2,3,4 are shielding electrodes, these are used to 
equalize the field distribution in the chamber. The shape of these electrodes are 

I r 
1 5 2 3 

'" '" '" 0 / / 

~ 4 
, 

6 

z 

a 

r 

z 

b 

Fig. 8.6.3. a Electrodes of a 35-kV vacuum switchgear, b equipotentiaiiines of the switchgear 
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optimized so that a uniform field distribution is obtained in the vacuum 
chamber. Due to the shielding electrodes being very thin, CSM is not suitable to 
be used. The surface simulation charges help the solution, the resultant equi­
potential lines of the switchgear shown in Fig. 8.6.3(b) [25]. 

Example 8.6.3 Calculation of the capacitance of an isolated plate 

A plate with dimensions 1 m x 1 m is subdivided into 8-node isoparametric 
tetragonal elements. The integrations around singularities are handled using 
coordinate transformations. The results are shown in Table 8.6.2. The result 
shows that if only one 8-node tetragonal element is used, the result is very close 
to the accurate result. If the number of the elements is increased from 48 to 81, 
the result does not change. The values of Table 8.6.2 shows that the accuracy of 
an 8-node tetragonal element is quite good. 

For comparison, the results of different methods given in reference [2] are 
listed in Table 8.6.3. 

Table 8.6.2. Capacitance C versus the number of sub-elements 

Number of clement C (pf) CPU-Timers)! 

1 40.623 0.507813 
9 40.825 1.742188 

25 40.814 6.554688 
49 40.808 25.984375 
81 40.808 81.375000 

! The macrosuper computer ELXSI is used. 

Table 8.6.3. Capacitance C of a 1 x 1 m 2 plate calculated by differ­
ent methods 

Name of the author Year Value of C (ppf) 
of the method 

Maxwell 1879 40.13 
Reitan! 1957 40.2 
Harrington I 1970 39.5 
Ruehli' 1973 40.8 
Takuma' 1980 41.11 

! AlEE Trans. Comput. Electrons, 75, 761-766, 1957 
I Proc. lEE, 55, 136-149, 1967 
, IEEE Trans., MIT, 21(2), 76-82,1973 
~ CRIEPI Report No. 180029, Dec. 1980 
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Example 8.6.4 Calculate the magnetic field strength 
in a ferromagnetic trough 

A direct current of 150A is passing through a long conductor with the cross 
section of 0.6 x 0.6 cm 2• It is inserted into the middle of a rectangular ferro­
magnetic trough as shown in Fig. 8.6.4. The magnetic field strength in the trough 
is caused by the impressed current and the magnetization of the ferromagnetic 
material of the trough. Assuming that the current is not strong enough, the 

Fig. 8.6.4. The model of the ferromagnetic trough 

B(Gauss) 
35------.-----.-----.-----.-----.-----.-----.----. 

25 

20 

15 

10 

5 

OL-----~----~----~----~----~----~----~--~ 
1 2 3 4 5 6 7 8 9 x(cm) 

Fig. 8.6.5. The magnetic field strength in the trough 
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magnetic material is considered to be working in the linear part of the B-H 
curve. The influence of the magnetization is simulated by using the magnetic 
surface charge as introduced in Sect. 8.4. The singular integration is solved by 
coordinate transformations. The calculated and the measured results are shown 
in Fig. 8.6.5. In Fig. 8.6.5, the origin of the coordinates is assumed in the middle 
of the bottom of the trough. 

8.7 Summary 

SSM is one of the direct integral equation methods. The surface of the electrode 
or the interfacial boundaries are discretized by elements and the surface charge 
distribution of the subelement is approximated by a specific function. After the 
boundary is discretized and the approximate function of the charge distribution 
is chosen, a great number of integral expressions have to be evaluated. Then the 
solution of the matrix equation is shown by the values of the surface charges. 

Compared to CSM, due to the flexibility of the approximate function of the 
surface chage, it is more suitable for problems with complex geometry and 
complex interfaces associated with dielectrics. It is more convenient for the 
optimum design of the electrodes and insulators [26]. The accuracy of SSM due 
to the discretization has been discussed in [27]. 

More general methods to deal with the singular integral have been introduced 
in this chapter. 

The magnetic surface charge simulation is suitable for solving the problems 
contained in ferromagnetic materials. 
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Appendix 8.1 Potential and field strength coefficients of 
2-D planar elements with constant and linear charge density 

For constant elements 

[ 
1/ Ai 1/ Bi I] P .. = - klnC· + B·lnD· + 2y· arctg- + 2y· arctg- - 2 + C 'J "I I , " I II 

Yi Yi 

(A.8.U) 
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Ai = 1/2 - x;' C Az liZ 
i= i +Yi 

I II 2 II (Ai Bi) 2 Ai 
'ij = Yi Ci + Di + arctg Y;' 

2 Bi 2 II [Ai Bi ] + arctg-;; Yi AZ liZ + Bl liZ 
Yi i + Yi i + Yi 

(A.S.l.2) 

(A.S.l.3) 

(A.S.1.4) 

For linear element 

A.[ A· B· ] p(~) = - -I' AilnC j + BilnDi + 2y;'arctg-;; + 2y;'arctg-;; - 21 
'J Yi Yi 

(A.S.l.S) 

B.[ A· B· ] p~~) = - -I' AilnCi + BilnDi + 2y;'arctg-;; + 2y"arctg-;; - 21 
'J Yi Yi 

+ ;l[ CilnCi - DilnDi - A; + B; ] + C(Z) (A.S.1.6) 

Let Pij represent the potential coefficient of a constant element, then the 
relationshp between Pij and Pij is: 

P(~) = Ai p_ .. + ~[C.lnC. _ D·lnD· - Af + B~] + C(I) 
'J I 'J 21 ' , , , , , (A.S.l.?) 

(Z) Bi 1 2 2 (2) 
P . = -p-" - -[C.lnC. - D·lnD· - A- + B.] + C iJ I 'J 21 ' , , , , , (A.8.1.8) 

/ "(1)= __ 2y~'arctg---':+2y"arctg---':21 1 [ A- B· ] 
Xlj I' Y;' y;' 

(A.S.l.9) 

Bi [ Di 2B; 2A; 2y;' 2y;' ] 
+ -I In C. + -D. - -C. + Bl 112 - AZ III (A.S.l.l0) 

, , , i + Yi i +Yi 
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2 Bi 2AiY;' 2BiY;' J I [ "I C Y"I D] + arctg-;; - A2 + "2 - B2 + ,,2 - -[ Yi n i - i n i 
Yi i Yi i Yi 

(A.8.UI) 

1,,(2) _ Bi [2A iY;' + 2BiY;' + 2 t Ai -- -- -- arcg-
Y'j [ C. D. " 

1 1 Yi 

Bi 2AiY;' 2Bi Y;' J I" " + 2arctg-;; - A2 + ,,2 - B2 + ,,2 + -[ [Yi InC i - Yi InD;] 
Yi i Yi i Yi 

(A.8.U2) 

In Eqs. (A.8.U) and (A.8.1.6), the coefficients Ai, Bi, Ci and Di are identical to 
those of Eq. (A.8.1.2). The constants C(l) and C(2) are determined by reference to 
the potential. 

Appendix 8.2 Potential and field strength coefficients 
of 2-D arced elements with constant and linear charge density 

For constant charge distribution 

Let 

then 

1 

Pij = - S In [(oW - ~)Xl + t(1 + ~)X2 - X;)2 
-1 

1 

= - Ro S In [C!(X2 - xJ~ + t(X2 + Xl) - Xi)2 
-1 

t(X2 - xd = Dx 

t(Yz - Yl) = Dy 

1 

t(X2 + xd = Hx + Xi 

t(Yz + yd = Hy + Yi 

Pij= -Ro S In[(Dx~+Hx)2+(Dy~+Hy)2]d~+C" 
- 1 

1 

= - Ro S In [C~2 + b~ + a] d~ + C" . 
-1 

(A.8.2.1) 

(A.8.2.2) 

(A.8.2.3) 
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The integration of Eqo (Ao802o3) yields 

Pu = - ~O[(DxGx + DyGy)ln(G~+G;) 

- (DxQx + DyQy)ln(Q~ + Q;) - 4S] 

2Ro 2T 
--arctg + C" 

S GxQx + GyQy 
(Ao802.4) 

where 

{ 
Gx = Hx + Dx = X2 - Xi 

Qx = Hx - Dx = XI - Xi 

S = D; + D; 
(Ao802oS) 

T = IHxDy - HyDxl 0 

The coefficients of field strength are 

(Ao802o6) 

'. = _RO[D In(G~+G;) 2Gx(Dx Gx+ DyGy) 
]x'i S x Q; + Q; + G; + G; 

2Q,,(DxQ., + DyQy)] ( D) 2Ro 2T 
+ 2 2 + + y -arctg-----

Qx + Qy - S (GxQx + GyQy) 

4RoT [T(Qx + Gx) + (±Dy)(GxQx + GyQy)] 
+ -- [ 2 4 2] (A.802.7) 

S (GxQx + GyQy) + T 

If HxDy - HyDx ~ 0, the sign of Dy is '-ye'o Otherwise the sign of Dy is '+ye' 

(Ao802o8) 

if HxDy - HyDx ~ 0, the sign of Dx is + yeo Otherwise the sign of Dx is - yeo 

If the charge distribution is linear, then 

I 

plJ) = - Ro J NIln [(LNkXk - X;)2 + (LNkYk - y;)2] d~ + C(l) 
-I 
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Ro 2 2 = - 2S [(DxGx + DyGy) In{Gx + Gy) 

- (DxQx + DyQy)ln(Q~ + Q;) - 4SJ 

bRo (S2 - F2 + T2)Ro I G~ + G; RoT( F)' 
+ 2C + 4S2 n Q~ + Q; S 1 + S 

2T 
arctg + C(l) 

GxQx + GyQy 
(A.8.2.9) 

1 

pl;) = - Ro S N2 1n [(INkXk - XY + (INkYk - yYJ d~ + C(2) 

-1 

_ Ro 2 2 
- - 2S [(DxGx + DyGy) In(Gx + Gy) 

- (DxQx + DyQy)ln(Q~ + Q;) - 4SJ 

_ bRa (S2 - F2 + TZ)Ro In G~ + G; RoT(l _~) 
2C + 4S2 Q~ + Q; S S 

where 

Appendix 8.3 Coefficients of ring elements 
with linear charge density 

rj Zj Z2 
J 

a=- rj+ liZ Zj+ 1/2 
2 

L1 Zj+ 1/2 
2 

rj+ 1 Zj+ I Zj+ 1 

rj Z2 

b=~ 
J 

rj+ 1/2 
Z 

L1 Zj+1/2 
2 

rj+ I Zj+ I 

(A.8.2.l0) 

(A.8.2.1l) 

(A.8.3.)) 

(A.8.3.2) 
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Zj rj 

c=-
,1 

Zj+I/2 rj+ 1/2 

Zj+ I rj+ I 

Zj Z2 
J 

,1= Zj+112 
2 

Zj+ 112 

Zj+ I 
2 

Zj+ I 

H _ (Zi + zJE(k2 ) 

4 - /32 
0(2 2 
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(A.8.3.3) 

(A.8.3.4) 

(A.8.3.S) 

(A.8.3.6) 

(A.8.3.7) 

(A.8.3.8) 

Where E(kd, E(k2 ) are elliptic integrals of the second kind, /31, /32 were defined 
in Eq. (7.3.17). 



Chapter 9 

Boundary Element Method 

9.1 Introduction 

It is difficult to say who was the pioneer of the boundary element method 
(BEM). In Brebbia's opinion [1], the work started in 1960s. The first book 
entitled Boundary Elements was published in 1978 [2]. After that BEM de­
veloped rapidly. It has been expanded so as to include time-dependent and 
non-linear problems [3,4]. During this time many papers [5,6], theses [7-9] 
and books [10-12] have been published. The method is now regarded as 
important as FEM. An international conference to discuss BEM is held every 
year and the edited proceedings are valuable references. 

The Boundary element method is based on the boundary integral equation and 
the principle of weighted residuals, where the fundamental solution is chosen as the 
weighting function. The value of the function and its normal derivative along the 
boundary are assumed to be the unknows. By using discretization, similar to that 
used in the finite element method, the boundary integral equation is transformed 
into a set of algebraic equations at the nodes of the boundary. Then the value of 
the function and its normal derivative are obtained simultaneously by solving 
the matrix equation. 

The other kind of BEM creates an equivalent surface source either a single 
layer or a double layer [13] distribution to replace the effects of the source inside 
or outside the boundary. Such kinds of methods are the indirect boundary 
element methods. The surface charge simulation method, which was discussed in 
Chap. 8 is one of the indirect boundary element methods. The direct BEM is 
discussed in this chapter. 

The method contains the following steps. 

(1) The boundary r is discretized into a number of elements over which the 
unknown function and its normal derivative are assumed by the interpolation 
functions. 

(2) According to the error minimization principle of weighted residuals, the 
fundamental solution as the weighting function is chosen to form the matrix 
equation. 
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(3) After the integrals over each element are evaluated analytically or nu­
merically, the coefficients of the matrix equation are evaluated. 

(4) Setting the proper boundary conditions to the given nodes, a set of linear 
algebraic equations are then obtained. The solutions of these equations result in 
the boundary value of the potential and its normal derivatives. Hence the field 
strength of most interest on the boundary is computed directly from the matrix 
equation. 

(5) The value of the function at any interior point can be calculated once all 
the function values and their normal derivatives on the boundary are known. 

The main characteristic of BEM is that it reduces the dimensions of the 
problem by one. For a 3-D problem, only the surface of the domain needs to be 
discretized hence it produces a much smaller number of algebraic equations. It is 
especially attractive that the data preparation is simple because the tedious domain 
descritization is avoid. The post-processing of data is also simpler than in the 
domain methods. Only the required values are calculated. The method is well 
suited to solve problems with boundaries at infinity. Finally, the solution of the 
derivatives of the unknown function are as accurate as the function itself. 

Disadvantages of BEM are: 

(l) A great number of integrations are required and the singularities of the 
integral must be considered. Hence the calculation of the coefficient matrix 
requires more time than for FEM. 

(2) The fundamental solution of the governing equation is difficult in some 
problems. 

(3) The method cannot be used directly for non-linear problems. 

In this chapter the general form of the boundary integral equation is derived. 
Formulations to calculate the coefficients of the matrix for a potential 

problem are derived explicitly. The application of the boundary element method 
is illustrated by an eddy current problem. 

9.2 Boundary element equations 

The general integral of the operator equation and therefore the boundary 
integral equation may be derived by the principle of weighted residuals, using 
Green's theorem or by the variational method. In this section, the integral 
equation will be derived by using these different ways and the volume integral 
equation to the boundary integral equation deduced. 

9.2.1 Method of weighted residuals 

The variational principle requires that the operator 2 is positive definite and 
self-adjoint. The method of weighted residuals may be applied for arbitrary 
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.,((u)=f 

au _ 
an-=q u=u 

Fig. 9.2.1. A potential problem 

operators. It requires knowledge of the governing equation and the correspond­
ing boundary conditions. For a boundary value problem, 

1
5f (U) ~f in Q 

ulr, = u on r l 

oul :;- . = ij on r2 un I, 

(9.2.1) 

assume that the solution of the governing equation is approximated by a func­
tion as shown in Eq. (9.2.2), i.e. 

(9.2.2) 

where ak are the unknown parameters and I/;k are linearly independent functions 
taken from a complete sequence of functions, such as 

These functions are usualy chosen in such a way as to satisfy certain given 
conditions, called admissible conditions. Consider that the functions belong to 
a linear space, and are linearly independent, i.e. 

(9.2.3) 

only if 
(9.2.4) 

Then they can be combined linearly, e.g. 

I/; = a II/; I + a21/; 2 . (9.2.5) 

Substituting Eq. (9.2.2) into Eq. (9.2.1), residuals, or called errors are un­
avoidable, i.e. 

{ R(u) ~ !flu) - J In Q 

RI(u)=u-u on r1 (9.2.6) 
au 

R2(U) = - - ij on r2 . on 
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In order to make the errors approach zero, the average error distribution 
principle is used i.e. let 

J R(u) WdQ + J Rl(U) Wl dr + J Rl(u) Wldr = 0 (9.2.7) 
a r, r, 

where W, Wi> Wz are weighting functions. Let Wl = a W;an (otherwise the 
equation will not have the correct dimension) and Wz = - W; Eq. (9.2.7) is 
simplified to 

JR(U)WdQ= - J Rl(U)aa~dr+ J Rl(u)Wdr. (9.2.8) 

a r, r, 

Consider first that the governing equation is Laplace's equation, then 
Eq. (9.2.8) is changed to 

J J -aw J -(Vlu)WdQ= - (u-u)Tndr+ (q-q)Wdr (9.2.9) 

a r, 

where U is the approximate solution. Integrating Eq. (9.2.9) by parts, yields 

f au a W f f f a W f a W aXkaXkdQ= ijWdr+ qWdr- UTndr+ UTndr. 
a /", /", r, r, 

(9.2.10) 

This is a weakJormulation oj Eq. (9.2.9), as it reduces the order oJthe derivative oj 
the unknown Junction. Hence the requirement oj continuity oj the approximate 
Junction oj u is reduced. 

Integrating Eq. (9.2.10) by parts once again, the dual equation of Eq. (9.2.9) is 
obtained: 

(9.2.11) 

For Poisson's equation, Eq. (9.2.11) becomes 

f(UVlW - JW)dQ = - f ijWdr - f:~ Wdr 

a G ~ 

(9.2.12) 

/", r, 

Equations (9.2.11) and (9.2.12) require that the second order derivatives of the 
weighting function are continuous and only require the continuity of the 
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function u. Equation (9.2.12) can be written in a compact form as below: 

(9.2.13) 

il r r 

where r = r 1 + r2 • 

Equation (9.2.13) IS the fundamental equation of the boundary element 
method. 

9.2.2 Green's theorem 

Equation (9.2.13) can also be derived by Green's theorem. Using the second 
identity of Green's theorem, 

f( WV2U - uV 2 W)dQ = f( W~ - u OW) dr (9.2.14) ani an 
il f 

Eq. (9.2.9) can be written as 

+ f (q - ij) W dr. (9.2.15) 

f, 

Here the governing equation is assumed as Poisson's equation. Eliminating the 
terms present on both sides of the above equation, one obtains 

f (uV 2 W - JW) dQ = - f ij W dr - f :~ W dr 
Q 1'2 f t 

(9.2.16) 

f, r, 

This equation is exactly the same as the one derived using integration by parts. 

9.2.3 Variational principle 

Recall now the corresponding functional of Laplace's equation is 

J(u) = is (grad U)2 dQ - S iju dr. (9.2.17) 
il f, 
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Taking the variation of the functional I, and let M = 0, yields 

SVu·VJudQ - S qc5udr = O. 
II r, 

Using the vector identity, 

and the divergence theorem, Eq. (9.2.18) is transformed to 

S(V2u)c5udQ + S c5uVudr - S qc5udr = 0 
r r, 

where r = r l + r2 • 

Let c5u = W, the integral equation 

f(V 2 U) WdQ = - f q Wdr - f~~ Wdr 
II G G 

1', r, 
is obtained. 

(9.2.18) 

(9.2.19) 

(9.2.20) 

The integral equation derived from the functional is identical to the one 
derived using the method of weighted residuals. This is true only if c5u is chosen 
as the weighting function. 

9.2.4 Boundary integral equation 

Choose the fundamental solution F, which satisfies Eq. (9.2.21), as the weighting 
function, i.e. 

(9.2.21) 

where c5 i is a Dirac's delta function, this function has the property that 

S uV2 FdQ = - S uc5 i (r - r')dQ = - Ui (9.2.22) 
II II 

while point 'i' is in the domain Q, then Eq. (9.2.16) becomes 

f f f au f aF f aF 
Ui + f F dQ = q F dr + an F dr - ii an dr - u an dr. 

Q r2 Tl Tl r 2 . 

(9.2.23) 
The compact form of Eq. (9.2.23) is: 

f( au aF) 
Ui = F an - u an dr - f F dQ . (9.2.24) 

r 
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Due to the property of the ~ function, if the point 'i' is outside the domain Q, 
the integral of Eq. (9.2.22) is zero. 

Substitution of the fundamental solution by the 3-D Poisson's equation, 
F = 1/4nr, into Eq. (9.2.24) yields 

Ui = ~f[~ ou - u~(~)J dr - ~ ff~ dQ. (9.2.25) 
4n r on on r 4n r 

r a 

This result is identical to the one derived in Chap. 1. Thus the potentials in the 
domain are determined by the boundary values of the potential and its normal 
derivative and the source density within the domain. 

Equation (9.2.25) is valid for points inside the domain. If the point 'i' is on the 
boundary, the singularity must be considered. 

Suppose the boundary is smooth, draw a small sphere centred on the point 'i' 
with a radius of e(e ~ 0), as shown in Fig. 9.2.2. 

First the point of singularity is considered on the boundary r2 • The bound­
ary r2 is divided into two parts, i.e. r2 = r. + r2 _ •• The last term of the RHS of 
Eq. (9.2.23) becomes 

(9.2.26) 

r z r z -, r, 

Substituting the fundamental solution into the second integral on the RHS of 
Eq. (9.2.26) and take the limit, the result is 

lim { f u ~F dr} = lim { f u ~ dr} .-0 un .-0 4ne 
r. r. 

= lim { - 2ne: ui } = - ~ Ui • .-0 4ne 2 
(9.2.27) 

On the other hand, note that as e ~ 0, the boundary r 2 _. is almost identical to 
r2 • Substitution of Eq. (9.2.27) into Eq. (9.2.23), obtains the boundary integral 

~---

a b 

Fig. 9.2.2a, b. Integration around singularity of the boundary 
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equation for the points on the boundary, i.e. 

This equation is still usable for 2-D problems. For a 2-dimensional Laplace's 
equation, the fundamental solution and its derivatives are: 

F = ~In(~) 2n r 
(9.2.29) 

and 
of of 
an = or = - 2nr (9.2.30) 

then 

1m u- r = 1m - - = - - . I· { f 1 d} I' ( une) u; 
<-0 2ne <-0 2ne 2 (9.2.31 ) 

r, 

If the point 'j' is on the r1 , the same result is obtained. 
Both for 3-D and 2-D problems, the first integral of the RHS of Eq. (9.2.23) is 

regular because 

lim {fiiF dr} = lim (ii2m:2) = 0 
<-0 <-0 4ne (9.2.32) 

r, 

lim {fiiFdr} = lim {- fii lne dr} = lim {- ii lne nE} 
<-0 <-0 2n <-0 2n 

r, r, 

iii' Ine iii' 0 =- 1m - = - - 1m e = . 
2 £-0 l/e 2 <-0 

(9.2.33) 

Combining Eqs. (9.2.31)-(9.2.33), the boundary integral equation is obtained 

1 f( iJu OF) J -U;= F--u- dr- fFdQ. 2 an an (9.2.34) 

r Q 

Summarizing the above cases-, Eqs. (9.2.28) and (9.2.34) are written as 

where 

C;u;= f(F:~-u~~)dr- ffFdQ , 
r Q 

{
lin domain Q 

C; = 01/2 on smooth boundary 
outside domain Q. 

