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Introduction to the Electric Energy Systems
and Engineering Series

Concerns for continued supply and efficient use of energy have recently be-
come important forces shaping our lives. Because of the influence which
energy issues have on the economy, international relations, national security,
and individual well-being, it is necessary that there exists a reliable, available
and accurate source of information on energy in the broadest sense. Since a
major form of energy is electrical, this new book series titled Electric Energy
Systems and Engineering has been launched to provide such an information
base in this important area.

The series coverage will include the following areas and their interaction
and coordination: generation, transmission, distribution, conversion, storage,
utilization, economics.

Although the series is to include introductory and background volumes,
special emphasis will be placed on: new technologies, new adaptions of old
technologies, materials and components, measurement techniques, control —
including the application of microprocessors in control systems, analysis and
planning methodologies, simulation, relationship to, and interaction with,
other disciplines.

The aim of this series is to provide a comprehensive source of information
for the developer, planner, or user of electrical energy. It will also serve as a
visible and accessible forum for the publication of selected research results and
monographs of timely interest. The series is expected to contain introductory
level material of a tutorial nature, as well as advanced texts and references for
graduate students, engineers and scientists.

The editors hope that this series will fill a gap and find interested readers.

John G. Kassakian - Dietrich H. Naunin



Preface

Numerical methods for solving boundary value problems have developed
rapidly. Knowledge of these methods is important both for engineers and
scientists. There are many books published that deal with various approximate
methods such as the finite element method, the boundary element method and
so on. However, there is no textbook that includes all of these methods. This
book is intended to fill this gap. The book is designed to be suitable for
graduate students in engineering science, for senior undergraduate students as
well as for scientists and engineers who are interested in electromagnetic fields.

Objective

Numerical calculation is the combination of mathematical methods and field
theory. A great number of mathematical concepts, principles and techniques
are discussed and many computational techniques are considered in dealing
with practical problems. The purpose of this book is to provide students with
a solid background in numerical analysis of the field problems. The book
emphasizes the basic theories and universal principles of different numerical
methods and describes why and how different methods work. Readers will
then understand any methods which have not been introduced and will be able
to develop their own new methods.

Organization

Many of the most important numerical methods are covered in this book. All
of these are discussed and compared with each other so that the reader has a
clear picture of their particular advantage, disadvantage and the relation
between each of them. The book is divided into four parts and twelve chapters.

The first part deals with the universal concepts of numerical analysis for
electromagnetic field problems in Chapter 1 and 2. This is a review and exten-
sion of electromagnetic field theory, followed by a general outline of approxi-
mate methods. Green’s theorem, Green’s function, fundamental solutions and
equivalent surface sources are the basic tools reviewed in this section. The
concepts of discretization, error minimization of the approximation and the
basic principles of numerical methods are introduced before any specific
method is discussed.
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The following two parts discuss specific methods. Part two is concerned
with domain methods. It includes finite difference and finite element method.
Chapter 3 explains the finite difference method. The finite element method is
discussed in three chapters, designed step by step. Chapter 4 introduces the
general idea and procedures of the finite element method. Here the matrix
equation of the finite element method is derived by using the principle of
Galerkin’s weighted residuals. Chapter 5 descibes additional properties and
applications of the finite element method. The discretization equation is
derived using the variational principle. The equivalent functionals of different
types of field problems are derived. The important techniques of domain
discretizations are dealt with in Chapter 6, because they are used in both the
finite element method and in other approximate methods.

Part three outlines boundary methods, as is the solution of integral equa-
tions. Four methods are described in the following four chapters. Chapter 7
considers the charge simulation method, being one of the simplest based on
integral equations. The integral equation for problems containing several ma-
terials is in Chapter 8. The specific problem of integration around singularities
of integral equations is introduced in this chapter. The boundary element
method is given in Chapter 9. The charge simulation, surface charge simula-
tion and the boundary element methods are special cases of the moment
method, as is shown in the last chapter.

The last part of the book discusses the optimization of electromagnetic field
problems. Optimum design is often the purpose of field analysis. Chapter 11
describes the mathematical tools used in optimization design. It introduces
general methods to search for the extremum value of a given objective func-
tion. This chapter also demonstrates the solution methods for the solution of
algebraic equations derived in parts two and three. The last chapter is the
application of the combination of all these methods introduced in the text for
purposes of optimized design.

Further applications, wider discussion and new techniques are listed in the
references.

Summaries
Each chapter includes a brief summary of its content. Important statements
are in italic.

Appendix

Some related mathematical formulations, approximate algorithms for calcu-
lating special functions, are given in the appendix belonging to each chapter.

Xi’an, March 1993 Zhou Pei-bai
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Part One

Universal Concepts for the Numerical Analysis
of Electromagnetic Field Problems

Many of the basic concepts that are used when undertaking numerical analysis
of electromagnetic field problems are reviewed in this section. The first chapter
provides the theoretical basis for numerical analysis of electromagnetic field
problems. The second chapter provides a general outline of the various numer-
ical methods introduced in this book.



Chapter 1

Fundamental Concepts of Electromagnetic
Field Theory

The solution of many practical electromagnetic field problems can only be
undertaken by applying numerical methods. Before such a solution can be
undertaken, it is important that a correct mathematical model be established for
the problem considered. Maxwell’s equations and the associated boundary
conditions provide the necessary basis for the modelling of practical electromag-
netic problems which are reviewed in this chapter. Further, as Green’s theorem,
fundamental solutions, and equivalent sources are the basic tools used in some
numerical techniques, they are also presented here.

1.1 Maxwell’s equations and boundary value problems

In free space, Maxwell’s equations and the constitutive equations are:

VxH=%?—+J (1.1.1)
VxE=—%? (1.12)
V-B=0 (1.1.3)
V-D=p (1.1.4)
B = uoH (1.1.5)
D =¢E. (1.1.6)

In the presence of conducting materials. the principle of charge conservation
is expressed by the relation:

dp
V-2 =0. (1.1.7)

The current density J and the electric field E are related by Ohm’s law:
J=yE. (1.1.8)
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Finally, if the problem involves conducting bodies moving through magnetic
ficlds, the total electric field must include a component E, that is due to the
velocity effects:

E,=vxB. (1.1.9)

In these equations, H, E are vectors of magnetic and electric field strength,
B, D are the vectors of magnetic and electric flux density, J is the conduction
current density and p is the electric charge density. Finally, ¢, uo are the
permittivity and permeability of the free space while y is the electrical conductiv-
ity of the material.

In dielectric and magnetic materials, the polarization vector P and the
magnetization vector M are defined as folows:

P—D-—¢FE (1.1.10)
M-_L1B_H. (L1.11)
Ho
Maxwell’s equations can then be written as:
0B
VXE=—— 1.1.12
X o ( )
JE OP
VxB = potom + fio| J + = + VxM (1.1.13)
ot ot
V-B=0 (1.1.14)
1
V.-E=—(p-V-P). (1.1.15)
€o

In Eq. (1.1.13) it will be noted that the dielectric and magnetic materials give rise
to an equivalent current density of the form 0P/dt +V x M. Similarly, in
Eq. (1.1.15), the dielectric material gives rise to an equivalent volume charge
density of the form —V-P.

1.1.1 Potential equations in different frequency ranges [1]

Rapidly varying time-dependent fields

When the time variation of fields is rapid, the electric field and magnetic field are
coupled to each other. The field distributions are dependent on both time and
position, E(r, t), B(r, t). The time varying magnetic field induces the rotational
electric field and the time varying electric field produces the rotational magnetic
field. All the field quantities are fully dynamic.

In lossless media and source-free regions it is a simple matter to show that
E and H satisfy a wave equation. In the case of E, for example, by taking the curl
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of Eq. (1.1.2) and then substituting Eq. (1.1.1) for H, it follows that:
N2

C
’E — =0 1.1.16
v HeoT ( )

which is a wave equation for E. Similarly, it can be shown that H satisfies the
identical equation:

2

0°H
VZH—;wEZ—=O. (1.1.17)

When solving Maxwell’s equation it is often convenient to introduce the scalar
and vector potential functions ¢ and A as indicated below:

=——- 1.1.18
E=—=-Vo (1118)

B=VxA. (1.1.19)

It can then be shown that if the problem involves sources p and J the potentials
satisfy inhomogeneous wave equations:

2

Vip Ko = —ple (1.1.20)
J0’A
VA — e = —ud . (1.1.21)

In deriving Egs. (1.1.20) and (1.1.21) Lorentz’s gauge has been assumed:

Jp
A= — 1.1.22
\ pe—s ( )

In the case of lossy media, the wave equation is obtained by using the
gauge of:

5
VA= —yaa—(f—,uy(p (1.1.23)

The resulting equations have the form:

52 2

quo—usgg a—‘f —pe (1.1.24)
A A

VA —ue— Pl —ud. (1.1.25)

The above equations are used for computing waves radiating from antennas,
waves scattered by material bodies, and waves propagating in wave-guides or
other electronic devices.
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Steady-state fields

When the time variation in a problem is relatively slow, the steady-state
approximation may be used. The criterion for ‘slow’ as opposed to rapid
variation is:

y > we, (1.1.26)

where o is the frequency of sinusoid.

This criterion means that the conducting currents dominate the problem and the
displacement currents can be neglected. Hence the rotational magnetic field
induced by the electric field no longer exists. There is no relation between the
position changing and the time varying field. Hence there is no wave
transmission.

Usually, in steady-state field problems, the quantities E(r, t), H(r, 1), J(r, 1),
and p(r, t) are time harmonic functions. The field distribution therefore depends
only on the position and phase delay at each point in space. In this case
Maxwell’s equations are reduced to:

VxH=1J (1.1.27)

VxE = —jwB (1.1.28)

V-B=0 (1.1.29)

V-D=0. (1.1.30)
When p, 7 are constants, E and H obey a parabolic diffusion equation:

V?H = jouyH

V2E = jouyE . (1.1.31)

For such problems it is convenient to employ a magnetic vector potential
A or an electric vector potential T [2]. The definition of A and T follows directly
from the Maxwell’s equations of V-B=0and V-J = 0:

B=VxA

(1.1.32)
J=VxT.

Because of Ampere’s law the relationship between the magnetic field strength
H and the electric vector potential T is given by:

H=T-VQ (1.1.33)

where Q is a scalar magnetic potential. Equation (1.1.33) is derived from
Egs. (1.1.27), (1.1.32) and V x VQ = 0. Similarity between the two vector poten-
tials A and T is illustrated in Fig. 1.1.1.

Differential equations for the two vector potentials can be obtained by
substituting Egs. (1.1.18), (1.1.19) and (1.1.33) into Maxwell’s equations. After
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:

b z

Fig. 1.1.1a, b. The similarity between the vector potentials A and T

a simple manipulation the following two equations are obtained:

1
Vx(—VxA) +joyA + Ve = J; (1.1.34)
u

V x (%V X T) +jouT — jouvVR =0 (1.1.35)

where J, is an imposed current density.

The most important application of a steady-state approximation is in determin-
ing the eddy current distribution in conducting regions and in iron cores. Depend-
ing on the material constants, the approximation may be valid up to the X-ray
frequency range.

Static and quasi-static fields

In static fields quantities p, J, E, H are time independent, i.e. 3/dt = 0 and the field
distributions are functions of positions only. If the frequency is sufficiently low, the
rotational electric field induced by the magnetic field of the displacement current
is infinitely small. The field distribution of this case is then in fact a static
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distribution, it is called ‘quasi-static’ field. The criterion of quasi-static is L < A.
Where 1 is the wave length, L is the dimension of the field region.
In the case of static and quasi-static fields Maxwell’s equations reduce to the
following form:
dp

VxE =0, V-D =p, V-J=—E (1.1.36)

VxH =1, V-B=0, V-J=0 (1.1.37)

Based on VxE =0, V-B = 0, both the scalar electric and magnetic potentials
@, ¢, and the vector magnetic potential A are introduced in following forms:

E=—-Vo (1.1.38)
B=VxA
H = —Ve,, (in a current free region) . (1.1.39)

Based on Egs. (1.1.36), (1.1.37) and (1.1.39), Poisson’s and Laplace’s equations
are derived:

Vip = —ple (1.1.40)
VA= —ud (1.141)
Vg, = 0. (1.1.42)

Usually, in static and quasi-static cases, Coulomb’s gauge is satisfied as

V-A=0. (1.1.43)

1.1.2 Boundary conditions of the interface

At the interface of different materials the integral form of Maxwell’s equations is
reduced to:

n-(B, —B;)=0 (1.1.44)

n- (D, —D;)=0¢ (1.1.45)

nx(E, —E;)=0 (1.1.46)

n)((l—[1 —H,)=K (1147)
d

n-(J; —J;) = —E(;, (1.1.48)

where n is the unit normal vector to the interface as shown in Fig. 1.1.2.
E,,D;,B,,H,,J, and E,, D,, B,, H,, J, are field vectors on both sides of the
interface, respectively. K and o are densities of surface current and charges.
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n

(e}
4+ * K
K€Yy

Fig. 1.1.2. Interface boundary conditions of E

H2.82.Ys and B

If the scalar electric potential is chosen as variable, the interfacial boundary
conditions are:

P = @3
{ (1.1.49)

d é
o1 _, Go2_

& on on

For a translational symmetric magnetic field the interface boundary condi-
tions are:
A, = A,
L o4, 1 o4, (1.1.50)

By On B H2 on
If the magnetic field problems of 3-D cases are considered, the vector
magnetic potential A is composed of three components, e.g.

A=An+ At+ Ags (1.1.51)

where A,, A,, A, are three components of A. t and s are two unit vectors
orthogonal to the normal direction n. Under Coulomb’s gauge, the normal
component A, satisfies:

A=Az, . (1.1.52)

Continuity of the tangential components of the magnetic field strength H is
expressed by the equation:

nx(—l—VxAl>=nx<iVxAz>. (1.1.53)
Hy U2

The above equation can be decomposed into two equations [3]:

04, M 04, Hi CA,
(’a‘?)r@(% VT (1139

aAs _lul aAs Hi 8An
(22) ~t5(2) - (1) 22 1159

Equations (1.1.54) and (1.1.55) show that the boundary conditions for a 3-D
magnetic field are more complicated than for a scalar field. Thus the appropriate
choice of the mathematical model, the unknown variables, and the gauge
conditions is significant for the solution of 3-D magnetic field problems.
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Methods for solving 3-D magnetic field problems are of great interest to

scientists and engineers.

1.1.3 Boundary value problems

The task of determining a solution of a differential equation which is subject to
certain boundary conditions is called a boundary value problem. Usually bound-
ary conditions can be generalized into three kinds, viz.:

Dirichlet condition ¢|, = f(I') (1.1.56)
Neumann condition g—f =f(I') (1.1.57)
;
d
Robin condition i) a—(:: + (M) =f3(IN). (1.1.58)

The governing equations corresponding to the above three boundary conditions
are called Dirichlet, Neumann and Robin, respectively. In these equations, f(I"),
Si([), f2(T), f3(I') are the known functions. Usually the Dirichlet boundary
condition is called the essential boundary condition or the boundary condition
of the first kind. Similarly the Neumann condition is designated the boundary
condition of the second kind, the Robin boundary condition is called the
boundary condition of the third kind. In a particular problem the boundary
condition may be the combination of the first and the second kind. In solving
a practical problem, the mathematical description of the boundary conditions is
significant. If the vector magnetic potential is chosen as unknown and con-
sidered in the 2-D case, the following boundary conditions are commonly valid:

A =0 along the line of flux density (1.1.59)
0A . .

T 0 along the surface of ferromagnetic material (1.1.60)
0A . .

Fri 0 along the line of geometric symmetry . (1.1.61)

For example, in Fig. 1.1.3(a) and (b), there are two pairs of current-carrying
conductors, extending the field to infinity. Due to the geometric symmetry, only
a quarter of the domain needs to be considered. Figure 1.1.3(a) shows that the
current in the two conductors is in opposite directions, the y-axis is the B-line,
hence it is A = const. It can be assumed that A = 0 is on the y-axis. The x-axis is
a line of geometric symmetry, with B-lines orthogonal to the x-axis. Hence the
x-axis satisfies the condition of 04/0n = 0. At infinity lim r4 = limited. In

r—w
Fig. 1.1.3(b) the currents in the two conductors are in the same direction, both
x and y-axes are lines of symmetry, hence these two axes satisfy d4/0n = 0.
Figure 1.1.3(c) shows a model of an electric machine; the stator and the rotator
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€d M, —>co
Rotator Fig. 1.1.3a—c. Boundary conditions of A using

c different cases

are made of ferromagnetic material. All the B lines are orthogonal to the surfaces
of the ferromagnetic material, hence these surfaces satisfy dA4/dn = 0. When
considering the symmetry, only the region of abfedca needs to be classified. The
boundary conditions of this area are shown in the figure. All the surfaces of the
magnetic material satisfy dA4/dn = 0.

The uniqueness theorem proves that the solution of the governing equation
which is subject to specific boundary conditions is unique no matter which
method is used.

1.2 Green’s theorem, Green’s function,
and fundamental solutions

The boundary integral equation methods are suitable for numerical analysis of
field problems, the reason being is that they depend solely on the modelling of
the boundaries and the interfacial surfaces. Green’s function and fundamental
solutions are the basic functions used in integral equation methods. The integral
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equations of any problems are usually derived from differential equations using
Green'’s theorem.

1.2.1 Green’s theorem

Green’s theorem is one of the most useful theorems in solving electromagnetic
problems. Many of the solution methods, including classical and numerical
methods, are based on Green’s theorem. It is derived directly from the diver-
gence theorem.

It is well known that

[V-AdQ = §A-dS (1.2.1)
Q s

where Q is a region bounded by a closed surface S. A is a vector function of the
position. Assume that u and v are two arbitrary scalar functions of the position.
If u, v and their first and second derivatives are continuous in the space of Q and
on the surface S, the application of the divergence theorem to the vector uVv
yields:

V- (uVv)dQ = ¢$(uVv)dS-n. (1.2.2)
£ f

n is the external normal unit vector of the surface S. With S = Sn, using the
vector identity

V- uVv) = uViv + Vu-Vv (1.2.3)
and noting that
uVo-n = u(—ag (1.2.4)
on

the divergence theorem of Eq. (1.2.2) is transformed into:

J(quv + Vu-V)dQ = fﬁu—dS (1.2.5)

This is known as Green’s first identity.
If the roles of the function u and v in Eq. (1.2.5) are exchanged, the result is:

J(szu + Vou-Vu)dQ = fﬁv %st : (1.2.6)

Q

This equation is the symmetric form of Green’s first identity. Subtracting
Eq. (1.2.6) from Eq. (1.2.5) yields:

J(quv — 0V2u)dQ = §<u— - vZ:/ ds . (1.2.7)
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This is Green’s second identity, frequently referred to as Green’s theorem. It is an
integral theorem involving the gradient of the integrand. This theorem transfers
a volume integration to a surface integration.

In a particular case, let 4 = v and u be a solution of Laplace’s equation, then
Eq. (1.2.5) reduces to:

j(Vu)z dQ = fﬁug—:ds . (1.2.8)

Q

By means of Green’s theorem the potential at a fixed point P(r) within the
volume Q can be expressed in terms of a volume integral plus a surface integral
over S, as:

_ L) o Ll Lo 0L
¢(r)_4n£f R dQ+4n§)|:R On (p(?n(R):ldS' (129)

Q s

This is an integral equation of potential ¢(r). It does not represent the solution
of the potential. In this equation p(r’) is the density of a volume charge,
R =|r—r’'|, Qis a volume enclosed by the closed surface S, as shown in Fig.
1.2.1. The process of deriving Eq. (1.2.9) will be given in Sect. 1.4.1.

Equation (1.2.9) demonstrates that the potential ¢(r) in volume Q is determined
by the volume source density p(r’) inside the surface S and the potential ¢ and its
normal derivatives of the first order d¢/0n on the surface S. If there is no charge in
volume Q, then the potential within the volume is determined by the potential
¢ and its normal derivatives over the surface, i.e.

1 f[tae a1
o(r) “Efﬁ[ﬁ o~ ¢5<E>st. (12.10)

Thus the surface integral term of Eq. (1.2.9) represents the contributions of the
sources outside the surface S. In other words, the boundary conditions represent

/ 0
X Fig. 1.2.1. The region of the interior problem
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the contributions of the sources outside the surface S. This conclusion implies that
the boundary conditions can also be represented by equivalent exterior sources.
This is the theoretical foundation of the Charge Simulation Method — where the
boundary condition is simulated by an equivalent source outside the region of
interest. If there are no exterior sources the surface integral must vanish.
Examination of Eq. (1.2.8), indicates that if the function u in Eq. (1.2.8) is
a harmonic function (e.g. it is the solution of Laplace’s equation) and v = 1, then
Green’s second identity is reduced to:
du

—dS=0. (1.2.11)
on

This means that if u is the potential of an electrostatic field and subject to the
Neumann boundary condition |0u/dn|; = g, then the function g has to satisfy the
following condition:

fgds=0. (1.2.12)

1.2.2  Vector analogue of Green’s theorem

The purpose of this section is to introduce an integral equation in which the
vector potential A is considered as unknown. The method is based on the
introduction of a vector identity in Gauss’s theorem. Suppose P and Q are
continuous vector functions of position in volume Q closed by the regular
surface S, and both P and Q have partial derivatives of first and second order
over the surface S and in volume Q. Using the divergence theorem

[V-(PxVxQ)dQ = §(PxVxQ)-dS (1.2.13)
Q s

and expanding the integrand of the volume integral by using the vector identity
V- (AxB)=B-VxA—A-VxB (1.2.14)
one obtains
J(VxP-VxQ—-P-VxVxQ)dQ =¢PxVxQ)dS-n. (1.2.15)
2 3

This is the vector analogue of the scalar form of Green’s first identity.
By using the same process as before the vector analogue of a scalar form of
Green’s second identity is obtained:

[(Q-VxVxP—-P-VxVxQ)dQ =¢(PxVxQ—-QxVxP)-ndS.
Q s
(1.2.16)

Applying the vector form of Green’s theorem the integral equation for the vector
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potential A is

A(r)=%f¥d9+$§|:82n +(Axn)xV<%)

Q R
—(n-A)VG)] ds . (1.2.17)

The process of deriving this equation is given in Appendix 1.1.

1.2.3 Green’s function [4, 5]

In a linear, uniform, and isotropic medium Green’s function is a response function
relating the field point (r) and the source point (r'). Hence Green’s function is
extremely important in field analysis. In this section the definition and basic
application of Green’s function are introduced.

1.2.3.1 Dirac-delta Function [6]

Recall the defmition of the Dirac-delta function:
or—r)=0 r#r

° (1.2.18)
for—=r)dr=1 r=r.
It follows that
f)= | f(r)d(r,r')dQ (1.2.19)
Q
where
or,r)=0(x —x)o(y —y)o(z—2"). (1.2.20)
For an arbitrary operator equation
Lu(r) = —f(r') u, feQ (1.2.21)
the function u can be expressed as
u(r) = — | f(r') L7 1o(r, r')dQ (1.2.22)
Q

where % represents any operator! (e.g. for Poisson’s equation % = V?2) and
%! the inverse operation of the operator . The sequence of |, and & can be
changed since the operator % ~! has no effect on the variable r’. Eq. (1.2.22)
shows that if #~'5(r,r') is known, then the function u(r) is obtained.

! An operator represents a specific operation, it maps a function u into another function f.
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1.2.3.2 Green’s function

It is supposed that Green’s function G(r, r’) satisfies the equation
Gr,r)=2"1'-6,r1). (1.2.23)

This means that Green’s function is the solution of an operator equation subject to
an impulse source. Multiplying the operator % on both sides of Eq. (1.2.23) from
the left-hand side yields

LG, r) = —o(r,r). (1.2.24)
If & = V? then
VG, r)= —4(r,r). (1.2.25)

Taking the integral operation on both sides of Eq. (1.2.23) one obtains the
expression of the inverse operator ¥ 7!, i.e

= [ £ 15(rr)dQ = —[G(r, r')dQ . (1.2.26)
Q Q

Thus, the inverse operator of the differential operator is an integral operator in
which Green’s function is the kernel. However, the function G(r, r’) is undefined in
accordance with Eq. (1.2.24). If there is any function g(r), only if g = 0, plus
G(r,r'), eg G(r,r')=G(r,r') + g(r), then Eq. (1.2.24), is still satisfied. Hence
specific boundary conditions are necessary for the unique determination of
Green'’s function.

Furthermore, if the solution of equation £ G(r,r') = —4(r, r’) under homo-
geneous boundary conditions is known, i.e. if G(r,r’), then the solution of
equation £u = f under inhomogeneous boundary conditions can be obtained.
The reason is that in Green’s theorem

J(ufv —vLu)dQ = §;<u—— —v%)dS

if v = G, then Eq. (1.2.7) is transformed to

6G(r r)

f[—ur)ér )+ G(r,r') f(r')] dQ = ﬂ

—G(r, 1) ag(') ] ds. (1227

Combining Egs. (1.2.19) and (1.2.27) yields

u(r’) = f G(r, r') f(r) dQ + §[-u(r) ac((;r; D G r) ? ] ds .

Q s

(1.2.28)
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Due to the symmetry of Green’s function of Laplacian, i.e.
G(r,r')=G(r',r) (1.2.29)
Eq. (1.2.28) becomes:

oG(r, 1)

u(r) = IG(T, r') f(r')dQ + § |:— u(r) n + G(r, r’)g—::l ds . (1.2.30)
Q s

This equation is Green’s third identity. In Eq. (1.2.30) the boundary values of
u and du/dn on the surface S are involved. For Dirichlet problems, let
G(r,r')|y = 0, Eq. (1.2.30) then reduces to

u(r) = JG(r, r')f(r')dQ — #;u(r) %G(r, r')ds. (1.2.31)
Q s

For Neumann problems, dG(r, r')/on|; = 0, Eq. (1.2.30) reduces to

u(r) = JG(r, r') f(r')dQ + 3€ G(r, r’)g—: ds. (1.2.32)
Q s

For Robin problems the boundary condition is

= f3(r) . (1.2.33)

S 20 +fz(l')u(l'):]
L n s

Let G(r, r') satisfy the condition

[ aG(r, 1’
fi®) gnr)+fz(r)G(r,r’)] 0.

Substituting Eq. (1.2.33) into Eq. (1.2.31) yields

u(r) = ‘[G(r, r)f(r')dQ + ésfle’ (r)G(r,r')dS (1.2.34)
or

_ e 1 dG(r,r')
u(r) = fc(r, r) f(r)dQ — SE FhH= s (12.35)
Q s

Conclusion: If Green’s function for any operator equation with homogeneous
boundary conditions is known, then the field distribution produced by any continu-
ously distributed sources under inhomogeneous boundary conditions will be given
by the above integral equations. For example, for Poisson’s equation and homo-
geneous boundary conditions, Eq. (1.2.9) is reduced to

o) = J% G(r,r')dQ. (1.2.36)
Q
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This equation shows that if Green’s function of the given operator equation is
known then the solution under any kind of source distribution can be calculated by
using Eq.(1.2.36). Therefore Green’s function is among the basic tools for analysing
various mathematical-physical problems.

Green’s function of Poisson’s equation in a 3-dimensional case in free
space is

1
G(r,r') =

= 1.2.37
4regir —r'| (12.37)

This is the solution of Poisson’s equation for a unit impulse source. If the
influence of the ground is considered, then

G(r,r) = i— ( L i) (1.2.38)

where R = [r —r’| and R, is the distance from the image source to the observa-
tion point.

1.2.4 Fundamental solutions

Regardless of the boundary conditions, the solution of an operator equation
produced by a unit source in an infinite space is called the fundamental solution and
it fulfils the following equation:

LF(r,r')= —6(r—r') (1.2.39)

where % is an arbitrary operator. Note that the difference between Green's
function and the fundamental solution is that Green’s function is related to the
boundary conditions but the fundamental solution is defined in a boundless free
space. Alternatively, Green’s function in a free space is the fundamental solution
of the same operator equation. The fundamental solution of Laplace’s equation
in 2-D and 3-D cases are derived as follows.

In 2-D polar coordinates Laplace’s equation is expanded to

1 d du -0
rar\"ar )T
Then the solution is

u=Cylnr+C,. (1.2.40)

In a 3-D case the solution of 4 r? % =0is
dr dr

C
u=7‘+ C,. (1.2.41)
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Table 1.2.1. Fundamental solutions of different equations in electromagnetic fields [7]

Governing equation Fundamental solution
2-D case 3-D case
Laplace" t 1 1 o
apzace s .equa ion Fee—In Fet
VZF+46=0 2n |r—r| 4n|r —r'|
B l 2) ’ 1 . ’
Helmholtz equation F=—Hg (k|lr—=r']) =————exp(—jk|r—r'|)
4j 4njr —r’'|
(VE+k)F+6=0 H'® — Hankel function
k* = (w?ue — jouy)
o . —1 ~|r-r}? -1 ~lr—r?
Diffusion equation F=— exp| —— F= exp
4nkt 4kt (4nke)>? 4kt
(‘1
VIF—— —+3(rd()=0
k ¢t
k= Uy
Wave equation Ir —r]
2F —H(t —r —r|) "(’i ) )
v?VIF — — 4+ 8(nd)=0 F=——r Fe— = 7
or? 2ne(e¥? —|r —r'|?) dnlr —r'|
v = l/ue

With C, = —-1,C, =0;C, =1,C, =01in Eq. (1.2.40) and Eq. (1.2.41), respec-
tively, the fundamental solutions of the 2-D and 3-D Laplace’s equations are

1
,r)=In—. 1.2.42
F(r,r)) nz ( )

F(r,r') = % (1.2.43)

The fundamental solutions of commonly used differential equations in electro-
magnetic fields are listed in Table 1.2.1.

1.3 Equivalent sources

In numerical analysis the method of equivalent sources is commonly used in
integral equation methods [8,9]. In terms of a potential boundary value
problem as shown in Fig. 1.3.1(a) the problem is replaced by an equivalent
problem in which the potential boundary condition is replaced by a distributed
single layer or double layer source as shown in Fig. 1.3.1(b) in free space. The
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Fig. 1.3.1a, b. Equivalent single layer source

equivalent source may be electric or magnetic charges or currents. The charac-
teristics of the layer sources are illustrated in this section.

1.3.1 Single layer charge distribution

It is known that if the charge is distributed on a surface S with density o, which is
a bounded and piecewise continuous function of position S, the potential at any
point not on S is

or)=— ds (1.3.1)

47{80

where ¢(r) is a continuous function of a(r’). F(r, r’) is the fundamental solution.
If the point (r) lies on S, the singularity of Eq. (1.3.1) has to be considered.
A circle with a sufficiently small radius r, circumscribes this point as shown in
Fig. 1.3.2.

The potential at any point can be expressed as ¢, = ¢, + ¢,, where ¢, is the
contribution of the charge on the small disk shown in Fig. 1.3.2 and ¢, is the
contribution of the charge outside the disk. The component ¢, is

’0

1 o To _ GoTo
=— |- = . 3.2
e 4nsofrds 2 rdr 280 (13.2)
0

So

It is a definite value. In Eq. (1.3.2) o, is the charge density of the small disk; it is
considered as a constant, ¢, is zero while r, tends to zero. Thus ¢, = ¢, + ¢, is
still bounded and continuous. The potential produced by a surface charge
distribution is a bounded, continuous function of position of all points both on and
off the surface, thus it is continuous across the surface, i.e.

P+ =0¢-=0;. (1.3.3)
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Fig. 1.3.2. Treatment of a singularity

The subscripts ‘+’ and ‘—’ denote the potential just outside and inside of the
surface, respectively.
On the other hand the field intensity

1 1
E(r)= —Vo(r) = o Ja(r’)V<E> ds (1.3.4)

is continuous and has continuous derivatives of all orders at any points not on
the surface. However, the field intensity undergoes an abrupt change across the
surface S. According to Gauss’s law

(D,—D_)-n=g¢

E,—E_ =%n (1.3.5)
where D, , D_, E,, E_ are field vectors outside and inside the surface, n is the
unit vector outward of the normal direction of S as shown in Fig. 1.3.3(a). If the
surface charge density o(s) is known as a single layer source, it is coincident with
an inhomogeneous Neumann boundary condition. In other words, the boundary
value problems with inhomogeneous boundary conditions of the second kind are
identical to those of a single layer source on the boundary surface.

For a distributed surface current density similar equations expressed by the
vector potential A and the magnetic flux density are

K ’

s

ds = uofK(r’)G(r, r')ds’ . (1.3.6)

B =42 JK(;’) x V<%) aS = 1o fK(r’)V X G(r, r') ds . (13.7)

s s
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Fig. 1.3.3a, b. Field discontinuity along the
b single layer source

K is the surface current density. The interfacial boundary conditions of B are

B,—-B_ =pu,Kxn (1.3.8)

n:(B,—B_)=0 (1.3.9)

nx(B, —B_)=ponx(Kxn)=po[(n-n)K —(n-K)n] = poK.
(1.3.10)

Hence, there is an abrupt change of the tangential component of B as shown
in Fig. 1.3.3(b).

1.3.2 Double layer source distributions [10]

The potential ¢ induced by an electric dipole p = gd as shown in Fig. 1.3.4(a) is
q 1 1 p 0/[1 pcos(r® d)
oO)=—— )= =\ )=
4rneg \ry 1y 4rey 0d \ r 4neor

P 1 P 1
=Y yl-)= v'| - 1.3.11
4re, (r) 4ne, <r> ( )

where r° is an unit vector along the r direction, V’ represents the spatial
derivative of the source point.

Consider a double layer charge distribution, where the positive charges are
distributed on the positive side of a closed surface S and the negative charges are
distributed with a density of —o on the opposite side as shown in Fig. 1.3.4(b).
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Fig. 1.3.4a, b. A double layer charge distribution

The double layer charge distribution is separated by the infinitesimal distance
dl. The definition of the dipole moment per unit area is
t=nlim (odl). (1.3.12)

a—©
dl—=0

The potential induced by the double layer source at point P(r) not on the
surface S is

1 tcosf 1 1
do(r) = = = .
o(r) dneg R ds dmes -V <R>dS (1.3.13)
cosf . . . . .
2 ds is proportional to the solid angle dw at point P(r), then
(r) = —-l—fr'(r’) v ! ds =+ 1 dw (1.3.14
¢ " 4ne, r T T dne, ‘ 3.14)

where dw is the solid angle subtended at point P(r) by surface ds, as shown in
Fig. 1.3.5. The sign + depends on which side of the surface S the observation
point lies. The solid angle is positive, if the radius vector drawn from point (r) to
the element ds makes an acute angle with the positive normal n of the surface.

The main characteristic of the double layer distribution is that the potential
is discontinuous on both sides of the layer. Suppose that the surface S is closed
and the charge density is uniform. Then 7 can be taken out from the integral. The
positive charge lies on the outer side of S so t has the same direction as the
positive normal of the surface. As the property of the solid angle is

4n P inside the surface
pdo = {0 P outside the surface (1.3.15)
thus
9+=0 Q- = —1/e (1.3.16)
and

Py —Q_ =T/egg . (1.3.17)
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P()

Pr) Fig. 1.3.5. Solid angle

Therefore, the potential undergoes an abrupt change of t/ey while the observation
point is moving from the inner side to the outer side of a double layer source.

If surface S is not closed, Eq. (1.3.17) is still correct. The reason is that
a surface S’ can be added to close the surface S. The potential on both sides of
the surface are superimposed by two parts, the contributions of surface charges
on S and §'. The potential produced by the charge on S’ is continuous but the
potential ¢ + ¢’ is discontinuous while the observation point passing through
the surface S. Thus all the discontinuity is caused by the surface S. Based on the
properties of a double layer, the boundary value problem with inhomogeneous
boundary conditions of the first kind (¢ = const.) can be represented by a cer-
tain distribution of the dipole layer source.

The continuity of the field strength due to a dipole layer is discussed below.

According to Gauss’s law, on each side of the surface of the double layer the
normal derivative of the potential has an abrupt change twice (one is +¢ and
the other jump is —o¢). Hence, E, is continuous from one side to the other, i.e.

(Ex—E_)n=0 (1.3.18)

or

_9¢- _de| (1.3.19)

However, the tangential component of E may be discontinuous, because the
potentials undergo an abrupt change on both sides, as shown in Fig. 1.3.6, where

Q2 — @3 = T/

1
s — ¢y =——(t+Vr-db)
éo

and
Q2 — ¢ =A@,
03 — @4 =A¢_
db is a small length along the surface, ¢, . . . , ¢4 are potentials very close to the

interface but on the opposite side of the interface as shown with the points
1,2,3,4 in Fig. 1.3.6. Due to

Yei=0. (1.3.20)
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Fig. 1.3.6. Discontinuity of E, around a double layer source

Fig. 1.3.7. Equivalent magnetic sheet

Substituting ¢, to ¢, into Eq. (1.3.20) leads to
t/eo —(t + Vi-db)/eg + Ap - — Ap, =0,

Then
Ap, Aop- Vrt
db db &
and
E,—E_=—-V/, (1.3.21)

where t is an unit vector tangential to the surface S. The abrupt change of E, is
the abrupt change of E, as the normal component of E is continuous. Le.

E. —E_ = —Vi/e, . (1.3.22)

Vz is the gradient of t along the surface. If 7 is uniform then E is continuous.
For the magnetic scalar potential ¢, the corresponding equaticn is

Om, — Om_ = Ty = O dl (1.3.23)

where o, is the magnetic surface charge density. t,, is the surface density of the
magnetic moment, and is known as the intensity of the magnetic sheet. The
positive direction of z,, is coincident with the current according to the right hand
rule as shown in Fig. 1.3.7. This means that the effect of the double layer
magnetic source may be substituted by an equivalent magnetic dipole with
a magnetic moment IS (IS = 1,,95).

For the magnetic vector potential

A(r)=g—;JM(r')xV<%>dS (1.3.24)

where M is the intensity of magnetization. A is discontinuous while it is passing
through a surface with a magnetic moment, i.e.

A, —A_ =puoMxn (1.3.25)
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due to
(A, —A_)-n=0 (1.3.26)

and
nx(Ay—A_)=nx(uMxn)=poM —po(n-M)-n. (1.3.27)

Equation (1.3.27) indicates that only if the direction of magnetization is normal
to the surface the tangential component of A is continuous.

1.3.3 Equivalent polarization charge and magnetization current

In dielectrics the potential produced by the dielectric polarization is due to the
polarization dipoles. According to Eq. (1.3.14) it follows

_(P(r) (1
00) = | o <E>d9 (1.3.28)
Q

where P = Np = Nqd is the polarization vector. By using the vector identity
V-(fF)=Vf-F+fV-F (1.3.29)
Eq. (1.3.28) is rearranged to

<p(r)=LJV'-<E>dQ—L _V/_'l:dg

4ne, R 4ne, R
Q Q
1 1 1 (V-P
=—@¢=P-ndS —— | ——dQ
47e, (ﬁ R " 47, R
s Q
_Lf&dg“# % 4s (1.3.30)
T 4meo ) R 4neo J R e
Q s
where
pp=—-V: P (1.3.31)
and
o,=P-n=P,. (1.3.32)

p, and g, are the volume and surface density of the polarization. P, is the normal
component of the polarization vector. If the polarization is uniform, then p, = 0.

Similar to Eq. (1.3.13) the magnetic scalar potential produced by the mag-
netic dipole moment is

1 M-R

1
=—M-V|=|=—"——dQ. 1.3.33
dom(r) 4r <R> 4nR>3 ( )
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Thus the total scalar potential produced by the magnetization is

1 1
on(r) = ZEJM(r’)-V’<E>dQ.
Q

Using the same procedure as in Eq. (1.3.30) one obtains:

V.M
¢m(r)=if 4 + —fﬁ——ds
4n

R
Q
1 (Pm M:n
=— |Prao 4+ o =1
4fR +§ ="
Q
H(r) = ij dQ+i v(L)gs
4 4f£""‘ R
where
M =y,H

-V'-M = p, M:n=o,

and y,, 1s the magnetic susceptability.

The magnetic vector potential produced by the magnetization is

A(r) = fM V(}L)dﬂ.
Q

Using the vector identity
Vx(fF)=VfxF + (VxF)f

and the divergence theorem in vector form

[VxFdQ=§dSxF =¢nxFdS
Q s s

Equation (1.3.39) reduces to

A(r )_—iv XMdQ-—fV' ( )

=£J_OJV XMdQ+Z—;§MxndS

i) R R
Q S

_/‘0 Jm Ho K'"

—nJRdQ+4n s
Q s
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(1.3.34)

(1.3.35)

(1.3.36)

(1.3.37)
(1.3.38)

(1.3.39)

(1.3.40)

(1.3.41)

(1.3.42)
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Then
— __/'tO Jm(r )XR Ho K,,,(I'I)XR
B(r) = Vx A =22 j i de 4n3£ Treds (1343)
Q s
J.=V'xM (1.3.44)
K, =Mxn (1.3.45)

where J,,, K,, are the volume and surface current densities of magnetization.
Equation (1.3.43) has the same form as Biotsavart’s law. Hence, at the interface
of different materials the discontinuity of B is caused by the surface magneti-
zation current density, ie.

K=nx(M, -M_) (1.3.46)

where M. and M_ are the intensities of the magnetization on both sides.

In reality the magnetization current is physical, but the magnetic charge is
simulated. The equivalent current and the equivalent magnetization charge
cannot be used simultaneously because they represent the rotational and point
sources, respectively.

1.4 Integral equations of electromagnetic fields

Numerical methods for solving electromagnetic fields can be classified into two
types: those based on the differential equation or those on the integral equation.
Applying Green’s theorem and Green’s function, the differential equations of
electromagnetic fields can be expressed by the corresponding integral equations. In
this section only the integral equation of Poisson’s equation is derived as an
example. Other cases such as the integral equations of the interfacial surface of
different materials and the surface integral equation will be outlined in
Chaps. 8 and 9.

1.4.1 Integral form of Poisson’s equation

In Sect. 1.2.3 Green’s third identity was shown, viz.

E aG(r, 1
o(r) =Jf(r')G(r, r)dQ + § [G(r, r') ‘2"(1') — o(r) é’n ! )] ds (14.1)
Q s

it is the integral form of Poisson’s equation V2¢ = — f(r'). If G(r, r’) is known,
the solution for any source f(r’) may be evaluated by Eq. (1.4.1). The two surface
integrations in Eq. (1.4.1) represent the boundary conditions of the second and
first kind: they can be replaced by single and double layer sources.
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For a 3-D static electric field with f(r') = p(r')/e and G(r,r’) = 1/4nR
Eq. (1.4.1) is equal to Eq. (1.2.9), i.e.

1 p(r) I dp(r) aJa (1
olr ‘Z&J R T fﬁ[R an ')an<R>]dS'
Q

A significant and important matter is that the surface integration of Eq. (1.2.9)
has no effect on the outside region of S. The reason is that a single layer source
produces the discontinuity of d¢/dn, i.e.

31 do\
(5;>+ - <5> ol (142)

A double layer source produces discontinuity of the potential ¢, i.e.

Qor—@- =1le.
On the surface the following conditions exist:

6(9
=0 (1.4.3)

b0 =1 (1.4.4)
Substitution of Eq. (1.4.3) into Eq. (1.4.2) yields:

do\
("a—n'>+ =0. (14.5)

Comparing Eq. (1.3.17) with Eq. (1.4.4) results in:
o+ =0. (1.4.6)

Thus Eq. (1.2.9) is only valid for the region inside the surface S.

It is concluded that one can always close off any portion of the field by u surface
which reduces the field outside the surface to zero. Then the effect of the exterior
sources on the interior is replaced by the surface source of a single or a double layer
charge distributed on the boundary surface.

If the boundary surface is an equipotential surface, i.e. n x E = 0, so that the
dipole moment is zero, the potential inside the surface produced by the outer
charges is equivalent to a single layer source with the density &(Jd¢/dn)

1.4.2 Integral equation for the exterior region

Handling an exterior problem assume that there is a surface I'; enclosing €,. In
the volume Q, Green’s second identity is

- ~ do 3G
I(GV(p oV2G)dQ = § (Ga an>d1“ (1.4.7)

2, n+n
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) 0 oG
If I, tends to infinity, the surface integral §<G—% - o— p ) dS tends to zero.

Equation (1.4.7) then becomes I ? ?
0 0
j(GVZ(p — pV2G)dQ = — 3€ 6% _ % ar . (1.4.8)
on on
2 rn

Considering the definition of Green’s function and Eq. (1.2.19) results in -
o(r) = ff(r’) rr)dQ — 3@(6— — oo >d1‘ (1.4.9)
Q,

The difference between this equation and that of the interior is the sign in front
of the term of the boundary integral.

1.5 Summary

In this chapter Maxwell’s equations are summarized for the different ranges of
frequencies. The field problems fall into three categories:

(1) Dynamic electromagnetic field: In this case the field distribution is
dependent on both position and time.

(2) Steady-state field. In the case of y » we the displacement current is
neglected. The field distribution is fixed into position and the phase is a function
of the position. The eddy current problem is the main concern in this range of
frequencies.

(3) Static and quasi-static fields: In these two cases the field distribution is
solely a function of the position. The electric field and the magnetic field are
considered separately in different areas.

Both of the essential and Neumann boundary conditions can be replaced by
single or double layer sources. These equivalent single and double layer sources
are very useful in integral equation methods. The characteristic of the single
layer is that the potential is continuous on the both sides of the layer but the
discontinuity of the normal derivative of the potential is 6/¢¢. o is the density of
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a single layer source. For the double layer source, however, the normal derivat-
ive of the potential is continuous but the potential exhibits a discontinuity of
t/€9, where 7 is the density of the double layer source.

Green’s theorem

f(quv —oV2u)dQ = §<u@ _ v@> ds
on on
Q s

is a basic theorem for deriving the various integral equations. One example is
given in Sect. 1.4.1.
Green'’s function and fundamental solution are defined as:

LG(r,r')= —0(r,r') subject to specific boundary conditions
LF(r,r')=—0(r,r') in free space.

They are the basic tools in solving integral equations.
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Appendix 1.1 The integral equation of 3-D magnetic fields

In a static magnetic field the vector potential A satisfies Poisson’s equation as
VxVxA=ul (A.1.1)

where 4 is the permeativity of a homogeneous and isotropic medium. A satisfies
the Coulomb gauge. Similar to the scalar fundamental solution G a vectorial
fundamental solution Q is chosen to represent the vector potential at the point



32 1 Fundamental concepts of electromagnetic field theory

(r) produced by a unit current density J located at point (r’). For example

Q(r,r) = R (A.1.2)
Then
1 1
VxQ = V<4 R)xa (A.1.4)

where a is a unit vector along the positive direction of the current. Using vector
identity

VxVxQ=V(V-Q)-V3Q. (A.1.5)
Due to V2Q = 0, one then obtains
VxVxQ:V(V-Q)=iVlia-V<l>:l . (A.1.6)
47 R

Multiplying the vector A to both sides of Eq. (A.1.6) leads to

A-VxVxQ=$A-VI:3-V<%>:|=%V-[3-V<%>A] (A.1.7)

on the other hand,

Q-VxVxA=4—::—§yJ. (A.1.8)

Recalling Green’s vector identity

JQ:VxVxP—-P-VxVxQ)dQ =§(PxVxQ —QxVxP)-ndS

Q

let P be A, then

(PxVxQ)-n (m[ <LR> ajl).n:m(Ax[V(#)xa])
g
(nxA)xV(41R> a-V<#>x(Axn) AL9)

(QxVxP)m:(rk-xVxA) n—n-<$za§xB>=ﬁ—-an

Bxn
4nR

=a- (A.1.10)
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Substituting Egs. (A.1.7), (A.1.8) into the LHS of Green's vector identity and
Eq. (A.1.9), with Eq. (A.1.10) into the RHS of Eq. (1.2.16), the result is:

a 1 1 a J
Q Q
a 1
_Z;ﬂv(E)A.n]ds. (A.L11)

Thus one obtains:

j—dQ <§|: (4;R>A-nj|d5 +f|:V<$> x(Axn)]dS

nxB
+ (ﬁ AR ds. (A.1.12)

S

This singularity is dealt with as the same way which used in Sect. 1.4.1. The
singular point at r = 0 is circumscribed by a small sphere of radius ro. The
volume V is now bounded by surface Sy and S. Due to V(1/R) = — R%/R?, the
surface integral of Eq. (A.1.12) on S, is

jROA n ds+—§RO Axn)dS+——€EandS (A.1.13)

So So So

41'[1‘0

and the integrand of the middle term can be transformed to
R°x(Axn)=(R°-n)A —(A-n)R° + Ax(R%xn). (A.1.19)

Since R%-n = 1, R® xn = 0 the surface integrals over S, reduce to

1 1
BdS . AL1S
4m§§Ads+4mo§;nx ds (A.1.15)

Sﬂ so

Assuming 4 and B are constants over the small sphere, the result of the integral
of Eq. (A.1.15) reduces to A(r). Introducing this result to Eq. (A.1.12), the result is

_u () 1 an
A(r)_E -R—dQ o R ——§[nxA)xV< ):ldS
Q s
1 1
—Eﬂg(n-A)V<§> as . (A.L16)

This general expression of the vector potential A(r) in integral form includes
contributions from all sources. It is a Fredholm integral equation of the second
kind while A(r) is unknown. The three terms of the surface integral represent
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contributions from the sources outside the surface S: the effect of the surface
current density n x B = uK: the effect of the dipole moment n x A = — uM; and
the effect of the equivalent magnetic charge density n- A. The vector potential
A within volume Q is continuous and has continuous derivatives of all orders;
however, the A and its derivatives exhibit a certain discontinuity across the
surface. It can be proved as follows: Suppose B_ and B denote the vector B just
inside and outside the surface S which satisfy the boundary condition

nx(B, —B_)=uK. (A.1.17)

The first surface integral of Eq. (A.1.16) can be regarded as the equivalent surface
current, i.e. —nxB_ = K. Comparing Eq. (A.1.16) and Eq. (A.1.15) it is clear
that nx B, = 1. The second term of the surface integral is equivalent to the
vector potential produced by a surface polarization density, e.g. A_ xn = uM.
Note that the tangential component of A is continuous across surface S only in
the case of the magnetization being normal to the surfac, i.e.

nx(Ay —A_)=uM —pu(m-M)-n=Axn—yu(n-M)n.
Thus
nxA,=0. (A.1.18)

The last term of the surface integral of Eq. (A.1.16) is related to the field
intensity of a surface charge density (A-n), ie.n-(Ay —A_)=n-A_. Thus

n-A;, =0. (A.1.19)

So far it is proved that on the positive side of the surface S the normal and
the tangential components of A and the tangential components of B are zero
everywhere. Furthermore the normal component of B must be zero over the
positive side of S, because the normal component of the curl A involves only
partial derivatives in those directions tangential to S. If we apply Eq. (A.1.16) to
the region externally to surface S, then A and consequently B are zero every-
where. If we let Q = V(1/R) x a as the Green’s function instead of Eq. (1.4.13),
the following equation is obtained:

B(r)=2‘%JJxV<%>dQ—Z§r— §(an)xV<%)ds
Q

1 !
—Z;ﬂg(n-B)V<E>dS. (A.120)



Chapter 2

General Outline of Numerical Methods

2.1 Introduction

According to Maxwell’s equations, all electromagnetic field problems can be
expressed in partial differential equations which are subject to specific boundary
conditions. By using Green’s function, the partial differential equations can be
transformed into integral equations or differential-integral equations. The ana-
lytical solution of these equations can only be obtained in very simple cases.
Therefore numerical methods are significant for the solution of practical prob-
lems. In numerical solutions the following aspects have to be considered.

(1) A mathematical model expressed by differential equations, integral equa-
tions, or variational expressions is provided to describe physical states.

(2) A discretized model is suggested to approximate the solution domain, so
that a set of algebraic equations is obtained.

(3) A computer program is designed to complete the computation.

In designing these steps one should consider:

(1) Does the mathematical model describe the physical state well?
(2) Does the approximate solution satisfy the desired accuracy?
(3) Does the method use the computer sources economically?

In order to obtain a good method for various engineering problems many
methods have been developed.

The purpose of various numerical methods that are used to obtain solutions for
electromagnetic field problems is to transfer an operator equation (differential or
integral equation) into a matrix equation.

In solving field problems the problem can be described by differential or
integral equations. Consequently, there are two different kinds of solution
methods: using either differential equations or the integral equations. The
former is known as the “field” approach or domain method and the second is
known as a source distribution technique or the boundary method. Hammond
has interpreted these dual approaches in a historical perspective: ‘The history of
electromagnetic investigation is the history of the interplay of two funda-
mentally different modes of thought. The first of these, the method of electro-
magnetic fields which ascribes the action of a continuum, is associated with such
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thinkers as Gilbert, Faraday and Maxwell. The second, the method of electro-
magnetic sources, concentrates the attention on the forces between electric and
magnetic bodies and is associated with Franklin, Cavendish and Ampere. . ..
Field problems are conveniently handled by differential equations and sources
by integral equations.’ [1]. Both of these two methods have advantages and
drawbacks. Reference [2] describes the optimal combination of these two
methods. No matter of which methods are applied, numerical solution methods
consist of the following steps:

The first step is to express the unknown function u(r) contained in the
operator equation by the summation of a set of linear independent functions
with undetermined parameters of a complete set sequence, e.g.

u(r) = i Ciyi (2.1.1)

i=1

where C; are undetermined parameters and y; are the terms of basis functions.
Equation (2.1.1) is called the trial function or approximate solution. If N goes to
infinity, the approximate solution will tend towards the real solution.

The second step is to cast the continuous solution domain into a discrete
form. The resulting set of discretized subdomains consists of a finite number of
elements and nodes. In this fashion the unknown function with infinite degrees
of freedom is replaced by an approximate function with finite degrees of
freedom.

The third step is to choose a principle of error minimum in order to
determine the unknown parameters contained in the trial function. This can be
achieved by employing either variational principles or the principle of weighted
residuals. After this step is executed, the operator equation is transformed to
a matrix equation.

Finally, the approximate solution of a given problem is obtained by solving
the linear or non-linear matrix equation derived from the third step.

The finite difference method was the first to be developed [3] from among the
well-known numerical methods. Here the solution domain is subdivided into many
nodes in a regular grid. The values of a continuous function within the domain are
represented by the values in the finite grid nodes. This method can be interpreted as
a method in which the differential operator is replaced by the difference operator.
The finite difference method has been used to solve many engineering problems
since the 1950s. But because of the need generally to use regular grids the
application of this method is limited.

By the end of the 1950s, the finite element method was introduced, firstly in
structural mechanics [4]. The significant difference between the finite difference
method and the finite element method is that, in this method, the domain is
discretized by employing a set of small elements with different shapes and sizes.
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With this approach it is easy to solve a problem having complex geometry and
different interfacial boundaries to a high degree accuracy. It seems to be one of the
most efficient methods for the solution of electromagnetic field problems. As
both the finite difference method and the finite element method are based on
differential equations and domain discretization, they are called differential
methods or domain methods.

Almost in the same period volume integral equation methods were developed
for solving static magnetic field and eddy current problems [5]. The volume
integral method is based on the principle of superposition. First, the source area is
subdivided into small areas; then the solution in terms of the sum of all such
elements is sought. This method is simple to understand and easy to solve in the
case of 2-dimensional problems. However, it is limited to just linear problems.

In order to reduce the region of discretization boundary integral equation
methods were rapidly developed. The most typical of these based on the
boundary integral equation is the boundary element method [6]. The advantage
of the boundary element method is that only the boundary values are treated as
being unknowns and only the boundary of the solution domain is discretized. Hence
this method reduces the dimensions of the size of the problem by one. The pre- and
the post-data processing is therefore much easier than with the finite element
method, especially in the case of 3-D problems.

So far,-any 2-D problem can be solved efficiently by one of these methods,
and there are many well-designed commercial software packages for analysing
and designing purposes. However, for solving 3-D vector fields, especially in the
case of problems containing non-linear material or having time-dependent
solutions, efficient solution methods are still being developed. Another aspect
which is of interest to engineers is to establish efficient software packages that
can be used to model complex systems in designing practical electromagnetic
devices. Reference [7] discusses such prospects of electromagnetic computing.

As indicated, any such numerical method gives an approximate solution. To
ensure this ultimately derives to a real solution, the principle of error minimi-
zation should be observed.

The essential purpose of this chapter is to develop a unified framework for
the discussion of various numerical methods which are based on the principle of
error minimization. The differences and the relationships between various
numerical methods are classified in this chapter. The approximate notations are
interpreted using concepts of space and operators.

2.2 Operator equations [8, 9]

An operator ¥ provides a mapping or transformation, according to which a par-
ticular element u belonging to a subset of the domain Q of a space R is uniquely
associated with element f belonging to another subset W of space S. This is



38 2 General outline of numerical methods

expressed as
Lu=f (2.2.1)

where Q is the domain and W is the range, respectively, of the operator . That
is & maps Q onto W; it represents the mapping between two functions. For
example, the derivation, integral, gradient, divergence, curl, Laplacian and
matrix transformations are operators. Basically an operator is simply a certain
type of function, just as the simple function y = f(x) maps the variable x into the
variable y. By using the operator notation any differential or integral equation
can be expressed in a simple, compact notation. In order to understand the
mapping of the operator the concepts of the ‘space’ are reviewed in the first
section.

2.2.1 Hilbert space

A space is a collection of elements considered as a whole. The dimension of space
S is the maximum number of linearly independent elements contained within S.
Alternatively, the dimension n of S is the number of independent elements
required to form a basis for S. Any n + 1 element is a dependent set. The space is
infinite-dimensional if it contains an infinite number of independent elements.

Metric space

A space R having the following properties is termed a metric space. Assuming
fand g are any two elements belonging to space R, there is a distance d between
f and g which is defined as

d = d(f, g) (2.2.2)

and which satisfies the following properties

d(f,g) = d(g,f) (2.2.3)
d(f,g) =0 (2.2.4)
d(f,g)=0 ifandonlyiff=g (2.2.5)
d(f,g) <d(f,g) + d(f,h) f g heR (2.2.6)

where h is another element that belongs to R.

Linear space

A space is called linear if all operations of the elements of the space satisfy the rules
of vector algebra. The usual function space and vector space are linear spaces.
The elements f}, f5, . . . , f, of a linear space S are said to be linearly independent
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if and only if

afitaafaot+ ...+ fo=0 22.7)
which implies oy = a; = ... = a, = 0. Otherwise the elements are linearly
dependent.

Inner product space (unitary space)

Unitary space is a linear space in which, for any two elements (f, g), there is an
associated real or complex number defined as

(f.g) =[f(rg*(r)dQ (2.2.8)
Q

where ¢, ) denotes the inner product and g* is the complex conjugate of g.
{f, g) is the inner product of f and g in space S and the following relations are
satisfied:

(cf,g) =c{f, g (2.2.9)

(f+gh)=<{fh)+gh) (2.2.10)

(fg) =<g H*=[gr) f*(r)dQ (2.2.11)
Q

CEEY>0 iff#0 (2.2.12)

(EfY=0 iff=0 (2.2.13)

where ¢ is constant. If ( f, g> = 0, the two elements f, g are orthogonal. If f and
g are orthogonal and normalized (the norm of the vector which equals 1 is
normalized), they are orthonormal. An orthogonal set of non-zero elements is
independent.

Normed linear space

In a linear space, the real-value function || f || is defined as the norm of function
f as follows

Il =<6 £*>72 [1f]| >0
Ifll=0 ifand onlyif f=0. (2.2.14)

If | f]| = 1, the element f is normalized. A normed linear space has the following
properties

[ cfll = Ilcl I (2.2.15)
I+ R0 <[l + I (2.2.16)
[Ku, £ < ul - £ . (2.2.17)

Equation (2.2.17) is the Schwarz inequality. It is an important inequality in
linear space.
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Complete inner product space [10]

Let (f,) be a convergent sequence of points in an inner product space. If for each
¢ > 0 there exists some N = N(¢) such that for all n,m > N the following
expressions

I f, —f.ll <e& (2.2.18)
and
lim || f,—f]| =0 (2.2.19)

are satisfied then the space is called complete inner product space. {f,} is a
Cauchy sequence. A complete inner product space is one in which all Cauchy
sequences are convergent sequences. A complete inner product space is called
a Hilbert space. The Schwarz inequality ensures that the inner product space is
complete. All elements in a Hilbert space are square integrable.

Subspuce

The space A is a subspace of S if each element of A is also an element of space S.
A subspace A4 of a linear space S is called a linear manifold in S.

2.2.2 Definition and properties of operators

An operator represents the relationship between two functions as shown in
Eq. (2.2.1). The properties of the operator determine the methods used for
solving the operator equations numerically.

Linear operator

If
P(f+g) =2+ g (2.2.20)

and
Llcf) = cZ(f) (2.2.21)

and the domain Q and range W are linear spaces, then the operator % is called
a linear operator. In Egs. (2.2.20) and (2.2.21) f and g are two elements, c is
a constant.

Symmetric operator

If
(L, v)=<u Lv) (2.2.22)

where u, v are any two functions in the space of %, then £ is a symmetric
operator.
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Positive definite operator

If
(Zu,uy >0 (2.2.23)

for all u # 0 in its domain, . is positive definite. If the sign > is replaced by >,
then . is positive semi-definite.

Self-adjoint operator
The adjoint operator of & is the operator #* such that
(Lu, ) ={f, L*u) (2.2.24)

where the domain of #* is also that of &, then #* is the adjoint operator of .Z.
If ¥ = %* % is termed a self-adjoint operator denoted by #“ Hence a self-
adjoint operator is symmetric but not vice-versa. The bounded operators
defined in the whole space are self-adjoint. The operators having even power
such as V2 and V? + (9%/0t?) are self-adjoint. The operators having odd power
cannot be self-adjoint. If the kernel of an integral equation is symmetric, then the
integral operator is self-adjoint.

Bounded operator

If
| Zull <Mlu] M<o (2.2.25)

then .# is a bounded operator. The smallest M is called the norm of ¥ and
denoted by || .Z ||. The operator . in the Hilbert space is bounded.

Continuous operator

If u, = u, u, and u belong to the same domain and it follows that

Lu, + Lu (2.2.26)

then % is a continuous operator. A bounded linear operator is continuous and
vice-versa.

Completely continuous operator

If
lim (Zu,, f,> = (L, > (2.2.27)

m,n—=x©

or
lim | £ — %, =0

n—aw

then % is a completely continuous operator (c.c.0.). Every finite-dimensional
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linear operator is a completely continuous operator. A completely continuous
operator is bounded and the reverse is true for finite-dimensional spaces,
although not for infinite dimensional spaces. If £ is a c.c.0., then the adjoint
operator of . will also be c.c.o.

The identity operator .# which maps

Su, =u, (2.2.28)

in an infinite dimensional space is therefore not completely continuous.

Inverse operator
If the mapping ¥ u = f is one to one, then the inverse operator exists, i.e.
u=2"'f (2.2.29)
The inverse of a linear operator is also linear. Also % ~! is self-adjoint provided
that the .Z is self-adjoint. The inverse operator exists if the operator is a bounded
positive definite linear operator.
The Eigen value of an operator
If there is a number A and an element u # 0 and
Lu=Ju (2.2.30)
exists then u is called an eigen element (or eigenvector) of operator .# while 4 is
an eigenvalue of .
Condition number

Define
KL)=1ZI1ZL7 ' k£)=1 (2.2.31)

as being the condition number of a linear bounded operator.

Basis
A finite or countably infinite set of vectors e, ..., e ... is a basis of a space if
(a) the vectors e,,. .., e, ....are independent,

(b) each vector x in the space can be written as a linear combination of a finite
or infinite number of basis vectors.

2.2.3 The relationship between the properties of the operators
and the solution of the operator equations

Both the approximate approach for the formulation as well as the solution
methods for the resulting matrix equation are dependent on the properties of the
differential and integral operators.
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(1) If & is symmetric positive definite, then the operator equation
Lu=f

has only one stable solution [8, 9]. It means that the solution of the above
equation is unique.

(2) If ¥ is completely continuous, the inner product {(%u,f ) exists [11].
Hence, the equivalent functional of the operator equation can be
determined.

(3) If & is a self-adjoint positive definite operator in the Hilbert space then the
solution of Eq. (2.2.1) can be approximated by the associated problem which
minimizes the quadratic functional I(u) [9, 11]

I{u) = (Luyu) —(u, f>~{fu) (2.2.32)

where u is the approximate solution of Eq. (2.2.1). I(u) is a functional. It
represents mapping from the function space to the value space.

(4) A separable kernel k(r,r’) = Zp(r)q(r’) of an integral operator results in
a completely continuous operator. Thus the approximate solution of such an
integral equation can be found by using the weighted residual principle.

(5) If the kernel of the operator is symmetric, the corresponding operator is
self-adjoint. The solution method for the resulting symmetric matrix is thus
more convenient than for an asymmetric matrix.

(6) Self-adjoint operators are symmetric and generate a symmetric system
matrix which has real eigenvalues.

(7) If & is a completely continuous operator, then the resulting matrix is
positive definite.

(8) If the inverse operator exists, the solution of the original operator equation is
unique.

2.2.4 Operator equations of electromagnetic fields

Electromagnetic field problems may be solved by partial differential equations
or integral equations. Each approach has its own merits and shortcomings and
the selection should be based upon individual requirements of the problem [9].
In this section, only some typical equations are given and the properties of those
operators used are analysed.

Static and quasi-static electromagnetic fields

It is well known that if the charge distribution is known the potential satisfies
the following equations:

—V2p = p/eg (2.2.33)
or
o(r) = %r)dfz' - Jp(r’)G(r, r')de’ (2.2.34)

Q Q
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where V? is a differential operator that is both positive definite and self-adjoint.
Similarly, |, G(r, r')dQ’" is a Fredholm integral operator of the first kind, while
G(r,r’) is the corresponding kernel. It is obvious that this kernel is symmetric
and separable. Hence the Fredholm integral operator of the first kind is
completely continuous and bounded.

In order to show that the Laplacian operator is self-adjoint consider a suit-
able inner product for the L.H.S. of Eq. (2.2.33)

(Lo, ¥) = A-'(—SOVZ(P) Y de (2.2.35)

and then use Green’s identity:

0
f(wzw—wvzw)dhg@(«p——w af) ar . (2236)
Q r
In Eq. (2.2.36) let I' be a sphere of radius r, while ¢ and ¥ are constants up to

limit r —» c0. The R.H.S. of the above equation then vanishes within this limit.
Equation (2.2.36) therefore reduces to

[UV2dQ = [ eV2ydQ . (2.2.37)
Q Q

According to the definition of the self-adjoint operator
(Lo, ¥y =LY, L%
it is evident that V2 is self-adjoint, i.e.
P =L = —g V2. (2.2.38)

Hence the equivalent functional of the Laplace operator exists and a symmetric
matrix equation is obtained.

The self-adjoint property of the integral operator of Eq. (2.2.34) can also be
proved by the definition of Eq. (2.2.24) and the symmetry of Green’s function of
Poisson’s equation as below:

(Lu, [ =, L35 = [ LS *(Lw) —uw(£S)*]dQ
= [ J[f*®)G(r, r)u(r)
QQ

— un)GH(r, 1) f*(r)] 42 dQ
= [ [Lf*®O G, r')u(r)

QQ
—f*(r')G(r', r)u(r)]dRdQ
=0.

This result shows that the integral operator [, G(r,r')dQ’ is self-adjoint.
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In case of the interface between different dielectrics with the permittivity of ¢,
and relative permittivity ¢,, respectively, the equation for the charge density in
a single layer is given by [12]:

1 -1 oG
Lo(s) = &+ a(s) + & Eﬁa(s’) —(s,5')ds'=0. (2.2.39)
2¢0 o on

This is a Fredholm integral equation of the second kind. Due to the definition of
the adjoint operator, the adjoint operator of & given in Eq. (2.2.39) is obtained

oG oG
by replacing the kernel (5; (s, s’)) by <F(S”S)>' In general, the adjoint
n

operator of a complex integral operator is one with the kernel replaced by its
complex-conjugate transpose. For a general curve it is given as

G
__0G (s,8) # -_6 (s, 5) . (2.2.40)
on on

Hence the integral operator in Eq. (2.2.39) is not self-adjoint. The treatment of
this kind of operator is given in reference [12].

Diffusion equations

For time harmonic electromagnetic fields the problems are divided into two
kinds: determination and the eigenvalue problems. The determination problem
is expressed by in-homogeneous Helmholtz equation:

(V2 + BHA = —pJ; (2.2.41)
B2 = wiue - — & (2.2.42)

where the operator is % = (V2 + 2). The difference between Eq. (2.2.41) and the
Laplacian equation is that the term %A is added and J and A are complex
functions. In Eq. (2.2.42) ¢ is an equivalent permittivity. If 82 is a real constant, it
can be proved in the same way that the operator (V* + f?)is a linear continuous
and symmetric operator. If 2 > 0, the operator is bounded-below. Hence the
Helmbholtz operator £ = (V2 + B2) is self-adjoint.

If the dielectric medium is lossy, the permittivity ¢ is a complex quantity then
the operator & = (V? 4+ B2) is non-self adjoint. The proof is given in [13]. The
conclusion given in [13] is that for the non-self-adjoint complex operator the
system equation adopts the same form as in the real self-adjoint case [2, 13].
Mikhlin [10] states that an operator needs to be neither self-adjoint nor
positive-bounded-below to ensure convergence. If the operator possesses a com-
ponent with such properties and given certain uniqueness and completeness
conditions, then a convergence holds. From the experience of McDonald and
Weler [2] solutions for such problems seem to converge as well as those
involving self-adjoint, positive-definite operators.
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Fast transient fields

The differential forms of wave equations are

02

Vo —en ke (2.2.43)
A
VA — ue— e =—ulJ. (2.2.44)

The operator of these equations is

82

P =V~ oo (2.2.45)

The integral expression for Eq. (2.2.43) is
1
== I p(r')G(r, r') dQ’ (2.2.46)
o

with

Gir, ') = SPLIHr 1) (22.47)

4rn|r —r’'|

It can be proved that this integral operator is non-self-adjoint'. The equivalent
functional of non-self-adjoint operators are discussed in references [2, 13, 14].

2.3 Principles of error minimization

An approximate numerical solution of a boundary value problem is one that
minimizes the error of approximation. Any approximation contains two different
aspects. First, the infinite dimensional space of the real solution is approximated
by a discretized domain of finite dimensions. Second, the continuous function of
the real solution is replaced by a simple approximate function such as a poly-
nomial. Various approximate formulations (e.g. the finite element method,
boundary element method, method of moments and so on) are developed
depending on the different choice of error minimization. The approximate
function, in terms of a trial function or a basis function, could be a pulse
function, ¢ function or polynomials with different orders as shown in Fig. 2.3.1.
In certain cases the basis functions must be differentiable, integrable and
must satisfy several continuous conditions as will be discussed in Chap. 6.

*{Lu,v)y = %J.jv*(r)u(r')w

dQ' dQ
Ir —r'|
1 k|r —
. Zo> =__J‘J'U* ) exp(jk|r rl)dQ' dQ
4n |r—r'|

Q9
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S(x) P(x)
—
Xo X , Xq X
a [ dGxgde-1 b P(x)=1
y(x) y(x)

ﬁ

I

l |
X X, Xq X,

1
c y(x)=a+bx d y(x)=a+bx+cx?

Fig. 2.3.1a-d. Examples of basis functions

2.3.1 Principle of weighted residuals [15]

The principle of weighted residuals is to minimize the error of approximation in an
weighted average sense. Consider the following boundary value problems:

Pu=f  indomain Q (2.3.1)
ulr1 =u, on boundary I (2.3.2)
glr2 =g¢go on boundary [, (2.3.3)

where u and f are elements of the space while g is the normal derivative of the
function u, i.e. g = du/dn. In Eq. (2.3.1) the operator % represents a differential
operation. It may be a positive definite and self-adjoint operator. Alternatively,
it may be non-self-adjoint in a Hilbert space.

Using approximate methods, a set of linear independent functions

n n

=Y a;= Y N, (2.3.4)

i=1 i=1
is constructed in terms of the exact solution, i.e.
u=1. (2.3.5)

Then, the residual exists both in the domain and on the boundaries, e.g.
Ro=%i—f in Q
Rl = ﬁlrl — Ug on F1 (2.36)

R2=§|r2—90 on I;
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where ug and g, are the given boundary conditions of the first and of the second
kind. I, I; are the corresponding boundaries and I'; + I, = I.

In Eq. (2.3.4) the unknown constants «; are determined by the principle of
weighted residuals, i.e.

Q rl rz

This means that the residuals are forced to zero in an average sense, where
W, W,, W, are weighting functions of both the domain and boundaries,
respectively.

If in Eq. (2.3.7) the approximate solution is chosen to satisfy the boundary
conditions, then Eq. (2.3.7) reduces to

[RqWdQ=0. (2.338)
Q

On the other hand, if the approximate solution is chosen to satisfy the function
in the domain, then Eq. (2.3.7) reduces to
leWldr1+fR2W2dr2=0. (2.39)
I L
These two cases correspond to the boundary method and to the domain
method, respectively.
The substitution of Eq. (2.3.4) into Eq. (2.3.8) leads to

N

Z (LN, w;d>=fiw;). (2.3.10)

i=1
It is possible to obtain, through manipulation, the following algebraic equation:
K{a} =B. (2.3.11)

The unknown constants contained in the trial function are obtained by solving
the above matrix equation. Thus the approximate solution is found.

Many different methods are derived corresponding to different choices of
the criterion of weighted residuals. For instance, the sub-domain method,
the collocation method, the least square method, the Galerkin method and the
method of moments are all based on the principle of weighted residuals. These
several criteria were unified by Crandall [16] as the method of weighted
residuals. Collatz [17] called them error distribution principles.

2.3.2 Orthogonal projection principle [18-20]

One view of numerical methods for solving a linear operator equation is that they
represent a linear projection of the exact solution onto a certain finite dimensional
linear space. Some of the projection methods are orthogonal while others can be
termed non-orthogonal. An orthogonal projection is one that minimizes a certain
error norm. The reason is explained in the following subsections.
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Fig. 2.3.2. Projection of a vector

2.3.2.1 Projection operator

Taking a 2-D case, the projection of x onto the line generated by y is the vector
X, = {X, e)e, where e is the unit vector lying on the line y. The decomposition
X = X, + Z is unique where z is orthogonal to y, as shown in Fig. 2.3.2.

In an n-D space let f be an arbitrary element of a Hilbert space A and let
B be a subspace of 4. Then f can be decomposed uniquely as f = g + k, where
g is in the subspace B which is ‘closest’ to f while k is perpendicular to B. The
element g is called the ‘projection’ of f on B. From a geometrical view point g is
the point where the ‘plumb line’ from f to B intersects Band 6 (6 = || f — g||) is
the length of that line.

Thus it is possible to define the projection operator £ in A by

g=2f. (2.3.12)

A linear operator 2 which maps the whole of a Hilbert space A onto a particular
subspace B is called a projection operator only if it maps the elements of B onto
themselves, i.e. #(u) = u for all ue B.

2.3.2.2 Orthogonal projection

A projection 2 is said to be an orthogonal projection if, for all elements u in space
A and all v in subspace B, exists then

{u—Pu,vy=0. (2.3.13)

This indicates that the residual u — 2u is orthogonal to all v in the subspace B.
The orthogonal projection £ of a Hilbert space onto a subspace is unique. The
length of the residual ||u — 2u| is the minimum distance from u to the subspace
B. The proof for this conclusion is referred to in [19].

Concerning the function u in space 4, which has a finite norm and constructs
its orthogonal series in terms of the functions ¥/, {5, . . ., it can be shown that
the summation

0

Y. anin (2.3.14)

n=1
is convergent in the mean. Let

N

U = z anwn . (2315)

n=1
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Therefore u, is the orthogonal projection of u onto subspace B only if

ay =ty Y (2.3.16)

where (Y, ..., ¥} =S is a set of n elements of A. It is assumed that § is
a linearly independent set.! The set S is said to form a basis of A.
Let the difference between u and u,; be

Uy = U — Uy . (23.17)
Therefore u, is orthogonal to any function from the subspace B since

Qug, Yy = u, Yy — Uy, Yy = a, — <Zan¢m Vi
=a,—a=0. (2.3.18)

This means that if the function u is approximated by its orthogonal projection in
the subspace, then the error is orthogonal to the subset i,.
Let

u, =e, W= lpk (2319)

then
(e,w)y=0. (2.3.20)

This equation illustrates that, if the basis function ¥, is chosen as the weighting
Sunction, the method is satisfying the condition of orthogonal projection and the
error of the approximation is minimum.

In terms of a geometrical explanation assume that the elements o and f§ are
in space A and B, respectively. Then in the case of y = a + f3, 7 is in space A + B.
Next define a projection operator P(y) = a. Since the domain of £ is a linear
space of A + B, the range of # is the linear space of A. Therefore lines or planes
passing through the origin of the coordinates are subspaces of a three-dimen-
sional space. Suppose A and B arc one-dimensional subspaces as shown in
Fig. 2.3.3(a), then the space 4 + B is on the x-y plane. Thus y is on the x—y

u

ac®

O cC
S S\)‘QSQ S\)bSQ ¥

a b

Fig. 2.3.3a, b. Geometrical explanation of the projection method

! A linearly independent set satisfies o, + a2t + ... 0y, =0
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plane. Recall that the approximate solution # is the orthogonal projection of
u onto the subspace u. Hence Fig. 2.3.3(b) demonstrates that the residual e is
orthogonal to all w in subspace ii.

2.3.2.3 Orthogonal projection methods

If the approximate solution u and the error e are orthogonal to each other, as
shown in Fig. 2.3.3(b), then the error e is minimum. In other words, the error norm
for the orthogonal projection is smaller than the error norm for the non-orthogonal
projection. This is clear by comparing Fig. 2.3.3(a) and (b). The mathematical
proof is given in reference [20]. Most of the weighted residual approach uses an
orthogonal projection method which ensures that the error tends to zero.

2.3.24 Non-orthogonal projection methods

In the collocation method the Dirac-delta function d(r,r’) is chosen as the
weighting function. Since the J function is not square integrable, it cannot be an
element of a Hilbert space. Thus the inner product does not exist. Instead of an
inner product a bilinear functional is defined as

I(e,w) = | ewdQ . (2.321)
Q

Let P; represent the locations of the N collocation points, therefore substitution
of P; into the operator equation leads to

Lu(P)—~f(P)=0 1<i<N. (2.3.22)
Hence the matrix equation of the collocation method is derived by the bilinear

functional!

j[.‘lu(P,-) —f(P)]o(r—r)dQ=0. (2.3.23)
o]
Thus the residual is zero at N specified points. As N increases the residual is zero
at more and more points and presumably approaches zero everywhere.

2.3.3 Variational principle [15, 21]

Many problems in engineering may be characterized by the variational prin-
ciple. For example, the electric energy is minimum if the system is stable. This
minimum-energy principle is mathematically equivalent to Laplace’s equation

! If the bilinear functional is symmetric and positive definite, then this functional becomes an inner
product.
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in the sense that a potential distribution which satisfies Laplace’s equation also
minimizes the energy, and vice-versa. Hence, the field distribution can be
obtained using the principle of minimum energy. In general, the variational
method is to find an extreme function of a functional corresponding to a certain
problem. The functional of a Poissonian problem subject to the Dirichlet
boundary condition is expressed by

I(@) = [ (el Vol? - 2pp)dQ
? (2.3.24)
(Plr, =@ -
If the function ¢(r) minimizes the functional I(¢), then ¢(r) is the solution of the
given boundary value problem.

The variational method is in many respects similar to the method of
weighted residuals. The solution of Eq. (2.3.24) is expanded in terms of a trial
function with unkown constants which are determined by forcing the functional
I(®) to be stationary or minimized or maximized with respect to these undeter-
mined constants.

If an operator is symmetric and positive definite, then the function u mini-
mizes the functional [9], ie.

_‘il(u)=i[<£/u,u>-—<u,f>—(f,u>]=0 (2.3.25)
ca; da;
where «; are the constants included in the approximate solution (Eq. (2.3.4)). By
solving Eq. (2.3.25) to determine the parameter o;, the required approximate
solution u is obtained. The operator in Eq. (2.3.25) may be either differential or
integral [ 14, 22].

The variational approach uses proof of convergence for the solution. By
contrast, convergence of the solution is not generally guaranteed when using the
principle of weighted residuals. However, some problems are not characterized
by the variational principle. In electrical engineering both the weighted residuals
and the variational principle are used to derive the approximate solutions of
a problem.

2.4 Categories of various numerical methods

Most of the numerical methods are based on the principle of weighted residuals
or the variational principle. Both principles force the error between the real and
the approximate solution to approach zero. The variational method is based on
the equivalent functional of the governing equation. The weighted residual
approaches are based on the operator equation directly. In fact, these two
methods are unified.

As discussed in Sect. 2.3.1, if the unknown function is replaced by the
approximate solution, the residuals may be produced both in the domain or on
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the boundaries. For convenience. trial functions are chosen so that one of these
sets of residuals vanishes. For instance, using domain methods, the selection
requires a trial function that satisfies the boundary conditions exactly so that the
boundary residuals vanish. On the other hand, using boundary methods the bound-
ary conditions are not satisfied by the approximate solution. Rather the differential
equation itself is satisfied exactly. The third approach is a mixed one, in which
neither the differential equation nor the boundary conditions are satisfied.
Based on different choices regarding the principle of minimum error and
discretization, many different methods have been developed to date. In the later
part of this book all these methods are discussed using either differential
equation methods (domain methods) or integral equation methods (boundary
methods). In domain methods the discretization will be carried out within all of
the domain. By contrast, in the boundary methods only the boudary of the
domain needs to be discretized. Therefore in such cases the dimensionality of the
problem is reduced by one.

If the category is dependent on the approximate principle, there is another
kind of classification as listed in the following subsections. Applying the advan-
tages of both domain and boundary methods these mixed methods are very
useful for certain practical problems, as shown in references [23-25].

24.1 Methods of weighted residuals

The weighted residual approach covers all numerical methods. Based on the
choice of different weighting functions, basis functions and the approach to discret-
ization different methods are formulated.

2.4.1.1 Method of moments

The method of moments is a general form of weighted residuals. In the theory of
mathematics the method of moments is an interior weighted residual method in
which the power series is chosen as the weighting function. In electromagnetic
field theory which was originally used by Harrington [26], no matter which kind
of weighting functions are chosen, the weighted residual methods in the interior
regions are called moment methods. In fact it makes no difference where interior
region or boundary region are considered. The process of the method of
moments is as follows. After substituting the approximate solution

n

u=y 4y (2.4.1)
i=1
into an operator equation and assuming that the residuals are zero, then a set of
algebraic equations are generated as follows:

n

Y 0l Wy LY =W f> m=1,2....,n. (2.4.2)

i=1
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This can be written in matrix form:
K{x} = {b,} (2.4.3)
where

wi, LYy wi, LYoy .o w, L)

ky=| (2.4.4)
<W,,, agJlt[/1> <Wn’$¢2> . <Wm‘=(i¢’n>
<W1,f>
b, = 4.
: {<wn,f>} (2:43)

where ; are the basis functions. The weighting function w; may be a pulse
function, a ¢ function or any other continuous function with a higher order, as
described in Chap. 10. This method is widely used for solving fast transient field
problems because of the flexible choice of the weighting function. In the method
of moments discretization will be executed in the domain or on the boundary. If
only the boundary is discretized, the method of moments is the same as the
boundary element method. In reference [27] Harrington explains the relation-
ship between the method of moments, the boundary element method, Galerkin’s
methods and so on.

2.4.1.2 Galerkin’s finite element method

If the weighting functions are chosen to be the same as the basis function, i.e.
w;=N; (2.4.6)

then the method is known as Galerkin finite element method. Here N; is the
interpolation function of the approximate solution. This approach was first
published by Galerkin Bubnov in 1915. With this method the solution of
a partial differential equation can be obtained without using the Ritz method
(see Sect. 5.4.1).

According to Eq. (2.4.2), after discretizing the domain, the coefficients of the
element matrix for the LHS of Eq. (2.4.3) are

kg = [ VN;-VN,dS 2.4.7)
4

where the subscript 4 of the integral represents the subarea of the triangular
element and the superscript e represents element.

Using Galerkin finite element method the trial functions are chosen as a set
of complete functions. Thus the residuals are forced to be zero by letting the
residual be orthogonal to each member of a complete set of functions. The con-
vergence of the Galerkin weighted approximation was proved in reference [18].
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Due to the nature of the inner product the Galerkin form is a weak
formulation. It reduces the requirements for continuity of the approximate
function by one. It was shown in 1940 that the Galerkin method can also be used
to solve the Fredholm integral equation. Examples are given in references
[28, 29].

2.4.1.3 Collocation methods

The method of collocation is another special case of a moment method. It is also
called the point matching method. The coefficients a; in the approximate solution of
Eq. (2.3.4) are determined by satisfying the governing equation at certain specific
points. The collocation method corresponds to the method of moments if the
Dirac-delta function is chosen as the weighting function, i.e.

[[Lu(P)—f(P)]o(r —r)dQ =0.
)

The residual equals zero only in some specific points and not in the average
which means in the whole domain. The accuracy depends on the number and
the distribution of the matching points. The matching points may be chosen on
the boundary or within the domain. Therefore the method may be categorized
as being either a domain method or a boundary method. The charge simulation
method discussed in Chap. 7 is one of the collocation methods. The advantages
of this method are:

(1) There are no inner products to be calculated.

(2) Usually the resultant algebraic equations have fewer terms than the corre-
sponding equations for Galerkin approximation, especially if the matching
points are chosen to be on the boundary. The accuracy of the solution is
sensitive to the position of the collocation points.

2.4.1.4 Boundary element methods
In the boundary element method the fundamental solution is chosen as the weight-
ing function. If in Eq. (2.3.7) it is

oW
Y7 oon

then Eq. (2.3.7) is simplified to

W, = W (2.4.8)

JR(u) WdQ = JRl(u)‘;—z/dI’ + JRz(u) wdr . (2.4.9)

Q r, r
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After the boundary of the problem domain is discretized by elements, the matrix
form of the boundary element equation is

du
H{u} = G{a} (2.4.10)

where u and du/0n are known and unknown variables of the boundary nodes. H,
G are two coefficient matrices of the order N x N (N is the total number of
boundary nodes) estimated by integrations. The detailed procedure is given in
Chap. 9.

2.4.2 Variational approach

As indicated in Sect. 2.3.4, an equivalent functional exists for a self-adjoint
operator. The function which minimizes the equivalent functional is the solution of
the corresponding operator equation. Thus the first step of a variational method is
to construct an equivalent functional I(u) by Eq. (2.2.32). The next step is to
assume an interpolation function

in terms of the unknown function contained within the functional

L) = [ f(x, y, 2z, u, u, uy, uie, uy,, ... )dQ . (24.11)
2

The undetermined parameters «; are obtained by minimizing the functional
I(u), ie.
ol(u)
aot,- -

For example, let the operator be Laplacian operator and let it be subject to the
inhomogeneous boundary conditions of the second kind, i.e.

0. (2.4.12)

—V2u=ple (2.4.13)

ou
5= q(s) . (2.4.14)

According to Eq. (2.2.32) the equivalent functional is derived by

I(u) = {=Viuu) —2{u, >
= — [u(V-Vu)dQ — 2[ ufdQ . (2.4.15)
) 2
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Applying the vector identity V-(uv) = Vu-v + uV-v and letting v = Vu, then
Eq. (2.4.15) becomes

[() = — [ V-@Vu)dQ + [Vu-VudQ — 2 uf dQ
Q Q Q

= [|Vu|*dQ — 2/e [ updQ — $ug(s)dr . (2.4.16)
Q Q r

Equation (2.4.16) is the equivalent functional for the boundary value problem
described by Egs. (2.4.13) and (2.4.14). After discretization and using the ex-
tremum principle (Eq. (2.4.12)) the following matrix equation is obtained:

[K]{a} = {b} . (2.4.17)

The coefficients of the matrix and the column vector of Eq. (2.4.17) are

a4

2
bi="p: J NS . (2.4.19)

4

Equation (2.4.18) is exactly the same as Eq. (2.4.7). It is apparent that the
boundary conditions of the second kind are automatically satisfied in the
process of variation.

If Egs. (2.4.13) and (2.4.14) are expressed in integral form, i.e.

o(r) = J%G(r, r)p(r)dV’' + JgG(r, s')a(s)dl” (2.4.20)

Q r

the second term of the RHS of Eq. (2.4.20) is given as the boundary condition, i.e.

JEG(S, s')a(s)dS" = g(s) . (2.4.21)

s

Because the kernel G(r,r') = (1/4n|r — r'|) is symmetric, by using the same
procedure as was used to derive Eq. (2.4.16) the equivalent functional is

(@) = ,[G(S) JéG(s, s')a(s')dS’dS — 2Ja(s)g(s)d5 . (2.4.22)
Supposing
o(s) = Z ;0; (2.4.23)
i=1

the coefficients of the element matrix and the RHS of the matrix equation are
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obtained thus:

ki = J‘cx;(s) Jé G(s, s')a;(s')dS’ dS (2.4.29)
b; = [ o;g(s)dS . (2.4.25)

Se

In the integral equation method the singularities of the integral must be handled
specifically [28].

If the operator is non-self-adjoint there are several ways to find a generalized
functional. McDonald [2] defined a modified self-adjoint operator £’ to replace
a non-self-adjoint operator of an interface problem where

L'u=<{Lu G) (2.4.26)

and G is the Green function of the problem concerned.

In reference [13] an adjoint formulation derived from the quadratic func-
tional for a self-adjoint operator was extended to solve the integral equation
with a non symmetric kernel and for non-self-adjoint partial differential
equations.

2.5 Summary

1. The numerical solution of an operator equation is to approximate the
continuous information contained in the exact solution using discrete values. Thus
it is appropriate to refer to numerical methods as being discretization methods.

2. The approximate solution of an operator equation

Lu=f ueQcA

is constructed by using a set of linearly independent elements , in the subspace
of A, ie.

n

u= Z WY -
k=1

The set S = {¥y, ... Y, ... ¥,} is said to form a basis of space A. In both the
weighted residual approach and the variational principle the approximate solution
is an orthogonal projection of the real solution from the original space A onto
subspace B. Hence they satisfy the minimum error principle.

3. Based on the type of governing equation both the differential equation
methods and integral equation methods can be developed.

4. The weighted residual approach or the variational principle provide two
means for satisfying the minimum error principle. By using different choices for
the weighting function a series of numerical methods have been developed.
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5. Another approach in developing numerical solution methods is to replace the
continuous function by discrete values at a large number of grid nodes. The grid
nodes may be on the boundary of the solution domain or on the whole domain.
This gives rise both to boundary methods and domain methods, respectively. In
the domain methods the residuals are zeroes on the boundary. In boundary
methods the residuals are zeroes in the domain.

6. The properties of the discretized algebraic equation are dependent on the
properties of the operator. The symmetric positive definite operator leads to
a symmetric matrix equation and good results can easily be obtained.

7. From the theoretical viewpoint the functional exists only for the self-
adjoint operator. However, when dealing with the problems of electromagnetic
fields, the equivalent functional can be developed for non-self-adjoint operators
by several means.
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Part Two
Domain Methods

Domain methods are based on differential equations and on discretization of the
whole domain by regular grids or elements. The finite difference method (FDM)
and the finite element method (FEM) are the most familiar domain methods. In
both FDM and FEM variational principles or the principle of weighted resid-
uals are used to derive algebraic equations for the partial differential equations
corresponding to a specific problem.

There are four chapters in this part. Chapter 3 is concerned with the finite
difference method. The finite element method is discussed in three chapters.
Chapter 4 describes the general procedures used in the finite element method. The
discretization equations at nodes are derived by using weighted residuals.
Chapter S concentrates on using the variational principle to derive the equiva-
lent functional and the finite element equations of various boundary value
problems. The properties of the finite element method are revealed clearly by
using the minimization principle of the functional. Further applications such as
the open boundary problem are also described in Chap. S. Important techniques
of element discretization are classified in Chap. 6.



Chapter 3

Finite Difference Method

3.1 Introduction

The finite difference method (FDM) is an approximate method for solving
partial differential equations. It has been used to solve a wide range of problems.
These include linear and non-linear, time independent and dependent problems.
This method can be applied to problems with different boundary shapes,
different kinds of boundary conditions, and for a region containing a number of
different materials. Even though the method was known by such workers as
Gauss and Boltzmann, it was not widely used to solve engineering problems
until the 1940s. The mathematical basis of the method was already known to
Richardson in 1910 [1] and many mathematical books such as references [2 and
3] were published which discussed the finite difference method. Specific refer-
ence concerning the treatment of electric and magnetic field problems is made in
[4]. The application of FDM is not difficult as it involves only simple arithmetic
in the derivation of the discretization equations and in writing the correspond-
ing programs. During 1950-1970 FDM was the most important numerical
method used to solve practical problems ([5-7]). With the development of high
speed computers having large scale storage capability many numerical solution
techniques appeared for solving partial differential equations. However, due to
the ease of application of the finite difference method it is still a valuable means
of solving these problems ([8-11]).

Similar to other numerical methods, the aim of finite difference is to replace
a continuous field problem with infinite degrees of freedom by a discretized field
with finite regular nodes. The partial derivatives of the unknown function are
approximated by the difference quotients at a set of finite discretization points. The
original partial differential equation is then transformed in to a set of algebraic
equations. The solution of these simultaneous equations is the approximate solution
of the original boundary value problem.

In this chapter discretization equations of Poissonian problems both in transla-
tional symmetrical and axi-symmetrical coordinates are discussed. The solution
of a diffusion equation with linear and non-linear parameters is presented.
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Several specific discretization formulations for various types of boundary condi-
tions and interfacial conditions are developed. Iterative methods to solve matrix
equations derived by FDM are introduced. Examples are given for solving
electrostatic and diffusion problems. Finally, the relationships between finite
difference equations and the variational principle, together with the approaches
weighted residuals, are discussed in the last section.

3.2 Difference formulation of Poisson’s equation

Finite difference methods are used in both 2-D and 3-D cases. Difference
equations for 3-D cases are the extensions of 2-D problems. Hence the difference
equations for 2-D cases are developed first in this section.

3.2.1 Discretization mode for two-dimensional problems

The basic idea of FDM is to replace the derivatives of an unknown function by
the difference quotients of unknown functions. The form of finite difference
equations depends on the form of the domain discretization. Assume that
a two-dimensional area Q is bounded by the contour I', the potential function
u within the domain Q satisfies Poisson’s equation and is subject to the Dirichlet
boundary condition as shown below:

V2u = F(x,y) in domain Q
ulp=g(I) on boundary I' . (3.2.1)

In principle Q can be divided into an arbitrary grid as shown in
Fig. 3.2.1(a)~(e). In order to simplify matters the square grid shown in Fig.
3.2.1(a) is adopted. Depending on the application uniform or non-uniform
rectangular grids shown in Fig. 3.2.1(b) and (c) are used. For some specific
demands the triangular grids (Fig. 3.2.1(d)) are considered. For problems with
circular boundaries the polar grids shown in Fig. 3.2.1(e) are used.

In Fig. 3.2.1 the distances between grid lines are called steps or mesh lengths
while each intersection of grid lines is called a node. After the domain is sub-
divided into grids the continuous function is replaced by a great number of
discretized values at these nodes.

3.2.2 Difference equations in 2-D Cartesian coordinates

After the grid has been specified, the derivatives of the unknown function are
approximated by taking the difference quotients of the function related to several
adjacent nodes. Based on the definition of the difference and the difference
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quotient several methods can be used to derive the discretization formulations.
In this section Taylor’s series are used to derive the difference equations.

In order to obtain a general discretization formula and to simplify
this discussion for boundary discretization a non-uniform mesh shown in
Fig. 3.2.2(a) is considered first.
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Assume that the distances between two branches of parallel lines are differ-
ent as shown in Fig. 3.2.2(a). Any node O(x,, yo) together with its four adjacent
nodes E(xg, yg), N(xn, ¥n), W(xw, yw), S(xs,ys) constructs an asymmetric
five-pointed star. Let ug(xg,yo) be the potential value of node O and
ug, un, Uw, ug the potentials at the nodes E, N, W, S, the potential u, of node
O can then be expressed in terms of the potential values of the nodes E, N, W, S.
The result is derived as follows.

If the function u(x) and its derivatives du/dx, d*u/dx?, . . . are continuous in
x, then u(x) can be expanded by the Taylor’s series:

1 (0%u 1 (03u
5<W>‘Ax)2 * 5(@)“""}

=)
u(x + 4x)=u(x)+ | =— |dx +

0x
64
4'<6 >(A X4 (3.2.2)
or
du 1 (0%u , 1/[d%u N
u(x — 4x) = u(x) — <E>Ax + i(gx_z)(AX) — i(;a?)(Ax)
0*u .
4'<8 )(A x)* — (3.2.3)
where 4dx is a small increment of the variable x.
Let
AxE =Xg — Xg = hE, AXW =Xg— Xw = hw . (324)

Substitution of the above two expressions into Egs. (3.2.2) and (3.2.3),
respectively, yields:

ou 1 (0%u 2, u
uE = uo + <a>0hE + :2_'<—6_x—5>0 (hE) 3' (a ) (hE)

1/0%u o
+ 21—!<6_xz>0(h5) (3.2.5)
ou 1 (3%u , 1[0 N
Uw = U — <a>ohw + —27<W>o(h“l) — ?!(b?)o(h“/)
Gtu hw)* 3.2.6
+ {56 ). 0 (326

where hg is a forward step while hy, is a backward step. Similarly, if u is
a function of the variable y, the following two expressions are obtained:

ou 1 0%u 1 /3%u
o=+ (S ) * ih?*(W)o ¥ i(a—ys)o“”*f

4
; $<%>o‘h”)4 (327)
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du 0*u 1 (03u
=y — —h2 _ = 3
s = o hs<ax>o 2"'s <ay2>o 3! <6y3>0 (hs)

1 [0*u n
N 4_!<ﬁ>0(;,~) (3.2.8)

where hy, hs are foreward and backward steps in the y direction. Forming the

h2
sum of « times Eq. (3.2.5) and — h—zEa times Eq. (3.2.6), yields
w

h h 9
(s =)= (1= oo (e 452 (3)
w W 0
1 PR o
+ gihe(h? + hwhE)<a “) Ehz(hz—h2)< ") ‘
()
(3.2.9)

Neglecting the terms containing the partial derivatives of the order higher than
three, which is valid if hg, hw, hn, hg are small, results in

ou hy hg — hy hg
~ _ 3.2.10
((3x> he(he + hw) et hehw 0 hw(he + hw) ™ ( )
and
au hs hN - hs hN
— | = un + Uy — Ug . (3.2.11
<ay>o g + )™ T ks % gl £ i) )

These expressions show that the partial derivatives of the first order of the
functions u(x) and u(y) at any node O are approximated by algebraic
equations. If

hE = hw = hx hN = hs = hy (32]2)
then Egs. (3.2.10) and (3.2.11) reduce to

du Ug — Uw

— | = 3.2.13
(8x>0 2h, ( )
6“ UuN — Us

— ] = . 32.14
(6.}’)0 2h, ( )

These equations indicate that the first order derivatives of the function are
approximated by expressions of the central difference quotients of the first order. It
means that the first order partial derivatives of the function u at any point ‘0’ is
dependent on the function value of its neighbouring nodes and the step length.
The accuracy of the central difference quotient is higher than the forward and
the backward difference quotient (0_14) > e — Yo or <@> 4 fw — o (these
ax 0 h 5x 0 h
are obtained directly from Egs. (3.2.5) or (3.2.6)). The reason will be interpreted
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in Sect. 3.5.2. In Eqgs. (3.2.13) and (3.2.14) the accuracy is higher if the length of
h is smaller.

On the other hand the summation of « times Eq. (3.2.5) and (hg/hy)a times Eq.
(3.2.6) is

h h 1 0%u
(uE + ﬁuW> = (1 + ﬁ)uO + Ehg(hg + hw)(b’;z‘>0
1 u 1 0*u
+ grhelld - h3v)<@>o + e + h&)(ﬁl .
(3.2.15)

Ignoring the terms containing hg and hy to the power higher than three the
following expressions are obtained:

0%u 2ug 2uy 2u,

- N - 32.16
(axZ)o helhe + hw) * wlis + ) hy (3216
azu> 2uy 2ug 2u,
— | = + — 3.2.17
(ayz o hn(hn +hs)  hs(hs + ) hnhs ( )

If the forward and the backward steps in the x, y directions are identical,
respectively, e.g. hg = hy = h,, hy = hg = h,, then the above two equations
reduce to

0%u  ug — 2ug + uw
ox?~ h?

R

(3.2.18)

0%u  un — 2ug + ug
Y. 3.2.19
ay? h? ( )
Equations (3.2.18) and (3.2.19) express that the second order partial derivatives of
the function are simplified by the difference quotients.
By introducing Egs. (3.2.16) and (3.2.17) into Eq. (3.2.1) the discretization
form of Poisson’s equation is

QpUg + anUn + Swly + dsts + dotlp — 3Fo =0 (3.2.20)
with

1 1

" helhe + hw) M hwlhg + )
1 1

™= hn(hn + hs) w= hs(hn + hs) (.220)
1 1

2o = _<hEhw +m> .
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F, is the source density of point O. Equation (3.2.20) is the general discretization
form of Poisson’s equation corresponding to the discretization form of an
asymmetric five-pointed star. This form is rarely required, but any simple
expressions can be derived immediately from Eq. (3.2.20). In the case of
hg = hy = h, and hy = hs = h, the discretization equation at node O is

Ug — 2Ug + Uy Uy — 2ug + ug

h2 + hf =Fy. (3.2.22)
If
he=h,=h (3.2.23)
then
Uo = 2(ug + uy + uw + us — h2Fy) . (3.2.29)

This is the commonly used difference equation of the Poissonian problem at node
O discretized by a symmetric five-pointed star. For generalization purposes
Eq. (3.2.24) can be written in a generic form:

u; j = 11'(“¢'+1,j F U e F Ut U — h*Fy) . (3.2.25)

The subscripts of the sequence i, j are shown in Fig. 3.2.2(b).
For the Laplace’s equation Eq. (3.2.24) reduces to

Ug = %(ME + Uun + Uw + us)
=3y, Ui e F Uiy Ui o) (3.2.26)

This equation shows that the potential value of any point is the average of the
potentials of its four neighbouring points. Equation (3.2.26) is the symmetric five-
point difference equation of Laplacian problems.

If triangular grids are adopted (Fig. 3.2.1(d)), the discretization formula at
point O is
1
Ug = g(ug + ung + Unw + Uw + Usw + Usg — hz FO) . (3227)
If 3-D cases are considered, the above classification may be easily extended to
a seven-node star, then
Ug = %(ug + un + uw + us + ug + uB) (3228)

where ug and uy are the potentials of the front and the back points of point O.

All of the above discretization equations are derived using Cartesian coor-
dinates. The next subsection discusses the problem in the case of a discretization
in polar-coordinates.

3.2.3 Discretization equation in polar coordinates

If the problem involves circular boundaries, the polar coordinates (shown in
Fig. 3.2.3) arc applied for convenience.
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Fig. 3.2.3. Five-pointed star in polar coordinates

In polar coordinates Laplace’s equation is expanded to

0'u 1 du 1 d%u
—+-—+=5=—=5=0. 3.2.29
IR MR T 0 ( )
The approximate expressions of du/dr, d*u/dr?, 0*u/d6* can be obtained by
replacing variables r and 0 in the approximate expressions of du/dx, 0%u/ox?
and 0%u/dy*. Introducing these approximations into Eq. (3.2.29) the following
equation is obtained:

h
ag(ug — Ug) + awl(uw — ug) + an(un — u0)<l + 2—i>

hy

+ as(us - uo) <1 - —> = 0 (3230)
2r

where ag, . . ., ag have the same values as given in Eq. (3.2.21). In general the
position of a five-pointed star is expressed by double subscripts i, j. Let r = ih
(i=12..)and 6 =00(j=0,1,2,...)and by using a similar process as in
Eq. (3.2.20), the following equation is obtained:

(Ui, — 20 5+ wi—q, ;) L (Uieqj+ Uimyj)

h? ih 2h

1 ui i+ - 2u|" i + ul‘. j—

+ (T‘hF( S (50)’2 =)o (3231
This equation can be rewritten to
1 1 +{1+ l 21 1 + L u
2i) 1 2i) (i00)% |
1 1

+ Wui‘j_l + mui'ﬁ.l =0 (3.2.32)

If the region is far away from the origin of the coordinates and it is assumed that
the angle between any two radical lines is an equalized small value and the
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radius r varies as a geometric series which satisfies the relationship

rihe_ 1 _yg (3233)
r r— hy
then Eq. (3.2.30) is reduced to Eq. (3.2.26).
The reason is explained as follows [12].
If in Fig. 3.2.3 6y = 05 = 0 (0 is small), then hy = hg = h = rf. Assume that
the coefficient of (us — uo) and (uy — uy) are equal to the coefficients of
(uw — uo) and (ug — uyg), respectively, i.e.

h
i L+37
20 hyw(hw + hg)
he (3.2.34)
1 S 2r
20102 hg(hg + hw)

the solutions of the above equations are then

he = ?[0 + (4 - 6%)'2]

p (3.2.35)

hy = %[—9 +(4—0%)12] .
r+ hg r
Now the terms and can be expressed as
r r—hy
r+ hg -1+ g[g + (4= 027
1 (3.2.36)

r — hw -

- g[—e N

Comparing these two expressions, if 6 is small enough, the difference between
r+ hE

and r becomes very small and it follows that

r+ hg r
r T r—hy

=f=1+ 9(1 + g) . (3.2.37)
The error of Eq. (3.2.37) depends on the value of 8. If = 15°, then the error is
less than 0.41%; if 6 = 7.5° then the error is less than 0.039%. Thus if an
appropriate value of 0 is chosen and the radius varies as a geometric series subject
to ratio f, then the difference formulation in the area far away from the origin of the
coordinates is the same as the one obtained in rectangular coordinates.
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3.2.4 Discretization formula of axisymmetric fields

In cylindrical coordinates it can be assumed that the z-axis of the coordinates
coincides with the axis of symmetry. The potential distribution is independent of
the coordinate 0, i.e. du/00 = 0. Thus the expression of Laplace’s equation
becomes

02u+ 1 8u+62u_
orr " ror 02

0. (3.2.38)

The mesh discretization in the r-z plane shown in Fig. 3.2.4 is similar to that of
the x—y plane.

By using the same method in deriving the difference equation as in
Sect. 3.2.2 and supposing h, = h, = h the difference equation in the r-z plane is

h }
L+ — Jug + un + (1 = — Juw + us — dup = h2F, . (3.2.39)
2rg 2r,

Let r =ih(i = 1,2, ...). The general formula of the node i,j is then

1 1 1
l‘i-j=Z|:<l + E)ui+l'j+ Ui j+1 + <l —Z>ui_1‘j+ Ui j-1 —h2F0:| .

(3.2.40)

If i is very large, Eq. (3.2.40) is identical with Eq. (3.2.25). It shows that, for
axisymmetrical problems if the area is far away from the axis, the field distribution
is almost identical to the field distribution in Cartesian coordinates.

Concerning the points located on the axis of symmetry, i.c. r = 0, the term
A

cu . . . ..
— - then becomes indefinite. By using the extremum principle

rr
du
lim 1 du i or 0*u
iml-— ) =1 = — .
r—o \I" Or o (1) art ).—

Equation (3.2.38) reduces to

’u 0%
z

[

[

[

|O(r,z)_

I BRER
0 r

I Fig. 3.2.4. Grid nodes in r-z plane
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Since the field is symmetric to the axis, the difference formula of the points
located on the axis is

Ug = %(4“5 + un + us — tho) . (3242)

All the above formulations are derived for solving problems in linear and
uniform materials.

3.2.5 Discretization formula of the non-linear magnetic field

If the reluctivity v(v = 1/u) of a given material is a function of the magnetic flux
density, Poisson’s equation for the magnetic vector potential in a 2-D case is

0/( 0A 0 0A
&(”@*a(”é})“* G249

Assuming that the current density and the reluctivity of the medium are
constant in the area of each mesh, the discretization equation can be derived by
the same method as discussed in Sect. 3.2.2. The result [13] is

4 4
Ay = <J0 + Y ot,A,-)/ Y (3.2.44)
i i=1

i=1

with
1 1
ag = =—(Vghs + vnhn) an = 5—(vwhe + vwhw)
2hg 2hy
: ) (3.2.45)
Aw = Z—hE(vwhN + vshs) os = z_hE(Vshw + vghg)
JO = i(JEhShE + JNhEhN + thth + Jshwhs) . (3246)

In the solution of a non-linear problem an under-relaxation factor f§ of v may be
introduced in some cases to accelerate the iteration as in

prrD = (yint D) _ymyg oy ) (3.2.47)

The experience of solving the problem as shown in reference [14] indicates that
an appropriate relaxation factor of v yields a better rate of convergence than
a constant relaxation factor such as f = 0.1. The relaxation factor depends on
the value of the flux density.

3.2.6 Difference equations for time-dependent problems

Applying the difference quotient of time, a 1-D diffusion equation is considered
as an example, i.e.

2
Ou_ 0u (3.2.48)

Yo
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nat

Fig. 3.2.5. Discretization of a 1-D time
X dependent problem

jax

The variables of x and t at any point are shown in Fig. 3.2.5. The time iteration
and the position iteration are indicated by the superscript and the subscript,
respectively. Thus the expressions of the Taylor’s series for t and x are

ou\" (4t (22u\"
St At(_) . <_ (3.2.49)
j ) a), " 2 \a?),

ou\'  (4x)* (d*u\"
S L gu\ 3.2.50
ul+l ul + x(@x),- + 2' (8x2 j ( )

By using the forward time difference quotient of the first order and the centred-
space difference quotient of the second order, Eq. (3.2.48) is transferred to

Wttt — e = 2u) 4+ -
= - 2.51
At a (4x)? (3:2.51)
This equation can be rearranged to
uitt = Culyy + (1 — 20 + Cuj_, (3.2.52)
with
At
= ) 2.53
¢ a(4x)? 3 )

Equation (3.2.52) is known as an explicit formulation; the new value u}* ! can be

evaluated by the three nodal values at the nth iteration. The steps 4t and 4x
must satisfy Eq. (3.2.53). Notice that the constant 2C must be less than 1,
otherwise the iteration will be broken. In addition, if C < 1/2 is satisfied, the
solution can be convergent but the error could be oscillated. If C < 1/4, the
solution will not oscillate but the penalty is that the A¢ must be very small [15].
Comparison with Eq. (3.2.51) shows that a stable solution is obtained if an
implicit formulation [15] is used.
If the spatial derivative of a function is approximated at time n + 1, i.e.

2 n+1 +1 n+1
°u Uiy —2upT T+ uply
Ox? (4x)?

(3.2.54)
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then Eq.(3.2.51) is transformed to
ittt —uf 1 it =20+ unt!
a

a (4x)?

(3.2.55)

This is an implicit iterative formulation. The fundamental difference between
Egs. (3.2.51) and (3.2.55) is that in Eq. (3.2.51) there is only a single unknown
ui* ! It can be evaluated by a simple iteration. In Eq. (3.2.55), at the (n + 1)th
iteration of time, the nodal values of three neighbouring nodes are unknowns.
They cannot be solved directly from Eq. (3.2.55). Hence Eq. (3.2.55) is called the
implicit form of a difference equation. The implicit formulation contains a set of
algebraic equations. Introducing Eq. (3.2.55) into Eq. (3.2.48) yields

Cuitl + (1 + 200U = Cuitl = u) . (3.2.56)

This equation is applied to all interior nodes except the points lying on the
boundary which must be modified to reflect the boundary conditions. The
solution of Eq. (3.2.56) may be derived using different methods.

The well known Crank-Nicolson equation provides an alternative implicit
scheme which has the accuracy of the second order in both space and time. The
difference approximation is developed at the midpoint of the time increment, i.e.
the temporal derivative of the first order is approximate at t"** by

0 nEl_yn
u  uj uj

- 3.2.57

ot At ( )

The second order derivative of space is determined on the midpoint by

averaging the difference approximation at the beginning (¢") and the end (¢"*1)
of the time increment, i.e.

(3.2.58)

@=l Wiy — 2+ U)o, N Wil =2t +ut
ox* 2 (4x)? (4x)? '

Introducing Eq. (3.2.57) and (3.2.58) into Eq. (3.2.48) the Crank—Nicolson
equation can be expressed as [16]:

ﬁg—z " +(1- ﬁ)g "o a@"*t —u") . 3:259)
When f = 4, Eq. (3.2.59) becomes
where
(4x)?

B"=u},, —2u} +u}_, + 2a . uj . (3.2.61)

J
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Therefore, if the implicit equation is adopted, algebraic equations have to be
solved in the process of each iteration, but a more accurate result is obtained.

In Eq. (3.2.59), if § =0, Eq. (3.2.59) is the same as Eq. (3.2 51). If =1,
Eq. (3.2.54) is called an O’Brien equation.

3.3 Solution methods for difference equations

In order to select the solution method to solve the discretization equations the
characteristics of the algebraic equations have to be examined first.

3.3.1 Properties of simultaneous equations

A Dirichlet problem as shown in Fig. 3.3.1 is used as an example to cl.ssify the
properties of the matrix equation derived by using the finite difference method.

In Fig. 3.3.1 the solution region Q is subdivided into a square grid and
boundary nodes are assumed to be identical with the nodes of the grid. For
simplicity, the source term is considered as a constant. The algebraic equations
of the nine interior nodes are

[ du, —u, 0 —u, 0 0 0 0 0= —h*F,
— u 4“2 — U3 0 —Us 0 0 0 0= —hZFo
—u, 4us 0 0 —ug 0 0 0 =100 —h*F,
—u, 0 0 du, —us 0 -u 0 0= —h*F,
< 0 —u, 0 —uy 4us —ug 0 —ug 0 = —h?F,
0 0 —u; 0 —us 4ug, 0 0 —ug=100—h%*F,
0 0 0 —us O 0 4u, —ug 0= —h’F,
0 0 0 0 —us 0 —u, dug —uy = —h*F,
L O 0 0 0 0 —ug 0 —ug dug = 100 —h?F,
(3.3.1)
u=100
7
ya e
3] 6] 9 y
/ /
A 2 5 8 ,
/] s
4 1 4 7 -
/s Vv
7 < 7 //

u= Fig. 3.3.1. A Dirichlet problem subdivided by square meshes
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These equations can be written in a matrix form:

Ku=B (3.3.2)
where
4 -1 —1 ]
~1 4 -1 -1
-1 4 -1
—1 4 1 -1
K= -1 -1 4 -1 -1 (3.3.3)
-1 -1 4 -1
-1 4 -1
—1 -1 4 -1
i —1 -1 4

and u is a column vector consisting of nine unknown potentials at nine interior
nodes. The RHS of Eq. (3.3.2) are known boundary values and sources as given
in Eq. (3.3.1). It can be found that matrix K has the following properties:

(a) K is a banded sparse matrix. The maximum non-zero terms of any row is 5.

(b) The order of matrix K is equal to the total number of unknown potentials at
the interior nodes.

(c) The distribution and the values of the elements of K are regular. In the case
of a uniform medium the value of each diagonal element is 4; all the other. are —1.

(d) The matrix K is positive definite, but not always symmetric. The symmetry
is destroyed if the grid nodes are not coincident with the boundary.

The Gauss-elimination method is a simple and easy way to be used to solve
Eq. (3.3.2). Due to the large sparsity of the matrix the Gauss-elimination method
is not economical. The sparsity of the matrix should be considered during the
solution process.

Compared with the direct method, iterative solution methods have many
advantages for solving difference equations. Since the distribution of the ele-
ments of matrix K is regular, the matrix need not to be stored. So the memory
requirement of the computer is considerably decreased. But the convergent
speed of the iteration then becomes an important problem. The successive
over-relaxation iteration is the common method to solve the finite difference
equations.

3.3.2 Successive over-relaxation (SOR) method

Recall Eq. (3.2.26)

-1
Ui j=g(Usr, j+ i oy oy j+ g j-y).
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The function value of each node is determined by the values of its four
neighbouring nodes. If the initial estimate of the potential u{}” is given, the first
approximate values “(-”1 can be calculated by Eq. (3.2.26). This means each new
value of the potential at the centre of the star is determined by the previous
iterative values at its four adjacent nodes. While this formula is used as an
iterative process, two arrays with dimensions of N (the total number of interior
nodes) have to be stored. One is for storing the previous values of each node, the
other is for storing the current values of the nodes. This procedure is a basic
iteration method known as the Jacobian iterative method.

However, it is noted that when i, j are increased from 1 to N and 1 to M, the
iterative sequence of Eq. (3.2.26) is a scanning of the nodes from the left-hand to
the right-hand column starting from the bottom row to the top in each column.
According to this procedure the iterative formulation can be modified to:

n+1

U, j = 741(“?4.1']' + u"'l'j-pl + uf'fll'j + U?j'il) . (33.4)

In this equation the new approximate values ufX{ ; and u} %1, are used in the

(n + 1)th iteration as soon as they are available. This method is called the
Gauss-Seidel iteration. It is more economical than the Jacobian method; only
one complete array of potentials needs to be stored. It requires half the memory
than in case of the Jacobian method.

Unfortunately, if the total number of the nodes is large, the convergence
speed of the Gauss—Seidel iteration is still too slow. The over-relaxation method
is one of the most generally effective, stable and successful methods to accelerate
the convergence speed.

The over-relaxation method is based on the estimate of the correction
required to evaluate u? %' in Eq. (3.3.4). First the residual of the function values
between two iterations is defined as

Rij=ul} —ul;. (335

Then the new iterative value of the potential is determined as the sum of the old
value and the residual R; ; multiplied by an acceleration factor a. This can be
expressed by the following equation

ui'=ul j+aR;; l<a<?2. (3.3.6)

The factor o is an acceleration convergence constant called a relaxation factor
which determines the degree of the over-relaxation. It is greater than 1 and less
than 2. If « = 1, Eq. (3.3.6), reduces to Eq. (3.3.4). If « = 2, the iteration becomes
divergent. Therefore there is an optimum acceleration factor oy. At this value the
convergence rate is greatly increased. The difficulty is that the optimum acceler-
ation factor is extremely problem dependent; there is no general method to
estimate its value. In case of a Poissonian problem in which a rectangular region
is subdivided into a square grid with (p + 1) and (q + 1) nodes on each side the
optimum factor a, can be estimated by the following equation [3]

a —2—7c(2)*<-1—+l>Jf (3.3.7)
0= ) 3.
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Table 3.3.1. The influence of the acceleration
factor (¢ = 107%)

Acceleration factor, x [terative times, N
1.00 609
1.50 228
1.70 127
1.76 96
1.763* 94
1.78 83
1.80 86
1.90 153
1.92 892

If the problem domain is a square and subdivided into a square grid, then

2

Ao ‘—‘——T .
1 + sin(—)
p

For an area of arbitrary shape, the equivalent rectangular area can be used to
estimate the optimum acceleration factor.

In order to show the effect of the relaxation factor « the Dirichlet boundary
value problem shown in Fig. 3.3.1 is used as an example. Assume p = 30, g = 24,
and the convergence criterion of iteration as ¢ = 1. E — S (the relative error of
potential of each node). The iterative times and the relaxation factor are listed in
Table 3.3.1.

The table shows that 1.78 is the optimum relaxation factor. 1.763* is
calculated by Eq. (3.3.7), it is very close to the optimum value. With p = 40 and
¢ = 24 the optimum acceleration factor is xo = 1.78 at N = 102. a, is exactly
equal to the value which is calculated by Eq. (3.3.7). Hence Eq. (3.3.7) is an
approximate estimate.

In general, for a stablc convergence process, the number of iterations
N depends on the largest error ¢ at any node and the factor F [4]:

N = — F(logs) . (3.3.9)

(3.3.8)

In this equation F is known as the asymptotic rate of convergence, it is
a function of the boundary conditions, the number of nodes, and the particular
type of difference equations. A more detailed discussion is given in reference [8].

Even though the initial value can be given arbitrarily, it will influence the
speed of convergence. The proper estimation of the initial value is helpful
in obtaining good convergence, especially in solving non-linear and time-
dependent problems. The result may be divergent if the initial value is not
appropriate.

As the successful over-relaxation (SOR) method is simple, flexible and
relatively quickly convergent, it is the most useful method. However, it is a point
iterative method. Other rapidly convergence methods include line iterations,
block iterations, and alternating directions implicit (ADI) methods [2, 17, 18].
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Table 3.3.2 Iterations of different methods (¢ = 107'9)

Method Time/iteration cycle No. of iteration
Gauss—Seidel k-4p* 840
SOR k-7p? 70
ADI k-7p? 25

In the block iteration method the nodes are no longer treated seperately but in
lines or blocks. In ADI method nodes are treated line by line, but the direction of
the sweep of lines across the mesh is alternated (in each iteration there is a sweep
in the x-directicn and a sweep in the y-dircction). Reference [4] gives the
number of iteration by using different methods for solving the Dirichlet problem
in a square region with (p + 1)? nodes. Some of the data are listed in Table 3.3.2
to show the efficiency of the different methods. k and p are constants. The table
shows that the number of iterations in using SOR or ADI is much less than with
the Gauss-Seidel iteration. Other effective iterative methods for specific prob-
lems are given in [19].

If the speed and the size of a computer are sufficient, direct solution methods
are still faster than iterative methods.

3.3.3 Convergence criterion

In the iterative process the residual R{"; is defined by
R, = "V — ufn), (3.3.10)

The convergence criterion gives that the residuals R{"; at every interior node
become less than a predetermined error &. Note that if the residual R; ; becomes
small the convergence rate becomes very slow. In this case the iteration times
can be used as a criterion for stopping the calculation.

On the other hand, the choice of either the absolute residual or the relative
residual should also be carefully considered. To solve static problems the
relative error should be taken. When solving time-dependent problems if the
solution of the problem itself becomes very small the relative error becomes very
large; consequently the absolute error is considered.

3.4 Difference formulations of arbitrary boundaries
and interfacial boundaries between different materials

In the former sections discussions have been limited to homogeneous media
which are subject to Dirichlet boundary conditions and where the grid nodes are
identical with the boundaries. In more general cases there are different materials
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Fig. 3.4.1a—c. Different types of the lines of symmetry

and the grid nodes may not be coincident with the boundary or the interfacial
boundaries. The formulations for these cases will be discussed in this section.

3.4.1 Difference formulations on the lines of symmetry

Consider the case shown in Fig. 3.4.1(a); the grid nodes are coincident with the
symmetric line. The points 0, N, S lie on the line of symmetry.

Due to symmetry a fictitious point E is placed on the symmetric position of
point W. With ug = uw it is found that

uo=£(2uw+uN+u5—h2F0). (341)
If the line of symmetry is diagonal to the grids as shown in Fig. 3.4.1(b), then
ug = 3 [2(us + uw) — h*Fo] . (3.42)

with uy = uw and ug = us.
In Eqgs. (3.4.1) and (3.4.2) h is the distance between the lines of the square grid.
If the line of symmetry is parallel to, but not coincident with, the grid line as
shown in Fig. 3.4.1(c), then with ug = uw and §, + B, = 1, Eq. (3.2.24) becomes

2“5 < 1 )
+un +us—2( 1 + ug—h*Fo=0. (3.4.3)
BB T BiB2) " °
If B, = B, = 1, this equation reduces to
1
Ug = Ta(8“g + un + us — tho) . (344)

3.4.2 Difference equation of a curved boundary

There are problems where the grid nodes are not located on the boundary of the
domain, as shown in Fig. 3.4.2.
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BAN

Fig. 3.4.2. Discretization model for a curved boundary

According to Eqgs. (3.2.5), (3.2.6) the following equations exist:

ug = ug + ﬁm(i—i)o + %[f%hz (%)0 (34.5)
Uy = Uy — h<g—g>o + %hz <%i—l;>o . (3.4.6)
By using similar procedures as derived in Eq. (3.2.16) and (3.2.17) one obtains:
%—;:%[ﬂl(liﬂl)ug-%(l fﬂl)uw—l—jz:uoil (3.4.7)
%;=hiz[ﬂz(lz-+-ﬂz)uN+(lfﬁz)us_éuo] (3.4.8)

Introducing the above equations into Poisson’s equation the difference equation
at point 0 is

ZUE ZuN 2uw 2Us

YA Y S MY ANEYS

1 1

22—+ —)uy, =hF (349
(ﬂx /ﬁ) e

with B, 8, < 1. It is obvious that the program for solving problems with curved

boundaries needs quite a little complicated program.

3.4.3 Difference formulations for the interface of different materials

Now the case is considered where the interface between two different materials is
coincident with the grid lines shown in Fig. 3.4.3. Nodes 0, N, S are located on
the interface of two regions having different permeabilities u, and py. Let 4, and
A, denote 2-D magnetic vector potentials in the region a and b, respectively.
Assume that only region a carries current distributed with uniform density J,
region b is free of current. Thus the magnetic vector potential 4, in region
a satisfies Poisson’s equation V24, = — u,J. In region b A, satisfies Laplace’s
equation V24, = 0.
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Fig. 3.4.3. Grid nodes located on the interface

If both two regions are considered as fulfilling permeabilities p, and p,,
respectively, then the difference equation at node 0 is

Ao, + Ay, + Ay, + A, — 44, = B*F, (3.4.10)
or
Ao, + Ao, + Av, + Ao, — 44, = h2F, (3.4.11)

The subscripts ‘a’ and ‘b’ represent that the region fulfills with material with
permeability, u, and uy, respectively. However, the potentials 4,_ and A, are
fictitious, they can be eliminated by the following interface boundary conditions

Aa() = Ab A“N = AbN A = Abs (3412)

0 as

and
1 1
—(Aa, — Au,) = — (A, — Ay,,) - (3.4.13)
Ho

a

AE

Forming the sum of p,, u, times Egs. (3.4.10) and (3.4.11), respectively, and
considering the boundary conditions of Egs. (3.4.12) and (3.4.13) the difference
equation of node 0 is:

1/ 2 2K K
— (2 a, + 4 A, + As———h*Fy) (3414
Ao 4<1+1< be FANF TR AW T A T TR °> (3.4.14)

with
!
K="= (3.4.15)
Ha
If region b is a ferromagnetic material where the lines of the magnetic flux
density are orthogonal to the ferromagnetic surface, i.e. d4/0n = 0, then

In accordance with the same method used before the formulations for other
interfacial boundary conditions are given in Fig. 3.44.

If in Fig. 3.4.4(a) and (b) both regions satisfy Laplace’s equation and if
U, — oo then

Ao = LQ2Ag + 24N + Aw + As) . (3.4.17)

This case usually occurs in electromagnetic devices.

EI
' For 2-D electrostatic fields A is replaced by ¢ and K = o
b
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Fig. 3.4.4a,b. Different cases of interfacial boundaries

3.5 Examples

Example 3.5.1. Calculate the potential distribution in a grounded slot as shown
in Fig. 3.3.1.

Due to the symmetry only half of the domain is considered. The potential
distribution in the slot is given in Fig. 3.5.1.

Example 3.5.2. Assume that an infinitely long steel plate of a 2-D thickness
(shown in Fig. 3.5.2) is immersed in a uniform magnetic field H = — H,, sin wtk.
Calculate the magnetic distribution in the ferromagnetic plate.

H component of the field satisfies the partial differential equation as follows:

ﬂ — ‘”a_H
oxz Mo

where u and y are the permeability and the conductivity of the steel. The finite
difference form of the above equation was given in Eq. (3.2.51). If u and y are
constants, the distribution of the H field may be easily calculated by Eq. (3.2.51).
The iteration times of the computation are strongly dependent on the initial
values. In the case of H,, = 6000 A/m, y = 5x 10°S/m, yu = 156 o, w = 314,
D = 2.5 mm, assume that the time step is At = T/360, the step of position is
Ax = 0.1 mm. The computation results of the magnetic field strength on the
plane at x = 2.5,2.2, 1.9, 1.6, 1.3, 1.0(mm) are shown in Fig. 3.5.3. They still vary
sinusoidally. The results show that H,,,, at these points is decaying according to
the exponential function. The phases of these curves are retardant on each other,
as shown in Fig. 3.5.4. In this figure the horizontal axis represents the real
component of H and the vertical axis represents the image component of H. At
the surface of the plate, the image component is zero. The curve shown in

(3.5.1)
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Fig. 3.5.1. Potential distribution in 2-D slot
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' } H_Sinwt
X
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Fig. 3.5.2. A conducting plate immersed in a uniform
— 2D_’ﬂ magnetic field
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Fig. 3.5.3. Field distribution in linear conducting plate
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Fig. 3.5.4. Phase shift of H component within linear conducting plate
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Fig. 3.5.5. Field distribution in non-linear conducting plate

Fig. 3.5.4 is the locus of the end point of the vector H. It represents the phase
delay of the induced field in different positions of the plate.

If the permeability u of the plate is non-linear and it varies according to the
following function:

H
B =16+ 050m

then the magnetic field strengths on the plane of x = 2.5, 2.1, 1.7, 1.3, 0.9, 0.5,
0.1(mm) are shown as the seven curves of Fig. 3.5.5.

(3.5.2)
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Data input

] Sct n(iteration of time) =0 '

lAssumc H’(k), j(discretization points)=1,L l
T

1
[Lct k(iteration of position)=0
T

[ Determine p, by the curve of B(H) |

[ Calculute H(k) by eqn.(3.2.60) |

Fig. 3.5.6. lterative procedures for non-linear diffusion equation

Due to non-linear permeability, all these curves are non-sinusoidal. The
distortion is much stronger if the planes are far away from the surface. During
the process of iteration, the times of iteration are extremely dependent upon the
initial values of the iteration. The flow-chart of the computation is given in
Fig. 3.5.6. To solve this problem, the implicit iterative formulation must be used.

3.6 Further discussions about the finite difference method

In Sect. 3.2, finite difference equations of a partial differential equation were
developed using Taylor’s series. The discretization equations can also be derived
by particular physical principles, weighted residual approaches or variational
principles. In this section these methods will be investigated. The error norm of
FDM is also examined in this section.

3.6.1 Physical explanation of the finite difference method

In FDM the region being analysed is divided into a number of regular lumps
shown in Fig. 3.6.1. Each of these interior lumps is assumed to have a constant
value of the pertinent field variable. Figure 3.6.1 shows that the centre point of
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Fig. 3.6.1. Finite difference discretization of Fig. 3.6.2. Ampre’s law around a point
a 2-D problem

a small area is a representation of this area. The surface lumps are one half the
size of the interior lumps. The corner lumps are one-fourth of the size of interior
lumps. According to this kind of discretization, the finite difference equation can
be derived directly from the lumped parametric model by the physical meaning
for different fields.

In consideration of a 2-D static magnetic field, the four centre points 1, 2, 3,
4 of a symmetric grid are shown in Fig. 3.6.2.

Assuming that the magnetic flux density along the lines 12, 23, 34, 41 are
constants, respectively, and they can be approximated by the first order differ-
ence quotients of the magnetic potentials, i.e.

H,, = (Ag — Ao) (An — Ao)

(3.6.1)
by, = Vv =40 L5 = Ao)

So using Ampre’s law $§Hd! = 0 along the contour 12341, the following equation
then holds

AE + AN + Aw + As - 4A0 = 0 . (36.2)

For a static electric field or a steady current field, the five-point difference
formulation can be derived by using the principle of the continuity of the electric
flux density D or by the continuity of current density J. In heat transfer
problems, the difference equation can be derived by the conservation of heat.

3.6.2 The error analysis of the finite difference method

As the high order terms of Taylor’s series are neglected, the truncation error is
presented. In order to analyse the error influenced by the step length of
discretization, multiply Egs. (3.2.5) and (3.2.6) by r and p, respectively, which
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,(u 5 [(0u
(ph) <ﬁ> +—.f(Ph) <$>O

results in
_ i Cu 1
rug = rug + rp I 0+§~!r
1 0*u
—r(ph
4'r(p )* <0x >O (3.6.3)
du 1 ou 1 s [(Pu
puw = puo — prh ax> + Z,P("h) < E}: )0 - ip("h) <ﬁ>o
1 o*u
+ P p(rh)* < e ) (3.6.4)
where hg = ph, hy, = rh, p and r < 1. Subtraction of Eq. (3.6.4) from Eq. (3.6.3)
and consideration of the assumption p = r = 1, yields
¢ Ug — Uy
— = O(h? .6.
. T (h*) (3.6.5)
where
3
0 (3.6.6)

Oh?) = —h2
This equation shows that the truncation error of the difference quotient of the first
order is proportional to h®. If the partial derivatives of the higher order are

neglected directly from Eq. (3.2.5), the difference formulation of du/dx is

Ju  ug — Uy

—=—— 3.6.7

x PR O(h) (3.6.7)
(3.6.8)

o0*u
=—h—
o) 2! ox?
It shows that the truncation error is proportional to h. Consequently, the

accuracy of the central difference quotient of the first order is higher than the
Jorward difference quotient or the backward difference quotient of the first order

In a similar manner, the summation of Eq. (3.6.3) and Eq. (3.6.4) is
h? 0%u
— Uo) = 7 ox 2[rpr+p)]

1 o?
3, = pr(p? — )<w>o

+ih4 r(p> + r?) ?4—
2 prip ax* /),

r(ug — uo) + p(uw

(3.6.9)

If p=r =1, the second term of RHS in Eq. (3.6.9) vanishes, then the error
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contained in (02u/dx?) is proportional to h?, i.e.

*u  ug + uw — 2u,

= 2

Fpe 2 +O(hr). (3.6.10)
Ifp#r,

0*u  2[r(ug — uo) + pluw — uo)]

L= h 3.6.11

0x? h2[rp(r + p)] + O ( )
where

2 (p—ndu
O(h) = Th ae (3.6.12)

The error contained in the second order derivative is proportional to h. There-
fore, the errors introduced by using an asymmetric star is greater than those
introduced by using symmetric one. Hence the merit of symmetric star is that not
only can it be used more easily but more accurate results will be obtained.

Since the error contained in 8?u/dx? is proportional to h% will a more
accurate result be obtained if a smaller h is chosen? Equation (3.2.24) shows that
the value of the potential at any point is influenced by the potentials only in its
immediate neighbourhood. As the number of grids becomes very large, the nodes
become closer and closer, and the change of function between neighbouring points
becomes very small, thus any further reduction of h becomes unimportant. Refer-
ence [20] gives practical examples to explain this point of view.

The truncation error can be reduced by using the discretization formula of
a nine-pointed star, as shown in Fig. 3.6.3. The nodes NE, NW, SW, SE are at
the diagonal corner of the star O-E,N,W.S. By using a similar manipulation as
before the following equation is obtained.

4(uy + uy + us + uq) + uy + ug + ug + ug — 20uy + 6hFy =0 (3.6.13)

3.6.3' Difference equation and the principle
of weighted residuals [21]

It has been shown in Sect. 2.3.1 that the weighted residual approach accords to
the following principle

[ WRdQ =0 (3.6.14)
Q

where W is the weighting function and R is residual of the approximation. In
a point matching method, the Dirac-Delta function §(x — x0)3(y — yo) is
chosen as the weighting function. Let

i=

N
u= Z N[ui=NEuE+NNUN+quw+N3us+N0uO (3.6.15)
i=1

! It is advised to read this section after Chap. 4.
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NW N NE
w o E
SW S SE  Fig. 3.6.3. A nine-pointed star of 2-D case

where Ng, Ny, Nw, Ng and N, are shape functions which satisfy the following
relationships
Ne=3&E+1)  Nw=3¢-1)

inh+1)  Ns=3inn—1) (3.6.16)
No=(1-OU+)+0=n+n.

In these equations, the local coordinates &, n are defined as
e=% p=2. (3.6.17)

Substitution of Eq. (3.6.16) into Eq. (3.6.15) and consideration of

u 1 Pu 1
‘5x—2=pa—éz=p(ug+uw—2uo)

u 1 Pu 1
E?=P"%7—Z=P(UN+MS—ZMO) (3618)
yields

1
Ug = Z(ME + uw + un + uS) . (3619)

This is the difference equation of a five-pointed symmetric star.

3.6.4 Difference equation and the variational principle [11]

The finite difference equation can also be developed using the variational
principle. For example, the corresponding functional of Laplace’s equation is

2
Iw) =Y f[(g%) + <‘;—:>2] dxdy (3.6.20)
Q

e

where Q, is a small region of the mesh shown in Fig. 3.6.4. It consists of areas
0123, 0345, 0567 and 0781. Assume that hg = hy and hy = hg, on segments 0—1
and 0-5 du/dx are constants (ug — ug)/hg and (uw — uo)/hg, respectively, and on
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segments 0-3 and 0-7 Ju/dy are constants of (uy — ug)/hy and (ug — ug)/hn,
respectively. Thus the integrations in area 0123 are

s hni2 hel2 s hn/2 0\
du du hg u
f <$> dxdy = J dy J ((—?;> dx—7 (;3;) dy
0123 0 0 0

_hEhN ug — o\’
=2 < e ) (3.6.21)

2 he/2 hn/2 3 he/2 2
Jdu Jdu hn du
0123 o] 0 0
_ hehy (un — ug\?
== ( - > . (3.6.22)

Similarly, Egs. (3.6.21) and (3.6.22) are to be found in areas 0345, 0567 and 0781.
Substitution of these equations into Eq. (3.6.20) yields

hEhN Un — Ug 2 Ug — Ug 2 Uw — Ug 2
1 =— :
()la. == [( mw ) U ) T\ Th
2 2 2
Un — Up Us — Uo Uw — Uo
+
() () ()
2 2
Ug — Ug Us — Uo 5
w(tEte) ()] (3.623)
By definition of the variational principle, the extremum of the functional is the

solution of the original partial differential equation; i.e. let dI(u)/duy = 0, and
suppose hg = hy, the five-point difference equation as Eq. (3.2.24) is obtained.

3.7 Summary

In this chapter a number of finite difference equations are derived to satisfy
various requirements (different field problems, coordinates and boundary condi-
tions). In summary the FDM, presented in Sects. 3.1 to 3.4, is suitable for
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obtaining an approximate solution within a regular domain. Reference [11]
indicates that the FDM is more efficient than the FEM by a factor of 2 in
computer storage for calculating the propagation constants and fields of a di-
electric wave guide. For solving 3-D problems within a cubic volume, the FDM
is still considered to be an efficient method.

If a region containing different materials and complex shapes, then the
programs are more complex. If the field contains rapid changes of the gradient,
then the accuracy declines. In these cases, the finite element method is preferred.

For solving a time-dependent problem, the variation of time is approxi-
mated by a backward difference quotient. This quotient is iterated together with
the iteration of the positions. The iterative methods are used to solve the
difference equations. For 2-D problems, because of the large size of the grids,
line iteration, block iteration or the alternative iteration techniques should be
considered.
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Chapter 4

Fundamentals of Finite Element Method (FEM)

4.1 Introduction

The main idea behind FDM is the approximation of the derivative operations
0u/dx and 6%u/dx? by the difference quotients Au(x)/4x and 4?u(x)/4x?, which
reduces the partial differential equation to a set of algebraic equations. The
application of FDM has two serious limitations. First, the regular steps of
hy, hy, h. which construct an array of grid nodes in the x, y, z directions are not
suitable for a field with a rapidly changing gradient or for problems having
a curved boundary. Second, different formulae must be derived for specific
interfaces between different media and for the various shapes of boundaries.

The concept of finite element analysis can be dated back to the 1930s [1] and
was originally developed to handle problems in structural mechanics. The
technology of finite element analysis has advanced rapidly since the middle of
the 1950s. The term ‘finite element’ was first used by Clough in 1960 [2]. The
method has grown exponentially since then, expanding into almost all areas of
scientific and engineering disciplines including solid and fluid mechanics, struc-
tural analysis, heat transfer, electromagnetics and even medical sciences. The
earliest and the most comprehensive book introducing FEM was contributed by
Zienkiewicz [3].

In the area of electromagnetic fields, the earliest application of FEM was
used by Winslow to calculate the magnetic field in 1967 [4]. In 1970s, Silvester
and Chari published the first paper [5] to expound FEM by use of the
variational principle for electromagnetic field problems and in 1980 wrote the
first book [6] to introduce the finite element method for the analysis of
electromagnetic field problems. Now, many sophisticated software packages,
such as MAGNET [7], ANSYS [8], TOSCA and Elektra [9], are available for
analysis of electrical engineering problems of static and time varying fields.
FEM has become a powerful and necessary tool for CAE (computer aided
engineering). The method is now presented in text books for graduate and
undergraduate students in many countries (see references [10-15]).

The basic idea of FEM is to divide the solution domain into a number of small
interconnected subregions, called ‘elements’, as shown in Fig. 4.1.1. This shows
that the discretization form of FEM is quite different from FDM (dashed line



96 4 Fundamentals of finite element method (FEM)

[ Fig. 4.1.1. Discretization form of FEM

represents the mesh used in FDM). The shape and the size of elements are
arbitrary, so it is flexible to fit the different shape of the boundary. The density of
the elements may easily be adjusted according to the problem. The behaviour of
the unknown function within the element is approximated by an interpolation
Sunction. By using the weighted residuals approach or the variational principle, the
partial differential equation is reduced to a sparse, banded, symmetric and positive
definite matrix equation. The values of the unknown function are represented by all
of the nodal values of the elements which are solved from the matrix equation. The
remarkable advantage of FEM is the flexibility of the method. It is particularly
well suited to problems with complicated geometries and complicated distribution
of media. This method can be used for time-dependent, linear or non-linear and
two-dimensional or three-dimensional problems.

The contents of FEM are discussed in the three chapters. In this chapter, in
order to avoid variational concepts, the matrix equation of finite elements is
derived using the weighted residual approach, and a general survey of the
methods is illustrated by solving a static potential problem in the following
sections. The variational finite element method and the problem of high order
approximation are discussed in Chaps. 5 and 6.

4.2 General procedures of the finite element method

The method contains the following steps.

(1) Discretize the solution domain into sub-regions by elements. Within the
elements, select an appropriate approximate function in terms of the unknown
function included in the partial differential equation. If the element is a triangle,
then the unknown function u within an element is approximated by the nodal
values u;, u;, u,,, and the shape functions Ni, i.e.

e =Y Ngu, (k=1i,j,m) 4.2.1)
k

where i, j, m are vertices of the triangle shown in Fig. 4.2.1 and u, is the function
within the element.

(2) Derive the element matrix equation using the principle of weighted
residual or the variational principle. For a triangular element where is no charge
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Fig. 4.2.1. A triangle element

density, the element matrix equation is presented as
kii kij Kim u;
kj,' kjj kjm uj »= 0 (422)
kmi kmj kmm Up
(3) Assemble the element matrix equation at every node of the domain to
form a system matrix equation

Ku=B (4.2.3)

where u is a column matrix with order N (N is the total number of nodes)
containing all the nodal values of the domain. The global matrix K is a sparse,
symmetric and positive definite matrix with order N x N. It is also called an
assembled matrix, system matrix or stiffness matrix. The name ‘stiffness’ comes
from mechanics. The column matrix B includes the source term included in
Poisson’s equation and the known boundary conditions.

(4) Solve Eq. (4.2.3) to obtain the discretized function values on every node.

(5) Make additional computation if desired. For example, in potential field
problems, the field strength, forces, parameters (resistance, capacitance, induc-
tance) are normally of interest.

As an example of the method, a two-dimensional Poisson’s equation subject
to mixed boundary conditions as shown in Eq. (4.2.4) is considered.

Viu=—f(x,y) inQ

ulp, =g(I' on I'

du

0_‘ =g,(I) on I,
nir,

where Q is the domain of the problem and I'y, I'; are two parts of the boundary

(I’ = I', + I';). The matrix equation will be derived in following sub-sections.

(4.2.4)

4.2.1 Domain discretization and shape functions

To discretize the domain into subregions (finite elements) is the first step in FEM.
This is to replace the solution domain with infinite degrees of freedom by a system
having a finite number of degrees of freedom. The shapes, sizes and the configura-
tions of the elements may be of very different types and these will be discussed in
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Chap. 6. Here a three-node triangular element is chosen as an example to
illustrate the complete procedures of the method.

The second step is to choose a trial function to approximate the behaviour of
the unknown function within the element. Usually the polynomial is adaptable,
because it is easy to differentiate and integrate and it can approximate any
function if the polynomial contains enough terms. For example, a linear poly-
nomial is used,

u(x, y) =ii(x, y) = a; + a,x + a3y (4.2.5)

where i’ represents the unknown function u within the element. It is assumed
that the potential varies linearly depending on the coordinates x, y and the field
strength is uniform in a small element. The unknown parameters a,, o, a3 in
Eq. (4.2.5) will be determined by the nodal parameters u,, xi, y (k = i, j, m) of
the element.