Equation (9.2.35) is the typical form of the boundary element method. 

(9.2.35) 

(9.2.36) 
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By using the same method as to derive Eq. (9.2.34), the boundary integral 
equation of the Helmholtz equation has the same form as the integral equation 
of the Laplace equation, only the fundamental solution is different. 

9.2.5 Indirect boundary integral equation 

Recall Eq. (9.2.25) 

Ui = ~f[! au - U~(!)JdF -~ff!dQ. 
4n r an an r 4n r 

r l2 

Note that if the boundary values of u and oulon and the source function are 
known, the value of u within Q can be calculated. 

Let us define that Q' is the exterior region of the boundary F and u' is the 
solution of Laplace's equation in the exterior region. Then, in Q', Eq. (9.2.35) 
reduces to 

F--u- dF=O. f( au' ,OF) 
an an 

r 

Subtraction of Eq. (9.2.37) from Eq. (9.2.35) leads to 

f f (au au') f of 
Ui = - fF dQ + F - - - dF - (u - u')-dF . an an an 

u r r 

Considering the boundary conditions (Eqs. (1.3.5) and (1.3.18)) 

au au' a 
an - an =; 

, r 
u - u =­

e 

and supposing f = - pie, the following equation is obtained 

1 fa 1 f a (1) 1 (' 1 
Ui=- -dF+- r- - dF+-Jp-dQ. 

4ne r 4ne an r 4ne r 
r r u 

(9.2.37) 

(9.2.38) 

(9.2.39) 

(9.2.40) 

The first term of the RHS of Eq. (9.2.40) represents the single layer source while 
the second term represents the double layer source. Here a is the surface charge 
density and r is the dipole charge density. Equation (9.2.40) indicates that both 
the SSM and the magnetic surface charge method are special cases of BEM. 

9.3 Matrix formulations of the boundary integral equation 

In this section, the discretization form of the boundary integral equation will be 
derived by using the constant and linear elements both in homogeneous and 
piece-wise homogeneous media in 2-D and 3-D cases. 
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9.3.1 Discretization and shape functions 

The most commonly used discretization elements are constant, linear, quadratic 
or the combinations of the constant and linear elements. In the case of combined 
clements [3J, the unknown function varies linearly but its normal derivative is 
constant. For 2-dimensional problems, the boundary is a contour. The three 
types of the elements are shown in Fig. 9.3.1. 

The constant element is defined as one where the function and its normal 
derivative are constants along each element. The centre point of each element is the 
representation of the element as shown in Fig. 9.3.1(a). In the case of the linear or 
the quadratic element, both the potential function and its normal derivative vary 
linearly or quadratically within each element. In local coordinates the unknown 
function and its normal derivative of linear and quadratic elements are ex­
pressed as 

l
U(~) = a + b~ = .plUl + .pzuz 

~~ (~) = .p 1 ( ~~ ) 1 + .p z ( ~~ ) z 
(9.3.1 ) 

and 

(9.3.2) 

element node 

a b 

c 

Fig. 9.3.1a--c. Constant, linear and quadratic element 
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where the u [, Uz and U3 are nodal values of the function and 1/1 [, I/Iz and 1/13 are 
interpolation functions or shape functions. In the case of linear elements, the 
terminal points of the elements are nodes as shown in Fig. 9.3.l(b). The shape 
functions are 

(9.3.3) 

at terminal 1, 1/11 = 1, I/Iz = 0; at terminal 2, 1/11 = 0, I/Iz = 1. In a quadratic 
element, the terminal points and the centre point of the element are nodes as 
shown in Fig. 9.3.2(c). The shape functions are 

(9.3.4) 

at node 1, 1/11 = 1, I/Iz = 0, 1/13 = 0; at node 2, 1/11 = 0, I/Iz = 1, 1/13 = ° and at 
node 3 1/11 = 0, I/Iz = 0, 1/13 = 1. 

Higher order elements can be obtained by using the same principle. For 
instance, a cubic shape function of the approximate function 

u(x) = 1X1 + IXzX + 1X3XZ + 1X4X3 

is obtained by taking four nodes over each element, as shown in Fig. 9.3.3 

U 2=U I 

-1 0 +1 ~ 

a 

/!iU) Uz 

, I 

U I : I 
I I 

I I I 
I 1 ,3 '2 
J j 

-1 o +1 

c 

3 4 2 

a 

Fig. 9.3.3a, b. A cubic order element 

u2 

ur----l! 
I I : 
! . ! ~ -1 0 +1 

b 

Fig. 9.3.2a-<. Shape functions of constants, linear and 
quadratic elements 

I I 

-1 -1/3 0 1/3 

b 
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Node ~ 1/11 1/12 1/13 1/14 
1 -1 1 0 0 0 
2 1 0 1 0 0 
3 -1/3 0 0 1 0 
4 1/3 0 0 0 

here 

Then the shape functions are 

11/11 = 116 (1 - ~)[ - 10 + 9(~2 + I)J 

1 
1/12 = 16(1 + ~)[ - 10 + 9(~2 + 1)] 

9 2 1/13 =16(1-~ )(1-3~) 

9 
1/14 = 16(1 - ~2)(1 + 3~) . 

9 Boundary element method 

(9.3.5) 

(9.3.6) 

(9.3.7) 

Other kinds of higher order elements are given in reference [3]. For instance 
one could take the function to be the unknowns at the two interior points of the 
element and consider that the derivatives are unknowns at the two end points. 
Then the continuity of the derivative of the function is guaranteed at the 
intersection of the elements. 

For 3-dimensional problems, the boundary elements of linear or quadratic 
triangular and quadrilateral elements are all the same as defined for the 2-D case 
of the finite element method and as discussed in Chap. 6. 

9.3.2 Matrix equation of a 2-dimensional constant element 

Consider that the boundary has been divided into N elements. The integral 
equation of Eq. (9.2.34) for the case of I = 0 is approximated as 

1 N f aF N fau 
-2 Ui +.L u-a dT =.L -a FdT 

)=1 n )=1 n 
(9.3.8) 

Tj rj 

where Ij is the contour of the element j. As u, au/an are constants, Eq. (9.3.8) is 
simplified to 

(9.3.9) 
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Applying Eq. (9.3.9) to each element under consideration, and let 

H··= -dr ~ faF 
'J an (9.3.l0) 

r, 

Gij = f Fdr (9.3.11) 

r, 

Eq. (9.3.9) becomes 

1 N ~ N (au) 
-2Ui + .L HijUj = .L Gij -;- .. 

J = 1 J = 1 un J 

(9.3.l2) 

In the above equations, F is the fundamental solution of the governing equation, 
for 2-D Laplace's equation 

1 1 
F = -2 In-I --'I· n r - r 

As a simplification, it is defined that 

i#j 

i=j 

then Eq. (9.3.l2) is written as 
N N 

L Hijuj = L Gijqj. 
j= 1 j= 1 

The matrix form of Eq. (9.3.15) is 

[H]tU = [G]Q 

(9.3.l3) 

(9.3.l4) 

(9.3.15) 

(9.3.l6) 

This is the normal form of the boundary element equation. Here [H], [G] are 
matrices of the order of N x N, these are full matrices and in general they are 
asymmetrical. U, Q are two unknown column matrices of the order N. They are 
potentials and its normal derivative at each nodes. Substitute the known bound­
ary conditions of the first and the second kind into Eq. (9.3.l6) and rearrange the 
knowns and the unknowns on both sides of the equation. One has to solve the 
following algebraic equation: 

AX=B. (9.3.17) 

It should be noticed that if the domain has a hole, for the outer contour the 
nodes are numbered counterclockwise, for the inner contour the nodes are 

t In order to avoid the confusion of the matrix [H] and the magnetic field strength, in this chapter 
[ ] is used to express the matrix Hand G, but the column matrix U and Q are still expressed by bold 
character only. 
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2 

3 0 7 

5 B 

1 

4 
Fig. 9.3.4. Sequence of boundary nodes on outer and inner 
contours 

numbered clockwise as shown in Fig. 9.3.4. Once all the values ofu and au/an on 
the boundary nodes have been solved, the values of u and au/ax, au/ay inside the 
domain can be calculated by Eq. (9.3.18) and Eq. (9.3.19) 

f iJF fau N N 
Ui = - u-dr + -Fdr = L Gijqj - L Hijuj an an j=1 j=1 

(9.3.18) 

r r 

( au) _ f. (au) aF _ f. (U).~(aF) ax i - j= 1 an j ax j= 1 J ax an 

(9.3.19) 

In these equations, the partial derivatives are approximated by differences. 

9.3.2.1 Evaluation of Hij and Gij 

For a 2-dimensional Laplacian problem 

1 
F = --Inr 

21t 

of =gradF.n= _J...(rcosoc) = _J...( ±Dij) an 21t,2 21t r2 

(9.3.20) 

(9.3.21) 

where r is the distance between point i and the point on element r j , oc is the angle 
between the vector nand rand cosoc = n·r. The ± sign of Dij is dependent on 
whether oc is acute or obtuse. While rl ·'2 ~ 0, cos oc > 0; 'I ·'2 < 0, cos oc < 0. 
'I, '2,'2 are shown in Fig. 9.3.5 where n is the normal direction of the element. 
'2 is orthogonal to '2' 

From Fig. 9.3.5, let 

T= Yj+1 - Yj 
Xj+l - Xj , 

the distance between point i and line j, j + 1, is: 

D .. = IT(Xi -Xj) - Yi + Yjl 
'J (1 + T2)1/2 (9.3.22) 
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1 d~ 2 

r~ 

Fig. 9.3.S. Relationship between variables Fig. 9.3.6. Integration of element 

Then 

1 

H·· = - - -=-----!!. dr = - - -=-----!!. -2 d~ - I f + D.. I f + D .. L· 
I) 2n r2 2n r2 2 (9.3.23) 

-I 

(9.3.24) 

where dr = t Ljd~, Lj is the length of the jth element as shown in Fig. 9.3.6. 

9.3.2.2 Evaluation of H jj and Gjj 

For constant elements the diagonal element Gjj 

(0) (2) 

Gjj = 2~ f In(~ )dr + 21n f In(~ )dr 
(1) (0) 

(9.3.25) 

For element H jj , as the radius vector r (from point ito eIementj) is orthogonal 
to the normal direction n of the contour, it follows that 

Hjj = O. 

Due to discretization, the boundary is not smooth, Ci::f. t and Hii is 
evaluated by: 

Hii = - L Hij. 
i*j 

(9.3.26) 
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This is because if the boundary condition statisfies the homogeneous boundary 
condition of the second kind, then 

[H]U=O. (9.3.27) 

Consequently, Eq. (9.3.26) exsists. 
One remaining problem is that the interior solution near the boundary 

exhibits large numerical inaccuracies. Paulsem [14] regards it as stemming from 
the inability of the quadrature to account for Green's function near singularity. 
A simple scheme is offered to remove the numerical inaccuracy by increasing the 
quadrature in the nearby boundary element. 

9.3.3 Matrix equation of 2-D linear elements 

For linear elements 

(9.3.28) 

(9.3.29) 

substitution of the above equations into the two integral terms of Eq. (9.3.8) 
yields 

f U ~~ dr = f [~1 ~2] of dr {Uj } = [HlJ) Hl;)] {Uj } 
on Uj+1 Uj+1 

(9.3.30) 

r J r J 

f F~~ dr = f [~1 ~2] Fdr {qj } = [GlJ) GlP] {qj }. (9.3.31) 
qj+ 1 qj+ 1 

rJ rJ 

hence 

H~~) = f ~ of dr 
I) 10n 

H~~) = f ~ of dr 
I) 2 an (9.3.32) 

rJ rJ 

GW = f ~1Fdr Gl;) = f ~2Fdr . (9.3.33) 

rJ rJ 

In above equations, HU), GW are contributions of the first node of elements j, 
Hl;) and GlP are contributions of the second node of element j, hence 

(9.3.34) 

1 

GlJ> = f ~1 Fdr = f 0.5(1 - e)2~ In(~ }JI de (9.3.35) 

rJ -1 
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I 

G(2) = ft/1IFdT = f 0.5(1 + ~)~ln(~)IJld~. y 2n r 
rj -1 

Figure 9.3.6 indicates that 

i.e. 

hence 

~ = - 1, T = -1 Tj ; 

{
X = t/1IXj + t/12 Xj+ I 

Y = t/1IYj + t/12Yj+1 

The Jacobian is 

therefore 

The term %n[ln(l/r)] has been discussed in Sect. 9.3.2.1. 
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(9.3.36) 

(9.3.37) 

(9.3.38) 

(9.3.39) 

(9.3.40) 

Note that while j = i and j = i-I, due to r·n = 0, H:.?_I = 
H(2) H(1) (2) O' G(1) G(2) . I' I h b . d 

i. i-I = i. i = Hi. i = , ij' ij are smgu ar mtegra s, t ey can e mtegrate 
analytically. For j = i, 

1 

G:J>= ft/1I FdT = f 0.5(1-~)2~ln(~}Jld~ 
fj -I 

1 
= -L-(1.5 -In L·) 4n J J 

(9.3.41 ) 

1 

G:J) = ft/12 FdT = f 0.5(1+~)2~ln(~}Jld~ 
fj -I 

(9.3.42) 
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For j = i-I, 

(1) _ 1 
Gij - 4nLj(O.S -lnLj) (9.3.43) 

(9.3.44) 

If the analytical integration is difficult, the Gaussian quadrature [IS] may 
be used. 

9.3.4 Matrix form of Poisson's equation 

Recall Eq. (9.2.3S) 

I of IOU I c.u· + u-dr = -Fdr - IFdQ 
I I an at! . 

Q r Q 

After discretization (including the source area), the above equation is trans­
formed to: 

B + [H]U = [G]Q . (9.3.4S) 

B is a column matrix of the order N, each element of B is 

(9.3.46) 

where M is the number of segments of the source area, K is the number of 
abscissas of the Gauss integration, w,. are the weighting coefficients and Ai is the 
area of subelement. It should be noticed that there is no increase of unknowns 
due to the discretization of the source area. 

Once the values of u and q are known over the whole boundary, the values of 
u and q at any interior points are calculated: 

N N 

Ui = L Gijqj - L Hijuj - Bi . (9.3.47) 
i= 1 i= 1 

If the source is a constant, the volume integral of Eq. (9.3.46) may be 
transformed to a boundary integral. Define a function satisfying F = V 2 v, using 
Green's second identity: 

IUV2V - vV2f)dQ = I[/;~ - v :~J dr. (9.3.48) 
Q r 

Due to I being a constant, Eq. (9.3.46) becomes 

I IF dQ = I I ~~ dr . (9.2.49) 

Q r 
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9.3.5 Matrix equation of a piecewise homogeneous domain 

Consider a general case as shown in Fig. 9.3.7, the domain is composed of 
different materials. Each sub-region QI, Q2, Q3, is homogeneous. In each area, 
the following equations exist 

[GI Gt2 GjtJ f :!2) = [HI H: 2 1 q31 

(9.3.50) 

[G2 G~3 Gi2] f :~3) = [H2 H~3 1 ql2 

(9.3.51) 

(9.3.52) 

The single number of the sub- and the superscripts: 1,2,3 represent the external 
boundary and the domain of each subarea respectively. The combined numbers: 
12,23,31 represent the interface boundary. Based on the continuity of the 
interface boundary, we have 

I 1 2 
ql2 = - /31 ql2 = qt2 

2 1 3 
q23 = - /32 q23 = q23 (9.3.53) 

3 _ 1 I _ 
q31 - - /33 q31 - q31 

The sign - ve before 1/ /3i is because the normal direction of the interface 
boundary is opposite the neighbouring region. Inserting Eq. (9.3.53) into 
Eq. (9.3.50) to (9.3.52) and combining them, the final matrix equation is 

o G 2 0 

Gl 2 -H: 2 

-/31 G I2 -Hi2 f
GIO 0 

o 0 G 3 0 o 
ql 
q2 

q3 

o o 
G;3 -H~3 

-/32 G~3 -H~3 

q12 [H> 0 tJ )::) Ul2 = 0 H2 
q23 0 0 
U23 

q31 
U31 

(9.3.54) 
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Fig. 9.3.7. Piecewise homogeneous regions 

This equation may be solved once the boundary conditions on F t , Fz, F3 are 
prescribed. The total number of unknowns is equal to the number of nodal 
degrees of freedom over the external boundaries plus twice the number of nodal 
degrees of freedom over the whole internal boundaries. 

Subdivision of the region into several zones may be used in homogeneous 
media as a way of avoiding numerical problems or improving computational 
efficiency. For instance, if the problem includes cracks or notches, then the 
region can be divided into two zones to avoid any numerical difficulties due to 
the nodes that are very close to each other. 

9.3.6 Matrix equation of axisymmetric problems 

Assuming that all boundaries and consequently all domain values are axis­
ymmetric, the boundary integral equation in cylindrical coordinates is 

(9.3.55) 

r' r' 
where 

dnx, y, z) = rdO dr' (r, z) (9.3.56) 

and r' is the intersection of the problem boundary F with the r - z half plane, 
shown in Fig. 9.3.8. 

The fundamental solution of Laplace's equation in axisymmetric domains is 

, K(k) 
F(r, r ) = 2nZ(a + b)~ . (9.3.57) 

z 

~dr' 

-+---'o~---+--- r 
Fig. 9.3.8. Boundary contour of an axisymmetric field 
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This is obtained by assuming a filament ring source. In Eq. (9.3.57) 

k=~ 
a+b 

a = r'2 + r2 + (t - Z)2 b = 2rr' (9.3.58) 

where r', z' are coordinates of the source point, while r, z are coordinates of the 
field point. 

The normal derivative of the fundamental solution along the contour r is 

aF 1 { 1 [r'2 _r2 + (z' _Z)2 ] 
an = 2n2(a + b)t 2r a _ b E(k) - K(k) nr 

z' -z } + a _ b E(k)nz (9.3.59) 

Equation (9.3.57) to (9.3.59) indicate that if r' = 0, then k = 0, thus 
K(k) = E(k) = n/2. The ring source contracted to a point source on the axis of 
symmetry. 

Approximating Eq. (9.3.55) and summing the contributions from all bound­
ary elements, a system matrix equation similar to Eq. (9.3.45) is obtained. The 
terms Hij' Gjj(i t= j) are evaluated numerically using Gauss quadratures. The 
diagonal terms H jj , Gii are the results of evaluating singular integrals. In order to 
facilitate the evaluation of these integrals, the fundamental solution and its 
normal derivative are written in terms of Legendre functions of the second kind, 
detailed formulations for which can be found in reference [3]. 

9.3.7 Discretization of 3-dimensional problems 

In the case of 3-dimensions, the boundary r is a 2-dimensional surface. It is 
discretized by flat or curved triangles or quadrilaterals and the potentials and 
their normal derivatives over an elementary surface are assumed to be piecewise 
constant, linear or quadratic. These have been employed in 2-dimensional finite 
element analysis. 

Consider the isoparametric elements, the following equations are valid 

N 

U = L t{!k(~l> ~2' 11) Uk (9.3.60) 
k~l 

N 

X = L t{!k(~l> ~2' I1)Xk 
k~l 

N 

Y = L t{!k(~l> ~2' I1)Yk (9.3.61) 
k~l 

N 

Z = L t{!k(~l> ~2' I1)Zk 
k~l 
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The shape functions I/Ik are the same as listed in App. 6.1 denoted by Nk. The 
differential surface area and the volume element are expressed as 

ds = 1:;1 x :;2Id~ld(2 = IJld(ld(2 (9.3.62) 

dQ = 1 (:;1 x :;2 ) ;~ 1 d( 1 d( 2 d'1 = I G I d( 1 d( 2 d'1 (9.3.63) 

where 
i j k 

1 or or 1 

ox oy oz 
-

IJI = 0(1 x 0(2 = 0(1 o( 1 0(1 
ox oy oz 

(9.3.64) 

0(2 0(2 0(2 
oy oz ox oz 

- -
1 ( or or) or 1 ox 0(1 

IGI = 0(1 x 0(2 0'1 = 0'1 oy 
0(1 oy 0(1 0(1 

oz 0'1 ox oz 
0(2 0(2 0(2 0(2 

ox oy 
oz il(1 0(1 

+-
0'1 ox oy (9.3.65) 

0(2 0(2 

Then the boundary integral equation is 

C j Uj = f (F :~ - U ~:) I JI d( 1 d(2 - f fF I GI d( 1 d(2 d'1 . (9.3.66) 

r Q 

Suppose the boundary is divided into 3-node triangles where U and ou/on are 
linear functions within the element. The discretized form of Eq. (9.3.66) is 

z 

x 

~-------------- y o 

(9.3.67) 

Fig. 9.3.9. Calculation of an infinitesimal surface 
and volume 
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The system matrix equation is 

[H]U = [G]Q (9.3.68) 

Reference [16] gives a good example for solving a 3-D magnetic problem. 

9.3.8 Use of symmetry 

The application of symmetry in integral equation method is different from the 
domain method. For instance, the central line is the line of symmetry of the 
square slot as shown in Fig. 9.3.10. If FEM is used to calculate the field 
distribution, only the half area is the domain for calculation. If BEM is used, the 
influence of the whole contour must be added in the whole integral equation. 

Dividing the boundary into eight elements, the LHS of Eq. (9.3.68) is 

hll hl2 h l3 hl4 h l8 h17 h l6 h l5 UI 

hZI h28 hZ5 Uz 

h31 h38 h35 U3 

h41 h48 h 45 U4 

------------------------------- (9.3.69) 

h l8 h17 h l5 hll hl4 U8 

hZ8 hZI hZ4 U7 

h38 h31 h34 U6 

h48 h 45 h41 h44 U5 

Due to symmetry, UI = U8, Uz = U7 and so on, only UI to U4 are the unknowns, 
thus the unknowns of Eq. (9.3.69) are reduced to half of (9.3.69). The final matrix 
of His 

(9.3.70) 

Hence the order of the matrix is reduced to half of the original one. 

I 8 

2 I 7 

3 
I 
i 

6 

4 I 5 Fig. 9.3.10. A symmetric problem 
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9.4 Eddy current problems 

Eddy current problems are significant in engineering practice. It was studied 
from the beginning of the ninteenth century [17]. The physical properties of the 
eddy current and the analytical solution methods are given in references [18, 
19]. Due to the complexities of the eddy current problems, there are many 
different formulations to solve them [20]. There are still many unsolved prob­
lems in 3-dimensional cases. 

9.4.1 Eddy current equations 

Consider a steady-state case with skin effects, the displacement currents are 
neglected. Maxwell's equations and the constitutive equations are 

VxH=J (9.4.1) 

aB 
(9.4.2) VxE--at 

V·B =0 (9.43) 

V·J = 0 (9.4.4) 

B = ItH (9.4.5) 

J = yE. (9.4.6) 

Take the curl of Eq. (9.4.1) then combine it with Eq. (9.4.2) and use the vector 
identity, V x V x A = - v2 A + V(V· A), to obtain 

V2 H = V· H - yV x E - (Vy) x E 

= -V.(H,!VJl) + YJlaH -!(Vy)xVxH. 
It at Y 

(9.4.7) 

For linear magnetic or non-magnetic materials with constant conductivity 
and permeability, Eq. (9.4.7) reduces to 

(9.4.8) 

This is the diffusion equation in linear materials in terms of the field density H. 
By introducing the potential function one can obtain several different kinds of 
formulations. 