Substitution of the nodal values u;, u;, u,, and the nodal coordinates (x;, y;),
(xjs ¥i), (Xm, ym) into Eq. (4.2.5), yields

up=ay + azX; + a3 y;
U= 0o +oxXx;+aszy; - (426)
Uy = 0y + 02 X + A3Ym

Thus
-1
%Ay I xi y Ui
a = |1 x; vy u; 3. 4.2.7)
a3 1 Xm  Ym Up

The expansion of the above equation is

1 1

Ay = Ts[ui(xjym = XmYj) + Ui(XmVi = XiVm) + Um(X:y; — X;¥i)]

1
= E[aiui + ajuj + a,,,u,,,]

1
oy = ﬁ[ui()’j = Vm) + Uj(ym = Vi) + thm(yi — y;)]
< 1 (4.2.8)
= 55 [bithi + bjtj + bttn]

1

a3=ﬁ

(ui(Xm — ;) + (X = Xpm) + tm(x; — )]

1
\ = ﬁ[c;u; + cjuj + Cliy]

! In order to simplify the symbol, the * ~* is omitted in the following text, u is used to express the
approximate solution.
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where S is the area of the triangle having vertices i, j, m, i.e.

1 I xi oy 1
S = z 1 Xj yj = E(bicj — bjCi) . (429)
L Xm Ym
In Eq. (4.2.8)
[ X; i 1y
y Yj
a;= x; y; =XjVm = Xmy;  bi= —‘1 y; =i~ Im
1 v
9 c,-=l Vi =Xp — X
1 ym (4.2.10)
a; =XmYi = XiVm bj=ym—y: Cj=Xi— Xm
L dm = XiYj— X;j)i b =yi — yj Cm = Xj — X;
Substitution of Eq. (4.2.10) into Eq. (4.2.5) results in:
1
u(x, y) = ﬁ[(ai + bix + ¢;y)u; + (a; + bjx + c;y)u;
+ Ay + bpX + CuY)Um] - 4.2.11)
The above equation can be written to
u(x, y) = ZN‘uk (k =1i,j, m)
or
u;
y) =Y Nju=[Nf NS¢ N1 {u; b =[Ngl{ug} (4.2.12)
k
Um

where the functions N} are called shape functions. The superscript e denotes the
‘element’, the subscript k denotes the vertices of the element. For a three-node
triangle, k = i, j, m, there are three shape functions, N, N;, N,,. The function
u within the element is a linear combination of the shape functions and the three
nodal values of the triangle. In addition, the linear interpolation polynomial
(Eq. 4.2.5)) is now expressed by the shape functions as Eq. (4.2.12). These shape
functions are expressed as:

1

Ni(x,y) = ﬁ(ai + bix + ¢iy)
1

Nj(x, y) = 2S(a, + bjx + ¢;y) (4.2.13)
1

N,,,(X, )’) = '2_S(am + me + Cmy) .
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Notice that

X; Y . 1 v
a;i+ bx+cy= xj ﬁ’ x| i’ +y‘1 i’
1 x y
=1 x; y;j| =24pjm
1 Xp Ym

where 4p;, is the area of triangle Pjm, P is any point inside the triangle shown in
Fig. 4.2.1, hence N; = 4,;,/S. In a similar manner, N; = 4p;/S, N,y = 45,5/,
thus,

Ni(x,y) + Nj(x, y) + Nm(x, y) = 1. (4.2.14)

Consequently the shape functions of the vertices of 3-node triangle are:

node i node j node m

Ni(xi’yi)= lv Ni(xjv ,Vj)=0a Ni(xms ym)=0
Nj(xivyi)=0’ Nj(xj’yj)z l’ Nj(xnu ym)=0
Nm(xia yi)=0’ Nm(xj’ .V;)= s Nm(xmaym)= 1.

These results can be denoted by the Kronecker function, e.g.

N i=j
Ni(x,y) =4 = . 4.2.15
On the vertices of the triangle, the shape functions are 1 or zero, within the
element, the shape function varies linearly.

4.2.2 Method using Galerkin residuals

When the unknown function of Poisson’s equation (4.2.4) is substituted by an
approximate function u = ) Nfu, in each element, the residual R° is unavoid-
able, i.e. k

R = V2u + f(x, y) (4.2.16)

If the residual R in the whole domain tends to zero, then u can be regarded as an
acceptable approximate solution. As mentioned in Sect. 2.2, because of the
broad choices of the principle of error minimization, there are many different
methods to derive the finite element equation. The most often used principle of
error distribution in deriving the finite element equation is known as Galerkin’s
criterion. According to Galerkin’s method, the weighting functions are chosen to be
the same as the shape functions, i.c.

M
WRAQ = Y, '[WkRedQ =0 (4.2.17)

e=1
Q
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where
Wi = Ng. (4.2.18)

M is the total number of elements of the problem domain. In the next sub-
section, the finite element equation is derived using this principle.

4.2.2.1 Element matrix equations

Combination of Egs. (4.2.17) and (4.2.16), leads to

62 52
JWR"dQ - ZJ[N;’]T [a : + 5y I y)]dQ 0. (4.2.19)
Q Q,
Because
0 ou
—([Ni]T—> = [Nk ]T +—[N ]T (4.2.20)
0x O0x

the two terms in the volume integral of the middle term of Eq. (4.2.19) can be
written as

( I[N ]T dtdy f <[N P~ )dxdy
NE]T—dxdy
(4.2.21)

[
Q,
e Ta a T
e £ dxay= —; [N:I 5 Jdxdy
Q.
0 r Ou

i ,(6_ | @dxdy .
Q,

Substitution of Eq. (4.2.21) into Eq. (4.2.19) and consideration of parameter
B (reluctivity or permittivity) of the material appearing in the LHS of the
differential equation, Eq. (4.2.19) becomes

£{- [# v g+ v |asay
d . du 0 . ou
+ f[&(EN"]Tﬂa_x> + @'([Nk]rﬁ5>]dx<iy

+ J' [NST7f(x, ) dxdy} -0. (42.22)
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Remember the column vector [N§] consists of three terms; the above equation
implies three equations at each node. By using 2-D Green’s theory

J (fi + gg)d dy = <ﬁ[P cos(n, i) + Qcos(n, j)]dI (4.2.23)
Q.

. Ou .
and letting [i’N,‘a =P, ﬁNk = Q (k =i, j, m), the second integral of the LHS

of Eq. (4.2.22) is transferred to a boundary integral, i.e.
é du 19 du
—{N.gZ= - it
J[f*( kﬁ@X) "oy (N"Bﬁy)]dmy
Q.

a ~
- <§N,‘[} X cos(n, x) + 2 cos(n, y) |dr = #;N,( sMar . @224
0x dy on
J ]

Then Eq. (4.2.19) becomes
d
fW“RedQ fﬁﬂ[Nk }dr Jﬁ[agc“ =+ a;/“ au:ldxdy

+ JNk f(x, y)dxdy . (4.2.25)

Q,

Recalling Eqgs. (4.2.13) and (4.2.11), the partial derivatives of N, and u with
respect to x, y are

N, 1

ox 28°¢ .
k—_

oy T 2s%

and

ou 1 "
5 = 55 (bith + by, + bpity,) [bbb,,.] Uj
p Uy

) 4.2.27)
M _ L et + ety + i) = l[CCC]:i

CiU; mUm) = iCjiCm J

éy 28 U

-
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Substitute Eqgs. (4.2.26), (4.2.27) into Eq. (4.2.25), and assume that in each
elements f(x, y) is a constant, and consider that

[
dedy =S
4
J Jx dxdy = —g(xi + x; + x,,) = XS (4.2.28)
4
S _
Jy dxdy =3(yi + yj + ym) = 5§
4

-

where X = }(x; + X; + Xn), J = 3(yi + j + ym). Then at node i, the result is:

1
— (k,-iui + k,'juj + ki,,,u,,,) + _(ai + bl.f + c,~)7)f(x, y)

2
du
+ Sf,gNi_dr -0 (4.2.29)
on
"
where
( _B ., 2
ki = 4S(bi + ¢f)
k=L b+ ey (4.2.30)
J 4S LV} ]
_ B
Lkim - 4S(blbm + C"C",) .
Consider that
a,' + b,’f + C,‘_).) = aj + bj)? + Cj_}—/ = a,,, '+‘ bm.f '+‘ Cmy = ;S (4231)

and apply the same procedure to the nodes j and m, the final element equation of
this triangle is:

(.
S 0
- (k,'iu,' + kijuj + kimum) + gf(x, y) + §ﬂN,5Sdr =0
r
J S . Ou
— (kj,‘l«l,' + kjjuj + kj,,,u,,.) + gj(x, y) + §ﬁN15;dr =0 (4232)
r
S Ju
— (k,m‘u,’ + k,,,j.uj + k,,,,,,u,,,) + gf(x, y) + §ﬂN,,,adr = 0 .
r

-

In these equations, the term (S/3) f(x, y) is the effect of the forcing function
presented in the RHS of Eq. (4.2.4). The boundary integral terms in Eq. (4.2.32)
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J -1 _[
n Fig. 4.2.2. An element along
] llm the boundary

represent the non-homogeneous boundary conditions of the second kind. If one
edge of the element (for instance, the edge jm) is located on the boundary, as
shown in Fig. 4.2.2, the shape functions along the edge jm are:

N; =0, N;= (1 =l/l;), Np= 1l . (4.2.33)
Then
Lim
Ju I 1
= (1-= = —g,(5); 234
JNI andl J<l ljm>gz(s)dl 2gz(s)lj,,, (4.2.34)
Im 0
and
Lm
Ou [ 1
Pai= [ Zgps)dl = =291, 42.
[ Nagadt= [ 0208 = 302008 4239
Im 0

0 . . .
where ¢g,(s) = 0—:‘ is the given boundary condition of the second kind. Then

s

Eq. (4.2.32) can be written as

ki kij  Kim u; P;
— | ki kjj kjm | x<{u;jy +<P;y=<0 (4.2.36)
kim Kjm  knm Up, P,
where
S 1 1
Pi=3/(xy)  Pi=Pn=3f(x))S+3flngs(s). (42.37)

) and homogeneous boundary conditions of

For Laplace’s equation (f(x, y) =0
=P;= P, =0, Eq. (4.2.36) is simplified to:

the second kind (g,(s) = 0), P;

k; kij Kim U;
kj,‘ kjj kjm X (Uj =
kmi kmj kmm Um
B b,z + C,‘Z b,'bj + CiCj bibm + CiCpm u;
E bjb.' + CiCi bf + C} bjbm + CiCpy [ X (Uj p = 0 (4238)
bmb,‘ + CmC; bmbj + CmCj b,z,, + C,Z,, Upy

or
K.u® =0 (4.2.39)



4.2 General procedures of the finite element method 105

7 8 9

04O
O49,

/40
®

®

1 2 3
Zcm Fig. 4.2.3. Discretization of a 2-D domain
where
B b‘z + Ciz bibj + CiCj b,‘b,,, + CiCm
Ke = ﬁ bjb, + CiCi bJZ + Clg bjbm + CiCm | - (4240)

bubi + CmCi  bubj + cmc; bZ+ cZ

Equation (4.2.40) is the expression of the element matrix, it shows that K, is
a symmetric matrix of the order of 3. The diagonal elements are always positive.
The value of each element of K, is dependent on the coordinates of the vertices of
the element and the material parameters f (for the electric field, g = ¢, for the
magnetic field, § = 1/p). The formulation for evaluating the coefficients of the
element matrix can be synthesized as

B

kys = kg =
rs sr 4S

(bebs +crcs) ros=ij,m (4.2.41)

Example 4.2.1. The domain of a 2-D Laplacian problem is shown in Fig. 4.2.3.
Subdivide the domain into eight triangular elements. The coordinates of the
nodes are obtained with the dimension shown in Fig. 4.2.3. Using Eq. (4.2.40),
the coefficients of the element matrix equation for elements 1 and 2 are:

[ 05 —05 00 ] (u
Bl —05 10 —05 |x{u$=0 (4.2.42)
00 —05 05 us

and
[ 05 00 —-05] (u
Bl 00 05 —05|x{usb=0 (4.2.43)
| -05 —05 10 | |u

During evaluation of the element matrix, the sequence of i, j, m in each element
should be taken counterclockwise so that the area of each triangular element is
positive.
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4.2.2.2 System matrix equation

The system matrix is the combination of the element matrices. The principle for
assembling the element matrices into a system matrix is based on the property of
compatibility. It means that at every node the nodal value of the unknown
function of each element is the same no matter the node belongs to which
element. This requirement has a simple physical meaning. In scalar potential
field, for example, the potential value is unique at any point. Hence the nodal
value is related with all the elements connected at one node. In other words, the
nodal value of each node is the assembly of values contributed by all the
connected elements. The procedures for assembling the system matrix of the
problem shown in Fig. 4.2.3 are as follows.

Assume the element matrix is of the order nx n (for a three-node triangle
element, n = 3) and the global matrix is of the order N x N (N is the number of
the total nodes of the domain). First expand the element matrices to the global
matrix of the order N x N by adding zeros in the remaining locations. Then add
the coefficients in the corresponding positions of the global matrix according to
the address denoted by subscripts i, j. For instance, first the elements of system
matrix of the order N x N are set to zero. Second, put the coefficients of the
matrix of element 1 at suitable positions according to the subscripts; the result is

0.5 —0.5 00 0000 00
05 10 0 0 —05 0 0 0 0
0 0 00 0 0000
0 0 00 0 0000
00 —05 00 050000
0 0 00 0 0000
0 0 00 0 0000
0 0 00 0 0000
0 0 00 0 000 O

In this matrix, except for the coefficients of element 1, all the elements are zeros.
Third, the matrix of element 2 is added to the above matrix according to the
corresponding address of the coefficients. After the elements matrix of 1 and 2 is
added, the system matrix is

10 —05 0 —05 00 0 0 0 0
—05 100 0 -0500 00
0o 0 0 0 0 0000
—05 0 0 10 —05 00 00
00 —05 0 —05 10 0 0 0 0
0O 0 0 0 0 0000
0o 0 0 0 0 0000
0o 0 0 0 0 0000
0 0 0 0 0 000 O]
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[t is obvious that the matrix is still symmetric and the diagonal elements are
dominant. The generic formulation of the assembly is

M
K=} K, (4.2.44)

e=1

where M is the total number of elements. For Example 4.2.1, the global matrix is

ki kys kia kis
kay kaz kas kys kie
ksz kis kse
kay kaa kys ka7 kag
ksy ks, kssa kss kse ksg kso |- (4.2.45)
kez ko3 kes kes keo
k7a ks7  kqg
kgs ks kg kgs kso
i kos koo kog k99_

Each element of the matrix is assembled by the following rules:

ki =Y ki L, is the total number of triangles
L connected to node i (4.2.46)

ki =Y ki P is the number of elements which
P contain edge ij

For instance, in Fig. 4.2.3 six triangles (the elements [, 2, 3, 6, 7, 8) are joined at
node 5. This means that these six elements have contributions to node 5. Hence
the element ks is added by five terms. On the other hand, two elements, 2 and 3,
contain edge 45, hence k45 consists of two terms. These are given in Eq. (4.2.47)
as follows

ks = K42 4 30+ 04 K+ 2+ K w247
kys = k§3 + k3
where the superscripts (), @), . . . denote the numbers of triangles. The subscripts

denote the number of nodes. This kind of assembly is based on the sequence of
elements. It is executed in computer programs. The program is a recurrent
procedure according to the sequence of element (e = I, M). For each element
calculate S, a;, b;, ¢;, K, K,s and sum them as in Eq. (4.2.47). The calculation of
the element matrix and the stiffness matrix is therefore carried out at once. If
there are different media in the solution domain, the numbering of the elements
should be sequential according to the different materials one by one.

Each node connects with a very limited number of nodes of the whole
domain. The system matrix is not only a symmetric but also a sparse and banded
matrix. It contains a great number of zero elements and the diagonal elements of
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the matrix are positive (k; > 0) and dominant, and all the values of the sequent
subdeterminant are positive. Hence the system matrix is a positive definite matrix.

In contrast to FDM, the maximum non-zero element of each row is in-
definite. Usually the non-zero elements of each row are less than 9. However, the
range occupied by the non-zero elements may be a large number as it depends
upon the sequence in which the nodes are numbered. For example, in
Fig. 4.2.4(b), the largest range of non-zero elements occupied has nine columns.
If the subdivision is increased in the direction of the wide side of the domain,
then the range of the non-zero elements occupied will also be increased. The
range of non-zero elements occupied is described using the term ‘bandwidth’
(BW). BW is defined as:

BW =D+ 1 (4.2.48)

where D is the maximum difference between the numbers of the two vertices of
a certain element. For instance, in Fig. 4.2.4(a), the maximum difference of the
nodal numberisD =7 —-1=8—-2=13—-7= ... =6, then the bandwidth is
BW =6+ 1=17. In Fig. 424(b), BW =9. Consequently, the format of the
numbering of nodes strongly influences the bandwidth and the computer

6 21 26 31

35

@@ ®® Fig. 4.2.4a,b. Different sequence of the

7 nodal number
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memory directly. Hence, in practice, a technique used to optimize the ordering of
nodes in order to minimize the bandwidth is necessary [15].

Incidentally, the assembly of the system matrix can also be executed accord-
ing to the sequence of nodes [13].

4.2.2.3 Storage of the system matrix

According to the different methods used to solve the matrix equation, usually
two strategies are employed to store the stiffness matrix: skyline (envelope)
storage and non-zero elements storage.

When the stiffness matrix is symmetric, banded and non-zero terms are
clustered around the main diagonal. Only the terms within the bandwidth of the
upper or lower triangle matrix need to be stored. In the envelope method, the
terms between the first non-zero element and the diagonal element of each row are
stored. This storage scheme results in a ‘ragged’ edge profile, called the envelope or
skyline of the matrix, as shown in Fig. 4.2.5. This is the corresponding system
matrix of the problem shown in Fig. 4.2.2. In this model, certain zero terms are
still contained in the array AK (IS) which occupy space in the computer memory.
This storage is needed when using the Gaussian elimination method to solve
matrix equations. The reason will be understood in next section.

In the envelope method, IS is the total dimension of the array AK which
stores the coefficients of matrix K. IS equals the summation of the numbers
between the first non-zero term to the diagonal element of every row. For instance,
in Fig. 425, IS=1+2+2+ ... +5=33. As the dimension of the array
AK is counted, the address of the diagonal elements are memorized by an
additional one-dimensional array ND(LO). In Fig. 42.5, ND(9) =1, 3, 5,9, 14,
19, 23,28, 33. The dimension of the array ND is the total number of nodes. Using
this method, a considerable amount of computer memory is saved. In Example
4.3.1, the total amount of nodes is 870 and the elements of the matrix is
870 x 870 = 756900. When the envelope method is used, the order of array AK
1s 25287; it is only 3.34% of the whole matrix. In Example 4.5.2, the total number
of nodes is 1066, but IS=28137, so it is 2.48% of the whole size of the
matrix.

However, when solving the matrix equation, the positions of k;;, k;; should be
recovered by using the array ND first. For example, the diagonal element in the
fourth row (k4,) is stored in the ninth position of the array AK. In general, the
position of k;; in AK is denoted by p, then p = ND(i). The position of k;; in array
AK is also to be found after the position of diagonal elements have been
determined. Assume the lower triangular elements are stored, the position of
a non-diagonal element k;; (if i > j) in AK is denoted by g; first to find the
location p of k;;, then ¢ = p — (i — j). If j > i, it indicates k;; is located in the
upper triangle. According to k;; = kj; and the rule of storage, only k;; is stored.
Hence the location of kj; is determined first, i.e. p = ND(j), then the address of
kjj is g =p—(j—i). These results can be proved as shown in Fig 4.2.5.
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Therefore in any program used to solve problems, the coefficients of the matrix
must be recovered first.

If the iterative method is used to solve the matrix equation, all the zero
elements have no relation to the calculation of iteration, hence no zero elements
need to be stored. In the computation and storage of the system matrix, the first
non-zero element of each row is removed to the left side of the matrix. For
instance, the matrix shown in Eq. (4.2.45) is altered to

- —

kiy kiz kia ks O 0 0
ky1 kaz kaz kis ki O 0
ky, ki3 kg O 0 0 0
kay kaa kas ka7 kag O 0
K'=|ks; ks ksa kss kso¢ ksg kso |. (4.2.49)
kez kes kes kes keo O 0
kis ki7 ksg ksy O 0 0
ksa kgs kg7 kgs kso O 0
_k95 kos kog koo O 0 0 N

In the alternative matrix K’, the maximum number of columns depends on the
maximum number of the neighbouring nodes connected to a certain node. For
instance, in Fig. 4.2.3, node 5 connects with other six nodes, hence the maximum
column of K’ is 7. Because the zero elements are not considered, the positions of
the elements in the new matrix K’ are confused. Therefore an additional 2-D
array is used to record the number of columns which the elements located in the
original matrix K. This matrix is shown as below.

r |

AD = (4.2.50)

SO 0O O VANV O &NO
O O O O w»W o O o O
SO O O O vVoOo o o o

N H BN = o N = -
AN W W N R W NN
O 00 O N L 3 O L Wn

The evaluation of these two matrices is carried out as follows. If k;; is non-zero,
then it is put in column p, i.e. ki, = k;;and a;,(element of AD = j. In this method,
although an additional matrix is required, the column of matrix AD (usually less
than 9) is much smaller than the column of the original matrix, especially for
problems having a large number of nodes.
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Fig. 4.2.5. Skyline storage of the system matrix

Consequently, the real non-zero elements storage is much more economical
than skyline storage for saving the computer memory. But the disadvantage is
that more complex programming is required to keep track of the terms stored
and more computational time is needed when using the iterative method. These
two methods to store the matrix coefficients are chosen depending upon the size
of the problem to be solved.

4.2.24 Treatment of the Dirichlet boundary condition

For the problem subject to the Dirichlet boundary condition, the nodal value of
those nodes located on the boundary are known. The known value must be
removed to the RHS of the matrix equation. The system matrix and the column
vector of the RHS are modified by the following way.

Assume that the node m is located on boundary I'y and its potential value is
U,. It means that the equation of m row in the simultaneous equations is

Uy = UO
Hence let b,, = Uy, b,, be the element of column matrix in the RHS of the matrix
equation. For the LHS of the matrix equation, the diagonal element of the mth
row is replaced by 1 and other elements in the mth row and mth column are filled
by zero. The other terms in the RHS of the matrix equation become

Then the matrix equation

Ku=B
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is changed to

~k11 kiz -0 "'kw- uy by — kimUo
kai kaz -0 - kay : by — k2mUo
. . . . - . ] 4.2.
00 10 | \u, Uo (4.2.52)
| kni kyz 0 kyy | Uy by — knmUo

If the number of nodes subject to known boundary values of the first kind is
denoted by LOI, then repeat the above procedure LOl times to yield the
equation

Ku=8B (4.2.53)

In this approach, the dimension of the column matrix u is not reduced by
introducing the known potential values of the boundary and the size of matrix
K is unchanged. The advantage of this method is that the construction of the
system matrix is unchanged and the computer program is independent of the
specific geometry. If there are homogeneous boundary conditions of the first
kind, in order to deduct the equations u,,,; = 0, the best way is to number these
nodes at the bottom of the nodal sequence, then Eq. (4.2.52) becomes

—k“ i kg O e 0] U b,

Sy S N I b, 250
0 0 1 -0 1o (42.54)
: : : : 0

(0 0 0 1| [uy 0

Then the dimension of the matrix equation to be solved is reduced by the order
of N —(m + 1).

Similarly, if all the nodes are numbered sequentially according to
the interior nodes and boundary nodes, for example, the number of interior
nodes are 1,..., N, and the boundary nodes having known potentials are
N + 1,..., Ny, then the finite element equation for this Laplacian problem can
be altered to

N No
Yokii=— Y ki, (4.2.55)
j=1 j=N+1

Thus the order of simultaneous equations is according to the number of interior
nodes.
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4.3 Solution methods of finite element equations

The matrix equation derived by FEM is symmetric and positive definite. All the
main sub-determinants have positive values. Therefore the solution of the finite
element equation exists and is unique. The matrix equation to be solved is

KX=B 4.3.1)

The solution algorithms of linear matrix equations can generally be classified as
direct methods and iterative schemes. The over-relaxation iteration and the
conjugate gradient method are two well known schemes using iterative methods.
The results obtained from the iterative method are the limiting value of a se-
quence of approximations. The direct methods include Gaussian elimination
and Cholesky’s decomposition. The direct methods are considered as an exact
solution from the theoretical point of view. Due to the rounding off errors
produced by computation, the results are still approximate. A brief introduction
of the various methods is given in this section. More detailed information is
found in references [13-17].

4.3.1 Direct methods
4.3.1.1 Gaussian elimination method

The Gaussian elimination method is a common method used to solve symmetric
and unsymmetric matrix equations. It consists of two steps: forward elimination
and backward substitution. Equation (4.3.2) is used as an example to describe
the process.

4 3 27 (x 12
305 1 |x{x,5={14 4.32)
2 1 8| [x; 12

The first step is to transfer the matrix into an upper triangular matrix; it is called
forward elimination. Divide the elements of the first row by the first element
(including the column matrix of the right-hand side) so that the first element of
the diagonal is 1. Then subtract a multiple of the first equation from the second
and the third to obtain zeroes below the diagonal in the first column. This
procedure is diagrammed as:

row al 4 3 2 12
row a2 351 14
row a3 2 1 8 12
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al/4 —row bl |1 3/4 12 3
a2 —3x(bl) »row b2 |0 11/4 —1/2 5§
a3 —=2x(bl) »row b3 [0 —12 7 6

The above calculation can be formulated by

{k{j = klj/kll

=12...,N) (4.3.3)
b{ = bl/kll

{kij‘—‘k-'j"kakn G j=2,3..., N)
bi = b; — kiybi (i=23,...,N)

N is the order of the matrix, b; are the elements of the column matrix of the RHS
of Eq. (4.3.1). After this step, all the elements in the first column are zeroes except
the first element.

Repeat the same procedure, until an upper triangular matrix and a new
column matrix are obtained.

4.3.4)

row bl - row cl 1 3/4 1/2 3
row b2/#: —srow c2 [0 1 =2/11 |, {20/11
row b3 +c2/2 »row 3 |0 O 76/11 76/11

Then the matrix equation of (4.3.2) becomes
1 3/4 1/2 X 3
0 1 —=2/11 | x{x,% ={20/11}. (4.3.5)
0 0 76/11 X3 76/11

It is obvious from Eq. (4.3.5) that x;, x,, x; are obtained by the back-
substitution from the last equation to the first. The results of Eq. (4.3.5) are:

x3 =1
X, =3+ HAx;=2
X, =3—3x,—3x3=1.
The general formulation of the back-substitution is:

xi=bP —Ykilx; (i=1,...,N). (4.3.6)

1

Generally, in order to overcome the problem where the pivot element is zero or
a very small number, a rearrangement of the elements is necessary. At the kth
stage in the elimination, the rows are rearranged to ensure that the coefficient
with the largest absolute value in the kth column in the lower triangle is on the
leading diagonal. Thus a search is made in the kth column of the coefficient
matrix, beginning at row k and ending with the last row N.



4.3 Solution methods of finite element equations 115

However. in solving the matrix equation of FEM, the diagonal elements are
pivotal and it is not necessary to scarch for a pivot in the elimination. Because of
the symmetry of the matrix, only the lower or upper triangular elements need to
be calculated.

During the process of elimination, the coefficients of the matrix are changed
in each step. Some zero elements may be evaluated as non-zeroes. Only the
zeroes before the first and after the last non-zero element of each row and
column are always zeroes. Hence only the zeroes before the first and after the
last non-zero elements need not be stored. Therefore the skyline storage of
non-zero elements fits the Gaussian elimination method.

4.3.1.2 Cholesky’s decomposition (triangular decomposition)

The Gaussian elimination method transforms the original matrix into a triangu-
lar matrix. It has been proved that if the matrix K is a symmetric and positive
definite matrix, then K can be uniquely decomposed into two triangular ma-
trices, e.g.

K=UuUT 4.3.7)

U is a lower triangular matrix, the transposition of U is an upper triangular
matrix.

Upy Upy Uy o Upy
Uy Uz, Uz,

U=| . , Ul'= _ . (4.3.8)
unl unn unn

The elements of U are obtained by the following equations:

Y. Uimltjm = kij (j=1,2...,5i=12,...,n (439

=1
ji—1

u;; = <k,‘j - Z uimujm>/ujj i=j+1,...,n (4.3.10)
m=1
j-1 1

uj; = (kj,- - u,%) (j=1.2....n @.3.11)
m=1

Let UTX = g. Once the equation Ug = B is solved, the solution is obtained by
solving the equation:

U'X=g. (4.3.12)

In order to avoid the computation of a root square, Eq. (4.3.7) is decomposed
by
K=LDL". (4.3.13)
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Since D is a diagonal matrix, then LD is

1 d,
Ly 1 d

LD=| 2! : (4.3.14)
lnl 1 dn

The elements of D and L are

dl = kn
121 = k21/d1
Ly = kny/dy (4.3.15)

dy =kyy — I%xdx
l3; = (ksz - lsxdllzx)/dz .

In general,

i—1
d" = k,‘" - Z limdmljm (l = 1,2, e ey n) (4316)

m=1

i—-1
lU = (kU —_ Z l;mdml]m)/dj
m=1

G=L2,...,i—-Li=012,....,n). (4.3.17)
Using Eqgs. (4.3.16) and (4.3.17), the elements of L and D may be calculated. Then
KX =LDL’X =B. (4.3.18)
Let .
X =~ DL™X (4.3.19)
then
LX=B. (4.3.20)

X is easy to obtain from Eq. (4.3.19). In the procedure of Cholesky’s decomposi-
tion, the vector B on the RHS is unchanged, it is useful to decrease the error.
Using this method to solve Eq. (4.3.2), the procedures are as follows:

di=k, =4

Iy = kyy/dy =3/4

Iy, = k3 /dy = 1)2

dy =ky; — l%xdl =11/4

l3; = (k32 — I3,1d2l51)/dy = — 2/11

dy = k33 — l3,d,l3; — l32d515, = 76/11
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thus
1 12
3/4 1 x{xy={14
12 =2/11 1 12

X={12 5 7611}7
then X is obtained by Eq (4.3.19), i.e.

4 1 34 12 12
11/4 1 =211 [{x} ={5
76/11 1 76/11

The result is:
X={1 2 1}T

Appendix 3 of references [15] and [17] provides the computer program of
Cholesky’s decomposition.

A great advantage of this method is that if the problem to be solved has
different values of the RHS, then only the solver of the matrix equation is
repeated.

4.3.2 Iterative methods

[terative methods have the advantage that the sparseness of the coefficient
matrix is utilized. Only the nonzero elements are stored and which leave them
unchanged during iteration. At each step of the iteration, a single row of the
system matrix is used in the calculation. The total system matrix need not to be
stored. The structure of the matrix K plays no influence in iterative methods.
Thus the optimal ordering of nodes is not necessary. Consequently, for a large
system, the iterative method is more suitable.
A simple example of the iterative method is shown as below:

le - 2x2 = 8
3x, — 20x; = 26

Equation (4.3.21) can be written as

X, 0 04 {x, 1.6
= 432
{xz} [0.15 0 ] {xz} +{—1.3}. (4.3.22)
This method proceeds from some initial ‘guess’ {x}° and defines a sequence

of successive approximations {x}', {x}* .... which converge to the exact
solution. Suppose the initial value of {x}' is {x}'® = {0,0}". Substitution of

4.3.21)
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Eq. (4.3.22) into Eq. (4.3.21) yields

S P S RS B R

Subsequently

X %Y ® 1.6
1] (7 {2 wm

The matrix M is called the iterative matrix; it is unchanged in each iteration.
When k — oo lim (x)® = (x)*, the iterative procedure is convergent. For the

k=

above example, the approximate values of each step are:

k1 2 3 4 5 6
x; 0. 1.6 2.12 1.9928 1.99856 2.00432
x; 0. —-13 —106 —-09%4 —1.00108 —1.000226 .

The differences of the approximate solution between adjacent steps are reduced
as the number of iterations, k, is increased. When k = 6, x'¢ — x{> = 0.001872,
and x¥® — x%) = 0.000854. If these differences are less than a predetermined
criterion ¢, then {x}* is accepted as the solution of Eq. (4.3.18).

4.3.2.1 Method of over-relaxation iteration [16]

The difference of the iterative method used in FDM and FEM is that in FDM
the coefficients are recognized by double subscripts; in FEM, the coefficients are
recognized by a single subscript. In FEM, the nth equation of a finite element
equation is

Zkuu,+k,,u + Z kiju; = b; .

j= j=i+1

In iterative formulation, the above equation is altered to

) = _[Zk umt D 4 Z kijul™ —b]/k

j=i+1

i=1,...,N (4.3.24)

where N is the order of the matrix equation. When m — oo, u{™ must be
convergent to the real solution. Usually a permissible error ¢ is given as the
convergence criterion. If the adjacent iterative value of each node is less than ¢,
then the iteration is stopped. In order to increase the iterative speed, the over-
relaxation iterative formula is used:

u§m+1) — aﬁﬁ"‘“’ + (1 _ a)u‘i"" (4_3.25)
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where
i—1 N
~(m+1) _ R (m+1
amth = |: Y okumtV 4+ Y kulm — b,-:l/k“
i=1 j=i+1

i=1,...,N (4.3.26)

and « is an accelerative factor, 1 < « < 2. The factor « is very problem depen-
dent, as discussed in FDM. Usually the iterative methods take more computing
time than direct methods.

4.3.2.2 Conjugate—gradient method (CGM)

The conjugate gradient scheme is used for the solution of sparse positive definite
symmetric matrix equations of the type KX = B. Detailed concepts of the
conjugate gradient method will be explained in Sect. 11.4.2. or can be found in
references [15, 16]. Only the formulae are listed here.

To solve equation KX = B, assume an initial vector X,, then the residual is:

ro =KX, —B. 4.3.27)

The initial direction p, to search the minimum of the function F(X) = KX — B
(the minimizer of F(X) is the solution of KX = B) is chosen to coincide with
Iy, i.€.

Po=To. (4328)
Then the successive estimate of the next approximation of X is:

Xiv1 = Xi + o (4.3.29)
where

LY (4.3.30)
o= — —— . 3.
p/ Kp;

Then

iy, =r + aiKpi (4.3.31)

pl Krii,

Pi+1 =Tty _‘F Kp; pi -

i

4.3.32)

The directions p; are selected so as to make successive residuals orthogonal to
each other, i.e.

l',:rr,-+1 = O . (4333)

In this process, error is removed in one independent search direction at a time
and not reintroduced subsequently. After N steps there is no direction left in
which correction is required. The resulting solution is therefore the exact
solution. The iteration is stopped when KX;;; — B <e.

Another efficient iterative method is the Preconditioned Conjugate Gradient
Method (PCGM). It can improve the condition number of the matrix equation
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and is regarded as a good method for solving large systems. Detailed procedures
are given in references [15, 16, 18, 19].

4.4 Mesh generation

In mesh generation, the following principles should be satisfied:

(1) Nodes are placed within the region and on the boundary wherever the
field distribution is located. The density of nodes should be high in those areas
where the function varies rapidly; the elements could be large while the field is
uniform.

(2) The elements cannot overlap or overspill, or leave empty spaces. All of
the elements must be well proportioned. For instance, it is important that there
is no great disparity between the edge lengths in one element, i.e. sharp corners
in each element must be avoided. In other words, equilateral triangles are better
than long narrow triangles.

(3) Nodes may not be placed on the side of adjacent elements, e.g.
Fig. 4.4.1(a) is improper, (b) is proper.

(4) For a region composed of different materials, the parting lines of the
materials should be represented by the boundaries of elements, as shown in
Fig. 4.4.1(c).

(5) In order to reduce computer storage, the bandwidth of the system matrix
should be as small as possible. Thus the numbering scheme of the nodes should
be circulated from the narrow side to the wide side. For example, the ordering of
nodes in Fig. 4.2.4(a) is better than that in Fig. 4.2.4(b). The general technique of
the optimized numbering of nodes is explained in references [15, 19].

(6) The local numbering of the vertices of each element must be counter-
clockwise, as shown in Fig. 4.4.2, otherwise the area of the triangle will be
negative.

Mesh generation and data construction of mesh information are the most
annoying problems encountered when using FEM. They consist of a topological
description of the meshes and the coordinates of the nodes. For instance, in

a b c

Fig. 4.4.1a—c. Proper and improper nodes
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i j Fig. 4.4.2. The sequence of local nodes of a pair triangle

calculating the coefficients of the matrix, the coordinates of the vertices of each
node is necessary. The coordinates of nodes is given by x(NO), y(NO). NO is the
global numbering of nodes. Hence the relationship between the number of
global nodes (1,2,..., NO) and the ordering of local number (i, j, m) is
necessary information when calculating the element coefficients. The input data
is a set of arrays I(EO),J(EO), M(EO)and x(NO), y(NO). 1(EO)denotes the node
i of every element. J(EO), M(EO)are nodes J, M of every element. In Fig. 4.2.3,
the arrays of I(EO), J(EO) and M(EQO) are

I: /1,5,4,8,2,6,5,9/  J: /2,4,5,7,3,5,6,8/
M: /5,1,8,4,6,2,9,5/ .
The arrays of x(NO), y(NO) are:
x: /0,1,2,0,1,2,0,1,2/  y /0,0,0,1,1,1,2,2.,2./.

The arrays of I(EO), J(EO), M(EO)can also be expressed by a two-dimensional
array IJM(k, EO). The first number in the parentheses denotes the number of
i, j, m. The second number in the parentheses denotes the number of elements.
For example, in Fig. 423, I/JM (1, 1) =1, IJM(2, 1) =2, [JM(3, 1) = 5 and so
on. If there are hundreds or thousands of nodes, the preparation of the data
input is very tedious and time consuming. If the input data contains errors, it
will result in a waste of labour and computer resources. Consequently, auto-
matic mesh generation is very important. It is a special technique including
graphics. In this section only a simple method of mesh generation is described.

4.4.1 Mesh generation of a triangular element

Two steps are included in generating a mesh module: a logical step and
a geometric step. The logical step describes the relationship between the global
number and the local number of the nodes of each element. A geometric step
gives the geometric coordinates of every node in the module. For convenience,
the logical step and the geometric step associated with a module of a structure
are set up together within a major logical step.

In order to explain the basic algorithm, a rectangular domain (Fig. 4.2.4(a))
is chosen as an example. Assume that the lengths of the two edges of a rectangu-
lar area are X,, and Y,,, N, and N, are defined as the number of divisions in
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x and y directions, respectively. Depending upon the node density, the lengths of
the segments in both the x and y directions are selected. Then the total number
of nodes (LO) and elements (LEO) are

LO = (N, + 1)x(N, + 1) (4.4.1)
LEO = 2N, x N, . (4.4.2)

If the nodal number is arranged column by column, as shown in Fig. 4.2.4(a),
then the nodal number of point P at the intersection of N; row and N; column is

Np=(N;— )x(N, + 1)+ N;. (4.4.3)
If the nodal number is arranged row by row, as in Fig. 4.2.4(b), then

Np=(N; = 1)x(Ny+ 1)+ N;. 4.4.4)
The global coordinates of Np are

xp =X + (N;j — 1) x(Xp — x;)/N,

Vp=y1+ (Ni = 1)x(Yy — y1)/N, (4.4.5)

where x,, y, are the coordinates of an initial point. In Fig. 4.2.4(a), assume
Xn=6cm, Y,=4cm, let N,=6 Ny=4, and x, =0, y, =0, for node P,
N; = 3, Nj = 4, then

N,=@4—-1x@+1)+3=18, x(18) = 3 cm, y(18)=2cm.

To define the logical code of the elements and nodes, the elements are divided
into two types, as shown in Fig. 4.4.2: an upper triangle and a lower triangle. The
nodal code of each element is memorized by a two-dimensional array IJM (k, E).
The following formulations are used to construct the global code of a pair of
triangular elements. If the codes are numbered column by column, then:

(E=2N,x(N;— 1)+ 2N; — 1

IJM(I, E) = IJM((N; — 1) x(N, + 1) + Ny, E)

[JM(J, E)=1JM(I + N, + 1,E)

) MM, E) = IJM(J + 1, E) 446)
E=E+1

[JM(I, E) = IJM(M(E — 1), E)

IJM(J,E) = IJMUI(E — 1) + 1, E)

L [JM(M, E) = IJM(I(E — 1), E) .
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If the codes are numbered row by row, then

~

E=2N,x(N;— 1)+ 2N, — 1
1IM(I, E) = IIM((N; = 1)x (N, + 1) + N;, E)

IUM(J,E) = IJM(I + N, + 1 + 1, E)

[JM(M, E) = IJM(J — 1, E)

E=E+1 4.4.7)
[JM(I, E) = IIM(I(E — 1), E)

IJM(J,E) = IJM(I + 1, E)

1IJM(M, E) = IJM(J + N, + 1, E)

~

For instance, in Fig. 4.2.4(a), IJM(I, 19) = (12, 19), IJM(J, 19) = (17, 19).

442 Automatic mesh generation

The former section gives a simple idea of mesh generation in a rectangular
domain. Actually, automatic mesh generation should be capable of producing
a valid finite element mesh for any geometry without user intervention. It should
be able to change the position of nodes automatically, delete elements and
rearrange the topological relation in an attempt to improve the element ge-
ometry. As an example, in the package MAGNET 2-D, when the coordinates
(x, y) of the vertices of the polygon, shown in Fig. 4.4.3(a) and the division
numbers on each edge are input, then the meshed model is displayed on the
screen automatically as shown in Fig. 4.4.4(b). During the process of the
connection of nodes, the obtuse angle must be avoided. Many schemes exist for
optimizing the connection. All these schemes try to make connections yielding
triangles as close to equilateral as possible. The well known Delaunary criterion
[20] is one of the most commonly used principles in mesh generation. Detailed
methods may be found in references [18] and [20-22].
Generally, automatic mesh generation consists of the following steps:

(1) Subdivide the domain into several sub-regions in which the material is
homogeneous and determine the density of the elements in each region.

(2) Subdivide each sub-region into triangles, as shown in Fig. 4.4.3(b), join
all these subregions into a whole. It is imperative that the nodes at the common
sides of each sub-region be coincident.

In order to obtain faster and more accurate results, the more advanced
method such as adaptive mesh generation has been developed ([23-28]). Im-
provement of the mesh is not only concerned with geometrical aspects of the
mesh but also with the errors of the results. The size of element depends on
the different variations of the field. In the process of adaptive mesh generation,
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@3.5,1)

0,0

(A

V0N
b@ Vd@%%\ N

Fig. 4.4.3a,b. Automatic mesh generation by using MAGNET 2-D

the finite element model is generated iteratively. Potential distribution is cal-
culated sequentially beginning with a coarse mesh, the mesh is then refined in
locations where the greatest error exists. The error estimation may be based on
the complementary variational principle [25], the energy minimum [26] or on
computing the residual in the finite element solution directly [27].

4.5 Examples

Example 4.5.1. A 2-D Laplacian problem subject to Dirichlet boundary condi-
tion in a rectangular domain is chosen as an example to illustrate the essential
feature of the finite element method. Due to its symmetric property, half of the
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Fig. 4.5.1. A 2-D Laplacian problem Fig. 4.5.2. Equipotential lines of Fig. 4.5.1

domain, shown in Fig. 4.5.1, is considered. The problem is then stated by

Vip=0

oln=1 ¢ln=0 @.5.1)
de

on r2=0

This is a problem having mixed boundary conditions. Boundaries Iy, I'; satisfy
boundary conditions of the first kind and boundary I, satisfies a homogeneous
boundary condition of the second kind. The associated finite element equation
is:

K{p) =0 4.5.2)

The domain is subdivided into a non-uniform triangular element; the steps in
x and y directions are 8 x2.0, 16 ¥ 0.5, 5% 0.2 and 4% 4.0, 9%2.0, 10%0.5, 5% 0.2,
respectively. The total number of nodes is LO = 30 x 29 = 870. Among these 87
nodes are boundary nodes with known potentials of 1/ and OV. These data
are given by arrays LUO and UO. The total number of elements is
LEO =2x28x29 = 1624.

The homogeneous boundary condition of the second kind on I, is satisfied
automatically, hence the boundary nodes on I, are not dealt with specifically.
After the matrix equation is solved, the potential value at each node is obtained.
If the distribution of the equipotential line is of interest, the coordinates of equal
potential lines are obtained by the linear interpolation or Lagrange interpola-
tion. The potential distribution of Fig. 4.5.1 is shown in Fig. 4.5.2.

If the domain consists of different materials as shown in Fig. 4.5.3, the edges
of the element must be coincident with the interfacial line. The result shows that
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¢=0 | A=0 .
Fig. 4.5.3. Refractive phenomenon at the Fig. 4.5.4. B lines within the ferromagnetic
interface of different materials conductor

the equipotential lines are condensed into the upper part with smaller
permittivity. At the interface, the field is refracted according to the ratio of the
permittivities.

Example 4.5.2. Plot the distribution of B lines of a long current carrying
ferromagnetic conductor (u = 400u,) with a rectangular cross-section.

Solution. Due to the symmetry, one quarter of the domain, shown in Fig. 4.5.4,
is subdivided into 2000 triangular elements and 1066 nodes. Because p > . the
magnetic field is assumed within the conductor. The boundary of the conductor
is assumed as an equipotential line of A = 0(4 = A.), the two symmetric lines
satisfy dA/0n = 0. In each element, the current density is assumed as being
constant. For a 2-D case, the equipotential lines of A consist of the B-lines. By
using the program as before, the B lines are drawn in Fi.g 4.5.4.

Example 4.5.3. Consider the influence of a ferromagnetic plate near a pair of
rectangular current carrying conductor with infinite length.

Solution: This is an open boundary problem. It means the field may extend to
infinity. To simplify the calculation, an artificial boundary, shown by the
contour a,b,c,d in Fig. 4.5.5, is assumed as the boundary at infinity where
A = 0. Due to symmetry, half of the domain is to be analysed. Using transla-
tional symmetry, the scalar potential A. is chosen as the variable to be cal-
culated. The boundary conditions of the solution domain are given in Fig. 4.5.5,
and the solution of the B lines are plotted in the same diagram. The result shows
the tangential component of the flux density along the surface of the steel plate is
almost zero. This is because the permeability of the plate is 10u,. Another
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b a

A=0

d Fig. 4.5.5. Solution of an open boundary problem

conclusion is that the artificial boundary will influence the result of calculation.
In other words, the accuracy of the solution is limited by the assumed zero
boundary. In general, if the artificial boundary is sufficiently large, the accuracy
is enough. This can be defined as when the solution considered does not change
when the zero boundary is removed. A more advanced method to deal with the
open boundary problem is introduced in the next chapter.

4.6 Summary

In this chapter, general procedures of the finite element method to solve
a potential problem are illustrated. In order to avoid using the functional and its
variations, a matrix equation of finite elements is derived by the principle of
weighted residuals. To illustrate the basic idea of the method, a 3-node tri-
angular element is used as discretization elements. Formulations for calculating
the coefficients of a matrix equation of a 2-D translational symmetric problem
are given. The coefficients of this element matrix depends on the parameter of
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the material and the coordinates of the vertices of the element, i.e.

B

ks=ksr=_
§ 4S

(b.bs + c,c5) r,s=i,j,m
in the electrical field, f = ¢ (permittivity of dielectric).

The formulations for calculating an axisymmetric problem will be given in
the next chapter. The solution methods for solving algebraic equations are
introduced.

The disadvantages of FEM are:

(1) Like FDM, if the problem to be solved is unbounded, then an artificial
boundary must be assumed or a special process is required (this will be
introduced in the next chapter).

(2) The pre- and post-data processing are more complex than for the finite
difference method and integral equation methods (these will be introduced in
part three). Because the whole region has to be discretized, a tremendous
number of nodes and elements are required.

The variational finite element method and matrix equations of other electro-
magnetic field problems are discussed in Chap. 5. The high order elements will
be introduced in Chap. 6. If the suitable mesh discretization is adapted, accuracy
of the method is high.
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Chapter 5

Variational Finite Element Method

5.1 Introduction

In general, most of the problems in engineering and science can be described by
variational principles. For instance, the principle of least action exists in mech-
anics and electrodynamics [1]. In electrostatic fields, Thomson’s theory [2]
states that the electric energy is minimum if the system is in equilibrium. In
classical thermodynamics, the entropy remains at maximum for any equilib-
rated isolated system.

Variational expressions succinctly summarize the governing equations of
these problems and provide a means for an approximate solution. Therefore the
solution of any boundary value problem is characterized by a function which
yields an extremum (minimum, maximum) value or is stationary to a related
functional I(u)t. From a historical point of view, variational problems (to find the
extremum function of a functional) are solved by the solution of their equivalent
Euler’s equations (differential equation).

However, the development of high-speed digital computers has enabled the
numerical solution of many variational problems. Hence a partial differential
equation can be solved using the approximate method of its equivalent variational
problem. One of the most prominent methods is the variational finite element
method. The classical variational formulation of a continuum problem has
advantages over the differential formulation for obtaining an approximate
solution. The reasons are as follows.

First, as indicated in Chap. 2, the extremum function of a functional is the
solution of the corresponding operator equations. In potential problems, the
unknown function contained in the equivalent functional of the problem has lower
order derivatives than those contained in differential equations and consequently
an approximate solution can be sought in a large number of functions. For
example, Poisson’s equation subject to Dirichlet boundary conditions is math-
ematically expressed as:

{V2<p = —p/e in Domain Q

5.1.1
olr = U on Boundary I'. (5-1.1)

t In this book, symbol I represents functional.
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The equivalent functional of Poisson’s equation, subject to the Dirichlet bound-
ary condition, is equivalent to a constrained functional expressed by:

I(@) = [$¢|V|*dQ — [pedQ
2 2 (5.1.2)

olr="U,.

The second equation of Eq. (5.1.2) is the constrained condition of the equivalent
functional I(¢). It shows that I(¢) contains only the first order derivative of
¢ [the equivalence of Egs. (5.1.1) and (5.1.2) was proved in Sect. 2.4.2], while the
second order partial derivative of ¢ is contained in the partial differential
equation.

Second, some problems may possess reciprocal variational formulations. This
means that when describing a physical problem one functional has to be minimized
and another functional of a different form has to be maximized. In such cases one
may find the upper and lower bounds on the functional. This has important
engineering significance. For instance, it can be used to calculate the parameters
of electromagnetic fields [3,4].

Third, in variational formulations, it is possible to treat complicated interfacial
boundary conditions as natural boundary conditions. (This property will be
proved in Sect. 5.3.)

Finally, from the mathematical point of view, with variational formulations, it is
easy to prove the existence of the solution. It is proved, if the operator . of the
operator equation (Zu = f) is symmetric and positive definite, then this equa-
tion has only one solution [5].

The variational finite element method is based on the principle of the
variations. The process in the variational finite element method is to find
equivalent variations of the physical problem first, then to minimize the equiva-
lent functional approximately to obtain a set of algebraic equations. The
solution of these simultaneous equations is the approximate solution of the
problem to be solved.

The basic concepts of the functional and its variations are reviewed in
Sect. 5.2. The equivalent functionals for electromagnetic field problems are
derived in Sect. 5.3. During the derivation of the functionals, it is shown that the
boundary conditions of the second and third kind are included in the equivalent
functional. The discretized finite element equations of various electromagnetic
field problems are derived in Sect. 5.4. Finally, some special problems such as the
solution of open boundary problems and problems containing conductors with
free potentials are discussed in the last section.

5.2 Basic concepts of the functional and its variations

The theory and calculus of the functional and its variations are beyond the scope
of this book. Without becoming too involved with mathematical difficulties,
some basic concepts of functionals and their variations are reviewed briefly. For
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the complete theory of functionals and variations, the reader may refer to any of
the references [5-9].

5.2.1 Definition of the functional and its variations
5.2.1.1 The functional

The function y =f(x) or y =f(x,X3, ..., X,) expresses the relationship be-
tween a set of variables (x,, . . ., x,) and a set of numbers. Therefore, a function
is a mappiny connecting one space of numbers to another space of numbers.

A functional is a different kind of mapping. It relates a set of functions to a set of
numbers. For instance, what is the shortest length between the two points A and
B of a curve shown in Fig. 5.2.1(a)? What is the minimum surface suspended
between two circular wire loops as shown in Fig. 5.2.1(b)?

Obviously, the length is a number. It is determined by the shape of the curve
which is a function of the variable x, i.e. the length of the curve is expressed by:

B
?\/dxz +dy? = [ /1 + (dy/dx)*dx
A A

[ /1 + (y)dx . (5.2.1)

This equation means that the length of the curve depends on the function
y = f(x) and its derivative of the first order. The value of L(y) depends on the
argument of function y(x). Hence L(y) is called a functional. Therefore, the
functional is a real or complex value, it is the function of a function, not a function
of variable. In electrostatic fields, the field intensity E(r) is a function of coordin-
ates, the potential difference U between two points and the electrostatic energy
W, included in volume @ are functions of the field strength, i.e.

B
L(y) = [dl
A

U= ?E(r)dl (5.2.2)
A

A
i
l
[
l
X

A Xp
a b

Fig. 5.2.1a, b. A planar curve and a curved surface
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w,= %j'sEZdQ . (5.2.3)
Q

Consequently, the U and W, are functionals which are determined by a vector
function E(r). Once the function E(r) is specified, the functional W(E) is evalu-
ated. Equation (5.2.1) can be expressed in a generic form:

1) = [ Flx,yy)dx . (5.2.4)

Usually, the functional is expressed by an integral. In Eq. (5.2.4), F is the
integrand of the functional.
In two-dimensional cases, the functional is expressed as:

I(u) = [ F(x,y,u,ux, Uy, Uxx, Uy,) dxdy (5.2.5)
o)

where
u=f(x,y), u.=0u/dx, u,=0uldy, u.,=0du/ox*
u,, = 02u/oy* . (5.2.6)

In the notation of operators, the functional is a special operator. It is defined as
that the operator [, FdQ which maps its domain  onto a set of real or complex
numbers called functionals. The domain of a functional is the space of admis-
sible functions which may be restricted to satisfy certain continuity restrictions
or boundary conditions. Thus, a functional assigns every element ue Qp to
a certain number I(u). Hence all concepts and results of an operator are valid for
the functional. For example, the stationary property of a functional is analogous
to the stationary property of a function.

It is known that the point x, is a stationary point, if the function y(x) is
stationary at point xo, i.e. dy(x)/dx|,=,, = 0 or

fim 250 * ‘2 W) _ (5.2.7)

a—0

a is a predetermined infinitesimal value.
Similarly, the derivative of a functional is defined as:

I(y +an) — I(y)

li =

al_tf(l) M 0 (5.2.8)
where

n=n(x) =dY(x, a)/dal,=0o (5.2.9)

n is zero at two endpoints A and B in Fig. 5.2.1(a). The concept of the variation of
a functional will be illustrated by comparison of the variation of a function.
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5.2.1.2 The differentiation and variation of a function

The differentiation of a simple function y = f(x) is defined as:

y'(x) = lim —= (5.2.10)
ax—o0 4%
ie.
Ay
—~ =y'(x) +a (when 4x >0, 2 —0).
Ax
Thus
Ay = y'(x)4x + adx = dy + adx = dy + 0(4x) (5.2.11)

where adx is an infinitesimal of a high order. When |4x| is small enough dy is
the approximation of 4y. This means that the differentiation of a function is the
principal value of the increment of the function. The high order derivatives of y(x)
are obtained by expansion of Taylor’s series. The incremental of the function
y caused by the variable x is derived as

1 1
y(x + dx) — y(x) = y'(x)dx + Ey” (x)dx? +...+ ;y"(x) dx" (5.2.12)

where neglecting the high order derivatives yields:
dy(x) = y'(x)dx . (5.2.13)

In Eq. (5.2.13) dy(x) is the principal value of the increment of the funttion
y = f(x), it is the first order derivative of function y(x). Similarly, the second
order derivative and the nth order derivative are:

d?y(x) =y" (x)dx? (5.2.14)
d"y(x) = y"(x)dx" . (52.15)

The definition of the variation of function is:
0y = Y(x) —yo(x) = an(x) (5.2.16)

where Jy is the increment of y(x) in the functional I(y), i.e. I(y’) = I(y + dy).
This equation represents that if y(x) is changed from yy(x) to Y(x), then
Y(x) —yo(x) is called the variation of y(x) at yo(x), where & < 1, (x) €[xa, xg5]
is any acceptable function defined in the domain under consideration. The
symbol é (which reads ‘the variation of’) is used in calculus of the variations to
indicate the various functions. The difference between the derivation and vari-
ation is that the variation of the function is concerned with the parameter « not
the variable x.

One important property of the variation of function is that the sequence of
the variation and the derivation can be alternated with each other, i.e.

d(y) = 8(dy). (5.2.17)
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b

x  Fig. 5.2.2. Variation of a function

This property is useful in deriving the equivalent functional in field problems
in the sections to follow.

5.2.1.3 Variation of the functional
The definition of the variation of a functional is similar to the derivation of

a function y. The variation of a functional I[ y(x)] caused by the variation of
function y is expressed by:

X2 X2 X2 F
I(y +0y) — I(y) = fF(x,y+ dy)dx —J.F(x, y)dx = f%;&ydx
1 ([ F
+5J<a—f-(5y)>dx+...
1
=5I(y)+5621(y)+.... (5.2.19)

Therefore the first order variation (usually simplified as a variation) of the
functional is:

rOF
51y = | 3, vdx (5.2.20)

where 81(y) is the principal value of the increment of a functional. The variation
of the first order of functional I (y) depends on dy linearly. Similarly, the second
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order variation and the nth order variation of the functional are:

02
M= |5 IF ) dx (5.2.21)
and
x2 np
SI(y) = j ‘;yn (Sy)*dx . (5.2.22)

The second order variation of functional 6?I(y) depends on the quadratic
variation of the function. Comparing Eq. (5.2.21) with Eq. (5.2.14), the operation
for the variation is similar to the operation for the derivative. The variation of the
first and second order of a functional are extensions of the derivatives of functions.
For example, if the integrand of a functional is F(x) = y?(x), then the increment
of a functional is:

[N
~
I

b
[F(x) + dyldx — [ F(x)dx

b
[Y2(x) + 2y(x)dy + (6y)*1dx — [y*(x)dx

I
Ry T R T D O

b
= [2y(x)dydx + [(0y)*dx = 5I(y) + 0(y) (5.2.23)
where ‘
: oF
J 3, od. (5.2.24)

The first term of the RHS of Eq. (5.2.23) is a linear functional. The second term of
the RHS of Eq. (5.2.23) is an infinitesimal of a high order. Thus the variation of
a functional is also the principal value of the increment of the functional.
According to the extremum condition of a function, the extremum condition or
the stationary condition of a functional is:

ol(y)=0 (5.2.25)

i.e. the first order variation of the functional being equal to zero is the necessary
condition under which the functional has its extremum function.

If 6%21(y) <O, the function is maximum, if 62I(y) > 0, the function is
minimum.

5.2.2 Calculus of variations and Euler’s equation

In the conventional method of variations, the extremal function of the functional
is solved by the equivalent Euler’s equation. In numerical approaches, the
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differential equation is solved by the equivalent variational problem. Hence the
relations between the differential equation and the variation are discussed in this
section.

5.2.2.1 Euler’s equation [10]

Consideration of the functional consists of the first derivative of a function y, e.g.

= [F(x,y,y)dx . (5.2.26)

Let 6y = an(x), 3y’ = an'(x). Then, the variety of the integrand of the functional
is:

0F(S 0%F

Ty S ayoy’

. . aF
OF = F(x,y + 0y,y + dy') — F(x,y,)) = <5 dyoy’

1[o*F 0%F
+ =0+ =50y |+...
2! y

Oy

oF 2F 32F
[ay x)+—— (x)] 2,[ )+ fy,znz(x)}...(s.z.zn
(

Comparing Eq. (5.2.27) with Eq. (5.2.20), the variation of the first order of the
functional is:

© ToF OF [ [oF _d (oF
61(y)=f"‘[@”““a_y’"(x)]dx:af [5?-5<5Y)]d¥

x=xi (5.2.28)

By using the extremum condition I(y) = 0, the extremal function y(x) of the
functional I(y) is thus obtained. In Eq. (5.2.28), as « is a constant, n(x) is an
arbitrary function. Instead of dI(y) = 0, the following equations must be satis-
fied:

O0F(x,y,y) d [0F(x,y,y")
= 5.2.
5 dx( o (5.2.29)
LA (‘;’ W Lo g e g (5.2.30)
y x=x Oy x=x2

These equations are equivalent to Eq. (5.2.25). Hence the solution of the
variational equation equals the solution of the differential equation (5.2.29)
subject to the additional condition (5.2.30). Equation (5.2.29) can be written as:

d

F,— 4B =0 (5.2.31)
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This is called the Euler-Lagrange Equation. It was proved by Euler in 1755 and
independently by Lagrange, also in 1755. Therefore, any variational problem of
the first order is equivalent to solving Euler’s equation subject to the additional
conditions of Eq. (5.2.30). Equation (5.2.30) includes two cases: if 7(x;) =0,
n(x;) =0, eg y(x;)=A, y(x,)=B (Fig. 52.1(a)), then Eq. (5.2.29) and
Eq. (5.2.30) are equivalent to the boundary conditions of the variational prob-
lem of the first kind. If n(x,) # 0, n(x,) # 0, e.g. y(x;), y(x2) # const, then the
variational problem corresponds to:

OF d [oF

L)oo 5232

T (ay'> 5232
and

oF oF

o= 3l =0 (5.2.33)

These two equations represent the variational problem of the second kind.
Therefore, in association with 1 =0 or n # 0, the fixed boundary value
problem of variation equals the boundary value conditions of the first kind of
Euler’s equation. The free boundary value problem of variation is equal to the
boundary value conditions of the second kind of Euler’s equation.
If the functional contains the second derivatives of the function, i.e.

I(y) = [ F(x,y,y,y")dx (5.2.34)

XA

then the corresponding Euler’s equation is:

d d
I{Fyl + -—Fy,, = O . (5235)

k= dx

5.2.2.2 Euler’s equation for multivariable functions

Consider that the functional consists of the function u = f(x, y, z) and its partial
derivatives of the first order, e.g.

I(w) = [F(x,y,2,u,uy,uy,u.) dxdydz . (5.2.36)
2

Let
ou = an(x, y, z) (5.2.37)

then
oF oF oF

oF
ol(u(x,y,2) = J‘[Eéu + —0u, + —du, + E»
" 4

. |dQ
Ou, du, 5u_]d
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‘“J oF L OF  OF  OF 7.
- ' T ou, auy””auz”:

2

oF 0F, OF, OF
= ocf l:g;r] + (G—uxl + 6_uyj + ak) . Vn:l dxdydz (5.2.38)
N

Using the vector identity:
A-Vu=V-(uA) —uV-A (5.2.39)

and Gauss’s theorem:
f V-AdQ = §A -dS (5.2.40)
n s

Eq. (5.2.38) results in:

oF 0 (OF 0 (OF 0 [ OF
o1 =ofn| 5~ 5 () - 5 () - 2 (50) J e

1]

+0‘§’1|:6—F(n‘i)+6—F(n-j)+a—F(n-k):|ds. (5.2.41)
Ou, du, ou,

s

Thus the variational equation I (u) = 0 is equivalent to Euler’s equation:

OF _ 3 (OF\ 0 (0F), o (0F -
du dx\ou,) 0dy\du,) 0z \du. (5.242)

subject to the additional condition:

oF 0 OF
n[T(n-i) + Lwp+ —(n-k)]
Ou, ou,

. =0. (5.2.43)

X, Y, Z€N

If the functional consists of the partial derivative of the second order, then
Euler’s equation is:

oF 0% [/ OF 0% [ OF 0%/ OF
?*a—<a—‘> W<a—> +—<a—) =0 6249

subject to the additional condition:

W[ O (FV], o0 (O
Tou,, ~ "ox \ou,., ! ny@uyy n@y du,,

oF 0 [ OF
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5.2.2.3 The shortest length of a curve

The aim of this section is to find an extremum function y(x) which minimizes the
following functional:
XB
I(y)= [/1+(Y)*dx (5.2.46)

by using Euler’s equation.

Let n(x) represent a function of x which is zero at the end points x, and xg
and has a continuous derivative to the first order in the interval of x, and xg.
The function Y(x) is defined by:

Y(x) = y(x) + an(x) (5.2.47)

where y(x) is the desired extremum and « (< 1) is a parameter. Because of the
arbitrariness of n(x), Y(x) represents any curve drawn between the points A and
B as shown in Fig. 5.2.2. The purpose is to pick one curve out of all these curves
Y(x), which satisfies Eq. (5.2.46). Based on the definition of the variation of the
function, I is a function of parameter o. If x = 0, then Y(x) = y(x) is the desired
extremum, i.e. the result is determined by:

dI/dal,=o =0. (5.2.48)
Substituting Eqgs. (5.2.46) into (5.2.48) leads to:
dI R 1 dy’
— = |=———2YV{—|dx. 5.2.49
(da)«:o Jz I+ (Y7 <doc )d‘ (5.2.49)
Since
Y'(x) = y(x) + an'(x) (5.2.50)
and
dY'/da = 5/(x) . (5.2.51)

Substituting Eq. (5.2.50), (5.2.51), into Eq. (5.2.49) and letting d//d« equal zero at
a = 0, leads to:

y'(x)n
=0. 2.
(da)a 0 J 1 + )2 (5 2 52)

Integration of Eq. (5.2.52) by parts results in:
Y X j n(x) — (-———y———>dx . (5.2.53)
x JI+0)

dI
<@> o STE O . }

The first term on the RHS of Eq. (5.2.53) is zero because at the end points
n(x) = 0. Consider the second term on the RHS of eq. (5.2.53) and recall that 1(x)

’
’




5.2 Basic concepts of the functional and its variations 141

is an arbitrary function. The integral j’;:n(x)f(x) dx will be zero only if the
function f(x) is zero, 1.e.

)
— | ——=—=1=0. (5.2.54)
dx\/1+ ()

Integration of Eq. (5.2.54) with respect to x, results in

’

) — const (5.2.55)
J1+ ()
or
y' = const (5.2.56)
then
y=Ax+B. (5.2.57)

The above equation shows that y(x) is a straight line as expected.

This process shows that the solution of a variational problem is equivalent to
solving the differential equation (Eq. (5.2.54)) which is Euler’s equation of the
variational problem (Eq. (5.2.46)). In FEM, the problem is dealt with in different
way: the solution of a partial differential equation is obtained by finding the
extremum function of an equivalent functional. The first step is to find the
equivalent functional of the operator equation. Then the extremum solution of
the functional is also the solution of the operator equation.

5.2.3 Relationship between the operator equation and the functional

Variational expressions can be established by the physical problem directly, or
can be derived by a differential or an integral equation. For an operator
equation

L) =f (5.2.58)

only if the operator .# is positive definite and self-adjoint may the equivalent
functional exist and can be determined by:

Iu) =<{Z(u),u) —{u,f) - fuy. (5.2.59)

This can be proved in the following ways [8, 11]:
(a) If v(v = u + ) is the solution of Eq. (5.2.58), then I(v) > I(u).
(b) If u satisfies Eq. (5.2.59), then u is the solution of Eq. (5.2.58).

Proof (a):
I(v) = (v, v) — v, f ) — (f,v)
=[KLuu) = (u, f) — (fud] + (&Ln,m)
+ K&, n) = <Em]+ [K&nu) -, )] (5.2.60)
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In consideration of the symmetry and the positive definite of the operator &, the
following conditions exist

(&n,ny>0, (Lnuy =, Lu)
Then

Iv) = I(w) =<&n,n) + {(Lu—Ln) +<n, Lu—1)
=<{&n,n»>0.
Hence I(u) = min.

Proof (b):

(5.2.61)

Let v =u +an (x is a complex number), by assumption
Al = 1(v) — I(u) = {Lan,an) + {(Lu —f,an) + {an, Pu—£)>0.
(5.2.62)
If « = 0, then AI =min. If a is a real number, then
Al = a¥ &, ) + ol Lu — £, 1) + aln, Lu—f)
=a¥ (&N n)> + aRe{Pu—f, 1) . (5.2.63)
If « = ja, then
Al =a?{Pn, n> — jud Lu — £, 1) + jaln, Lu—f>
= a* (L, n) + alm{PLu—f,n) . (5.2.64)

Based on lim 041/da = 0, only if % is bounded operator, then (#n, n) is also

a—0
bounded and (Zu — f, n) =0, a*¢.Ln, n)> > 0. Then Lu = f. Hence .# must be
positive definite.
If & is a real operator, u and f are real functions, then

H{u) = (L W), uy — 2{u,f) . (5.2.65)

Consequently, the equivalent functional I(u) of an operator equation can be
derived by Eq. (5.2.59).

5.3 Variational expressions for electromagnetic
field problems [12]

In electromagnetic field theory, the differential equations of the continuum
problems are more well known than the variational expressions. In general, with
electromagnetic field problems it is possible to find a corresponding functional.
A variational equation can be derived by the differential equation or be set up
on the basis of energy balance without knowing the differential operator. In this
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section, variational expressions of electromagnetic field problems will be derived
in different ways.

5.3.1 Variational expressions for Poisson’s equation

5.3.1.1 Mathematical manipulation [13]

The boundary value problem of Poisson’s equation subject to different bound-
ary conditions is expressed by:

L) —f=0 in Q

¢l =Uo boundary condition of the first kind (53 1)

0 . . . -
filD)e +a—(p = f,(I') boundary condition of the third kind
n

where ¥ = V2. It was proved that if % is a definite self-adjoint operator, its
functional exists.

Multiplying the first equation of Eq. (5.3.1) by the first order variation of ¢,
(09), and integrating the result over the domain yields:

£ So[L(p) —f1dR =0 (53.2)

The purpose of this step is to manipulate the resulting expression (Eq. (5.3.2))
into a form that allows the variational operator ¢ to be moved out of the
integral, i.e.

Sfo[L(p)—f1d2=0. (5.3.3)
o)

Then, the integral is a functional written by:

I(p) = qu[fé’(qa) —f1dQ. (53.4)

Apply the vector identity:

Vewv)=Vu-v+uV-.v
letting u =d¢ and v = V¢, and noting that V2¢ = V - Vo, one obtains:

ooV Vo =V-(5pVp) — V(5¢p)-Vo . (5.3.5)
Substitution of Eq. (5.3.5) into Eq. (5.3.2) and consideration of the assumption
ZL(p) = V2¢, leads to:

[V - (6pVe) — V(59)- Vo — 8fp]dQ = 0. (5.3.6)
n
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The first term of Eq. (5.3.6) can be transformed into a surface integral using
Green'’s theorem. Then Eq. (5.3.6) becomes

$ 5@Vonds — [V(5¢) - VodQ — [fedQ =0 . (53.7)
s 0 fo

where n is a unit vector normal to the surface S of domain Q. Since ¢|. = U,
then d¢ =0 on the surface and Eq. (5.3.7) is reduced to:

{) [V(d0) - Vo + dfp]dQ =0. (5.3.8)
By noting that V(6¢)- Vo = 45 (Ve - Vo) Eq. (5.3.8) leads to:

o .L [3 (Vo Vo) + fp]dQ =0. (5.3.9)
Hence the equivalent functional of Eq. (5.3.1) is:

I(p) = L [3(Vo)? + fpldQ (5.3.10)

subject to @|= U, .

This is the equivalent functional of Poisson’s equation subject to Dirichlet
boundary conditions. In comparison of this equation with Poisson’s equation, it is
clear that the order of the derivative of function ¢ contained in the equivalent
Sunctional is reduced by one.