9.4 Eddy current problems 311 

9.4.1.1 A-qJ formulations 

Based on Eqs. (9.4.2) and (9.4.3), a magnetic vector potential A and a scalar 
potential cp are introduced. Then 

aA 
E = - - - Vm = E - E at ~ e s 

(9.4.9) 

where the subscripts e and s correspond to the induced and the impressed 
components. By taking the curl of B and using Eqs. (9.4.1), (9.4.5) and (9.4.9), one 
obtains 

(9.4.10) 

V2 cp + t VY( ~~ + Vcp ) = 0 . (9.4.11 ) 

In deriving Eq. (9.4.10), the Coulomb's gauge V· A = 0 is considered. When the 
constitutive parameters are constants, the above equations reduce to 

V 2A = -j1J = - j1(Js + J e ) 

V 2cp = 0 

(9.4.12) 

(9.4.13) 

where J is the total measurable current density including the impressed current 
density J s and the induced current density J e 

Js = yEs = y(-V(p) 

J e = yEe = -jwyA . 

(9.4.14) 

(9.4.15) 

In a 2-D case, Vcp is a constant. Substitute Eq. (9.4.15) into Eq. (9.4.13), one 
obtains 

(V2 + f32)A = - j1Js 

f32 = -jWj1y. 

(9.4.16) 

(9.4.17) 

Equation (9.4.16) is the nonhomogeneous Helmholtz equation in terms of the 
vector potential A. Solving the eddy current problem based on the Eq. (9.4.10) 
and (9.4.11) is called the A - cp method. 

9.4.1.2 T-D formulations 

Similar to the magnetic vector potential A, an electric vector potential 
T (J = V x T) and a scalar potential Q (H = T - VQ), as defined in Sect. l.1.1, 
can be used to analyse eddy current problems. The divergence of T is defined as 

(9.4.18) 
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then the following equation is obtained 

V2 T + f32T = - V x J s = S . 

This is because 

VxVxT=VxJ 

- V2 T + V(V· T) = V x J s - jWllyH 

then 

(9.4.19) 

(9.4.20) 

Based on the definition of fundamental solution and Eq. (9.4.20), the follow­
ing integral equation yields 

CT = fSoFdQ - f(rtJF _ FOTi)dr 
I I Ion on (9.4.21 ) 

n r 

where Ti is one component of the T, Si is the correspondent component of the 
source. 

As B, A, T are vectors, the solution of Eqs. (9.4.8), (9.4.12) and (9.4.21) is not 
easy. In a 2-D case, A = Azk the vector partial differential equation is simplified 
to a scalar equation, yielding an easier solution. For a 2-D case, the A - qJ 

formulation consists of 3 equations, and the boundary conditions have several 
components. Therefore the choice of the method of formulations of eddy current 
problems is important [21]. A comparison of the CPU time required when using 
the A - qJ method and T - Q method for solving a 3-D eddy current problem is 
given in reference [22]. It shows when solving a given problem the A - qJ 

method is much more time consuming than the T - Q method. The other 
formulations such as the R - tjJ formulation [23], the reduced and the total 
magnetic scalar potential formulations [24] are well known. 

9.4.2 One-dimensional solution of an eddy current problem 

Assume a long conductor with circular cross section as shown in Fig. 9.4.1(a). In 
consideration of the sinusoidal excitation and the circular symmetry, Eq. (9.4.8) 
reduces to 

d2 H 1 dH (2 1 ) -+--- 13 +- H=O dr 2 r dr r2 

where 13 2 = + jWIlY, H = H 8. The solution of Eq. (9.4.22) is 

H = Aldf3r) + BKdf3r) 

(9.4.22) 

(9.4.23) 

where 11 (f3r) and K 1 (f3r) are the first order modified Bessel functions [25] of the 
first and the second kind, respectively. A and B are constants determined by the 
boundary conditions as follows. 
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a b 

Fig. 9.4.1a, b. Current carrying conductor. a Circular cross section; b arbitrary cross-section 

At r = 0, H must be finite, but the function K 1 ([3r) tends to infinity as 
r approaches zero as shown in Fig. A.9.2, hence B = O. 

At r = a, H = 1/2na, hence 

I 11 (f3r) 
H = - -- (9.4.24) 

2na II (f3a) 

consequently, 

J = J. = dH + H = E.. 10([3r) 
. dr r 2na 11 (f3a) 

(9.4.25) 

fJ.1 loU3r) 
A = A: = (9.4.26) 

2na 1 dfla) 

where lo(flr) is the modified Bessel function of the first kind of zero order. 11 (flr) 
is the modified Bessel function of the first kind of the first order. Equations 
(9.4.24) and (9.4.25) indicate that both the amplitude and the phase of Hand 
J are changing along the radius. 

9.4.3 BEM for solving eddy current problems 

To solve eddy current problems with FEM, the mesh generation is complex as it 
depends on frequency. Transient cases are even more difficult since the eddy 
current distribution depends on the steepness of the transient. In this case, the 
mesh should be regenerated at each time step. However, for BEM, the mesh 
discretization of the boundary does not need to consider the influence of the 
eddy current distribution within the domain. Hence the thickness of the penetra· 
tion depth can be arbitrary if BEM is used to solve eddy current problems. 
A general description for using the BEM to solve the eddy current problem is 
given in reference [26]. In this section a 2-D problem is used as an example. 

A 2-dimensional current carrying conductor with an arbitrary cross-section 
as shown in Fig. 9.4.l(b) is considered. The vector potential A is chosen as the 
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unknown variable, then 

V2A,l + P2A'l = -I1J• in Q 1 • 

V 2A,o = 0 in Q o . 

Actually, the measurable current I is the known condition, and 

I = f J s ds + f J e ds 

(9.4.27) 

(9.4.28) 

(9.4.29) 

where s is the area of the cross-section of the conductor. The current density J. is 
uniformly distributed. Thus 

J s = ~ (I + jwy f Ad dS) . (9.4.30) 
s 

Substitution of Eq. (9.4.30) into Eq. (9.4.16), an nonhomogeneous integral 
differential equation yields 

2 2 1. f III V A'l + f3 Azl + SJwl1Y Azl ds = - S . (9.4.31 ) 

The constraint condition I is included in Eq. (9.4.31). In reference [27] this 
integral differential equation was solved by FEM. In this section it will be solved 
by BEM, which is especially powerful with high frequency. 

To avoid discretization of the source area, Eq. (9.4.16) is transformed into 
Eq. (9.4.35) by the following method. 

For simplification the subscript 'z' is ommitted let 

A = Ae - A. 

Js = -jwyAs· 

(9.4.32) 

(9.4.33) 

As Js is a constant it follows that As is a constant. Assuming the Helmholtz 
operator is a linear operator Eq. (9.4.27) is expanded to 

(9.4.34) 

By substituting Eq. (9.4.33) into Eq. (9.4.34) and considering that As is constant, 
V2As = 0, then in domain Q 1 one obtains 

(9.4.35) 

This is a homogeneous Helmholtz equation. By using the standard boundary 
element formulation, Eq. (9.4.35) yields 

[Hl]{Ae}-[Gl]{Oo~e}=o inQl' (9.4.36) 

In the free space region, a similar equation is 

- [Ho]{Ao} + [Go] {o~o} = 0 in Qo (9.4.37) 
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By combining Eq. (9.4.36) and Eq. (9.4.37) by the interfacial boundary 
conditions 

lAI = Ao = A 
1 oA 1 oAo 

Jl.l on = Jl.2 on 

(9.4.38) 

and in addition to the known constrained boundary condition I is expressed by 
Ampere's law, i.e. 

~Hdl = I (9.4.39) 

then the resulting system equation is 

[ -i:~~ -~~~~ ~h] f{oi~L}l=f ~ l 
o L 0 1 {As} l-Jl.I 

(9.4.40) 

where the subscripts 1 and 0 correspond to the different areas Q I and Qo, the 
column vectors {A}, {oA/on}, {As} are unknowns along the boundary and hh is 
a column vector. The element of hh is the summation of the element of [HI J in 
each row. The component {As} is proportional to the impressed source voltage. 
The elements of the matrices [HJ, [GJ are 

(k) f of B .. = I/Ik-dr 
I) On (9.4.41) 

G:~) = f I/Ik Fdr (9.4.42) 
f, 

where I/Ik are shape functions of each element. For the constant element I/Ik = 1 
F is the fundamental solution corresponding to a different area, as listed in 
Table 1.3.1. For a 2-D Helmholtz equation, 

F(ror' ) = ~ H~2)(plr - r'l) (9.4.43) 

H~2)(f3lr - r'l) is the Hankel function of the second kind of zero order (see 
Appendix A.9.l and reference [28J). 

The elements of the column matrix Lin Eq. (9.4.40) is 

l~k) = f I/Ik dr (9.4.44) 

To solve Eq. (9.4.40), the boundary values of A and oA/on are obtained. In 
a 2-D case, E = -jwA and B = 1/ Jl. oA/on, then the power loss within the 
conductor may be easily calculated by using the Poynting theorem: 

P + jQ = ~ (E x H)* 0 dS (94.45) 

where H* is the conjugate of the vector H. 
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Table 9.4.1. A comparison of the BEM to the analytical solution 

r(mm) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

1.186 1.185 1.186 1.186 1.186 1.186 1.186 1.187 1.077 
2.94 2.34 1.76 1.31 1.01 0.80 0.66 0.56 0.45 

Example 9.4.1. Assume the radius of an infinitely long conducor is R = 5 mm, 
the conductivity of the material is 5.6 x 107 Slm, the frequency of the current is 
1000 Hz (Rib = 2.35, b is the penetration depth). While the circle of the conduc­
tor is divided into 24 constant elements, the relative errors of the magnitude and 
phase of the vector potential along a radius are given in Table 9.4.1. If the 
number of elements are increased to 36, then the maximum errors of the 
potential value and phase are decreased to 0.52% and 1.2%. This shows that if 
the number of the elements are enough the accuracy of the BEM is sufficient. 
This method can be used to a very high frequency. For example, if Rib = 40.7, 
the error of the power loss is 0.722%. However, it should be noted, that the size 
of the discretized elements must be related to the wave length of the electro­
magnetic field. Otherwise the results may be inaccurate. 

The formulations and computer program for calculating the modified Bessel 
functions are given in [28, 29]. This method is also useful for solving eddy 
current problems in multiple conductors [30]. 

9.4.4 Surface impedance boundary conditions 

If the penetration depth is sufficiently small and the radii of the conductors are 
much larger than the wave length, then the wave impedance condition can be 
used to reduce the size of the problem by 50%. 

Consider a plane wave, the electric and magnetic field strength satisfies the 
impedance boundary condition which can be expressed 

nxE = Zsnx(nxH) (9.4.46) 

( )1 )1/2 
Zs = . ~ (1 + j)w)1b 

e-(JYIJ.l) 
(9.4.47) 

b = (~)1/2 
w)1Y 

(9.4.48) 

where Zs is the boundary impedance. Consider the same problem given in 
Sect. 9.4.3, by substitution of Eq. (9.4.46) into Eq. (9.4.40), the resulting equation 
is 

~H] - z: [G] hh {A} = { 0 } 
[ 

jW)1 ] 

JW)1 L 0 As - )11 
Zs 

(9.4.49) 
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where 
[HJ = [HtJ - [HoJ (9.4.50) 

In Eq. (9.4.49) only the component of the electric field is chosen as unknowns. 
Where the matrices [H1J and [HoJ are the same as in Eq. (9.4.40). More 
detailed applications and discussions were shown in references [31 J and [32]. In 
a high frequency range this condition is very useful in field computation. 

9.5 Non-linear and time-dependent problems 

9.5.1 BEM for non-linear problems 

As the superposition principle is implicit when using BEM it cannot be generally 
used to solve non-linear problems. In electromagnetic fields, most of the non­
linear problems are due to the non-linearity of the materials. If the non-linearity 
is not too strong, iterative procedure [33-35J may be successfully used. 

The operator equation of a non-linear problem may be written as 

!L'u + JVU = f (9.5.1 ) 

where !L' and .;V represent linear and non-linear operators, respectively. If the 
non-linear term .;Vu can be treated as a known function, then Eq. (9.5.1) is 
rearranged to 

!L'u = f - ';vu . (9.5.2) 

Thus the LHS of Eq. (9.5.2) is a linear term. All the influence of the non-linear 
component is included in the RHS as a source term. 

Assume u = u(O), then 

!L'u = f - .;Vu(O) . (9.5.3) 

This equation is solved by conventional procedures and the first approximate 
solution u(l) is obtained. Repeat the procedure, by using the recurrent method 
until a certain criterion is satisfied. Finally, the solution of Eq. (9.5.1) is obtained. 
The main advantage of this method is that during each iteration, the matrix of 
Hand G (the coefficient matrix of the potential and its normal derivative) of the 
LHS of Eq. (9.5.3) are unaltered and only the term .;VU(k) has to be calculated. 

Example 9.5.1. A practical cable shown in Fig. 9.5.1 is chosen as an example 
where the shield pipe is made out of ferromagnetic material. Assume the 
magnetic strength in the pipe is less than the value of saturation, calculate the 
magnetic flux density in the ferromagnetic pipe. 

For non-linear permeability, Eq. (9.4.1) is written as 

V x (~ V x A ) = J (9.5.4) 
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/ Aluminum 

Fig. 9.5.1. The cross section of a power cable 

or 

~ (V x V x A) - V x A x V(~) = J . 

By using the same methods as in the Sect. 9.4.3, one obtains 

(V2+p2)A= -VXAXV(~). 
If JI. is non-linear, fJ is the function of A. Let 

112 = fJ5 + p2 
Assuming all the variables are sinusoidal function, then 

fJ5 = -jwJl.oY 

iF = -jwji.y = -jwy(JI. - Jl.o) 

(9.5.5) 

(9.5.6) 

(9.5.7) 

(9.5.8) 

(9.5.9) 

where Jl.o is assumed as an initial value of the permeability. By substituting 
Eq. (9.5.7) into Eq. (9.5.6) and expand the RHS of Eq. (9.5.6) in cylindrical 
coordinates, the result is 

V2A + Pa A = -jwy(J.I. _ J.l.o)A _ !(OJI. oA + ~ OJI. OA) . 
J.I. or or r2 Oa. Oa. 

(9.5.10) 

The RHS of Eq. (9.5.10) is considered to be a source term. It varies with the 
changing of the vector potential A. The corresponding boundary integral 
equation of Eq. (9.5.10) is 

1 f of . f oA f :2 A + A On dr - F On dr + PFdQ = 0 (9.5.11) 

r r 

where 

1 (OJI. oA 1 0Jl. OA) P=jwY(JI.-Jl.o)A +- - -+- - - . JI. or or ,2 Oa. oa. 
(9.5.12) 
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In Eq. (9.5.11), F is the fundamental solution of a linear Helmholtz equation. By 
using boundary conditions of Eq. (9.4.41) and writing Eq. (9.5.11) in an iterative 
form, one obtains 

~(AK+l)+ £ fAK+IOF dl- £ fll~(oA)K+IFdl 
2 j=l an j=l an 

= - i~l (Jl Wq(PfF)q)Sne = bk (9.5.13) 

where N is the number of the boundary elements, N e is the number of the 
discretized elements of the domain, m is the number of the integrate points of 
each element, Wq are weighting coefficients of integration and Sne is the area of 
element. The superscript k is the time of iterations. The iterative steps of 
Eq. (9.5.13) are 

(1) Start with a given 110. 
(2) Calculate fJo, po, bk • 

5 . b· k (oA)k (3) Solve Eq. (9 .. 13), 0 tam A, an . 
(4) Calculate the value of A~, B~i' B;i inside the conductor, and the variation 

rate (~~r (~:r 
all all 

(5) Determine the value of ii from the B - Ilr curve, then calculate elY.' or· 
(6) If max I 11k + 1 - 11k I < €, then stop the iteration, otherwise 

B(T) 0.6 r-----r---------, 

'0·:.~ ~~ _.>-. 

-0 / 

.--r' 

O~------~------~ oom O.OHO m 0.01" 
f-

a 

JO 0 

0 

a 
oom 

leff = 200 A 
leff = 280 A 
leff" 400 A 

Fig. 9.5.2a, b. The distribution of Band /1, in the pipe 

O.OHO m O.OM 
f-

b 
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&00 
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~ 0 

~r 

o 
o 0.1 10 11 

B-- Fig. 9.5.3. The /l, - B curve of the steel 

aJ1. aJ1. k k 
(7) Calculate ar' act.' P , b . 

(8) Return to step (3) until the criterion, max I J1.~ + 1 - J1.~ I < c, is satisfied. 
During iteration, in order to accelerate the convergence, the permeability is 
approximated by: 

(9.S.14) 

where ji is the value obtained from the B - J1.r curve at the kth iteration. 
The distribution of magnetic flux density and the J1.r - r curve in the pipe are 

shown in Fig. 9.S.2(a) and (b), respectively. The smooth curves is obtained in 
reference [36] by using FEM, the discretized points are calculated using this 
method. The J1.r - B curve of the steel is given in Fig. 9.S.3. 

9.5.2 Time-dependent problems 

For time-dependent problems, incremental sequences are used. This means that 
the problem is solved in subsequent time intervals by conventional BEM. For 
example, consider a diffusion equation 

2 au 
VU=7Ji' (9.5.IS) 

At any time, this equation can be approximated as 

V2(U) = U, - Uo 
, Llt 

or 
2 U, Uo 

V (U )--= --. 
, Llt Llt 

(9.5.16) 
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The boundary integral ~quation of Eq. (9.5.16) is 

Ciut = f(~:), utdr - f Ft(::),dr + ~J uoFtdQ. (9.5.17) 

f f Q 

Assuming an initial value Uo within the domain and the boundary value 

U = ut on r 1 

and 
au 
- = iit an on r 2 

then the solution of Eq. (9.5.17) is the result of u at the time t. Let this be a new 
initial value of Eq. (9.5.17), and repeat the same procedure until a stable result is 
obtained. In Eq. (9.5.17), the fundamental solution is obtained from the follow­
ing equation, i.e. 

2 1 
V Ft - - Ft + bi = 0 . 

L1t 
(9.5.18) 

9.6 Summary 

BEM is based on the boundary integral equation and the fundamental solution 
of the governing equation of the problem. The boundary integral equation is 
developed from the principle of weighted residuals, Green's theorem and the 
variational principle. It is useful for solving open boundary and three-dimen­
sional problems. 

A typical discretized equation of BEM is in the form of 

[H]U = [G]Q 

where the components of U are the nodal values of the potential function on the 
boundary. The components of Q are the normal derivatives of the potential 
function of the boundary nodes. The coefficients of matrices Hand G are 
integrated from the fundamental solution of the governing equation and the 
shape function of the discretization, i.e. 

G!jl = f I/Ik Fdr 
f J 

Because the discretization is carried out only on the boundary, the size of the 
matrix is much smaller than the one obtained using differential methods. The 
pre- and post-data processing is simpler than with FEM. It is useful for solving 
3-D problems and eddy current problems in high frequency and transient cases. 
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The corresponding matrix of the discretization equation is usually unsym­
metrical, and full, Gauss's elimination or Cholesky's decomposition methods are 
used for solving the matrix equation. 

During the procedure of approximation, the principle of superposition is 
implied, so this method is usually not suitable for non-linear problems. If the 
material contained in the problem domain is non-linear, the iterative method is 
more successful for such problems. 
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Appendix 9.1 Bessel functions 

Bessel functions, l,(z), 1 _,(z), Y,(z) are the solutions of a particular differential 
equation (called Bessel equation) in the form of 

d 2 f df 
Z2 dz 2 + Z dz + (A 2Z2 - v2)f= 0 (A.9.l) 

which was published by the German astronomer F.W. Bessel in 1826. 
l,{z), 1 _,(z) are Bessel functions of the first kind, Y,{z) is a Bessel function of 

the second kind. They are expressed by the infinite series 

<Xl 1 (AZ)'+2k 
l,(Az) = k~O (-1l k!r(v + k + 1) 2 (A.9.2) 

<Xl 1 (AZ)-'+2k 
l_,(Az) = k~O (-ll k!r( - v + k + 1) 2 (A.9.3) 

( ' ) = l,(Az) cos (vn) - 1 _,(AZ) 
Y, AZ . ( ) 

SIll vn 
(A.9.4) 

where r is the Gamma function, the subscript v may be integer or noninteger. 
l,(z), 1 _,(z) are linearly independent except when v is an integer. If AZ = x is 
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-05 

Fig. A.9.1. The Bessel functions of J.(x), Y.(x), n = 0, I, 2 

a real variable, and v = n (n = 0, 1,2, ... ), then i _. = ( - 1). i •. i.(x) and Y.(x) 
are damped oscillation functions, as shown in Fig. A.9.1. 

The linear combinations of i .(z) and Y.(z) are Hankel functions of the first 
and second kind respectively, i.e. 

H~l)(z) = i.(z) + iY.(z) 

H~2)(Z) = i.(z) - iY.(z) . 

(A.9.5) 

(A.9.6) 

Hankel functions are Bessel functions of the third kind. If v = n = 0, then 

H61)(Z) = io(z) = iYo(z) (A.9.7) 

(A.9.8) 

where Hb1)(Z) and Hb2)(Z) are Hankel functions of the first and second kind of 
zero order, respectively. 

Modified Bessel function 

It is often desirable in applications to give the solution in real terms instead of in 
a complex form. To do so, the Bessel function must be modified. If x = - iz, then 
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Eq. (A.9.1) becomes 

d2 f df 
x 2 dx 2 + x dx - (A. 2 x 2 + v2 )f = 0 . (A.9.9) 

This is a modified Bessel equation. The solutions of a modified Bessel equation 
are modified Bessel functions i.e. 

I.(x) = i-v J.(ix) = k~O k!r(V: k + I) (~y+2k (A.9.l0) 

00 1 (X)-'+2k 
L.(x) = i·J-.(ix) = k~ok!r(-v+k+ 1) 2' (A.9.11) 

and 

K.(x) =~(I -.(~) - I.(X») . 
2 sm V7t 

(A.9.l2) 

I.(x) and K.(x) are linearly independent, hence the complete solution of 
Eq. (A.9.9) is 

f = AI.(x) + BK.(x) . (A.9.l3) 

I ± .(x) and K.(x) are modified Bessel functions of the first and second kind, 
respectively. If v = n = 0, I, the functions of lo(x), 11 (x), Ko(x) and K 1 (x) are 
given in Fig. A.9.2. 