If the boundary condition of the third kind (0¢/dn = f, —f,¢) is substituted
into Eq. (5.3.7), one obtains:

$00(f2 — f19)dS — 8] [3Ve - Vo) — fp]dQ =0. (5.3.11)
s [

Consideration of that f= — p/e, thus the corresponding functonal is:
1) = e[ |Vol"dQ — {)pwdQ +$e1(f10* — 20)dS (53.12)

where the boundary condition of the third kind is included in the functional. For
inhomogeneous boundary conditions of the second kind d¢/on = f,, f; =0,
then:

I(p) = [ $e|V|*dQ — [ pepdQ — [ef20dS . (5.3.13)
2 Q 5
If dp/0n = 0, then

I(p) = [ 3¢ |Vo|?dQ — [ppdQ . (5.3.14)
0 0
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Equations (5.2.10), (5.3.12), (5.3.13) and (5.3.14) are functionals of Poisson’s
equation subject to different boundary conditions. These equations can be
written in a unified form, i.e.

I(p) = }[elVol’dQ + $ e(} f10? — f20)dS — [ ppdQ = min
2 * 2 (5.3.15)

¢olr,=U, .

This equation represents a constraint variational problem. Hence, the problem
subject to Dirichlet boundary conditions corresponds to a constrained functional.
All other boundary conditions (Neumann and Robin) are contained in the equiva-
lent functionals.

Alternatively, Euler’s equation of Eq. (5.3.15) can be derived from the
following procedures. Rewrite the functional in Eq. (5.3.15) in the form of

1 0p\2  [0p\* [0¢\?
I(w)—z:[(g> +<@> +<a—> ]dg

+<j§e<%fﬂp2 —fz(P)dS - o0

2

F(o + d9) — F(o)

according to the definition of dI(¢) = lim . , 0 = an, and in
a—=0
. . ¢ 2 0o \? 0
consideration of [ <2 + ane | = A I ke an, + o«?n2, then
Ox O0x Ox

d d 0
ol(p) = Hs(—%m + %m + a—(fn:> - pn]dQ
o]

+ S$8f'1<ﬂ'7ds - #;sfzndS

j (V- Vi — pn)dQ + SEeflqmds - 35 efands
Fol s s

eﬁV-(an) — nV2p)dQ — jpndsz + <§ e(fing — fan)dS .
2 0 s

If 0I(p) = 0, the following equations must be satisfied
—eVip=p

d (5.3.16)
_a(P +fio=/2.
n
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Thus, it is proved that Eq. (5.3.15) is the equivalent functional of Poisson’s
equation with inhomogeneous boundary conditions of a different kind. It is
obvious that the homogeneous or inhomogeneous boundary conditions of the
second and the third kind are automatically satisfied in the process of variations
where the divergence theorem can be used. Hence the boundary conditions of the
second and third kind, called natural boundary conditions, do not need to be dealt
with in finite element methods. This is an important advantage of FEM. In other
words, the boundary conditions of the second and third kind are automatically
satisfied using the variational approach. The only exception is where boundary
conditions of the first kind are considered as a constrained condition of the
variational equation.
For axisymmetric fields, the functional of Poisson’s equation is

3 1 0p\>. [0p\?
I(p) = 27!}[5 |:8 [(E) + <E> ] - 2p(,0:l rdrdz
1 2
+2nJa(§fl¢ —-fzq))rdl" (53.17)
r
@lr,=g(r,2).

5.3.1.2 Physical manipulation

In electrostatic fields, the energy is a functional of potential ¢, i.e.
1
W.(p) = EfD -EdQ = gJIV(pIZdQ : (5.3.18)
n 2

According to Eq. (5.2.18)
W) = Wilp + 09) —W.lp) = &f Vo -VipdQ (3.3.19)
n

By using vector identity and then
Vo -Vép = V-(0pVe) — 6¢pV-Vo . (5.3.20)
Substitution of Eq. (5.3.20) into Eq. (5.3.19), leads to:

SWi(0) =& f V. (5pV0)dQ + J ¢3¢V - EAQ
n n

= é eé(pg—(: ds + fé(ppd() (5.3.21)
K 2
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where S is the boundary surface of the domain and n is the unit length of the
normal direction of surface. Equation (5.3.21) demonstrates that the incremental
of energy d W, in the domain equals the incremental of energy due to the volume
charge p and the surface charge o. Substitution of the third kind of boundary
condition into Eq. (5.3.21), yields:

W, (p) = @e&p(fz — fip)dS + L pddQ . (5.3.22)

Combining Egs. (5.3.19) and (5.3.22), the result is:
sj'Vq)éV(de — $edp(f2 — fi9)dS — [ pdpdQ =0. (5.3.23)
o] s 0

This is the variational expression of Poisson’s equation with boundary condi-
tions of the third kind. In other words, the equivalent functional is:

I(p) = %LechoIZdQ + § e(3/19* — f20)dS - jnpqon . (5324

Of course this equation is exactly the same as Eq. (5.3.12)

5.3.2 Variational expressions for Poisson’s equation
in piece-wise homogeneous materials

Since Gauss’s theorem is used in proving the self-adjoint property of the
Laplacian operator ., the variational equation (5.3.24) cannot be extended to
the case where the permeabilities are discontinuous at the interface, S, shown in
Fig. 5.3.1.

Using Eq. (5.3.24) in both areas of ©, and Q, respectively leads to

li(@) =1 ] elVoldQ + § e(1fi0® —f20)dl = [ ppd2  (53.29)
2, 1+58 o))
and

Lig) =1 [ eVodQ + § e(3fi0? — oo)dl — [ pod@.  (5326)
23 2

L.s

Fortunately, at the interface S, the normal directions of the boundary are

Fig. 5.3.1. Piece-wise uniform domain
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opposite to each other, and which satisfies:

_ )\ _, (%
(pls__“(pls,,f & on s__82 an

Combining Eqgs. (5.3.25) and (5.3.26) to Eq. (5.3.27), and considering the edge of
the discretized elements along the interface, then the variational expression of
Poisson’s equation in piece-wise uniform materials are:

Sl(p) =1} elVol?dQ — | pedQ— § e fio® — fr0)dl

21+ 2, 2,+ 02, n+n

= min. (5.3.28)

(5.3.27)

S+

where I'; and I'; are boundaries of region 1 and 2, respectively. It is obvious that
the interfacial boundary conditions at the interface are automatically satisfied in
the variational approach.

5.3.3 Variational expression for the scalar Helmholtz equation

Neglecting the displacement current, Maxwell’s equations are reduced to:

VxH=J, + J,
JB
E=—~—
V x %
V-H=0 (5.3.29)
V-E= 0.

By introducing the vector potential A and considering in the case of
sinusoidal excitation, the Helmholtz equation is:
(V2 + BHA = pd, (5.3.30)
where
B? = — jouy (5.3.31)

and J, is the imposed current density.
Using formula (5.2.59), the functional corresponding to the Helmholtz
equation is:

I(A) = (VZA,A) + B2CAAD + 2{ud,A)
= [V?A-AdQ + [f*A-AdQ + 2[uJ AdQ . (5.3.32)
ol 2 [?]

Applying the vector identity: VZA = V(V-A) — V xV x A and Green’s theorem
(1.2.15):

J(VXP-VxQ —P:VxVxQ)dQ = §P xV x QdS

o]



5.3 Variational expressions for electromagentic field problems 149
Eq. (5.3.32) becomes:

I(A)= [ A-V(V-A)dQ — [VxA-VxAdQ + | f?A-AdQ
2 n Ko

+ [ 2uJ,AdQ + §A x V x AdS . (5.3.33)
0 s

Considering a 2-D case, A is replaced by A and the Coulomb gauge
V-A = 0 is used, then Eq. (5.3.33) reduces to:

0A4\? A
I(4) = J{(a) + <(33y> ]dxdy +]a)uyj 2dxdy — J'Z,u.l Adxdy
2 2

0A
+§)A—d$
on

s

A
= jF(x, A, A, Ay)dxdy + §A aa—ndS (5.3.34)
2 s

where A,, A, are partial derivatives with respect to x and y, respectively.
If the problem is subject to Dirichlet boundary conditions, then the func-
tional is a constrained functional:

04\? A\?
1(A4) = f[(c?x) + <%—-> ]dxdy +jwuyJA2dxdy - J'2yJSAdxdy
Fe] y 2 n
§A—ds

Alr=4g(s). (5.3.35)

If the problem is axisymmetric, then the equivalent functional is [12]:

o () -]

04 A?
+ 2A—a— + }dQ (5.3.36)
where A = Ay, J =J,.

The variational expression of the Helmholtz equation in linear media can
also be derived by the extremum principle of energy.
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5.3.4 Variational expression for the magnetic field
in a non-linear medium [14]

In this section, the discussion is treated in a different way. Assume that the
corresponding functional of a specific partial differential equation is given, then
proving the Euler’s equation of the known functional is just the partial diffcren-
tial equation which is to be solved.

A 2-D non-linear boundary value problem is represented by:

o (LoA), 2 (1oAY, g
ox\pu Ox ay,u@y—

0A
En‘+f1A=f2 on I"l (5337)

A = const on [,

where A = A.. The equivalent variational problem of Eq. (5.3.37) is:

1(A)=£<£ BdB)dwcdy '(JA dxdy+§ < fiA2 —f,A )

1

= min (5.3.38)

Al; = const .

Now, the problem is to prove that Euler’s equation of (5.3.38) is the first
equation of (5.3.37). Based on the definition of variation of a functional:

0
oI(A) = 5;1[A(x, y) +adA]|.=0

= {%I:L(f_l} BdB) dxdy — LJAdxdy
s}

1

=0. (5.3.39)

a=0

OF OF 0B0A OF 0B
Becausea 3B 34 o 6B eVl — 0A, then

B
SI(4) = j ai;(j BdB)gzéAdxdy - [ J5Adxdy
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+ f LA = f,)0adr
u

r

J B—5Adxdy JJ&Adxdy + j YA =f)64dr =0.
o] n H
(5.3.40)

By considering the relationship between B and A, the following equations are
obtained.

0A 0A
B*=B!+B?, B, = W B=a (5.3.41)
then
0B 0B 0B 0B 0B 0B 0B
— =B[— 24— 2 \|\=-pB = it 4 3.
A <aB, a4 T3B, 4 ) B 51 v B (5.342)
and thus

J(l 0A 0 5A) 104 0(5A)>

3% o “ 3y oy dxdy—jJéAdxdy

2
1
+ J—(flA —f2)0AdI' =0. (5.3.43)
u
L
The first integral term of the above equation can be expressed by:
0 (104 d (104
—(-== — -=04
J[h(u ox 6A> 6y< ’ ﬂdmy
n
0 (104 0 (104
= — 1 == |0A4d>
[[565) 505 Jee

+j 104004 | 10AOAN 4y (5.3.44)
uox 0Ox u dy 0dy

Using Green’s formula

f(%g- + LM) dxdy = §[Ncos(n, i) + Mcos(n, j)1dr (5.3.45)
r
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the LHS of Eq. (5.3.44) is transformed to a surface integral, i.e.

0 (10A 104

1 0A 104
J —a——éA-cos(n, i) +—2—6A-cos(n,j) dr
B 0x p 0y

r

If A =const on I';, then 4 = 0. Equation (5.3.46) then reduces to:

é& LoA s 4dr = Eﬁl oA sadr .
u on i on
!

1

Combining Egs. (5.3.43), (5.3.44) and (5.3.47) results in:
Jd (104 6 1 6A

r#

1

Therefore, the following equations must be satisfied:

o1 0A (1 0A .
a(m) ay< E>=" "

0A
‘a_+f1A fz on 1"1
Al = const on I,

(5.3.46)

(5.3.47)

(5.3.48)

(5.3.49)

This proves that Eq. (5.3.37) is Euler’s equation of the functional given in

Eq. (5.3.38).

The variational expressions for the integral operators are discussed in

reference [12].



5.4 Variational finite element method 153

5.4 Variational finite element method

It has been shown in Sect. 5.2 that to solve a partial differential equation subject to
the given boundary conditions is equivalent to solving a variational problem. This
problem is to find an extremum function of the functional subject to the given
constraints. This equivalence is based on the fact that the functional is maximum,
minimum or stationary only when the corresponding Euler’s equations and the
corresponding boundary conditions are satisfied. Before the development of
digital computers, only simple variational problems could be solved by the Ritz
method, the Galerkin method or the orthogonal series method. With digital
computers, numerical methods are developed rapidly. The extremum of a func-
tional can be found by using numerical methods.

5.4.1 Ritz method

The Ritz method is used for the variational approach. The unknown solution is
assumed in terms of a summation of series which is called trial function. The trial
function consists of unknown parameters, C;, and basis functions, ;. For
example, the approximate solution is expressed as:

u= Y Cy; (i=1,...,n). (5.4.1)
i=1

Substituting the trial function into the functional allows the functional to be
expressed in terms of unknown parameters. Differentiating the functional with
respect to these parameters and then setting to zero gives:

A (Ciyi)

o 0. (5.4.2)

If there are N unknown parameters, therc will be N simultaneous equations to
be solved to obtain these unknown parameters. In this method, the trial function
is defined over the whole solution domain and satisfies at least some and usually all
the boundary conditions. The accuracy of the approximate solution depends on
the choice of the trial function. The approximation improves with the size of the
trial function family and the number of adjustable parameters. If the trial
functions are part of an infinite set of functions they are capable of representing
the unknown function to any degree of accuracy. If the form of the solution can
be guessed, the trial function should be close to that imaged solution.

Example 5.4.1. Find the function u(x) which satisfies the differential equation
d?u

= —flx)= =2 (5.4.3)
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subject to

Solution. u(x) is a continuous function in the closed region [a, b]. This problem
is equivalent to the problem of finding the function u(x) which minimizes the
functional

b
I(u) = JB (:—:)2 —f (x)u(x)] dx . (5.4.4)

According to the Ritz method, the solution of Eq (5.4.4) is approximately
represented by a trial function of the form:

u(x) = C i (x) + Cotha(x) +. ... + Cora(x) = Y, Cithi(x) (5.4.5)
i=1

where C; are unknown parameters to be determined. y; should be selected in
such a way that u(x) satisfies the boundary conditions. If A =B =0, the simplest
trial function is chosen as:

ux) =(x —a)(x =b) (C, + Cax + C3x* +... + C,x"7 ). (5.4.6)
To avoid the tedious calculation, let
u(x) = Cy(x —a)(x — b). (54.7)

Substituting Eq. (5.4.7) into Eq. (5.4.4) and minimizing the functional I(u) with
respect to the parameter C,, leads to:

b
olw) 0 1 2
i =6_C1H§cf[2x_(a+h)] - 2C,(x — a) (x—b)}dx=0

C,[5(@* +ab+ b*) —(a + b)*] =2[1(a* + ab + b?)

—4(a + b)? + ab]
hence
C,=—1
thus
u(x)= —(x—a)(x—0>n).

This result is exactly the same as the analytic solution of Eq. (5.4.3). For this
problem, the lower order approximation is sufficient to obtain a satisfactory
result.

The advantage of the Ritz method is that the order of the derivatives of the
function contained in the functional is reduced by one compared to the differen-
tial equation. However, if the shape of the boundary is complicated, it is hard to
choose a trial function which satisfies the boundary conditions. The finite
element method is an improvement of the Ritz method. It subdivides the whole
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domain into a large number of elements, then the trial functions only need to be
satisfied in each element. Hence it is much easier to choose the approximate
function than in the Ritz method.

5.4.2 Finite element method (FEM)

The FEM and the Ritz method are essentially the same. Both use a trial function as
an approximate solution and determine the parameters included in the trial
functions by making the functional minimum, maximum or stationary. The main
difference between these two methods is that the assumed trial functons in the Ritz
method are defined over the whole domain which satisfy the boundary conditions.
In FEM, the trial functions are defined only within the elements, not for the whole
domain. Hence the trial function in FEM only has to satisfy certain continuity
conditions within elements. The elements generated in FEM are simple in shape
but collectively can represent very complex geometries. Hence FEM is far more
versatile than the Ritz method. In other words, FEM becomes a special case of
the Ritz method when the piecewise continuous trial functions obey certain
continuity and completeness conditions.

5.4.2.1 Domain discretization

The principle of domain discretization is the same as that described in Sect. 4.4.
For 2-D problem, the simplest shape of the element is a triangle (3-node) or
a quadrangle (4-node).
For first order triangular elements (3-node), the trial function is assumed to
be a linear function of x and y
3

u(x, y) =a, +ax +oazy = Y. Niu,
k=1

1
= ﬁl:(a,- +b,-x +C,~y)u,~ + (al +bjx +C]y)uj

+ (@m + bux + c,,,y)u,,,] (5.4.8)

where the subscripts i, j, m are the vertices of the triangle. This equation in-
dicates that the function u within the element depends on the nodal values, u,
and the nodal coordinates. The constants in Eq. (5.4.8) are the same as those
derived in Chap. 4, i.e.

A =XjYm —XmYj bi=Yj—Ym €i=Xp—X;

;= XmVi = Xi¥m bj=Ym—Yyi ¢;=Xi—Xpn (5.4.9)

A = XiYj = XYi bn=yi—)y; cm=Xx;—x;.
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The shape functions N§, contained in Eq. (5.4.8) are:

1
Ni(x,y) = S(a + bix + c;y)
1
Ni(x, y) = 23 (aj + bjix + c;y) (5.4.10)

1
Ni(x, y) = (a,,, + bpx + Cmy) -

In axisymmetric coordinates, the trial functions and the shape functions are:

3
u(x, y) = oy +opr + azz =y, Niu (5.4.11)

k=1
. 1
Ni(r,z) = ﬁ(a[ + bir + ¢;2)

Ni(r,2) = l (a + bir + ¢;2) (5.4.12)

N&(r, z) = ﬁ (a; + bir + ¢;2) .

The next step of FEM is to substitute the trial function into the equivalent
functional and to determine the constant values u, by the principle of variations.

5.4.2.2 Finite element equation of a Laplacian problem

The equivalent functional of Laplace’s equation in a 2-D case is:

[(20\? (2 .
Ip) = E [(a—‘g + <a‘;’> ]dxdy = 5L(p inQ (5.4.13)

L.(p) = [$eVo?dxdy in Q, (5.4.14)

where I,(¢@) is the functional within each element. Assume

3
o(x, y) =y +ax +asy = ) Ny (5.4.15)

k=1
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and consider that:

?i ?i
oo [oN ON; oN; N 1
9@ _ | y o | G O O A= rp b 4
ax [axl{"” [8x ax 6.‘<] @i (= 75Lbi by bnd ¢ 0;
Om Om
90 _[ON] (o _[NeoNam ] || 1 "
ay - ay . (pJ' - ay ay ay (P} —28["1' Cj Cm] (pJ
Pm Om
(5.4.16)
The compact form of Eq. (5.4.16) is:
0 @i
Vo) = 6_?: _ Lbe b bm =B.{o) (54.17
(p_a(p 2S5l ¢ cm Zj = P ?y 417
dy "
where
1 {b; b; b
B,=—| " 7 " 4.
¢ ZS[ci ¢j c,,,:] (54.18)

and S is the area of 4;;,,. Substitution of Eq. (5.4.17) into Eq. (5.4.14) leads to:

L(¢) = [ 1e{Vo}T{Vo}dxdy = }&f [B.{p}]1"[B.{o}]dxdy

=}¢{p}T(B] B.dxdy {9} = } {0} K. {0} (5.4.19)
where
do Oo
T _ r 5.4.
{Vo} |:6x 6y:| . (5.4.20)

Since B, is a constant matrix, the integration of Eq. (5.4.19) is easy to evaluate,
ie.

b[ Ci
b. b
Ke=j£BZBedxdy=4% b, [C_' IC’{ i""] (5.4.21)
Se bm cn i J m

where K, is the symmetric 3 x 3 element coefficient matrix. The functionals in
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©,
® ®

1 2 3

Fig. 5.4.1. Discretization of a 2-D problem

elements 1, 2 and 3 of Fig. 5.4.1 are:

1 ®,
Ie,(¢)=5{§01 @2 ¢5}Kel ®2
@s

1 Ps
L,(0) =={0s ¢ 04} K., {0,
2

04 (5.4.22)
1 ()
Ie,(¢)=§{<pz 03 041K, {03
Pa

where
1 (1 (1)
k(ll) klg le
{0 0 L
- kZl 1‘22 k25
1 (1) (1
_ksx) k§3 k$Y

K, =| k¥ k& k& (5.4.23)

_ 3 (3) 3)
Kes - k32 k33 k34

Substituting Eq. (5.4.22) into Eq. (5.4.13) gives the total functional:

3 1 5 5
I(p) = Z 1e(<P)=§ Z z KijQ’i‘Pj

i=1j=1

[‘P_1 P2 Q3 QP4 <P5]T K[o: 92 03 ¢4 05] (5.4.24)

|-
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where

K = 0 k32 k33 k34 O . (5425)

The elements of the system matrix are the sum of the relevant coefficients of the
element matrix, e.g. ky, = k% + k3 + k), kyu = k3 + k), and so on.
Using the extremum condition of the functional:

al(e) _

5.4.26
70, ( )

the system matrix equation is:
K{p}=0. (5.4.27)

Equation (5.4.27) is the finite element equation of a Laplacian problem. K is
a sparse, symmetric and banded matrix of a size N x N.(N is the total number of
nodes.) The diagonal clements of the matrix are pivotal compared to the others
and all of the values of the sub-determinates of the matrix are positive. Hence
K is a positive definite matrix. This result can also be obtained by the property of
the ‘operator’. If the operator is completely continuous, the resulting matrix is
positive definite. This property is sufficient to guarantee the convergence of the
solution of the matrix equation.
For a 2-D Poisson’s equation, the equivalent functional is:

0 0p\?
o= [5{ (&) +(5) |-e oo
Eo
=1,(@) — Lr(9) = ), [Le(@) = 1,(9)] . (54.28)
e=1

The first term in the square bracket of Eq. (5.4.28) is the same as the RHS of
Eq. (5.4.19). The second term in the brackets of this equation is expanded as
follows:

I (¢) = j p[N:i¢;i+ N;¢p; + Npo, 1dxdy . (5.4.29)

According to the extremum principle of a functional:

612((0) 6182 (p) Eo
d9; e‘; 20 ezl Ni+ Nj+ Npn)dxdy . (5.4.30)

Se
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If the charge density p’ within the elements is assumed uniform, then the integral

of Eq. (5.4.30) is:

’ e T S ’

{pfe=| P'IN*]"dxdy =3 p'{ 1 (5431
Se 1

where S is the area of the triangle. The formulation of the integration can refer to
Eqgs. (4.2.28) and (4.2.31). Then the finite element equation is:

K{¢}={P} (5.4.32)
where
Eo
=Y {P}.. (5.4.33)
e=1

For an axisymmetric problem

do
I(¢) ,[2 |:< ) <a—) J «2nrdrdz (5.4.34)

j rdrdz = (r; + rj +r,)S/3 =roS (5.4.35)

Se

r0=§(ri+rj+r,,,)

since

then

K, = ZnJBZBerdrd:

- b + ¢} bibj + cic;  biby + CiCm
= 4—S’(ro) bjbi + Cj¢; bJZ + Cf bjbm + CiCp |- (5436)
hmbi + CmCi bmbj + CmCj b,%. + C,z,l
The parameters ay, b, ¢, (k = i, j, m) are similar to Eq. (5.4.9), i.e.

a,~=rjz,,,—r,,,zj aj=r,,,z,~—-r,'z,,, am=r,-2j—rjz,'

bi=z;—z, bi=z,—z bp=z;—2z; . (5.4.37)
C,~=r,,,—rj Cj=r,-—r,,, C,,,=rj—r,~
The element of the column matrix {P} is:
1
’ T 27.[ ’
{P}.=2n p[N]erdrd:=?Sp(r,<+rj+r,,,) 1
Se 1

=2?nSp'ro . (54.38)
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5.4.2.3 Finite element equation for 2-D magnetic fields

The problem of 2-D static magnetic fields are described by:
1 1/1] [04)? 0A\?

IHA)=|={-| | — — —

= [3GLE) + (5) |20

; §l<lf1A2 _ f2A>dl _ min (54.39)
u\2

2

~ Alrl =g(L)

where A = A., I'|, ', are the contours of the boundary with the boundary
conditions of the first and second kind, respectively. Compare the first integral
of Eq. (5.4.39) with Eq. (5.4.28); the difference is 4 — ¢, 1 /u — ¢, J = p. The
boundary integral of Eq. (5.4.39) has been discussed in Sect. 4.2.2.1.

Therefore rewrite the first equation of (5.4.39) as:

1(A) = Y [e,(A) + Ly(A) + L,(4)] (5.4.40)
where
I.,(4) = 3{A}TK{4]}.. (5.4.41)
Consider in cylindrical coordinates, the elements of matrix K, as:
2
K& =K, ="-20bb,+cc,) (ns=ijm). (5442)
u 4S
The second part of Eq. (5.4.40) is:
! 271: !
Iez(A) =2nJ Aoros = ‘S‘J rOS(A,- + Aj + Am)
- ;
2n
?‘ J’roS
2n T
= {4 4; A} | S T70S | = {AJT{P}. (5443)
2n
5 J'roS

For inhomogeneous boundary conditions of the third kind, the contribu-
tions of the boundary value are only given by the boundary edges of the element
which lies on the boundary such as the edge jm in Fig. 4.2.2. Suppose the vector
potential along the edge of each element varies linearly, i.e.:

l l [

=(1—1t)A4; + tA, (5.4.44)
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Then the third part of (5.4.40) is:
lo(4) = 21 j ( fia sz>rd1
Jjm

=2r ﬁ %fl [ —0A4; + tA,]* — L[(1 — A + tA,]
x[(1 = t)r; + rn]ldt (5.4.45)

Integration of Eq. (5.4.45), and substitution of the boundary conditions f, and

f> by using the average value f},, f5, along the edge jm, thus the total matrix
corresponding to the I,,(A) and I,,(A) is

: 1
{Pje=<pj+ S J2a (rj + Erm> (5.4.46)
2nl 1
P; + 3—#9f2u<r,,. + Er,»)

The element matrix coefficients considering of the element along the in-
homogencous boundary is:

ki ks Kim
e e nl fu rm‘ e 7'[[Ofa
K, =| ki kj; + gul (r,~+ j) Kim + 6;11 (rj+rm)
, , 1 . 1 Fm
-ktni k;nj+g;n10fla(rj+rm) kmm+2_u'n10fla(rj+'§_>-
(5.4.47)
where the [, is the length of the edge, i.e.
= [(x; = xn)* + (3, = )*]. (5.4.48)
Then the final equation is obtained:
K{A}={P}. (5.4.49)

If the axisymmetric field is calculated and the flux density B is of interest, the
relationship between B and A is noted.

04 A 04
B, = —— B.=—+— (5.4.50)

0z S oor  or
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where A = A,. The first equation of Eq. (5.4.39) becomes:

1(A) = J z—ll;Bzrdrdz - ZRJJArdrdz
Q Q

1/1

2

The first integral term of Eq. (5.4.51) is the magnetic energy stored in the region
with unit length along the z-axis. If the potential A is assumed by a linear
function, i.e.

A=o, +ar+asz

then
04,
Br—_az v 54.52
A 84 A (5.4.52)
B.=—+—=—+u
r or r
A Ao\
32=33+B§=a§+a§+2a2—°+<—°> (5.4.53)
ro ro
where
Ao=3(Ai+ Aj+ An)  ro=3%(ri+ri+r,) (5.4.54)

oy, o, a3 are similar to Eq. (4.2.8).

5.4.2.4 Finite element equation for non-linear magnetic fields

The equivalent variational problem corresponding to the magnetic field with
non-linear permeability is:

I(A)=f _0_ l@_A +_6_ l@_A —2JA } 2nrdrdz
) or\ p or oz \ pu 0z

+ iﬁi(lf‘Az—sz)dl:min (5.4.55)
u\2

n

. Alrl = const.

To avoid the repetition of tedious formulae, the assumption is made that the
problem statisfies the homogeneous boundary condition of the second kind, and
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in each element the permeability is a constant. Thus
Eo 61 Eo d 1 0 3

-La- L [5G Ez )
Ay e=1 g n k=

+616§: %A ) |2ardrd 5.4.56
a2\ 3 2 N;A nrdrdz . (5.4.56)

Ifk=i,

ol

!
i — (k§iA; + kA + kinA,) - (5:4.57)

k=i He

The formulations of k,(r, s = i, j, m) satisfy the recurrence form and are ex-
pressed as follows [14]:

S
kg = kf,—Zn[ (b,bs + c,c5) + = (b,+bs)+—]
9ro
r,s=ij,m. (5.4.58)
The coefficients of the global matrix are the summation of the element

matrices, i.e.

Eo 1

e=1 He
The total matrix equation is:
K{4} - {P}=0 (5.4.60)
where
2nS

Eo
=Y P i=12... No Pi="Furo. (5.4.61)

Equation (5.4.60) is a non-linear matrix equation. It can be solved by function
minimization methods discussed in Chap. 11 and the method introduced in
reference [15]. The non-linear expression of B(H) can refer to reference [16].

5.4.2.5 Finite element equation for Helmholtz’s equation (2-D case)

The equivalent functional of a Helmholtz equation in 2-D with homogeneous
boundary conditions is:

=33 [|(5)+(5)

Qe
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+jw,u','A2}dxdy—— J uJ Adxdy
2.

Eo
=Y [L,(A)+ 1.,(4)] . (5.4.62)

e=1

Compared with Eq. (5.4.38), only the term of | jwuy A% dxdy is added, thus

_1 dAN: (84N .,

e

=% j [B.{A4}.1"[B.{A4}.]dxdy

2.
Bz
-5 [NV ) axdy
1 B2
=5 41K A = = {A}7H (4], . (5.4.63)

In Eq. (5.4.63), K, is the same as in Eq. (5.4.21). Let

hii hij him
H, = j[N][[N]edxdy: hy by (5.4.64)
2, hmi hmj hmm

where [N], is the shape function of a first order triangular element. Then

by = | N,Nydxdy = S(1 +8,)/12 (r,s = i,j,m) (5.4.65)
1 r=s

d,. = . 5.4.66

s {0 i (5.4.66)

The process of integration is given in reference [12]. The integration in
Eq. (5.4.65) is carried out using area coordinates.

The last term in Eq. (5.4.62) is the same as the matrix { P}, in Eq. (5.4.33) with
p replaced by the current density J. After extremization, the finite element
equation is:

K{4} — B2 H{A} = {P} . (5.4.67)

This is an eigenvalue equation. The solution method of this equation is dis-
cussed in references [12, 17, 18].
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5.5 Special problems using the finite element method

5.5.1 Approaching floating electrodes by the variational
finite element method

As previously mentioned, there are three kinds of the boundary conditions.
Suppose an uncharged conductor or a charged conductor with total charge of
Qo is immersed in the electric field, as shown in Fig. 5.5.1.

The potential of these conductors are unknown constants denoted by
@g (called floating potentials). The value of ¢ depends on their positions and
the imposed field strength. At the boundary of these electrodes, the following
condition is satisfied

0
. _af =0 (5.5.1)
)

where Q is the total charge on the electrode. It is proved [19] that the equivalent
functional of the problem is:

(e[ (e 2 09 \? e
l(¢)_15[<5> +<5> JdXdy_JWdQ_Q(pF_mm (5.5.2)

Q
?lry = @0
?lie = @r
where [y satisfies the Dirichlet boundary condition, and I'g is the boundary of
the floating conductor. If Q = 0, the discretization of Eq. (5.5.2) is:
I(p) =3{®}TK{®} — {@}T[P] (5.5.3)
{@}={01 02...00 @1, ... 01, - On-1 on}T. (5.5.4)

Assume the nodal numbers of the floating electrodes are inserted between the
others. n is the nodal number counted before the floating electrodes. Where the
subscripts Iy, l,, are the first and last nodal number of the floating electrode,
respectively, N is the total number of the nodes of the problem. By using the

$=0, T, Fig. 5.5.1. Charged or uncharged conductor emerged in
an exterior field
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Fig. 5.5.2. Field distortion due to an uncharged conductor

condition 01/d¢; =0,i=1,...,nn+1,+ 1,..., N, one obtains the follow-
ing equations:
n n+lm, N
Z kij(,Dj + Z k,‘j(ﬂj + Z kij(pj =0. (555)
i=1 j=n+1 j=n+ln+1
For the nodes i, i =1,, ... l,, only one independent equation is obtained by
0l/0p; =0, ie.
n n+lm n+ly, n+ly,
Yox kijoi+ XX ki
j=1i=n+1 j=n+1i=n+1
N n+lm
+ Y Y. kijo;=0. (5.5.6)

j=n+ln+1i=n+1

Solve Eq. (5.5.5) and (5.5.6) simultaneously; the solution is then obtained.

Example 5.5.1. A long square conductor is enclosed in a grounded slot, as
shown in Fig. 5.5.2. Using the above formulations, the field distortion by the
square conductor is shown in the same figure.

5.5.2 Open boundary problems
5.5.2.1 Introduction

The variational method is not suitable for an infinite domain. The reason is that
the variational method requires the operator to be positive definite. How to
solve open boundary problems by using FEM has already been discussed in
many papers. A good summary for solving the open boundary problems of
different field problems is given in reference [20]. The simplest method is that of
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truncation. Other methods are ballooning [21], infinite element [22, 23], both
mapping and infinite elements [24], mixed FEM and analytical methods [25],
mixed FEM and BEM [26].

The method of truncation employed uses an infinite domain for a large but
within a finite range. This is then considered as an approximation of the infinite
domain. This method is simple but is uneconomical and computationally
inefficient and, could even be inaccurate. The accuracy depends on the area of
truncation. This method cannot be used in dynamic problems. The introduction
of the terminating boundary leads to a reflection of waves by these boundaries.
Consequently, the solution obtained from any such model is no longer be the
original progressive wave problem.

In mapping, the domain z of the physical problem is mapped onto an image
domain W. Then an infinite domain is mapped on to a small bounded domain.
The standard FEM is then used in a finite domain W.

The mixed method combines both the advantages but avoids the dis-
advantages of the two methods.

In this section the ballooning method is chosen as an example to demon-
strate the solution of an open boundary problem. The others can be found in the
references.

5.5.2.2 Ballooning method

In the ballooning method, the whole space of the problem is divided into two
parts. The inner part is closed by the boundary, Iy, and the outer part is
extended to infinity, as shown in Fig. 5.5.3.

The inner part denoted by €; in Fig. 5.5.3, contains the complex geometry,
different materials and the area where the field distribution is of interest. In the
outer part, the region is separated into several layers, D,, D,, . . ., D,, the outer
boundary of these layers are 'y, I, . . ., [,. In these layers all the elements are

Centre point

Fig. 5.5.3. Discretization scheme
Solution region for ballooning method
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subdivided by the radial lines that start from one centre point. This ensures that

the elements in each annular are similar to the next and the layers are able to be

blown up rapidly. Thus the exterior boundary of the annular regions is extended

to infinity by the speed of n?", where 5 is a constant. In the inner part, the

conventional finite element mesh is used and a matrix K' is established as usual.
In the annular region D, the matrix equation is:

KY KW ‘ .
BF R
K3\ K(zz Pr. oy

where ¢, ¢, are nodal potentials of the boundary I’y and I';. In the annular
region D,, the matrix equation is:

K’y K'lz:l [¢rl] |:§0r :I
, , =K'| ' [=0. (5.5.8)
[sz K%, ?r, ?r,

In a 2-D case, K}, = K{}. Combination of Egs. (5.5.7) and (5.5.8) leads to:

K(Z) K(Z) . .
I: (121) (122)jl [¢10] - K(Z)[Cplo] -0 29
Ky K3 Pra ér

The above equation shows that the boundary I', is eliminated. After repeating
these recursive procedures, all of these interface boundaries are eliminated and
the exterior region is extended to infinity. The recursive matrix is summarized

as:
qoen _[KE 0 ] [KRAWKE KDAWKD 5510
- 0 K(") K(H)A(")K(") K(")A(H)K(") e
22 21 21 21 12
where
A® = (K@ + KM~ L. (5.5.11)
Finally, combining the interior matrix K and the recursive matrix K™* 1), results
in:
Kin ixz (4
; ; =0 5.5.12
I:K‘21 K5 + KV | or, ( )

For an axisymmetric field, the matrix K}, = nK‘lll’. Therefore,
o J[KE 0 ) [KDACKY ptUAUKEG]
- 0 rlz""K(") - Zn—lA(n)K(") 2""A(n)K(") . ( o )
22 n 21 N 12
In this case
AM = (K™ 4 p2" ' K™)~ 1, (5.5.14)

By using these formulations, the field distribution of the 220 kV zinc-oxide
arrester was obtained (Fig. 5.5.4) [27].
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Fig. 5.5.4. Potential distribution of a 220 kV zinc-oxide
r  arrester

5.6 Summary

The variational finite element method has been discussed in this chapter. It was
shown that the extremum function of the functional is the solution of the
corresponding Euler’s equation of the functional. In variational FEM, the
solution of the partial differential equation is obtained by solving the variation
of the equivalent functional of the physical problem described by a partial
differential equation or an integral equation.

The discussion started by deriving the equivalent functional of various
electromagnetic field problems. The functional of the differential equation was
derived by energy minimization or by using a mathematical approach. In doing
this, the related concepts of the functional and variations were reviewed first.

It has been shown that the boundary conditions of the third kind (including
the boundary conditions of the second kind) are contained in the equivalent
functional for problems where the divergence theorem can be used. Therefore,
the homogeneous boundary conditions of the second kind and the interface
boundary conditions of different materials are automatically satisfied in the
mean or in a least square sense in the process of finding the extremum of
the functional. These boundary conditions need not be dealt with in the
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discretization process of the matrix equation; only the Dirichlet boundary
condition is considered as a constraint on the functional. This is one of the most
important advantages of FEM.

The equivalent functionals of some electromagnetic problems are derived

in Sect. 5.3.

The method for dealing with some advanced problems,. such as the open
boundary problem and the problem containing floating conductors, are dis-
cussed in the last section. These methods complete the applications of FEM.
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Chapter 6

Elements and Shape Functions

6.1 Introduction

Domain discretization is one of the most important steps in many numerical
methods to solve boundary value problems. In finite element method (FEM), the
whole domain is discretized by elements. In boundary element method (BEM)
the boundary of the domain is discretized by elements. The choice of the
geometry of the element and the form of the approximating function to repre-
sent the behaviour of field variables (such as the potential ¢, field strength
E H and so on) within each element are both extremely important. They
strongly influence the accuracy of the results, the computing time and the
software engineering of computer programs. Hence the problem of element
discretization is a generic problem and is common to element approximate
methods as well as FEM. Hence element discretization techniques are discussed
in onc chapter.

It has been shown in former chapters (4 and 5) that a matrix equation is used
for the solution of partial differential equations. The coefficients of the matrix
are calculated via the partial derivatives of the shape functions. Hence the
expressions of shape functions of various elements are the first to be formulated
in the use of FEM. The shape functions of a 3-node triangular element,
corresponding to linear approximation, has been introduced in Chaps. 4 and
5 to convey the principles underlying FEM. To obtain more accurate results and
to solve different problems, many different kinds of elements and approximating
functions can be used. For instance, both theory and experience indicate that,
for many two dimensional problems, it is best to subdivide the problem region
into the smallest possible number of large triangles, and to achieve the desired
accurate solution by using high-order polynomial approximations on this very
coarse mesh.

This chapter intends to provide the principles required to construct the various
shape functions belonging to Lagrange and Hermite polynomials. For easy to
evaluate element coefficients, the shape functions of different elements are
formulated in local coordinates. The most effective elements belonging to the
isoparametric family with linear and high order interpolations are the main
topic in this chapter.
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6.2 Types and requirements of the approximating functions

The functions used to represent the behaviour of field variables specified by the
governing equations are called interpolation functions or approximating functions.
In element discretization methods, the approximating function u(x, y) is defined
for each element. It is expressed by the following equation:

m m

u(xa y) = &(x, Y) = Z aklpk(x9 Y) = z dek(X, y) (621)

k=1 k=1

In Eq. (6.2.1), o, are undetermined parameters. They may be the value of
potentials or other physical quantities defined in a governing equation, hence
they are called generalized coordinates. As shown in Chaps. 4 and 5, a, are nodal
values of a potential. , is a set of independent basis functions. Thus, the
approximating function is a linear combination of a set of discretized values and
the basis functions.

In the method using weighted residuals, the interpolation function needs to
ensure that

[RWdQ =0 (62.2)
Q

wherc R is the residual due to the approximation and W is a weighting function.
This equation guarantees that the integral of the weighted residuals over the
whole domain approaches zero.

In the variational principle, the generalized coordinates are determined by
the extremum principle:

ol(u)

day,

=0 (6.2.3)

where I(u) is the equivalent functional of the problem to be solved. In other
words, these two methods have to ensure that the approximate solution must be
convergent to the exact solution. Hence the interpolation function needs to
satisfy some requirements discussed in the following subsection.

6.2.1 Lagrange and Hermite shape functions

In FEM, there are two categories of elements known as Lagrange and Hermite.
The former takes the values of the field variables at nodes of the element as being
the unknowns. The latter takes both the unknown function and its partial derivative
as unknowns. Thus, a Hermite element contains more than one unknown at each
node. Usually the symbol N is used to represent the degrees of freedom (in
structural machanics, the number of unknowns is called the degrees of freedom)
at each node. N; =1 represents the Lagrange element, N, > 1 indicates the
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Hermite element. For example, for a 1-D problem, if N, = 2, it means the values
of the function and its first order derivative are the unknowns at each node.
Applying this rule to electrostatic fields, if the potential ¢ and its first order
partial derivatives d¢/0x, d¢p/dy are to be solved simultaneously then a Her-
mite element should be used.

6.2.2 Requirements of the approximating functions

Both in the method of weighted residuals and in the variational formulations, the
derivatives of the unknowns contained in the integrand of the functional and the
weighted residual formulations (Eq. (4.2.22)) is one order less than that which
appears in differential equations. These formulations are called weak formulations.
For example, the equivalent functional of Poisson’s equation, V?u = f, is

u)? [ou)?
1(u)=i [(a—:) +<a—;> ]dxdy+fufdxdy. (6.2.4)

Q

The problem of first order derivatives of the unknowns contained in a weak
formulation is called C°%continuous. To solve this type of problem only the
approximating function itself needs to be continuous within the element and
along the side of adjacent elements. Hence a first order interpolation function as
used in Chaps. 4 and 5 can be chosen as the approximating function. In a similar
manner, a C'-continuous problem is the one whose weak formulation contains
at most second-order derivatives. In general, if there are derivatives of the order
(n + 1) contained in the integrand of the element equation, the problem is
C"-continuous. (Most of the potential problems in electromagnetic fields belong
to C°-continuous problems.)

In order to obtain convergent results as the element size is reduced to zzro,
the approximating function has to satisfy both compatibility and completeness,
[1-4].

(a) Compatibility requirement

Compatibility means that the field variable and its partial derivative up to one
order less than the highest-order derivative appearing in the weak formulation must
be continuous aiong the element interfaces. In Eq. (6.2.1), Y, (x) is constructed such
that the generalized coordinates at any node of the common side of adjacent
elements are the same regardless from which element the node is approached. In
this case the generalized coordinates «, and the interpolation function ¥, (x) are
compatible. The elements exhibiting these characteristics are called conforming
elements. Those that do not satisfy this requirement are said to be non-
conforming elements. If a linear function u(x, y) = a; + a,x + a3y is used as the
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a b Fig. 6.2.1a, b. A confirming element

approximate function to solve a 2-D problem, the continuity of the zero order
derivatives along the element interfaces is satisfied, but the first order derivatives
along the element interfaces are discontinuous.

The above requirement is illustrated in Fig. 6.2.1(a) by considering the
surface of the conductor. There are two linear elements. The value u, is the same
whether it is obtained by element 1 or 2, but the derivative at node 2 is
discontinuous. Figure 6.2.1(b) uses different kinds of shape function which
ensures the continuity of the derivative as well.

(b) Completeness requirement

Completeness requires that within the element the partial derivatives of the
interpolation function must be continuous in the same order as contained in the
weak formulations of the problem. During the process of mesh refinement the
interpolation function must remain unchanged. In other words for a C°-continuous
problem the approximating function must be capable of representing both a con-
stant value of unknown function and a constant partial derivative of the highest
order appearing in the weak formulation as the element size reduces to zero in
a limited case. These properties ensure the approximate solution is convergent to
the exact solution if enough numbers of elements are used in the whole domain.
The completeness requirement can be explained physically. For instance, the
uniform value of the field variable is the most elementary type of variation. Thus
the interpolation function must be able to give a constant value of the function
and its partial derivative appearing in the functional as the element is reduced to
zero. For example, in electrostatic fields, if the potential is considered as
unknown, then only d¢/dx, d¢/dy are contained in the functional, hence it is
a CP%continuous problem. If the linear function ¢ = a + bx + cy is chosen as
the interpolation function, when the element is reduced to a point, then ¢ = q,
which is a constant and in addition d¢/0dx, dp/dy are also constants as required.
To construct elements and interpolation functions to achieve C° continuity
is not especially difficult but the difficulty increases rapidly when high order
continuity is desired. Fortunately, analysts have developed a variety of eleménts
applicable to many different types of problems. Each type of element in the
catalogue is characterized by several features. These are the shape of the
element, the number of nodes, the type of nodal variables and the type of
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interpolation function. If any one of these characterizing features is lacking, the
description of an element is incomplete.

The complete polynomials with a specific order such uas the following expres-
sions satisfy the compatibility and completeness requirements

u(x, y) =ay +ayx + o3y (6.2.5)
u(x, y) = oy + a3 X + a3y + o0y x? + asxy + agy? . (6.2.6)

The bilinear approximating (four node quadrilateral) and the incomplete third-
order polynomial (9 node triangle) are appropriate for 2-D problems, because
they are always complete polynomials of one variable. That polynomial func-
tions have been widely used as the approximating function is due to the
following reasons:

a) The polynomial functions are inherently continuous.

b) It is possible to improve the accuracy of the results by increasing the
order of the polynomial. Theoretically, a polynomial of infinite order corre-
sponds to the exact solution.

c) The polynomial is easy to differentiate and integrate.

6.3 Global, natural and local coordinates

In Chaps. 4 and 5, the shape functions of the first order triangular element are
derived in Cartisian coordinates. The real positions of every node in the chosen
coordinates are called global coordinates. If a high order polynomial is chosen
as the approximating function, the derivation of the shape function will be more
complicated and consequently the derivation of the element matrix equation is
also cumbersome. The use of local coordinates will simplify any calculation of
the element matrix greatly for any kind of elements.

6.3.1 Natural coordinates

In natural coordinates [3], the position of any point of the element is defined by
a dimensionless quantity which varies between 0 and 1. At the end nodes of the
element, the natural coordinate is either 1 or 0, within the element, it varies. These
values are independent of the geometry of the element only on the location of point.
The use of natural coordinates is illustrated in the following subsections.

(a) Linear elements in a one-dimensional case

Consider a one-dimensional problem. The whole region [a, b] is subdivided into
N straight line filaments with different lengths. Assume the end nodes of any
element are denoted by x; and x; as shown in Fig. 6.3.1(a).
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Fig. 6.3.1a,b. Natural coordinates for a 1-D case

The position of any point P within the element is expressed by:

. ___(x,-—x)xi+(x — X)X _ Lixi+ Lax, (6.3.1)
Xj - xi xj - xi

where the two dimensionless coefficients L, and L., are defined as natural
coordinates, i.e.

X;—Xx X=X

(6.3.2)

Li(x)= and L,(x)=

Xj — X; Xj — X
where L, and L, are ratios of lengths. At node i, L, = 1, L, = 0 and at node j,
L, =0, L, = 1. They automatically vary between 0 and 1. The natural coordin-
ates L, and L, may be interpreted as weighting functions relating the coordin-
ates of the end nodes to the coordinates of any interior point. From the
definition of Eq. (6.3.2) L, and L, must satisfy the following constraint.

Hence only one of the natural coordinates is independent.

Equation (6.3.1) expresses that the position of any interior point is the linear
combination of the natural coordinates and nodal values. L, and L, are called
the shape functions of a 1-D linear element. For a 1-D linear element there are
two shape functions but only one of them is independent. At the end nodes of the
element, the shape functions are equal to those of the natural coordinates.

Furthermore, if the unknown function varies linearly along the element as
shown in Fig. 6.3.2, then the function u is expressed by

W) = 2, + ayx = [1 x] {“‘} (6.3.4)

as

At nodes i and j, u(x) becomes

S0 2 )
uj 1 X;j Ay

Inverse of the above equation yields

{“‘}:[l x‘}_l{“‘}. (6.3.6)
Ay 1 xj' uj
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Substitution of this equation into Eq. (6.3.4) gives

1 x 17! (w - — x
w=[l x][l i] {“‘}:x{ Sy, (6.3.7)

Xj uj

ie.
u= Llui + Lzuj (638)

where u; and u; are values of the unknown function at the end nodes. Conse-
quently, the value of the function along the element can be expressed in terms of
the nodal values and the natural coordinates as given in Eq. (6.3.8). Examination
of Egs. (6.3.1) and (6.3.7) shows that both the coordinates x and y and the
function u have the same formulations expressed by the natural coordinates
L, and L,. This kind of element is called an isoparametric element.

(b) Linear elements in a two-dimensional case

In a 2-D triangular element, any point within the element is determined by three
natural coordinates L;, L, and L; [5]

Ll = AI/A
L3 = A3/A

where 4 is the area of triangle ijm and 4,, 4, and 4; are the areas of triangles
Pjm and Pmi, Pij, respectively, as shown in Fig. 6.3.3(a). L, L, and L are called
natural or area coordinates. They represent the ratios of areas. Each of these
have values varying from O to 1 and satisfy the following constraint.

Only two of the natural coordinates are independent. All points located on a line
parallel to any edge of the triangle have the same natural coordinates as shown
in Fig. 6.3.3(b). The natural coordinates of the nodal points and the middle
points of each edge are shown in Fig. 6.3.3(c)

atnodei L,=1 L,=0 L;=0
atnodej L, =0 L,=1 Ly=0 (6.3.11)
atnodem L, =0 L,=0 Ly=1.
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j(0,1,0)
Fig. 6.3.3a—. Natural coordinates

c for a 3-D case

In Fig. 6.3.3(a) if node P is located on line ij, then the arca 43 =0, thus
Ly = A43/4 =0, hence line ij is the axis of Ly = 0.

The relationship between the natural coordinates and the global coordinates
of a 3-node triangular element are classified as below. The area of the triangle is

determined by the coordinates of the three vertices:

1 I xi
I Xm Ym

The areas of the three subordinate triangles are given by

1 x y |
Loxj i |=5 L(xjYm — Xmyj) + X(j — Ym) + y(xm — X;)]
1

Xm  Ym

=4(a; + bix + ¢1y) . (6.3.13)
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Substitution of Egs. (6.3.12) and (6.3.13) into Eq. (6.3.9), gives the three
natural coordinates

Li(x, y) = (a; + bix + ¢;y)/28
Lij(x,y) = (a; + bjx + ¢;)/28 (6.3.14)
Ln(x,y) = (am + buX + cmy)/2S

where S is the area of triangle ijm. The formulae of a,, b, and ¢, (k = i, j, m) are
the same as those given in Eq. (4.2.10). Comparison of Eq. (6.3.14) and Eq. (4.2.13)
shows that the shape functions of a 3-node triangle are the same as those of the
natural coordinates of the same triangle. In other words, the shape functions of
a 3-node triangle can be expressed by area coordinates as follows:

The global coordinates of any point within the element is now linearly
related to the natural coordinates as follows

x=Lix;+ Lixj+ Lpxm =Y Lyx, (k=1,j,m)

k
y=1Lyi+ Ljyj+ Lpym =Y. Ly (6.3.16)
Li+Li+L,=1. ¢

These equations can be expressed in matrix form

Xi X
x=[L,~ Lj Lm] X =[N, Nj Nm] X;j
Xom Xom

(6.3.17)
Vi Vi
y=1[Li L; L,]{y; }=[N:i N; NaJ{ y;
ym ym

A similar conclusion has been shown in the linear element in a 1-D case.
If the function u within the element is assumed to be various and linearly
dependent upon the coordinates x and y, then

u= Z Lkuk . (6318)
k=1

The derivation of du/dx and du/dy can be calculated in natural coordinates as
follows
ou_ o L ow 3L, ou L,
ox OL; ox OL; ox 0L, Ox
ou_ o oL ou 3L, ou oL,
oy dL; dy OJL; dy OL, Oy

(6.3.19)
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where
oL _ b
ax 2§ .
0Lk__ci (k=1i,j,m).
dy 28

Because the interpolation functions are assumed to be linear, hence the partial
derivatives of natural coordinates to the variables of coordinates are constants.

(c) Linear element in a three-dimensional case

By extending the natural coordinates defined in a 2-D case, the natural coordin-
ates in a 3-D case are defined as the ratios of volumes. Figure 6.3.4 shows
a tetrahedral element. Any point P inside the tetrahedron is expressed by the
natural coordinates L,, L,, Ly and L4. They are defined as:

L =% i=1,234 (6.3.20)
subject to

Li+L,+Ly+Ly=1 (6.3.21)
where V is the volume of tetrahedron 1234 and V4, . .., V, are volumes of the

sub-tetrahedra P234, P341, P421 and P123, respectively. Hence

atnode I: L, =1, L,=0, Ly =0, Ly=0
atnode 2: L, =0, L,=1, Ly =0, Ly,=0
atnode 3: L, =0, L, =0, Ly=1, Ly,=0
atnode 4: L, =0, L,=0, Ly=0, Ly=

The global Cartesian coordinates and the natural coordinates are related by:

(6.3.22)

X X; X3 X3 X4 L,

L
y _ Vi Y2 V3 Ya 2 (6.3.23)
z 2, Zy Iy 24 L;
1 1 1 1 1 L,

1
2
4

3 Fig. 6.3.4. Natural coordinates for a 3-D case
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The solution of Eq. (6.3.23) is shown in the results of L,, L,, Ly, and L4. For
example

1
L1=g’[;(al+b1x+cly+d12)
1 X2 Y2 22 Iy, z3
=6_1; X3 y3 z3| — |1 ys z3|x
Xs Ya Za 1 ys z4

I x, z; I x; y;

+ |1 x3 z3f{y— |1l x3 y3|z (6.3.24)
1 x4 z4 I x4 ya

where the volume V is determined by the position of nodes 1,2,3 and 4, i.e.

I oxy yi oz,
1 x z
yl 2 J2o & (6.3.25)
611 x3 y3 23
1 X4 ya za

To simplify the expression, the natural coordinates for a tetrahedron are

1

L=%v

(a; + bix +¢c;y +diz), i=1,2,3and 4. (6.3.26)

The constants da,, . . ., d4 are obtained via a cyclic permutation of subscripts
1,2, 3 and 4 as in Eq. (6.3.23). Since the constants in Eq. (6.3.26) are cofactors of
the determinant of Eq. (6.3.25), only the appropriate sign + ve or — ve should be
given before each term. Equation (6.3.26) is valid only when the nodes are
numbered counterclockwise from node 1.

In summary of the previous section, the natural coordinates are defined to be
the ratios of lengths, areas or volumes corresponding to the one, two and three
dimensional cases, respectively.

6.3.2 Local coordinates

As shown in the previous sections, for linear elements in 1-D, 2-D and 3-D cases,
there are 1, 2 and 3 independent natural coordinates. In order to simplify the
evaluation of the derivatives of the shape function, it will be convenient to define
a set of local coordinates. In Fig. 6.3.5(a), let the line of L, = 0 denote the #’ axis
and the line of L, = 0 denote the &’ axis. Then the relationship between the
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Fig. 6.3.5a—c. Local coordinates for a 2-D case
coordinates of &', n’ and the natural coordinates are
n=L
=1L, (6.3.27)
1= —n"=Ls
Furthermore if the coordinate transformation is defined as:
{'5 =< (6.3.28)
n=n
then
Li=n
L,=¢ (6.3.29)
Ly=1-¢8—n

The coordinates & — n are called local coordinates. This transformation allows an
arbitrary shaped triangle and a curvilinear triangle (Fig. 6.3.5(b)) into a right
angled triangle as shown in Fig. 6.3.5(c).

Here the discussion is limited to a 2-D case. The extension of local coordi-
nates to one- and three-dimensional cases is straightforward. The construction
of the shape functions of various elements in local coordinates will be given in
the next section.

6.4 Lagrange shape function

It is indicated in Sect. 6.2, the degrees of freedom at each node could be 1, 2 or
even more. When N, = 1, the shape function is called a Lagrange polynomial or
a Lagrange shape function. It is used to analyse problems where only the nodal
values of the function u need to be determined. In this case, the problem requires
the continuity of u at the element interfaces. The normal derivative of u at these
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c Fig. 6.4.1a-c. Shape function in local coordinates

boundaries is discontinuous. This polynomial has been defined as C° continu-
ous. In the following subsections, the Lagrange shape functions of triangular
and quadrilateral elements with different orders will be derived in local
coordinates.

6.4.1 Triangular elements

As shown in Sect. 6.3, the number of shape functions is coincident with the
number of the nodes. For example, there are three shape functions for a 3-node
triangular element. For a 6-node triangle, there are 6 shape functions.

Silvester [6] pointed out that the shape functions of a nth-order triangular
element can be expressed by the following systematic formulae

Nap,(Ly, Ly, L3) = No(Ly)-Ny(Ly)+ N,(L3) (6.4.1)
NoLy) = 1 <u> .

i=1 ! (6.4.2)
Ny (L) =1 x=0.

The subscripts «, f and y are integers satisfying the constraint of

a+pf+y=n (6.4.3)
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where n is the order of the interpolation polynomial of the approximating
function. For Ny(L,) and N,(L3), the formulae have the same form as those in
Eg. (6.4.2).

A 3-node element is now used to explain the use of Eq. (6.4.2). It should be
recalled that for a 3-node element, the order of the approximating function is
n=1. Hence x + f§ + y = 1. Considering node 1 in Fig. 6.4.1(a), the shape
function is designated as Ngo(x =1, =0,y =0). From Eq. (6.4.1) and Eq.
(6.4.2),

Nigo(Ly, Ly, L) = Ny(Ly) No(Ly)-No(L3) =L, . (6.4.4)

Using the same treatment at node 2 and 3, similar results are obtained:
Noyo(Ly, Ly, L3) = No(Ly)-Ny(L3)-No(L3) =L, (6.4.5)
Nooi1(Ly, Ly, L3) = No(Ly)* No(Ly)-Ny(L3) = Ls . (6.4.6)

These results are identical to those given in Eq. (6.3.15).

With the above method, the shape functions of a 6-node triangular element
(n = 2) shown in Fig. 6.4.1(b) may be obtained more easily by the following
manipulations. Designate node 1 as N,;, = N¢0, then

(" Naoo = N3(Ly)-No(Lz)- No(L3)

NoLy) = IEI <2L1—‘i+ 1>=<2L1 —11 + 1)

—_

1

) <2ﬁ:2£f—1> =L,Q2L, — 1) (6:4.7)
L N,(L;) =1

Hence N,o0 = L (2L, — 1). Similarly, for node 2, 3,4, 5 and 6, the shape fun-
ctions are:
" Nozo = No(Ly)-N2(L2)*No(L3)
=Q2L,— 1+ 1)-12QL, — 2+ 1)=L,2L, — 1)
Noos = L;(2L; — 1
P 002 3(2L; ) (64.8)
Ny = Nl(Ll)'Nl(L2)°No(L3) = 2L1(2L2) = 4L1L2
Noy1 = 4L2L3
~ NlOl =4L1L3 .

Equation (6.4.8) can be summarized as
N, =82 —-1) i=1,23
N, =40,(;
Ns =4(,(; OG=1-0-0
N, =403,

(6.4.9)
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These are shape functions of a 6-node triangular element. It should be noted,
that the area coordinates L;, L, and L, are determined by the position of the
nodes. The shape functions of N, N are the permutations of N, as shown in
Eq. (6.4.9). It can be seen clearly that the area coordinates, often referred to as
the natural coordinates are very useful for constructing the shape functions. The
shape functions of a 9-node triangular element can be obtained by the same
formulae with the help of Fig. 6.4.1(c).

6.4.2 Quadrilateral elements

Figure 6.4.2(a) shows a rectangular element with lengths 2a and 2b. It can be
mapped to local coordinates as a square element (Fig. 6.4.2(b)) by the trans-
formation equation

g=1"%0 o, t o (6.4.10)
a b

In local coordinates, the shape function of the quadrilateral element can be
constructed according to the following formula

4
N§ = ( I1 F,-)(al + 2y + ayn + 0y & + asén + agn + a,E%n
j=1

+oagln® + ag&> + ajon’) (6.4.11)
y n
LD €,
f 4 3
2b X
| (X0:Yo) 0 §
|
1 2
-1,-1 (1Q,-D
2a
a b
n
4
4 3
1 3 0 &
2
1 2
¢ d

Fig. 6.4.2a—d. Transformation of a quadrilateral element
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where

- {Gj node i is not located on the edge j (j=1234).

1 node i is located on the edge j
(6.4.12)

Assume N is the total number of nodes of the element. The number of terms
contained in the second parenthesis of Eq. (6.4.11) is N — ny, n, is the nodal
number on two edges which cross at node i. G; — G, are symbols to express the

equations of the four edges, 12, 23, 34, 41, e.g.
G =n+1, Gy=—-¢+1,
Gy= —n+1, Go=¢+1. (6.4.13)

Consider a 4-node quadrilateral element corresponding to the bilinear
interpolation function

u(x, y) =oay + a;x + o3y + agxy . (6.4.14)

Then the function value and the coordinates within the element are expressed by
shape functions and the nodal values as:

u(&,n) = Ny(& muy + Na(& muz + N3(S mus + Na(& nus - (6.4.15)
Z N;x;

i (6.4.16)

Using Eqgs. (6.4.11) and (6.4.12), the four shape functions N, to N, are evaluated

as follows
dueto N=4,n, =3,

Ni(&n) =GG3ay =(—=&+ D(—n+ Day (6.4.17)
Ny(&n) = G3Gaay = (€ + 1)(—n + Doy (6.4.18)
N3(&n) =G Gaay = (E+ D + Doy (6.4.19)
Ny&n) =G,Gyay =(— &+ D(n + Da, . (6.4.20)

At node 1, N,(—1, —1)= 1. Substitution of this condition into Eq. (6.4.17),
yields o = 4. Consequently, the four shape functions of a 4-node quadrilateral
element become

Ni(@Gm=010-=01 —-n)/4
Na(&m) =1+ (1 —n)/4
N3(&n) =010+ +n)/4
Na(Gm) = (1 =81 +n)/4. (6.4.21)
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n

4 3

8 0 e 6

1 5 2 Fig. 6.4.3. 8-node quadrilateral element

At the four corners, the following equations hold
Ni(&,m)=1 (i=1,23,4)
Ni(Cjm) =0 (i#j,j=123,4). (6.4.22)
Equation (6.4.21) can be simplified as
Ni=(1+ &)U +mm)/4 (i=1,23,4)
l=r-1 1t 1t -1° (6.4.23)
(nl=[-1 -1 1 1]7.

By using the transformation of coordinates, the curved sided quadrilateral
element (Fig. 6.4.2(c)) also can be mapped to the local coordinates as a square
element (Fig. 6.4.2(d)). For a 8-node quadrilateral element as shown in Fig. 6.4.3,
the 8 shape functions can be obtained by the same method. The formulations of
these shape functions are given in the table of Appendix 6.1.

6.4.3 Tetrahedral and hexahedral elements

The simplest element in 3-dimensional cases is the f{our node tetrahedron
(Fig. 6.4.4(a)). A linear approximating function for u within the element is

ux, y,z) = oy + oy X + a3y + a4z (6.4.24)
A quadratic approximating function corresponding to Fig. 6.4.4(b) is

u(x, y.z) = ay + 0y x + a3y + 04z + asx? + agy? + a;z?
+ ogXxy + Agyz + Ay9XZ . (6.4.25)

The shape functions of these elements are obtained by the following equation
similar to Eq. (6.4.1)

Napyo(Ly, Lo, Ly, La) = No(L1)Ny(Ly)N,(L3) Ns(La) (6.4.26)
= (nLi—i+1
No(Ly) = L]l <——l—> az1 (6.4.27)

N.(L;)=1 a=0.
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Fig. 6.4.4a—d. Elements in a 3-D casc

Figures 6.4.4(c) and (d) show the hexahedral element by using linear and
quadratic interpolation functions, the shape functions are determined by

Ni(&,n, §) = Lu(&) Li(m) Li(0) - (6.4.28)
If a linear interpolation function is used, then
Ni=(1+ &)1+ nm) (1 + C3)/8 . (6.4.29)

Detailed formulations are listed in Appendix 6.2.

6.5 Parametric elements

According to the type of the approximating functions of the field variables and
the geometry, there are three types of elements: isoparametric element, sub-
parametric element and super-parametric element.

The isoparametric element is defined as the unknown function and the coordi-
nates of geometry are approximated by the shape functions with the same order.
For example in a 3-node triangle, the function u and the coordinates are
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approximated in the same form, e.g.

u(x, y) = oy +oyx + o3y =y Niug (6.5.1)
k
3
X = Z kak
o k=ij.m (65.2)
y=Y Ny
k=1
where
Ni = (ak + bkx + Ck)’)/zs k = iaj1 m. (653)

The comparison of Eq. (6.5.1) and Egs. (6.5.2) and (6.5.3) shows that the
interpolation function for u(x, y) has the same form and the same order as the
expressions for the coordinates x and y, which both contain 3 unknown
parameters, u; or Xy, y. If the parameters are the nodal values of the function,
the formula becomes the approximate expression of the function u. If the
parameters are the values of the nodal coordinates, the formulae represent the
actual coordinates. The element which exhibits these properties is called an
isoparametric element. In other words, for an isoparametric element, the interpo-
lation function for the unknowns within any element has the same shape function
N§ as those in the coordinates.

It is not necessary to use an interpolation function with the same order when
describing both the geometry and field variable of an element. For a sub-
parametric element, the order of the shape function of the coordinates is lower than
that of the unknown function itself. On the other hand, for a superparameter
element, the order of the interpolation function of the unknown is lower than that of
the coordinates. In some cases, the subparametric element is beneficial.

When a 3-node isoparametric triangle is chosen as a subdivision unit. It is
assumed that the unknown function u varies linearly in each element. Hence the
derivative of function u becomes a constant within the element. Therefore, the
derivative of function u is discontinuous both at the nodes and along the edges
of the element. In general, this leads to unsatisfactory results. In order to
increase the accuracy of the results, a high order interpolation function is
considered. Examples for these polynomials are

u(x, y) =y + 03X + o3y + 2y X’ + asxy + agy’ (6.5.4)
u(x, y) = ay + ozx + a3y + agx* + asxy
+ agy? + a7x> + agx?y + agxy? + a0y . (6.5.5)

Equations (6.5.4) and (6.5.5) are complete polynomials of the second and third
order, respectively. By increasing the order of the interpolation function, the
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form of the polynomial can be expressed by the Pascal triangle as shown below:

zero order o,
first order oy X o3y
second order oy X2 asxy  agy?
third order oy x3 agx?y g xy? aoy>
fourth order a, x* apx3y ap3xly? oy axy’ o syt
It has been shown in Sect. 4.2.1 that the parameters «,, .. ., a, are deter-

mined by the nodal values u, and the nodal coordinates x, and y,. In the
isoparametric finite element method, 6-node or 10-node elements are associated
with the second or third order interpolation function. This allows evaluation of
the parameters a,, ..., ag Or &y, . .., &;o. [In order to satisfy the interelement
continuity condition, the number of nodes along each side of the element must
be sufficient to determine the variation of function along that side uniquely. If
a quadratic interpolation function is assumed to retain the quadratic behaviour
along the sides of the element, three nodes are required at each side. For a cubic
interpolation function, four nodes are necessary along each side of the element.
Hence Egs. (6.5.4) and (6.5.5) correspond to a 6-node triangle and 10-node
triangle, respectively. Consequently, the order of the interpolation function and
the number of nodes of the element are matched to each other. In 2-D cases, the
relationship between the order of polynomial and the numbers of nodes is given
by:

T
Pux,y) =Y axiyl i+j<n. (6.5.6)
k=1
For a complete polynomial P,(x, y), the number of terms in the summation is
TP =+ 1)(n+2)/2. (6.5.7)
As an example,
forn=1,TP =3 Px,y)=0, +ax+ o3y (6.5.8)

forn=2, T‘ZZ) = 6 and so on.
The use of the isoparametric element results in the simplest derivation of
finite element equations.

6.6 Element matrix equation

The solution of FEM is based on the element equation. After the equivalent
functional is found and the form of the discretization element is chosen, the
coefficients of the element matrix can be evaluated.
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6.6.1 Coordinate transformations, Jacobian matrix

Section 6.3.3 shows that by using the coordinate transformation, a straight sided
element in local coordinates corresponds to a curved sided element in global
coordinates. Hence any curved boundary of the problems may be simulated by
the curved element and all the computations carried out conveniently using
local coordinates. In Sects. 6.4.1 to 6.4.3, the shape functions are constructed
using local coordinates &, n and {. The relationships between local and global
coordinates are

il
M=

X Ni(& n)x;

i=1

y= Z Ni(& )y (6.6.1)
i=1

n

w(&n =y Ni&nu .
i=1
It has been shown in Sect. 4.2.2.1 that during the calculation of the coeffic-
ients of the element matrix, the partial derivatives of du/dx, du/dy, dN;/dx and
ON;/dy must be evaluated. The relationship between 0N;/0x,dN;/dy, and
ON;/0&, ON;/dn are related by a Jacobian matrix J which is derived below

oN) ox oy (M) (N
o¢ ¢ ¢ ox dx
—_ = J .0.
on, (T ex ay | Jan (7 |am 06
n on On dy dy
where
ox oy
_|e¢ e
J= ox dy . (6.6.3)
on  on

This is called a Jacobian matrix. Hence the Jacobian is the transformation
coefficient between the global and local coordinates. The inverse matrix of [J] is

dy dy
_ | 1 an o
| -
J —lJladJ[J] 7] _ﬁ{ 6_x (6.6.4)
then on a¢
ON; ON;
0x 1 6—5
aN, =J aN, [ (6.6.5)

dy on
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Substitution of Eq. (6.6.1) into Eq. (6.6.3) and evaluation of the determinant
of the Jacobian for 3-node triangular element gives

ox dy
5 3 R
g =] 98| ST YT g (6.6.6)
6_x 5_y Xm — Xi Ym — Vi
on 0on

This result shows that for a 3-node isoparametric element, the Jacobian is
constant, and is identical both for the field variables and coordinates. Therefore
the derivation of the element matrix may be easily obtained.

6.6.2 Evaluation of the Lagrangian element matrix

For 2-D Poissonian problems, the equivalent functional is

(9) = Z1,(¢) = = j LLel Vo 2 — 2007 dxdy

4

=2[l(9) = L2(0)] . (6.6.7)

Substitution of the approximating function of ¢ into Eq. (6.6.7) yields

" ON 2 ON 2
el—fz [( - *wk) (Z —"w) ]dxdy (6.6.8)

IeZ = sz Z Nk(pk dxdy . (669)

y k=1

According to the extremum principle

: N
QIL‘=[ g<% N, | 0N %>¢qudy (6.6.10)

0y 0x 0x dy 0y
Olex =f2 Y pN,dxdy (66.11)
0y o k=1

the coeflicients of the element matrix are

_ [ [N N, | ON, 0N,
kig = f <ax Lt % ay)d dy (6.6.12)

4
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Since for a linear shape function N,/dx and dN,/dy are constants, the evalu-
ation of the integration of Eq. (6.6.12) is easy. If a high order interpolation
function is used, the integrand in Eq. (6.6.12) is complicated. In order to simplify
the calculation and to set up a general program in FEM, the coefficients of
the element matrix for higher-order shape functions are calculated in local
coordinates.

The relationship of the integration of an infinite small element between the
global and local coordinates is

fdxdy = [[J|d¢dn . (6.6.13)

This is because
ds = |axb| = [(a.i + a,j) x (b,i + b,j)| (6.6.14)

where a and b are two infinitesimal vectors shown in Fig. 6.6.1. The components
of the vectors are

C 0x

ae = lim [x(&+ 4¢n) — x(&,m] = &di
4820
: dy
a, = lim [y + 45 n) —yE n]= &dé
45=0
< (6.6.15)
b =0_xd
== o n
dy
by = 5};(1}1 .
Substitution of Eq. (6.6.15) into Eq. (6.6.14) yields
0x dy dy Ox
= =—df-—dn—-=d¢-—dn =|J|d&dy . 6.6.16
ds =|axb| agdéan”agéan””“ ( )
Substitution of Eq. (6.6.16) into Eq. (6.6.12), gives
- '¢" (0N, 8N, N, oN
k q k q
e _ 2k e Tk 2 e ) 6.6.17
= | [ oG G T 11acan (66.17)
0 0
y
n
b
a
/ 5
0 Fig. 6.6.1. Coordinate transformation

0 of an infinitesimal area
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For a quadrilateral element, the formula is

ON, 0N, 6Nk ON,
ki, = J J (ax 6y 3 )lJldédn (6.6.18)

In Eq. (6.6.17) and Eq. (6.6.18), the partial derivatives are given by

on M) T o (N
O0x -1 ¢ _ L an 65 o¢ _
on, oy (Tl ex ok ||,
dy an on o¢ on

oy N _ 0y aNy
___l_ on 0¢ o0& On
T I | dx ONy dx oN, |

e TaE
To evaluate dN,/dx, dN,/dy and to integrate Eq. (6.6.18) manually is

a teious task. To ease computation, Silvester has provided an universal matrix
[7-9] method which will be described in the following section.

(6.6.19)

6.6.3 Universal matrix

The evaluation of the element matrix is calculated by the following equations:

ﬁ_N,f 3 0N, 6;, _ 3 _b_l 0N,
\ OC; ox =128 ¢
. 3 .
ONw _ a_N_k% _ v G0N (6.6.20)
Oy o1 06 oy =28 O
where
bi=yis1" = yira Ci = Xi+2 — Xi+1 - (6.6.21)

The subscript ‘i” is changed cyclically around the three vertices of the triangle.
The combination of Egs. (6.6.12), (6.6.20) and (6.6.21) is rewritten as:

3

3
L L b +”)Vack °;f‘*d dy. (6.6.22)
=1j=1 i

The double summation of Eq. (6.6.22) can be reduced to a single summation if

titl=j, i+2=m
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(XY em)

b — —f— — —

I (x,j'yj) Fig. 6.6.2. Relationship between the variables
1 L X for proof of Eq. (6.6.23)

0

the following relationships are introduced
bib; + cic; = — 28Scot 3, (6.6.23)
b? + ¢} = 2S(cot 9; + cot 3,,) . (6.6.24)
These equations can be derived with the help of Fig. 6.6.2. A more detailed

process is given in Appendix 1 of [9].
Then

R ON. N, \[dN, 0N,
kg = ﬁ,-; cot S‘JR@_CJ - &:)(7@_ - E)]dgdcm . (6.6.25)

In Eq. (6.6.25), the value in the square brackets is dimensionless, they are
independent of the geometry of the triangle and only depend on the approxima-
tion function. Hence, the stiffness element coefficient matrix [k], may be
expressed as:

[k], = i cot 4.Q; . (6.6.26)
i=1

To calculate Q;, the integration in Eq. (6.6.25) is evaluated by using the following
formula [9]

11-0

[rreas=as| | crczdcldzﬁzs#ﬂ. (6.627)
0 0
For a 3-node triangular element
[0 0o o 10 —1
[k]l.=¢ % 0 1 —1 cot91+% 0 0 0 {cot 9,
0 —1 1 -1 0 1
[ 1 -1 0
+% -1 1 0| cotd,
| 0 00

3
=¢Y Qicotd;. (6.6.28)
i=1
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1 2 3 3 1 2 2 3 1
110 0 0 3 1 0 -1 2 1 -1 0
210 1 -1 1 00 0 3 —1 1 0
310 —1 1 2l -1 0 1 0 0

Fig. 6.6.3. The permutation of Q;

Due to the property of natural coordinates, when Q, is calculated, Q, and
Q; are the permutations of the first matrix Q,. This is shown in Fig. 6.6.3. Using
this rule, the computation time may be greatly reduced and no numerical
integration will have to be repeated.

For a high order element, define a vector N = [N, N, ... Ng] to express the
shape function, then

ON 0
a—cl=55[C1(2C1—1) 4018 400 LG -1 400G GG -]

=[4C -1 45, 44 0 0 0]

[ 3000 0 0]
=[5 & &Gl [ -1 4000 (6.6.29)
| -1 0 400 0]
[ 0 -1 0 0]
N
¥=[c1 &L G110 00 30 (6.6.30)
/52
i 0 —1 4 0|
N i 4 00 —1]
% =0l & G 00 4 —1]. (6.6.31)
’ 00000 3

An important observation is that these matrices in Eq. (6.6.29) to Eq. (6.6.31) are
independent of the shape of the triangle and so are called universal matrices. The
elements of the matrix contained in Eq. (6.6.29) can be denoted by double
notations as shown in Fig. 6.6.4(a). The rotating sequence of the nodes are
shown in Fig. 6.6.5. Then the elements in the matrices of Egs. (6.6.30) and (6.6.31)
are obtained by using (b) and (c) shown in Fig. 6.6.4. After the computation, the
matrix Q, of a 6-node triangular element is
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1 23 4 56 6 3 5 1 2 4
tff 300000] 3040 -100
2 -1 4 0 0 0 O 1{0 0 O 300
3] -1 0 4 0 0O 200 0 0 -1 4 0
a b
4 5 2 6 3 |
200 0 4 0 0 -1
310 0 0 0 4 -1
110 0 0 0 O 3
C
Fig. 6.6.4a—c. The permutation of element matrices
1 6
2 3 3 5
4 g 6 1 2 4
a
4
5 2
6 3 1
c Fig. 6.6.5a—c. The rotating sequence of the nodes
r'O 7
0 symmetry
Q 1 0 -8 8 (66.32)
76 |0 0 3 o
0 0 -4 8
0 00 1 —4 3|

The matrices Q, and Q5 will be obtained by rotation.



6.7 Hermite shape function 199

Finally, the computation of the element coefficient requires only the calculation
of the coefficients b; and c; which are of the first order element. The universal
matrices of axisymmetric field are given in Appendix A.6.3.

The construction of an element matrix of quadrilateral elements can also be
obtained by the universal matrix method [3, 8]. For axisymmetric fields the
universal matrix can also be derived [10].

6.7 Hermite shape function [2, 8]

Asindicated in Sect. 6.4, the Lagrange polynomial only ensures the continuity of
the unknown function at the nodes and along the edge of element. It will result
in discontinuity of the derivatives of the function. In order to overcome this
limitation, the derivatives of the unknowns are included in an approximating
scheme. The Hermite polynomial achieves this objective as it incorporates both the
values and its derivations are specified as the unknowns directly at the nodes of
element. It is C'-continuous element. It ensures the continuity of unknowns and its
normal derivatives along the side of element. For example, in an one-dimensional
linear element for a potential problem, both u and du/dn at two end nodes are
assumed as unknowns and are continuous between neighbouring elements.

6.7.1 One-dimensional Hermite shape function

A Hermite shape function of order n in a one-dimensional Cartesian coordinate
is denoted as H"(x). It is a polynomial of the order 2n + 1 of variable x. For the
first order Hermite shape function, n = 1, H'(x) is used to represent the first
order approximation of the Hermite shape function. It represents a cubic
approximate of x i.e.

ay

a3

u(x) = oy + ayx + azx? + agx® =[1 x x? x?] (6.7.1)

a3
A4

This is because at two terminal nodes of the linear element both u and du/0x are
assumed as unknowns, they can be used to determine the four constants a; —ay.
If the interpolation function u(x) is expressed by the shape functions

u(x) = Hélul + Hilux‘ + H(‘l)zuZ + HiquZ = [N]le_l{u} (672)

then the four constants a,—a, or the four shape functions H§; — H}, can be
determined. In Eq. (6.7.2), the superscript 1 denotes the first order of the Hermite
interpolation, the first subscripts 0 and 1 express the zero and the first order
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derivatives, the second subscripts 1 and 2 express the end nodes 1 and 2. The
column matrix {u; represents the four unknowns at two end nodes, i.e.

fup ={™ (6.7.3)

where

= Cu and U, = %
e = ox /), * 7 \ox ),

In writing the first derivative of Eq. (6.7.1), one obtains:

0

o y + 2a5x + 3agx? . (6.7.4)
Ox

Substitution of the four nodal values u,, u, and u, , u,

Eq. (6.7.4) yields

into Eq. (6.7.1) and

2

2 3 -1

oy I x; xt Xxji u,

| _ 0 1 2x, 3x3 Uy 6.7.5)
o 1 x, x3  x3 u, o
g 0 1 2x, 3x3 U,

By using the coordinate transformatiollé =x —x;/l, I = x; — x, and express-
ing the four shape functions by N{, N}, N}, N}, ie.

[NJi=[Hs Hi, Hs Hi;J=[Ni Ni Ni Ni] (6.7.6)
then the four shape functions are formulated by

Nl =1-3¢+2¢ Nl =(E-2+ 81

N} =3¢ -2&° Ni=(=-&+8&)1. (6.7.7)
They are the cubic functions of local coordinates.

The above procedures complete the analysis of a first order Hermite shape

function of 1-D case. It can be expanded to derive the formulations for a 2-D
triangular element.

6.7.2 Triangular Hermite shape functions

In 2-D cases, the 3-node triangle is the basic element for domain discretization.
To ensure the continuity of the function u and its normal derivatives du/dn along
the side of the element, the first order Hermite element is considered. According
to the analysis in above section, the first order Hermite element represents the
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cubic interpolation function which is used to approximate the unknown func-
tion. In a 2-D case, the complete cubic interpolation function is:

u(x, y) = ay + 00X + azy + agx? + asxy + agy? + amx> + agx?y
+ agxy® + oy’ (6.7.8)

where there are ten constants a;—a,, to be determined. However, for a 3-node
triangle, there are 3 variables (u, du/0x, du/dy) in each node. Thus the total
degrees of freedom of a 3-node triangular element is 9. This is inefficient when
determining the ten constants as constructing the C!-continuious element is
difficult to achieve. Instead the unknowns at each node (u, Ju/dx,
Ou/dy). (k = i, j, m), can be uscd to determine the 9 shape functions. However
according to Zienkicwicz, the constraint conditions of the ten constants are

3 9
2(2 a,-)— Y o+ 20,0=0. (6.7.9)

i=1 i=a
Then the 9 shape functions can be determined. Suppose in cach element
3

u(x, y) = k; (Nt + Nitter + Nyuty,) (6.7.10)
At node i N N

N;=1 ~é¥ =0 a—{ =

N;=0 %=l aa—Ay[‘eo (6.7.11)

~ oN; oN;

Ni=0  —==0 W =

At node j and m there are similar conditions as in Eq. (6.7.11). In local
coordinates, Eq. (6.7.10) is then written as

M=, IN& mulé n) + Nu(& n) we(& m) + Ni(& m) (S m) ]
k

6.7.12
where ( )
y _6uax+6u6y_u .+ u
ST ox 0 Tayoe e TS
Oudx 0Oudy
uq:ga-p@a:uxx,,%—uyy,, (6.7.13)

Uy, Uy, Xg, Ve, X, and Yy are partial derivatives of u, x, y with respect to x,y and
&.n, respectively. N, N are shape functions with respect to u, and u,. Substitu-
tion of Eq. (6.7.13) into Eq. (6.7.12), yields

u(é n) = Z [Nitte + (Nixg + Nix,)ue + (Neye + Ney)uy . (6.7.14)
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Comparison of Eq. (6.7.14) and Eq. (6.7.10) shows that the relationships between
the global coordinates and local coordinates are

Ni(x, y) = N(&, )
Ni(x, y) = No(& m) xe + No(& n)x, (k=i j,m).

Ni(x, p) = No(& ) ye + N (& m) y, (6.7.15)

L Ou; Ou; Ou; Ou; Ou,, Ou, .
Substitution of the nodal value wu;, uj, Uy, —,—=—,—2, —, —, — into

Eq. (6.7.14) via the manipulation yields: Ox” 0y’ 0x" 0y’ 0x’ 6

Ni=L}3—=2L)+2L,L,Ly (i=1,2,3)

Ni=L?L, +05L,L,Ly (i=1,3)

Ny=L3(L,—1)— L,L,L,

Ni=L}Ly+05L,L,Ly (i=1,2)

Ny=L3(Ly—1)—L,LyLy. (6.7.16)

These are the 9 shape functions of a 2-D first order Hermite element. In the
above equations,

Li=l—¢—y Ly=¢& Ly=n. (6.7.17)

6.7.3 Evaluation of a Hermite element matrix
By following the same procedures as those used for deriving the Lagrange

element matrix, [N is s~ubstituted by [Ni]u([N«]q which are composed of
three terms, N, N, and N,), then Eq. (6.6.12) becomes:

e _ AT N, LN ON;\ oN; i, (2N aN + oN;
"f‘fa ox Tax Tox)ox T\ Ty ay oy
a4
N %+61\7+6N oN; . 6N+61\7+6_1\7,-£3E
Ox O0x O0x dy dy dy ) 0y
. 6_1\&+6A7+8N 6N+ 6N+Q&+6N oN; dxd
Ox = 0x dy dy 0y 6y y

(6.7.18)
The complete formulation will be obtained by the following steps:

a) To develop the derivatives of N; N; N; with respect to ¢ and 7.
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ON; ON; ON; ON;

b) Using the relationship between e —a;— and g 6—;1’ then Eq. (6.7.18)
can be expressed by
ki = [ f(& ]| dedy . (6.7.19)
a4

The integration of Eq. (6.7.19) is carred out numerically. The efficiency of the
triangular Hermite shape function is verified by the following example :

Example 6.7.1. Two coaxial cylindrical electrodes subject to Dirichlet boundary
conditions are shown in Fig. 6.7.1(a) where u,|,-g, = 100, u|,=g, = 0.

Solution. The region is subdivided by a Lagrange or Hermite triangular element
as shown in Fig. 6.7.1(b). The relative errors of the field strength using Lagrange
and Hermite shape functions are given in Table 6.7.1.

The advantage of the Hermite shape function is that not only a higher accuracy
of the field strength obtained but while the Hermite interpolation is used, the

ou
=0, and —
an 3

y y=0

du

3 = 0 are substituted in the matrix
X

symmetry conditions

x=0

a b

Fig. 6.7.1a, b. An example of Hermite element

Table 6.7.1. Comparison between a Lagrange element and a Hermite element

Shape function No. of nodes and elements Max. error of E(%)
Lagrange 200 nodes, 342 elements 325

600 nodes', 1062 elements 8.2
Hermite 200 nodes, 342 elements 8.0

! Near the inner conductor, the density of the elements are increased.
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equation as a constraint condition, hence E, = 0,and E, = 0 on the x and y axis
are satisfied. But these conditions cannot be guaranteed in Lagrange shape
function. The problem is that the CPU time of the Hermite shape function is 3 or
4 times longer than the Lagrange shape function.

Hermite shape functions for a quadrilateral element are discussed in
reference [11]. In the case of three-dimensional elements, satisfaction of C!
continuity is quite difficult and practically no such element has been used in the
references cited.

6.8 Application discussions

Isoparametric elements are widely used to solve various problems. The choice of
the order of the interpolation function depends on the requirements. The linear
element usually obtains good results for some purposes. Figure 6.8.1(a) shows
the flux distribution around a pair of coils near a ferromagnetic plate. However,
the flux density along the surface of the plate is discontinuous as shown in
Fig. 6.8.1(b). This phenomenon is caused by using the linear interpolation
function to approximate the vector potential. Then the derivative of the

4-0ZE-4

e 3 00E-2

O+
O OF &5
a b

Fig. 6.8.1a, b. Discontinuity of flux density obtained by a linear element
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potential within each element is a constant. If a more accurate result for the
field strength is expected, higher order elements, are needed.

The accuracy of a quadratic element is higher than a linear element in
general. An example of a one-dimensional case is given in reference [2]. That
example also shows that the contribution of the cubic element has no significant
effect. Usually the quadratic element is the better choice to obtain accurate
results. A comparison of high order polynomial elements for solving a 2-D
Laplacian problem is given in [11]. The comparative study of isoparametric and
subparametric elements of a higher order element is given in [12].

In calculating the field strength of an axisymmetric problem, the 8-node
quadrilateral element gives a more accurate solution than the 3-node triangular
element. An example is shown in Table 6.8.1. The values given in the table
are the field strengths on the conductor surfaces and on the three interfaces (on
the right hand side of the interface) of the different conducting materials
(1:72:73:74 = 1000:100:10: 1) shown in Fig. 6.8.2. The results show that the
quadrilateral element is much more suitable than the 3-node triangular element.

Generally speaking, the increase in the number of elements will result in
a more accurate solution for any given problems. However there will be a certain
number of elements beyond which the accuracy cannot be improved by a signifi-
cant amount. Reference [1] gives an example.

In some 3-D cases, if the hexahedron element is used to solve the problem in
a cubic volume, the subparameter element (the function is approximated by
quadratic function but the geometry is approximated by linear function) is
preferred. It reduces the computation time and the good results are obtained.
The comparison of subparametric and isoparametric elements to solve a
nonlinear electromagnetic problem is discussed in [13].

In order to obtain more efficient results to solve some specific problems,
several special elements are used. For example, the exponential shape function
[14] and the spline function [15] are used to solve the eddy current problem.
The edge element [16-20] is used to solve 3-dimensional vector problems. These
new techniques are beyond of the purpose of this book. References are provided
for the readers who are interested in these problems.

Table 6.8.1. A comparison of an 8-node quadrilateral element and a 3-node triangular element

Theoretical E (V/mm) 8.6707 0.2890 0.01734 0.001239 0.000963
results

Triangular E (V/mm) 5.9467 0.2549 0.01622 0.001189 0.001049
element (160) AE (%) —314 —118 —-6.2 —40 8.9
Triangular E (V/mm) 6.9910 0.2689 0.01664 0.001205 0.000999
element (640) AE (%) — 194 -170 —38 -27 37
Quadrilateral E (V/mm) 8.0101 0.2769 0.01703 0.001227 0.000954
element (25) AE (%) —-76 —42 —-16 -10 -09

' The region having the conductivity of y, is divided into ten 8-node quadrilateral elements, each of
the other regions is divided into five 8-node quadrilateral elements.
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Interface

7

6=100V [ \Y\ |\ \ | \ Y5 \74\ =0V
\

Fig. 6.8.2. Comparison of the accuracy of
different elements for an axisymmetrical problem

6.9 Summary

In FEM the coefficients of the element matrix are dependent upon the formula-
tion of the shape functions. Hence the construction of the shape function is one
of the key steps in the use of the finitc element method.

The formulations of the shape functions are based on the geometry of the
element, the order of the interpolation function and the degrees of freedom of the
nodes. The Lagrange shape function considers only the value of the function as
unknowns, it is C°-continuous. The Hermite shape function considers both the
value of the function and its derivatives as unknowns, it is a C'-continuous
element. In this chapter both the construction of the shape function of C° and
C!-continuous elements have been discussed.

An universal recurrence formulation to construct Lagrange elements has
been introduced. For these elements, the number of shape functions are identical
to the number of nodes. For high-order triangular elements, the universal matrix
is very useful to construct the element matrix. A great number of numerical
integrations are eliminated.

Using the coordinates transformation, any curved element can be trans-
formed into a regular shape in local coordinates. This technique ensures that
any curved boundary can be modelled very well. The isoparametric elements
may conveniently be used because for both the coordinates and the function
variables the Jacobian is identical.

The choice of different kinds of elements are discussed in Sect. 6.8 and given
in the references.
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Appendix 6.1 Lagrangian shape functions for a 2-D case

Geometric figure Interpolation function  Shape functions
3-node triangle U=0o + axazy N, =1—-¢—n
N,={¢
Ny=n
6-node triangle u=ay + oy + o3y N{¢&n=(1—-¢—n)
+ agxy + asx? Ra-&-n-1]
+ aey’ Ny m=¢25-1)

(
N3 n=n2n—1)
Ny =461 —-¢—n)
Ns(& n) =4én

Ne(& n)=4n(l — & —n)
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4-node quadrilateral wu = o; + ayx + A3xy
+ a4y

8-node quadrilateral u = a; + a,x + a3y
+ ayxy + asx? + ogy?
+ o, x%y + agxy?

6 Elements and shape functions

Ny =1/4(1 = &) (1 —n)
Ny =1/41 + (1 —n)
(
(

Ny = 1/4(1 + &)(1 + 1)
Nao=1/4(1 = &)(1 + 1)

Ni=1/4(1 + &) (1 + mim) X
C&+mn—1) i=12234
Ni=12(01=&)(1 +nn) i=57
Ni=121=n*)(1 + & i=6,8
[E]l=[-111-1010 —1]T
(hl=[-1 -111 —10107

Appendix 6.2 Commonly used shape functions for 3-D cases

Geometric figure Interpolation function

4-node U=0a, + X + a3y

tetrahedron + ogxy

10-node U=o0oy + 03X + dzy + a4z
+ asxy + agyz + a9xz

tetrahedron + agx? + agy? + o102°

8-node u=oa; + 0,x + a3y

hexahedron + a4z + asxy + agyz

+ a,xz + agxyz

Shape function

Ni=l-f—n—¢

N2=f
N3y=n
N4=C

Ny=R(1-¢-—n-0—-1]x

(1=¢=n-0
Ny =(2¢ - 1)¢
N3y=Q2n—1n
Ny=(20-1)¢
Ns = 48n

Ne=41—-C—n—0)¢
N,=41 =5 —n—"0n
Ng=4(1-¢—n—-10)¢
No = 4n{
Nio =4&

Ni=1/8(1 + G:&(1 + nan) x
1+8) i=1,2...,78



Appendix 6.3 The universal matrix of axisymmetric fields

209

20-node u=ay +a,x+ a3y +agy?  Ni= 181+ & (1 +nm) (1 + &)
hexahedron + 04z + asx? + agy? i=1,3,57 13 15,17, 1
+ o4 agxy 4+ ... Ni=1/401 =) + (1 + &)

+ a1 X2y + ay0z2xy

i=26,141

Ni=1/4(1 = (1 + & (1 + nim)

i=9,10,11,1

Ni=1/4(1 = n*)(1 + &H (1 + &&)

i=4,816,2

Appendix 6.3 The universal matrix of axisymmetric fields

The equivalent functional of scalar Helmholtz equation: (V2 + k*)u = g is:

= [ nr(BVu-Vu — k*u* + 2ug)dQ

Q

(A.6.3.1)

Because the coordinate r is included within the integration, the calculation of the
coefficients of element matrices will be complicated than which of the 2-D case.
Suppose the coordinates of r and z are approximated by:

{"="1+("2—"1)f+("3—"1)’7

p (A.6.3.2)
z=z;+ (2 —z)¢ + (23— z1)n

By using the same step as used in 2-D case, the following equation is obtained.

S0 0Ny N, 0N, 0N, "
Tk Z e kT — k2
Z” { < o o a) 27, Nl
0o O

n

+2 3 Nqugk} &idrdz=0 (4.6.3.3)

k=1

ON, 0N, ON, ON
Substitute the terms of —, —2, —* —¥ and the parameters cot0; in to

above equation yields: or’ o 0z” bz
3

ﬂ Z Z qu COtH U, — 2k2 Z quuq + 2 Z qugq = 0 (A634)

k=11i=1

where
1 1-&

3 0N, ON, 6N 6N
Q=2 r ff <aé.-+faéi_l><aé.-+1 3%, 1>”"’52d53

0o o

(A.6.3.5)
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1 1-&
3
T, =1J| Z riJ‘ J &Ny N, dE,dE, (A.6.3.6)
i=1
0 0

The matrix Q! of the first order triangle is:

i (0,0,0,( 0, 0, 0,( 0, 0, 0
Q'=-1(0,0,0, ( 1, 1, 1),(=1—=1,-=1)

6
0,0,0, (-1, -1, =1, ( 1, 1, 1

It means Q) ; =(0-ry +0-r; +0-r3)/6 =0
Q§_2=(1-r1 + 1-r2+ 1-r3)/6=(r1 +r2+r3)/6

and so on. Where ry, r,, ry are the global coordinate of the vertices of the
triangle. The universal matrix of @', Q% Q* and T are summarized below:

0'=1/6\Q*=1/6 (LL1) ( 0 0 0, (-1 —1-1
o 0)
0,00, ™ (L L D
0,00, ( 1, 1, I,

0,00, (=1, ~1, =1, ( 1, 1, 1)

A=
=)
A=
L

Q*=1/6\T=1/120 ( 6, 2, 2,221, (21,2
2,6,2), (1,2,3)
( 1, 1, 1)\ (2,2, 6)
(=1,—1,=1), (1, 1,1),
( 0, 0, 0)(0,0,0), (0,0,0)

The universal matrices Q' and T of the second order triangular element of
axisymmetric field are:

Q' =1/30-\0Q*=1/30

9,33, 0, 0 0,( 2 1, 2,( 3 -=2-1(=3 2 1(-11,-4 =5

(0 0 0,( 0 0 0,( 0 0 0,(O0 0 0,( 0 0 0
(0,0, 0), (3 3 9 L, 2,=-3),(-1, =2, 3),( =5 -4,-11)
0,0,0,( 3 9, 3, ( 8 24, 8),(—8,—-24 —8),( —4, 0, 4)

0,0,0.( 1, 2 2,( 3 3 9, (8 24 8),( 4 0 —9
0,0,0, (=2, 3,-=1,( 2, 1, =3),( 24, 38, 3, ( 16, 8, 16)
(0,0,0), (—4,—11,=5),(—=4,—5,—11), ( 0, —4, 4),( 8 16, 16)

0,0,0,( 2,— 3, 1),(=2,—-1, 3,(—24, —8,-8),( 0, 4, —4),( 24, 8 3
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03 = 1/30-\T = 1/2520

(242, 6 6),(—-4 -4 1 (-4
1,

(6,242, 6), (

9 3 3, (
(2 2 I, 3 9, 3,

( 0, 0, 0,( 0 0, 0,
(=11, =5 —4), (=5, —11, —4),(
(=3 1, 2,(-1, 3, = 2),(
( 3 -L-=2,(C 1 =3, 2,

6,

©c o 9o o

1

—4,

© o o o

—4), ( 12, =8, —4),(—4,—-12,—-12), ( 12, -4,
—4),( =8, 12, —4). (-4, 12, —8),(—12, —4,

242), (—12,—12, —4), ( —4, —8, 12).( —8, —4,

(96, 96, 32),( 32, 48, 32),( 48, 32,

0), (32, 96, 96),( 32, 32,

0),( 16, 16, 38), ( 96, 32,
0,( 4 -4 0,( 8 8 29,

0,( —4, 4, 0.(—-8 —8-24),( 8 8

211

—-8)
-12)
12)
32)
48)
96)

24)



Part Three
Boundary Methods

Electromagnetic field problems can be handled both in different or in integral
equatioins. Integral equations are very difficult to solve analytically. Hence
different equations are now more familiar to have been in use for a long time.
Now numerical methods are available to solve the integral equations for
engineering applications. Integral equation methods may use volume integral
equations or boundary integral equations. The most important advantages of
boundary integral equation methods are as follows

(1) They reduce the dimension of the problem. The data preparation and
storage are easier than that required for the differential equation methods.

(2) Errors caused by the approximation will be averaged out in the integral
sense, but errors will be increased in the derivative process.

(3) Integral equation methods may obtain more accurate results of the field
strength at the boundary.

(4) Integral equation methods are more convenient to solve open boundary
problems and inverse problems.

Hence these methods have been developed more rapidly and are more
widely used in recent years. However, there are a few problems with these
methods, namely:

(1) Fundamental solutions are usually used in integral equation methods
but these are hard to obtain in some cases.

(2) Numerical integrations are time consuming.

(3) Singular integrals must be taken care of.

(4) The solution of the integral equations may not converge as compared
with variational techniques.

(5) The resulting matrices are dense and often ill-conditioned. Hence the
solution of these matrix equations is not easy as compared with the matrix
equations of the finite element method.

Here the emphasis is on boundary integral equation methods. Both the
simple and more complicated cases are considered. Charge simulation and the
surface charge simulation methods are given in the Chaps. 7 and 8. The
generalized boundary element method is introduced in Chap. 9, and the method
of moments is treated last as it includes all of the other methods.



Chapter 7

Charge Simulation Method

7.1 Introduction

According to the uniqueness theorem of electromagnetic fields, if a solution satisfies
Laplace’s equation or Poisson’s equation and all the corresponding boundary
conditions, no matter how that solution is obtained — even if guessed — it is the only
solution of the specified boundary value problem. For example, the field distribu-
tion of an isolated charged spherical conductor equals the field distribution of
a point charge if it is located at the centre of the sphere and its charge equals the
total amount of surface charge of the sphere. This point charge is called the
equivalent charge or simulated charge of the original charged conductor. Thus
the distributed charge on the conductor surface is replaced by a lumped
fictitious point charge. It should be noted that the region of interest is now the
region outside the sphere. In other words, the fictitious simulated charges must
be placed outside the space in which the field is under consideration.

Early in the 1950s, Loeb [1] used a set of lumped charges to analyse the field
distribution of a rod-plane gap. At that time he obtained the solution without
using a computer. Later on during 1968-1969 Abou-seada and Nasser [2,3]
used a digital computer to calculate the potential distribution of the same
problem. Almost at the same time, Steinbigler published a more complete
procedure which he called the charge simulation method (CSM) in his doctoral
thesis [4]. The basic concept of the CSM is to replace the distributed charge of
conductors and the polarization charges on the dielectric interfaces by a large
number of fictitious discrete charges [5]. The magnitudes of these charges have
to be calculated so that their integrated effect satisfies the boundary conditions
exactly at a selected number of points on the boundary. From this point of view,
the CSM is called a point matching method, it is one kind of equivalent source
method. Starting with the 2nd ISH (International Symposium on High Voltage
Engineering), in Zurich in 1975, many papers have been discussing the use of
CSM. Now, it is regarded as an effective and simple method for solving
Laplace’s or Poisson’s equations. It proved to be successful for many high-
voltage field problems. It is applicable to any system that includes one or more
homogeneous media. A special advantage of this method is its good applicabil-
ity to three-dimensional field problems without axial symmetry. It is a practical
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method for engineering design [6] and for the optimum design of electrode
contours [7,8] and insulator interfaces [9]. Recently, the application of CSM
has been extended to the analyse of two-dimensional elasticity problems [10],
and to the Stefan problem which is a free boundary problem [11].

In this chapter, both the conventional charge simulation method and the
optimized charge simulation method are discussed. The error analysis of this
method is also classified in Sect. 7.7.

7.2 Matrix equations of simulated charges

The first step of the CSM is to find out the equivalent simulated charges by the
charge simulation equation. These charges are always located outside the domain
where the field distribution is calculated. Once these lumped charges are deter-
mined, the solution of potential and field strengths anywhere in the domain are
computed by the analytical formulations and the superposition principle.

7.2.1 Matrix equation in homogeneous dielectrics

Matrix equations in the charge simulation method are discussed in the following
cases.

7.2.1.1 Governing equation subject to Dirichlet boundary conditions

Figure 7.2.1 shows a rod-plane electrode, the potential distribution of this field is
obtained by solving the partial differential equation subject to the given bound-
ary conditions as follows

V3¢ =0 in domain Q
¢l;, = Uy on boundary I'; (7.2.1)
®lr, =0 on boundary I', .

2
¢=Uo
I
Q
G !
I B

¢=0 Fig. 7.2.1. Rod-plane electrode configuration
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One could also solve this problem by using the corresponding integral equation

1 a(r)
= | —2dy 2.
¢ 47t£,[ R S (7.2.2)

N

where a(r’) is the surface charge density on the electrode, s’ is the area where
surface charges are located, R = |r — r’|, ¥ is the position of the sources and r is
the position of the observation point where the potential will be calculated.

Applying CSM, the unknown distributed surface charges are replaced by a set
of lumped simulated charges in such a way that the known potentials on the
boundaries are satisfied. Thus, if the types and the positions of the simulated
charges are assumed, the values of these charges are determined by the known
boundary conditions on the electrode surface. For example,

©1=p11Q1 +p12Q2+ - +p;Q;+ -+ pinOn (7.2.3)

where ¢, is the known potential of point 1 on boundary I'y, p, ; is the potential
coefficient between the boundary point 1 and the jth simulated charge Q;, and
j=1,2,..., Nis the sequence of the simulated charges. N is the total number
of simulated charges. In order to determine the magnitude of charges Q;,
N boundary points (collocation points or matching points) must be
selected i.e.

©; =pi1 Q1+ pi2Q2+ - +pinQn i=12,...,N. (7.2.4)

If Q, equals 1, p,, is the potential of point 1 produced by charge Q,, the total
potential of point 1 is the sum of the potentials produced by N charges.
Equation (7.2.4) is expressed as a matrix equation

P'{Q} = {¢} (1.2.5)

This is a matrix equation of the simulated charges. Here {¢} is a known column-
matrix with N components, {Q} is an unknown column matrix with N compon-
ents and P is a square matrix of the order N x N. When the types and the
positions of simulated charges and the positions of collocation points have been
selected, the potential coefficient matrix P can be calculated and then the
unknown charges {Q} are uniquely determined. The only requirement is that
the type of simulated charges must be such that the potential produced by these
charges can be expressed by an analytical formulation. In the case where the
positions of the simulated charges or collocation points are changed, the
magnitudes of the simulated charges will be different. Thus the substitution is
not unique. A large number of different sets of solutions is possible.

' The bold character represents the matrix.
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7.2.1.2 Governing equation subject to Neumann boundary conditions

If the problem is a Neumann boundary problem, then the surface charge
distribution or the field strength along the boundary is known. In this case, the
matrix equation of simulated charges is expressed as

{E} =[F1'{0} (1.2.6)

Equation (7.2.6) is a vector matrix equation where {E} is a column vector and
[F] is a vector matrix of the order N x N. It is defined as a field strength
coefficient matrix with a similar meaning as the potential coefficient matrix P. In
2-dimensional rectangular coordinates, Eq. (7.2.6) can be separated into two
scalar matrix equations

{Ex} = Fx{Q}
{Ey} = Fy{Q}

This kind of formulation is suitable for use in the optimized contour design of
electrodes.

(7.2.7)

7.2.1.3 Mixed boundary conditions and free potential conductors

In the problem with mixed boundary conditions, the Dirichlet boundary condi-
tion applies to one part and the Neumann boundary condition applies to
a different part of the boundaries e.g.

Vipg=0 inQ
(PII«‘ = fi(s) onTl,

(7.2.8)
Qf

on =fa(s) onrl,.

r,

In this case, the matrix equation is the combination of Eq. (7.2.5) and Eq. (7.2.6).
They are

{P{Q} ={p} on I
[(F1{Q}={E} onT,.

An especially important case in practical problems is the existence of free
potential conductors. For instance, when an aeroplane flies acorss a charged
cloud, the induced potential on the plane is unknown. In this case, the right
hand side of Eq. (7.2.5) is an unknown constant. But it is obvious that the total

(7.2.9)

! In a 2-D case, the element of F consists of two components, hence the vector matrix is denoted
by [F].
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induced charge on the conductor surface is zero, i.e.

Thus the sum of the simulated charges of this electrode must be zero. Hence an
additional equation is required which is

M
Y, Q=0 (7.2.10)
k=1

where Q, are the discrete simulated charges within the conductor with free
potentials. This equation combined with Eq. (7.2.5) compensates the missing
potential value in (7.2.5). The matrix equations for a free boundary problem are
then extended to

{;{gk}:éw}k =1,...,M (7.2.11)

where M is the total number of conductors with free potentials.

7.2.1.4 Matrix form of Poisson’s equation

The three cases discussed have yielded equivalent matrix equations of a
Laplacian problem. If there are space charges in a linear medium and the
distribution of the space charges is known, by using the principle of superposi-
tion, the matrix equation is

P{0} + P,{Q,} = {¢} (7.2.12)

where {Q} is column vector of space charges and P; is potential coefficient
related to the space charges. As P, and {Q,} are known, they can be multiplied
and moved to the RHS of Eq. (7.2.12). It is important that matrix P should not
be enlarged whether the space charge exists or not. The charge simulation
method is convenient here.

"leader channel”
. ) simulated electrode

/

[
L T//
Fig. 7.2.2. Physical model of a breakdown discharge
=0 in a rod-plane gap
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If the space charge distribution is not known, a reasonable physical model
may be used. For example simulating a creepage discharge path when break-
down occurs in a long air gap, one could assume a constant potential gradient
along the channel and the leading creepage path will then be considered as
a quasi-electrode is shown in Fig. 7.2.2 by the line of dashes.

Once the contour points at the boundary of the electrode and quasi-
electrode (with different potentials) are selected, then the matrix equation is
established. Simulated charges having an identical number as the contour points
are arranged at the electrode and quasi-electrode. Thus the matrix size of the
potential coefficient P is enlarged.

7.2.3 Matrix equation in piece-wise homogeneous dielectrics

Figure 7.2.3 shows an axisymmetric problem with different dielectrics, each one
being uniform. The region abcda is the cross section of a dielectric disk with
a permittivity of g,. The permittivity of the other space is ¢g,.

Due to the uniform polarization of the homogeneous dielectric, there are no
volume polarization charges inside the dielectric, only surface polarization
charges exist on the interface. In the charge simulation method, the surface
polarization charges are considered as a single layer source. This causes the
discontinuity of the field strength but the tangential component of the field
strength and therefore the potential on both sides of the dielectrics are
continuous. Based on the principle of CSM, the surface charge of the elec-
trode is simulated by Q(j),j =1, ..., N. The polarization charge of the inter-
face of different dielectrics (the contour abcd) is simulated by Q,(}))
(j=N+1,...,N+N,) and Q,(j) (j=N+N,+1,...,N+N,+n,) on
both sides of the region with permittivities ¢, and ¢,, respectively. This is because
to calculate the field in the region with permittivity ¢,, the simulated charges
must be placed outside this region, hence the simulated charges Q(j) and Q,(J)
are used to calculate the field in the region with permittivity ¢,. Similarly, Q(j)
and Q,(j) are used to calculate the field in the region with permittivity ¢,. N, N,
and N, are the total number of simulated charges within the conductor and on
both sides of the interface. If there are N charges within the electrode, then the
matching points on the electrode surface are also N. If the matching points on

Electrode

=0 Fig. 7.2.3. Simulated charges in multi-dielectrics
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the interface are N,, then the simulated charges on both sides near the interface
are 2N,. The total unknown charges, N + 2N,, are solved by the identical
equations of N + 2N,. To ensure the interfacial boundary conditions are satis-
fied, 2N, equations are obtained by the following conditions:

®a = Pp
(17.2.13)

a(Pa a(pb
Ep

““on P on’

Here the subscripts ¢ and b indicate different regions with different permittivities
of ¢, and ¢,, and n indicates the normal direction of the interface. Therefore,
sufficient boundary conditions are provided to solve the unknown simulated
charges. These equations are:

N+Np

Z piiQN)+ Y piQ()=¢: (i=12...,N)
J=N+1
N N+Ngy N+Ng+Np
Z .1) + Z qua(]) Z qu(]) + Z qub(])
j=N+1 =1 JEN+Na+1
(7.2.14)
N N+Ng
[ Z ﬂ;)n .I) + Z (ﬁj)n Qa(])jl
j=1 j=N+1
N+Na+Np
= Ea[ Z (ﬁj)n Q(j) + Z (.f;'j)n Qb(])] .
j=1 J=N+Ng+1

To calculate the potential in either region a or b, the permittivity of material is
€9, hence the second equation of (7.2.14) is simplified to:

N+Na N+Na+Np
Z Pian(j) - Z pijQs(j)=0. (7.2.15)
j=N+1 J=EN+Na+1

A typical example is presented in reference [12]. It shows a dielectric sphere
with permittivity ¢, placed in an uniform electric field within a material with
permittivity of ¢,. When ¢,/¢, < 6, the error of the field strength is less than
0.1%. The drawback of this method is, that in case of more than two different
materials, the number of simultaneous equations is increased rapidly, especially
in the case of complicated shapes of the dielectric interface. In the latter case,
more computer time is required. The surface charge simulation method
(Chap. 8) is more convenient than the charge simulation method.

7.3 Commonly used simulated charges

The most commonly used simulated charges are point, line and ring charges.
Combining these charges, a great number of different shapes of electrodes can be
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simulated. In some special cases, elliptic cylindrical or ellipsoidal surface charges
can be used as simulated charges. The computation formulae of point, line, ring
and elliptic cylinder charges are given in this section. Formulas for a disk charge
and other shapes can be found in references [14] and [13], respectively.

As many engineering problems are axisymmetric, cylindrical coordinates are
used to express the commonly used formulations. The influence of the ground or
any other grounded conductor plane is shown by images. To make the contents
simple only the formulation for calculating the potentials are listed in the
contents. The formulations of the field strengths are given in Appendices
A7.1-A.74.

7.3.1 Point charge

In axisymmetric problems, a point charge Q is located at point (r’, z') and its
image — Q is located at point (', —z’), as shown in Fig. 7.3.1.
The potential at any point P(r, z) is expressed as:

=£[ 1 - 1 ] 7.3.1
Pp 4ne \/(r — )+ (z—2) \/(r Yt t2) . (7.3.1)

If the source point and the field point are both located at the axis, i.e. r =r' =0,
then Eq. (7.3.1) is simplified as:

ol 1 1
== - 73.2
or drne ||z =2 |z+ 72| ( )

For a 3-D case,

Qp = g F :
dre | Jx —x)+(y—y)P +(z—2)?

1
B \/(x —x)? + (y— Y2 +(z+ z’)z]

where (x, y, z) and (x', y’, z’) are the field point and source point, respectively.

. P(r,z)

Q(.r’,Z')

Q@ 2)

Fig. 7.3.1. A point charge Q and its image —Q
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Z

-Zo

- Zl

Fig. 7.3.2. A line charge and its image

7.3.2 Line charge

A line charge of length [ lies on the z-axis of cylindrical coordinates shown in
Fig. 7.3.2.

Assume the density of the line charge is AC/m. Then the potential at any
point P(r, z) is

A 21—Z+C 20+Z+F
=—11 1 . 7.33
or 47te[nzo—z+D+nzl+z+G:l (7:33)
If | - oo, then
A F
<pp=ilnﬂ:!—— (7.3.4)

4ne  zo—z+ D’
The formulations of the constants C, D, F, G are listed in Appendix A.7.2

7.3.3 Ring charge

A filamentary circular loop with radius r, carrying a uniform charge density
A C/m lies on the plane z = 0 shown in Fig. 7.3.3.
The potential at any point P(r, z) is

1 [Zdl
z
P(r,z)
|
R
I
0 r
To

Fig. 7.3.3. A ring charge
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where
R? = [(rocosa — r)* + (rosina)? + z2] (7.3.6)

and C is a constant, it is determined by the position of the zero reference of the
potential. Then the final result is

21 Kk
_ 4%8 2 [%] +C (1.3.7)
where
n/2
do
Kl = J J1— Ksin0 729
0
2 _ 4rry
T (r 4 ro)? + 22
B*=(ro + 1)+ 2 (7.3.9)
20=n—a.

K (k) is a complete elliptic integral of the first kind.
Consider now, that both the ring charge and its image are as shown in
Fig. 7.3.4 and the zero potential is chosen on the symmetrical plane, then:

_02 [_K(_"l) _ _K("z)] (7.3.10)
4nem| a o
where

ay=[(r+ro)?+ (@ —2)1"% oy =[(r+ro)* + (z + 20)*]"?

o ky = 2o (73.11)

ki
oy o,

The approximate formulae for calculating elliptic integrals are given in
Appendix A.7.5 [15].

z

s,
o

Fig. 7.3.4. A ring charge and its image
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7.3.4 Charged elliptic cylinder

A charged elliptic cylinder is shown in Fig. 7.3.5(a).
The expansion form of Laplace’s equation in elliptic cylindrical coordinates
(Fig. 7.3.5(b)) is [16]

_ 1 2 2 0*¢
Ve ~ f*(cos?n — cos® ) l: +a¢2 + ]—0- (7.3.12)

If the cylinder is infinitely long and the surface of the ellipse is an equipotential
surface, then the potential ¢ is independent of the variables z and the .
Equation (7.3.12) is simplified to

®

20 7.3.13

dr’z ( )
then

@=An+B. (7.3.14)
Let

n="mn., $=Uo

n=mnm, ¢=0
consequently,

A
= (’7—’7b)— (rr—m,) (7.3.15)
Na — Np

According to the coordinate transformations between Cartesian coordinates

Fig. 7.3.5a,b. An elliptic cylinder in Cartesian coordinates (x, y,z) and in elliptic cylindrical
coordinates (1, ¥, z)



226 7 Charge simulation method

and the elliptic cylindrical coordinates

y = fsinhn siny (7.3.16)
z2=2Z

{ x = fcoshn cosy

the following equation is obtained

X 2 y 2
(f coshn) " ( fsinhr,> =1 (7.3.17)

where f is the focal length of the ellipse
sinhy — \/(xz +y =N+ U = PP 4
2f2
n=sinh ™ 'A=In(4+ JA4A*+1). (7.3.18)

A

Let

Ri=(x—fP+y* Ri=x+f)P+y* s=%R+Ry)
then

n=In[iG+/s*—fH] (7.3.19)
hence

¢ =K-— %F- In[4(s+ (s> =fH)YH)] (7.3.20)

where K is a constant depending on the reference. Consider that f2 = a? — b2, if
a=b, ie. f=0, Eq. (7.3.20) represents the potential produced by a charged
cylinder of infinite length. If a = b =0, Eq. (7.3.20) represents the potential
induced by a charged plate with a width of 2a and zero thickness which is
reduced by an elliptic cylinder. The thin plate is used to simulate the field
produced by the conductors with sharp edges.

7.4 Applications of the charge simulation method

General procedures of CSM are shown in Fig. 7.4.1.

In the fourth step of the diagram, Gauss’s elimination method is used to
solve the simultaneous equations. This is due to the fact that the coefficient
matrix of the simulated charges is a full and asymmetric matrix.

According to the method used, some possible problems must be considered.
(1) Is the solution of the simulated charges {Q} stable?

In CSM, the matrix of the simulated charge equations is easy to be ill-
conditioned. For example, if the number of the simulated charges is too large or
the relative distance between the simulated charges and the matching points is
too small, then the coefficients of two parallel rows or columns of the matrix are
very close. Thus the matrix could be ill-conditioned. If the matrix is ill-condi-
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Input the electrode construction
and boundary conditions

I

Assume the positions of simulated|
charges and matching points
T

1
[ Compute the coefficient matrix |

Adjust the number or positions, [Solve the simultaneous equations]

of the simulation charges
Is the solution reliable?

| Calculate the field distribution |

Fig. 7.4.1. Flow-chart of CSM

tioned then the solution is not the real solution of the problem. A simple way to
check this possibility is by giving a small perturbation to the matrix. If the
solution remains stable then it is an acceptable solution. Otherwise the positions
or the number of the simulated charges have to be adjusted.

(2) Does the solution matrix {Q} satisfy the whole boundary?

As the positions of the simulated charges are determined arbitrarily and the
number of matching points are very limited compared with a continuous
boundary it is possible that the solution matrix {Q} does not match the whole
boundary condition very well. In this case, the initial positions of the simulated
charges or the matching points on the boundaries have to be adjusted or the
number of the discretized charges have to be increased in such a way that the
given boundary conditions are satisfied. A measure of the accuracy of the results
may be shown as the potential error on the surface of the electrode or the
continuity condition of the tangential component of the field strength on the
interface of different dielectrics.

(3) In order to improve the accuracy of the solution or to overcome the slight
ill-conditioned of the matrix, double precision computation is advised.

Once an adequate number of simulated charges have been selected the field
distribution in the whole domain is computed by using analytical formulations

®; = Z piiQ; (7.4.1)
=1

E =) (foi Qi+ £,5050) (7.4.2)
=1

where the bold characters ‘i’ and ‘j” are unit vectors of the x and y axes.
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Example 7.4.1. Find the equivalent simulated charges of the rod-plane elec-
trodes, shown in Fig. 7.2.1. Assume the radius of the cylindrical rod is 1 cm.

Solution. The simulated model is shown in Fig. 7.4.2. The influence of the
ground is replaced by an image. The surface charge density is larger on the top of
the rod-and becomes smaller when the surface of the rod is far away from the
ground. To simulate this field, a point charge is assumed at the centre of the
hemi-sphere of the rod and a set of line charges are placed along the axis of the
rod. The starting point of these line charges with half infinite length and different
densities are located at different positions as the symbol ‘.’ shows in Fig. 7.4.2.

Assume the starting positions of line charges are z; and the charge densities
are 4;(j=1,2,..., N — 1). The matching points on the conductor surface are
indicated by the symbol ‘ x’. Then the simulated charge equations are expressed
as:

Ay
P11 P12 --- Pin 1 (‘31
2
1.721 D22 ... I?zn y _ <{’z (1.4.3)
) : j'n—l (P
DPn1t pnn QO n
where
(z; + z:) + Jr¥ + (z; + z:)? <i=l,...,n >
pij=1In .
G—z)+Jri+—z)p U=L...,n—1
! : i=1 n) (7.4.4)
Din = —-—— =1..., 4.
Jrit -z Jri+ .+ n)?
z
¢=Uo
Prz)  \B Z
¢
Te=0 0 | -
//’—\\\ =Zy

Fig. 7.4.2. Simulated model of a rod-plane gap
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and r; and z; are the coordinates of matching points, z, is the position of point
charge. These two formulae include the influence of the ground by considering
the image charges. The results of (7.4.3) multiplying the factor 4ng, is the real
value of the simulated charges. The calculation results are shown in Tables 7.4.1
and 74.2.

Examining Table 7.4.1, one should note that:

(1) The line charges are alternatively ‘positive’ and ‘negative’ so that several
semi-infinite line charges are equivalent to a line source having non-uniform
charge density.

(2) The magnitudes of the simulated charges are changing as well as the
different gap lengths between the rod and the grounded plane.

Table 7.4.2 shows that if the positions of the simulated charges are fixed but
the gap length between the rod-plane is changed, then the accuracy is different.
For example, as the ratio G/R is decreased, the maximum potential error on the
surface of the rod is increased. This indicates that for different dimensions of the
electrode the positions of the simulated charges should be changed. Desired
accuracy could be obtained if a reasonable number of simulated charges and
matching points are selected.

It is imperative that the matching points must cover the region of interest.
Otherwise the simulation is meaningless.

Example 7.4.2. A charged sphere is close to a grounded plane as shown in
Fig. 7.4.3, find the capacitance of this system.

Solution. Eight ring charges are located on the fictitious sphere surface with
radius R, and two point charges are placed on the two poles of the same sphere.
Both the simulated ring and point charges are indicated by “—+ and ‘.’ in
Fig. 7.4.3. The matching points on the conductor surface are indicated by *x’.
After running the program written according to the diagram shown ir Fig. 7.4.1,
the amplitude of each simulated charge is obtained. Assume U, = 1V, then the
capacitance is the summation of these charges, i.e.

10
C= 47!80 Z Q“
i=1
— 4mgy(—1.06647 + 1.04015 — 0.43989 + 0.36833 + 0.43692
—0.49344 + 1.13355 — 1.10882 + 0.60225 + 0.64069)
= 4neg x (1.11127) = 1.23587pf

The relative error is 9.39 x 1072 % (the accurate result is calculated by image
method). The relative errors of the potential and the field strength along the
conductor sphere are shown in Fig. 7.4.4.

Example 7.4.3. Determine the breakdown voltage of a sphere-plane gap under
impulse voltage.
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Table 7.4.2. The calculated potential value along the electrode surface

Gap length (G/R) 50 20.0 200.0

0.99999997 1.00000000  1.00000000
0.99999423 0.99999529  0.99999927

Potential values 0.99998317 0.99998642  0.99998962
on half hemi- 0.99997959 0.99998449  0.99998791
sphere (V) 0.99999078 0.99999409  0.99999559
(each point 1.00000151 0.99999919  0.99999947
0.2 radian apart) 0.99997106 099996412  0.99997186

0.99989623 0.99989541  0.99991749
max. error (%) 0.01 0.011 0.008

0.99999997 1.00000000  1.00000000
Potential values 1.00547751 1.00588382  1.00504270
on rod (V) 0.99999995 0.99999998  1.00000070
(The distance between 1.02159402 1.01411101 1.00991230
each point 1.02647452 1.01733291 1.01229780
is 2cm) 0.99543609 099673632  0.99826051

0.99140996 099415117  0.99631070

0.99999991 1.00000000  1.00000000

1.01062371 1.00722890  1.00459242

1.02003660 1.01363741 1.00865760
Max. error'(%) 2.6 1.7 1.2

@ X —— contour point
~-— — ring charge

point charge

{ $=U,

Fig. 7.4.3. Simulated charges in a charged
¢=0 sphere

Solution. When the voltage is applied to the sphere, the initial field strength is
calculated by CSM. Assume that an electron exists at one point, according to the
theorem of air-discharge, the equivalent number of electrons K is determined by:

Xe

K = e =™ (7.4.5)

where a represents the coefficient of effective ionization. It is dependent on the
field strength E(ax/P = Ae™BE/™). x;, x, are the starting and ending positions of

G
the ionization, for instance in Fig. 7.4.5, K; = eI 0 %% Assume a set of ring
charges is used to simulate the space charges, as shown in Fig. 7.4.5, the field
strength is calculated repetitively. The results coincide well with the measured
value.
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When the number of electrons K at the end of the electron avalanche, e.g. the
point W is larger than a given number K, the self-sustained discharge occurs.,
Then the breakdown voltage is obtained. The results are presented in
Table 7.4.3 [17].

A -
9,

1.0 AP

Al e 1
0 50 100 150 w g
~1.0f

Fig. 7.4.4. Relative errors of potential and field strength distribution along the half sphere

¢=Uo p

w
oG X

————

0

- Fig. 7.4.5. Physical model of a breakdown discharge
=0 between the sphere-plane gap

v 7 77777777777

Table 7.4.3. The breakdown voltage of the sphere-plane gap

Kind of gas  Gap distance Radius of sphere Calculated value Measured value
(cm) (cm) (kV) (kV)

Air 2.0 3.0 589 59.0

SF, 2.0 75 158.0 169.1

7.5 Coordinate transformations

In order to simplify computation, coordinate transformations are usually used
in numerical calculation. Remember in finite element method, transformations
between global and local coordinates are used so that the same formula is used
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to calculate the coefficients of every element matrix. In CSM, to simulate the
complicated shape of the boundary, many line and ring charges are placed in
different positions and ways. To use the identical formulation to the one in
Egs. (7.3.1) to (7.3.15), transformation of the coordinates is required.

7.5.1 Transformation matrix

First, a two-dimensional case as shown in Fig. 7.5.1 is considered.

The coordinates of an arbitrary point P in x' — 0" — )’ plane are x’ and y/,
and x and y in the xOy plane. If the axes of x" and )" are rotated by angle « in
clockwise direction and move it parallel to the x and y axes, then these two
coordiante systems are coincident. Hence, the relationship between (x, y) and

(x',y) is

{x:}=T{x_x°} or {x—x°}=T" {x} (75.1)
y Y —=JYo Yy—JYo y
where « is the angle between x-axis and x'-axis in the xOy plane,
cos i
T= [ x Sm“} (15.2)

—sina  cosa

and T is a transformation matrix. It is a skewed' matrix. This relationship can
be extended to the 3-dimensional case:

’

X X — X
Yy 3y=T<y—yo (7.5.3)
4 Z -2z
where
' cosa cos f8 sina cosf sinf
T =| —sina cosa 0 (7.5.4)
—cosasinff —sinasinf cosf

X

Fig. 7.5.1. Coordinate transformations

' A skewed matrix has elements which are symmetrical about the principal diagonal, but are
opposite in sign.
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Here, f is the angle between the x-axis and the x’-axis in the x0z plane. Equation
(7.5.3) can also be expressed in an inverted form by [T] .

It should be noted that the transformation matrix is an orthogonal matrix.
This is because

1 _ T _ cosa —sino
T =T [sina cosa] (7.5.3)
1 0
TT' = [0 1:|=1 (7.5.6)

Hence the inverse matrix T ! is easy to be obtained.

7.5.2 Inverse transformation of the field strength

Figure 7.5.2 shows that a curved electrode surface is simulated by three short
line charges. The length of each line charge is IV, 1'%, [®) respectively. Due to
coordinate transformations, each line charge is located on the axis of y*), y?),

y3), therefore the formulation given in Sect. 7.3.2 can be used directly, i.e.

(p“’ _ i(x_) In jo _ y(i) + \/(x“")z + (1(1) _ y(i))Z + (Z(i))z
4re —y"’—}—\/(x“’)z +(y(n))2 +(z('))2

(i=1,23). (1.5.7)

Notice that the coordinates of x, y and z must be transferred to the coordinates

of x, y@ and z'. Then the potential at any point is given by the superposition of

1 2 3)
oD, o) o) ie.

3
o=y oY (7.5.8)
i=1

However, the field strength is the derivative of

FYPCIN O AU
ax@* gy 370 -

(3)
y
d(x,y,z) @
y(2)
2)
é)(] )( X(J)

x@
x®

0 X Fig. 7.5.2. The application of coordinate transformations
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They are calculated in different coordinates; the total results of the field strength
must be added vectorally in the same coordinates, i.e.

E, EW E®
E. \=TWMOT E;,” +T12)T E(yz)
Ey E® E®
EY
+ TOTEP (7.5.9)
EY

Here the superscript represents the number of different coordinates such as
1, 2, 3 shown in Fig. 7.5.2.

7.6 Optimized charge simulation method (OCSM)

It was stated in Sect. 7.2 that if the number of unknown fictitious simulated
charges is N, then the number of matching points on the boundaries has to be
the same number N in order to ensure the matrix is of the order N x N and
a unique solution is obtained. If high accuracy is required, the number of
matching points has a large value, thus the size of the matrix equation becomes
large. The consequence is that more computer storage and computing time are
required. The more serious problem is that the matrix might be ill-conditioned.
If the number of matching points are increased, but the simulated charges are not
increased correspondingly, then superparametric equations are obtained. This
means that the matrix equation has the order of M x N (M > N). The solution
method used for superparametric equations is the one which finds the minimizer of
the matrix equation. This method will be discussed in Chap. 11. Another problem
in using CSM is that the positions of the simulated charges are obtained by
experience. If the shape of the boundary is simple, the simulated charges are
easily placed and a good result is obtained. If the shape of boundary is
complicated, the locations of the simulated charges are difficult to find. It is
desirable to determine the suitable positions and amplitudes of the simulated
charges automatically. This method is called the optimized charge simulation
method (OCSM). It was provided by Yializes in 1978 [18]. This section concen-
trates on discussing this topic.

7.6.1 Objective function

The purpose of OCSM is to find the equivalent lumped sources which best
replace the distributed surface charges. This means that the error between the
real potential ¢, and the simulated value ¢, (which is calculated by the
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simulated charges), should be as small as possible. If the errors are zero, then the
calculated value ¢, is the solution of the problem, e.g. if

(Pai'-(l)ci=0 i=12,...,0 (761)

the simulation is completely successful. Actually it is impossible. Usually the
average mean square error F of the potentials along the whole boundary
approaching zero is considered as a criterion, i.e.

1
F(X)=§J((,o,,—<pc)2 ds—0 (7.6.2)

If
F(X) = min (7.6.3)

it means that the simulated potentials along the whole surface satisfy the
governing equation and the given boundary conditions. By combining
Eq. (7.6.2) and (7.6.3) and approximating the resultant equation in a discretized
form, Eq. (7.6.3) leads to:

Z (pm (Pa = min (764)

where M is the number of discretization points along the boundary. The
function F is called the objective function, X is a column vector of design
variables of the objective function.

According to Eq. (7.2.5)

@i = Z pi; Q; (7.6.5)

after the type and the number of the simulated charges are chosen, the design
variables of Eq. (7.6.4) could be either the positions or the amplitudes of the
simulated charges or both of them. The positions of the matching points can
also be chosen as design variables. Usually, the number of the simulated charges
is less than the number of the matching points and the influence of the simulated
charges is stronger than the influence of the matching points. Consequently, the
positions or both the positions and the amplitudes of the simulated charges are
chosen as the design variables.

In order to have a valid substitution, simulated charges must be located
outside the region of interest. Hence Eq. (7.6.4) must be completed by the
constrained conditions as follows

{F(X)=Z((pa,-——(pc,~)2=min i=1,...,M
S

r) <g(r) j=1,...,N . (7.6.6)

The second equation of Eq. (7.6.6) is a constrained condition of the objective
function F(X), it limits the positions of the simulated charges to be inside
a desired region. Here r is the position vector of the simulated charges. Therefore
the optimized charge simulation method is a constrained optimization problem
(see Chap. 11).
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7.6.2 Transformation of constrained conditions

The solution of the constrained optimization problem is more complex than in
unconstrained optimization. In the charge simulation method, the constrained
condition is that the simulated charges must be placed inside the conductors or
outside the region under consideration. Hence a simple transformation function
such as a sinusoidal function, which has the properties of —1 <sinx <1 and
0 < sin?x < 1 can be used to transform the constrained optimization problem into
an unconstrained optimization problem.

For example, there is a charged spherical conductor over a grounded plane,
as shown in Fig. 7.7.1. Two point charges Q,, Q, are used to simulate the surface
charge of the sphere. The design variables of the objective function are positions
and magnitudes of these two point charges. They are H,, H, and Q,, Q,. If
a new variable X is introduced and used to express H, H, and Q,, Q,, ie.

H, = H + 09R sinx,
H, = H + 09R sinx,
0, = K(sinx)
0, = K(sinx,)

(7.6.7)

then the design variables of the objective function F are x;, x;, x3 and x4, 1.€.

F(X)=

(X} ={x1 x3 x3 x4}7

where M is the number of matching points on the conductor surface. Equation
(7.6.8) is an unconstrained optimization problem, the positions of the simulated
charges are limited to be inside the sphere by the first two equations of
Eq. (7.6.7). In Eq. (7.6.7), K is an arbitrary constant.

((pai - (pci)z = min

"™Mx

(1.6.8)

7.6.3 Examples

Example 7.6.1. Calculate the capacitance between the sphere-plate electrode as
given in Example 7.4.2 by OCSM.

Solution. In Fig. 7.6.1, assume that H = 5cm, R = 1cm, and Uy, = 1 V. The
influence of the grounded plane is taken into account by the symmetric image
charges —Q, and —Q,, the potential of the arbitrary point on the spherical
surface is

o(r 2)=LX[Q ( : + 1 )
’ 4, ! \/r2+(z—H1)2 \ﬁ‘2+(Z+H1)2

1 1
+ . 769
Q2<\/r2+(z—H2)2+\/r2+(z+H2)2):| (7.69)
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$=0 Fig. 7.6.1. An example of OCSM

Substitution of Eq. (7.6.9) and (7.6.7) into Eq. (7.6.8) yields the formulation to
calculate the objective function F(X). The gradient of this objective function
F(X) can be expressed in analytical form. If the initial value of the design
variable is assumed as

(X} ={0012 —02 005 001}7

when M =25, after 6 iterations the objective function F decreases to
1.43842 x 1075, In this case

H, = 5.016549 cm
H, = 4.821025 cm

0, = 4neo x 1.074916 C
0, = 4ngo x 0.036231C .

Based on the solution of eqn. (7.6.10), the capacitance of this system is:
C=0Q,+Q,=1235733 pf.

In comparison with the classical result, the relative error is —8.02x 1072 %.
During the process of optimization, an unconstrained optimization method,
called DEP method is used. Details of the DFP method are given in Chap. 11.

(7.6.10)

Example 7.6.2. Field distribution of a transformer bushing.

Solution. A simplified figure of a transformer bushing is shown in Fig. 7.6.2 by
the heavy solid line.

Suppose that the potential along the bushing decreases linearly. The grouping of
the simulated charges in each part of this problem is shown in Table 7.6.1. There
are 96 simulated charges and 172 design variables.

The objective function F is

M N1 Ni1+N2 2 M
F = Z [: Y (pih Qi+ Z (pi.j)r Q; — (pai:l =Y (i)} ((16.11)
i=1 L j=1 =N+ i=1

where N, is the number of line charges, N, is the number of ring charges. (p; ;)
and (p;, ;), are potential coefficients of line and ring charges, respectively. ¢,; is
the known potential on the boundary. The derivative of the objective function (it
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Table 7.6.1. The grouping of simulated charges and matching points

Component Contour points Simulated charges Design variables
Lead 41 20 line charges 20
Electrode 30 14 ring charges 28
Bushing 41 21 ring charges 42
Grounded cylinder 81 41 ring charges 82

is needed in the process of optimization) can be obtained analytically

M
G=VF=-2 Z fi(Vf) (7.6.12)
Ni+N:
fi= Z PnQi+ Y (Pijh Q= Pui = Pei — Pui (1.6.13)
j=N+1

Using Egs. (7.3.4) and (7.3.10), a set of partial derivative terms is obtained.
0(,0; LM nzl‘j—z,~+C
—47I8‘~=1 Zo'j—zl"’rD,

CQ; 1 M K(k)
GQ,J 2nte & oy

00p; _ Q..j il (zi — z,.;) E(k)
dz,; 2n*e /5 a, B2

0pi _ 0y M Di-riit+@—z )P 1ER - BKE) g6y

)3

=13 2
or,; Ancerg; 5 o, B

The meaning of each constant in Eq. (7.6.14) is the same as that defined in
Sects. 7.3.2 and 7.3.3. In eq. (7.6.11), the ring charges are constrained inside the
electrode by the transformation function

RJ = Re Sinxj' (7615)

where R, is the radius of the electrode.

If all the positions and the values of the simulated charges are chosen as the
design variables, and all the initial values of these variables are assumed to be
zero, the initial value of the objective function is 0.81 x 10°. When the objective
function decrease to 78.09 the errors on the 180 contour points are less than 1%.
If the iteration process is continuous, the value of the objective function will be
decreased continuously. If the iteration is stopped, the potential distribution
around the electrode is shown in Fig. 7.6.2.
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In this case, because the number of design variables are very large,
Cholesky’s decomposition (see Chap. 11) is introduced to improve the DFP
program. The computer program called VAO9A [19] is used.

7.7 Error analysis in the charge simulation method

7.7.1 Properties of the errors

If a Laplacian problem with Dirichlet boundary conditions

Viep=0
pls=f(s) (7.7.1)
is solved by CSM, the solution ¢.(r) must satisfy Laplace’s equation, i.e.
Vip.=0. (7.7.2)
Let e,(r) represent the potential error, i.e.
eo(r) = 0,() — . (r) (17.3)

where ¢,(r) is the accurate solution of Eq. (7.7.1). After taking the gradient and
divergence operation of both sides of Eq. (7.7.3), one obtains:

V.-Ve,(r) =V -V[p,r) — olr)] (7.7.4)
Substitution of Eq. (7.7.1) and (7.7.2) into Eq. (7.7.4), yields
Vie,(r)=0. (7.7.5)

This equation demonstrates that the error function of the potential still satisfies
Laplace’s equation, hence the error function is a harmonic function. It has the
following properties:

(a) The maximum or minimum value always appears on the boundaries.
(b) The derivative of any order of the harmonic function exists and is
continuous.

Thus the error distribution is stable and smooth. Furthermore, consider that
the fundamental solution of two-dimensional or three-dimensional Laplace’s
equations are In 1/r or 1/4nr, respectively. Since the error distribution in region
Q varies as the function of In 1/r or 1/r. Consequently the error inside the region
satisfies the requirement if the errors on the boundaries are controlled.

It is well known that the field strength of a static and quasi-static electric
field satisfies Laplace’s equation

V2E=0. (1.7.6)

The properties of each component of Eq. (7.7.6) in Cartesian coordinates are
similar to the error properties of the potential.
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According to Eq. (7.7.5), if the error distribution is known along the
boundary, the error function can be calculated for the whole domain [20].

7.7.2  Error distribution pattern along the electrode contour

On matching boundaries, the maximum error appears in the middle between two
matching points. The reason is that the potential error at matching points is zero.
For a smooth contour, the error distribution along the boundary could be
dependent on

e =e,sin’nd (7.7.7)
or
e =e,sinnd (7.7.8)

as shown in Fig. 7.7.1, where n is the number of discretization points, d is the
distance between two matching points and e,, is the maximum error in each
period. This result has been verified by obtaining the error distribution of the
sphere-plane electrode as shown in Fig. 7.4.4. This figure also shows that the
error of the potential is smaller than the error of the field strength. Let us define
an average error ¢,, in a mean root square sense, €.g.

Car = —l—fez (7.7.9)
av — Mi=1 i <

where e; are relative errors at every point. The average error of the potentials
and field intensities along a half circular path are (e,),, = 548 x 107¢ and
(€g)ay = 25.52 x 1075, respectively. The ratio of (eg),,/(€,)ay is 4.65. It shows that
the error of field strength is several times that of the error of potentials. These
results are obtained when the radius of the ring charges are various from
n(R./R) = 0.2-0.5. If n = 0.8, and thc matching points are arranged as before
and the errors of the potentials and field strengths increase rapidly. The max-
imum error of the potential is 2.983 x 103, the maximum error of the field
strength is 2.36 x 10~ 2. In general, it is possible that the error of field strength is 10
times that of the potential [5].

‘/\ AN M
i S N O]

a

Fig. 7.7.1a,b. Two different patterns of error distribution
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7.7.3 Factors influencing the errors

The number and position of simulated charges have a significant influence on the
accuracy, as mentioned in Sect. 7.7.2. The positions of the matching points also play
an important role. In Example 7.4.2, 8 ring charges are arranged on a circle with
radius R, = 0.2 R. If the matching points are not located on the same radial line
as the simulated charges (see Fig. (7.7.2(a)), then the potential error distribution
is shown by curve ‘a’ in Fig. 7.7.3. The largest errors appear at the point M and
A. The potential error at two poles, N and S, is zero, as they are matching points.
If the matching points and the simulated charges are located on the same radial

X — contour point
« — source point

Fig. 7.7.3. Potential error distribution versus the different arrangement of the matching points
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lines as shown in Fig. 7.7.2(b), the error distribution is shown by curve ‘b’ in
Fig. 7.7.3. The errors along the semicircle are very small except in the region
near the two poles. The reason is that these points are out of the range of the
matching points. If the matching points are not located on the same radial line
as the simulated charges, as shown in Fig. 7.7.2(c), the error distribution is
pictured by curve ‘¢’ in Fig. 7.7.3. The error is larger than in the case of
Fig. 7.7.2(b).

Based on the above numerical results, usually the simulation charges and the
matching points are placed on the same orthogonal line of the electrode
contour, and usually the factor F is selected between 1.2 to 2.5'. In Example
7.4.2, when R, = 0.2R and R, = 0.5R, the factor Fis 2.3 and 1.4. If R, = 0.8, the
factor F is 0.57. The factor F is defined as

0A
F = B (7.7.10)
where OA is the distance between the simulated charge and the contour point,
and AB is the distance between two adjacent matching points as shown in
Fig. 7.7.4. Reference [12] indicates that the value of factor F is influenced by the
number of simulated charges. If the number of simulated charges is large, the
factor F should be higher.

For OCSM, the error distribution of the potential and the field strength of
the sphere-plane electrodes are shown in Fig. 7.7.5. This case illustrates that the
error distribution is more even than the one obtained from the general CSM. In
Fig. 7.7.5, another important phenomena is that the positions of the maximum
error of the potential and field strength are almost at the same place. The ratio of
the average error of the field strength and the potential is:

(eg)ay 8.507x107*

€~ 2384x 1075~ 268

It is smaller than the ratio obtained by using the conventional charge simulation
method.

o Fig. 7.7.4 Relative positions of matching points and
0 simulated charges

' This value depends upon the geometry; Reference [12] suggests from 0.2-1.5.
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7.8 Summary

CSM is efficient for calculating the electric field with fairly simple programs and
little computing time. The surface charges of the electrodes and the polarization
charges on the interfuce of different dielectrics are replaced by a set of discrete
simulated charges. The types and positions of the simulated charges are predeter-
mined. The mangitudes of these equivalent charges are determined by the
boundary conditions on the collocation points of the boundary. Hence CSM is
one of the collocation methods and can be classified as an equivalent source
method.
The main advantages of this method are:

(1) It can be used to solve open boundary problems and is easily applied to
three-dimensional problems.

(2) The solution domain does not need to be discretized, the troublesome of
pre- and post-data processing is avoided. It is easy to calculate the potential and
the field strength at any point of interest.

(3) Accurate results are obtained, as there is no truncation error. Higher
accuracy is obtained in the field strength especially on the electrode surface than
with FDM and FEM as no approximate numerical derivative is computed.
If the continuous condition of the tangential component of the electric
intensity of interfacial surface is introduced, the accuracy will be further
increased [21].