Fig. A.9.2. The modified Bessel functions 
i<----!----+--=""""-+-.... x of Io(x), Idx), Ko(x), K 1(x) 
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ber, bei, ker and kei functions 

In solving some electrical problems, ber(x), bei(x) have been introduced by 
Thomson. These functions are the real and the image part of Bessel functions i.e., 

berv(x) + ibeiv(x) = Iv(i 1/2X) = Jv(i 1/2xi) 

kerv(x) ± ikeiv(x) = e + vi(7t/2) Kv(xe ± i7t/4) 

= ± t niH~l)(xe ± 37ti/4) 

= =+= t nie-v7tiH~2)(xe+ 7ti/4) . 

The fundamental solution of a Helmholtz equation is: 

1 (2) 1 
F(r· r') = 4i H 0 (Plr - r'l) = 2n Ko(Plr - r'l) 

where 

hence 

~ K (xe- 7ti /4 ) = ~ H(2)(xe- 7ti/4 ) = ~ (ker x + ikei x) 2n 0 4j 0 2n 0 o· 

(A.9.l4) 

(A.9.1S) 

(A.9.16) 

(A.9.17) 

(A.9.l8) 

The computation programs for calculating ber, bei, ker, kei are given in 
reference [29]. 



Chapter 10 

Moment Methods 

10.1 Introduction 

As outlined in Chapter 2, the method of moments is a generalized method based on 
the principle of weighted residuals. It covers the many specific methods discussed 
such as the charge simulation method, the surface charge simulation method, 
boundary element method and even the finite element method which is regarded 
as one of the special cases of the method of moments. The name 'moment' is 
understood here as the product of an appropriate weighting function with an 
approximate solution. Any method whereby an operator equation is reduced to 
a matrix equation can be interpreted as a method of moments. It is also considered 
as the unified treatment of a matrix method (R.F. Harrington [IJ). 

Following Harrington, the basic principle of the moment method IS to 
assume an approximate function 

u = L a" 1/1" (10.1.1) 

" 
to replace the unknown function of the operator equation 

!Eu =f. ( 10.1.2) 

In Eq. (10.1.1), a" are unknown constants and 1/1" are basis functions or 
expansion functions. Because 1/1" is assumed to be a complete sequence of 
linearly independent functions, thus L" a" 1/1" approximates to the actual solu­
tion only if n --+ 00. 

Substituting Eq. (10.1.1) into (10.1.2), and using the linearity of !E, yields: 

(10.1.3) 

Taking the inner product of Eq. (10.1.3) with a weighting function Wm , one 
obtains: 

(10.1.4) 

It can be written in a matrix form, i.e. 

(10.1.5) 
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where 

[
(!l't/lI' WI) (!l't/l2, WI)", (!l't/ln' WI)] 

A = (!l't/lI:' WN )(.Pt/l2:, WN ) ••• (!l't/I~, WN ) 

(10.1.6) 

(10.1.7) 

{%} is a column vector which consists of the unknown parameters of the 
approximate solution. 

The operator of Eq. (10.1.2) may be a differential or integral operator. Wm are 
linearly independent functions. In choosing the type of basis function, if the 
properties of the basis functions coincide with the properties of the real solution, 
then the approximate solution will quickly converge. In other words, a few terms 
of the basis function t/ln is sufficient to approximate the real function. Other 
aspects to be considered in choosing the basis and weighting functions are: 

(1) the accuracy of solution desired, 
(2) the ease of evaluating the matrix elements, 
(3) the size of the matrix, and 
(4) the realization of a well-conditioned matrix A. 

The procedures of the moment method are 

(1) Assume an approximate function to replace the unknown function in the 
operator equation. 

(2) Select a suitable function as a weighting function and construct the inner 
product to the operator equation. 

(3) Evaluate the integrals of the inner product and form the matrix equation. 
(4) Solve the matrix equation to obtain an approximate solution. 

Example 10.1. Solve the problem as shown in Eq. (10.1.8) 

{
d 2 U 
-2 = 1 + 2X2 0 ~ X ~ 1 
dx 
u(O) = u(l) = 0 

(10.1.8) 

Solution. Let u = Ln(J.nt/ln, because the exact solution ofEq. (10.1.8) is the linear 
combination of power functions, hence 

t/ln(x-xn+ l ) (10.1.9) 

is chosen as the basis function. If the weighting function Wm is the same as the 
basis function, i.e. 

(10.1.10) 
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therefore 
1 

amn = (21/1n, Wm> = I (x - Xm+ 1 >[ :X22 (x - Xn+ 1) J dx 
o 

329 

II [xn+lI1 x m +n + 1 11J = n(n + l)[xn - xm+n]dx = n(n + 1) -- - ----
n+1o m+n+1o 

o 

mn 
m+n+1 

1 

B = (f, Wm> = I(1 + 2x 2)(x - xm+l)dx = ( m(~ t 3) 
m + ) m + 4) 

o 

(m = n) . 

If n = 3, the matrix equation and the solution are 

[
1/3 1/2 3/5] 11%1) 14/15) 1/2 4/5 1 1%2 = 5/12 
3/5 1 9/7 1%3 18/35 

and 

1% = f ~/2) 
11/6 

Then 

This solution is exactly the same as the closed form solution. 

(10.1.11) 

(10.1.12) 

(10.1.13) 

(10.1.14) 

In Example 10.1, the term 'moment' can be understood as a product of the 
approximate function and of the moment x, x 2, x 3 where 

(10.1.15) 

when n = 1, W= x - x 2, then 1/11 = x, 1/12 = x 2, and so on. 
Recall the basic idea of the method using weighted residuals introduced in 

Sect. 2.3.1. If the boundary conditions are exactly satisfied, then the average 
error principle remains 

JeWdQ = 0 (10.1.16) 

In this case, the error is distributed in proportion to the weighting function. 
Consequently, the method of moments consists of taking moments of the 
weighting function and the error function. It displays them while the weighting 
junction equals the approximate junction, moment methods are equivalent to the 
Rayleigh Ritz method (see Sect. 5.4.1). 
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The method of moments is also useful for solving integral equations. For 
instance, a Fredholm integral equation of the first kind is 

b 

J K(x, x')f(x)dx = g(x') (10.1.17) 
a 

where K(x, x') is the kernel of the integral equation and g(x') is a known 
function. Assume f(x) = L>xn"'n(x) and substitute it into Eqs. (10.1.17) and 
(10.1.6), the element coefficients of matrix A are evaluated by double integra-
tions, i.e. 

b b 

amn = J J K(x, x')"'n(x) Wm(x)dxdx' (10.1.18) 
a a 

It is obvious more computation time is needed. 
A different selection of weighting functions, basis functions and applications 

of the moment method to solve different problems are introduced in following 
sections. 

10.2 Basis functions and weighting functions 

The choice of the basis and weighting function are important to obtain 
solutions using the method of moments. They influence the accuracy of the 
solution and the computation time, even the success of the method. As shown in 
Example 10.1, the choice of the basis function is dependent on the property of 
the solution sought. In this section a different choice of using weighting function 
is illustrated by the same example. Usually the basis functions are divided into 
a global and subregion basis function. The global basis function is defined in the 
whole region of the operator space where it cannot be zero. The sub-region basis 
function is defined in the whole region and is nonzero only over a small sub-region 
of the solution domain. 

The most commonly used global basis functions are 

Fourier series: u(x) = C(! cos(nx/2) + C(z cos (3nx/2) 
+ a3 cos(5nx/2) + .. . 

Power series: u(x) = C(! + C(2X2 + C(3X4 + .. . 
Chebyshev polynomial: u(x) = C(t To(x) + !X2 T2(x) + C(3 T4(x) + .. . 
Legendre polynomial u(x) = C(t Po(x) + C(2P2(X) + C(3P4(X) + .. . 

The commonly used sub-region basis functions are 

1 
I x - x j I < 2( N + 1) 

1 
Ix - xjl > 2(N + 1) 

Pulse function: 

(10.2.1) 

(10.2.2) 

(10.2.3) 

(10.2.4) 

(10.2.5) 
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Triangular function: {
I -lxl(N + 1) 

T(x) = 
o 

Piecewise sinusoidal function: 

1 
Ixl < N + 1 

1 
Ixl > N + 1 

331 

( 10.2.6) 

{

XjSinK(Xj+l - x) + xj+lsinK(x - Xj) 

( ) sin K.1xj 
S x = 

o 

Xj < x < Xj+ 1 

(10.2.7) 

Quadratic interpolation function: 

Q(x) = J J J J J {
a. + b·(x - x·) + c-(x - X·)2 

o 
Spline interpolation function: 

1
1-(t + 3/2f 

Q2(t) = - t 2 + 3/4 
t (t - 3/2)2 

-3/2 < t < -1/2 
- 1/2 < t < 1/2 
1/2 < t < 3/2 

(l0.2.8) 

(10.2.9) 

In Eqs. (10.2.5) and (10.2.6), N is the number of subdivisions in the domain. In 
Eq. (10.2.9), t = x/ .1, .1 is the length of each sub-element. 

The above functions are shown in Fig. 10.2.1. A linear combination of the 
triangular functions of the form 

(\0.2.10) 

gives a piecewise linear approximation function, as shown in Fig. 1O.2.I(c). 

I 
1 

~ 
a 

b 

p (x-x) 

c 

-3/2 -1/2 0 1/2 3/2 

d 

Fig. IO.2.la~. Subregion basis functions. a pulse function; b triangular function; c piecewise linear 
function; d spline function 
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The usual choice of basis and weighting functions is listed in Table 10.2.1. 

Table 10.2.1. Collocation between the basis and weighting functions 

Basis functions 

Quadratic or spline function 
Triangular function 
Rectangular pulse function 
Pulse function 
Dirac delta function 

10.2.1 Galerkin's methods 

Weighting functions 

Dirac delta function 
Rectangular pulse function 
Triangular function 
Pulse function 
Quadratic or spline function 

If the weighting function is identical to the basis function (e.g. Example 10.1) then 
the resultant moment method is called Galerkin's method. It is similar to the 
Rayleigh-Ritz method which has been introduced in Sect. 5.4.1. In Galerkin's 
method, if the operator is selj:adjoint, the matrix A is symmetrical (Eq. (10.1.12». 
Consequently the matrix equation is may be easily solved. If the order of the 
matrix equation is not high, quick convergence and good accuracy may be 
expected. The only disadvantage is that it takes a longer time to calculate the 
elements of the matrix, especially for the integral operator. 

10.2.2 Point matching method 

In order to simplify the evaluation of the integration in calculating the coeffic­
ients of matrix A, the domain is presented by a set of discrete points and the 
approximate solution is forced to satisfy the operator equation only at these 
discrete points. Hence, it is called a point matching method. In this method, the 
Dirac delta function is chosen as the weighting function. The procedures of 
point matching are illustrated in Example 10.2.1. 

Example 10.2.1. Use the point matching method to solve Eq. (to. 1.8) 

Let 
N 

U = L ct.(x - x·+ 1 ) (10.2.11) 
.=1 

and 
(10.2.12) 

then 

N [d' ] L ct. -d 2 (x - x'+ 1) = 1 + 2x2 . 
• =1 X 
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Divide the area by N points and take the matching points Xm = m/(N + I) 
(m = 1,2, ... , N). They are equi-distance within the inlerval of 0 ~ x ~ I, as 
shown in Fig. 10.2.2. Calculate the coefficients 

II dZ ( m )n-I 
amn = b(X-Xm)-d z(x-xn+l)dx=n(n+I)--

x N+I 
o 

bm = 1 + 2 (N : 1 Y 
If N = 3, then 

A=[~2 ~ 
9/2 

3/4] 
3 , 
27/4 

The result is 

1918 l 
B = 3/2 , 

17/8 

ct = f~/2l 
ll/4 

It is identical to the solution obtained in Example 10.1. 

It is concluded that because the delta function is chosen as the weighting 
function, the calculation of the coefficients of the matrix in using the point 
matching method is simpler than Galerkin's method. However, the matrix A is 
no longer symmetrical as it was when using Galerkin's method. Even though the 
matrix A of the point matching method and Galerkin's method are different in 
value they yield the same solution. The only difference is that they have different 
speeds of convergence and different computing time requirements in evaluating 
the matrices. Using the point matching method, the accuracy and the conver­
gence are dependent upon the number and the position of the matching points. 
The charge simulation method described in Chap. 7 is a special case of the point 
matching method. 

1 

I" 
N+l 

-I 
I 
0 XI X2 Xm 

Fig. 10.2.2. Subdivision of a one-dimensional area 



334 10 Moment methods 

10.2.3 Sub-regions and sub-sectional basis 

With point discretization, the domain is subdivided into a number of sub­
sections, Qm, and let 

tjI. = {I inside Q m 

J 0 outside Qm 
( 10.2.13) 

This equation shows that the basis function exists only in the sub-region of the 
domain. The following example is an illustration using this method. 

Example 10.2.2. Use the sub-region method to solve Eq. (10.1.8). 

Subdivide the region 0 ~ x ~ 1 into N equal sub-sections. The triangular 
function is chosen as the basis function; it is a sectional linear function as shown 
in Fig. 1 0.2.1 (c), i.e. the unknown function is approximated by 

U(X) = L exn T(x - xn) . (10.2.14) 

Referring to Table 10.2.1, the rectangular impulse function is chosen as the 
weighting function, i.e., 

1 
Ix - xml < 2(N + I) 

1 
Ix - xml > 2(N + 1) 

Thus 

1 

= J (N + 1)[ -6(x - Xn - d + 26(x - xn) 
o 

if 
m = n amn = 2(N + 1) 

if 

{ m>n+l =0 amn 
m<n+l 

(10.2.15) 

and if 

m ={n+l 
n - 1 

amn = -(N + 1) . 
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Based on Eq. (10.1.7), 

bm = (1 + 2X2, P(x - Xm » = (I, P(x - xm » + (2X2, P(x - Xm » 

1 
1 

X m +2(N+l) 

= f P(x - xm)dx + 
o 

f 2X2 P(X - xm)dx 
1 

X m -2(N+l) 

1 

1 2 I Xm + 2(N + 1) 
=-- +_X3 1 

N+I 3 x --m-2(N+ 1) 

I [ 2m 2 + I/2J 
= N + I + I + (N + 1)2 . (10.2.16) 

It is obvious that if the pulse function is used as a weighting function, then 
the evaluation of matrix A is simpler than in any other methods used in this 
section. 

For the operator equation given in this example, the rectangular impulse 
function is not suitable to be used directly as the basis function. This is due 
to the fact that the second derivative of P(x - Xm) is not definite in the range 
of the operator. The domain of the operator must be extended by redefin­
ing the operator as a new function, and the extended operator does not 
change the original operation in its domain. More detailed analysis is shown 
in references [2, 3]. 

10.3 Interpretation using variations 

The method of moments can also be interpreted by variations as discussed in 
reference [2]. In this section a special example is used to illustrate that the 
method of moments is identical to the variational principle. 

or 

For an electrostatic problem 

- eV2<p = p (10.3.1) 

<p(r) = f p(r') dQ' 
4rreR 

fl' 

(10.3.2) 

where R = Ir - r'l is the distance from a source point to a field point, here 

2 = -eV 2 and 2- 1 = f 4rr~R dQ'. (10.3.3) 

The two operators in Eq. (10.3.3) are reciprocal only if the boundary condition 
r<p -+ constant 1,- OX) is satisfied. 
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Take a suitable inner product 

<!fcp, IjJ> = f (-eV2cp)ljJdQ' (10.3.4) 
D' 

and use Green's identiy 

f(ljJV 2cp - cpV21jJ)dQ = f(IjJ ~: - cp ~~)dr , (10.3.5) 

D r 

Let r be a spherical surface of radius r, cp and IjJ are constants in the limit of 
r -+ 00, thus the RHS of Eq, (10.3.5) vanishes. This equation then reduces to 

f IjJV2cpdQ = f cpV2ljJdQ . (10.3.6) 
D D 

Considering the vector identity IjJV2cp = V (IjJ Vcp ) - VIjJ· Vcp and the divergence 
theorem, Eq. (10.3.4) becomes 

<!f(P, IjJ> = f eVIjJ· VcpdQ - § eljJVcpdr (10.3.7) 
D r 

The last term of Eq. (10.3.7) vanishes as r -+ 00 for the same reasons as in 
Eq. (10.3.5). Let IjJ = cp, then 

<2'cp, IjJ> = f elVcpl2dQ. (10.3.8) 
D 

Equation (10.3.8) shows that the inner product of <2'cp, IjJ> equals thl! 
equivalent functional of the Laplacian operator. This means that the method of 
moments is identical to the variational principle. 

10.4 Moment methods for solving static field problems 

To illustrate the use of the moment methods for solving static electromagnetic 
field problems, two examples are shown. 

10.4.1 Charge distribution of an isolated plate 

A charged plate is shown in Fig. 10.4.1. The potential at any observation point is 
expressed by a Fredholm integral equation of the first kind 

a b 

cp(r) = 4~e f dx' f dy' [(x _ X')2 + (ya~>~~) + (z _ Z')2]1/2 . (10.4.1) 
-a -b 

The corresponding operator equation of Eq. (10.4.1) is 

!fa =f. (10.4.2) 

If the RHS of Eq. (10.4.2) is known, then the charge distribution a(x', y') can be 
determined. 
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z 

"------+--~ X 

a b 

Fig. 1 0.4.1 a, b. A charged plate 

Let 
N 

a(r') = I C1.nt/ln{r'). ( 10.4.3) 
n=1 

If the pulse function is chosen as the subsectional basis function and Dirac's 
delta function is chosen as the weighting function, respectively, i.e. 

t/I = {l within LlSn 

n 0 outside LlSn 

(l0.4.4) 

and 
(10.4.5) 

Equation (10.4.4) shows that the charge density is a constant within a small area 
LlSn • As the potential of the plate is known (V 0), let the observation points be 
located on the plate, using Eqs. (10.1.6) and (10.1.7), the coefficients of the 
matrices A and Bare: 

-a 

h 

-b 

m =I n (10.4.6) 

2e 1'2 amn = -In(1 + 2 ,) m = n ( 10.4.7) 
nco 

a b 

= S dx' S b(x - xm)b(y - Ym)VOdy' = Vo ( 10.4.8) 
-a -b 
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where 
( 10.4.9) 

where Llsm is the area of the sub-region. In Eq. (10.4.7) e is the equivalent side 
length of the sub-region. The results obtained by solving the matrix A { IX} = B 
are identical to the ones obtained in Sect. 8.1 by using SSM. In other words, the 
constant element of SSM is equivalent to the moment method while the pulse 
and Dirac delta function are chosen as the basis and weighting functions, 
respectively. Thus, SSM is one of the special cases of the moment method. 

10.4.2 Charge distribution of a charged cylinder 

A charged cylinder is shown in Fig. 10.4.2. The potential at any point P(r, IX, z) is 

h 2~ 

<p(r) = _1_ f a(z') f ~ rda' dz' 
4m; R 

(10.4.10) 

-h 0 

where 
R = Ir - r'l = [r2 - r,2 - 2rr'cos(a - a') + (z _ Z')2]1 /2. (10.4.11) 

If both the source point and the field point are located on the surface of the 
cylinder and in the plane of a = 0, then 

R = [2a 2 - 2a 2 cosa' + (z - Z')2] 1/2 

= [4a2sin2(~) + (z - Z')2JI /2 (\ 0.4.12) 

a fh f2~ [(a') ] -112 
U 0 = 4neo a(z') 4a 2 sin 2" + (z - Z')2 da'dz' 

-h 0 

h 

a f a(z') , 
= 2eo [a2 + (z _ z')2]1/2 dz ( 10.4.13) 

-h 

u 0 is the potential of the charged cylinder and a(z') is the unknown surface 

P(r,cx,z) r 

z---I--l-+---='------+~---___r____r_!-o 

---+-~-h Fig. 10.4.2. A charged cylinder 
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charge distribution. Let 
N 

O"(z') = I (Xnl/ln(Z') 
n=1 

and 
W(Z) = <5(z - Zm) m = 1, ... , N . 

Substitution of Eq. (10.4.14) into Eq. (10.4.13), leads to 
h 

2eUo _ f. (X f I/In(z') dz' 
a -n=1 n [a 2 +(z_z')2]1/2 

-h 

339 

(10.4.14) 

( 10.4.15) 

(10.4.16) 

where N is the total number of source points. Taking the inner product of Eq. 
(10.4.16) with weighting function, a set of algebraic equations are then obtained 

N 

I amn(Xn = bm m = 1, ... , N . ( 10.4.17) 
n::: 1 

When the matching points (zm, a) are specified, the coefficients amn and bm are 
evaluated by 

h 

f I/In(:') d ' 
amn = [a 2 + (zm _ z')2r/2 Z 

-h 

bm = Uo . 

(10.4.18) 

(10.4.19) 

To evaluate the integrals of Eq. (10.4.18), it is important to note that if the 
radius of the cylinder, a, is very small, then the integral of Eq. (10.4.18) tends of 
infinity when Zm = z. In this case the resulting singular integral is evaluated by 
the method discussed in Sect. 8.3. 

If I/In(z') is a continuous function, Eq. (10.4.18) can be written as 
h - f I/In(z') - I/In(zm) + I/In(zm) d ' 

amn - [a 2 +(zm-z')2]1/2 Z 
-h 

-h 

(10.4.20) 
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If Zm = z', then the second term of the RHS of Eq. (10.4.20) equals zero, thus 

Zm + h + [a Z + (zm + h)zr/z 
amn = I/In(zm) In Zm _ h + [a Z + (zm _ h)Z]I/Z . (10.4.21) 

This equation is used for evaluating the coefficients when the observation point 
is identical to the source point. In other cases Eq. (10.4.20) is used to evaluate the 
coefficients where the Gauss quadrature [4] is applied for the integration. 

So far the basis function I/In(z) has not been specified. If a pulse function is 
chosen as the basis function and the cylinder is subdivided by N equalized 
elements, the charge distribution of a cylinder of height h = 1 m and radius 
a = 10 - Z m is shown in Fig. 10.4.3 where 2eo U 0/ a = 1 is assumed. The results 
show that the number of subdivisions strongly influences the accuracy of the 
approximation. 

If a good initial guess such as <1,(z') is chosen, it will be helpful in obtaining 
an accurate solution by using fewer elements. Consider that near the two ends of 
the cylinder, <1,(z') is the largest. At the middle of the cylinder, <1,(z') is the 
minimum and its derivative is zero. Thus a power series is considered as a basis 
function, i.e. let 

( ,,')zn 
I/In(z') = Tz (10.4.22) 

and the positions of the matching points are chosen as 

_ (m - 1/2) h 
Zm - N . (l0.4.23) 

Reference [5] gives the result if Eq. (10.4.22) is used as the basis function, when 
N = 6, the charge distribution is similar to the result obtained by N = 30 while 
the pulse function is used as the basis function. This demonstrates the influence 
of the basis function. Although the concepts of the moment method are more 
complicated than SSM, the method of moments allows flexibility in choosing 

o(s) 
0.2,--------------, 

N=lO 

0.1 ----------~-------
N'=30 

+--,-------,----,--cr-------j Z Fig. 10.4.3. Charge distribution along the cylinder 
o 0.2 0.4 0.6 0.8 1.0 surface 
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the basis functions. Therefore, it is more efficient than SSM in some cases. 
Moment methods are considered as a generalized form of the methods of 
approximation. 