(4) Compared to other boundary methods, such as the boundary element
method, numerical integration and singularization of the integrand are not
required, so fast economical calculation is obtained. Reference [22] gives com-
parison of a CSM and BEM, one example shows that the CPU time of BEM is
5.6 times than that of CSM.

(5) The distinctive advantage of CSM is that the estimation of error is
simple. Only the errors on the boundaries need to be examined.

(6) The method can be extended to solve static and quasi-static magnetic
field problems by using the equivalent current source [23].

A comparison between CSM, FEM, and FDM to solve static electric field
problems is presented in reference [24].

One disadvantage of CSM is that errors are dependent on the location of the
simulation charges especially for problems with a complicated shape. Except for
OCSM, an additional charge system [25] is suggested to improve accuracy. To
capitalize on the advantages of various methods, a combination of FEM and
CSM may be applied effectively in some cases [26].
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Appendix 7.1 Formulations for a point charge

The field strength at any point P(r, z) produced by a point charge is:

0o Qr—r r—r

E =— >, _47z5[ . 3 :I (A.7.1.1)
0o Q|z—-Z z-1Z

E. = _5_47[8[: " 3 :I (A.7.1.2)

a=[(r—r)2+(@-2)7"? B=[r—r)+(@z+2)2]*.

Ifr=r =0, then

E =0 (A7.1.3)
o[ 1
Ez - 4me |:(Z — ZI)Z (Z + Z/)Z] : (A714)

Appendix 7.2 Formulations for a line charge

A Z—z Zo—2 Zo+z z1—z
= - — A.7.2.1
" 4ne(z, — 20)|: Cr Dr + Fr Gr ( )
A 1 1 1 1
EE=——|=———= — A7.2.2
: 4n8(z,—zo)[C D F+G] ( )
C=[r*+(z—2)*]"?
D =[r?* + (zo — 2)*]"?
F=1[r*+(z + 2)*]"?
G=1[r+(z+2?*]". (A.7.2.3)

If 1 - oo, then

A r r
= — A.7.24
r 4m-:|:D(zO—z+D) F(zo+z+F)] ( )

Al 1
=——|=+=]. A725
E: 4ne I:F * D] ( )
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Appendix 7.3 Formulations for a ring charge

E = __Q___l_ [ré—rz +(Z—50)2]E(k1)—ﬁfK(k1)
! 4ne nr a, B2
_["(2)—"2+(Z—ZO)Z]ZE(I<2)*B§K(I<2)} (A73.1)
azﬁz
_ 02 (Z—Zo)E(kl)_(Z‘*' z0) E(k3)
.= 47t£7r[ 0‘1Bf azﬂ§ jl (A.7.3.2)
where
n/2
E(k) = | /T—Kk?sin?0do (A.7.3.3)
0

oty =[(r+ro) +(z—20)*1""  ay=[(r+ro) +(z+2)]1"

Bi=(r—ro)+(z—2) Bi=(r—ro) +(z+2)* (A734)

2/rro
k2=__.

ay az

2 rro

ky

E(k) is a complete elliptic integral of the second kind.

Appendix 7.4 Formulations for a charged elliptic cylinder

E=—-Vo= ! Yo a, (A.7.4.1)
f/cosh?n —cos®yy N — M
A x—f x+f>
E, = + A742
4ne. /s? —f2< R, R, { )
E, = 4 y(——1—+—1—> (A.7.4.3)
" oame /s —f* \Ri R, o

where
Ri=(x—fP+y* Rij=kx+/)VP+)
s=3+(R, +Ry).

(A.7.4.4)
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Appendix 7.5 Approximate formulations for calculating
K(k) and E(k) [15,27]

n/2

n/2

Ko = [ W Ew- [ d9
) /1 — k?*sin?8 J 1 —k?sin?8

Let k, = 1 — k2, the Hastings polynomial approximations are

n

n

K(ky= Y aki —Ink; ¥ bk' + ¢ (k) (A75.1)
t=0 t=0
Ek)=1+ Y ¢kt —lnk, ¥ dk +e,(k) . (A.7.5.2)

t=0

t=0

When n = 4, the constants q,, b,, ¢, and d, are given in the following table.

t a b c d

0 1.38629436112 0.5

1 0.09666344259  0.12498593597  0.44325141463  0.24998368310
2 0.03590092383  0.06880248576  0.06260601220  0.09200180037
3 0.03742563713  0.03328355346  0.04757383546  0.04069697526
4 0.01451196212  0.00441787012  0.01736506451  0.00526449639

In Egs. (A.7.5.1) and (A.7.5.2), |e(k)| < 2 x 1078, These approximations are very
easy and fast to calculate the K (k) and E(k), the drawback is that the error is not
uniform for the different variable of ‘k’. More accurate results can be obtained if
the arithmetic-geometrical mean polynomials are used, especialy when k is
greater than 0.9. The formulations are

Let
k1=1—k2, a0=la

then
b():kilz,

an =%(an—l + bn—l)v

2 _ 2 2
co=ag— by,

1/2 1
bn=(an—l><bn—l)/v anf(an—l_bn—l)
when ¢, — 0, then

n
2a,

Ek)y=K(k)[ 1 —3(c2+2c3+22ci+..

K(k) =

+2"¢H)].



Chapter 8

Surface Charge Simulaton Method (SSM)

8.1 Introduction

The surface charge simulation method (SSM) is similar to the charge simulation
method (CSM). In these methods, the real source distribution is simulated by
a great number of accumulated or surface charges. They are both convenient for
solving open boundary and 3-D problems. SSM can solve field problems that
cannot be solved by CSM and also those that can. Using SSM one can obtain
solutions to problems containing a number of dielectric materials and problems
having thin electrodes. Hence SSM is a more general method than CSM. One
could also consider it to be a kind of boundary element method, or a method of
equivalent source.

The basic concept of SSM is to simulate the real charges distributed on the
surface of the electrode and the polarization charges on the interfaces of dielectrics
by the equivalent sources of a single or double layer on the surface. The equivalent
surface charge density is determined by known boundary conditions. After the
equivalent surface charge density is found, the potential and the field strength at
any point can be calculated. As the unknown distributed charges are located on
the surface of the electrodes and the interfaces of the dielectrics, it is not
necessary to find the locations and characteristics of the simulated charges as is
the case when using CSM. The disadvantages of SSM are that there are more
unknowns and consequently CPU-time is increased. It should be also noted that
SSM requires faster methods to calculate the many integrals and singular
integrals involved in integral equations.

The original idea of SSM might even have been known to Maxwell [1] when
he manually calculated the capacitance of an isolated square metal plate with
the dimensions 1 m x 1 m by solving the corresponding integral equation. He
divided the plate into 36 square elements and assumed the charge density to be
constant in each element. He found that the capacitance of the plate to be
40.13 pf. This is an accurate result compared with today’s results [2]. Since
Maxwell’s work, no significant publications then appeared for about 90 years.
Early in the 1970s, Singer used the surface charge simulation method to
calculate the field distribution of a high voltage insulator [3]. Recently another
doctoral thesis was written by Shuji Sato [2]. He deals with 3-D problems by
using SSM.
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Now the SSM is well known and is used to solve 2-D and 3-D electric [4]
and magnetic [5] problems. It is especially useful in electron optics [6] where
many thin electrodes are used for focusing. In optimal shape design of electric
apparatus, the SSM is more suitable as the tool for field analysis [7-9].

8.1.1 Example

Consider an isolated and very thin plate with dimensions 2a x 2b as shown in
Fig. 8.1.1. When the plate is charged to a potential of 1V, the charge density
distribution o(x’, y’) is not uniform. According to Coulomb’s law, the potential
of any point P(r) is

b a
Lttty
go(r)—fdy f dx @8.1.1)
-b —-a

This is the Fredholm integral equation of the first kind, where a(x’, y’) is not
known, R is the distance between the source point r' and field point r, i.e.
RP=[(x=x)+(y-y)P+(z-2)1]

Subdivide the plate into M square elements (Fig. 8.1.1(b)) with the dimen-
sions 2e x 2e, shown in Fig. 8.1.1(c). The continuous distributed charge density of
each element is assumed as a constant (the potential of each element is also
assumed constant and is represented by the potential of the centre point), thus

y Gj(X'.}"), Sj

8| U ]

o(x’y’)
0=1V

N W A

c e 2& ——f Fig. 8.1.1a—c. An isolated plate charged to 1V
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a(x’, y') can be taken out of the integral operator, then Eq. (8.1.1) becomes

M

1
o)=Y o,(x',y')fmdsj. (8.12)

j=1
e

In consideration of the boundary condition that the potential of the plateis 1 V,
Eq. (8.1.2) can be expressed as:

e

M edxdy —a<x<a
.0 = (X =1 =0 = 8.1.3
¢(x,,0) jgl a;(x;, ;) j 4neR —b<y<h. ( )

Equation (8.1.3) can be written in a matrix form
P{c} = {o} (8.1.4)

where

e e

dxdy
j J Py (8.1.5)

—e —e

Dij

e e

dxdy
pii = J J47teR,~,<' (8.1.6)

—e —e

The subscripts i, j represent the field point and the source point, respectively. p;;
represents the potential of element ‘i’ induced by an unit charge density located
at the element ‘j’. As the charge is assumed to be concentrated at the centre of
element %, and the potential of element ‘i’ is represented by the potential at the
centre point of the sub-element, then

Sj

= 1.7
47[8R,'j (8 )

Dij

where S; is the area of element ‘j’. R;; is the distance between the centre point of
element ‘i’ and .

To calculate the coefficient p;;, it is considered that the charge is distributed
on a square surface. The coefficient p;; is evaluated analytically, i.e.

_ o dxdy B 2e 12 _0.2806
P.'i—J W—n—soln(l-*-Z )——8—0—\/5;. (8.1.8)

If the element is not a square, an equivalent circle can be used to calculate the
coefficient p;;, 1.e. the potential at the centre of the circle is

T

a2
1 [ (rdodr 02821
p“_%H = N (8.19)
00

&o
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Fig. 8.1.2. Charge distribution of an
isolated plate

After programming the above equations, the solution of Eq. (8.1.4) yields the
surface charge distribution of a square isolated plate as shown in Fig. 8.1.2. The
charge densities on the four corners of the plate are much higher than elsewhere.

8.2 Surface integral equations

The potential integral equation of a Poisson’s equation has been derived in
Sect. 1.4. In this section, the surface integral equations of interfacial boundaries
are derived.

8.2.1 Single layer or double layer integral equations

The surface charge simulation method or the magnetic surface charge simula-
tion method is based on surface integral equations. They may be described by
single or double layer source. For a single layer source, the potentials on both
sides of the layer are continuous, but the normal derivative of the potential
suffers an abrupt change, i.e.

0r =0 8.2.1)
0py Op-
on — W = — (T/EO . (822)

This abrupt change is considered on both sides of the inter-surface S, i.e.

1%  d0-|_0¢
2| on on | on

s

thus

0o __ 0 O (8.2.3)

on 2¢g On

0 g 0o
op- _ o 9 824
T 2e, T on (824
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€y(9.-¢)=1(s) n

<(S) o,
80
¢ %

0

Fig. 8.2.1a, b. Single and double layer source

As the point r approaches the surface and considering the Eq. (1.3.1)

_ (o) o) N
o(r) _f4naoRds —f - G(r,r)ds

s s’

one obtains

do
on

_ - @ + J‘a(r’) aG(r,r)

ds’. 825
+ 2¢ €0 on > 6.23)

s

e
Note that the subscript ‘ 4+ represents the point which approaches the
surface from the opposite side as shown in Fig. 8.2.1.
For a double layer source, as discussed in Sect. 1.3.2, the potential is
discontinuous at surface S but the normal derivative of the potential is

continuous, i.e.

Py —@Q- = r_(r_) (8.2.6)
€0

do. _Odp- _0p

on  on on

By using a similar procedure, the corresponding equation of eq. (8.2.5) is

(8.2.7)

s

7(r) 7(r') 0G(r,r)

f= et | =
(1) — 2 +,[ £ on

s

ds’. (8.2.8)

s

Equations (8.2.5) and (8.2.8)are Fredholm integral equations of the second kind.
In these equations, the different sign of +ve, —ve before each term of the RHS
is due to the different normal directions of both the interior and exterior region.

8.2.2 Integral equations of the interfacial surface [10, 11]

Recalling Eqgs. (1.2.30) and (1.4.9) and consider both the interior and the exterior
(represented by —ve and + ve) problems, these are
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o_(r) = j[G(r, r')a‘;”n' _ . 200 rl)]ds’ (8.2.9)

on
oG(r,r)
on

qu(r)—fc(rr)f do' —f[c(r )6“’;—<p+

s’

:|ds' . (8.2.10)

In eq. (8.2.10), the first term of the RHS is the potential produced by source
density inside the surface, while the second term represents the single layer
source and the third term is the effect of the double layer source. For Eq. (8.2.9),
there is no direct contribution from the source density, it occurs indirectly by
interface conditions

In the exterior region when r — ry, as discussed in Sect. 1.3.2, the contribu-
tions to the potential ¢ , due to the impressed source density and the equivalent
single layer source remain continuous, i.e.

11m Q'(ry) = J—— G(rg, 1) (8.2.11)

0
11m G(r,r') ;p;

s’ s’

= JG(rsa r,)a_(pi

n ds (8.2.12)

s

where the term ¢’'(r) denotes the potential produced by the impressed source.
However, the contribution to ¢.(r) due to the equivalent double layer
source is discontinuous, i.e.

. oG(r,r')
tim [, (2 ag = 22

s’ s’

0:r) f¢+(s')mds’ . (8.2.13)

on

Therefore, in a limited case such as r > ry

210 e fqu ol fc(rs, 2.

ds’. (8.2.14)

on |,

In a similar case, if the point P moves from the domain £2; to the boundary,

lim @ _(r) = @ -(ry) (8.2.15)
tim [o_ () 280 gy 0= | J(p-(S’) 0G4y (3.2.16)
ror, 6n 2 an

tim [Gr.r)22=ds = JG(rs, ) 20=0)yo (8.2.17)
ror, on on

s’
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The resultant equation is

<p-2(rs)= _ J(p_(r,)aG(ar:r’)ds, +JG('S”')a¢a_n(S)dS" (8.2.18)

s’ s’

Using the interface boundary conditions

(P+(|')!S = Q’—(r)ls = (P(r)ls (8219)
dp+|  Op-
E+E—s =& on i (8220)

multiply Eq. (8.2.14) by ¢, and Eq. (8.2.18) by ¢_, respectively, then add these
two equations and by considering the Eqgs. (8.2.19) and (8.2.20), one obtains

_ 2£+ ’ (6+ - £_) 6G(rs,r') ,
o(r,) = el (rs) +(8+ ) f(p(r) o ds (8.2.21)
and
_ (e- —&4) 0G(r,1') ,
o(rs) = e o as(rs) + (er t 8_)Ja(r) n ds’ . (8.2.22)
In magnetostatic fields,
2u- (u- — m)f dG(r,,1')
m(ls) = m(Ts) + —————— | @p(r) ———ds’ 8.2.23
Pml(rs) #++#_<0( ) (e 1) @m(r) n ( )

5

these are Fredholm integral equations of the second kind. These equations are
very useful for solving the problems containing multiple materials as used in
references [12, 13]. Where o, is an imposed charge density, and ¢’(r;), and
¢@m(rs) are potentials induced by imposed source terms.

8.3 Types of surface boundary elements
and surface charge densities

8.3.1 Representations of boundary and charge density

Two different kinds of discretization are required. One deals with the discretiz-
ation of the boundary surface and the other deals with the distributed charge
density. In a 2-D case, the boundary could be subdivided by thin plate or an
arced thin plate with infinite length. The cross-section of this element is a short
line or arc as shown in Fig. 8.3.1. These are called linear or circular elements. For
an axisymmetric problem, the subelement consists of filament ring charges.
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In 3-D problems, the surface of the boundary could be a plane or a part
of a cylinder or any other curved surface [4]. The charge density of these
subelements can also be constant or represented by any other functions. Here, to
avoid the many special functions, only constant and linear charge distributions
on linear and circular elements in a 2-D case are discussed. Other functions like
the Fourier-type and Tchebycheff-type expansions are described in references
[2, 14].

8.3.2 Potential and field strength coefficients for
2-D and axisymmetrical problems

In 2-D cases, the sub-element of the boundary could be a thin plate or an arced
thin plate of infinite length. The cross-section of a thin narrow plate and of an
arced plate in the x—y plane are shown in Fig. 8.3.1.
The potential at any point P(x;,y;) produced by these elements is
B

1
(xi — x;)* + (yi — Vi)

1 r, ,
¢;j=4—mjA(Xj,yj)ln 2d1+ C (831)

A

where A(x;, y;) represents the line charge density. The constant C’in Eq.(8.3.1) is
determined by the potential reference point. If the image source is considered
and the symmetric plane is chosen as a potential reference point, then Eq. (8.3.1)
is altered to

B

1
Pij= mji(xj,}’j) In
A

(xi = %)) + (yi + y))?
) P 632

For an axisymmetric field, the sub-element could be a frustum of a cone or
a spherical segment as shown in Fig. 8.3.2(a) and (b). For simplicity, in this
chapter, these elements are called ring elements with a linear or arced lateral
surface.

y y
A
A W) &Xj,)ﬁ)
B B
0 X 0 X
a b

Fig. 8.3.1a,b. Cross-section of subelements in translational symmetric cases
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Fig. 8.3.2a,b. A ring element

The potential induced by these elements is

(ej)r; K(k )
Y= nsj[(rx—r ) + z;)*]'?

P arr; 1/2
e (ri+rj)z+(zi—'zj)2 .

K (k;) is the elliptic integral of the first kind [15].

dl+C (8.3.3)

where

8.3.2.1 Planar element with constant or linear charge density

If A(e) is constant, Eq. (8.3.1) is simplified to:

B
).(ej) 1
= 1 dl " 34
Pu 47r£.[n()c.-—xj)z+(y‘~—yj)2 +C (834
A

To obtain a generalized formula to calculate the integral, the coordinate
transformations are used and the relationship between x—y and x"-y” (as shown
in Fig. 8.3.3) is,

{x} =|: 09sa sina] {x} (8.3.5)
y —sina cosa || y

Xy, — X -
cosa = =2 ! sinoz:yZ Y1
l l
x'=x—x1+x2 y,=y_}’1+}’2
- 2 2
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y
y"
M Ao .
0 AC2) 0 B(12)
a b

Fig. 8.3.3a,b. Transformation of coordinates

where the axis x” is along the length of the element, and [ is the length of the
element, I = (x; — x1)? + (y2 — y1)*. As

dy\? 5
dl= |1+ dx dx =./1 + tg*adx = secadx

dx” = cosadx + sinadx = secadx = dl

then
12
Ae) 1
= 1 " " 8.3.6
e R ) L (839
=1/2

The distance between the source point (x;, y;) and the observation point (x;, y;) is
unchanged during the transformation of coordinates, i.e.

(x = x)*+(y =y =" =x)+ (v = yi)?. (8.3.7)
The integration of Eq. (8.3.6) yields
ije)
=5 —Pij- (8.3.8)

The components of field strength in the coordinates x” o y” are

3, A
i 8.39
” aq)i — )'j ” ( )
Yij oyl 4re” i

then

E, | _[cosa —sina]fE} (8.3.10)
Em ~ [ sina cosa E;u . a
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The formulations for evaluating the coefficients of p;s, fi’ and f;’ are given in
Appendix A.8.1, Eq. (A.8.1.1) to (A.8.1.4). ! ’

To avoid discontinuities of the charge density between adjacent elements as
shown in Fig. 8.3.4(a), a linear charge (density) distribution is used as shown in
Fig. 8.3.4(b).

In Fig. 8.3.4(b), let

el PN’

Ae) = L+

livi =1

Substitute Eq. (8.3.11) into Eq. (8.3.1) and consider Eq. (8.3.7), this yields:

Aj+t - (8.3.11)

lj+1 - lj

12
l. x” —_ x”
—_ J 2 " ”2 "2 "
oy == [ TSI - 0+ it ax
=12

2
l. x/l — x”
Y bl f ———In[(x" — x/)* + y/*]dx" +C’

4ne x5 — xj
=12

A ¥
_ A w*i;;”g)' (8.3.12)

Using the derivation of Eq. (8.3.9), the components of the field strength in the
x"-y” plane are:

"o __ l} (1) ij*'l n(2)
Xij 4 Xij Xij
e 4ne
(8.3.13)
” — A’J n(1) + ij*‘l n(2)
= o Xi: v
Vi 4peY 4 *

The formulations of p{}’, p7, fulV, f2, £V and f;;'? are given in Appendix
A.8.1, Eqgs. (A.8.1.5), (A.8.1.6), and (A.8.1.9) to (A.8.1.12).

A A

—
—

j+1

o
+

Fig. 8.3.4a,b. Distribution of constant and linear charge density
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8.3.2.2 Arced element with constant or linear charge density

An arced element in the x-y and x'—y’ planes are shown in Fig. 8.3.5(a) and (b).
The formulation of coordinate transformations are given in Egs. (8.3.14) to
(8.3.16)

{x, XX (8.3.14)
Y=y

(x} —x$)(y2 —y3) —(x3 = x (1 —y3) —=(¥1 —y2)V2 —y3) (3 —»1)
2(xy —x3)(y2 —y3) — 2(x2 —x3)(y1 —y3)

Xo =

(y% —y%)(xl —X3) -‘(}’f —yg)(xz —Xx3) —(x; — x3)(x3 — x3)(x3 —x1)
) .

o 2(x; —x3)(y2 — y3) — 2(xz — X3)(y1 — y3)
(8.3.15)

Let

RG = (xi — X0)? + (i — yo)* k=123

Vi Y1 — Yo
Y, = arc g =arcly (8.3.16)
V2 Y2—JYo
Y, = arcty— = arctg ———.
2 X> Xy — Xo
Y XpY2
| X3,¥3
"’ ’ ’
y | y
1' ~ 7 Teh X'2Y"2
- x’ /
X0 Yo Y \ .,
, L XY
- \W!

0 X 0 x’
a b

Fig. 8.3.5a~c. Coordinate transformations
c of an arced element
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If A(e) is a constant, then

Ai(e 2 A
@frfgfmuf—xy+%V—yNJ&dw+C%=—izbu.wln)

Vi

It is easy to integrate if the local coordinate (&,7) are introduced, i.e. suppose

2 2
X=ZNI‘X,‘ y = ZNkyk k=1,2

k=1 k=1 (8.3.18)
Ny =3(1-29) =3(1+¢)
v — ¥, ';' 28
= -1, +1 8.3.19
§= g Ce(=L+D (83.19)
2
then
1 . 2 2 2 2
®ij mj [(Z kak_xi> +(ZNkJ’k > }Rodf'*'c
=1 =
-1
A
_ mp‘_j (8.3.20)
A
Xij =% fxu
(8.3.21)
Ey, = 4ms Sy -

The integration of Eq. (8.3.20) is evaluated either numerically or analytically.
The analytical results are given in Appendix A.8.2, Egs. (A.8.2.4), (A.8.2.7) and
(A.8.2.8).

If the charge distribution is linear, then

i@ =Y Nk k=12 (8.3.22)

A
¢ij= —4—7;8 J N In[(Y Nexc—x)* +(Y Neye—yi)*1Rod &

1
1.
- 4’:7:-81 fNzln[(zN"x""xi)z+(ZNkYk'Yi)2]Rodf+C'.

A A;
=—J“ ARIICN 8.3.23
dne Pi dre Pij ( )
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The formulations of pﬁlj’, pfj’ are found in Appendix A.8.2, Egs. (A.8.2.9), and
(A.8.2.10).

8.3.2.3 Ring element with linear charge density

For a axisymmetric field, the boundary surface is subdivided by a number of
ring elements. The base of the ring element is a filamentary ring charge. When
calculating the potential induced by the ring element, the elliptic integral has to
be solved. As the integration path dl is a curve as shown in Fig. 8.3.6(a), these
integrals are cumbersome. To reduce the CPU-time for the numerical integra-
tion, parabolic curves are recommended to replace the curved contour [3, 16].
The variables of the integration are reduced by using the following equations

z=a+br+cr* 6<45° (8.3.24)

r=a+bz+cz? 0>45° (8.3.25)

9 = arctg| L 4| (8.3.26)
Fj+1 —7;

By using Egs. (8.3.24) and (8.3.25), the variable of integration in ¢;; is only
‘r’ or ‘z’.
Assuming that the charge density is linearly distributed, i.e.

1j+1—1 l—l"

/lj(e)== ).j'f'

e (8.3.27)

livi =1 livs =1

substitution of Egs. (8.3.24) and (8.3.27) into Eq. (8.3.3), leads to

List
1 K(ky)
(Pij = ‘7;; lj(e)rj‘j;l—l-‘dl'f’ C
L

i+
_ Aj J‘ ,.jK(kl)UjH - l)dl
ne(ljvy — 1) ; oy
J

Ljvy

Aj+1 Kk (I = 1))
T ) e R+ (8.3.28)
Since
P=(rjer = 1) + (o1 — 2))
dl = [1 + (b + 2cr)*1"2 dr
or

dl = [1 + (b + 2c2)*]*dz
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4
z
T15Zjy
/
dl
TirvZjn

I.z
Ae) j

0

by 0 T
17

a b

Fig. 8.3.6a,b. A parabolic curve of a ring element

when the symmetric plane is chosen as a potential reference, then C = 0,

A

4 ’T[Kwd_xwa]
me(zjey — 25) . ay £F)

i

x(a+ bz +cz?)[1 + (b + 2¢2)*]"*(zj4, — 2)dz

$ij=

TS ”[Kwn_xwg]
ne(zj+1 — zj) o A
zj
x(a+ bz + cz)*[1 + (b + 2c2)*]"*(z — z;)dz (8.3.29)
where

af = (ri+r) +(zi—z) af=(ri+r) +(z+z) .

4r; rj 4r;r; (8.3.30)
k}=—4 k3 =—*

ay az

In Eq. (8.3.29) K(k,) and K(k;) are elliptic integrals of the first kind, the
parameters a, b and ¢ are determined by the following equations, e.g.

— 2
rj=a+ bz + czj
2
Fivyz=a+bzjiy0 + czje1)2 (8.3.31)
— 2
rj+1 —a+b2j+1 +Czj+l

where rj, zj, rj+ 1,2, Zj+1/2, Ij+1 and z;,, are coordinates of each element.
Let

Ziy1 — Zj Zi+1 + 2;
i JX+ i J

2 5 (8.3.32)

then
x=02z—2zj41 —2;)/(zj+1 — Zj) . (8.3.33)
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Equation (8.3.29) is rewritten to

1

i At (
0iy=2t ng - fgz[é(x)]dx. (8.3.34)

-1

The range of the integration is changed to —1 to +1 where

K(k,) K(k;) ]
L % %z
x(a+ bz +cz?)[1 + (b + 2c2)*1"*(zj4+, — 2) (8.3.35)
[ K(k,) _ K(ky) ]
L % %

x(a+ bz +cz?)[1 + (b + 22)*]"*(z — z;) . (8.3.36)

g9:1[Ex¥)]=g:(2) =

BLE(x)] =9g.(2) =

The field strength is:

_d¢
En,= or
} 1
- j [H, — Hi)(@ + bz + cz)[1 + (b + 2c2)]'"2
X (241 —z)dx—L1 J [H, — Hy])(a + bz + cz?)
X[+ (b + 2cz)*]1"? (z — z;)dx (8.3.37)
_dg
E:, oz

1
— i%s— J [Hs — H,](a + bz + cz?)[1 + (b + 2c2)*]*/?

1
X(Zjry — z)dx—~’+—— J 3 — Ha)(a + bz + cz?)

x[1+ (b + 2c2)*]"? (z — zj)dx . (8.3.38)

The integrations of Eqgs. (8.3.34) (8.3.37) and (8.3.38) are calculated numerically.
All the formulations of the constants a, b, ¢ and H, to H, are listed in
Appendix A.8.3, Egs. (A.8.3.1) to (A.8.3.8).
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8.3.3 Elements for 3-D problems

In 3-D cases, the curved boundary is discretized by a great number of surface
elements, these may be a planar triangle, curved triangle, cylindrical element, or
any quadrangular element [16].

8.3.3.1 Planar triangular element
The simplest element for 3-D problems is the 3-node planar triangle. Assume the

surface charge density is expressed by a linear function of the x and y coordin-
ates, e.g.

gle)=a+bx +cy (8.3.39)
then
o(r) = J%dxdy . (8.3.40)

Se

In Eq. (8.3.39), the constants a, b and ¢ are determined by

a I xi yi1™! (o
C 1 Xm Vm Om

where (x;, i), (xj,¥;), (Xm»¥m) and o;, o;, 0, are coordinates and charge
densities of the three vertices of the triangle. Equation (8.3.40) can be evaluated
numerically or analytically. The analytical integration formulae are given in
Appendix 6 of reference [16].

8.3.3.2 Cylindrical tetragonal bilinear element

In order to avoid discontinuity of the charge density along the boundary of the
element and the resulting jump phenomenon, the charge density is assumed to
be linear along the boundary. For a cylindrical element, as shown in Fig. 8.3.7,

z

Fig. 8.3.7. Cylindrical tetragonal element
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the surface charge density has a nonlinear distribution at the surface of the
element e.g.

Uj(z,l//)=a0 +a12+a2lj/ +a32l// . (8342)

Using the notations a(zy,¥,), o(zy,¥3), 0(z2,¥,), o(z2,¥,) to denote the
charge densities at the vertices of the element, the parameters oy, a,, a,, a3 are
determined by knowing the charge densities and the coordinates of the four
vertices of the element, i.e.

oz ¥) = 55 (a1, W) [zatha — 220 = Yo7 + 93]

+ 0z, Y)[—2za%2 — 22 — Yiz — Yz]
+0(z2, ¥2) 211 — 21§ — Yyz + Yz]
+ oz, Y) (=22 + 200 + Yaz — Yzl (8.3.43)

where N = (z; — z,) (¥, — ¥, ). Substitution of these equations into Eq. (8.3.40)
leads to
22 Y2
= _l_ O'J'(Z, lp)

Pi= 4 [(Rcosy — x;)? + R2sin*y + (z — z;)*]"/?
1 Y

_ b

" 4ne

+ i [1(z2) = 1.(21)] + (0120 + 20) [[c(z2) — 1(2,)]} . (8.3.44)

In Eq.(8.3.44), 1, 1., 1,, I,. represent the four integrals. These integrals have no
analytical solution. Reference [14] states that if point P is situated near the
surface, an approximate solution is possible as shown in the Appendix of
reference [14].

Rdzdy

{a3[1y=(z2) — Tya(21)] + (2320 + o2) [1y(22) — 1y(24)]

8.3.3.3 Isoparametric high order element

For problems with a curved boundary, curved triangular and tetragonal ele-
ments with a high order interpolation function may be used in the same way as
in FEM. These elements are used to the optimum design of insulators in
reference [9].

Both the charge density and coordinates of a point are expressed by the local
coordinates

o n) = Z Nj(é: no;
x(&m =3 Ni&nx;
W& m =Y Ni& ny,
z(&m) =Y Ni(& n)z;

where N;(£, n) are shape functions as was defined in Chap.6 and Y’ is the

(8.3.45)
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sequential number of the nodes. The potential at any observation point P(x;, y;)
produced by one element is

1 g;ds
Pii= 4re f[(xi — )+ (yi— y)* + (2 — 2?1
1 1
_L J‘J‘ Na,lJIdédn
41e
=Y Kijo; (8.3.46)
where ds = ‘— X ——‘dé -dn = |J|d¢& dn (refer to Fig. 6.6.1). In eq. (8.3.46)
1
2 N;jlJIdedn
347
Kis 4mf J F&m (8347

Fn= [(Z Njx;—x;)> + (Y Njy; — yi)?

+ (Y Njz;— z)*1'? (8.3.48)
EXN
0 98 g
ox dy o0z
== =2 = 34
J dn on dn (8.3.49)
to1 1

By using Gauss integration

= N'(érm nn)l‘”
K;;= W, W, —om ] 8.3.50
47[8 mzl nZl F (érm nn) ( )

where &, n, are coordinates along the path of integration, W,, and W, are
weighted coefficients of the integration. I, and I, are the numbers of the
integration points.

8.3.3.4 Spline function element

Reference [17] provides a spline function to approximate both the shape of the
contour and the charge density, i.e.

= f(t) = a,t> + b,t* + c,t + d,
x = f(t) = a.t® + bt* + ¢t +d, (8.3.51)
y=f(t)=a,> + bt +c,t +d,
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where ¢ is a parameter. Using a high order spline function, the complex contours
can be represented. A more detailed application is given in reference [17].

8.4 Magnetic surface charge simulation method

The presence of magnetization of magnetic materials can be simulated by an
equivalent magnetic surface charge, even if it is impractical. It has been derived in
Sect. 1.3, that the scalar magnetic potential produced by the magnetization of
the material is

1 V'-M I (M-n
[—— _—dQ/ - ’
Pnm(r) o J R +4n3€ R ds
Q' s’
1 rp 1 (o
=_— | P"q0’ + —$H1"4s’ 8.4.1
4nJ‘RdQ+4n§Rd5 ( )
Q s’
where
R=|r—r|. (8.4.2)

M is the magnetization vector, g, is the magnetic surface charge density and nis
the positive normal direction of the surface. Suppose that the magnetization of
the material is uniform, then p,, = 0. The magnetic field caused by the magnetiz-
ation is

1 (o
H, = — grad ¢,, = — V| —p—=ds’ |. 8.4.3
m grad o, <4N§R S> (8.4.3)

The total magnetic strength H is composed of two parts, i.e.

I (o
= =H, - V| —¢-=ds’ . 4.4,
H=H. + H,, =H. V<4n' Rds) (8.4.4.)

H, is the magnetic field strength induced by the impressed current. After
discretization of the surface, Eq. (8.4.4) can be approximated as

1 G'mj ,
H=H,— % JV<?> ds (8.4.5)

where the subscript ‘i’ denotes the field points. Multiplying both sides of
Eq. (8.4.4) by n, the normal direction of the interface, one obtains

H,=H L%Jan"'—jds’ (8.4.6)
in — 4&cin 47[j._.1 l R . S
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The second term of the RHS of Eq. (8.4.6) includes the fields H,,,,; and H,,,,,, they
are due to the magnetization of element ‘i’ itself and due to the magnetization of
all the other elements except the element 7", i.e.

Hin = Hcin + Hmns + Hmrw . (847)

The field strength H, and the H,,,, are continuous on both sides of the interface.
However the values of H,,,, on both sides of the interface are equal but in the
opposite directions.

By using the interfacial boundary conditions

n-(B,—B,)=0 (8.4.8)
nx(H,—H,)=0 (8.4.9)
ie.
soH;-n=po(H; + M)-n=poH; n + poo,
thus

6m=(H; —H;):n. (8.4.10)
For the component H,,,, the corresponding magnetization charge density is

Omi = n'(Hls - HZ:) = 2H1ns = - 2H2ns

1 1
= 2<Eam,~ Jni-V<E>dS> (8.4.11)

Si

therefore

1 1 l
EJ“"V<E)dS=§ .

Introducing the susceptibility y,, to express magnetic field strength yields
1 1

H, = X_Mi" =—0pn (8.4.12)
hence
1 1 Umj 1
) —mj V|l =)ds'=H,,,. 8.4.13
wlpra) 55 [rv()e 6419

Sj

Consider that y,, = u, — 1, Eq. (8.4.13) is written to

Ha + Uy d Umde
H o Ly O —H., (8.4.14)
2(uz — py) ,';j on ) 4R

this is the Fredholm integral equation of the second kind. It is used to calculate
the magnetic field due to the magnetization of the material. This result can also
be obtained from Eq. (8.2.22) by using the analogy between the electric and
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magnetic field. After using the technique of discretization, Eq. (8.4.14) is trans-
formed to
P{o,} = {H.n} (8.4.15)

The elements of matrix P are

My +

g2t 8.4.16

Pi = 2z — ) (8410
0 ds

pu=5 fﬁi' (84.17)

s

If the 3-node triangular element is used, i.e.

Om(E ) =y + 028 + a3 =Y Ni(&, 1) 0pme (8.4.18)
then
1 0 1
Pii= 3= %n ENk(é, nd¢dn . (8.4.19)
Solve Eq. (8.4.15) to obtain {5, }, then the magnetic flux density is calculated by:
(
1 0 X (o
B, = H —— — md
x #0( Cx 4 6xj; JR S)
1 0¥ (o
B, =po| He, == 5= 2 | = d 42
¥ 'u°< v 4 (3xj§1 J R S) (8.4.20)
1 Y (o
=ul|lH —— — Im
Bz #0( [ 4 axjgl IR dS)

An example of this method is given in [18]. Another application of this method
is shown in Example 8.6.4.

8.5 Evaluation of singular integrals

One of the drawbacks of the methods of integral equations including SSM is the
presence of singular integrals. The use of SSM requires the solution of improper
numerical integrals. The numerical solution of improper integrals is either
inaccurate or requires considerable CPU time. The calculation of a singular
integral depends on the property of the kernel of the integral. The kernels of an
integral equation are composed of two kinds: either indicating weak singularity
or strong singularity. If the singularity can be removed by transformation of the
function or by changing the variables, it is called weak singularity; otherwise it is
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a strong singularity. For instance, the kernel In(r) includes a weak singularity
and the kernel 1/r includes a strong singularity. In 2-D electromagnetic prob-
lems, the singularities are usually of a logarithmic type. The integration over
these singularities is generally evaluated analytically or at least by partially
analytical procedures which require tedious series expansions. Generally speak-
ing, known techniques are used depending on the degree of singularity of the
integrand. Several methods are introduced in this section.

8.5.1 The semi-analytical technique

If the integrand f(x) of the following equation

F = j f(x)dx (85.1)

0
is singular when x = 0, rewrite the integral as follows:

1 1 1

F = Jf(x)dx = J[f(x) — h(x)]dx + Jh(x)dx (8.5.2)
0 0 0
where
lim | f(x) — h(x)| =M < «© . (8.5.3)
x=0

The first integral of Eq. (8.5.2) is a regular integral, it can be evaluated by
Gaussian quadrature. The second integral of Eq. (8.5.2) must be an analytical
integral. Here h(x) is a function added to remove the singularity. Thus the
technique removes the essential singularity and separates the integration into
two parts. For example,

e 5) Jo
af { log [sin <g x)] — log (g x) } dx + H (8.5.4)
H = jlog[(%x)]cb::log(%)- 1. (8.5.5)

The first integration on the RHS of Eq. (8.5.4) is computed by Gaussian
quadrature, the second part is analytically integrable as shown in Eq. (8.5.5).

F

where
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If there are a number of possible functions for a given f(x) to remove
singularities, it is recommended to choose the one for which the value M in
Eq. (8.5.3) becomes zero. This method requires the evaluation of fewer functions
than the method using geometrical intervals. This technique was used to handle
the singularity of Green’s function in a 2-D case in reference [7]. Another
example treats the singularities of a Fourier-type charge distribution composed
of linear and circular elements [2]. It is also used in the example given in
Sect. 10.4.2.

8.5.2 Method using coordinate transformations

The aim of coordinate transformations is to alternate the singular integral into an
analytically integrable function. When the observation point P; is located on the
source segment j, as shown in Fig. 8.5.1(a), Eq. (8.3.47) cannot be evaluated
numerically. Let the observation point P; be at the origin of the polar coordin-
ates (p — 0), shown in Fig. 8.5.1(b), then the integration of the area 1234 is
subdivided into eight elements as shown in Fig. 8.5.1(c). The integration of each
element can be calculated analytically in p — 6 coordinates.

The coordinates transformation methods are usually used to remove any
singularity, one example is shown in Example 3 of Sect. 8.6, another example can
be seen in [19].

Fig. 85.l1a—c. Method using coordinate
transformations. a Singular point; b polar
coordinates; ¢ eight equivalent triangular in-
c tegration
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8.5.3 Numerical technique

One of the numerical integrations of logarithmic singularity is given in [15].
Another method was provided by Kasper [20]. If the integrand can be written as

ﬂw=ﬂnm§+mn 8.56)

where f(x), g(x) remains regular, then the integral can be calculated by updated
Gauss numerical integration as below

i=1

h

3
[ Feadx=h 3 L F(pih + F(=pih] (85.7)
Zh

where the parameters are
py = 0.067 2230 4110 up = 0211 6130 9257
p2 = 0.441 8550 6300 U1y = 0.470 7574 6449
p3 = 0.870 0987 6121 us = 0317 6294 4294 .

8.5.4 Combine the analytical integral and Gaussian quadrature

Separate the singular integrand into two parts, one part containing the remov-
able singularity which can be calculated analytically and the other by regular
integration. An example is given in Example 8.6.1.

In general, the methods for dealing with integrations around singularities
requires experience. Many authors have their own method to handle these
problems as shown in references [10, 20—24]. Only the bases are introduced in
this section.

8.6 Applications

Example 8.6.1 The field distribution of a pair of spherical electrodes

A pair of charged spherical electrodes is chosen as an example to examine the
accuracy of SSM. In Fig. 8.6.1, S =2cm, R = 0.524194cm. Each spherical
electrode is subdivided into six ring elements. Assume for each element that the
charge distribution is linear. The matrix equation of {s} is:

P{o} = {+ Uy/2} . (8.6.1)

The elements of P are calculated using Eq. (8.3.29). The singular integration
included in p; is handled as follows
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U2

S

Fig. 8.6.1. A pair of charged spherical conductors

Subdivide the ring element into two parts, A and B, as shown in Fig. 8.6.2.
For this singularity, the small area 4 containing the point i’ and ¢ is ap-
proximated as a rectangular surface with dimensions of 28R x dl. The potential
at point ‘j’ produced by the charge density o of this small area can be calculated
analytically. If the charge density of this small part is a constant, then the results
of integration are

dédn
Or= e f j[52+'1 2z

ne a b
where
a=fiR b=dl2. (8.6.3)

The potential at point *j’ produced by the charge of the remaining part B is:

ljva

1 F(k9)

g o

ri(e)dl (8.6.4)

where F(k, 3) is an incomplete elliptic integral

(n—p)/2

F(n—ﬂ,k>= f da . (8.6.5)
0

[1 — k?sin%a]'/?
i
1

a b

Fig. 8.6.2a,b. Integration around singularity, a Subdivision of an element into parts A and B;
b Local coordinates of area A
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Table 8.6.1. Validation of SSM

Position SSM Analytical solution Errors

r (m) z (cm) E, (kV/cm) E. (kV/cm) E, (kV/cm) E, (kV/cm) of E, (%)

0 0 0 5.564980 0 5.555555 0.169
20 0 0 1.214454 0 1.200000 1.203
4.0 0 0 0.244404 0 0.240495 1.624
0 0.4 0 6.891321 0 6.896591 0.076

The approximate evaluation of the incopmplete elliptic is referred in [15]. The
comparative results of SSM and the analytical solution are shown in Table 8.6.1.

Example 8.6.2 Field distribution in a vacuum switchgear

Figure 8.6.3(a) shows a model of a vacuum switchgear r-axis is the axis of the
symmetry, where 0 is the main electrode, 5 is the insulating envelope and 6 is the
endplate. The thin electrodes 1,2, 3, 4 are shielding electrodes, these are used to
equalize the field distribution in the chamber. The shape of these electrodes are

1 5 2 3
N N N
0 X/ X /X\ X7
C 4

Fig. 8.6.3. a Electrodes of a 35-kV vacuum switchgear, b equipotential lines of the switchgear
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optimized so that a uniform field distribution is obtained in the vacuum
chamber. Due to the shielding electrodes being very thin, CSM is not suitable to
be used. The surface simulation charges help the solution, the resultant equi-
potential lines of the switchgear shown in Fig. 8.6.3(b) [25].

Example 8.6.3 Calculation of the capacitance of an isolated plate

A plate with dimensions 1m x I m is subdivided into 8-node isoparametric
tetragonal elements. The integrations around singularities are handled using
coordinate transformations. The results are shown in Table 8.6.2. The result
shows that if only one 8-node tetragonal element is used, the result is very close
to the accurate result. If the number of the elements is increased from 48 to 81,
the result does not change. The values of Table 8.6.2 shows that the accuracy of
an 8-node tetragonal element is quite good.

For comparison, the results of different methods given in reference [2] are
listed in Table 8.6.3.

Table 8.6.2. Capacitance C versus the number of sub-elements

Number of clement C (pf) CPU-Time(s)!
1 40.623 0.507813
9 40.825 1.742188

25 40.814 6.554688

49 40.808 25.984375

81 40.808 81.375000

' The macrosuper computer ELXSI is used.

Table 8.6.3. Capacitance C of a 1 x | m? plate calculated by differ-
ent methods

Name of the author Year Value of C (ppf)
of the method

Maxwell 1879 40.13

Reitan' 1957 40.2
Harrington? 1970 39.5

Ruehli? 1973 40.8

Takuma® 1980 41.11

' AIEE Trans. Comput. Electrons, 75, 761-766, 1957
¥ Proc. IEE, 55, 136-149, 1967

¥ JEEE Trans., MIT, 21(2), 76-82, 1973

1 CRIEPI Report No. 180029, Dec. 1980
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Example 8.6.4 Calculate the magnetic field strength
in a ferromagnetic trough

A direct current of 150A is passing through a long conductor with the cross
section of 0.6 x 0.6 cm?. It is inserted into the middle of a rectangular ferro-
magnetic trough as shown in Fig. 8.6.4. The magnetic field strength in the trough
is caused by the impressed current and the magnetization of the ferromagnetic
material of the trough. Assuming that the current is not strong enough, the

FD

0.6x0.6x160cm

y

, 20x20x15cm*

Fig. 8.6.4. The model of the ferromagnetic trough

B(Gauss)
33 ? T ' ; f '

30K e
25F- “‘

20

test value

1 2 3 4 5 6 7 8 9 x(cm)

Fig. 8.6.5. The magnetic field strength in the trough
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magnetic material is considered to be working in the linear part of the B-H
curve. The influence of the magnetization is simulated by using the magnetic
surface charge as introduced in Sect. 8.4. The singular integration is solved by
coordinate transformations. The calculated and the measured results are shown
in Fig. 8.6.5. In Fig. 8.6.5, the origin of the coordinates is assumed in the middle
of the bottom of the trough.

8.7 Summary

SSM is one of the direct integral equation methods. The surface of the electrode
or the interfacial boundaries are discretized by elements and the surface charge
distribution of the subelement is approximated by a specific function. After the
boundary is discretized and the approximate function of the charge distribution
is chosen, a great number of integral expressions have to be evaluated. Then the
solution of the matrix equation is shown by the values of the surface charges.

Compared to CSM, due to the flexibility of the approximate function of the
surface chage, it is more suitable for problems with complex geometry and
complex interfaces associated with dielectrics. It is more convenient for the
optimum design of the electrodes and insulators [26]. The accuracy of SSM due
to the discretization has been discussed in [27].

More general methods to deal with the singular integral have been introduced

in this chapter.

The magnetic surface charge simulation is suitable for solving the problems
contained in ferromagnetic materials.
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Appendix 8.1 Potential and field strength coefficients of

2-D planar elements with constant and linear charge density

For constant elements

” B
Dij I:A InC; + B;InD; + 2y; arctg— + 2yi arctgy— - 21]

(A8.1.1)
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Ai=12—x! Ci=A+y?

=12+x] Dy=B}+y*? (A8.1.2)

_M
¢ —41rec

B} A} 1 1
=In— ——— 2y72 — A8.13
R [B?+y:-'2 A?+y:-'] M

v =2y7 Ai+Bi + 2arct Ai
yij — yi Ci Di gyn

3

B; A; B;
— 2y - - AS8.14
+ Zarctgy;, Y [Af e + BT+ .V:"z:l (A.8.1.4)
For linear element
A; A; B;
py; = -7 [A InC; + B;InD; + 2y:.’arctgF + 2y;’arctg}7 - 21]
1
+Z[C lnCi—DilnDi—Af+ij|+C“’ (A8.1.5)
B; B;
P = -7 [A InC; + BiInD; + 2y} arctg;1 + 2y arctg}-; - 2l:|
21 [C InC; — D;InD; — A7 + 32] + C? (A.8.1.6)

Let j;; represent the potential coefficient of a constant element, then the
relationshp between p;; and p;; is:

A; 1
pf}l) = —I—lﬁ” + Z[C,‘lnci - DilnDi - A,Z + Blz] + C“) (A8l.7)
pgf’=%p.——[c InC; — D;InD; — A? + B2] + C? (A.8.1.8)

1 A; B;
f;.»(,” = — T[Zy}’ arctgF + 2y”arctg)721]

A;[. D 2B} 24} 2y 2y}
) [ e e A8.19
" l I:nci+ D; o +BF +yi2 AR+ ( )

1 A; B;
[ = — —[Zy;’ arctg— + 2y"arctg 721]

I yi
TI"e* D "¢ ' : A.8.1.10
+ l [: n Ci + Di Ci + Blz + y;/z A2 ”2 ( )
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24;y; 2By} A;
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fy,l T [ C, + —_Di arc gy;,
24,y 2B;y!

Af + y;'2 B' y”2

B;
+ 2arctg—. —
y

24;y¢ 2B~y’/ A;

"2 = —% 4+ 2arctg—
fy., l [ Ci Di arc gy:/
24;y! 2B;y!
AT+y? B+
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+ 2arctg—, —
y
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1
:] - Y[y:.’ InC; — Y/InD;]

(A.8.1.11)

,,2:] +-[y/InC; — y/InD;]

(A.8.1.12)

In Egs. (A.8.1.5) and (A.8.1.6), the coefficients 4;, B;, C; and D; are identical to
those of Eq. (A.8.1.2). The constants C*» and C'® are determined by reference to

the potential.

Appendix 8.2 Potential and field strength coefficients

of 2-D arced elements with constant and linear charge density

For constant charge distribution
1
pij = — j In[(3(1 = &)x; + 3(1 + Ox; — x;)?

+ G =Yy + 31+ yz — yi)*IRedE + C”

1
- Ry _I In[(3(x2 — x1)¢ + 3(x2 + x1) — x;)?
+ (32 = y)E + 3y + y1) —y)?1dE+ C”.

Let
JZL(XZ_XI)=Dx %(X2+X1)=HX+X,~

Yy—y)=D, 3(y2+y)=H,+y

then
1

pij=—Ro | In[(D:¢ + H,)* + (D, ¢ + H,)*1d¢ + C”
-1

1
= — Ry [ In[c&? + b + a]dé + C” .
-1

(A.8.2.1)

(A.8.2.2)

(A8.2.3)
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The integration of Eq. (A.8.2.3) yields
Ro (0,6, + D,G,) In(G2 + G
pij= _'Sw_[( x x+ y y) H(Gx-'l-Gy)

— (D:Qx + D,0,)In(Q% + Q7) — 45]

R, 2T
——arctg———+ C” A824
SangG,Q,+GyQy+ ( )
where
Gx=H,+D,=x2—x,- Gy=Hy+Dy=y2—y,'
Q.=H,—D,=x, —x; 0,=H,—-D,=y, —y (A.8.2.5)
S =D} + D}
T=|H,D,—H,D,| . (A.8.2.6)
The coefficients of field strength are
G} + G? 2G,(D,G,. + D,G
./:Vi‘= D 1 i ; + ( 2 ; +2 . "')
’ 02 + Q? G: + G,
20.(D.0. + D,0Q,) 2R, 2T
+ +(+D tg
0+ 0] (D)7 mﬁcg+cg
S [(G:0« + G,Q,)* + 4T*] o

If H,D, — H,D, > 0, the sign of D, is ‘—ve’. Otherwise the sign of D, is ‘+ ve’

R, G2+ G}
= — Dl
S [ <&+Q)

26,(D;Gx + D,G,) | 20,(D;Q; + DyQy)]

G: + G} Q2+ Q?
2R, 2T
+(+D,)=—=arctg———————
(£D:) =g arcte 5 6,0

4ROT [T(Qy + Gy) + (j:Dx)(GxQx + GyQy)]
S [(G:Qx + G,0,)* + 4T7] '

if H.D, — H,D, = 0, the sign of D, is + ve. Otherwise the sign of D, is — ve.

(A.8.2.8)

If the charge distribution is linear, then

1
P:}) = —R, I N, ln[(Zkak —x)* + (ZNk}’k - Yi)z] d¢ +Cc®
-1

1
=—R, | %(1 —&In[(D& + H,)* + (D& + H,)*]dE + CV

-1
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R
= — —2§°[(D,¢Gx + D,G,)In(G? + G?)

— (D0, + D.vQy)ln(szc + Q;%) —45]
bR S?2—F*+ THR,, G2+ G2R,T F’
LR : Ro 7% Rol (42
2C 4s 0+ 02 S

*s

2T
arctg———— + CV A.8.29
£6.0.1 G0, (A.829)

1
Pf'f’ = —Ro f N, ln[(Zkak - x)? + (ZNkyk —y)*1d¢ + C?
-1

1
| %(l + &In[(D.& + H,)* + (D, & + H,)?]d¢é + C?

-1

I

|
=

[=]

R )
- -2§°[(D,,Gx + D,G,)In(G2 + G?)

—(D:Q. + D,Q,)In(Q% + Q7) — 45]
bRy (2= F2+T*)R, Gi+G; R0T< _F)

n
2C 482 Q2+Q2 S S
2T
arctg———— + C? (A.8.2.10)
G.Q. + G,Q,
where
F=D,H.+ D,H, (A.8.2.11)

the meanings of D,,D,, H,, H,, O, Q,, G., G, and T are the same as before.

Appendix 8.3 Coefficients of ring elements
with linear charge density

rj Zj z

a=z Fiv12 Zj+1)2 Z-+”z (A83])

NSNS N

Fi+r  Zj+1 Zj+y

Z
b=—|1 riy2 2. (A832)

Lorjer zjy
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1 1 Zj rj
c = Z 1 Zjv12 Ti+12 (A833)
1 z4, Fi+1
1 Zj Zf
4=|1 Zj+1/2 Z]g+1/2 (A8.3.4)
1 Zj+1 sz
PO Ly ek L L LY (A835)
ay fi
[r! = r} + (zi — z;)*1E(k;) — B K (k;)
H, =" — (A.8.3.6)
az i
(z; — z;) E(k
Hy = B2 ER) (A83.7)
a; fi
.+ z;)E(k
H, =Gt aEk) (A.8.3.8)
ay B3

Where E(k,), E(k,) are elliptic integrals of the second kind, f,, f, were defined
in Eq. (7.3.17).



Chapter 9

Boundary Element Method

9.1 Introduction

It is difficult to say who was the pioneer of the boundary element method
(BEM). In Brebbia’s opinion [1], the work started in 1960s. The first book
entitled Boundary Elements was published in 1978 [2]. After that BEM de-
veloped rapidly. It has been expanded so as to include time-dependent and
non-linear problems [3,4]. During this time many papers [5, 6], theses [7-9]
and books [10-12] have been published. The method is now regarded as
important as FEM. An international conference to discuss BEM is held every
year and the edited proceedings are valuable references.

The Boundary element method is based on the boundary integral equation and
the principle of weighted residuals, where the fundamental solution is chosen as the
weighting function. The value of the function and its normal derivative along the
boundary are assumed to be the unknows. By using discretization, similar to that
used in the finite element method, the boundary integral equation is transformed
into a set of algebraic equations at the nodes of the boundary. Then the value of
the function and its normal derivative are obtained simultaneously by solving
the matrix equation.

The other kind of BEM creates an equivalent surface source either a single
layer or a double layer [13] distribution to replace the effects of the source inside
or outside the boundary. Such kinds of methods are the indirect boundary
element methods. The surface charge simulation method, which was discussed in
Chap. 8 is one of the indirect boundary element methods. The direct BEM is
discussed in this chapter.

The method contains the following steps.

(1) The boundary I is discretized into a number of elements over which the
unknown function and its normal derivative are assumed by the interpolation
functions.

(2) According to the error minimization principle of weighted residuals, the
fundamental solution as the weighting function is chosen to form the matrix
equation.
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(3) After the integrals over each element are evaluated analytically or nu-
merically, the coefficients of the matrix equation are evaluated.

(4) Setting the proper boundary conditions to the given nodes, a set of linear
algebraic equations are then obtained. The solutions of these equations result in
the boundary value of the potential and its normal derivatives. Hence the field
strength of most interest on the boundary is computed directly from the matrix
equation.

(5) The value of the function at any interior point can be calculated once all
the function values and their normal derivatives on the boundary are known.

The main characteristic of BEM is that it reduces the dimensions of the
problem by one. For a 3-D problem, only the surface of the domain needs to be
discretized hence it produces a much smaller number of algebraic equations. It is
especially attractive that the data preparation is simple because the tedious domain
descritization is avoid. The post-processing of data is also simpler than in the
domain methods. Only the required values are calculated. The method is well
suited to solve problems with boundaries at infinity. Finally, the solution of the
derivatives of the unknown function are as accurate as the function itself.

Disadvantages of BEM are:

(1) A great number of integrations are required and the singularities of the
integral must be considered. Hence the calculation of the coefficient matrix
requires more time than for FEM.

(2) The fundamental solution of the governing equation is difficult in some
problems.

(3) The method cannot be used directly for non-linear problems.

In this chapter the general form of the boundary integral equation is derived.

Formulations to calculate the coefficients of the matrix for a potential
problem are derived explicitly. The application of the boundary element method
is illustrated by an eddy current problem.

9.2 Boundary element equations

The general integral of the operator equation and therefore the boundary
integral equation may be derived by the principle of weighted residuals, using
Green’s theorem or by the variational method. In this section, the integral
equation will be derived by using these different ways and the volume integral
equation to the boundary integral equation deduced.

9.2.1 Method of weighted residuals

The variational principle requires that the operator % is positive definite and
self-adjoint. The method of weighted residuals may be applied for arbitrary
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Fig. 9.2.1. A potential problem

operators. It requires knowledge of the governing equation and the correspond-
ing boundary conditions. For a boundary value problem,

Pw=f inQ
ulr‘ = 17 on Fl (921)
ou _

nln =49 on r;

assume that the solution of the governing equation is approximated by a func-
tion as shown in Eq. (9.2.2), i.e.

N

u=Y o (9.22)

k=1

where o, are the unknown parameters and , are linearly independent functions
taken from a complete sequence of functions, such as

‘/ll(x)’ ‘I/Z(x)a R ] Il/,,(X) .

These functions are usualy chosen in such a way as to satisfy certain given
conditions, called admissible conditions. Consider that the functions belong to
a linear space, and are linearly independent, i.e.

Y +ad+ . e, =0 (9.2.3)
only if

0y =ay=a3=...=a,=0. (9.2.4)
Then they can be combined linearly, e.g.

Y=oy + oy, 9.2.5)

Substituting Eq. (9.2.2) into Eq. (9.2.1), residuals, or called errors are un-
avoidable, i.e.

Ru)=%w) —f in Q
Riw=u—ua op (9:2.6)

ou _
Rz(u)=a_n—q on rz.
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In order to make the errors approach zero, the average error distribution
principle is used ie. let

§ R(w) WdQ+jR W,dr+jR (W) Wodl =0 9.2.7)
Q

where W, W,, W, are weighting functions. Let W, = 0W/dn (otherwise the
equation will not have the correct dimension) and W, = — W; Eq. (9.2.7) is
simplified to

JR(u)WdQ = — le(u)aa—Z/dF + J.Rz(u)WdI". (9.2.8)
Q ry r,

Consider first that the governing equation is Laplace’s equation, then
Eq. (9.2.8) is changed to

J(Vzu)WdQ - j (u — )%V—le“+ j (g — §ywdr (9.2.9)

I, r,
where u is the approximate solution. Integrating Eq. (9.2.9) by parts, yields

ou oW ow ow
fa—xk de = Jq wdr + Jqur - Juadr + fu—a—dr
r, I, r, r,
(9-2.10)
This is a weak formulation of Eq. (9.2.9), as it reduces the order of the derivative of
the unknown function. Hence the requirement of continuity of the approximate
function of u is reduced.
Integrating Eq. (9.2.10) by parts once again, the dual equation of Eq. (9.2.9) is
obtained:

0 w w
j(VZW)udQ = — JQWdI‘— Jl wdr + Jaa—df + Jua—df.
on on on
r r, r r,
(9.2.11)
For Poisson’s equation, Eq. (9.2.11) becomes
J(uVZW—fW)dQ - Jqur - jj" wdr
rl rl
w
+ ug—dF+J 9—61'. 9.2.12)
0 on
rl rl

Equations (9.2.11) and (9.2.12) require that the second order derivatives of the
weighting function are continuous and only require the continuity of the
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function u. Equation (9.2.12) can be written in a compact form as below:

w
JVZW fudQ+Jua——dF JW (9.2.13)
Q r

where ' =1, + I,.
Equation (9.2.13) is the fundamental equation of the boundary element
method.

9.2.2 Green’s theorem

Equation (9.2.13) can also be derived by Green’s theorem. Using the second
identity of Green’s theorem,

w
J( WV — uV*W)dQ = f( W— - ua—>dr (9.2.14)
on, on
Eq. (9:2.9) can be written as
0 ow
f(uVZW—fW)dQ+f<Wég~u >dr= _J(u_a)‘Lde
on on
Q r r
+ J'(q —q)wdr. (9.2.15)

Iy

Here the governing equation is assumed as Poisson’s equation. Eliminating the
terms present on both sides of the above equation, one obtains

J(uVZW—fW)dQ = — Jq wdr — J'Z—ZWdF

Iy r,
0
+ fu—a—dr + ju—dr (9.2.16)
r, r,

This equation is exactly the same as the one derived using integration by parts.

9.2.3 Variational principle
Recall now the corresponding functional of Laplace’s equation is

=4[ (gradu)’*dQ — fqud]’ (9.2.17)
Q
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Taking the variation of the functional I, and let 61 = 0, yields
[Vu-VéudQ — | goudr =0. (9.2.18)
Q r,

Using the vector identity,
V- (6uVu) = Véu-Vu + 6uVu

and the divergence theorem, Eq. (9.2.18) is transformed to

[ (V2u)5udQ + [ 6uVudl — [ Géudl =0 9.2.19)
Q r

I

where ' =1, + I5,.
Let ou = W, the integral equation

J(Vzu) wdQ = — fqur— JZ—ZWdF
Q

r, r,
w
+ Jﬁa—df + JugLVdF (9.2.20)
on on
Iy r,

is obtained.

The integral equation derived from the functional is identical to the one
derived using the method of weighted residuals. This is true only if du is chosen
as the weighting function.

9.2.4 Boundary integral equation

Choose the fundamental solution F, which satisfies Eq. (9.2.21), as the weighting
function, i.e.

V2F = — §i(r—7r') (9.2.21)

where §; is a Dirac’s delta function, this function has the property that
[uVPFdQ = — [udi(r —r)dQ = — y (9.2.22)
Q Q

while point ‘i’ is in the domain Q, then Eq. (9.2.16) becomes

u,~+fdeQ=Jqu1"+ ja—“Fdr—faa—Fdr—jua—Fdr.
on on on
Q r, r, r, r

(9.2.23)
The compact form of Eq. (9.2.23) is:

Ou oF
ui=J<F%—u%>df —fFdQ. (9-2.24)
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Due to the property of the J function, if the point ‘i’ is outside the domain @,
the integral of Eq. (9.2.22) is zero.
Substitution of the fundamental solution by the 3-D Poisson’s equation,
= 1/4nr, into Eq. (9.2.24) yields

1 1 du Jd/1
“‘=EJ[?5T“%<r>] F‘—Jf 4. 6229
r

This result is identical to the one derived in Chap. 1. Thus the potentials in the
domain are determined by the boundary values of the potential and its normal
derivative and the source density within the domain.

Equation (9.2.25) is valid for points inside the domain. If the point ‘i’ is on the
boundary, the singularity must be considered.

Suppose the boundary is smooth, draw a small sphere centred on the point ‘i’
with a radius of ¢(¢ — 0), as shown in Fig. 9.2.2.

First the point of singularity is considered on the boundary I',. The bound-
ary I'; is divided into two parts, i.e. I’ = I, + I',_,. The last term of the RHS of
Eq. (9.2.23) becomes

oF JoF OF
Jua—df— J —a—dl'-+-Ju-a—dl“ (9.2.26)

r, r,—e T,

Substituting the fundamental solution into the second integral on the RHS of
Eq. (9.2.26) and take the limit, the result is

oF |
li —dr ;=1 —d
r, r,
2me? 1
=li ——U = —=U;. 227
hm{ 4mzu,} 2ul (9.2.27)

On the other hand, note that as ¢ — 0, the boundary I', _, is almost identical to
I',. Substitution of Eq. (9.2.27) into Eq. (9.2.23), obtains the boundary integral

I, XYy

a b

Fig. 9.2.2a, b. Integration around singularity of the boundary
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equation for the points on the boundary, i.e.

1 0 oF
-u,-+JdeQ= -[qur+_[ Mear— [a%Ear - fu——d]' (9.2.28)
2 on on 0
r, r, r, I;
This equation is still usable for 2-D problems. For a 2-dimensional Laplace’s
equation, the fundamental solution and its derivatives are:

1
F = iln (—) (9.2.29)
2n r
and
OoF OF 1
T w 230
then
1 ume u;
li —dlry=lim|{—— |= —=. 2.
i Jeetr} - im(5) -3 o2
I

If the point ‘i’ is on the I'}, the same result is obtained.
Both for 3-D and 2-D problems, the first integral of the RHS of Eq. (9.2.23) is
regular because

2
lim { j qur} = l|m< 2ne > =0 (9.2.32)
£=0 £~0 4ne
r,
|
lim{j‘quF}=lim{— Edf}:lim{—qlﬂfne}
e—0 =0 £~0 27t
r,
qg,. Ine
=2lim— = -2 = 9.2.33
Zim 3 =~ 3lms =0. 6239
Combining Egs. (9.2.31)—(9.2.33), the boundary integral equation is obtained
0 JoF
% J <F—“ _uE )dr f fFdQ. 9.2.34)
.
Summarizing the above cases, Eqs. (9.2.28) and (9.2.34) are written as
du JoF
Ciug = KFa—r; - ua—> dr — ijdg (9.2.35)
r
where
1 in domain
C; = { 1/2 on smooth boundary (9.2.36)
0 outside domain Q.

Equation (9.2.35) is the typical form of the boundary element method.
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By using the same method as to derive Eq. (9.2.34), the boundary integral
equation of the Helmholtz equation has the same form as the integral equation
of the Laplace equation, only the fundamental solution is different.

9.2.5 Indirect boundary integral equation

Recall Eq. (9.2.25)

1 1 du 01 1.1
h= 4nf[r on u6n<r>:|dr 4nffrdg'
r Q

Note that if the boundary values of u and du/0dn and the source function are
known, the value of u within Q can be calculated.

Let us define that Q' is the exterior region of the boundary I" and u’ is the
solution of Laplace’s equation in the exterior region. Then, in €', Eq. (9.2.35)
reduces to

j Fa—u — u,_@_]i dr=0. (9.2.37)
on on
Subtraction of Eq. (9.2.37) from Eq. (9.2.35) leads to
ou ou oF
U = —JdeQ+JF m_a df—j(u—u’)—dl". (9.2.38)
on 0On on
Q r r
Considering the boundary conditions (Egs. (1.3.5) and (1.3.18))
ou ou o , T
5;—'67—; —Ll—--e' (9239)
and supposing f= — p/e, the following equation is obtained
1 (o 1 01 1 r1
i=— |- — |t - — | p-dQ. 9.2.40
. 4n£,[rdr+4na,[ran<r>dr+4n£JprdQ ( )
r r Q

The first term of the RHS of Eq. (9.2.40) represents the single layer source while
the second term represents the double layer source. Here ¢ is the surface charge
density and 7 is the dipole charge density. Equation (9.2.40) indicates that both
the SSM and the magnetic surface charge method are special cases of BEM.

9.3 Matrix formulations of the boundary integral equation

In this section, the discretization form of the boundary integral equation will be
derived by using the constant and linear elements both in homogeneous and
piece-wise homogeneous media in 2-D and 3-D cases.
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9.3.1 Discretization and shape functions

The most commonly used discretization elements are constant, linear, quadratic
or the combinations of the constant and linear elements. In the case of combined
clements [3], the unknown function varies linearly but its normal derivative is
constant. For 2-dimensional problems, the boundary is a contour. The three
types of the elements are shown in Fig. 9.3.1.

The constant element is defined as one where the function and its normal
derivative are constants along each element. The centre point of each element is the
representation of the element as shown in Fig. 9.3.1(a). In the case of the linear or
the quadratic element, both the potential function and its normal derivative vary
linearly or quadratically within each element. In local coordinates the unknown
function and its normal derivative of linear and quadratic elements are ex-
pressed as

u@)=a+ bl =y u + Yu,

Ou du Ju (9.3.1)
5;(5) = ¢1(a)l + lﬁz(é";)z
and

u(@) =a+bé+ c& =y uy + You; + Yus
du du Ju du (9.3.2)
%(f) = lpl(%)l + %(5)2 + '/’3(%)3
iem/\eﬂnt node element node

a b

node

element
—

c

Fig. 9.3.1a—c. Constant, linear and quadratic element
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where the u,, u, and u; are nodal values of the function and ¥, ¥, and 5 are
interpolation functions or shape functions. In the case of linear elements, the
terminal points of the elements are nodes as shown in Fig. 9.3.1(b). The shape
functions are

Yy =31-9 =31+ 9.3.3)

at terminal 1, Y, =1, Y, = 0; at terminal 2, , =0, ¥, = 1. In a quadratic
element, the terminal points and the centre point of the element are nodes as
shown in Fig. 9.3.2(c). The shape functions are

Yi=328C-1D  Yo=3C+D) Ya=01-90+) (9.34)

atnode 1, ¢y, =1, ¢y, =0,y3=0; at node 2, Yy, =0, Yy, =1, Y3 =0 and at
node 3y, =0,¢y,=0,¢y3 =1
Higher order elements can be obtained by using the same principle. For
instance, a cubic shape function of the approximate function
u(x) = a; + a;x + a3x? + oy x3

is obtained by taking four nodes over each element, as shown in Fig. 9.3.3

u,
u, W=y 1
, | ”/.
| | [
I
: : I ‘ I
| - L ! L
-1 0 +1 ¢ -1 0 +1 g
a b
u, I
! |
u, : |
|
I : I Fig. 9.3.2a—c. Shape functions of constants, linear and
1 3 12 £ quadratic elements
-1 0 +1
c

— I 4 é

-1 -130 13 1

a b

Fig. 9.3.3a,b. A cubic order element
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Node Y Y Y3 Y

1 -1 1 0 0 O
2 1 0 1 0 0 9.3.5)
3 -130 0 1 O
4 1730 0 0 1
here
u(@) = Yuy + Yauy + Yaus + Yauy . (9:3.6)
Then the shape functions are
1
Yi=1c1-90-10+ 9(&* + 1]
1
Yo = e+ &OL—10+9(¢* + 1)]
9 (9.3.7)
W3 =21 =1 =39
9
Ya=-(1 =81 +3%) .

16

Other kinds of higher order elements are given in reference [3]. For instance
one could take the function to be the unknowns at the two interior points of the
element and consider that the derivatives are unknowns at the two end points.
Then the continuity of the derivative of the function is guaranteed at the
intersection of the elements.

For 3-dimensional problems, the boundary elements of linear or quadratic
triangular and quadrilateral elements are all the same as defined for the 2-D case
of the finite element method and as discussed in Chap. 6.

9.3.2 Matrix equation of a 2-dimensional constant element

Consider that the boundary has been divided into N elements. The integral
equation of Eq. (9.2.34) for the case of f= 0 is approximated as

u + Z u——dr_ Z a ZFdr (9.3.8)

rl T;

where T is the contour of the element j. As u, du/dn are constants, Eq. (9.3.8) is
simplified to

1 N oF ou
5 +,Z u,< a—dr> j; (al(del"). (939
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Applying Eq. (9.3.9) to each element under consideration, and let

- oF

H;j= J%df (9.3.10)
n

G;= JFdI' (9.3.11)

r
Eq. (9.3.9) becomes

1 N N du
sui+ ) Hyuj= 3 Gyl =) . (9.3.12)
20 = =1 on /;

In the above equations, F is the fundamental solution of the governing equation,
for 2-D Laplace’s equation

1 1

=£lnl"-"'| ) (9.3.13)
As a simplification, it is defined that
H; i#j
Hj=< _ (9.3.14)
Hyj+3 i=j
then Eq. (9.3.12) is written as
N N
Y Hjuj= 3 Gig; - (9.3.15)
j=1 j=1
The matrix form of Eq. (9.3.15) is
[H]'U=[G]Q (9.3.16)

This is the normal form of the boundary element equation. Here [H], [G] are
matrices of the order of N x N, these are full matrices and in general they are
asymmetrical. U, Q are two unknown column matrices of the order N. They are
potentials and its normal derivative at each nodes. Substitute the known bound-
ary conditions of the first and the second kind into Eq. (9.3.16) and rearrange the
knowns and the unknowns on both sides of the equation. One has to solve the
following algebraic equation:

AX =B. (9.3.17)

It should be noticed that if the domain has a hole, for the outer contour the
nodes are numbered counterclockwise, for the inner contour the nodes are

t In order to avoid the confusion of the matrix [H] and the magnetic field strength, in this chapter
[ Jis used to express the matrix H and G, but the column matrix U and Q are still expressed by bold
character only.
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Fig. 9.3.4. Sequence of boundary nodes on outer and inner
contours

numbered clockwise as shown in Fig. 9.3.4. Once all the values of u and du/on on
the boundary nodes have been solved, the values of u and du/dx, du/dy inside the
domain can be calculated by Eq. (9.3. 18) and Eq. (9. 3.19)

oF 8
w=—|uz-dr+ auFdF = Z Gyay— 3 Huyt 9.3.18)
i= ji=1

r r

ou N (ou\ oF ¥ 0 [OF
5)-2(G) 5 Lox(s)

Ou Ou u F
T T

In these equations, the partial derivatives are approximated by differences.

9.3.2.1 Evaluation of H;; and G;;

For a 2-dimensional Laplacian problem

1
F=——Inr (9.3.20)
2n

1 (rcosa 1 [ + D
=gradF-n=—§;<r—2>=—E<"r2 ’) (9.3.21)

where r is the distance between point i and the point on element I';, « is the angle
between the vector n and r and cosa = n-r. The + sign of D;; is dependent on
whether o is acute or obtuse. While r, -r, > 0, cosa > 0; r, -ry, <0, cosa < 0.
ry, ry, ry are shown in Fig. 9.3.5 where n is the normal direction of the element.
r is orthogonal to r,.

From Fig. 9.3.5, let

T ,V,+ 1 ]
x_,+ 1 — x
the distance between point i and line j, j +1, is:

[T(x; —x;) — yi + yjl
13 797 (9.3.22)

D,'j =
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I & 2
-1 A_lo +1 5
et
LJ'
Fig. 9.3.5. Relationship between variables Fig. 9.3.6. Integration of element
Then
1
. I [ +D 1 [ +D; L;
Hj=-—|—4dr=-— | =42 3.
/ ZnJ r? 2 ,[ rr 2 d¢ 323
r, -1
1
1 1\ L;
Gi=— | In[-)Zde 3.24
ij ZnJ ﬂ<r>2 S (9.3.24)

-1

where dI" = § L;d¢&, L; is the length of the jth element as shown in Fig. 9.3.6.

9.3.2.2 Evaluation of H; and G;

For constant elements the diagonal element G;;

| (0) | | 2) |
(

1) (0)

1
1 1 1
=;|r1|[ln<m>+£ln(g)dé:l
l I: < 1 > :l
=—|ry||In{ — |+ 1{. (9.3.25)
n Iryl

For element H;;, as the radius vector r (from point i to element j) is orthogonal
to the normal direction n of the contour, it follows that

H“ = 0 .
Due to discretization, the boundary is not smooth, C;# 3} and Hj is

evaluated by:
H;=— Z H;; . (9.3.26)

i#]j
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This is because if the boundary condition statisfies the homogeneous boundary
condition of the second kind, then
[HJU=0. (9.3.27)

Consequently, Eq. (9.3.26) exsists.

One remaining problem is that the interior solution near the boundary
exhibits large numerical inaccuracies. Paulsem [14] regards it as stemming from
the inability of the quadrature to account for Green'’s function near singularity.
A simple scheme is offered to remove the numerical inaccuracy by increasing the
quadrature in the nearby boundary element.

9.3.3 Matrix equation of 2-D linear elements
For linear elements

u() = Yyuj+ Yaujvy = [Y, l/’z]{:" 1} (9.3.28)

) =y19;+ ¥29;+1 = [, !/,2]{3{ 1} (9.3.29)

substitution of the above equations into the two integral terms of Eq. (9.3.8)

yields
Jua—FdF=J[¢l b1 drd® o g gl (9.3.30)
on on Uj+y Y Y Ujry
) !

n

Ou 4; } 1) @) {qi }
rfpandr rfwl Y] dr{qm (G} G2] . (9.3.31)

.
hence
H = jwlg—fdr H —jl//z—dr (9.3.32)
r,
Gl = fwler G = J([/del“. 9.3.33)
r, ;

In above equations, H{}’, G|}’ are contributions of the first node of elements j,
H{? and G}’ are contributions of the second node of element j» hence

H — H(l) H®

+H- (9.3.34)

G,= G“’ +G3_

Gf.}’ = J%Fdf = IO.S(I —é)%ln(é)uldé (9.3.35)

T;
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GG)—J.p FdI = Jos (1 +§)—1n< >|J|d<. (9.3.36)

Figure 9.3.6 indicates that

{x =YX+ PaXjey (9.3.37)
y=yY1yi+ Y2y -

The Jacobian is

== (%) (&)

=300 = ) + (a1 =y 12 = 3L, (9.3.38)
therefore
H(v—j.// odr = f st -9 Zin( L) 1514 (9.3.39)
Y ! 2n On r
1 0 1
‘2’ = J://z——-dl" = J 0.5(1 + &)= —In{ - | [IJ]dE. (9.3.40)
2n On r
-1
The term d/0n [ln(l/r )] has been discussed in Sect. 9.3.2.1.
Note that while j=i and j=i—1, due to r-n=0, H{} =
H?_  =H{= H? =0 GL”, G‘Z) are singular integrals, they can be integrated

anélytically. For j =i,
1

G“)—le Fdr J 1—5)—1n< )iJ]dé

1
= L5 ~InL) (9.3.41)

Gm—J.//der_ f05(1 +é)—ln< )lJldf

r

1
= L,05~InL)). (9.3.42)
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Forj=i-—1,
1
G = 4—7;L,-(0.5 —InL;) (9.3.43)
1
Gﬁf’ = 4—T—EL,(1.5 —InLj). (9.3.44)

If the analytical integration is difficult, the Gaussian quadrature [15] may
be used.

9.3.4 Matrix form of Poisson’s equation
Recall Eq. (9.2.35)

Ciu; + Ju—dl’ FdF JdeQ.
Q

After dlscretlzatlon (mcludmg the source area), the above equation is trans-
formed to:

B+ [H]U=[G]Q. (9.3.45)

B is a column matrix of the order N, each element of B is

B,-=JdeQ= » (jfpdg> - [i W,(fF)]A,- (9.3.46)
P i=1 2, r=1

i=1

where M is the number of segments of the source area, K is the number of
abscissas of the Gauss integration, W, are the weighting coefficients and A; is the
area of subelement. It should be noticed that there is no increase of unknowns
due to the discretization of the source area.

Once the values of u and q are known over the whole boundary, the values of
u and ¢ at any interior points are calculated:

N N
w=y Gyq— Y Hju;—B;. (9.3.47)
i=1 i=1
If the source is a constant, the volume integral of Eq. (9.3.46) may be

transformed to a boundary integral. Define a function satisfying F = V?v, using
Green’s second identity:

J(szv —-vV3)dQ = ”:f—— vgf:] dr. (9.3.48)

Due to f being a constant, Eq. (9.3.46) becomes
JdeQ = Jf% dr. (9.2.49)
Q r
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9.3.5 Matrix equation of a piecewise homogeneous domain

Consider a general case as shown in Fig. 9.3.7, the domain is composed of
different materials. Each sub-region Q,, Q,, Q3, is homogeneous. In each area,
the following equations exist

q: uy

[G, 12 G3i1{qi,} =[H, Hi, Hj] "iz} (9.3.50)
1 1
43, ujz;
q2 u;

[G, %3 sz] ‘I%a = [H, H§3 H%z] "%3 (8.3.51)
2 2
qi2 uj,
q3 us

(G, Ggl G%s] qgl = [H, Hgl H%s] u%l . (9.3.52)
‘l%a “33

The single number of the sub- and the superscripts: 1, 2, 3 represent the external
boundary and the domain of each subarea respectively. The combined numbers:
12,23,31 represent the interface boundary. Based on the continuity of the
interface boundary, we have

1

1 _ 2 _ 1 _ b

Uy, =uy, =Up 9,2 = B 912 =412
1
1

2 _ .3 _ 2 _ 3 _ '

Uy3 = Uy3 = U3 933 = — B_ng =413 (9.3.53)
2

W o—ul —u 3__i1_

3 T U3, = U3, 95, = Bsqsl—‘lal-

The sign —ve before 1/8; is because the normal direction of the interface
boundary is opposite the neighbouring region. Inserting Eq. (9.3.53) into
Eq. (9.3.50) to (9.3.52) and combining them, the final matrix equation is

G, 0 0 G}, -H;, O0 0 -p3G;, —Hj,
0 G;0 —B1 Gy _Hfz G§3 —H§3 0 0

0 0 G; O 0 -B.G3;, —H3;, G3, -H3,
(41 )
92
UKl

q:2 H, 0 0
< uy oy }iO H, 0 }
923 0 0 H;
uz3

931
\ Uz J

uy
u, } (9.3.54)

us
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Fig. 9.3.7. Piecewise homogeneous regions

This equation may be solved once the boundary conditions on I'y, I';, I3 are
prescribed. The total number of unknowns is equal to the number of nodal
degrees of freedom over the external boundaries plus twice the number of nodal
degrees of freedom over the whole internal boundaries.

Subdivision of the region into several zones may be used in homogeneous
media as a way of avoiding numerical problems or improving computational
efficiency. For instance, if the problem includes cracks or notches, then the
region can be divided into two zones to avoid any numerical difficulties due to
the nodes that are very close to each other.

9.3.6 Matrix equation of axisymmetric problems

Assuming that all boundaries and consequently all domain values are axis-
ymmetric, the boundary integral equation in cylindrical coordinates is

F
a—rd[“' = a_u Frdl” (9.3.55)

C,'ul' + fu on on
r r
where
dr'(x, y,z) =rd0drl'(r,2) (9.3.56)

and I'’ is the intersection of the problem boundary I' with the r — z half plane,
shown in Fig. 9.3.8.
The fundamental solution of Laplace’s equation in axisymmetric domains is

K (k)

Finry = a0

(9.3.57)

—dI”

G/ \J/

Fig. 9.3.8. Boundary contour of an axisymmetric field
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This is obtained by assuming a filament ring source. In Eq. (9.3.57)

2b
k= a=r?+rt 4+ —2)>? b=2rr (9.3.58)
a+b
where r’, z’ are coordinates of the source point, while r, z are coordinates of the
field point.
The normal derivative of the fundamental solution along the contour I'" is
oF 1 1[r?2=rt+(z —2)?
= — k) — K(k
on 2n2(a+b)*{2r|: a—b ER) = K() |n.
4 _ZE(k)n,} (9.3.59)
a—b

Equation (9.3.57) to (9.3.59) indicate that if r' =0, then k=0, thus
K(k) = E(k) = n/2. The ring source contracted to a point source on the axis of
symmetry.

Approximating Eq. (9.3.55) and summing the contributions from all bound-
ary elements, a system matrix equation similar to Eq. (9.3.45) is obtained. The
terms H;;, G;;(i # j) are evaluated numerically using Gauss quadratures. The
diagonal terms H;;, G; are the results of evaluating singular integrals. In order to
facilitate the evaluation of these integrals, the fundamental solution and its
normal derivative are written in terms of Legendre functions of the second kind,
detailed formulations for which can be found in reference [3].

9.3.7 Discretization of 3-dimensional problems

In the case of 3-dimensions, the boundary I' is a 2-dimensional surface. It is
discretized by flat or curved triangles or quadrilaterals and the potentials and
their normal derivatives over an elementary surface are assumed to be piecewise
constant, linear or quadratic. These have been employed in 2-dimensional finite
element analysis.

Consider the isoparametric elements, the following equations are valid

N
u= Z lpk(élaéla ’I)“k (9360)
k=1

Wi(&1, &2, m) X

X

=

Il
M =

—

W&y €2, 1) Vi (9.3.61)

‘<
Il
M=z

=
—

ka(éla 621 r’)zk .

=

N
Il
1 [\/]z

-
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The shape functions y, are the same as listed in App. 6.1 denoted by N,. The
differential surface area and the volume element are expressed as

or Or
ds = |—x—|d&,; d&, = |J|dE; d 9.3.62
2, " 95, £1d¢, = [J1d¢, d¢, ( )
0 or \ 0
dg=‘< :x_'>_’ d¢, &, dn = |G| &, dé, d 93.63)
0¢, 0&2 ) 0n
where
i J k
ox dy Oz
or or —_ = — 9.3.64
= |xar|= |3, 38 a5, ©-3.64)
0, 09&,
6_x dy o0z
08, 0&, 0&,
iy_ 0z ox 0z

_ox| 9 0 | oy| 9 0L
5'73}162 an| ox z

or or \ Or
G| = — X |5
¢l ’(5«:1 652)5n

0, 9, 3, 9,
0x a_y_
%, d
Lo o b (9.3.65)
on| ox ady
0&, 0&,

Then the boundary integral equation is

ou  OF
Ciu, = J(F—“ _ u—> 13 dE, d¢, —JfFlGldéldézdry. (9.3.66)
on on
r Q

Suppose the boundary is divided into 3-node triangles where u and du/dn are
linear functions within the element. The discretized form of Eq. (9.3.66) is

N Uy N q
Ciu; + Z [hy hy h3]e{us y = Y [491 92 931 {42 (9.3.67)

e=1 e=1
us q3

&

§

0
Fig. 9.3.9. Calculation of an infinitesimal surface
X and volume
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The system matrix equation is
[H]JU =[G]Q (9.3.68)

Reference [16] gives a good example for solving a 3-D magnetic problem.

9.3.8 Use of symmetry

The application of symmetry in integral equation method is different from the
domain method. For instance, the central line is the line of symmetry of the
square slot as shown in Fig. 9.3.10. If FEM is used to calculate the field
distribution, only the half area is the domain for calculation. If BEM is used, the
influence of the whole contour must be added in the whole integral equation.
Dividing the boundary into eight elements, the LHS of Eq. (9.3.68) is

hyy hya his hyg hyg hyq hye hxs1 uy ]

hay has hys uz

h3, h3sg hss us

hay hasg has Uy
------------------------------- --- (9.3.69)
hig hys hys hyy hya || us

h2s hyy hya us

hsg h3y hys || ue

_h48 has ha h44_ _us |

Due to symmetry, u; = ug, u, = u; and so on, only u, to u, are the unknowns,
thus the unknowns of Eq. (9.3.69) are reduced to half of (9.3.69). The final matrix
of His

hyy +hig hiz+hy; hys+hie hia+ hys
hay + hag  hay + ha7 has + hae  haa + has
hyy + hygs  hyz; + h3s hss + hys  haa + h3s
hay + hag haz + hy7 hys + hag  has + hys

(9.3.70)

Hence the order of the matrix is reduced to half of the original one.

1 8

5 Fig. 9.3.10. A symmetric problem
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9.4 Eddy current problems

Eddy current problems are significant in engineering practice. It was studied
from the beginning of the ninteenth century [17]. The physical properties of the
eddy current and the analytical solution methods are given in references [18,
19]. Due to the complexities of the eddy current problems, there are many
different formulations to solve them [20]. There are still many unsolved prob-
lems in 3-dimensional cases.

9.4.1 Eddy current equations

Consider a steady-state case with skin effects, the displacement currents are
neglected. Maxwell’s equations and the constitutive equations are

VxH=1J (9.4.1)
B

VXE -~ (9.4.2)

V-B=0 (9.4.3)

V-J=0 (9.4.4)

B =uH (9.4.5)

J=9E. (9.4.6)

Take the curl of Eq. (9.4.1) then combine it with Eq. (9.4.2) and use the vector
identity, VxVx A = —V2A + V(V-A), to obtain

VZH=V-H - yVxE — (Vy)xE

—V-(H-qu>+yya—H—£(Vy)xVxH. 94.7)
2 a vy

For linear magnetic or non-magnetic materials with constant conductivity
and permeability, Eq. (9.4.7) reduces to

JH
V2H = puy a (9.4.8)

This is the diffusion equation in linear materials in terms of the field density H.
By introducing the potential function one can obtain several different kinds of
formulations.
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9.4.1.1 A-¢ formulations

Based on Egs. (9.4.2) and (9.4.3), a magnetic vector potential A and a scalar
potential ¢ are introduced. Then

0A

E=—-—-Vo=E,—-E 9.4.9)

ot
where the subscripts e and s correspond to the induced and the impressed
camponents. By taking the curl of B and using Egs. (9.4.1), (9.4.5) and (9.4.9), one
obtains

0A 1
VA — uy <E + V(p> + ;(V/,t) xVxA=0 (9.4.10)
1 0A

In deriving Eq. (9.4.10), the Coulomb’s gauge V -+ A = 0 is considered. When the
constitutive parameters are constants, the above equations reduce to

VA = —pJ = — u(J, + J.) (9.4.12)
V9 =0 (9.4.13)

where J is the total measurable current density including the impressed current
density J; and the induced current density J,

J, =yE, =y(—Vo) (9.4.14)
J,=7vE, = —jwyA. (9.4.15)

In a 2-D case, V¢ is a constant. Substitute Eq. (9.4.15) into Eq. (9.4.13), one
obtains

(V2 + BHA = —pd; (9.4.16)
p* = —jouy . (9.4.17)

Equation (9.4.16) is the nonhomogeneous Helmholtz equation in terms of the
vector potential A. Solving the eddy current problem based on the Eq. (9.4.10)
and (9.4.11) is called the A — ¢ method.

9.4.1.2 T-92 formulations

Similar to the magnetic vector potential A, an electric vector potential
T (J = VxT)and a scalar potential Q (H = T — VQ), as defined in Sect. 1.1.1,
can be used to analyse eddy current problems. The divergence of T is defined as

V-T=—p?Q (9.4.18)
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then the following equation is obtained

VT + B°T=-VxJ;=8S. (9.4.19)
This is because

VxVxT=VxJ

— VT +V(V-T) =VxJ, — jouyH

then
(V24 B)T=-VxJ, +V(V-T + Q). (9.4.20)

Based on the definition of fundamental solution and Eq. (9.4.20), the follow-
ing integral equation yields
CTi=JSiFdQ—J<Tia—F —Fi-a)df (9.4.21)
on on
Q r
where T; is one component of the T, S; is the correspondent component of the
source.

As B, A, T are vectors, the solution of Egs. (9.4.8), (9.4.12) and (9.4.21) is not
easy. In a 2-D case, A = A,k the vector partial differential equation is simplified
to a scalar equation, yielding an easier solution. For a 2-D case, the 4 — ¢
formulation consists of 3 equations, and the boundary conditions have several
components. Therefore the choice of the method of formulations of eddy current
problems is important [21]. A comparison of the CPU time required when using
the A — ¢ method and T — 2 method for solving a 3-D eddy current problem is
given in reference [22]. It shows when solving a given problem the 4 — ¢
method is much more time consuming than the T — Q method. The other

formulations such as the R — ¢ formulation [23], the reduced and the total
magnetic scalar potential formulations [24] are well known.

9.4.2 One-dimensional solution of an eddy current problem

Assume a long conductor with circular cross section as shown in Fig. 9.4.1(a). In
consideration of the sinusoidal excitation and the circular symmetry, Eq. (9.4.8)
reduces to

d’H 1 dH , 1 A

-d—;‘z“-i-;zr——(ﬂ +;3>H—0 (9.4.22)
where f? = +jwuy, H = H,. The solution of Eq. (9.4.22) is

H = Al (pr) + BK,(fr) (9.4.23)

where I, (fr)and K, (fr) are the first order modified Bessel functions [25] of the
first and the second kind, respectively. 4 and B are constants determined by the
boundary conditions as follows.
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Q()
1o ¥=0,€,

Q()
Flo"Y:O'Eo

a b

Fig. 9.4.1a,b. Current carrying conductor. a Circular cross section; b arbitrary cross-section

At r =0, H must be finite, but the function K,(fr) tends to infinity as
r approaches zero as shown in Fig. A.9.2, hence B = 0.
Atr =a, H=[/2na, hence

_ 1 L)
= 3 I,(fa) fa) (9.4.24)
consequently,
_, _4d H _ BI Io(pr)
J=J,= O + r = 2za I, (fa) (9.4.25)
A=a, = - L) (9.4.26)

=7 2ma I,(Ba)

where Iy(fr) is the modified Bessel function of the first kind of zero order. I, (fr)
is the modified Bessel function of the first kind of the first order. Equations
(9.4.24) and (9.4.25) indicate that both the amplitude and the phase of H and
J are changing along the radius.

9.43 BEM for solving eddy current problems

To solve eddy current problems with FEM, the mesh generation is complex as it
depends on frequency. Transient cases are even more difficult since the eddy
current distribution depends on the steepness of the transient. In this case, the
mesh should be regenerated at each time step. However, for BEM, the mesh
discretization of the boundary does not need to consider the influence of the
eddy current distribution within the domain. Hence the thickness of the penetra-
tion depth can be arbitrary if BEM is used to solve eddy current problems.
A general description for using the BEM to solve the eddy current problem is
given in reference [26]. In this section a 2-D problem is used as an example.
A 2-dimensional current carrying conductor with an arbitrary cross-section
as shown in Fig. 9.4.1(b) is considered. The vector potential A is chosen as the
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unknown variable, then
VA, + p?A,, = —uJ, inQ,. (9.4.27)
VA.,,=0 inQ,. (9.4.28)
Actually, the measurable current I is the known condition, and

I={J.ds+[J.ds (9.4.29)

where s is the area of the cross-section of the conductor. The current density J is
uniformly distributed. Thus

Jy= é (1 +jwaA:1 ds) . (9.4.30)

Substitution of Eq. (9.4.30) into Eq. (9.4.16), an nonhomogeneous integral
differential equation yields
ul

1
V., + %A, + gjwuy IAH ds = — 5 (9.4.31)

The constraint condition [ is included in Eq. (9.4.31). In reference [27] this
integral differential equation was solved by FEM. In this section it will be solved
by BEM, which is especially powerful with high frequency.

To avoid discretization of the source area, Eq. (9.4.16) is transformed into
Eq. (9.4.35) by the following method.

For simplification the subscript ‘2’ is ommitted let

A=A, — A, (9.4.32)
J, = —jwyA, . (9.4.33)

As J; is a constant it follows that A, is a constant. Assuming the Helmholtz
operator is a linear operator Eq. (9.4.27) is expanded to

(V2= B A+ (V2 + B2 A = — ;. (9.4.34)

By substituting Eq. (9.4.33) into Eq. (9.4.34) and considering that A, is constant,
V24, = 0, then in domain Q, one obtains

— (V2 +$*)4.=0. (9.4.35)

This is a homogeneous Helmholtz equation. By using the standard boundary
element formulation, Eq. (9.4.35) yields

[H,]{4.} — [Gl]{aa”::}eo inQ, . (9.4.36)

In the free space region, a similar equation is

on

— [Hol{4o} + [Go] {a‘%} =0 in Q, (9.4.37)
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By combining Eq. (9.4.36) and Eq. (9.4.37) by the interfacial boundary
conditions

Ay =4,=A4 A=A, — A
) 6A_ I 0A, (9.4.38)
Hy a"‘ﬂz on

and in addition to the known constrained boundary condition I is expressed by
Ampere’s law, i.e.

$Hdl =1 (9.4.39)
then the resulting system equation is
[H,] —[G.] hh|( {4} 0
—[Ho]l [Go] 0 [{{0A/on}}={ O (9.4.40)
0 L 0 {4} ) (-u

where the subscripts 1 and 0 correspond to the different areas 2, and Q,, the
column vectors {4}, {0A/dn}, {A,} are unknowns along the boundary and hh is
a column vector. The element of hh is the summation of the element of [H, ] in
each row. The component { 4,} is proportional to the impressed source voltage.
The elements of the matrices [H], [G] are

oF

k

H{) = J wkadr (9.4.41)
r;

Gy = [y Fdr (9.4.42)
I

where i, are shape functions of each element. For the constant element y, = 1
F is the fundamental solution corresponding to a different area, as listed in
Table 1.3.1. For a 2-D Helmbholtz equation,

F(r-r) = le HP(Blr —r'|) (9.4.43)

H‘oz’(ﬂ |[r —r’|) is th¢ Hankel function of the second kind of zero order (see
Appendix A.9.1 and reference [28]).
The elements of the column matrix L in Eq. (9.4.40) is

19 = sz,‘ dr (9.4.44)
r;

To solve Eq. (9.4.40), the boundary values of 4 and dA/dn are obtained. In
a 2-D case, E= —jwA and H = 1/u dA/dn, then the power loss within the
conductor may be easily calculated by using the Poynting theorem:

P +jQ = § (ExH)*-dS (94.45)

where H* is the conjugate of the vector H.
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Table 9.4.1. A comparison of the BEM to the analytical solution

r (mm) 0.5 1.0 1.5 20 25 3.0 35 4.0 4.5
A4, (%) 1.186 1185 1.186 1.186 1.186 1.186 1.186 1.187 1.077
Apn (Y0) 294 234 1.76 1.31 1.01 0.80 0.66 0.56 0.45

Example 9.4.1. Assume the radius of an infinitely long conducor is R = 5 mm,
the conductivity of the material is 5.6 x 107 S/m, the frequency of the current is
1000 Hz (R/6 = 2.35, § is the penetration depth). While the circle of the conduc-
tor is divided into 24 constant elements, the relative errors of the magnitude and
phase of the vector potential along a radius are given in Table 9.4.1. If the
number of elements are increased to 36, then the maximum errors of the
potential value and phase are decreased to 0.52% and 1.2%. This shows that if
the number of the elements are enough the accuracy of the BEM is sufficient.
This method can be used to a very high frequency. For example, if R/6 = 40.7,
the error of the power loss is 0.722%. However, it should be noted, that the size
of the discretized elements must be related to the wave length of the electro-
magnetic field. Otherwise the results may be inaccurate.

The formulations and computer program for calculating the modified Bessel
functions are given in [28, 29]. This method is also useful for solving eddy
current problems in multiple conductors [30].

9.4.4 Surface impedance boundary conditions

If the penetration depth is sufficiently small and the radii of the conductors are
much larger than the wave length, then the wave impedance condition can be
used to reduce the size of the problem by 50%.

Consider a plane wave, the electric and magnetic field strength satisfies the
impedance boundary condition which can be expressed

nxE=Znx(nxH) (9.4.46)
U 1/2
Zy=—F—) =~ (1+j)ous 9.4.47
< e—=(jy/w > (e ou ( )
2 1/2
= <___> (9.4.48)
wpy

where Z; is the boundary impedance. Consider the same problem given in
Sect. 9.4.3, by substitution of Eq. (9.4.46) into Eq. (9.4.40), the resulting equation
is

[H] —j;—# [G] hh

{ : } = { 0 1} (9.4.49)
L 0 s —Hu

jon
Z
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where
[H] =[H,] — [Ho] (9.4.50)

In Eq. (9.4.49) only the component of the electric field is chosen as unknowns.
Where the matrices [H;] and [Ho] are the same as in Eq. (9.4.40). More
detailed applications and discussions were shown in references [31] and [32]. In
a high frequency range this condition is very useful in field computation.

9.5 Non-linear and time-dependent problems

9.5.1 BEM for non-linear problems

As the superposition principle is implicit when using BEM it cannot be generally
used to solve non-linear problems. In electromagnetic fields, most of the non-
linear problems are due to the non-linearity of the materials. If the non-linearity
is not too strong, iterative procedure [33-35] may be successfully used.

The operator equation of a non-linear problem may be written as

PLu+ Nu=f 9.5.1)

where & and 4" represent linear and non-linear operators, respectively. If the
non-linear term ./ 'u can be treated as a known function, then Eq. (9.5.1) is
rearranged to

Lu=f—Nu. 9.5.2)

Thus the LHS of Eq. (9.5.2) is a linear term. All the influence of the non-linear
component is included in the RHS as a source term.
Assume u = u'®, then

Pu=f—NuD. 9.5.3)

This equation is solved by conventional procedures and the first approximate
solution u'? is obtained. Repeat the procedure, by using the recurrent method
until a certain criterion is satisfied. Finally, the solution of Eq. (9.5.1) is obtained.
The main advantage of this method is that during each iteration, the matrix of
H and G (the coefficient matrix of the potential and its normal derivative) of the
LHS of Eq. (9.5.3) are unaltered and only the term A'u® has to be calculated.

Example 9.5.1. A practical cable shown in Fig. 9.5.1 is chosen as an example
where the shield pipe is made out of ferromagnetic material. Assume the
magnetic strength in the pipe is less than the value of saturation, calculate the
magnetic flux density in the ferromagnetic pipe.

For non-linear permeability, Eq. (9.4.1) is written as

Vx<£VxA>=J (9.5.4)
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Fig. 9.5.1. The cross section of a power cable

or

1 1

—(VxVxA)——VxAxV(—>=J. (9.5.5)

It T
By using the same methods as in the Sect. 9.4.3, one obtains

|

(V2 + BHA = —VxAxV(;). (9.5.6)
If u is non-linear, f§ is the function of A. Let

B2 = B3 + B* 9.5.7)
Assuming all the variables are sinusoidal function, then

B3 = —jouoy 9.58)

B? = —jofy = —joy(p — Ho) (9.5.9)

where p, is assumed as an initial value of the permeability. By substituting
Eq. (9.5.7) into Eq. (9.5.6) and expand the RHS of Eq. (9.5.6) in cylindrical
coordinates, the result is

-
AL a—A> . (9.5.10)

or or | r? da oa

1/0u 04
V4 + BEA = —joy(u — po)A — ;( Loz

The RHS of Eq. (9.5.10) is considered to be a source term. It varies with the
changing of the vector potential A. The corresponding boundary integral
equation of Eq. (9.5.10) is

on

r Q2

1 .
EA+J/1‘2—5dr—f}«"‘a—AdHJPFdQ:O 9.5.11)
r

where

1<6u 04 1 o 6A>. 05.12)

=j —uNA+ - =Ly 28
P=jey(u = po) +u or or r* da oo
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In Eq. (9.5.11), F is the fundamental solution of a linear Helmholtz equation. By
using boundary conditions of Eq. (9.4.41) and writing Eq. (9.5.11) in an iterative
form, one obtains

1 N aF N aA K+1
_ AK+1 J‘AK+1__ _ f 'l‘( ket Fdr
2( )+j§1 on ar j; # <6n>

ri rl

Ne m
=-Y ( Y Wq(P,?‘F)q>S,,e = b* (9.5.13)
i=1 \g=1

where N is the number of the boundary elements, N, is the number of the
discretized elements of the domain, m is the number of the integrate points of
each element, w, are weighting coefficients of integration and S,, is the area of
element. The superscript k is the time of iterations. The iterative steps of
Eq. (9.5.13) are

(1) Start with a given .
(2) Calculate f,, P°, b~

k
(3) Solve Eq. (9.5.13); obtain A%, (g—:: .

(4) Calculate the value of Af, BY;, B; inside the conductor, and the variation
0AN* [0A\K
we () ()
. _ du ou
(5) Determine the value of g from the B — y, curve, then calculate 2
(6) If max|u**! — pu*| < ¢, then stop the iteration, otherwise

B(T)os I, 450
o> >
—— T 9
\ :? '&.__,_,y'/
0L / 300
N A
\ /
N\
X /[T
N 150
~ o/
=y —
0 0
00715 00740 m 00765 00715 00740 m 00765
r — r —
''''' Tegr =200 A
- - - Terr =280 A
a legr =400 A b

Fig. 9.5.2a,b. The distribution of B and y, in the pipe
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600
400 /A\
K, \
200 \\
0
0 05 10 15
B-—= Fig. 9.5.3. The pu, — B curve of the steel

ou 0
(7) Calculate —u, _,u, P b*.
or’ Oa
k+1

(8) Return to step (3) until the criterion, max|u¥*! — pu¥| <e, is satisfied.
During iteration, in order to accelerate the convergence, the permeability is
approximated by:

Wt =gk ra(i—pf) 0<a< (9.5.14)
where g is the value obtained from the B — yu, curve at the kth iteration.

The distribution of magnetic flux density and the u, — r curve in the pipe are
shown in Fig. 9.5.2(a) and (b), respectively. The smooth curves is obtained in
reference [36] by using FEM, the discretized points are calculated using this
method. The u, — B curve of the steel is given in Fig. 9.5.3.

9.5.2 Time-dependent problems

For time-dependent problems, incremental sequences are used. This means that
the problem is solved in subsequent time intervals by conventional BEM. For
example, consider a diffusion equation

ou

2u=—. S

Viu a5 (9.5.15)

At any time, this equation can be approximated as
u, —u
v? 70
() T

or

Vi) — = Yo (9.5.16)

At At
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The boundary integral equation of Eq. (9.5.16) is

JoF du 1
= =) udr—|F[= — dQ . 5.
Ciu j(&n),u IF <6n>,dr+AtJu°F dQ (9.5.17)
r Q

r

Assuming an initial value u, within the domain and the boundary value
u=1u, onl,

and

ou _

a_n =g onl,
then the solution of Eq. (9.5.17) is the result of u at the time ¢. Let this be a new
initial value of Eq. (9.5.17), and repeat the same procedure until a stable result is
obtained. In Eq. (9.5.17), the fundamental solution is obtained from the follow-
ing equation, i.e.

1
VZF,—ZF,-{-E,-:O. (9.5.18)

9.6 Summary

BEM is based on the boundary integral equation and the fundamental solution
of the governing equation of the problem. The boundary integral equation is
developed from the principle of weighted residuals, Green’s theorem and the
variational principle. It is useful for solving open boundary and three-dimen-
sional problems.

A typical discretized equation of BEM is in the form of

(H]U = [G]Q

where the components of U are the nodal values of the potential function on the
boundary. The components of Q are the normal derivatives of the potential
function of the boundary nodes. The coefficients of matrices H and G are
integrated from the fundamental solution of the governing equation and the
shape function of the discretization, i.e.

OF
Y = [wgar 6= [yurar
T ry
Because the discretization is carried out only on the boundary, the size of the
matrix is much smaller than the one obtained using differential methods. The

pre- and post-data processing is simpler than with FEM. It is useful for solving
3-D problems and eddy current problems in high frequency and transient cases.
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The corresponding matrix of the discretization equation is usually unsym-
metrical, and full, Gauss’s elimination or Cholesky’s decomposition methods are
used for solving the matrix equation.

During the procedure of approximation, the principle of superposition is
implied, so this method is usually not suitable for non-linear problems. If the
material contained in the problem domain is non-linear, the iterative method is
more successful for such problems.
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Appendix 9.1 Bessel functions

Bessel functions, J,(z), J -,(z), Y,(z) are the solutions of a particular differential
equation (called Bessel equation) in the form of
2
2f+ f‘_f+ (A2z2—vH)f=0 (A9.1)
d dz
which was published by the German astronomer F.W. Bessel in 1826.
J(2), J _,(z) are Bessel functions of the first kind, Y,(z) is a Bessel function of
the second kind. They are expressed by the infinite series

= 1 Jz\v+2k

A = k;o m+—1)<7) (A9.2)
— < X 1 E —v+2k

J'"uz)_kgo("” KIT(—v+k+ 1)(2) (A9.3)

Y, (iz) = 2D eos(vm) — J -, (42) nos

sin(vr)

where I' is the Gamma function, the subscript v may be integer or noninteger.
J,(z), J - ,(z) are linearly independent except when v is an integer. If Az = x is
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J,,(XD
I, (x)

o5t L,

B S

-0.5p

Y, (x)
05 b )’ (x) y (x)

a

Fig. A.9.1. The Bessel functions of J,(x), Y,(x),n=0, 1,2

T

areal variable,andv=n(n=20,1,2,...), thenJ_, =(— 1)"J,.J,(x)and Y,(x)
are damped oscillation functions, as shown in Fig. A.9.1.

The linear combinations of J,(z) and Y,(z) are Hankel functions of the first
and second kind respectively, i.e.

H{(z) = J,(2) + iY,(2) (A9.5)
HP(2) = J,(2) — iY,(2) . (A.9.6)
Hankel functions are Bessel functions of the third kind. If v =n = 0, then
Hy'(2) = Jo(2) = iYo(2) (A.9.7)
HG(2) = Jo(2) = iYo(2) (A.9.8)

where H{"(z) and H@'(z) are Hankel functions of the first and second kind of
zero order, respectively.

Modified Bessel function

It is often desirable in applications to give the solution in real terms instead of in
a complex form. To do so, the Bessel function must be modified. If x = —iz, then
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Eg. (A.9.1) becomes

2
xzd{+xg—(izx2+v2)f=0. (A.9.9)
dx* dx

This is a modified Bessel equation. The solutions of a modified Bessel equation
are modified Bessel functions i.e.

© 1 x\'* 2k
I,(x) = i~*J,(ix) = k‘_;o YRR <§) (A.9.10)
® 1 x\ vt
) =)= ¥ 1)<5> (A9.11)
and
K,(x) = ’5‘(1‘—(5’51%”—X)> . (A9.12)

I,(x) and K,(x) are linearly independent, hence the complete solution of
Eq. (A.9.9) is

f=Al,(x) + BK,(x) . (A.9.13)

I, ,(x)and K,(x) are modified Bessel functions of the first and second kind,
respectively. If v=n =0, 1, the functions of I4(x), I,(x), Ko(x) and K,(x) are
given in Fig. A.9.2.

Fig. A.9.2. The modified Bessel functions
L— X of Io(x), I1(x), Ko(x), Ky(x)
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ber, bei, ker and kei functions

In solving some electrical problems, ber(x), bei(x) have been introduced by

Thomson. These functions are the real and the image part of Bessel functions i.e.,
ber,(x) + ibei,(x) = I,(i*?x) = J,(i'/*xi) (A9.14)
ker,(x) + ikei,(x) = e T VDK (xe* 74

= + 3 niH{(xe * 3"/4)

= F inie " H?(xe ¥ "/%) (A.9.15)
The fundamental solution of a Helmholtz equation is:
’ l 2 ’ 1 ’
F(r-v) = 2 HG (BIr = ') = 5— Ko(Blr = r'l) (A.9.16)
where
B = /wuce™* (A.9.17)
hence
1 - 1 - ni, 1 L oar
5= Kolxe 14y = y HY (xe~"il*) = 5 (kerox + ikeiox) (A9.18)

The computation programs for calculating ber, bei, ker, kei are given in
reference [29].



Chapter 10

Moment Methods

10.1 Introduction

As outlined in Chapter 2, the method of moments is a generalized method based on
the principle of weighted residuals. It covers the many specific methods discussed
such as the charge simulation method, the surface charge simulation method,
boundary element method and even the finite element method which is regarded
as one of the special cases of the method of moments. The name ‘moment’ is
understood here as the product of an appropriate weighting function with an
approximate solution. Any method whereby an operator equation is reduced to
a matrix equation can be interpreted as a method of moments. It is also considered
as the unified treatment of a matrix method (R.F. Harrington [1]).

Following Harrington, the basic principle of the moment method is to
assume an approximate function

u=Y a (10.1.1)

to replace the unknown function of the operator equation
Lu=f. (10.1.2)

In Eq. (10.1.1), &, are unknown constants and i, are basis functions or
expansion functions. Because ¥, is assumed to be a complete sequence of
linearly independent functions, thus Y, .y, approximates to the actual solu-
tion only if n - 0.

Substituting Eq. (10.1.1) into (10.1.2), and using the linearity of %, yields:

Y 2, LY, =f. (10.1.3)

Taking the inner product of Eq. (10.1.3) with a weighting function W, one
obtains:

S 4l LYy Wd =<, W) m=1,...,N. (10.1.4)
It can be written in a matrix form, i.e.
A{a} =B (10.1.5)
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where
<‘$ll/l’ W1><«-7W2, Wl> s <$¢m Wl>
A= : : : (10.1.6)
KLY WKLY 2 W) oo (LY, W)
LW
B= : (10.1.7)
S W

{2} is a column vector which consists of the unknown parameters of the
approximate solution.

The operator of Eq. (10.1.2) may be a differential or integral operator. W, are
linearly independent functions. In choosing the type of basis function, if the
properties of the basis functions coincide with the properties of the real solution,
then the approximate solution will quickly converge. In other words, a few terms
of the basis function ¢, is sufficient to approximate the real function. Other
aspects to be considered in choosing the basis and weighting functions are:

(1) the accuracy of solution desired,

(2) the ease of evaluating the matrix elements,

(3) the size of the matrix, and

(4) the realization of a well-conditioned matrix A.

The procedures of the moment method are

(1) Assume an approximate function to replace the unknown function in the
operator equation.

(2) Select a suitable function as a weighting function and construct the inner
product to the operator equation.

(3) Evaluate the integrals of the inner product and form the matrix equation.

(4) Solve the matrix equation to obtain an approximate solution.

Example 10.1. Solve the problem as shown in Eq. (10.1.8)

2

%=1+2x2 0<x<I

’ 1.
u(0) = u(1) =0 (10.1.8)

Solution. Let u =) ,a,V,, because the exact solution of Eq. (10.1.8) is the linear
combination of power functions, hence

Yu(x —x"T1) (10.1.9)

is chosen as the basis function. If the weighting function W, is the same as the
basis function, i.e.

Wo=(x—x""1) (10.1.10)
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therefore
2

1
Amp = <g¢’n’ Wm> = J(x _xm+1)[%(x - x"+1):|dx
0

1

n+1 |1 xm+n+l 1
= I)[x" — x™*"]dx = 1 -
Jn(n+ )[x" — x™""]dx = n(n + )|:n-+-10 m+n+10:|
0
S 10.1.11
Tm4n+1 (10.1.11)
m(m + 3)

1
— _— 2 _ ym+1 —
B=(f W,,,>—£(1+2x ) = xn* e = R

If n = 3, the matrix equation and the solution are
1/3 172 3/5]| (&, 4/15
12 4/5 1 @,y =< 5/12 (10.1.12)
3/5 1 9/71 (a3 18/35

and
12
a=<{0 (10.1.13)
1/6
Then
u=3(x—x)+ix—-xH=%x—-4x2-Lx*. (10.1.14)

This solution is exactly the same as the closed form solution.
In Example 10.1, the term ‘moment’ can be understood as a product of the
approximate function and of the moment x, x2, x* where

W=B+ B2+ ... (10.1.15)

when n =1, W= x — x? then ¢, = x, ¥, = x?, and so on.

Recall the basic idea of the method using weighted residuals introduced in
Sect. 2.3.1. If the boundary conditions are exactly satisfied, then the average
error principle remains

fewd@ =0 (10.1.16)

In this case, the error is distributed in proportion to the weighting function.
Consequently, the method of moments consists of taking moments of the
weighting function and the error function. It displays them while the weighting
function equals the approximate function, moment methods are equivalent to the
Rayleigh Ritz method (see Sect. 5.4.1).
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The method of moments is also useful for solving integral equations. For
instance, a Fredholm integral equation of the first kind is

;K(x, x') f(x)dx = g(x") (10.1.17)

where K(x, x’) is the kernel of the integral equation and g(x’) is a known
function. Assume f(x) = Z,,oc,,!ﬁ,,(x) and substitute it into Egs. (10.1.17) and
(10.1.6), the element coefficients of matrix A are evaluated by double integra-
tions, i.e.

bb
Qi = [ | K (%, X' )Y (x) Wpa(x) dx dx’ (10.1.18)

It is obvious more computation time is needed.

A different selection of weighting functions, basis functions and applications
of the moment method to solve different problems are introduced in following
sections.

10.2 Basis functions and weighting functions

The choice of the basis and weighting function are important to obtain
solutions using the method of moments. They influence the accuracy of the
solution and the computation time, even the success of the method. As shown in
Example 10.1, the choice of the basis function is dependent on the property of
the solution sought. In this section a different choice of using weighting function
is illustrated by the same example. Usually the basis functions are divided into
a global and subregion basis function. The global basis function is defined in the
whole region of the operator space where it cannot be zero. The sub-region basis
Sfunction is defined in the whole region and is nonzero only over a small sub-region
of the solution domain.
The most commonly used global basis functions are

Fourier series: u(x) = oy cos(mx/2) + a, cos(3nx/2) (10.2.1)
+ ascos(Snx/2) + - - -

Power series: u(x) =a; + arx? +azx*+. .. (10.2.2)

Chebyshev polynomial: u(x) = a; To(x) + a3 To(x) + a3 Ta(x) +-- - (10.2.3)

Legendre polynomial  u(x) = oy Po(x) + a3 P2(x) + a3 P4(x) + - .- (10.2.4)

The commonly used sub-region basis functions are

1
1 |x—xl < 7
1
Pulse function: P(x —x;) = AN+ 1D (10.2.5)

0 x>
x=xl>35 7D
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1
I —|x|(N+1) |x|<N+l
Triangular function: T(x)= i (10.2.6)
0 [x] > ——
N+1

Piecewise sinusoidal function:

x;sin K(xj+y — X) 4+ xj4+ 1 sin K(x — x;)
- X;< X< Xjyy
sin KAx;

S(x) = (10.2.7)

0
Quadratic interpolation function:

. . — . . —_— . 2
0(x) = { a; + bjlx = x;) + ¢(x = x)) X< X< X415 (10.2.8)

Spline interpolation function:
Y +32?2 =32<t<—12
Q,)={ —t*+3/4 —12<t<1)2 (10.2.9)
1t =3/2)? 12<t<3/2
In Egs. (10.2.5) and (10.2.6), N is the number of subdivisions in the domain. In
Eq. (10.2.9), t = x/4, 4 is the length of each sub-element.
The above functions are shown in Fig. 10.2.1. A linear combination of the
triangular functions of the form

Y=Y a,T(x —x,) (10.2.10)

gives a piecewise linear approximation function, as shown in Fig. 10.2.1(c).

“? P(x-x;)
1
!
X X Xjn
a (¢4
|
I
' 1
| I :
| |34 3/4
Il 1 1
X1 X; Xjn -3/2 -1/2 0 12 32
b d

Fig. 10.2.1a—d. Subregion basis functions. a pulse function; b triangular function; ¢ piecewise linear
function; d spline function
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The usual choice of basis and weighting functions is listed in Table 10.2.1.

Table 10.2.1. Collocation between the basis and weighting functions

Basis functions Weighting functions
Quadratic or spline function Dirac delta function
Triangular function Rectangular pulse function
Rectangular pulse function Triangular function

Pulse function Pulse function

Dirac delta function Quadratic or spline function

10.2.1 Galerkin’s methods

If the weighting function is identical to the basis function (e.g. Example 10.1) then
the resultant moment method is called Galerkin’s method. It is similar to the
Rayleigh-Ritz method which has been introduced in Sect. 5.4.1. In Galerkin’s
method, if the operator is self-adjoint, the matrix A is symmetrical (Eq. (10.1.12)).
Consequently the matrix equation is may be easily solved. If the order of the
matrix equation is not high, quick convergence and good accuracy may be
expected. The only disadvantage is that it takes a longer time to calculate the
elements of the matrix, especially for the integral operator.

10.2.2 Point matching method

In order to simplify the evaluation of the integration in calculating the coeffic-
ients of matrix A, the domain is presented by a set of discrete points and the
approximate solution is forced to satisfy the operator equation only at these
discrete points. Hence, it is called a point matching method. In this method, the
Dirac delta function is chosen as the weighting function. The procedures of
point matching are illustrated in Example 10.2.1.

Example 10.2.1. Use the point matching method to solve Eq. (10.1.8)

Let

u= i o, (x — x"*1) (10.2.11)
and "

W= 0d(x — xp) (10.2.12)
then

2 N 2
d7u _ y a,,|:d (x—x"“):|=1+2x2.

dx? 2 " dx?
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Divide the area by N points and take the matching points x,, = m/(N + 1)
(m=1,2,...,N). They are equi-distance within the interval of 0 < x < 1, as
shown in Fig. 10.2.2. Calculate the coefficients

d2 n—1
Uy = jé(x — xm)d—:c—z(,v —x"*Ydx = n(n + U(NT— 1)

0

2
m
b, =1 —
" +2<N+1)

If N =3, then
2 2 3/4 9/8 1/2
A=|2 4 3 , B={(3/2}, a={0
2 92 27/4 17/8 1/4

The result is
u=tx—-x)+ix—xH=3x-Ix*—ix
It is identical to the solution obtained in Example 10.1.

It is concluded that because the delta function is chosen as the weighting
function, the calculation of the coefficients of the matrix in using the point
matching method is simpler than Galerkin’s method. However, the matrix A is
no longer symmetrical as it was when using Galerkin’s method. Even though the
matrix A of the point matching method and Galerkin’s method are different in
value they yield the same solution. The only difference is that they have different
speeds of convergence and different computing time requirements in evaluating
the matrices. Using the point matching method, the accuracy and the conver-
gence are dependent upon the number and the position of the matching points.
The charge simulation method described in Chap. 7 is a special case of the point
matching method.

N+1

|

0 X Xy Xm 1

Fig. 10.2.2. Subdivision of a one-dimensional area
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10.2.3 Sub-regions and sub-sectional basis

With point discretization, the domain is subdivided into a number of sub-
sections, Q,,, and let

1 inside Q,
vi= {0 outside €, . (10.2.13)

This equation shows that the basis function exists only in the sub-region of the

domain. The following example is an illustration using this method.

Example 10.2.2. Use the sub-region method to solve Eq. (10.1.8).

Subdivide the region 0 < x < 1 into N equal sub-sections. The triangular
function is chosen as the basis function; it is a sectional linear function as shown
in Fig. 10.2.1(c), i.e. the unknown function is approximated by

u(x) =Y a,T(x — x,) . (10.2.14)

Referring to Table 10.2.1, the rectangular impulse function is chosen as the
weighting function, i.e.,

1 |x—xal <

W, = P(x — x,,) = 2(Nl+ b
0 IX — X,,,] > 2(—N+_l) .
Thus
Amn = <.([T(X - X,,), P(x - X,,,)>
1
=[(N+ )[—=d(x — xp-1) + 26(x — x,)
0
— 0(x — Xp+1)]P(x — xp)dx
if
m=n Amn = 2(N + 1)
if
{’">"+1 = 0 (10.2.15)
m<n+1
and if

1
m={"+ 4y = —(N + 1)
n—1
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Based on Eq. (10.1.7),
b =1 4 2x% P(x — X)) = {1, P(X = X)) + (2x%, P(x — X))

1
1 Xmt(N+1)

= jP(x — Xn)dx + f 2x2P(x — x,,)dx
x’"'f(Nl—+1-)

1

1 2 3 *mPINF)
+_

N+1 '3

1
XmT2(N+1)

1 2m? + 172

It is obvious that if the pulse function is used as a weighting function, then
the evaluation of matrix A is simpler than in any other methods used in this
section.

For the operator equation given in this example, the rectangular impulse
function is not suitable to be used directly as the basis function. This is due
to the fact that the second derivative of P(x — x,,) is not definite in the range
of the operator. The domain of the operator must be extended by redefin-
ing the operator as a new function, and the extended operator does not
change the original operation in its domain. More detailed analysis is shown
in references [2, 3].

10.3 Interpretation using variations

The method of moments can also be interpreted by variations as discussed in
reference [2]. In this section a special example is used to illustrate that the
method of moments is identical to the variational principle.

For an electrostatic problem

—eVip=0p (10.3.1)

or )
—_ p r ’
or) = j 20 40 (103.2)
o
where R = |r — r’| is the distance from a source point to a field point, here
1
P = —¢V? and P = j dQ’. (10.3.3)
4neR
s

The two operators in Eq. (10.3.3) are reciprocal only if the boundary condition
re — constant|,., , is satisfied.



336 10 Moment methods

Take a suitable inner product

(Lo, ¥y = [ (—eVi)pdQ’ (10.3.4)
>
and use Green'’s identiy
A
J(lﬁVz(p — @V2Y)dQ = E{;(z/z e _ ® ﬂp—)df . (10.3.5)
on on
Q r

Let I" be a spherical surface of radius r, ¢ and y are constants in the limit of
r — oo, thus the RHS of Eq. (10.3.5) vanishes. This equation then reduces to

fUV2pdQ = [ oV2ydQ . (10.3.6)
Q Q

Considering the vector identity V2o = V(yV¢p) — Vi - Vo and the divergence
theorem, Eq. (10.3.4) becomes
(Lo, ¥y = [eVy-VodQ — § ey Vodl (10.3.7)
Q r
The last term of Eq. (10.3.7) vanishes as r — oo for the same reasons as in
Eq. (10.3.5). Let ¢ = ¢, then
(Zo, ¥y =[e|Vp|*dQ. (10.3.8)
Q
Equation (10.3.8) shows that the inner product of {(Z¢, ) equals the
equivalent functional of the Laplacian operator. This means that the method of
moments is identical to the variational principle.

10.4 Moment methods for solving static field problems

To illustrate the use of the moment methods for solving static electromagnetic
field problems, two examples are shown.

10.4.1 Charge distribution of an isolated plate

A charged plate is shown in Fig. 10.4.1. The potential at any observation point is
expressed by a Fredholm integral equation of the first kind

a b
_L ! ’ o(xl’yl)
I e _f,,dy (-7 + 0 —yr e apge 04D

The corresponding operator equation of Eq. (10.4.1) is
ZPa=f. (10.4.2)

If the RHS of Eq. (10.4.2) is known, then the charge distribution ¢(x’, y') can be
determined.
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Fig. 10.4.1a,b. A charged plate

Let

N

o(r')y =Y a,,(r). (10.4.3)

n=1

If the pulse function is chosen as the subsectional basis function and Dirac’s
delta function is chosen as the weighting function, respectively, i.e.

1 within 48§,
Vo= {0 outside 485, (10.4.4)
and
Wi = 00 = )0 = ) (104.5)

Equation (10.4.4) shows that the charge density is a constant within a small area
4S8,. As the potential of the plate is known (U,), let the observation points be
located on the plate, using Eqgs. (10.1.6) and (10.1.7), the coefficients of the
matrices A and B are:

a

1
= Wy 23 = 5(x = %)3(3 = ) 7 f dx

—a

b

< ¥o(x',y) oy
S bl(x — x> + (y — y)*1"?
As,
L 10.4.
4neo R, un m#n (104.6)
2
G = S 1n(1 +212) m=n (10.4.7)
TEg

bm = <Wm5f> = <Wms UO>
a b
= [ dx" [ 8(x — x)0(y — ym)Uody = U, (10.4.8)
-b

—a
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where
Rmn = [(‘C - xm)2 + (,V - ym)2]1/2 (1049)

where 4s,, is the area of the sub-region. In Eq. (10.4.7) e is the equivalent side
length of the sub-region. The results obtained by solving the matrix A{a} = B
are identical to the ones obtained in Sect. 8.1 by using SSM. In other words, the
constant element of SSM is equivalent to the moment method while the pulse
and Dirac delta function are chosen as the basis and weighting functions,
respectively. Thus, SSM is one of the special cases of the moment method.

10.4.2 Charge distribution of a charged cylinder

A charged cylinder is shown in Fig. 10.4.2. The potential at any point P(r, a, z) is

h 2n
1 ’ 1 ’ ’
<p(r)=4—7—zg fa(z)fﬁrda dz (10.4.10)
—h 0

where
R=|r—r|=[r2=r?—=2rrcos(a —a') + (z —2')*]"*. (104.11)

If both the source point and the field point are located on the surface of the
cylinder and in the plane of « = 0, then

R = [2a* — 2a*cosa’ + (z — 2)*]"?

’ 1/2
- [4azsin2 (%) +(z— z')z] : (10.4.12)

2n

p h L[ ,]7
U0=EJG(Z)J [4(1 Sm<5>+(2_2) :| da’dz
0

h
e,
T 2 ) [a? 4 (z — 2)2]2 z
—h

(10.4.13)

U, is the potential of the charged cylinder and ¢(z’) is the unknown surface

P(r,ct,z) I
r’ .
(T H AN
0 ‘ 2
A G
h h Fig. 10.4.2. A charged cylinder
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charge distribution. Let
N

o(z') =Y, aua(z') (10.4.14)

n=1

and
Wiz)=0(z—2zn) m=1...,N. (10.4.15)

Substitution of Eq. (10.4.14) into Eq. (10.4.13), leads to

25Uy & Ya(2') ,
a - Z An J‘ [a + (Z _ z/)Z]I/Z dz (10416)

where N is the total number of source points. Taking the inner product of Eq.
(10.4.16) with weighting function, a set of algebraic equations are then obtained

n=1

N
Y Gty =bn m=1,...,N. (10.4.17)

n=1
When the matching points (z,,, a) are specified, the coefficients a,,, and b,, are
evaluated by

— n Z) ’
iy = J T ¢ (10.4.18)
“h

bn="Us. (10.4.19)

To evaluate the integrals of Eq. (10.4.18), it is important to note that if the
radius of the cylinder, g, is very small, then the integral of Eq. (10.4.18) tends of
infinity when z,, = z. In this case the resulting singular integral is evaluated by
the method discussed in Sect. 8.3.

If Y,(z') is a continuous function, Eq. (10.4.18) can be written as

Yalz zm)+l//(z... ,
J [a +(zm SRKE a

h

= ':l’n(zm) J [az +( 2]1/2 dz

Z) "
f[a+ 7y 4

Zm + h + [a% + (2, + h)?]Y?
—h+ [a* + (zn — h)*]"?

= lpn(zm) ln

J 7 + )z ])”2 dz' . (10.4.20)
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If z,, = 2/, then the second term of the RHS of Eq. (10.4.20) equals zero, thus

Zm + h + [a® + (zm + h)?]V?
Zm—h +[a? + (z, — B)?*]Y?°

This equation is used for evaluating the coefficients when the observation point
is identical to the source point. In other cases Eq. (10.4.20) is used to evaluate the
coefficients where the Gauss quadrature [4] is applied for the integration.

So far the basis function ¥,(z) has not been specified. If a pulse function is
chosen as the basis function and the cylinder is subdivided by N equalized
elements, the charge distribution of a cylinder of height h = 1 m and radius
a = 1072 m is shown in Fig. 10.4.3 where 2¢oUoy/a = 1 is assumed. The results
show that the number of subdivisions strongly influences the accuracy of the
approximation.

If a good initial guess such as o,(z’) is chosen, it will be helpful in obtaining
an accurate solution by using fewer elements. Consider that near the two ends of
the cylinder, a,(z’) is the largest. At the middle of the cylinder, o,(z’) is the
minimum and its derivative is zero. Thus a power series is considered as a basis
function, i.e. let

Qmn = Yn(zZm) In

(10.4.21)

Z’ 2n
Ya(z') = <;> (10.4.22)
and the positions of the matching points are chosen as
(m—1/2)
=———7h. 10.4.23
Zn = (104.23)

Reference [5] gives the result if Eq. (10.4.22) is used as the basis function, when
N = 6, the charge distribution is similar to the result obtained by N = 30 while
the pulse function is used as the basis function. This demonstrates the influence
of the basis function. Although the concepts of the moment method are more
complicated than SSM, the method of moments allows flexibility in choosing

a(s)
0.2
N=10
o4
N=30
T T — T z Fig. 10.4.3. Charge distribution along the cylinder

0 02 04 06 08 10 surface



10.5 Moment methods for solving eddy current problems 341

the basis functions. Therefore, it is more efficient than SSM in some cases.
Moment methods are considered as a generalized form of the methods of
approximation.

10.5 Moment methods for solving eddy current problems

10.5.1 Integral equation of a 2-D eddy current problem

Assume that the problem has translational symmetry as shown in Fig. 10.5.1(a).
A and J are scalar functions of the coordinates.

First consider the interior problem. Assume that the conductor is composed
of filaments with current density J(r’) then

1

Alr) = ﬁfJ(r’)ln—,ds’ (10.5.1)
2n lr—r|

Jry=J,+ J, = —joyA(r) + yU,/L (10.5.2)

Jo=7yUo/L (10.5.3)

Up(w)
a
h
/ ~ [
T
b c

Fig. 10.5.1a—. A 2-D current carrying conductor
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where U, is the terminal voltage and L and S are the length and the cross-
section area of the conductor. By substituting Eq. (10.5.1) into Eq. (10.5.2),
a Fredholm integral equation of the second kind is obtained

jouy

Jr) = 2n

jj(r’)lnlr —r|ds +J, . (10.5.4)

s

10.5.2 Sub-sectional basis method
Rewrite Eq. (10.3.4) to

J(r) 124 WJJ(r’)lnlr —rlds' = J,. (10.5.5)

s

The operator of Eq. (10.5.5) is

Z=1 —jw—w{flnh—-r’lds’. (10.5.6)
2n

Subdivide the domain into N square elements as shown in Fig. 10.5.1(b).
Assume the current density is approximated as

-3 (10.5.7)
i=1

Then let
v = {1 within the sub-element

0 outside the sub-element .

This means that the pulse function P(x) is chosen as an approximate solution. If
P(x) is also chosen as the weighting function, then the coefficients of matrix
A are

Amn = LY, W
=JP,,,(x,y)ds jo “YJJP (x, )

X ln[(xm - xn)z + (ym - yn) ]UZPn(xy ,V)deS’

Jouy

=4S, — e A8, 48, 1n[ (X — X,)? + (ym — yu)?]"? (10.5.8)

b= {Js, Wy =J548,, . (10.5.9)

Assume that the length of one side of the square elements is h. Eliminate all the
terms 4S,, in the equations of a,, and b,,, and consider the different relative
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positions of the source and field points as shown in Fig. 10.5.1(c), the formula-
tions to evaluate the elements of the matrix A are [6]

e = 1 "“‘”th [(m = X)* + m— ya)?] d/h>2  (105.10)
amn=1—10065’4“yh21 n[(Xm — %) + (m — ya)?] d/h=1
(10.5.11)
ifm=n
e = 1 _j%?" h?1n(0.44705h) . (10.5.12)

Solve the matrix equation
A{J} ={J,} (10.5.13)

the current distribution is obtained.

For rectangular elements, the more accurate expression for calculating a,,,, is
given in reference [6].

For a 2-D interior eddy current problem, the method described here is the
simplest and more efficient one. It is used in reference [7, 8].

For a problem with rotational symmetry, a similar method was used in
reference [9].

10.6 Moment methods to solve the current distribution
of a line antenna

Allow flexibility in choosing of the basis function and the weighting function. The
method of moments is ideally suited to solve electromagnetic radiation and scatter-
ing problems. (See the contributions of Harrington [2], Mittra [10] and Moore
[11]) A one-dimensional problem is chosen here to illustrate the use of the
moment method.

10.6.1 Integral equation of a line antenna
Figure 10.6.1 shows a cylindrical antenna of length | = 2h and with radius a,
where a is much smaller than the wavelength A. Hence the current is assumed to

be uniformly distributed along the circle, then the current is dependent only on
the variable z’. Thus

4, =t J 1(z)G(z, z')dz’ (10.6.1)
4
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Fig. 10.6.1. A line antenna with small radius

where G is Green’s function of free space. In a 3-D case,

- jkR
G(z,z')= 10.6.2
(z,2) R ( )
Hence Eq. (10.6.1) becomes
(e
Ho z)e
A.=— | ——dz’ 10.6.3
° 4n ,[ R (10.6.3)
—h
where
2 1
k=—;£=(w2;10£0)2. (10.6.4)
Consider the Lorentz gauge V-A = —jwugéo@ and in the sinusoidal steady
state case,
oA
do 1 0% A,
E.= —jwA, ——=—— S+ k%A, 10.6.5
) S0 " g, jw#030< oz* " _> ( :
then
0% A,
jougeoE; = 622~ + k%A, . (10.6.6)
Substitution of Eq. (10.6.1) into Eq. (10.6.6) yields
h
az
dnjwey E, = (@ + k2> J 1(z')G(z, z/)dz’ . (10.6.7)

—h

This equation is named Pocklington’s equation. It was used by Pocklington in
1897 to analyse the current distribution along a line antenna. The result showed
that the current distribution is approximately sinusoidal.
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In Eq. (10.6.7) E. is the incident field. Consider the source of the antenna as
a d gap voltage source, z- E;(z) = Ud(z), then Eq. (10.6.7) becomes

h
52
— drjwsy US(z) = (0—25 + k2> j 1(z)G(z 2)dz . (10.6.8)
~h
Integrate the last equation to obtain

h

jU .
j 1(z')G(z, z’)=Bcoskz—2—Smk|z| . (10.6.9)

No

-h

This is Hallen’s equation, where 7, = (10/€)"/? is the wave impedance of free
space and B is a constant dependent on the imposed condition.

10.6.2 Solution of Hallen’s equation

The global basis and point matching method is used here to solve Hallen’s equation.
As suggested in reference [12] for kh = 0.5 — 2.7 (i.e. h = 0.0795 — 0.429931),
the sinusoidal function is chosen here as the basis function, i.e.,

N
I(z') =Y, C,Sin[nk(h—|z'])] (10.6.10)
n=1
when N = 2, the matrix equation is
Cy

Alc,V=U (10.6.11)
-B

The coefficients of matrix A are evaluated by

h
a; = | Sink(h —|z'|)G(z, z')dz’
—h
h
aip = [ Sin2k(h —|z')G(z,z)dz’ i=1,2,3 (10.6.12)
~h
a;3 = Coskz;
iU
wi= — 27 Sink|z| i=1,23 (10.6.13)
210

To solve Eq. (10.6.10), the current distribution of the antenna is obtained. While
a/l =17.022x 1073, h/A = 0.0795 and h/A = 0.25, the real and the image com-
ponents of the current are shown in Fig. 10.6.2(a). If the length of the antenna is
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Fig. 10.6.2a,b. Current distribution along the line antenna

longer, e.g. h = 0.3954 — 0.754, the basis function

I(z') = C, Sink(h — |Z'|) + C, (Coskz’ — Coskh)

+ C;3(Cost kz' — Cosikh)

(10.6.
is a better choice than Eq. (10.6.10). The current distribution of a wave length

14)

antenna (h = 0.51) is shown in Fig. 10.6.2(b). In Fig. 10.6.2 the unit of the current
I(z) is normalized, i.e. the unit is (4/V).

In solving equation
G,
C,
Cs

—B

A

U,
U,
Us
Us

(10.6.15)

four matching points are chosen at $h, 4h and the two end points. The
comparison of the calculated results and the experimental data are given in
Table 10.6.1. In Table 10.6.1, the experimental data are taken from reference
[13].

The Gaussian quadrature is used to evaluate the coefficients of the matrix,
the matrix is solved by Cholesky decomposition. More applications of the
moment method to solve scattering and antenna problems are shown in refer-
ences [2, 14].
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Table 10.6.1. Current distribution of an antenna (L = 4/2)

z/A  Real component Image component
Calculated Experimental Calculated Experimental
00  9.4033 9.265 —3.5736 —3.825
0.05 9.2096 8.7 —4.5926 —4.76
0.10 8.0387 7.65 —4.8230 —4.76
0.15 59584 5.78 —4.0324 —4.08
0.20 3.1723 34 —2.2983 —2.55
025 o 0. 0. 0.

10.7 Summary

Moment methods are generalized approximate methods based on the principle
of weighted residuals. It is also identical to the variational approaches, so is
regarded as the universal name for numerical methods.

In numerical solution the operator equation £u = f is changed to a matrix
equation A{a} = B by using the inner product operation, i..

(LY WL, Wid - (LY, W

A= : : :
(LY, W) (L2, Wy - (Lo, Wy
WD

B={

W

N
where ¥, is the basis function of u,i.e.,u = Y «,,. W, are weighting functions.
n=1

Due to the flexible choice of the basis function and the weighting function,
moment methods cover all of the methods discussed previously. If the best
choice of the approximate function and the weighting function is achieved, the
efficiency of the computation is high. The problem shown in Fig. 10.4.3 is a good
example.

Because of the wide adaptability of this method, it can be used to solve static,
quasi-static and dynamic problems expressed by differential or integral equa-
tions. The domain to be discretized may be the whole domain or the boundary
of the domain. Hence it can be classified as the domain method or the boundary
method according to use.

From Sects. 10.4 to 10.6, moment methods have also been used to solve
problems expressed by integral equations, so they are known as. integral
equation methods. Unlike differential equation methods, integral equation
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methods as a rule have no need for additional requirements. All the boundary
and constrained conditions are part of the kernel function, so a particular kernel
is related to particular boundary condition and does not have universal validity.
Hence in using the integral equation method, the first step is to derive a specific
integral equation for a given problem. During calculation of the coefficients of
the matrix, numerical integration is often used.
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Part Four

Optimization Methods
of Electromagnetic Field Problems

In this part the remaining two chapters illustrate the optimization of electro-
magnetic field problems. Mathematical methods to search the extrema (max-
imum or minimum) of an objective function are introduced in Chap. 11. These
methods are used to solve the problems given in Chap. 12. Strict theoretical
problems concerning optimization are beyond the scope of this book. All the
material presented in this chapter is for readers who wish to understand the
properties of those methods and to use them well.

The optimum design of electromagnetic devices is important and is difficult.
This includes field analysis and synthesis. There is no general method to solve
these problems. In Chap. 12, several methods are introduced to find the opti-
mum shape of electrodes and the best size of magnets.



Chapter 11

Methods of Applied Optimization

11.1 Introduction

The advanced purpose of the analysis of electromagnetic fields is to determine
a better design of a practical problem. Design optimization (sometimes called
the inverse problem) deals with the problem of finding the source distribution or
the dimensions of devices for a specific purpose. Most inverse problems involve
numerical optimization. This chapter provides the mathematical methods used
for the optimum design.

The study of optimization methods is a special area of applied mathematics.
There are many books available on this topic references [1-5]. The purpose of
this chapter is to help readers to understand the general principles of various
optimization methods and to choose appropriate algorithms already developed
by mathematicians. Most general algorithms of unconstrained and constrained
optimization methods are available in references [6, 7], or in the computer
libraries of IMSL (International Mathematical Scientific Library) or that of
NAG (Numerical Algorithms Group).

11.2 Fundamental concepts

Usually, the optimum design for practical problems has to satisfy some prede-
termined conditions. Such as

Min! F(X)
Subject to h(X)=0 i=1,...,p (11.2.1)
g;i(X)=0 j=1,...,m

where F(X) is the target or the objective function. X is a vector of the order nin
the linear space E,. The second and third equations in Eq. (11.2.1) are the

! Max F(X) = — Min — F(X)
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constrained conditions of equality, inequality, respectively. Hence Eq. (11.2.1) is
the mathematical expression of a constrained optimization problem. A typical
example used to illustrate the constrained optimum problem is to determine the
maximum volume of a rectangular box such that the dimension in any direction
is less than or equal to 42 cm and the sum of the girth and the length of one edge
is less than 72 cm [8]. The corresponding equations are

Max F(X)=x1x3x3
subject to: 0 < x; <42
< 0<x,<42
(11.2.2)
0<x;<42
0<x;+2x,+2x3<72

This is a constrained non-linear optimization problem, as the target function is
non-linear. If one of the constrained conditions is non-linear, then the problem is
also non-linear. If the objective function and all of the constrained conditions
are linear functions, the problem is one of linear optimization and is a problem
of linear programming. If the variables of the objective function have no
restrictions, then the problem is one of unconstrained optimization. Actually,
unconstrained optimization methods are the foundation of constrained optim-
ization problems. Hence methods to solve unconstrained optimization will be
introduced as the main part in this chapter.

11.2.1 Necessary and sufficient conditions for the local minimum

As shown in Fig. 11.2.1, there are two local minima and one global minimum.
For a univariate function y = f(x), the necessary and sufficient conditions of
local minimum are

S'(x*)=0
f"(x*)>0 x* is minimizer (11.2.3)

f"(x*) <0 x* is maximizer

fx)

local minimum 519ba1
weak minimum minmum Fig. 11.2.1. Local minima and
0 global minimum
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The minimizer is the minimum point of f(x). In Fig. 11.2.2, a zero slope holds at
the minimizer.
For functions with two variables, the necessary and sufficient conditions are

{f;(X*, y¥) =fy(x*y*)=0
LS5 (c*, %)% = £ (x*, y*) 5, (x*, y*) < 0
where f'.(x*, y*) < 0, (x*, y*) is the maximizer, if ', (x*, y*) > 0, (x*, y*)is the
minimizer.