10.5 Moment methods for solving eddy current problems 

10.5.1 Integral equation of a 2-D eddy current problem 

Assume that the problem has translational symmetry as shown in Fig. lO.5.1(a). 
A and J are scalar functions of the coordinates. 

First consider the interior problem. Assume that the conductor is composed 
of filaments with current density J(r') then 

~.y 

a 

f r----. 
{ I 
I 

"-.. 

b 

J.I. f 1 A(r) = 2n J(r')ln Ir _ r'l ds' 

J(r) = Je + Js = -jwyA(r) + yUo/L 

Js=yUo/L 

/ 
J(I') 

L 

"-
""f-.. 
ILJ 

V 

c 

Fig. 10.5.1a~. A 2-D current carrying conductor 

(10.5.1) 

( lO.5.2) 

(lO.5.3) 
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where U 0 is the terminal voltage and Land S are the length and the cross­
section area of the conductor. By substituting Eq. (10.5.1) into Eq. (10.5.2), 
a Fredholm integral equation of the second kind is obtained 

J(r) =j~~y f J(r')lnlr - r'lds' + Js · (10.5.4) 

10.5.2 Sub-sectional basis method 

Rewrite Eq. (10.5.4) to 

J(r) - j~~y f J(r') In Ir - r'l ds' = J s • (10.5.5) 

The operator of Eq. (10.5.5) is 

y = 1 - j~~y f In I r - r'l ds' . (10.5.6) 

Subdivide the domain into N square elements as shown in Fig. 1O.5.1(bl. 
Assume the current density is approximated as 

n 

J(r) = L Jd/i (10.5.7) 
i= 1 

Then let 
1/1. = {I within the sub-element 

I 0 outside the sub-element . 

This means that the pulse function P(x) is chosen as an approximate solution. If 
P(x) is also chosen as the weighting function, then the coefficients of matrix 
A are 

amn = (fi>I/In, Wm> 

= f P m(x, y) ds - j~~y f f P m(x, y) 
s s s 

x In[(xm - xn)2 + (Ym - Yn)2]l/2 Pn(x, y)dsds' 

= LlSm -j~~y LlSmLlSnln[(xm - xn)2 + (Ym - Yn)2]l/2 (10.5.8) 

(10.5.9) 

Assume that the length of one side of the square elements is h. Eliminate all the 
terms LlSm in the equations of amn and bm, and consider the different relative 
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positions of the source and field points as shown in Fig. 10.5.1(c), the formula­
tions to evaluate the elements of the matrix A are [6] 

amn = 1 _j:~1' h2In[(xm - xn)2 + (Ym - Yn)2] djh > 2 (10.5.10) 

amn = 1 - 1.0065j:~1' h2In[(xm - xn)2 + (Ym - Yn)2] djh = 1 

(10.5.11 ) 
if m = n 

j W I1:Y 2 amn = 1 - - h In(0.44705h). 
2n 

(10.5.12) 

Solve the matrix equation 

A{J} = {Js} (10.5.13) 

the current distribution is obtained. 
F or rectangular elements, the more accurate expression for calculating amn is 

given in reference [6]. 
For a 2-D interior eddy current problem, the method described here is the 

simplest and more efficient one. It is used in reference [7, 8]. 
For a problem with rotational symmetry, a similar method was used in 

reference [9]. 

10.6 Moment methods to solve the current distribution 
of a line antenna 

Allow flexibility in choosing of the basis function and the weighting function. The 
method of moments is ideally suited to solve electromagnetic radiation and scatter­
ing problems. (See the contributions of Harrington [2], Mittra [10] and Moore 
[11].) A one-dimensional problem is chosen here to illustrate the use of the 
moment method. 

10.6.1 Integral equation of a line -antenna 

Figure 10.6.1 shows a cylindrical antenna of length I = 2h and with radius a, 
where a is much smaller than the wavelength A.. Hence the current is assumed to 
be uniformly distributed along the circle, then the current is dependent only on 
the variable z'. Thus 

h 

Az = 110 f /(z')G(z, z')dz' 
4n 

-h 

(10.6.1 ) 
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I 

CeJ Fig. 10.6.1. A line antenna with small radius 

where G is Green's function of free space. In a 3-D case, 

- jkR , e 
G(z,z )=T' 

Hence Eq. (10.6.1) becomes 

where 

h 

A. = 110 J I(z')e- jkR dz' 
- 4n R 

-h 

k 2n (2 ~ 
= -;- = W 110f.o)2 . 

). 

(10.6.2) 

(10.6.3) 

(10.6.4) 

Consider the Lorentz gauge V· A = - jWl1oeo qJ and in the sinusoidal steady 
state case, 

then 

Substitution of Eq. (10.6.1) into Eq. (10.6.6) yields 

h 

4njweoEz = (:Z22 + k2) J I(z'}G(z, z')dz' . 
-h 

(10.6.5) 

( 10.6.6) 

(10.6.7) 

This equation is named Pocklington's equation. It was used by Pocklington in 
1897 to analyse the current distribution along a line antenna. The result showed 
that the current distribution is approximately sinusoidal. 
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In Eq. (10.6.7) E= is the incident field. Consider the source of the antenna as 
a b gap voltage source, z· Ei(Z) = Ub(z), then Eq. (10.6.7) becomes 

h 

- 4njW80 U b(z) = (:Z
2
2 + k 2 ) f J (z') G(z, z') dz . 

-h 

Integrate the last equation to obtain 

h 

f J(z')G(z, z') = Bcoskz - jU Sinklzi . 
2110 

-h 

(10.6.8) 

(10.6.9) 

This is RaUen's equation, where 110 = (/10/80)1/2 is the wave impedance of free 
space and B is a constant dependent on the imposed condition. 

10.6.2 Solution of Hallen's equation 

The global basis and point matching method is used here to solve Hallen's equation. 
As suggested in reference [12] for kh = 0.5 --. 2.7 (i.e. h = 0.0795 --.0.42993),), 
the sinusoidal function is chosen here as the basis function, i.e., 

N 

J(z') = L CnSin[nk(h -lz'l)] 
n= 1 

when N = 2, the matrix equation is 

The coefficients of matrix A are evaluated by 
h 

ail = f Sink(h -lz'I)G(z, z')dz' 
-h 

h 

ai2 = f Sin2k(h - Iz'I)G(z, z')dz' i = 1,2,3 
-h 

u· = - jU Sinklz.1 i = 1,2,3 
, 2110 ' 

(10.6.10) 

(10.6.11) 

(10.6.12) 

(10.6.13) 

To solve Eq. (10.6.10), the current distribution of the antenna is obtained. While 
a/). = 7.022 x 10-3, h/). = 0.0795 and h/). = 0.25, the real and the image com­
ponents of the current are shown in Fig. lO.6.2(a). If the length of the antenna is 
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Fig. 10.6.2a. b. Current distribution along the line antenna 

longer, e.g. h = 0.395A. - 0.75A., the basis function 

I(z') = C 1 Sink(h -lz'l) + C2 (Coskz' - Coskh) 

+ C3 (Cost kz' - Costkh) 
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(10.6.14) 

is a better choice than Eq. (10.6.10). The current distribution of a wave length 
antenna (h = 0.5A.) is shown in Fig. 1O.6.2(b). In Fig. 10.6.2 the unit of the current 
I(z) is normalized, i.e. the unit is (A/V). 

In solving equation 

(10.6.15) 

four matching points are chosen at 'ih, fh and the two end points. The 
comparison of the calculated results and the experimental data are given in 
Table 10.6.1. In Table 10.6.1, the' experimental data are taken from reference 
[13]. 

The Gaussian quadrature is used to evaluate the coefficients of the matrix, 
the matrix is solved by Cholesky decomposition. More applications of the 
moment method to solve scattering and antenna problems are shown in refer­
ences [2, 14]. 
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Table 10.6.1. Current distribution of an antenna (L = Aj2) 

zjA Real component Image component 

Calculated Ex perimen tal Calculated Experimental 

0.0 9.4033 9.265 - 3.5736 - 3.825 
0.05 9.2096 8.7 - 4.5926 - 4.76 
0.10 8.0387 7.65 - 4.8230 - 4.76 
0.15 5.9584 5.78 - 4.0324 - 4.08 
0.20 3.1723 3.4 - 2.2983 - 2.55 
0.25 O. O. O. O. 

10.7 Summary 

Moment methods are generalized approximate methods based on the principle 
of weighted residuals. It is also identical to the variational approaches, so is 
regarded as the universal name for numerical methods. 

In numerical solution the operator equation 2u = f is changed to a matrix 
equation A {IX} = B by using the inner product operation, i.e. 

A = [<2~1' WI> <21/1\ WI> ... <2I/1N': WI >] 
<21/11, WN> <21/12, WN> ... <2I/1N, WN> 

N 

where 1/1 n is the basis function of u, i.e., U = L IXn 1/1 n' Wn are weighting functions. 
n=1 

Due to the flexible choice of the basis function and the weighting function, 
moment methods cover all of the methods discussed previously. If the best 
choice of the approximate function and the weighting function is achieved, the 
efficiency of the computation is high. The problem shown in Fig. 10.4.3 is a good 
example. 

Because of the wide adaptability of this method, it can be used to solve static, 
quasi-static and dynamic problems expressed by differential or integral equa­
tions. The domain to be discretized may be the whole domain or the boundary 
of the domain. Hence it can be classified as the domain method or the boundary 
method according to use. 

From Sects. 10.4 to 10.6, moment methods have also been used to solve 
problems expressed by integral equations, so they are known as. integral 
equation methods. Unlike differential equation methods, integral equation 
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methods as a rule have no need for additional requirements. All the boundary 
and constrained conditions are part of the kernel function, so a particular kernel 
is related to particular boundary condition and does not have universal validity. 
Hence in using the integral equation method, the first step is to derive a specific 
integral equation for a given problem. During calculation of the coefficients of 
the matrix, numerical integration is often used. 
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Part Four 

Optimization Methods 
of Electromagnetic Field Problems 

In this part the remaining two chapters illustrate the optimization of electro­
magnetic field problems. Mathematical methods to search the extrema (max­
imum or minimum) of an objective function are introduced in Chap. 11. These 
methods are used to solve the problems given in Chap. 12. Strict theoretical 
problems concerning optimization are beyond the scope of this book. All the 
material presented in this chapter is for readers who wish to understand the 
properties of those methods and to use them well. 

The optimum design of electromagnetic devices is important and is difficult. 
This includes field analysis and synthesis. There is no general method to solve 
these problems. In Chap. 12, several methods are introduced to find the opti­
mum shape of electrodes and the best size of magnets. 



Chapter 11 

Methods of Applied Optimization 

11.1 Introduction 

The advanced purpose of the analysis of electromagnetic fields is to determine 
a better design of a practical problem. Design optimization (sometimes called 
the inverse problem) deals with the problem of finding the source distribution or 
the dimensions of devices for a specific purpose. Most inverse problems involve 
numerical optimization. This chapter provides the mathematical methods used 
for the optimum design. 

The study of optimization methods is a special area of applied mathematics. 
There are many books available on this topic references [1-5]. The purpose of 
this chapter is to help readers to understand the general principles of various 
optimization methods and to choose appropriate algorithms already developed 
by mathematicians. Most general algorithms of unconstrained and constrained 
optimization methods are available in references [6, 7], or in the computer 
libraries of IMSL (International Mathematical Scientific Library) or that of 
NAG (Numerical Algorithms Group). 

11.2 Fundamental concepts 

Usually, the optimum design for practical problems has to satisfy some prede­
termined conditions. Such as 

{

MinI 

Subject to 

F(X) 

hi(X)=O i=I, ... ,p 

gj(X) ~ 0 j = 1, .. . ,m 

(11.2.1) 

where F(X) is the target or the objective function. X is a vector of the order n in 
the linear space En. The second and third equations in Eq. (11.2.1) are the 

I Max F(X) = - Min - F(X) 
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constrained conditions of equality, inequality, respectively. Hence Eq. (11.2.1) is 
the mathematical expression of a constrained optimization problem. A typical 
example used to illustrate the constrained optimum problem is to determine the 
maximum volume of a rectangular box such that the dimension in any direction 
is less than or equal to 42 cm and the sum of the girth and the length of one edge 
is less than 72 cm [8]. The corresponding equations are 

Max F(X) = X1X2X3 

subject to: 0 < x 1 ~ 42 

0< X2 ~ 42 

0< X3 ~ 42 
(11.2.2) 

0< Xl + 2X2 + 2X3 ~ 72 

This is a constrained non-linear optimization problem, as the target function is 
non-linear. If one of the constrained conditions is non-linear, then the problem is 
also non-linear. If the objective function and all of the constrained conditions 
are linear functions, the problem is one of linear optimization and is a problem 
of linear programming. If the variables of the objective function have no 
restrictions, then the problem is one of unconstrained optimization. ActuaIly, 
unconstrained optimization methods are the foundation of constrained optim­
ization problems. Hence methods to solve unconstrained optimization will be 
introduced as the main part in this chapter. 

11.2.1 Necessary and sufficient conditions for the local minimum 

As shown in Fig. 11.2.1, there are two local minima and one global minimum. 
For a univariate function y = f(x), the necessary and sufficient conditions of 
local minimum are 

f(x) 

{
f'(X*) = 0 

f"(x*) > 0 x* 

f"(x*) < 0 x* 

local minimum 

IS minimizer 

IS maXImIzer 

weak minimum minimum 
OL----------------x 

( 11.2.3) 

Fig. 11.2.1. Local minima and 
global minimum 
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The minimizer is the minimum point of f(x). In Fig. 11.2.2, a zero slope holds at 
the minimizer. 

For functions with two variables, the necessary and sufficient conditions are 

{ fAX*,Y*) =f~(x*,y*) = 0 
[f~y(x*, y*)]2 - f~Ax*, Y*)f~y(x*, y*) < 0 

( 11.2.4) 

where f~Ax*, y*) < 0, (x*, y*) is the maximizer, if f~Ax*, y*) > 0, (x*, y*) is the 
minimizer. 

For the multi variable function F(X), the necessary and sufficient conditions 
are classified as follows. Expanding F(X) by Taylor's series and neglecting the 
higher order terms of the series, one obtains 

where 

F(X + AX) = F(X) + AXT g(X) + t AXT G(X)AX 

g(X) = V F(X) = 

of 
ox" 

G(X) = Vg(X) = V 2 F(X) = 

02 F 

oxi 

02F 

ox"ox! 

02 F 

OXlOX. 

02 F 
ox~ 

(11.2.5) 

(11.2.6) 

(11.2.7) 

and g(X) is the first order derivative of the objective function. G(X) is the second 
order derivative of the objective function, it is known as the Hessian matrix of 
the objective function. For the linear function, g(X) is constant, for quadratic 
function, the Hessian matrix is constant. 

f (x) 

o '-------"--:----- X Fig. 11.2.2. Zero slope and non-negative 
x· curvature at x* 
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From Eq. (11.2.5), it is found that if X is the local minimizer, the following 
conditions must be satisfied, i.e. 

g(X*) = 0 ( 1l.2.8) 

and 

F(X + LlX) > F(X*) or F(X + LlX) ~ F(X*) . (11.2.9) 

In other words, the necessary and sufficient conditions for the optimum of 
the multi variable functions are 

{ g(X*) = 0 
LlXTGLlX) > 0 or LlXTGLlX~ 0 

(1l.2.1O) 

g(X*) = 0 means X* is a saddle point or a stationary point where 
F(X* + LlX) - F(X*) is sometimes positive, sometimes negative and sometimes 
zero, depending upon LlX. If LlXTG(X*)LlX > 0 exists, G(X*) is a positive 
definite matrix, X* is a strong minimizer. It means that the objective function 
may increase in any direction around the point X*. 

If LlXTG(X*)LlX ~ 0, G(X*) is a positive semi-definite matrix. X* is a min­
imizer but not strong. Thus the first equation of Eq. (11.2.10) is the necessary 
first order condition while the second is the second order sufficient condition. So 
the necessary and sufficient conditions for the existence of multivariable functions 
are g(X*) = 0, and G(X*) is positive definite or positive semi-definite. 

11.2.2 Geometrical interpretation of the minimizer 

For a two-variable function F = f(x, y), let F = CI , C2 .•. , then a set of plane 
curves are obtained as shown in Fig. 1l.2.3. These curves are called the contour 
lines of f(x, y). 

It can be seen from Fig. 1l.2.3, that in the vicinity of the minimizer the 
contour lines of the function are approximated to ellipses. The minimizer of the 
function is the centre of the ellipses. This can be illustrated as follows. 

By expanding f(x, y) by Taylor's series at the point of minimizer (where the 
first order derivative of f(x, y) is zero) and neglecting the third order terms, then 

f(x, y) ~f(x*, y*) + Hal dx - X*)2 

+ 2a12(x - x*)(y - y*) + a22Cv - y*f] (11.2.11) 
where 

(11.2.12) 

If alla22 > ai2, the contour lines represented by Eq. (11.2.11) are ellipses and 
the centre point is .x*, y*. The procedures in finding the minimizer of f(x, y) is to 
find the centre point of the set of ellipses. Consequently, to find the minimizer of 
a multi variable function is equivalent to finding the centre of the ellipsoid. 
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Fig. 11.2.3. Contour lines of the function of two variables 

11.2.3 Quadratic functions 

The quadratic function is the simplest form of non-linear functions with con­
tinuous second derivatives. As illustrated in Sect. 11.2.2. in the vicinity of the 
minimizer, the characteristics of any 2-D rum-linear function is approximated by 
a quadratic function. Hence the quadratic function has specific meaning for 
discussing the minimization of the non-linear functions. Any quadratic function 
can be expressed as 

F{X) = tXT AX + bT X + C 

(11.2.13) 

where A is a symmetric matrix of the order n x n, and n is the number of 
independent variables of F(X). Then 

VF(X) = g(X) = AX + b 

G{X) = Vg(X) = A 

(11.2.14) 

(11.2.15) 

From Eq. (11.2.14), ifg(X*) = 0, then the minimum point X* is obtained, i.e. 

X* = - A -lb. (11.2.16) 

Thus in the case of a quadratic function, the minimizer can be determined 
directly by A and b. 

Figure 11.2.4 shows the contour lines of function 6x2 - 5xy + 16y2 = 1. 
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Fig. 11.2.4. The contour lines of a quadratic function 

Example 11.2.1. Find the minimizer of the following function 

F(X) = 4xi - x~ - 40Xl - 12x2 + 136 = min 

Solution. Rewrite the function F(X) in a standard matrix form, i.e. 

F(X) = 4(Xl - 5)2 + (X2 - 6)2 

X1J[8 O]{Xl} _ {40}{Xl} + 136 ° 2 X2 12 Xz 

thus 

A=[~ ~] b = { -40} 
-12 

c = 136 

(11.2.17) 

solve equation AX + b = 0, the result X* = { 5} is obtained. Because A is 
positive definite, hence X* is the minimizer. 8 

This concept is used in creating a number of optimization methods to solve 
unconstrained optimization problems. 

11.2.4 Basic method for solving unconstrained non-linear 
optimization problems 

In consideration of Eq. 11.2.3, the non-linear unconstrained optimization prob­
lems are equivalent to the solution of a set of non-linear equations: 

VF(X*)=O (11.2.18) 

Solve the above equation, then determine whether X* is a minimum or a max­
imum by using the condition 

(11.2.19) 

The solution of Eq. (11.2.18) is a problem of function minimization. However, in 
practice it is difficult or even impossible to express Eq. (11.2.18) analytically. 
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Therefore, the method of solution of unconstrained non-linear optimization 
involves an iterative process to minimze the objective function approaching 
a minimum value. The method is composed of the following four steps: 

(1) Assign an initial point X{O)' 

(2) Determine the search direction Pi at the current point Xi' 
(3) Find a new point Xi+ 1 = Xi + APi, along the direction Pi to ensure 

F(Xi+ d :::; F(X;), where A is the optimum step in the direction Pi' 
(4) If II V F(Xi+ d II < S 

or IF(Xi+ d - F(X;) I < s 

or IIXi+l - Xiii < s 

then X i + 1 = X*, otherwise return to step (2). Until the convergent criterion in 
step (4) is satisfied. 

The conditions given in (4) are assumed as ideal conditions to obtain the 
final results. This process is not always workable. It is possible that if the 
following conditions occur, then the iteration for searching the minimizer could 
be stopped if 

(1) An acceptable estimate of the solution has been found. 
(2) The iteration is slow and no progress is observed. 
(3) The predetermined number of iterations does not lead to acceptable 

results. 
(4) An acceptable solution does not exist. 
(5) The result is oscillatory. 

Consequently, a good program for searching the minimizer is needed to deal 
with the various possibilities. 

11.2.5 Stability and convergence 

The algorithm is stable or exhibits global convergence if it converges to a minimum 
(or in some cases, it is a stationary point) no matter the value of the initial point and 
does not stop at an extraneous point. In non-linear optimization, stability is 
almost always associated with an iterative scheme which reduces the function 
value at each iteration until the minimum has been found to any prescribed 
degree of accuracy. An algorithm is said to exhibit local convergence if the 
starting point is sufficiently close to the minimum. 

The rate of the convergence is defined as: 

K = lim IIXk + 1 - X*II 0:::; K:::; 1 (11.2.20) 
k-oo IIXk - X*lIr 

or 

K = [Amax - AminJ2 = [~J2 
Amax + Amin Y + 1 

(11.2.21) 



358 II Methods of applied optimization 

Equation (11.2.20) measures the closeness of Xk+ 1 to X* compared to that of 
Xk to X*. Rapid convergence is associated with large values of r and small 
values of K. r is the rate of asymptotic convergence. The case r = 1 indicates that 
the sequence is linearly convergent. If r = 2, the sequence is said to have 
quadratic convergence. If r = 1, K must be less than 1 in order to obtain 
convergence. The fastest possible first order rate is that of K = O. This is the rate 
of superlinear convergence. Generally speaking, the value of r depends upon the 
algorithm while the value of K depends upon the function being minimized. 

In Eq. (11.2.21), the condition number y of the Hessian matrix is defined as: 

(11.2.22) 

where Amm Amin are maximum and minimum eigenvalues of the Hessian matrix 
at the minimum of the function. A function is ill-conditioned if y is sufficiently 
large. On the other hand, a function with a relatively small value of y is a well 
scaled function. For an ill-conditioned problem, the contours of the objective 
function are those with a high value of ellipticity. In a well scaled problem, the 
contour lines of objective function are closed to circles. It is more difficult to find 
the minimum if the problem is ill-conditioned than that of a well scaled problem. 

11.3 Linear search and single variable optimization 

Optimization methods for a single variable function are not only used to find the 
extremum value of the univariate function but more important in determining 
the extrema of multivariable functions. As mentioned in Sect. 11.2.4, to deter­
mine the optimum step A in each iteration is to search the minimum of the 
function F(A) along a specific direction Pk> e.g. 

F(A) = F(Xk + APd = min. (11.3.1) 

This is a single variable optimization problem with respect to A. Hence the 
accuracy of the linear search is extremely important in many optimization 
methods. It influences the speed of convergence of the methods. If the linear 
search is not accurate, the solution might diverge. 

11.3.1 Golden section method 

The golden section method is a simple and effective method for searching the 
minimum of an unimodal objective function in an interval [a, b]. The strategy of 
the method is to reduce the interval of the search by comparing the successive 
values of the objective function iteratively until the minimizer is approached. 

A single evaluation of the function F(x) within the interval [a, b] is not 
sufficient to reduce the interval by comparing the values F(a), F(b) and F(c) (c is 
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any point within [a, b]). The reason is that this process cannot distinguish 
whether x* is within the interval [a, c] or [c, b] as shown in Fig. 11.3.1. If the 
values of the objective function are calculated at two points c and d, when c < d 
and if F(c) < F(d), then a minimum certainly lies either within the interval [c, d] 
or [a, c], as shown in Fig. 11.3.1 (b) and (c). Thus the interval of uncertainty of 
the minimizer is reduced to [c, b] or [a, d]. When c < d and if F(c) > F(d), the 
interval of uncertainty is reduced to [a, d] or [c, b] as shown in Fig. 11.3.1 (a), 
(d). If F(c) = F(d), then the interval of uncertainty is [c, d]. Repeating these 
procedures, the initial range [a, b] is reduced continuously to Cab bk ] (ak and 
bk represent the interval in each iteration) until the optimizer x* is obtained. 

In the process of iteration, e.g. at the kth iteration, the position of the points 
Ck and dk within the interval Cab bk ] may be determined by several methods. For 
example, Ck and dk may be determined by the trisection of Cab bk ] or determined 
by multiplying a changeable coefficient, the Fibonacci number (Fibonacci 
method). If a constant such as the so-called optimum coefficient (0.618), is used to 
reduce the interval in each iteration then the method is called 'golden section 
search'. The number 0.618 is obtained by the following derivation. 

Let us assume 

Ck = bk - a( bk - ad 

dk = ak + a( bk - ad 

F(x) I 

a 

I 
I 
I 
I 
I I 
I I 
I I 
I I I 

-~ ___ j~ __ L_ x 
a c d b 

F(x) 

b 

F(x) F(x) 

I 
I 
I 
I 
I 
I 
I 

( 11.3.2) 

(11.3.3) 

L-..J ___ -'-_--L __ L-_ x 
a c b 

L-.---J~ __ ---'-_-:-___:_-_x x 
c d a 

Fig. 11.3.1a-d. The optimum process of an unimodal function 
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when k = 1, 

cl=b-a(b-a) 

d l = a + a(b - a) . 

If f(cl) <f(dd, the next interval is [a, a + a(b - a)], then 

C2 = hi - a(b l - ad = al + (l - a)(b l - ad 

= a + (1 - cc)[a(b - a)] 

d2 = al + a(b l - ad = a + cc2(b - a) . 

( 11.3.4) 

(11.3.5) 

(11.3.6) 

(11.3.7) 

Compare the above equations, if C2 = d l , then cc = O. This is a trivial case of no 
importance. If dz = Cl> yields 

a + cc2(b - a) = b - a(b - a) (11.3.8) 
then 

cc = -1 i j5 = 0.618033988. (l1.3.9) 

This a is the ratio of the lengths of the subsequent intervals. It is always positive. 
By using the factor of 0.618 during each iteration the interval is reduced by 
38.2% and only one function value is to be calculated in each step. The ratio of 
the lengths of the final interval to the first interval after n iterations is 
an-l(cc = 0.6\8). 

The computer program of the golden section method is given in 
reference [8]. 

11.3.2 Methods of polynomial interpolation 

In the method of polynomial interpolation, the minimum of an objective function 
in a given domain is replaced by the minimum of an equivalent polynomial in the 
same domain. This method may have better rates of convergence compared with 
the method of comparison the function value only. 

Powell's quadratic interpolation 

Assume that the objective function F(x) is approximated by a quadratic inter­
polation function of the form: 

¢(x) = ao + alx + a2x2. (\1.3.10) 

It is shown by the curved line of dashes in Fig. 11.3.2. The three coefficients 
ao, at> a2 are determined by 3 values of the original objective function F(x). 
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Fig. 11.3.2a-d. The minimum of F(x) approximated by quadratic interpolation 

Since the minimizer of Eq. (11.3.10) must satisfy the following equation 

* at .x =--
2a2 

(11.3.11) 

only the ratio at/a2 is of interest. Assume that the interval of interest of the 
optimized function is [a, b] and that c is an internal point. Let Fa, Fb , Fe indicate 
the function value at points a, b, c. Hence the minimizer of Eq. (11.3.11) is 
determined by: 

(11.3.12) 

After i* and F(i*) is calculated, according to the four cases shown in 
Fig. 11.3.2, the interval [ab bk] is reduced sequentially. If the criterion 

( 11.3.13) 
or 

( 11.3.14) 

is satisfied, then the approximate minimizer is obtained. 
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In the minimization of multi variable functions, the minimizer is searching in 
a specific directions, Pk in each step. In the direction Pk an optimum step Ak is 
determined by a linear search, i.e. 

(11.3.15) 

In this case, the three points are on the line of Xk + APk' The optimum of an 
univariate function is one step of the minimization of the multi variable function. 
Detailed procedures of this method are given in reference [2]. 

Davidson's cubic interpolation 

The cubic interpolation method uses the minimizer of a cubic function 

qJ(x) = ao + alx + a2x2 + a3x3 

to approximate the minimizer of the function. Two function values together with 
their directional derivatives within the range [a, b] are used to determine the 
four constants of a cubic interpolation. If the directional derivatives of F(x) can 
be evaluated, then the cubic interpolation method has higher accuracy than the 
method of quadratic interpolation. Detailed formulations are derived in 
reference [2]. 

11.4 Analytic methods of unconstrained optimization problems 

Methods for solving unconstrained minimization of an arbitrary multi variable 
function F(X) are divided into two kinds: the analytic methods and the direct 
methods. The analytic method is also called the gradient method, it is based on 
the derivatives of the objective function. Direct methods are based only on the 
value of the objective function itself, hence it is a function comparison method. 
These two kind of methods are described in Sects. 11.4 and 11.5. 

Analytical methods are dependent on the analytical properties of the objec­
tive function. At the starting point of the kth iteration, the variables are denoted 
as Xb the search direction Pk and the optimum step Ak are used to estimate the 
new point, i.e. 

(11.4.1) 

where the optimum step Ak is determined by the univariate minimization as 
discussed in Sect. 11.3, i.e. 

( 11.4.2) 

If Ak is determined by Eq. (11.4.2), the method is called an exact linear search. 
Opposite to the exact linear search, the simple method is to assume that Ak = 1. 



11.4 Analytic methods of unconstrained optimization problems 363 

A number of analytical optimization methods are dependent on the different 
choices of the search direction Pk. These are discussed as follows. 

11.4.1 Steepest descent method 

The direction opposite to that of the gradient of the objective function is an 
obvious choice as the steepest descent direction for minimizing the function, i.e. 

Pk = - V F(X) = - gk(X) . (11.4.3) 

The exact linear search is then taken to determine the optimum step Ako i.e. 

F( A) = F(Xk + AkPd = min 

then the following equation is obtained. 

dF T 
dA = [V F(Xk + AkPk)] Pk = 0 

I.e. 

(11.4.4) 

(11.4.5) 

( 11.4.6) 

Equation (11.4.5) indicates that the sequential directions Pk+ 1 and Pk of {he 
search are orthogonal to each other. 

The steps of the steepest descent method are as follows: 

(1) Assume Xo, t: 
(2) Calculate gko let Pk = - gk 
(3) Find the optimum step Ak along the direction Pk 
(4) Evaluate Xk+ 1 = Xk + AkPk 
(5) Calculate gk + 1, if ligk + 1 II < c then output the results otherwise k = k + 1 

and return back to step 2. 

The rate of convergence of the steepest descent method is slow when the 
search is close to the minimum. The zig-zag progress of the search direction for 
a typical quadratic function is shown in Fig. 11.4.1. If the contours are oblate 
ellipsoidal, in other words the Hessian matrix of the objective function is ill­
conditioned, the convergence is very slow in the vicinity of the minimizer. If the 
contours of the objective function are hyperspherical, the direction of steepest 
descent points directly to the minimum. The convergent rate is quadratic. 

Fig. 11.4.1. The convergelJt process of the steepest 
descent method 
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Consequently, the disadvanatage of the method of steepest descent is that 
the speed of the convergence depends significantly on the property of the 
objective function. For example, if F(X) = XI + 25xL let Xo = (2, 2f, after 4th 
iteration the minimum is obtained. If the variable X2 is changed by y = 5X2, then 
F(x, y) = x 2 + y2, the minimum is obtained in a single computation. Hence the 
method of steepest descent is not recommended directly as a very effective 
method. 

11.4.2 Conjugate gradient method 

The aim of this method is to obtain an effective process with quadratic conver­
gence and with the requirement of a lower order of derivatives of the objective 
function in the process of searching. The definition of conjugate direction, 
quadratic termination and the procedures of the conjugate gradient method are 
introduced in this section. 

11.4.2.1 Conjugate direction 

Let G be a symmetric positive definite matrix of the order n x n. 
Pk (k = 0, 1, ... ,n - 1) are non-zero vectors of the order n. If for any value of 
i the following condition is satisfied 

pTGpj=O (i#j,i,j=O,I, ... ,n-l). (11.4.7) 

Then Pi is said to be mutually conjugate with respect to a positive definite matrix G. 

11.4.2.2 Quadratic convergence 

If the design variables of the objective function are denoted by n and the minimizer 
is obtained during the nth iteration, i.e. 

( 11.4.8) 

then the method has the property of quadratic convergence. This result is obtained 
if a quadratic function with a positive definite Hessian matrix G and the conjugate 
directions Pi are chosen as the directions of search and the exact linear search is 
used for determining Ak' This characteristic is analysed as below. 

For a quadratic function 

F(X) = ! X T AX + bX + c 

the first order derivative of F(X) is 

g(X) = V F(X) = AX + b 

(11.4.9) 

(11.4.10) 
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then 
gk+l = AXk+l + b = A(Xk + AkPd + b = gk + AkApk . 

Substitution of Eq. (11.4.1l) into Eq. (11.4.5) leads to 

g[ Pk + AkP[ APk = 0 
or 

T 

Ak = _ ~kPk . 
Pk Apk 

Rewriting Eq. (11.4.11) in a sequential form yields 

365 

(11.4.11 ) 

(11.4.12) 

(11.4.13) 

gk =gk-l + Ak-1Apk-l =gk-2 + Ak-2 Apk-2 + Ak-1Apk-1. (11.4.14) 

Considering that 

.1gk = gk+ 1 - gk = A.1Xk = AkApk . (11.4.15) 

then 

k-l 

gk = gj+ 1 + L .1gi (11.4.16) 
i= j+ 1 

whereby multiplying pJ on both sides of Eq. (11.4.16), leads to 

k-l 

(pj)Tgk=(pjfgj+l+ L (pj)T.1gi j=O,I, ... ,k-l. (11.4.17) 
i=j+ 1 

Due to the first term of the RHS of Eq. (11.4.17) being zero and combining this 
equation with Eq. (11.4.15), the following result is obtained 

k-l k-l 

(pj)T gk = L (pjf A.1Xi = L Ak(pj)T Api 
i=j+ 1 i=j+ 1 

(j = 0, ... , k - I) . (11.4.18) 

If k = n, then 

(Pj}f gn = 0 (11.4.19) 

i.e. V F(Xn) = 0, thus Xn = X*. Therefore, the minimizer is obtained during the 
nth iteration. 

11.4.2.3 Selection of conjugate directions 

As demonstrated in the former section, if the conjugate directions were taken as 
the search directions of search, the solution is obtained during nth iterations. 
However the directions of conjugates were not specified. There are a number of 
possibilities to determine the direction Pk. Po can be chosen arbitrarily. The 
sequential direction Pk is any vector orthogonal to .1gj. The conjugate gradient 
methods are based on the choice of the conjugate gradient directions as Pk. It 
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starts by finding the direction of gradient, i.e. Po = - go. Then the continuously 
searching directions are determined by the following formulation 

(11.4.20) 

where 

(11.4.21) 

These formulations were developed by Fletcher and Reeves [9]. Thus it is called 
the F-R Algorithm. Only three vectors are used. In order to ensure the second 
order convergence and to avoid the round-off errors which could ruin the 
conjugacy of the search direction, one uses the exact linear search in each 
iteration, and the technique of restarting (after several iterations, the routine is 
restarted at Po) is used. 

The conjugate gradient method is not only used to find the minimum of 
functions. It is also used to find the solution of the large sparse matrix equation 
composed by linear and non-linear algebraic equations. For example, this 
method is used to solve the simultaneous equations derived from FDM and 
FEM as introduced in Section 4.3.2.2. The steps of this method are shown in 
Example 11.4.1. 

Example 11.4.1 

MinF(X) = ixi + lx~ - XIX2 - 2xI 

Solution. Rewrite the above equation as a matrix form shown in Eq. (11.4.9), i.e. 

A = [_~ '-: J b = [-2 OF. 

The derivative of the objective function is 

g(X) = VF(X) = [3xI - X2 - 2 X2 - Xl]T. 

Let 
Xo=[-24]T 

then 
VF(Xo) = [-12 6F 

Based on Eq. (11.4.13), 

Po = [12 -6F· 

. goPo 5 
A.o = ---=-

i{;Apo 17 
then 

[ 26 38 J 
XI = Xo + APO = 17 187 X - [£ 12J g( d - 17 17 . 

The direction PI is evaluated by Eq. (11.4.21) and Eq. (11.4.20), i.e., 

g[gl (fr)2 + (H)2 1 
/30 = g'{;go = ( -12)2 + (6)2 = 289 
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then 

[ 90 210JT 
PI = - gl + f3oPo = 289 289 

367 

Repeat the above computation to obtain Ie I, X2 , g2 and so on, the final result is 

X* = [1 lY. 
The computer program of this method is given in reference [7]. 

11.4.3 Quasi-Newton's methods 

The steepest descent method and the conjugate gradient method are based on 
the computation of the first derivative of the objective function. Quasi-Newton's 
methods are the alternative of Newton's method (the definition will be seen 
soon). The main difference between these kind of methods is that quasi Newton's 
methods are based on the modified second order derivatives of the objective 
function. Sometimes they are more economical, and converge faster. 

Recall that 

If 

then 

If Xk + I is the minimizer of the function, then gk + I = 0, hence 

Pk=-A-Igk • 

( 11.4.22) 

(11.4.23 ) 

( 11.4.24) 

This equation indicates that if the search direction Pk is determined by the ahove 
equation, then the minimizer is immediately obtained. This kind of methods are 
called Newton's methods. If A(X*) is positive definite, then the convergence of 
Newton's method is of second order. This is the fastest rate of convergence 
obtainable in non-linear optimization. Thus, this kind of method is very import­
ant. If the objective function is not a quadratic function, and if Pk is given by 
Eq. (11.4.24), then Xk + Pk will not be the minimizer directly consequently the 
process has to be executed iteratively. 

In general, it is very difficult to find the second order derivative matrix of the 
objective function even if it exists. The determination of the positive definite of 
the Hessian matrix is even more difficult. If Ak is singular, there are two 
possibilities: either there is no solution of Eq. (11.4.24) or there are an infinite 
number of solutions. In addition, if Xk is a saddle point and Ak is nonsingular 
then gk = 0. Equation (11.4.24) is satisfied only if Pk = 0. Thus it should not be 
used as a search vector. Consequently, Newton's method is not a practical 
method for function minimization. However based on the same idea of 
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Newton's method, a number of modified Newton's methods, Quasi-Newton's 
methods, were derived having the same asymptotic rate of convergence. 

11.4.3.1 Oavidon-Fletcher-Powell (OFP) method 

This method was first suggested by W.e. Davidon in 1959 [10]. It was com­
mented on by R. Fletcher and M.J.D. Powell in 1963 [11] and improved by 
Fletcher in 1970 [12]. The abbreviation of this method is DFP. It is an efficient 
method for solving the unconstrained minimization of non-linear functions. It 
combines the advantage of the method of steepest descent in which the descent of 
the function is rapid in the beginning of the search and the advantage of the 
Newton's method, in which convergence is quick in the vicinity of the minimum 
point. The main idea of the DFP method is to construct an approximate matrix 
Hk to substitute the second order derivative matrix of the objective function and to 
force Hn = A -1. Hence it is known as a variable matrix method. When the DFP 
method is used together with exact linear search to minimize a quadratic 
function having a positive definite Hessian matrix, the vectors Pk in Eq. (11.4.25) 
satisfy the conjugacy property, then the method has second order convergence. 

The procedure of this method is described as follows 

Pk = - Hkgk 

Xk + 1 = Xk + AkPk 

Ho = I. 

(11.4.25) 

(11.4.26) 

(11.4.27) 

Ho is an identity matrix of order n x n, n is the number of design variables of the 
objective function, Hk is constructed to approximate the inverse of the Hessian 
matrix of the objective function Ai; 1 and has to satisfy the following conditions: 

(1) In order to ensure that the algorithm is stable, the following criterion 
must be satisfied 

(11.4.28) 

It is proved [2] that, when VF(Xk ) oF 0, only if Hk is a positive definite matrix, 
then condition Eq. (11.4.28) is possible. 

(2) In order to obtain the quadratic termination, Pk should be conjugated to 
matrix A, i.e. p[ + 1 Apk = O. 

(3) To simplify the computation, a recurrence formula is used to update the 
Hessian matrix Hk + 1, i.e., 

HU1 = Hk + LlHk • 

Thus Hk+ 1 is 

(lk(l[ Hk)lk)l[Hk 
Hu 1 = Hk + Ck + Ok = Hk + -T - - TH 

(lk )lk )lk k)lk 

(11.4.29) 

(11.4.30) 
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where 

I'k = gk+ I - gk 

I'k = Xk + I - Xk = AkPk . 
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(11.4.31) 

( 11.4.32) 

The matrix Hk + I defined by Eq. (11.4.30) is positive definite and symmetric only 
ifHo is positive definite and symmetric. Consequently Hn = A-I, X* = Xn . This 
expresses that the DFP method has second order convergence. The procedures 
of DFP method illustrated by the following example. 

Example 11.4.2 

Min F(X) = !XI + tx~ - XIX2 - 2XI 

Solution. 

Let 

Ho = [~ ~J Xo = [1 2F, 

then 
go = V F(Xo) = [ - 1 l]T. 

According to Eq. (11.4.25), 

Po = - Hogo = - [ -1 l]T 

Then 

F(Xo + AoPo) = 3A6 - 2Ao -t. 

( 11.4.33) 

(11.4.34) 

(11.4.35) 

The optimum value of Ao is obtained by exact linear search, i.e. 
min F(Xo + AoPo) the result is AO = 1/3. Substitution of Ao into Eq. (11.4.32) 
yields 

then 
(10 = AOPO = HI -IF 

Xl = Xo + (10 = [4/3 5/3F 

gl = [1/3 1/3F 

F(Xd = -5/8. 

Using Eqs. (11.4.31), one obtains 

1'0 = gl - go = [4/3 - 2/3]T 

and then 

T 1 [ 1 
(10(10 = 9' -1 

[ 4/3 ] 
- 1] _ 2/3 = 2/3 . 



370 II Methods of applied optimization 

Then the modified matrices Co, Do are obtained 

Co=0"00"6=~[ 1 -IIJ 
0"61'0 6 -1 

O _ Ho 1'0 1'6H o 
0-- T 

1'0 Ho 1'0 

Substitution of H o, Co, Do into Eq. (11.4.30) leads to 

1[11 7J HI = Ho + Co + Do = 30 7 29 

Repeating the same procedures as above, the following vectors are obtained: 

PI = - Higi = - t [1 2Y 

[ 4/3 -..1./5 J 
X2 = XI + AIPI = 5/3 -2..1./5 

3 1 5 
F ( A d = 50 A - 5 A - 6 

MinF(Ad, Al = 5/3 

0"1 = AIPI = -1[1 2Y 
X 2 = XI + 0"1 = [1 l]T 

g2 = [0 OY 
where g2 satisfies the condition to terminate the calculation. Thus X2 = [1 1Y 
is the minimizer. It is easy to verify that H2 = A -I by using Eq. (11.4.34) to 
calculate the second order derivative of the objective function and the same 
procedures to caculate H 2 • 

This method has been used to calculate the optimum locations of simulated 
charges in Example 7.6.1. The computer program of DFP algorithm is given in 
reference [7]. 

11.4.3.2 BFGS formulation 

Sometimes the numerical stability of the DFP method is dependent on the 
round-off error. Brodgen, Fletcher, Goldfarb and Shanno independently pub­
lished an improved iterative method 

{3 T H T TH 
H - H kO"kO"k - kl'kO"k - O"k)'k k 

k+l- k+ T 
O"k I'k 

(11.4.36) 
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where 

Pk = 1 + Y[~kYk . 
O'k Yk 

(11.4.37) 

If Eq. (11.4.36) is used in the iteration, then the method used is the BFGS 
formulation. 

11.4.3.3 B matrix formulae 

It was shown that Hk is the approximate of the inverse of matrix A. If an another 
matrix Bk is taken to approximate the matrix A itself, a complementary or dual 
formulation is obtained. Interchange the matrices as follows 

Bk +-+ Hk 

Then Eq. (11.4.30) to Eq. (11.4.32) transform to 

B - B + YkY[ BkO'kO'[Bk 
k+l - k Y[O'k - O'[BkO'k 

BkPk = - gk 

Xk+1 = Xk + AkPk 

This set of equations represent the B matrix formulation. 

11.4.3.4 Cholesky factorization of the Hessian matrix 

( 11.4.38) 

( 11.4.39) 

( 11.4.40) 

In view of the points discussed above, during the iteration, matrices Bk and 
Hk remain positive definite. However in practice, the round-off error may cause 
matrix Bk or Hk to be singular. One possible way to solve this problem is to 
restart Hk or Bk as an identity matrix frequently. The drawback of this method is 
that some useful information is lost at each start. Gill and Murray [3] suggest 
decomposing the matrix Bk into Cholesky factors and thereby avoiding the 
singularity and loss of information at each iteration. Let 

(11.4.41) 

Dk is a diagonal matrix and Lk is a lower triangular matrix with diagonal 
elements of unity. The effect of round-off errors (which causes the updating 
process to produce a numerically singular matrix) can be detected immediately 
by monitoring the elements of Dk+ I' Whenever any diagonal element ofDk+ 1 is 
less than a small positive quantity 0, then the element is replaced by 0 and the rest 
of the factorization process is modified accordingly. This procedure guarantees 
that Bk + 1 is numerically positive definite. 
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This method has been used to optimize the electrostatic shield of a 2250 k V 
testing transformer [13]. The computer program is given in reference [14]. 

11.4.4 Method of non-linear least squares 

The conjugate gradient methods and quasi-Newton methods are efficient for all 
sufficiently smooth objective functions. If the objective function has the form 

m 

F(X) = L n(X) = IIJ(X)1I 2 =JT(X)J(X). (11.4.42) 
i= I 

the gradient and Hessian matrix of the objective function have special structures 
as below 

g(X) = V F(X) = 2JT(X)J(X) (11.4.43) 

G(X) = Vg(X) = 2JT(X)J(X) + 2Q(X) (11.4.44) 

where 

aJI aJI aJI 
aXI aX2 aXn 

J(X) = (11.4.45) 

aJm aJm aJm 
aXI aX2 aXn 

m 

Q(X) = L };(X)Ki(X) (11.4.46) 
i= I 

Ki(X) = V2/;(X) (11.4.47) 

J(X) is a Jacobian matrix of the order m x n. Since F(X) is being minimized in 
the least square sense, the components V2/; are small and G(X) may be 
approximated by 

G(X) ~ 2JTJ . (11.4.48) 

11.4.4.1 Gauss-Newton method 

Gauss noted that if /;(X) are all linear functions of X and F(X) is quadratic then 
the Jacobian matrix is a constant. He suggested approximating the gradient at 
a point X + LlX as follows 

V F(X + LlX) ~ 2J(X)J(X + LlX) . (11.4.49) 
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The approximate form of f(X + LlX) is obtained from the linear terms of 
Taylor's expansion 

f(X + LlX) ~f(X) + JT(X)LlX . (11.4.50) 

Combination of Eqs. (11.4.49) and (11.4.50) gives an estimation of the gradient of 
F(X) at X + LlX 

V F(X + LlX) ~ 2J[f(X) + JT(X)(LlX)] 

= 2[J(X)f(X) + J(X)JT(X)LlX] . (11.4.51) 

Since the rn rows of J have been assumed to be linearly independent, the matrix 
JJT is nonsingular and the inverse matrix [JJTr 1 exists. Then the solution of 
V F(X + LlX) is 

LlX = - (JJT)-l Jf(X) (11.4.52) 

Comparison of Eq. (11.4.52) with Eq. (11.4.1) shows that in the method of least 
squares 

and 
A = 1 

Recall that in Newton's method GkPk = - gb thus 

(J[ J k + Q)p = - J[Jk(X) 

( 11.4.53) 

(11.4.54) 

( 11.4.55) 

Hence the speed of convergence of the non-linear least square method is the 
same as quasi-Newton's method and requires only the first order derivative of 
the objective function. The computer storage required is much less than that 
using DFP method. 

If II f(X) II tends to zero as X approaches the minimizer, the matrix Q also 
tends to zero. Consequently the least square method is applicable when the first 
order term JT J of Eq. (11.4.55) dominates compared to the second order term 
Q(X). This does not hold when the residuals of the solution are very large. In 
such a case, one might as well use a general unconstraint method. 

11.4.4.2 Levenberg-Marquardt method 

The L-M method is an alternative to the Gauss-Newton method, it includes 
a technique to deal with problems related to the singularity of matrix J[ J k • In 
this method, Eq. (11.4.55) is modified to: 

(11.4.56) 

where 11k ~ 0 is a scalar and I is the unit matrix of order n. For a sufficiently large 
value of I1b the matrix J[ Jk + I1kI is positive definite and then Pk is the direction 
of descent. As X -+ X*, and 11k -+ 0 the method yields asymptotic convergence in 
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Fig. 11.4.2. The flow-chart of L-M method 

the same way as Gauss-Newton's method. The flow-chart of the L-M method is 
given in Fig. 11.4.2. 

The computer program of the least square method is given in reference [7]. 
In reference [15] the least square algorithm is used to find the positions of the 
equivalent currents in an exterior eddy current problem. 

11.5 Function comparison methods 

If the objective function of a physical problem cannot be described analytically 
or the objective function is discontinuous or if the gradient of the objective 
function, g(X), is discontinuous, then the analytical method introduced in 
Sect. 11.4 fails. Since the function comparison methods only use the value of the 
objective function in the process of search, they seem to be the simplest. The price 
paid is reduced speed and reliability. The method is very sensitive for the 
accumulation of round off errors. Another disadvantage of function comparison 
methods is that the convergence cannot be guaranteed. Hence many authors 
recommend this method only if there is no other suitable alternative method 
available. 

11.5.1 Polytope method 

The name 'polytope method' is used to solve unconstrained non-linear optim­
ization problems instead of the 'simplex method' which is defined as linear 
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programming (all of the objective functions and the constrained functions are 
linear functions). The name 'simplex' or 'polytope' contains the geometrical 
meaning. A 2-D function in space R2 describes a plane and the simplest form of 
the polytope in a plane is a triangle. A 3-D function in space R3 describes 
a tetrahedron. Thus a 2-D or 3-D function can be approximated by the function 
values at the 3 nodes of the triangle or the function values at the 4 nodes of the 
tetrahedron, respectively. For n-D problem, the function can be approximated 
by the values of the n + 1 vertices of a polytope in n-dimensional space, e.g. the 
function values are Fn + 1 ;?: Fn;?: ... F2 ;?: FI at points Xn + l , Xn, ... , XI' In 
the optimization process, compare the given function values on the vertices and 
replace the 'worse' point (the definition of the worse point is the point where the 
value of the function is the highest) by taking a new point. This new point generates 
a new polytope. Repeat these procedures until the minimum point is approached. 
Detailed formulation and the computer program can be found in reference 
[2, 6]. 

This method was used in reference [16] to determine the desired contour of 
an electrode of a gas circuit breaker. 

11.5.2 Powell's method of quadratic convergence 

Powell's method is a direct search method. It consists of constructing a set of 
conjugate directions without the explicit use of the gradient vector. The initial 
directions Po, k( k = 1, ... , n) of the search are parallel to the axes of the coordin­
ates. The two subscripts 0 and k of P denote the iterative times and the sequent 
number of the variables, respectively. Along each direction of search an univari­
ate minimum is required. Here, Powell's method of quadratic interpolation is 
recommended. 

The steps of this methd are 

(1) In the kth iteration, let XkO = Xb search Xkr(r = 1, ... , n) in 
direction Pkr' 

(2) Calculate.d = max {F(Xk.r- l ) - F(Xkr )} = F(Xk.q- l ) - F(Xk.q), q is the 
value of r which maximizes .d. 

(3) Define F I = FkO(X), F 2 = Fkn(X), evaluate F 3 = F(2Xkn - XkO)· 
(4) If either F3;?: FI or (FI - 2F2 + F3)(FI - F2 - .d)2;?: :!.d(FI - F3)2 is 

satisfied, the old direction hi is used for the (k + 1)th iteration and let 
Xk+ I = Xkn . In any other case go to step 5. 

(5) In the (k + l)th iteration, the search directions are: 

Pk. b ... Pk,q' Pk,q+ b ... Pk,n, 15k 

where 15k = Xk,n - Xk. 
If step 2 yields q = 1, then the search directions are Pk,2,' .. h,n,15k. 

Example 11.5.1 

Minimize F(X) = XI - XIX2 + 3x~ 
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Solution. 

(1) Let Xo = [1 2Y, then PO,I = el = [1 O]T, PO,2 = e2 = [0 IY 

In PO,l> XOI = Xo + APO, 1 Min F(A), yields XOI = [1 2Y 

In PO,2, X02 = Xo + APO, 2 Min F(A), yields X02 = [1 1/6Y 

(2) Calculate A = max {F(Xo) - F(Xod, F(Xod - F(X02 )} = max(11 -
11, 11 - lI/12} = 121/12, hence q = 2. 

(3) Calculate F I ,F2,F3: FI=F(Xo)=Il, F2 =F(Xo2 )=11/12, F3= 
F(2X02 - Xl) = 11 

(4) As F3 = Fl> hencepI,1 =PO,I,Pl.2 =PO,2 

The next iteration starts with Xl = [1 1/6] 
Then 

XII = [1/12 1/6], Xl2 = [1/12 1/72] 

A = max {F(Xd - F(Xll)' F(Xll ) - F(XI2 )} = 121/144, 

hence q = 1 

FI = F(Xd = 11/12, 

F 3 = F(2Xl2 - Xd = 275/432 

Note here, F) < FI and (FI - 2F2 + F))(FI - F2 - A)2 < tA(FI - F3)2, 
then the next search starts with Xl = [1/12 I/72Y in the direction Pl.I' 15 1 

15 1 = X l2 - Xl = [ -11/12 -11/72] 

then obtain 

X* = [0 OY. 
If the problem has n variables, the individual direction of coordinates are 

chosen as the search direction in the sequence, i.e., 

ek = [0 0 0 ... 0 lk 0 0 .. 0] . 

The computer program of this method is given in reference [17]. 

11.6 Constrained optimization methods 

For physical problems, there are restrictions on the acceptable range of the 
variables. These conditions are the constraints of the problem. If the constraints 
of the variables are simple, the method of variable transformation may be used 
as the first approach [1]. For example 
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Minimize f(x) 

subject to x < c 

or a::;; x ::;; b 

The constraints are written as 

x=c-y 
or 

x = a + (b - a)sin2 y . 
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(11.6.1) 

In this approach, y is chosen as a new variable. This technique has been used in 
Chap. 7 to find the optimum positions of the simulated charges. In this section, 
general methods for solving constrained optimization problems are introduced. 

In general, the methods for solving constrained optimization problems are 
two kinds. The first type approaches the constrained conditions directly e.g. the 
method using feasible direction or the method of gradient-projection and so on 
see reference [17]. The second type converts the constrained optimization 
problem into a sequence of unconstrained optimization problems. The second 
kind of method are more often used as seen in references [18, 19]. 

11.6.1 Basic concepts of constrained optimization 

The problem of constrained optimization is more complicated than the problem 
of unconstrained optimization. In the case of constrained optimization, the 
independent variables Xi are restricted in a specified region of interest which is 
the feasible region. A point X is called feasible if it satisfies the conditions of 
constraint. The equality constraints define a series of hypersurfaces in the 
n-dimensional space. The feasible region S is the intersection of all of these 
hypersurfaces. For instance, 

lMinimize F(XI,X2,X3) 

Subject to hdxI,X2,X3)=0 

h2(XI,X2,X3)=0 

( 11.6.2) 

The feasible region of this problem is a curve which is the intersection of the two 
hypersurfaces hI = 0, and h2 = O. A point X satisfying h(X) = 0 is called a regu­
lar point if the gradients Vh are linearly independent. For inequality constraints, 
the feasible region lies on one particular side of each hypersurface, for example 

{

Minimize F(x) = XI 

Subject to gdx) = (1 - xi) - X2 ~ 0 
(11.6.3) 

g2(X) = XI;?: 0 

g3(X) = X2 ;?: 0 

The feasible region is the shaded area as shown in Fig. 11.6.1. 
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X 1 Fig. 11.6.1. Feasible region of Eq. (11.6.3) 

Fig. 11.6.2. Feasible direction of a constrained 
optimization 

An inequality constraint g(X) :::; 0 is called active at a feasible point X* if 
gi(X) = 0 and it is called passive if gi(X) < O. 

In the process to search the minimum of a function subject to some con­
straints, the movement of variables in the directions that yield feasible points are 
called feasible directions. See Fig. 11.6.2. 

11.6.2 Kuhn-Tucker conditions 

For unconstrained minimization, the necessary condition (Eq. (11.2.8) indicates 
that at the minimizer X*, there is no direction of descent. In constrained 
optimization, the complication of a feasible region has to be considered. Hence, 
a local minization must be a feasible point and with no feasible descent 
directions at X*. 

In 1951, Kuhn and Tucker published some results giving the optimal 
solution of non-linear constrained optimization [4]. These are necessary condi­
tions for a local optimum and in certain special cases, they are also necessary 
and sufficient conditions for a global optimum. The conditions are discussed in 
the following subsections. 

11.6.2.1 Lagrange multiplier method 

The basic idea to approach the constrained optimization problem was proposed 
by Lagrange in 1760 [4]. It is to convert the constrained problem 

{
Minimize F(X) 

(11.6.4) 
Subject to hi(X) = 0 
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into an unconstrained problem 

m 

Minimize L(X, A) = F(X) + I A;h;(X) . ( 11.6.5) 
j~ 1 

The new objective function L(X, ),) is called Lagrangian. It has n + m unknows, 
n is the number of independent variables of F (X) and m is the number of 
Lagrangian coefficients. 

The necessary condition of Eq. (11.6.5) to have a minimum is 

{ 
oL 
:~ ~ 0 j ~ 1, ... , " 

- = 0 i = 1, ... , m . 
0..1.; 

( 11.6.6) 

The conditions oLio),; = 0 guarantee that the constraints are satisfied at the 
optimal solution. Thus the optimal value of the Lagrangian functions is equal to 
the optimum of the original problem, i.e., 

L(X*, ..1.*) = F(X*). (11.6.7) 

The conditions of Eq. (11.6.6) are not sufficient for a constrained minimizer 
to exist. Sufficient conditions involve second or higher order derivatives of the 
objective function as indicated in the method of unconstrained optimization. 

11.6.2.2 Necessary condition of the first order 

For constrained optimization problems 

lMinimize F(X) 

Subject to h;(X) = 0 ~: 1, ... , I 
gj(X) ~ 0 } - 1, ... , m 

the necessary conditions of the first order are 

( 11.6.8) 

(11.6.9) 

(11.6.10) 

where hi, gj are functions having continuous derivatives and Vh;(X*) and 
Vgj (X*) are linearly independent and ..1.0 and /1-j' A; are Lagrange multipliers also 
known as Kuhn-Tucker multipliers. They are real numbers. For equality 
constraint, A; is unrestricted in sign; for inequality constraints gj ~ 0, /1-j ~ 0 and 
gj ~ 0, /1-j ~ o. The following example is given to illustrate the use of Lagrange 
multipliers and the necessary conditions of the first order. 
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1.5 

1.0 

O~----~~----------~~----XI 
1.0 2.0 3.0 

Fig. 11.6.3. The solution of Example 11.6.1 

Example 11.6.1 

Subject to {

Minimize F(X) = (Xl - 2)2 + (X2 - 1)2 

Xl + 2X2 ::::;; 3 
Xl - X2 = I 
Xl> X2 ~ 0 

Solution. The Lagrangian mUltiplier of the above problem is 

L(X, l) = (Xl - 2f + (X2 - 1)2 + l(XI - X2 - 1) + Il(XI + 2X2 - 3). 

The first order derivatives of L(X, l) regarding X, l, Il are 

iJL 
- = 2(xl - 2) + l + Il = 0 
(hi 

iJL 
- = 2(X2 - I) - l + 2/l = 0 
aX2 

iJL 
al = Xl - X2 - I = 0 

aL all = (Xl + 2X2 - 3) = 0 . 

After solving these equations, one obtains X* = [5/3 2/3Y. The figure is shown 
in Fig. 11.6.3. 

11.6.2.3 Necessary and sufficient conditions of the second order 

F or unconstrained optimization, the positive definite of the Hessian matrix of 
the objective function has important implications in designing a satisfactory 
algorithm as it does for constrained optimization. If X is a local minimizer and is 
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the regular point of constraint, then A.i J1.j, exist such that 
I m 

L(X*) = V2 F(X*) + L A.i V2 hi(X*) + L J1. j V 2gj (X*) . (11.6.11) 
i= 1 j=l 

Thus the necessary and sufficient conditions of the second order are that 
Eq. (11.6.11) holds, and 

yT L(X*)y ::::: 0 . ( 11.6.12) 

It means that L(X*) is positive definite on the tangent subspace of the active 
constraints 

A*T. y = O. (11.6.13) 

A * denotes the matrix with columns of ai> 

(11.6.14) 

where Ci includes equality and inequality constraints, the Lagrangian function 
must have non-negative curvature for all feasible directions at X*. When no 
constraints are present, Eq. (11.6.12) reduces to the condition that the Hessian 
matrix is positive definite. 

yT L(X*)y > 0 . (11.6.15) 

Proof of the necessary and sufficient conditions of the first and the second 
order are given in reference [5]. 

11.6.3 Penalty and barrier function methods 

These methods are used for problems with equality or inequality constrained 
optimiation. Consider an equality constrained optimization problem: 

{ Minimize F(X) 
Subject to hi(X) = 0 i = 1, ... , m 

(11.6.16) 

A modified objective Junction M(X) is used to replace the original problem 

M(X) = F(X) + P(X) ( 11.6.17) 

where 
m 

P(X) = L Kihf(X) . (11.6.18) 
i=l 

In Eq. (11.6.17), M(X) is a generalized objective function and P(X) is a penalty 
function. Ki are penalty factors, usually these are large values. When Ki = 0, the 
constraints are ignored, when Ki = 00 the constraints are exactly satisfied. It can 
be seen from Eqs. (11.6.17) and (11.6.18), only if hi(X) = 0, the unconstrained 
minimum of M(X) is the minimum of F(X). Now change the values of Ki until 
the minimum of M(X) is obtained. 
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Geometrically, a penalty function replaces a constraint by a steep-step as 
shown in Fig. 11.6.4 (minimizing problem). It shows that the function value may 
be evaluated in the non-feasible regions. In each step the 'penalty' for violating 
a constraint is a high value of the modified objective function. 

Example 11.6.2 

{ Minimize F(X) = xi + x~ 
Subject to h(X) = XI + X2 - 1 = 0 

Solution. The modified objective function is 

M(X) = xi + x~ + K(xi + X2 - If 
which according to V M(X) = 0, yields 

XI + K(xi + X2 - 1) = 0 

X 2 + K (X I + X 2 - 1) = 0 

then 
K 

x* = x* = when K -+ 00, 
I - 2 2K + 1 

The above method is the external penalty method. During the search, each 
extremum solution lies outside the feasible region. The sequence of the extrema 
converge to the desired solution, as the penalty factor is increased. 

For the problem with inequality constraints 

{
Minimize F(X) 

Subject to gj::; 0 

The generalized objective function is 
m 

M(X) = F(X) + K L gJ(X) u(gj(X)) 
j= I 

I P2(X) P1(X) 

/ ~ //1 

non -feasible / ~ 
region / I 

I I 
/ I 

/ / 
/ / 

- / / / ,_...... / -- _/ 

(11.6.19) 

( 11.6.20) 

Fig. 11.6.4. Physical meaning of the 
penalty function method 
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where 

(11.6.21) 

A similar sequence, in which the search is always in the feasible region is called 
the interior penalty function method or the barrier function method. A barrier 
function has to be added to the objective function, to construct a generalized 
objective function. This function insures that the search is always in the feasible 
region i.e. 

( 11.6.22) 

( 11.6.23) 

KJ3j (X) is called a barrier term K j is the jth barrier factor. K j > 0 is mono­
tonously decreased during the search in succession. When X lies on the bound­
ary of the feasible region, at least one of the constrained functions gj(X) --+ 0, 
then the barrier term tends to 00. In each subsequent search, the extrema lies 
within the feasible region, the boundary is an obstacle that is not crossed. The 
barrier function method is only suitable for inequality constraints. 

The steps of the barrier function method are summarized as: 

(l) Denne an initial point in the feasible region, and the penalty factor 
K 1 (for instance K 1 = 10). 

(2) Solve the unconstrained minimization Xj of M(X, Kj ). 
(3) If the barrier term is less than a small value c; (for instance c; = 10 - 6) Xj is 

the minimum of F(X), otherwise let K j + 1 =cK j (for instance c=0.1-0.02). Then 
return to step 2. 

If there are equality and inequality conditions, then the generalized objective 
function is: 

where 

M(X) = F(X) + Kja(X) 

m 

a(X) = L h;(X) + L gJ(X) u(Yj(X» 
j= 1 

{
OX E D (D represents the feasible region) 

a(X) = 1 
X¢D. 

Example 11.6.3 

{
Minimize F(X) = x-I 

Subject to 0 ~ x ~ 1 

(l1.6.24) 

( 11.6.25) 

( 11.6.26) 
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Solution. 

Solve 

K K 
M(X) = (x - 1) + - + --

x 1 - x 

aM K K 
-=1--+ =0 
ax x2 (l-x)2 

which yields 

when 

x 2 (1 _ X)2 
K=----

1 - 2x 

K -.0, x* = 0 or x* = 1. 

In order to judge these two possible solutions, the behaviour of K in the 
vicinity of these two solutions must be examined. 

Let 

x = e ~ 1, 

if 

x = I - e, e ~ 1, 

By definition, K must be a positive number, thus x* = 0 is the minimizer. 

11.6.4 Sequential unconstrained minimization technique 

In real physical problems, the objective function is cumbersome. Therefore it is 
impossible to obtain the analytical solution as shown in Example 11.6.3. For 
a large value of K, the Hessian matrix of M(X) is ill-conditioned. Consequently, 
the value of the penalty factor has to be increased step by step. The minimum of 
the original function is to be found by a series of unconstrained optima of the 
function Mk(X): 

m W. 
MdX) = F(X) + Kk i~l gi(~ k = 1, ... , L (11.6.27) 

where Kk ;::: 0 for all k and Wi > 0 for all i. Wi are weighting factors that remain 
fixed throughout the calculation, while Kk are parameters that decrease from 
one iteration to the next. The solution in each step will be the initial value of the 
next step. Thus the constrained optimization is transformed to solve a sequence 
of unconstrained optimization problems. This method is called a sequential 
unconstrained minization technique (SUMT). It is a highly developed form of 



11.7 Summary 385 

the penalty function method in which function values are needed only at feasible 
points. 

Reference [19J gives a good example, in which uses the penalty function to 
deal with the equality constraint conditions and the barrier function to ap­
proach the inequality constraint conditions. The author used this method to 
design a permanent magnet synchronous machine. 

11.7 Summary 

In this chapter, most of the commonly used unconstrained optImIzation 
methods have been introduced. They are classified as analytical methods and 
direct methods. Both methods use iteration procedures to force the objective 
function to approach zero. In using the method of steepest descent and/or 
method of conjugate gradient, the search directions (Pk) are determined by the 
first derivative of the objective function. In other methods like DFP or BFGS 
and method of least squares, the direction of search is based on the second order 
derivative of the objective function. Thus the rate of convergence is high. In the 
D FP method, in order to a void the calculation of the second order derivative of 
the objective function, it is replaced by an artificially constructed H matrix as 
shown in Eq. (11.4.30). The H matrix uses only the first order derivative of the 
objective function. This method is useful to solve problems with a large number 
of variables. Reference [12J give an example having 100 variables. Reference 
[13J uses this method to find the minimum of the objective function having 172 
independent variables. The disadvantage of the DFP or BFGS method is that 
they require larger computer storage than the conjugate gradient method. In the 
method of least squares, the second order derivative of the objective function is 
approximated by G(X) ~ 2JJT• where J is the matrix of the first order derivative 
of the objective function. Hence, only the first order derivative of the objective 
function is calculated. For the conjugate gradient method, the least squares 
method or the BFGS method are preferred. 

Finally, it should be mentioned that in using analytical methods, in the case 
where the analytical expression of the objective function does not exist or the 
derivative of the objective function is difficult to derive, the derivative of the 
objective function is replaced by the difference of the objective function. 

The greatest advantage of the direct method is that only the function value is 
calculated during the search process. The disadvantage of the direct method is 
that the number of the independent variables are limited. The variables in using 
the polytope method is less than 10. 

A linear search is usually incorporated to prevent divergence of the iteration. 
The quadratic and cubic interpolation methods and the golden section method 
are general methods in determining the optimum step during each iteration of 
the optimization of multi variable functions. 
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Finally, constrained optimization problems are usually solved by sequential 
unconstrained minimization techniques. 
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Chapter 12 

Optimizing Electromagnetic Devices 

12.1 Introduction 

The problem of optimum design has been studied for a long time. One of the 
earliest example was to find a 2-D shape which occupied the maximum area 
with its circumference as a given constant. Before the 1950's classical mathemat­
ical methods such as the differential and variational methods were used to solve 
these problems. With digital computers and using numerical methods, the 
methods of optimal design developed rapidly. 

The optimal shape design is to determine the dimensions of a device for 
a specific purpose and at the same time satisfying the limitation set by physical 
constraints. This is an inverse or a synthetic problem. Synthesis is always more 
complicated than the analysis. In general, the subject includes at least two 
aspects: numerical solution of partial differential equations and the optimization 
method. The optimal shape design of structural and mechanical devices are 
discussed in references [1-3]. With electromagnetic problems, the analysis 
methods offield probloems are well understood and the design of the devices has 
a long history but most of them are familiar with the treatment using the 
principle of equivalent circuit theory. Now it is possible to deal with design 
problems based on field analysis to obtain more accurate results. The inverse 
problem or the optimum design is important for the 

(1) Design of devices to obtain desired field distribution and obtain a 
maximum economic efficiency. 

(2) Determination of the source distribution to satisfy a required field 
distribution. 

(3) To find discontinuities in materials. The method based on electro­
magnetic field analysis is the basis of non-destructive testing see reference [4]. 

(4) Determination of material constants. This is important both in electrical 
engineering and in biomedical science. For example, the aim of impedance 
tomography is to map the distribution of electrical conductivity within a body 
by applying a voltage to the body surface and measuring the injected current or 
vice versa. 
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These problems are more complicated than straight field analysis. Here two 
difficult problems <ire combined. one is the analysis of the field distribution, the 
other one is the determination of the design variables in such a way that the 
desired objectives are fulfilled. An optimm design is generally the result of 
a combination of mathematical results, empirical data and the experience of 
scientists and engineers. In this chapter two different kinds of the optimization 
methods are introduced. One is the combination of the numerical solution and 
the mathematical optimization procedures. The other is based on numerical 
solution using some physical principles. Detailed process is a combination of the 
solution method of a field analysis and the mathematical optimum. Hence in 
this chapter only the general methods of the optimal design are introduced, 
more information is given in references. 

12.2 General concepts of optimum design 

The process of optimal design is demonstrated in Fig. 12.2.1. The mathematical 
model includes both the differential and the integral equations which describe 
the boundary value problems and the objective function which describes the 
design puposes. The optimization procedure may be anyone of the mathemat­
ical optimization methods or the method based on the physical principles. These 
methods are uscd to adjust the design variables to satisfy predetermined goals. 

12.2.1 Objective functions 

The objective function may have the following forms 

F(X) = Const. 

F(X) = max (min) 

F(X) = IXFdx) + PF2(X) = min (max) 

Fdx) . 
F(X) = F 2(X) = max(mm) 

Mathematical model 
(governing equarlon,objective function) 

Does the value of objective function 

Fig. 12.2.1. Diagram of the optimum design 

Yes 

(12.2.1) 

( 12.2.2) 

(12.2.3) 

(12.2.4) 
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where X is a column matrix that represents the design variables. For instance, 
the distribution of the field strength along the surface of an electrode is required 
to be uniform and to have a predetermined value. The objective function is now 
expressed by Eq. (12.2.1). If the maximum field strength along the surface of an 
electrode is limited to a minimum value, Eq. (12.2.2) is the proper objective 
function. In designing a transformer, usually the combined price of copper and 
magnetic steel has to be minimal while the power losses must not exceed the 
desired value. Here the objective function will have the form ofEq. (12.2.3) where 
F d X) is the function which relates the price of the material and the design 
variables, F 2 (X) is the function that relates the power losses and the design 
variables; Ct., f3 are weighting coefficients of the two functions F 1 (X) and F 2 (X). 
In designing electric machines, the maximum flux density in the air gap and the 
cost of magnetic materials must be minimized thus the proper function is given 
by Eq. (12.2.4). 

Another problem is that the same results may be obtained by using different 
objective functions. For example, to obtain uniform distribution of field strength 
along the surface of an electrode, the objective function may be: 

F(X) = Em• x - Emin = min (12.2.5) 
or 

F(X) = Ema. - Eav = min ( 12.2.6) 
or 

(12.2.7) 

where E.v is the average value of E along the contour of the electrode. The choice 
of the objective function determines the process of mathematical optimization. 
For example, if Eq. (12.2.7) is chosen as the objective function then the non­
linear least square method is suitable to be chosen as the method of optimiza­
tion. Thus the choice of the objective function is an important decision as it 
influences the efficiency even the success of the optimum design. 

In most practical cases, the design variables are limited to have values within 
a given range. In this case, the problem is a constrained optimization problem 
I.e. 

{
Minimize F(X) 

Subject to gl (X) = 0 
g2(X) ~ 0 

( 12.2.8) 

where gdx), g2(X) are constraints to be met by the design variables X. 
The target of the objective function must consider the practical possibilities 

and usually needs to be adjusted during the process of optimization, as the 
initial target may be too limited or unreasonable. 

12.2.2 Mathematical expressions of the boundary value problem 

The solution method of a field problem depends on the equation which de­
scribes the physical problem. Either one of the domain methods may be used to 
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solve differential equations which describe the problem, or the boundary 
methods are used to solve the corresponding integral equations which describe 
the problems. During the process of optimal design, the design variables are 
modified, e.g. dimensions, contours and boundaries. As the boundaries may 
change during the process, the boundary methods are more convenient than the 
domain methods used to analyze field distributions. Here the boundary element 
discretization is refined during each iteration. The drawback of domain methods 
is that it requires continuous use to refine the whole mesh during the search for 
an optimum design. Hence integral equation methods are preferred compared to 
the differential equation method in the process of optimization. 

12.2.3 Optimization methods 

Optimization methods are used to adjust the design variables automatically and 
to force the objective function to approach its desired value. There are two 
different methods to adjust the design variables. One depends on the mathemat­
ical programming which is discussed in Chap. 11. The choice of mathematical 
optimization methods depends on the number of the variables, the characteristic 
of the objective function and on the type of the computer available. The other 
method may be specially designed to suit the physical characteristics of the 
problem. For example the strength of the electric field is proportional to the 
curvature of the surface of the electrode. Therefore a uniform distribution of the 
field is obtained by adjusting the curvature of the electrode. Two of these types 
of methods will be introduced in discussing the contour optimization of the 
electrode. 

During the process of optimization, all the design variables of the problem 
are considered together or the variables may be grouped and considered one by 
one. It is even possible to consider the change of variables one by one. It looks 
tedious but this simple strategy may save time and yield the best results. 

The flow-chart of the optimization procedures is shown in Fig. 12.2.2. 

Assume initial parameters 

F(X)<e? 

No 
Modify the design variables 

Fig. 12.2.2. The flow-chart of the optimization 
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12.2.4 Categories of optimization 

The optimization problems of electromagnetics may be divided into two catego­
ries: domain optimization and contour optimization. The domain optimization 
finds a predetermined field distribution in a specific region. The design variables 
may be the source distribution or the shape of the devices. In the design of 
magnets, electron optics, mass spectrography or Tokomak devices, a specific 
field distribution within a region is usually be necessary. On the other hand, 
contour optimization determines the shape of the contour in such a way that the 
field distribution along the contour can satisfy specific requirements. In most 
high voltage devices, the field strength along the surface of the electrode or along 
the interface of dielectrics are parameters to meet the given conditions. In the 
next two subsections, both contour and domain optimization are discussed. 

12.3 Contour optimization 

In many electromagnetic devices, the field distribution must be homogeneous. 
One of the earliest paper discussing the problem of achieving an homogeneous 
field analysis for a capacitor was published in 1923 by W. Rogowski [5]. In this 
paper, the field calculation used conformal maps. 

Advances in numerical methods for field analysis resulted in a number of 
methods to investigate the optimum design of the electrodes (see references 
[6-9]). The methods available are summarized in the following table. 

Table 12.3.1. The methods for the contour optimization 

Field calculation methods 

Domain method 

FEM [10] 

Boundary methods 

CSM [7,11-13] 

SSM [14-17] 

Optimization methods 

Curvature adjustment [6, II] 

Optimization by charge 
redistribution [7, 12, 13] 

Non-linear programming [9] 
Other physical methods [17] 

12.3.1 Method of curvature adjustment 

It is well known that the charge distribution along the surface of the electrode is 
dependent on the curvature of the contour. Figure 12.3.1 shows two general 
equipotential lines and two lines of the field strength. P 1 and P 2 are two points 
close to each other on equipotential lines. E1 and E2 are the field strengths at P 1 
and P 2 . Hence 

( 12.3.1) 
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<PI 

Fig. 12.3.1. A curvilinear rectangle composed 
of E. cp lines 

12 Optimizing electromagnetic devices 

Fig. 12.3.2. A curvilinear rectangle composed 
of two circular E lines 

where II and Iz are distances between two equipotential lines qJ 1 and qJz, 

respectively. Through the simple manipulation of Eq. (12.3.1), one obtains 

( 12.3.2) 

Multiplying 1/2Lln by the denominator of both sides of the last equation yields 

( 12.3.3) 

where Lln is an incremental length perpendicular to the E line, i.e. Lln = PIPZ ' If 
LIn is sufficiently small, the field strength E can be approximated by 

E = hEI + Ez). ( 12.3.4) 

Then the LHS of Eq. (12.3.3) becomes: 

E2 - E\ I LlE 

ELln E Lln 
( 12.3.5) 

Assume that P \ P 2 and P J P 4 as shown in Fig. 12.3.2, are two small sections of 
a circle. 

Let 
(12.3.6) 

due to 

(12.3.7) 
then 

,11 1 1 
-= =-=c 
LlS 1(rl + r2) r m 

( 12.3.8) 

where r m is the geometric mean radius of a plane curve. By definition, C repres­
ents the mean curvature of a plane curve. A combination of Eq. (12.3.3), (12.3.5) 
and (12.3.8) shows that the relationship between the field strength and the 
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curvature of the contour of an electrode is 

1 c£ 
--.:;-=C. 
£ on 

393 

(12.3.9) 

Equation (12.3.9) is the one used to modify the curvature so as to achieve any 
desired change of the field strength. The deviation of the field strength ,1£ from 
the desired value is calculated by the differentiating Eq. (12.3.9) 

1 o£ 
,1C ~ 2" -;-,1£. £ un 

Applications of this method are given in references [6] and [11]. 

(12.3.10) 

In a 3-D case, the curvature of a curved surface is defined as in reference [18] 

1 1 
C=-+­

Rl Rz 

where I/Rl> I/Rz are two main curvatures orthogonal to each other. 

12.3.2 Method of charge redistribution 

(12.3.11) 

This method is an old one, having been already suggested in 1979 in reference 
[7]. It was further developed in references [12] and [13]. The method was based 
on the advantages of the charge simulation method. When the simulated charge 
is determined, the equi-potential lines are calculated and one of these lines is 
then the first approximation to the desired contour of the electrode. Next, the 
simulated charges are altered to obtain a new contour. Repeating this procedure 
several times yields the desired contour of the electrode. 

Figure 12.3.3(a) shows a pair of axisymmetric electrodes, the figure of the top 
of the electrode is to be optimized. In order to simplify the calculation, the 
contour of the electrode is subdivided into two parts: a fixed part AB and a part 
BC which is to be optimized. 

Charges 1, 2 and 3 simulated the part AB of the contour, these simulated 
charges are denoted as Qj. The position of these charges are fixed while the 
contour BC is changing. Charges 4, 5 and 6 corresponding to the part BC of the 
contour are the charges to be optimized and are denoted as Qj. These are 
adjusted to fit the optimization of the electrode contour. The equation ofCSM is 

m n 

L PijQj + L PijQj = ({Ji (12.3.12) 
j=l j=m+l 

where m is the number of the simulated charges and n - m is the number of the 
charges to be optimized. ({Ji are the known potentials on the part AB of the 
electrode. In Eq. (12.3.12), both the positions and amplitudes of charges Qj are 
known. The unknown chargwes Qj are determined by Eq. (12.3.12) at the 
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Fig. 12.3.3a, b. Method of charge redistribution 
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EQi 
/ 

n 

assumed position of Qj. The field strength on the optimized part is calculated by 

[J,J {Q} = {Er } 

[h]{Q}={EJ 

{Q} = {Qt ... Qm ... Qn} (12.3.13) 

where E" E= are the components of E while [J,J and [/=J are components of the 
coefficient matrices of field strength. The change of magnitude of the field 
strength is dependent on the change of the charge {Q + Q}, i.e., 

[fJ L1 {Q + Q} = {L1 E } (12.3.14) 

where {L1 E} is the difference between the desired value {Eo} and the calculated 
value {E}, i.e., 

{L1E} = {E} - {Eo}. ( 12.3.15) 

Equation (12.3.14) illustrates that the increment {L1E} is proportional to the 
increment of L1 {Q + Q}. The relative coefficient matrix [fJ can be obtained by 
using different methods as shown in references [7, 12, 13J, respectively. Refer­
ence [7J considers that the optimized charge Qj is the main factor to influence 
the field strength along the contour Be, hence 

[JJ {L1 Q} = {L1 E} (12.3.16) 

where 

lj = (fr:J + lz~yl2 COSeti (12.3.17) 

and et i is an angle shown in Fig. 12.3.3(b). [f] is the coefficient offield strength 
corresponding to Q. Reference [12J derives a corrective coefficient matrix [CJ, 
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r.put the initial contour of the electrod 
& the desired field distribution E.=f(x) 

iE,-E I<E? 

No 

Calculate the corrective coefficient 
matrix by different methods 

Yes 

Fig. 12.3.4. The flow-chart of charge redistribution method 
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it modifies the _values of the optimization charges {Q} while the position of 
the charges {Q} is fixed. Reference [13] changes both the position and 
the magnitudes of {Q} The flow-chart of this method is shown in Fig. 12.3.4. 

12.3.3 Contour optimization by using non-linear programming 

This method uses mathematical optimization to find the extremum point of the 
objective function directly. 

The method of surface charge simulation states 

P{o-} = {cp} (12.3.! 8) 

th~t the field strength on the electrode surface or on the interface of the 
dielectrics is directly proportional to the surface charge {a}. The objective 
function is chosen as 

m 

F(X) = L (Ei - EiO)2 = min (12.3.19) 
i; 1 

where Ei are the calculated values and EiO are the desired values along the 
contour of the electrode. The total number of the discretization points on the 
contour is rn. In order to reduce the number of design variables, assume that any 
surface to be optimized is moved only in a normal direction to the contour. Any 
method of nonlinear optimization to minimize the quadratic function introduc­
ed in Chap. 11 may be used to solve Eq. (12.3.19). The derivative of the objective 
function is obtained and used whenever possible in analytical form. Whether 
this is possible depends on the form of the approximating function of the charge 
distribution {a}. If no analytical function exists, the derivative of the objective 
function is replaced by the differences of the objective function. Reference [9] 
compares different methods of optimization such as the method of steepest 
descent, quasi-Newton's methods and the conjugate gradient method to solve 
practical problems. 
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12.4 Problems of domain optimization 

The field distribution that has to satisfy a specific requirement within a region is 
defined as a domain optimization. For example the design of the magnets may 
requires 

(a) a constant air gap flux density 
(b) uniform air gap field 
(c) prescribed field distribution in the air gap 
(d) prescribed field distribution in a specific region 

These problems are regarded as the domain optimization. The predeter­
mined targets are met with suitable dimensions of the magnet and/or by using 
a suitable exciting coil. In the past, these problems were treated by circuit 
analysis. Recently, optimum design of magnets is obtained by field analysis 
[19, 20]. Several methods are shown in the following sub-sections. 

12.4.1 Field synthesis by using Fredholm's integral equation 

A predetermined distribution of the magnetic field strength along the axis of 
a solenoid [21] or in a plane perpendicular to the axis of the solenoid [22] or in 
a volume within the solenoid [23] are commonly required. All these problems 
arc solvable by using Fredholm's integral equation of the first kind. 

Assume that the solenoid is composed of a number of similar sections shown 
in Fig. 12.4.1(a). Each of these sections may have different current densities. The 
vector potential of a filamentary circular loop with radius r' (Fig. 12.4.I(b» is 

A = A(r, z)no (12.4.1) 
where 

J1.0I(r)1/2 
A(r, z) = 2;? f(k) ( 12.4.2) 

r r 

P(r,z) 

r' 

b 
I 

I 
a I 

Z __ -+----------~ Z 0 

, 

a b 

Fig. 12.4.la, b. A solenoid composed of segments 
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(r, z) is the location of the observation point and I is the current in the loop. In 
Eq. (12.4.2), 

f(k) = G -k )K(k) - ~E(k) (12.4.3) 

where 

k 2 = 4rr' 
(r + r')2 + (z - Z')2 

( 12.4.4) 

K(k), E(k) are complete elliptic integrals of the first and second kind. Take the 
curl of vector potential A to obtain the magnetic field strength H 

1 
H=-VxA. 

J.l.o 

The component of the magnetic field strength along z direction is 

Hz(r, z) = _1_ aa [rA(r, z)] = 21 g(r, r' z, z') 
J.l.or r n 

where 

, ') 1 
y(r, r z, z = [(r + r')2 + (z _ z,)2r/2 

[ 
r,2 - r2 + (z - Z')2 ] 

x K(k) + ( , 2 ( ')2 E(k) . r-r) +z-z 

(12.4.5) 

(12.4.6) 

(12.4.7) 

Assuming that the current density is uniform in each small section of length 
h and width d, hence the field strength is 

J. b z'+h/2 
H(r, z) = -2 Iff y(r, r', z, z')dr' dz' , (12.4.8) 

n a z'-h/2 

Consider the symmetry of the solenoid, the magnetic field strength produced by 
whole solenoid is 

1 N b z'+h/2 
H(r, z) = 2n i~l J i ! Z.Jh/2 [y(r, r', z, z') + g(r, r', z, - z')Jdr' dz' 

(12.4.9) 

where N is half of the total number of sections. If r = 0, the integrand of 
Eq. (12.4.9) is 

g(r, r', Z, z') = r'2[r'2 + (z - Z')2J-3/2 . 

The discretized form of Eq. (12.4.9) is 

1 N 
H(rj, Zj) = -2 L aijJ i . 

n i =l 

(12.4.10) 

(12.4.11) 

This is a set of algebraic equations. It can be written in a general form 

AX=B (12.4.12) 
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The X is the unknown current density {J} in each section of the solenoid, B is 
the desired field distribution. The elements of matrix A are 

b ='+h/2 

au = f f [g(r, r', z, z') + g(r, r' z, - z')]dr' dz' . (12.4.13) 
a ='-h/2 

The solution of Eq. (12.4,12) yields the current distribution. Unfortunately, the 
solution of Eq. (12.4.12) is unstable due to the fact that Fredholm's integral 
equation of the first kind (Eq. (12.4,8)) is ill-conditionedt . A small error in the 
data yields great errors in the results. To overcome this problem, one method is 
to transform Eq. (12.4.12) as 

AX + ctIX = B (12.4,14) 

In Eq. (12.4.14) I is a unit matrix, ct is a regularization parameter. ct is hard to 
estimate. Initially it can be assumed as an arbitrary constant until the final 
results satisfy Eq. (12.4.12). References [21,23] describe the method of this 
solution, The influence of the value of ex on the results is also given in these 
papers. 

12.4.2 Domain optimization by using non-linear programming 

In designing various magnetic devices, the design variables may be the contour 
of the iron yoke, the profile of the coil [19] or the dimensions of the winding 
[24, 25]. All these are shown in Fig. 12.4.2, The method using non-linear 
programming for domain optimization is explained as follows. 

Pole face 

I ---~ \c--pClS-.,y-)----' 

, l Q(x"y.) +_ I 

a 

Fig. 12.4.2a, b. Different objects to be optimized 

Z 

o \ 
) 

IX1";::2txl 

[Xl I lXJ 

[Xl I [Xl 
b 

Coil 

r 

t A matrix A whose inverse A - I contains very large elements comparison with those of matrix A is 
a set of ill-posed equations. 
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Assume that the contour of the iron boundary shown in Fig. 12.4.2(a) which 
is to be modified in order to find the magnetic field over a prescribed region (e.g. 
the region enclosed by the line of dashes) approaches a predetermined distribu­
tion. The points P(Xj, Yj) on the pole face are varied, the points Q(Xj, yd within 
the space are fixed. Then the flux density within the space can be expressed by: 

Bj = f(xj, Yj; Xj' Yj) i = I, ... ,n j = I, ... , m . ( 12.4.15) 

Assume now that the required value of the flux density inside the region 
enclosed by the line of dashes is Bo. Then the objective function F(X) is: 

where 

m 

F(X) = L (LlBj / Bo)2 = min 
j~ 1 

( 12.4.16) 

( 12.4.17) 

The variables Xj and Yj are obtained by minimizing the function F(X). 
No matter whether the objective function can be expressed analytically or 

not, non-linear programming can adjust the design variables automatically so as 
to force the objective function to tend to a minimum. Reference [25] introduces 
different mathematical programming to obtain a uniform field distribution 
within a sphere centred at the origin of the coordinates shown in Fig. 12.4.2(b) 
where the dimensions of the six coils are design variables. 

One example of the constraint optimization design is given in reference [26]. 
The object is to obtain the maximum flux density in the air gap of a permanent 
magnet machine shown in Fig. 12.4.3. 

Here the objective function is defined as: 

Max F(X) = B<l(X) 
V(X) 

Fig. 12.4.3. The optimum design of permanent magnet machine 

(12.4.18) 
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where V(X) is volume of the rotor of the permanent magnet machine. The 
design variables X(IXi, rd are the sizes and the geometry of the magnet pole. 
These variables rj, IXi (i = 1,2,3) have to satisfy the following constraints, e.g. 

and ( 12.4.19) 

Using the barrier function method, the constrained optimization problem is 
transformed to a sequence of unconstrained optimization problems, i.e. the 
equivalent objective function is 

{ Bd(X) 6 1 [( x· ) ( x· )]} maxF(X) = max -(X) - .L - . ~ . + ~ (12.4.20) 
V ,; 1 p X ,U X, X, X,I 

where p is the penalty parameter and the subscripts u and I indicate the 
upper and the lower bound of the design variables. Any of the unconstrained 
optimization methods which were introduced in Chap. 11 can be used to 
solve Eq. (12.4.20). Results using different optimization methods are given in 
reference [26]. 

12.5 Summary 

The optimum design of electromagnetic devices is achieved by combining field 
analysis and mathematical optimization. The general idea of optimum design 
has been introduced in this chapter. The methods of solution are problem 
dependent and the results are not unique. Except in a few well defined problem it 
is unlikely that the first automatically-optimized solution would be entirely 
satisfactory. The user's intervention in redefining the requirements and con­
straints is needed during the process of optimum design. 
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