For the multivariable function F(X), the necessary and sufficient conditions

are classified as follows. Expanding F(X) by Taylor’s series and neglecting the
higher order terms of the series, one obtains

(11.2.4)

F(X+ 4X)=F(X) + AX"g(X) + $ AXTG(X)4X (11.2.5)
where
—iF__
0x,
gX)=VFX)=| : (11.2.6)
JoF
0x,,
[ aF 3F |
ox? 0x, 0x,
G(X)=Vg(X)=V?F(X)= : : (11.2.7)
0*F 0°F
0x,0x, ox?

and g(X) s the first order derivative of the objective function. G(X) is the second
order derivative of the objective function, it is known as the Hessian matrix of
the objective function. For the linear function, g(X) is constant, for quadratic
function, the Hessian matrix is constant.

fx

|
|
! X  Fig. 11.2.2. Zero slope and non-negative
X curvature at x*
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From Eq. (11.2.5), it is found that if X is the local minimizer, the following
conditions must be satisfied, i.e.

g2(X*)=0 (11.2.8)
and
F(X+ 4X)> F(X*) or F(X+ 4X)> F(X*). (11.2.9)

In other words, the necessary and sufficient conditions for the optimum of
the multivariable functions are

{g(X*)=0

11.2.10
AXTGAX)>0 or AXTG4X=0 (112.10)

g(X*)=0 means X* is a saddle point or a stationary point where
F(X* + 4X) — F(X*)is sometimes positive, sometimes negative and sometimes
zero, depending upon A4X. If AXTG(X*)4X > 0 exists, G(X*) is a positive
definite matrix, X* is a strong minimizer. It means that the objective function
may increase in any direction around the point X *.

IfAXTG(X*)4X > 0, G(X*) s a positive semi-definite matrix. X * is a min-
imizer but not strong. Thus the first equation of Eq. (11.2.10) is the necessary
first order condition while the second is the second order sufficient condition. So
the necessary and sufficient conditions for the existence of multivariable functions
are g(X*) =0, and G(X*) is positive definite or positive semi-definite.

11.2.2 Geometrical interpretation of the minimizer

For a two-variable function F = f(x, y), let F = C;, C, . .., then a set of plane
curves are obtained as shown in Fig. 11.2.3. These curves are called the contour
lines of f(x, y).

It can be seen from Fig. 11.2.3, that in the vicinity of the minimizer the
contour lines of the function are approximated to ellipses. The minimizer of the
function is the centre of the ellipses. This can be illustrated as follows.

By expanding f(x, y) by Taylor’s series at the point of minimizer (where the
first order derivative of f(x, y) is zero) and neglecting the third order terms, then

0o ) = flxe*, y*) + 3lar (x — x*)?
+2a15(x — x*)(y — y*) + a2 (v — y*)*] (11.2.11)
where
ayy =fi ai; =f% az, =f4 . (11.2.12)

If a,,a,, > a?,, the contour lines represented by Eq. (11.2.11) are ellipses and
the centre point is x*, y*. The procedures in finding the minimizer of f(x, y) is to
find the centre point of the set of ellipses. Consequently, to find the minimizer of
a multivariable function is equivalent to finding the centre of the ellipsoid.
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Fig. 11.2.3. Contour lines of the function of two variables

11.2.3 Quadratic functions

The quadratic function is the simplest form of non-linear functions with con-
tinuous second derivatives. As illustrated in Sect. 11.2.2. in the vicinity of the
minimizer, the characteristics of any 2-D non-linear function is approximated by
a quadratic function. Hence the quadratic function has specific meaning for
discussing the minimization of the non-linear functions. Any quadratic function
can be expressed as

FIX)=4XTAX +b"X+ C

1 n n n
=32 Y ayxix;+ X bixi+C (11.2.13)
i=1j=1

i=1
where A is a symmetric matrix of the order nxn, and n is the number of
independent variables of F(X). Then

VEF(X)=g(X)=AX+b (11.2.14)
GX)=Vg(X)=A (11.2.15)
From Eq. (11.2.14), if g(X*) = 0, then the minimum point X * is obtained, i.e.
X*=—-A""'D. (11.2.16)

Thus in the case of a quadratic function, the minimizer can be determined
directly by A and b.
Figure 11.2.4 shows the contour lines of function 6x? — 5xy + 16y* = 1.
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Fig. 11.2.4. The contour lines of a quadratic function

Example 11.2.1. Find the minimizer of the following function
F(X) = 4x} — x] — 40x, — 12x, + 136 = min (11.2.17)
Solution. Rewrite the function F(X) in a standard matrix form, i.e.
F(X)=4(x, — 5)* + (x; — 6)*
1

8 0 X 40 X1
E[Xl xz]l:o 2:|{x2}—{12}{xZ}+136
8 0 —-40
A=[0 2} b={—12} e

solve equation AX + b =0, the result X* = {g} is obtained. Because A is
positive definite, hence X * is the minimizer.

This concept is used in creating a number of optimization methods to solve
unconstrained optimization problems.

thus

11.2.4 Basic method for solving unconstrained non-linear
optimization problems

In consideration of Eq. 11.2.3, the non-linear unconstrained optimization prob-
lems are equivalent to the solution of a set of non-linear equations:
VF(X*)=0 (11.2.18)

Solve the above equation, then determine whether X * is a minimum or a max-
imum by using the condition

4XTG4X >0 (11.2.19)

The solution of Eq. (11.2.18) is a problem of function minimization. However, in
practice it is difficult or even impossible to express Eq. (11.2.18) analytically.
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Therefore, the method of solution of unconstrained non-linear optimization
involves an iterative process to minimze the objective function approaching
a minimum value. The method is composed of the following four steps:

(1) Assign an initial point X(g,.

(2) Determine the search direction p; at the current point X;.

(3) Find a new point X;,, = X; + ip;, along the direction p; to ensure
F(X;+,) < F(X;), where 4 is the optimum step in the direction p;.

@) M VF(Xis )l <e

or |[F(Xi+y) — F(X))| <e
or [ Xiy, —Xill <e

then X;,, = X*, otherwise return to step (2). Until the convergent criterion in
step (4) is satisfied.

The conditions given in (4) are assumed as ideal conditions to obtain the
final results. This process is not always workable. It is possible that if the
following conditions occur, then the iteration for searching the minimizer could
be stopped if

(1) An acceptable estimate of the solution has been found.

(2) The iteration is slow and no progress is observed.

(3) The predetermined number of iterations does not lead to acceptable
results.

(4) An acceptable solution does not exist.

(5) The result is oscillatory.

Consequently, a good program for searching the minimizer is needed to deal
with the various possibilities.

11.2.5 Stability and convergence

The algorithm is stable or exhibits global convergence if it converges to a minimum
(or in some cases, it is a stationary point) no matter the value of the initial point and
does not stop at an extraneous point. In non-linear optimization, stability is
almost always associated with an iterative scheme which reduces the function
value at each iteration until the minimum has been found to any prescribed
degree of accuracy. An algorithm is said to exhibit local convergence if the
starting point is sufficiently close to the minimum.
The rate of the convergence is defined as:

N X — Xl
K = lim ———r—
k= || X — X*||"

)-max - imin 2 Y- 1 2
K=| — | = — | . 221
[imax'i"{minj] |:'}’+1:| (11 )

0<K<1 (11.2.20)

or
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Equation (11.2.20) measures the closeness of X;,; to X* compared to that of
X to X*. Rapid convergence is associated with large values of r and small
values of K. r is the rate of asymptotic convergence. The case r = 1 indicates that
the sequence is linearly convergent. If r = 2, the sequence is said to have
quadratic convergence. If r = 1, K must be less than | in order to obtain
convergence. The fastest possible first order rate is that of K = 0. This is the rate
of superlinear convergence. Generally speaking, the value of r depends upon the
algorithm while the value of K depends upon the function being minimized.
In Eq. (11.2.21), the condition number y of the Hessian matrix is defined as:

y = Amas (11.2.22)
'lmin

where 4.y, Amin are maximum and minimum eigenvalues of the Hessian matrix
at the minimum of the function. A function is ill-conditioned if y is sufficiently
large. On the other hand, a function with a relatively small value of y is a well
scaled function. For an ill-conditioned problem, the contours of the objective
function are those with a high value of ellipticity. In a well scaled problem, the
contour lines of objective function are closed to circles. It is more difficult to find
the minimum if the problem is ill-conditioned than that of a well scaled problem.

11.3 Linear search and single variable optimization

Optimization methods for a single variable function are not only used to find the
extremum value of the univariate function but more important in determining
the extrema of multivariable functions. As mentioned in Sect. 11.2.4, to deter-
mine the optimum step 4 in each iteration is to search the minimum of the
function F(A) along a specific direction p,, e.g.

F(3) = F(X, + Ap,) = min . (11.3.1)

This is a single variable optimization problem with respect to A. Hence the
accuracy of the linear search is extremely important in many optimization
methods. It influences the speed of convergence of the methods. If the linear
search is not accurate, the solution might diverge.

11.3.1 Golden section method

The golden section method is a simple and effective method for searching the
minimum of an unimodal objective function in an interval [a, b]. The strategy of
the method is to reduce the interval of the search by comparing the successive
values of the objective function iteratively until the minimizer is approached.

A single evaluation of the function F(x) within the interval [a, b] is not
sufficient to reduce the interval by comparing the values F(a), F(b) and F(c) (c is
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any point within [a, b]). The reason is that this process cannot distinguish
whether x* is within the interval [a, c] or [c, b] as shown in Fig. 11.3.1. If the
values of the objective function are calculated at two points ¢ and d, when ¢ < d
and if F(c) < F(d), then a minimum certainly lies either within the interval [c, d]
or [a, c], as shown in Fig. 11.3.1(b) and (c). Thus the interval of uncertainty of
the minimizer is reduced to [c, b] or [a, d]. When ¢ < d and if F(c) > F(d), the
interval of uncertainty is reduced to [a, d] or [c, b] as shown in Fig. 11.3.1(a),
(d). If F(c) = F(d), then the interval of uncertainty is [c, d]. Repeating these
procedures, the initial range [a, b] is reduced continuously to [ay, b,] (a, and
b, represent the interval in each iteration) until the optimizer x* is obtained.

In the process of iteration, e.g. at the kth iteration, the position of the points
¢ and d, within the interval [a;, b, ] may be determined by several methods. For
example, ¢, and d, may be determined by the trisection of [a,, b, ] or determined
by multiplying a changeable coefficient, the Fibonacci number (Fibonacci
method). If a constant such as the so-called optimum coefficient (0.618), is used to
reduce the interval in each iteration then the method is called ‘golden section
search’. The number 0.618 is obtained by the following derivation.

Let us assume

e = b —a(b, — ay) (11.3.2)
di = a, + a(by — ay) (11.3.3)

F(x) F(x)

X X
a b
F(x) F(x)
|
' [
: : | |
| I ! |
| ! [ | '
| . | I !
| | [ [ [ l
| | | | | | | |
| I [ x L ! L | X
c a [ d b d a c d b

Fig. 11.3.1a-d. The optimum process of an unimodal function
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when k = 1,
¢,=b—a(b—a) (11.3.4)
di=a+ab—a). (11.3.5)
If f(c,) <f(d,), the next interval is [a, a + a(b — a)], then
ca=b —alb;—a;)=a, + (1 —a)(b; — a,)
=a+ (1 —o)fa(b —a)] (11.3.6)
dy =a; +a(b, —a;)=a+ a*(b—a). (11.3.7)

Compare the above equations, if ¢, = d;, then o = 0. This is a trivial case of no
importance. If d, = ¢, yields

a+a*(b—a)=b—a(b—a) (11.3.8)
then

= :__1%;/5 — 0.618033988 . (11.3.9)

This « is the ratio of the lengths of the subsequent intervals. It is always positive.
By using the factor of 0.618 during each iteration the interval is reduced by
38.2% and only one function value is to be calculated in each step. The ratio of
the lengths of the final interval to the first interval after n iterations is
a" " Y(a = 0.618).

The computer program of the golden section method is given in
reference [8].

11.3.2 Methods of polynomial interpolation

In the method of polynomial interpolation, the minimum of an objective function
in a given domain is replaced by the minimum of an equivalent polynomial in the
same domain. This method may have better rates of convergence compared with
the method of comparison the function value only.

Powell’s quadratic interpolation
Assume that the objective function F(x) is approximated by a quadratic inter-
polation function of the form:

d(x) =ag +a;x + a;x* . (11.3.10)

It is shown by the curved line of dashes in Fig. 11.3.2. The three coefficients
aq, a,, a, are determined by 3 values of the original objective function F(x).
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Fig. 11.3.2a-d. The minimum of F(x) approximated by quadratic interpolation

Since the minimizer of Eq. (11.3.10) must satisfy the following equation

o _ 4 11.3.11
x 2, (11.3.11)

only the ratio a,/a, is of interest. Assume that the interval of interest of the
optimized function is [a, b] and that c is an internal point. Let F,, F,, F.indicate
the function value at points a, b, c. Hence the minimizer of Eq. (11.3.11) is
determined by:

l(b2 — Y F, + (c? — a*)F, + (a* — b?)F,
2 (b—c¢F,+(c—a)F,+ (a— b)F.

After x* and F(x*) is calculated, according to the four cases shown in
Fig. 11.3.2, the interval [a,, b, ] is reduced sequentially. If the criterion

ok

(11.3.12)

by —a,<e¢ (11.3.13)
or
F(cx) — Flck+1)
—_— " <¢ 11.3.14
Fo) 2 ( )

is satisfied, then the approximate minimizer is obtained.
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In the minimization of multivariable functions, the minimizer is searching in
a specific directions, p, in each step. In the direction p, an optimum step 4, is
determined by a linear search, i.e.

F(4) = F{X, + Ap;) = min . (11.3.15)

In this case, the three points are on the line of X, + Ap;. The optimum of an
univariate function is one step of the minimization of the multivariable function.
Detailed procedures of this method are given in reference [2].

Davidson’s cubic interpolation

The cubic interpolation method uses the minimizer of a cubic function
o(x) = ag + a;x + a;x? + a3 x*

to approximate the minimizer of the function. Two function values together with
their directional derivatives within the range [a, b] are used to determine the
four constants of a cubic interpolation. If the directional derivatives of F(x) can
be evaluated, then the cubic interpolation method has higher accuracy than the
method of quadratic interpolation. Detailed formulations are derived in
reference [2].

11.4 Analytic methods of unconstrained optimization problems

Methods for solving unconstrained minimization of an arbitrary multivariable
function F(X) are divided into two kinds: the analytic methods and the direct
methods. The analytic method is also called the gradient method, it is based on
the derivatives of the objective function. Direct methods are based only on the
value of the objective function itself, hence it is a function comparison method.
These two kind of methods are described in Sects. 11.4 and 11.5.

Analytical methods are dependent on the analytical properties of the objec-
tive function. At the starting point of the kth iteration, the variables are denoted
as X,, the search direction p, and the optimum step A, are used to estimate the
new point, i.e.

Xiv1 =X + by (11.4.1)

where the optimum step A, is determined by the univariate minimization as
discussed in Sect. 11.3, i.e.

F(1) = F(Xx + Aps) = min . (11.4.2)

If A, is determined by Eq. (11.4.2), the method is called an exact linear search.
Opposite to the exact linear search, the simple method is to assume that 4, = 1.
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A number of analytical optimization methods are dependent on the different

choices of the search direction p,. These are discussed as follows.

11.4.1 Steepest descent method

The direction opposite to that of the gradient of the objective function is an
obvious choice as the steepest descent direction for minimizing the function, i.e.

pe=—VF(X)=—g(X). (11.4.3)
The exact linear search is then taken to determine the optimum step 4, i.e.

F(4) = F(Xi + A4pi) = min (11.4.4)
then the following equation is obtained.

dF r

3 = V& + 4p) ) pc =0 (11.4.5)
Le.

[gx+1(X)1 P =0. (11.4.6)

Equation (11.4.5) indicates that the sequential directions p,, and p, of the
search are orthogonal to each other.
The steps of the steepest descent method are as follows:

1) Assume X, ¢

2) Calculate gy, let p, = — g,

3) Find the optimum step A, along the direction p,

4) Evaluate X, = X; + L

5) Calculate gy 4, if || gx+1 || < € then output the results otherwise k = k + 1
and return back to step 2.

(
(
(
(
(

The rate of convergence of the steepest descent method is slow when the
search is close to the minimum. The zig-zag progress of the search direction for
a typical quadratic function is shown in Fig. 11.4.1. If the contours are oblate
ellipsoidal, in other words the Hessian matrix of the objective function is ill-
conditioned, the convergence is very slow in the vicinity of the minimizer. If the
contours of the objective function are hyperspherical, the direction of steepest
descent points directly to the minimum. The convergent rate is quadratic.

Fig. 11.4.1. The convergent process of the steepest
descent method
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Consequently, the disadvanatage of the method of steepest descent is that
the specd of the convergence depends significantly on the property of the
objective function. For example, if F(X) = x? + 25x3, let X, = (2, 2)7, after 4th
iteration the minimum is obtained. If the variable x, is changed by y = 5x,, then
F(x,y) = x? + y?, the minimum is obtained in a single computation. Hence the
method of steepest descent is not recommended directly as a very effective
method.

11.4.2 Conjugate gradient method

The aim of this method is to obtain an effective process with quadratic conver-
gence and with the requirement of a lower order of derivatives of the objective
function in the process of searching. The definition of conjugate direction,
quadratic termination and the procedures of the conjugate gradient method are
introduced in this section.

11.4.2.1 Conjugate direction

Let G be a symmetric positive definite matrix of the order nxn.

pe (k=0,1,...,n— 1) are non-zero vectors of the order n. If for any value of
i the following condition is satisfied
prGpi=0 (i#ji,j=01,...,n—1). (11.4.7)

Then p; is said to be mutually conjugate with respect to a positive definite matrix G.

11.4.2.2 Quadratic convergence

If the design variables of the objective function are denoted by n and the minimizer
is obtained during the nth iteration, i.e.

X, = X* (11.4.8)

then the method has the property of quadratic convergence. This result is obtained
if a quadratic function with a positive definite Hessian matrix G and the conjugate
directions p; are chosen as the directions of search and the exact linear search is
used for determining .. This characteristic is analysed as below.

For a quadratic function

FX)=4XTAX +bX + ¢ (11.4.9)
the first order derivative of F(X) is
gX)=VFX)=AX+b (11.4.10)
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then
gk+1 = AXis 1 +b=AX + Lp) + b =g + LAp, . (11.4.11)
Substitution of Eq. (11.4.11) into Eq. (11.4.5) leads to
giPx+ ApiAp, =0 (11.4.12)
or
T
8k Px
= — . 11.4.13
* Pi Api ( )

Rewriting Eq. (11.4.11) in a sequential form yields
& =81+ L-1AP -1 = gu-2 + h-2APi—2 + A-1Api— . (11.4.14)
Considering that

A8y = gu+1 — & = AdX, = L Ap, . (11.4.15)
then
k=1
& =g+ + ) Adg (11.4.16)
i=j+1

whereby multiplying p] on both sides of Eq. (11.4.16), leads to

k-1

(P) g =(P)Tgi+1+ Y (P)T4g j=0,1,...,k=1. (11417
i=j+1
Due to the first term of the RHS of Eq. (11.4.17) being zero and combining this
equation with Eq. (11.4.15), the following result is obtained

(pj)Tgk = .kzl (pj)TAAXi = kzl lk(Pj)TAPi
i=j+1 i=j+1
(j=0,...,k—=1). (11.4.18)
If k = n, then
(P)'g.=0 (11.4.19)

1e. VF(X,) = 0, thus X, = X*. Therefore, the minimizer is obtained during the
nth iteration.

11.4.2.3 Selection of conjugate directions

As demonstrated in the former section, if the conjugate directions were taken as
the search directions of search, the solution is obtained during nth iterations.
However the directions of conjugates were not specified. There are a number of
possibilities to determine the direction p,. po can be chosen arbitrarily. The
sequential direction py is any vector orthogonal to 4g;. The conjugate gradient
methods are based on the choice of the conjugate gradient directions as p;. It
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starts by finding the direction of gradient, i.e. py = — g,. Then the continuously
searching directions are determined by the following formulation

Per1 = — &v1 + Bubr (11.4.20)
where

Bx =8+ 18k+1/8K 8 - (11.4.21)

These formulations were developed by Fletcher and Reeves [9]. Thus it is called
the F-R Algorithm. Only three vectors are used. In order to ensure the second
order convergence and to avoid the round-off errors which could ruin the
conjugacy of the search direction, one uses the exact linear search in each
iteration, and the technique of restarting (after several iterations, the routine is
restarted at p,) is used.

The conjugate gradient method is not only used to find the minimum of
functions. It is also used to find the solution of the large sparse matrix equation
composed by linear and non-linear algebraic equations. For example, this
method is used to solve the simultaneous equations derived from FDM and
FEM as introduced in Section 4.3.2.2. The steps of this method are shown in
Example 11.4.1.

Example 11.4.1

Min F(X) = 3x? + 1x3 — x,x, — 2x,

Solution. Rewrite the above equation as a matrix form shown in Eq. (11.4.9), i.e.

3 1 .,
A=[_1 1] b=[-2 0]".

The derivative of the objective function is

gX)=VFX)=[3x; —x2 =2 x;—x,]".
Let

Xo=[-2 477
then

VF(Xo)=[—-12 6] po=1[12 —=6]T.

Based on Eq. (11.4.13),
_ 8oPo _ 5

°"  pfAp, 17

. 26 38 6 12
X1=X0+AP0=[_ :l g(X1)=[ :I

then
17 187 17 17
The direction p, is evaluated by Eq. (11.4.21) and Eq. (11.4.20), i.e.,

gl EPHA 1
g5 (—127 + (6 289

Bo



11.4 Analytic methods of unconstrained optimization problems 367
then

90 210 T
289 289

P = ‘81+B0P0=[

Repeat the above computation to obtain 4,, X,, g, and so on, the final result is
X*=[1 1]7.

The computer program of this method is given in reference [7].

11.4.3 Quasi-Newton’s methods

The steepest descent method and the conjugate gradient method are based on
the computation of the first derivative of the objective function. Quasi-Newton’s
methods are the alternative of Newton’s method (the definition will be seen
soon). The main difference between these kind of methods is that quasi Newton’s
methods are based on the modified second order derivatives of the objective
function. Sometimes they are more economical, and converge faster.

Recall that

gc=AX, +b
If

Xe+1 = Xi + pi (11.4.22)
then

&+ =AXc+p)+b=g+AX)p, . (11.4.23)

If X+, is the minimizer of the function, then g,,, = 0, hence
P=—AT"g. (11.4.24)

This equation indicates that if the search direction p, is determined by the above
equation, then the minimizer is immediately obtained. This kind of methods are
called Newton’s methods. If A(X*) is positive definite, then the convergence of
Newton’s method is of second order. This is the fastest rate of convergence
obtainable in non-linear optimization. Thus, this kind of method is very import-
ant. If the objective function is not a quadratic function, and if p, is given by
Eq. (11.4.24), then X, + p, will not be the minimizer directly consequently the
process has to be executed iteratively.

In general, it is very difficult to find the second order derivative matrix of the
objective function even if it exists. The determination of the positive definite of
the Hessian matrix is even more difficult. If A, is singular, there are two
possibilities: either there is no solution of Eq. (11.4.24) or there are an infinite
number of solutions. In addition, if X is a saddle point and A, is nonsingular
then g, = 0. Equation (11.4.24) is satisfied only if p, = 0. Thus it should not be
used as a search vector. Consequently, Newton’s method is not a practical
method for function minimization. However based on the same idea of
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Newton’s method, a number of modified Newton’s methods, Quasi-Newton’s
methods, were derived having the same asymptotic rate of convergence.

11.4.3.1 Davidon—Fletcher—Powell (DFP) method

This method was first suggested by W.C. Davidon in 1959 [10]. It was com-
mented on by R. Fletcher and M.J.D. Powell in 1963 [11] and improved by
Fletcher in 1970 [12]. The abbreviation of this method is DFP. It is an efficient
method for solving the unconstrained minimization of non-linear functions. It
combines the advantage of the method of steepest descent in which the descent of
the function is rapid in the beginning of the search and the advantage of the
Newton’s method, in which convergence is quick in the vicinity of the minimum
point. The main idea of the DF P method is to construct an approximate matrix
H, to substitute the second order derivative matrix of the objective function and to
force H, = A~ . Hence it is known as a variable matrix method. When the DFP
method is used together with exact linear search to minimize a quadratic
function having a positive definite Hessian matrix, the vectors p, in Eq. (11.4.25)
satisfy the conjugacy property, then the method has second order convergence.
The procedure of this method is described as follows

p=—Hg, (11.4.25)
Xiv1 = Xi + Lipi (11.4.26)
Ho=1. (11.4.27)

H, is an identity matrix of order n x n, n is the number of design variables of the
objective function, H, is constructed to approximate the inverse of the Hessian
matrix of the objective function A; ! and has to satisfy the following conditions:

(1) In order to ensure that the algorithm is stable, the following criterion
must be satisfied

F(Xi+1) < F(Xy) . (11.4.28)

It is proved [2] that, when VF (X)) # O, only if H, is a positive definite matrix,
then condition Eq. (11.4.28) is possible.

(2) In order to obtain the quadratic termination, p, should be conjugated to
matrix A, i.e. pJ,Ap, = 0.

(3) To simplify the computation, a recurrence formula is used to update the
Hessian matrix H,, {, ie.,

Hk+1 = Hk + AHk . (1 14.29)
Thus H,,, is
aoi  Hopp He

H,,,=H,+C.+D,=H, +
T R T T TR T el mHun

(11.4.30)
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where
Yk = 8k+1 — 8 (11.4.31)
yk=Xk+1 _Xk=lkpk . (11432)
The matrix H, ,; defined by Eq. (11.4.30) is positive definite and symmetric only
if Hy is positive definite and symmetric. Consequently H, = A~!, X* = X,. This
expresses that the DFP method has second order convergence. The procedures
of DFP method illustrated by the following example.

Example 11.4.2

Min F(X) =2x? +4x3 — x;x, — 2x, (11.433)
Solution.

gX)=VF(X)=[3x; —x;—2 x;—x.]" (11.4.34)
Let Lo

Xo=[1 217, H0=l:0 1]
then

g =VF(Xo)=[-1 117,
According to Eq. (11.4.25),
po=—Hogo=—-[-1 177
Then
F(Xo + Aopo) = 343 — 240 — % (11.4.35)

The optimum value of i, is obtained by exact linear search, ie.
min F(Xy + Aopo) the result is 1o = 1/3. Substitution of 4, into Eq. (11.4.32)
yields

6o = dopo =3[1 —177
then

X, =X, +0,=1[4/3 5317

g =013 1317
F(X,)= —-5/8.

Using Eqgs. (11.4.31), one obtains
Yo=8 —8 =[4/3 —2/3]7

and then
1 1 -1
T—-_
oT0 ‘9[—1 1]

3
oo =101 —11[_42//3] ~p.
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Then the modified matrices Cy, D, are obtained

_6oay 1] 1 -1
Co—a€y0_6|:——1 1:]
4/3
}%ﬂﬂgﬂo_[:’y3]mﬂ 3 1[ 4 —2]

73 Ho o 431 5
[4/3 —Mﬂ[_yJ

Substitution of Hy, Cy, Dy into Eq. (11.4.30) leads to

Do=

1{11 7
H1=H0+C0+D0=%li7 29}

Repeating the same procedures as above, the following vectors are obtained:

pi=—H g, = —%[1 2]T

~ 43 =5

X"X1+i"’“[5/3 —2/1/5:|
3.1, 5

Flo=54-354"%

Min F(4,), A =5/3
o, =Ap =—350 2]7
X=X, +o,=[1 1]
g2=[0 0]

where g, satisfies the condition to terminate the calculation. Thus X, = [1 1]7
is the minimizer. It is easy to verify that H, = A~! by using Eq. (11.4.34) to
calculate the second order derivative of the objective function and the same
procedures to caculate H,.

This method has been used to calculate the optimum locations of simulated
charges in Example 7.6.1. The computer program of DFP algorithm is given in
reference [7].

11.4.3.2 BFGS formulation

Sometimes the numerical stability of the DFP method is dependent on the
round-off error. Brodgen, Fletcher, Goldfarb and Shanno independently pub-
lished an improved iterative method

Browoik — Hiyok — oy yi Hy

T
Ok Yk

He,, = Ho + (11.4.36)
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where

T
H
Bo=1 + Lk (11.4.37)
Ok Yk

If Eq. (11.4.36) is used in the iteration, then the method used is the BFGS
formulation.

11.4.3.3 B matrix formulae

It was shown that H, is the approximate of the inverse of matrix A. If an another
matrix B, is taken to approximate the matrix A itself, a complementary or dual
formulation is obtained. Interchange the matrices as follows

B, — H,
Byt o Hisy
AX, & Ag,
Then Eq. (11.4.30) to Eq. (11.4.32) transform to

}’k}’kT _ B,g.a{ B,

B =B 11.4.
e et J’Zo'k UkTBkU'k ( 3)
Xiv1 = X + AP (11.4.40)

This set of equations represent the B matrix formulation.

11.4.3.4 Cholesky factorization of the Hessian matrix

In view of the points discussed above, during the iteration, matrices B, and
H, remain positive definite. However in practice, the round-off error may cause
matrix B, or H, to be singular. One possible way to solve this problem is to
restart H, or B, as an identity matrix frequently. The drawback of this method is
that some useful information is lost at each start. Gill and Murray [3] suggest
decomposing the matrix B, into Cholesky factors and thereby avoiding the
singularity and loss of information at each iteration. Let

Bk = LkaL[ (11.4.41)

D, is a diagonal matrix and L, is a lower triangular matrix with diagonal
elements of unity. The effect of round-off errors (which causes the updating
process to produce a numerically singular matrix) can be detected immediately
by monitoring the elements of D, . ,. Whenever any diagonal element of D .., is
less than a small positive quantity J, then the element is replaced by 6 and the rest
of the factorization process is modified accordingly. This procedure guarantees
that B, ., is numerically positive definite.
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This method has been used to optimize the electrostatic shield of a 2250 kV
testing transformer [13]. The computer program is given in reference [14].

11.4.4 Method of non-linear least squares

The conjugate gradient methods and quasi-Newton methods are efficient for all
sufficiently smooth objective functions. If the objective function has the form

m

F(X)= 3 fHX) =1/ =fTX)f(X). (11.4.42)

i=1

the gradient and Hessian matrix of the objective function have special structures
as below

g(X) = VF(X)=2J"(X)f(X) (11.4.43)
G(X) = Vg(X) = 2J7(X)J(X) + 2Q(X) (11.4.44)
where
(o o of ]
0x, 0xy, — 0x,
JX)=| : (11.4.45)
Do Ofn
_6_xl 0x, ax,,_
QX) = Y fi(X)Ki(X) (11.4.46)
i=1
Ki(X) = V2£(X) (11.4.47)

J(X) is a Jacobian matrix of the order m x n. Since F(X) is being minimized in
the least square sense, the components V2f; are small and G(X) may be
approximated by

G(X)=~2J71J. (11.4.48)

11.4.4.1 Gauss—Newton method

Gauss noted that if f;(X) are all linear functions of X and F(X) is quadratic then
the Jacobian matrix is a constant. He suggested approximating the gradient at
a point X + 4X as follows

VF(X + 4X) = 2J(X)f(X + 4X). (11.4.49)
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The approximate form of f(X + 4X) is obtained from the linear terms of
Taylor’s expansion

f(X + 4X) = f(X) + IT(X)4X . (11.4.50)

Combination of Egs. (11.4.49) and (11.4.50) gives an estimation of the gradient of
F(X)at X+ 4X

VF(X + 4X) = 2J[f(X) + JT(X)(4X)]
=2[J(X)f(X) + I(X)IT(X)4X] . (11.4.51)

Since the m rows of J have been assumed to be linearly independent, the matrix
JJT is nonsingular and the inverse matrix [JJ7] ™! exists. Then the solution of
VF(X + 4X) is

AX = — (JIT)"LIfF(X) (11.4.52)

Comparison of Eq. (11.4.52) with Eq. (11.4.1) shows that in the method of least
squares

p=—JINIf(X) (11.4.53)
and
A=1 (11.4.54)

Recall that in Newton’s method G,p, = — g, thus
JEd+Qp = — I A(X) (11.4.55)

Hence the speed of convergence of the non-linear least square method is the
same as quasi-Newton’s method and requires only the first order derivative of
the objective function. The computer storage required is much less than that
using DFP method.

If || f(X)| tends to zero as X approaches the minimizer, the matrix Q also
tends to zero. Consequently the least square method is applicable when the first
order term J7J of Eq. (11.4.55) dominates compared to the second order term
Q(X). This does not hold when the residuals of the solution are very large. In
such a case, one might as well use a general unconstraint method.

11.4.4.2 Levenberg—Marquardt method

The L-M method is an alternative to the Gauss—Newton method, it includes
a technique to deal with problems related to the singularity of matrix J{ J,. In
this method, Eq. (11.4.55) is modified to:

JE I+ wDpe = — I S (11.4.56)

where p, > Ois a scalar and I is the unit matrix of order n. For a sufficiently large
value of p, the matrix J7 J, + w1 is positive definite and then p, is the direction
of descent. As X —» X *, and y, — 0 the method-yields asymptotic convergence in
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Input Xo,&,1,,Y

1
[Calculate the Jacobian matrix [J]]

| Compute p, by eqn.(11.4.56) ]

—{Aenr]

Fig. 11.4.2. The flow-chart of L-M method

the same way as Gauss—Newton’s method. The flow-chart of the L-M method is
given in Fig. 11.4.2.

The computer program of the least square method is given in reference [7].
In reference [15] the least square algorithm is used to find the positions of the
equivalent currents in an exterior eddy current problem.

11.5 Function comparison methods

If the objective function of a physical problem cannot be described analytically
or the objective function is discontinuous or if the gradient of the objective
function, g(X), is discontinuous, then the analytical method introduced in
Sect. 11.4 fails. Since the function comparison methods only use the value of the
objective function in the process of search, they seem to be the simplest. The price
paid is reduced speed and reliability. The method is very sensitive for the
accumulation of round off errors. Another disadvantage of function comparison
methods is that the convergence cannot be guaranteed. Hence many authors
recommend this method only if there is no other suitable alternative method
available.

11.5.1 Polytope method

The name ‘polytope method’ is used to solve unconstrained non-linear optim-
ization problems instead of the ‘simplex method” which is defined as linear
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programming (all of the objective functions and the constrained functions are
linear functions). The name ‘simplex’ or ‘polytope’ contains the geometrical
meaning. A 2-D function in space R, describes a plane and the simplest form of
the polytope in a plane is a triangle. A 3-D function in space R; describes
a tetrahedron. Thus a 2-D or 3-D function can be approximated by the function
values at the 3 nodes of the triangle or the function values at the 4 nodes of the
tetrahedron, respectively. For n-D problem, the function can be approximated
by the values of the n + 1 vertices of a polytope in n-dimensional space, e.g. the
function values are F,,y > F,>... F, > F, at points X,+,, X,,..., X;. In
the optimization process, compare the given function values on the vertices and
replace the ‘worse’ point (the definition of the worse point is the point where the
value of the function is the highest) by taking a new point. This new point generates
a new polytope. Repeat these procedures until the minimum point is approached.
Detailed formulation and the computer program can be found in reference
[2, 6].

This method was used in reference [16] to determine the desired contour of
an electrode of a gas circuit breaker.

11.5.2 Powell’s method of quadratic convergence

Powell’s method is a direct search method. It consists of constructing a set of
conjugate directions without the explicit use of the gradient vector. The initial
directions po (k = 1,. . ., n) of the search are parallel to the axes of the coordin-
ates. The two subscripts 0 and k of p denote the iterative times and the sequent
number of the variables, respectively. Along each direction of search an univari-
ate minimum is required. Here, Powell’s method of quadratic interpolation is
rccommended.
The steps of this methd are

(1) In the kth iteration, let X, = X, search X, (r=1,...,n) in
direction py,.

(2) Calculate 4 = max{F(X, ,-1) — F(Xi")} = F(Xk.q-1) — F(Xi,4), q is the
value of r which maximizes 4.

(3) Define F; = Fio(X), F; = Fi,(X), evaluate F3 = F2X,, — Xio)-

(4) If either F3 > Fy or (F; — 2F, + F3)(F, — F, — 4)> >  A(F, — F3)* is
satisfied, the old direction p,; is used for the (k + l)th iteration and let

Xi+1 = Xin- In any other case go to step 5.
(5) In the (k + 1)th iteration, the search directions are:

Pr, 15+ - - Pk,gs Pk,g+15 - - - Pik,n> O

where 6, = Xi.» — Xi.
If step 2 yields g = 1, then the search directions are py, 2, . . . Px.n» O-

Example 11.5.1

Minimize F(X) = x? — x; x, + 3x3
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Solution.
(1) Let Xo =[12]", thenpo, =€, =[1 017, po.o =€, =[0 1]
In po.1, Xor = Xo + Apo1  Min F(2), yields Xo, =[1 2]”
In po 3, Xos = Xo + Apo2  Min F(2), yields Xop = [I 1/6]7

(2) Calculate 4 = max{F(X,)— F(Xo1), F(Xo1)— F(Xo2)} = max(11 —
11, 11 — 11/12} = 121/12, hence q = 2.

(3) Calculate F, F,,F3: F,=F(Xy) =11, F; = F(Xy,;) =11/12, F3 =
F(2X,, — X,) =11

(4) As F3 = Fy, hence py,1 = po,1,P1.2 = Po.2

The next iteration starts with X; = [1 1/6]
Then

X =[1/12 1/6], X, =[1/12 1/72]

4 = max{F(X,) — F(X11), F(X;,) — F(X,;)} = 121/144,
hence g = 1

F, =F(X;)=11/12, F,(X,,) = 33/5184,

F3y=FQ2X;;, — X;)=275/432

Note here, F3 < F, and (F; — 2F; + F3)(F, — F, — 4> <3 A(F, — F5)%,
then the next search starts with X, = [1/12 1/72]7 in the direction p, ,, J,

=X, —-X =[-11/12 —11/72]
then obtain
X*=[0 0]T.

If the problem has n variables, the individual direction of coordinates are
chosen as the search direction in the sequence, i.e.,

Pr = €
e=[0 0 0...0 1, 0 0..0].

The computer program of this method is given in reference [17].

11.6 Constrained optimization methods

For physical problems, there are restrictions on the acceptable range of the
variables. These conditions are the constraints of the problem. If the constraints
of the variables are simple, the method of variable transformation may be used
as the first approach [1]. For example
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Minimize f(x)
subject to x < ¢ (11.6.1)
or a<x<b
The constraints are written as

xX=c—y
or
x=a+ (b— a)sin?y.

In this approach, y is chosen as a new variable. This technique has been used in
Chap. 7 to find the optimum positions of the simulated charges. In this section,
general methods for solving constrained optimization problems are introduced.

In general, the methods for solving constrained optimization problems are
two kinds. The first type approaches the constrained conditions directly e.g. the
method using feasible direction or the method of gradient-projection and so on
see reference [17]. The second type converts the constrained optimization
problem into a sequence of unconstrained optimization problems. The second
kind of method are more often used as seen in references [18, 19].

11.6.1 Basic concepts of constrained optimization

The problem of constrained optimization is more complicated than the problem
of unconstrained optimization. In the case of constrained optimization, the
independent variables X; are restricted in a specified region of interest which is
the feasible region. A point X is called feasible if it satisfies the conditions of
constraint. The equality constraints define a series of hypersurfaces in the
n-dimensional space. The feasible region S is the intersection of all of these
hypersurfaces. For instance,

Minimize  F(xy, x;, X3)
Subject to  hy(xy, x3,x3) =0 (11.6.2)
hy(xy, x2,x3) =0
The feasible region of this problem is a curve which is the intersection of the two
hypersurfaces h; = 0, and h, = 0. A point X satisfying h(X) = 0 is called a regu-

lar point if the gradients Vk are linearly independent. For inequality constraints,
the feasible region lies on one particular side of each hypersurface, for example

Minimize F(x) = x,

Subject to g, (x) =(1 —x?)—x,>0
g2(x)=x, 20
g3(x) =x, >0

(11.6.3)

The feasible region is the shaded area as shown in Fig. 11.6.1.
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i
g2,(X)=0 X, Fig. 11.6.1. Feasible region of Eq. (11.6.3)

\

feasible direction

feasible region Fig. 11.6.2. Feasible direction of a constrained

optimization

An inequality constraint g(X) < 0 is called active at a feasible point X* if
2:(X) =0 and it is called passive if g;(X) < 0.

In the process to search the minimum of a function subject to some con-
straints, the movement of variables in the directions that yield feasible points are
called feasible directions. See Fig. 11.6.2.

11.6.2 Kuhn-Tucker conditions

For unconstrained minimization, the necessary condition (Eq. (11.2.8) indicates
that at the minimizer X*, there is no direction of descent. In constrained
optimization, the complication of a feasible region has to be considered. Hence,
a local minization must be a feasible point and with no feasible descent
directions at X*.

In 1951, Kuhn and Tucker published some results giving the optimal
solution of non-linear constrained optimization [4]. These are necessary condi-
tions for a local optimum and in certain special cases, they are also necessary
and sufficient conditions for a global optimum. The conditions are discussed in
the following subsections.

11.6.2.1 Lagrange multiplier method

The basic idea to approach the constrained optimization problem was proposed
by Lagrange in 1760 [4]. It is to convert the constrained problem

{ Minimize F(X)

11.64
Subject to h(X)=0 ( )
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into an unconstrained problem

Minimize L(X, 1) = F(X) + Y, ALh(X). (11.6.5)
i=1
The new objective function L(X, 1) is called Lagrangian. It has n + m unknows,
n is the number of independent variables of F(X) and m is the number of
Lagrangian coefficients.
The necessary condition of Eq. (11.6.5) to have a minimum is

gé=0 j=1...,n

Xi (11.6.6)
3l

%=0 i=1,...,m.

The conditions dL/04; = 0 guarantee that the constraints are satisfied at the
optimal solution. Thus the optimal value of the Lagrangian functions is equal to
the optimum of the original problem, i..,

L(X*, 1*) = F(X*). (11.6.7)

The conditions of Eq. (11.6.6) are not sufficient for a constrained minimizer
to exist. Sufficient conditions involve second or higher order derivatives of the
objective function as indicated in the method of unconstrained optimization.

11.6.2.2 Necessary condition of the first order

For constrained optimization problems

Minimize F(X)
Subject to A(X)=0 i=1,...,1 (11.6.8)
g(X)<0 j=1,...,m

the necessary conditions of the first order are

! m

AVE(X*) + Y AVA(X*) + T Vg (X*) =0 (11.69)
i=1 =1

urg(X*) =0 ’ (11.6.10)

where h;,g; are functions having continuous derivatives and Vh;(X*) and
Vg;(X*) are linearly independent and 4, and y;, 4; are Lagrange multipliers also
known as Kuhn-Tucker multipliers. They are real numbers. For equality
constraint, 4; is unrestricted in sign; for inequality constraints g; > 0, u; < 0 and
g;i =0, u; < 0. The following example is given to illustrate the use of Lagrange
multipliers and the necessary conditions of the first order.
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X,
X, -X,=1
1.5
\
1.0
X, +2x,<3
X
0 1.0 2.0 3.0 !

Fig. 11.6.3. The solution of Example 11.6.1

Example 11.6.1

Minimize F(X) = (x; — 2)* + (x, — 1)?
Subject to x; +2x, <3

x; —x; =1

X,Xx,=>0

Solution. The Lagrangian multiplier of the above problem is
LIX,2)=(x; =22+ (x3 — )2 + A(x; — x3 — 1) + u(x; + 2x, — 3).

The first order derivatives of L(X, 1) regarding X, A, u are

oL

o ki =) 4Ai+pu=0
0x,

oL

0x,

oL

57=x1——x2—1=0
fai=()C1'+'2XZ—3)=-‘0.
op

After solving these equations, one obtains X* = [5/3 2/3]7. The figure is shown
in Fig. 11.6.3.

11.6.2.3 Necessary and sufficient conditions of the second order

For unconstrained optimization, the positive definite of the Hessian matrix of
the objective function has important implications in designing a satisfactory
algorithm as it does for constrained optimization. If X is a local minimizer and is
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the regular point of constraint, then 4; y;, exist such that
1 m
L(X*) = VIF(X*) + Z LiV2h(X*) + Z 1;iV2g;(X*) . (11.6.11)
i=1 j=1

Thus the necessary and sufficient conditions of the second order are that
Eq. (11.6.11) holds, and

YTL(X*)y=>0. (11.6.12)

It means that L(X*) is positive definite on the tangent subspace of the active
constraints

A*T.y=0. (11.6.13)
A* denotes the matrix with columns of a;,
a;=Ve;, (11.6.14)

where ¢; includes equality and inequality constraints, the Lagrangian function
must have non-negative curvature for all feasible directions at X*. When no
constraints are present, Eq. (11.6.12) reduces to the condition that the Hessian
matrix is positive definite.

yTL(X*)y>0. (11.6.15)

Proof of the necessary and sufficient conditions of the first and the second
order are given in reference [5].

11.6.3 Penalty and barrier function methods

These methods are used for problems with equality or inequality constrained
optimiation. Consider an equality constrained optimization problem:

{Minimize F(X)

11.6.16
Subject to Bi(X)=0 i=1,...,m ( )

A modified objective function M(X) is used to replace the original problem
M(X)=F(X) + P(X) (11.6.17)

where

P(X) = i KR (X) . (11.6.18)
i=1

In Eq. (11.6.17), M(X) is a generalized objective function and P(X) is a penalty
function. K; are penalty factors, usually these are large values. When K; = 0, the
constraints are ignored, when K; = oo the constraints are exactly satisfied. It can
be seen from Egs. (11.6.17) and (11.6.18), only if &;(X) = 0, the unconstrained
minimum of M (X) is the minimum of F(X). Now change the values of K; until
the minimum of M (X) is obtained.
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Geometrically, a penalty function replaces a constraint by a steep-step as
shown in Fig. 11.6.4 (minimizing problem). It shows that the function value may
be evaluated in the non-feasible regions. In each step the ‘penalty’ for violating
a constraint is a high value of the modified objective function.

Example 11.6.2
Minimize F(X) = x? + x3
Subject to A(X)=x; +x,—1=0
Solution. The modified objective function is
M(X) = x? + x3 + K(x; + x; — 1)?
which according to VM(X) = 0, yields
X1 +K(X1 + x; — l)=0
x2+K(x1+x2—- 1)=O
then
K 1

K+ 1 when K - o0, x’{‘=x3==§,

xt=x3=

The above method is the external penalty method. During the search, each
extremum solution lies outside the feasible region. The sequence of the extrema
converge to the desired solution, as the penalty factor is increased.

For the problem with inequality constraints

{Minimize F(X)

11.6.19
Subject to g; <0 ( )

The generalized objective function is

M(X) = F(X)+ K ¥ g3(X) u(g;(X)) (11.6.20)

ji=1

| P,X) Pi(X)
I / /
| / /

feasible y

. I
region | pon -feasible '
region /

7 7/
, / /
/ / /
7/ Va /
S~

Fig. 11.6.4. Physical meaning of the
penalty function method




11.6 Constrained optimization methods 383

where
0 g(X)20

| g/X) <0 (11.6.21)

u(g;(X)) = {

A similar sequence, in which the search is always in the feasible region is called
the interior penalty function method or the barrier function method. A barrier
function has to be added to the objective function, to construct a generalized
objective function. This function insures that the search is always in the feasible
region i.e.

M(X, K;) = F(X) + K;B;(X) (11.6.22)
1

X (11.6.23)
ji=19j

M=

BiX) =

K;B;(X) is called a barrier term K; is the jth barrier factor. K; > 0 is mono-
tonously decreased during the search in succession. When X lies on the bound-
ary of the feasible region, at least one of the constrained functions g;(X) — 0,
then the barrier term tends to co. In each subsequent search, the extrema lies
within the feasible region, the boundary is an obstacle that is not crossed. The
barrier function method is only suitable for inequality constraints.

The steps of the barrier function method are summarized as:

(1) Define an initial point in the feasible region, and the penalty factor
K, (for instance K| = 10).

(2) Solve the unconstrained minimization X; of M(X, K;).

(3) Ifthe barrier term is less than a small value ¢ (for instance ¢ = 107¢) X} is
the minimum of F(X), otherwise let K;, , =cK (for instance ¢=0.1-0.02). Then
return to step 2.

If there are equality and inequality conditions, then the generalized objective
function is:

M(X) = F(X) + K;a(X) (11.6.24)
where
a(X) =Y h}(X) + Z g3(X) u(g;(X)) (11.6.25)
_f0 XeD (D represents the feasible region)
a(X) —{l X¢D . (11.6.26)

Example 11.6.3

Minimize F(X)=x—1
Subject to 0<x <1
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Solution.

M(X)=(x— 1)+5+ K

x 1-x

Solve

oM K K

o Teta T
which yields

x2(1 — x)?

K=o
when

K — 0, x*=0 or x* =1

In order to judge these two possible solutions, the behaviour of K in the
vicinity of these two solutions must be examined.

Let
201 _ .2
x=e<l, k=212
1 —2¢
if
(1 —¢)%e?

=1—-g, 1, K =
X £ E< %=1

By definition, K must be a positive number, thus x* = 0 is the minimizer.

11.6.4 Sequential unconstrained minimization technique

In real physical problems, the objective function is cumbersome. Therefore it is
impossible to obtain the analytical solution as shown in Example 11.6.3. For
a large value of K, the Hessian matrix of M (X) is ill-conditioned. Consequently,
the value of the penalty factor has to be increased step by step. The minimum of
the original function is to be found by a series of unconstrained optima of the
function M, (X):

m

Wi
M (X) = F(X) + K, .-; 0 k=1,...,L (11.6.27)
where K, > 0 for all k and W; > 0 for all i. W; are weighting factors that remain
fixed throughout the calculation, while K, are parameters that decrease from
one iteration to the next. The solution in each step will be the initial valuc of the
next step. Thus the constrained optimization is transformed to solve a sequence
of unconstrained optimization problems. This method is called a sequential
unconstrained minization technique (SUMT). It is a highly developed form of
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the penalty function method in which function values are needed only at feasible
points.

Reference [19] gives a good example, in which uses the penalty function to
deal with the equality constraint conditions and the barrier function to ap-
proach the inequality constraint conditions. The author used this method to
design a permanent magnet synchronous machine.

11.7 Summary

In this chapter, most of the commonly used unconstrained optimization
methods have been introduced. They are classified as analytical methods and
direct methods. Both methods use iteration procedures to force the objective
function to approach zero. In using the method of steepest descent and/or
method of conjugate gradient, the search directions (p,) are determined by the
first derivative of the objective function. In other methods like DFP or BFGS
and method of least squares, the direction of search is based on the second order
derivative of the objective function. Thus the rate of convergence is high. In the
DFP method, in order to avoid the calculation of the second order derivative of
the objective function, it is replaced by an artificially constructed H matrix as
shown in Eq. (11.4.30). The H matrix uses only the first order derivative of the
objective function. This method is useful to solve problems with a large number
of variables. Reference [12] give an example having 100 variables. Reference
[13] uses this method to find the minimum of the objective function having 172
independent variables. The disadvantage of the DFP or BFGS method is that
they require larger computer storage than the conjugate gradient method. In the
method of least squares, the second order derivative of the objective function is
approximated by G(X) = 2JJ™. where J is the matrix of the first order derivative
of the objective function. Hence, only the first order derivative of the objective
function is calculated. For the conjugate gradient method, the least squares
method or the BFGS method are preferred.

Finally, it should be mentioned that in using analytical methods, in the case
where the analytical expression of the objective function does not exist or the
derivative of the objective function is difficult to derive, the derivative of the
objective function is replaced by the difference of the objective function.

The greatest advantage of the direct method is that only the function value is
calculated during the search process. The disadvantage of the direct method is
that the number of the independent variables are limited. The variables in using
the polytope method is less than 10.

A linear search is usually incorporated to prevent divergence of the iteration.
The quadratic and cubic interpolation methods and the golden section method
are general methods in determining the optimum step during each iteration of
the optimization of multivariable functions.
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Chapter 12

Optimizing Electromagnetic Devices

12.1 Introduction

The problem of optimum design has been studied for a long time. One of the
earliest example was to find a 2-D shape which occupied the maximum area
with its circumference as a given constant. Before the 1950’s classical mathemat-
ical methods such as the differential and variational methods were used to solve
these problems. With digital computers and using numerical methods, the
methods of optimal design developed rapidly.

The optimal shape design is to determine the dimensions of a device for
a specific purpose and at the same time satisfying the limitation set by physical
constraints. This is an inverse or a synthetic problem. Synthesis is always more
complicated than the analysis. In general, the subject includes at least two
aspects: numerical solution of partial differential equations and the optimization
method. The optimal shape design of structural and mechanical devices are
discussed in references [1-3]. With electromagnetic problems, the analysis
methods of field probloems are well understood and the design of the devices has
a long history but most of them are familiar with the treatment using the
principle of equivalent circuit theory. Now it is possible to deal with design
problems based on field analysis to obtain more accurate results. The inverse
problem or the optimum design is important for the

(1) Design of devices to obtain desired field distribution and obtain a
maximum economic efficiency.

(2) Determination of the source distribution to satisfy a required field
distribution.

(3) To find discontinuities in materials. The method based on electro-
magnetic field analysis is the basis of non-destructive testing see reference [4].

(4) Determination of material constants. This is important both in electrical
engineering and in biomedical science. For example, the aim of impedance
tomography is to map the distribution of electrical conductivity within a body
by applying a voltage to the body surface and measuring the injected current or
vice versa.
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These problems are more complicated than straight field analysis. Here two
difficult problems are combined, one is the analysis of the field distribution, the
other one is the determination of the design variables in such a way that the
desired objectives are fulfilled. An optimm design is generally the result of
a combination of mathematical results, empirical data and the experience of
scientists and engineers. In this chapter two different kinds of the optimization
methods are introduced. One is the combination of the numerical solution and
the mathematical optimization procedures. The other is based on numerical
solution using some physical principles. Detailed process is a combination of the
solution method of a field analysis and the mathematical optimum. Hence in
this chapter only the general methods of the optimal design are introduced,
more information is given in references.

12.2 General concepts of optimum design

The process of optimal design is demonstrated in Fig. 12.2.1. The mathematical
model includes both the differential and the integral equations which describe
the boundary value problems and the objective function which describes the
design puposes. The optimization procedure may be any one of the mathemat-
ical optimization methods or the method based on the physical principles. These
methods are used to adjust the design variables to satisfy predetermined goals.

12.2.1 Objective functions

The objective function may have the following forms

F(X) = Const. (12.2.1)
F(X) = max(min) (12.2.2)
F(X) = aF(X) + BF;(X) = min(max) (12.2.3)
Fi(X) .
F(X)= = max(min) (12.2.4)
F2(X)
Modification of| _| Mathematical model
design variables (governing equation objective function)
Optimization Does the value of obkctive function
program Jess than the criterion ?

| Tre

Fig. 12.2.1. Diagram of the optimum design




12.2 General concepts of optimum design 389

where X is a column matrix that represents the design variables. For instance,
the distribution of the field strength along the surface of an electrode is required
to be uniform and to have a predetermined value. The objective function is now
expressed by Eq. (12.2.1). If the maximum field strength along the surface of an
electrode is limited to a minimum value, Eq. (12.2.2) is the proper objective
function. In designing a transformer, usually the combined price of copper and
magnetic steel has to be minimal while the power losses must not exceed the
desired value. Here the objective function will have the form of Eq. (12.2.3) where
F{(X) is the function which relates the price of the material and the design
variables, F,(X) is the function that relates the power losses and the design
variables; a, § are weighting coefficients of the two functions F,(X) and F,(X).
In designing electric machines, the maximum flux density in the air gap and the
cost of magnetic materials must be minimized thus the proper function is given
by Eq. (12.2.4).

Another problem is that the same results may be obtained by using different
objective functions. For example, to obtain uniform distribution of field strength
along the surface of an electrode, the objective function may be:

F(X) = Enax — Enin = min (1225)
or

F(X) = Enax — E,y = min (12.2.6)
or

F(X) = (Emax — Emin)* = min (12.2.7)

where E,, is the average value of E along the contour of the electrode. The choice
of the objective function determines the process of mathematical optimization.
For example, if Eq. (12.2.7) is chosen as the objective function then the non-
linear least square method is suitable to be chosen as the method of optimiza-
tion. Thus the choice of the objective function is an important decision as it
influences the efficiency even the success of the optimum design.
In most practical cases, the design variables are limited to have values within
a given range. In this case, the problem is a constrained optimization problem
Le.
Minimize  F(X)
Subject to ¢,(X)=0 (12.2.8)
9:(X) =0
where g,(X), g.(X) are constraints to be met by the design variables X.
The target of the objective function must consider the practical possibilities
and usually needs to be adjusted during the process of optimization, as the
initial target may be too limited or unreasonable.

12.2.2 Mathematical expressions of the boundary value problem

The solution method of a field problem depends on the equation which de-
scribes the physical problem. Either one of the domain methods may be used to
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solve differential equations which describe the problem, or the boundary
methods are used to solve the corresponding integral equations which describe
the problems. During the process of optimal design, the design variables are
modified, e.g. dimensions, contours and boundaries. As the boundaries may
change during the process, the boundary methods are more convenient than the
domain methods used to analyze field distributions. Here the boundary element
discretization is refined during each iteration. The drawback of domain methods
is that it requires continuous use to refine the whole mesh during the search for
an optimum design. Hence integral equation methods are preferred compared to
the differential equation method in the process of optimization.

12.2.3 Optimization methods

Optimization methods are used to adjust the design variables automatically and
to force the objective function to approach its desired value. There are two
different methods to adjust the design variables. One depends on the mathemat-
ical programming which is discussed in Chap. 11. The choice of mathematical
optimization methods depends on the number of the variables, the characteristic
of the objective function and on the type of the computer available. The other
method may be specially designed to suit the physical characteristics of the
problem. For example the strength of the electric field is proportional to the
curvature of the surface of the electrode. Therefore a uniform distribution of the
field is obtained by adjusting the curvature of the electrode. Two of these types
of methods will be introduced in discussing the contour optimization of the
electrode.

During the process of optimization, all the design variables of the problem
are considered together or the variables may be grouped and considered one by
one. [t is even possible to consider the change of variables one by one. It looks
tedious but this simple strategy may save time and yield the best results.

The flow-chart of the optimization procedures is shown in Fig. 12.2.2.

Start

[ Assume initial parameters
T

Field analysis

[ Calculate objective function F(M

No
r Modify the design variables ] [ Output

Fig. 12.2.2. The flow-chart of the optimization
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12.2.4 Categories of optimization

The optimization problems of electromagnetics may be divided into two catego-
ries: domain optimization and contour optimization. The domain optimization
finds a predetermined field distribution in a specific region. The design variables
may be the source distribution or the shape of the devices. In the design of
magnets, electron optics, mass spectrography or Tokomak devices, a specific
field distribution within a region is usually be necessary. On the other hand,
contour optimization determines the shape of the contour in such a way that the
field distribution along the contour can satisfy specific requirements. In most
high voltage devices, the field strength along the surface of the electrode or along
the interface of dielectrics are paramecters to meet the given conditions. In the
next two subsections, both contour and domain optimization are discussed.

12.3 Contour optimization

In many electromagnetic devices, the field distribution must be homogeneous.
One of the earliest paper discussing the problem of achieving an homogeneous
field analysis for a capacitor was published in 1923 by W. Rogowski [5]. In this
paper, the field calculation used conformal maps.

Advances in numerical methods for field analysis resulted in a number of
methods to investigate the optimum design of the electrodes (see refcrences
[6-9]). The methods available are summarized in the following table.

Table 12.3.1. The methods for the contour optimization

Ficld calculation methods Optimization methods
Domain method Boundary methods Curvature adjustment [6, 11]
FEM [10] CSM [7, 11-13] Optimization by charge
redistribution [7, 12, 13]
SSM [14-17] Non-linear programming [9]

Other physical methods [17]

12.3.1 Method of curvature adjustment

It is well known that the charge distribution along the surface of the electrode is
dependent on the curvature of the contour. Figure 12.3.1 shows two general
equipotential lines and two lines of the field strength. P, and P, are two points
close to each other on equipotential lines. E; and E, are the field strengths at P,
and P,. Hence

Elll = Ezlz (123.1)
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Fig. 12.3.1. A curvilinear rectangle composed Fig. 12.3.2. A curvilinear rectangle composed
of E, ¢ lines of two circular E lines

where [, and [, are distances between two equipotential lines ¢, and ¢,,
respectively. Through the simple manipulation of Eq. (12.3.1), one obtains

= . 12.3.2
E,+E, I +1 ( )

Multiplying 1/2 4n by the denominator of both sides of the last equation yields

E2 - El _ ll - 12
1/2(E, + E;)4dn — 172(1, + 1) 4n

(12.3.3)
where 4n is an incremental length perpendicular to the E line, i.e. An = P, P,. If
An is sufficiently small, the field strength E can be approximated by

E=4E, +E,). (12.3.4)
Then the LHS of Eq. (12.3.3) becomes:

E, —E, | AE
== —. 12.3.5
EAdn E A4n ( )

Assume that P, P, and P3P, as shown in Fig. 12.3.2, are two small sections of
a circle.

Let
A4S = Sy prpspe = (r2 = r)3[8(ry +r3)] (12.3.6)
due to
Al = 3(ry —ry) (12.3.7)
then
Al 1 1

—=———=—=C 12.3.8

P (T R (1239
where r, is the geometric mean radius of a plane curve. By definition, C repres-
ents the mean curvature of a plane curve. A combination of Eq. (12.3.3), (12.3.5)
and (12.3.8) shows that the relationship between the field strength and the
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curvature of the contour of an electrode is
1 CE
—-——=C

= 12.3.
E ¢n (12.3.9)

Equation (12.3.9) is the one used to modify the curvature so as to achieve any
desired change of the field strength. The deviation of the field strength AE from
the desired value is calculated by the differentiating Eq. (12.3.9)

1 OE
AC = — —AE. 12.3.1
C 2 n 4 (12.3.10)
Applications of this method are given in references [6] and [11].
In a 3-D case, the curvature of a curved surface is defined as in reference [18]
1 1

C=—+— 12.3.11
Ry ( )

where 1/R,, 1/R, are two main curvatures orthogonal to each other.

12.3.2 Method of charge redistribution

This method is an old one, having been already suggested in 1979 in reference
[71. It was further developed in references [12] and [13]. The method was based
on the advantages of the charge simulation method. When the simulated charge
is determined, the equi-potential lines are calculated and one of these lines is
then the first approximation to the desired contour of the electrode. Next, the
simulated charges are altered to obtain a new contour. Repeating this procedure
several times yields the desired contour of the electrode.

Figure 12.3.3(a) shows a pair of axisymmetric electrodes, the figure of the top
of the electrode is to be optimized. In order to simplify the calculation, the
contour of the electrode is subdivided into two parts: a fixed part AB and a part
BC which is to be optimized.

Charges 1, 2 and 3 simulated the part AB of the contour, these simulated
charges are denoted as Q;. The position of these charges are fixed while the
contour BC is changing. Charges 4, 5 and 6 corresponding to the part BC of the
contour are the charges to be optimized and are denoted as Q;. These are
adjusted to fit the optimization of the electrode contour. The equation of CSM is

2P0+ Y Pu0i=o (12.3.12)
Jj=1 j=m+1

where m is the number of the simulated charges and n — m is the number of the

charges to be optimized. ¢; are the known potentials on the part AB of the

electrode. In Eq. (12.3.12), both the positions and amplitudes of charges Q; are

known. The unknown chargwes Q; are determined by Eq. (12.3.12) at the
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B’ A’

Fig. 12.3.3a,b. Method of charge redistribution

assumed position of Q;. The field strength on the optimized part is calculated by
[4£1{Q} ={E/}
U:1{Q} = {E:}
{0} ={Q1...Qn...Qu} (123.13)

where E,, E. are the components of E while [ f,] and [ f.] are components of the
coefficient matrices of field strength. The change of magnitude of the field
strength is dependent on the change of the charge {Q + Q}, i.e.,

[f14{Q + @} = {4E} (12.3.14)
where {4E} is the difference between the desired value { E,} and the calculated
value {E}, i,

(AE} = {E} — {Eo} . (12.3.15)

Equation (12.3.14) illustrates that the increment {4E} is proportional to the
increment of 4{Q + Q}. The relative coefficient matrix [f] can be obtained by
using different methods as shown in references [7, 12, 13], respectively. Refer-
ence [7] considers that the optimized charge Q; is the main factor to influence
the field strength along the contour BC, hence

[f1{40} = {4E} (12.3.16)
where
fi=(f2, + f2 )V cosa, (12.3.17)

and o; is an angle shown in Fig. 12.3.3(b). [7] is the coefficient of field strength
corresponding to Q. Reference [12] derives a corrective coefficient matrix [C],
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nput the initial contour of the electrode
& the desired field distribution E =f(x)
T

1
[Calculate the field distribution]

@ Yes
No

Calculatp the corrective coefficient
matrix by different methods

T
[ Calculate {(aQhL{Q+aQ} 7
J

Fig. 12.3.4. The flow-chart of charge redistribution method

it modifies the values of the optimization charges {Q} while the position of
the charges {Q} is_fixed. Reference [13] changes both the position and
the magnitudes of {Q}. The flow-chart of this method is shown in Fig. 12.3.4.

12.3.3 Contour optimization by using non-linear programming

This method uses mathematical optimization to find the extremum point of the
objective function directly.
The method of surface charge simulation states

Plo} = {0} (12.3.18)

that the field strength on the electrode surface or on the interface of the
dielectrics is directly proportional to the surface charge {¢}. The objective
function is chosen as

(E; — E;)? = min (12.3.19)

M=

F(X) =

i

1

where E; are the calculated values and E;, are the desired values along the
contour of the electrode. The total number of the discretization points on the
contour is m. In order to reduce the number of design variables, assume that any
surface to be optimized is moved only in a normal direction to the contour. Any
method of nonlinear optimization to minimize the quadratic function introduc-
ed in Chap. 11 may be used to solve Eq. (12.3.19). The derivative of the objective
function is obtained and used whenever possible in analytical form. Whether
this is possible depends on the form of the approximating function of the charge
distribution {¢}. If no analytical function exists, the derivative of the objective
function is replaced by the differences of the objective function. Reference [9]
compares different methods of optimization such as the method of steepest
descent, quasi-Newton’s methods and the conjugate gradient method to solve
practical problems.
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12.4 Problems of domain optimization

The field distribution that has to satisfy a specific requirement within a region is
defined as a domain optimization. For example the design of the magnets may
requires

(a) a constant air gap flux density

(b) uniform air gap field

(c) prescribed field distribution in the air gap

(d) prescribed field distribution in a specific region

These problems are regarded as the domain optimization. The predeter-
mined targets are met with suitable dimensions of the magnet and/or by using
a suitable exciting coil. In the past, these problems were treated by circuit
analysis. Recently, optimum design of magnets is obtained by field analysis
[19, 20]. Several methods are shown in the following sub-sections.

12.4.1 Field synthesis by using Fredholm’s integral equation

A predetermined distribution of the magnetic field strength along the axis of
a solenoid [21] or in a plane perpendicular to the axis of the solenoid [22] or in
a volume within the solenoid [23] are commonly required. All these problems
are solvable by using Fredholm’s integral equation of the first kind.

Assume that the solenoid is composed of a number of similar sections shown
in Fig. 12.4.1(a). Each of these sections may have different current densities. The
vector potential of a filamentary circular loop with radius r’ (Fig. 12.4.1(b)) is

A = A(r, 2)n, (12.4.1)
where
1/2
A(r, 2) = %’(f) : f(k) (12.4.2)
T T
—h— 1@ | P(r.2)
im0 7 R
z 0" - a z { y 0
\
NAAVINAN )

a b

Fig. 12.4.1a,b. A solenoid composed of segments
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(r, z) is the location of the observation point and I is the current in the loop. In
Eq. (12.4.2),

Sk)= <% = k>K(k) - %E(k) (12.4.3)

where

4rr’
k= 1244
(r+r)2+(z-2) ( )

K (k), E(k) are complete elliptic integrals of the first and second kind. Take the
curl of vector potential 4 to obtain the magnetic field strength H

HlexA . (12.4.5)
Ho
The component of the magnetic field strength along z direction is
1 0 I
H.(r,z)=— —[rA(r,z)] = —g(r,r' z,2') (12.4.6)
Uor Or 2n
where
1
g(r,r'z,z') =

[(r+7r)? +(z—2')*]"?

2
[ (k)+r —riA- )E(k)]. (12.4.7)

(r—r)Y+(z—2)*

Assuming that the current density is uniform in each small section of length
h and width d, hence the field strength is

bz 2
H(r,z)= —.f | g(r,r,zz)drdz . (12.4.8)

a z'—h/2

Consider the symmetry of the solenoid, the magnetic field strength produced by
whole solenoid is

N b
H(r,z)==3% Ji| [g(r,r,z,2)+g(r,r,z, —2')]dr dz’
(12.4.9)

where N is half of the total number of sections. If r =0, the integrand of
Eq. (12.4.9) is

g(r.r',z,2)=r2[r*+(z—z')*]7%>. (12.4.10)
The discretized form of Eq. (12.4.9) is

H(rj zj) = Z ai;J; . (12.4.11)

This is a set of algebraic equations. It can be written in a general form
AX =B (12.4.12)
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The X is the unknown current density {J} in each section of the solenoid, B is
the desired field distribution. The elements of matrix A are

b z'+h/2

a;; = f j Lg(r,r,z,2')+ g(r,r' z, — z')]dr'dz". (12.4.13)

a z'—h/2
The solution of Eq. (12.4.12) yields the current distribution. Unfortunately, the
solution of Eq. (12.4.12) is unstable due to the fact that Fredholm’s integral
equation of the first kind (Eq. (12.4.8)) is ill-conditioned’. A small error in the
data yields great errors in the results. To overcome this problem, one method is
to transform Eq. (12.4.12) as

AX +alX =B (12.4.14)

In Eq. (12.4.14) I is a unit matrix, « is a regularization parameter. « is hard to
cstimate. Initially it can be assumed as an arbitrary constant until the final
results satisfy Eq. (12.4.12). References [21, 23] describe the method of this
solution. The influence of the value of « on the results is also given in these
papers.

124.2 Domain optimization by using non-linear programming

In designing various magnetic devices, the design variables may be the contour
of the iron yoke, the profile of the coil [19] or the dimensions of the winding
[24,25]. All these are shown in Fig. 12.4.2. The method using non-lincar
programming for domain optimization is explained as follows.

z

7a

Pole face 0 ] r

_____ 5 P(Xj»)’j) [Z<J N
I v
tQ(Xi-Yi) M | [><]

a b

Fig. 12.4.2a,b. Diflerent objects to be optimized

' A matrix A whose inverse A ! contains very large elements comparison with those of matrix A is
a set of ill-posed equations.
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Assume that the contour of the iron boundary shown in Fig. 12.4.2(a) which
is to be modified in order to find the magnetic field over a prescribed region (e.g.
the region enclosed by the line of dashes) approaches a predetermined distribu-
tion. The points P(x;, y;) on the pole face are varied, the points Q(x;, y;) within
the space are fixed. Then the flux density within the space can be expressed by:

B,~=f(x;,y¢;xj,yj) i=1,...,n j-‘:l,,m (12.415)

Assume now that the required value of the flux density inside the region
enclosed by the line of dashes is By. Then the objective function F(X) is:

F(X) =Y (4B;/B,)* = min (12.4.16)
j=1
where
AB;=B; — B, . (12.4.17)

The variables x; and y; are obtained by minimizing the function F(X).

No matter whether the objective function can be expressed analytically or
not, non-linear programming can adjust the design variables automatically so as
to force the objective function to tend to a minimum. Reference [25] introduces
different mathematical programming to obtain a uniform field distribution
within a sphere centred at the origin of the coordinates shown in Fig. 12.4.2(b)
where the dimensions of the six coils are design variables.

One example of the constraint optimization design is given in reference [26].
The object is to obtain the maximum flux density in the air gap of a permanent
magnet machine shown in Fig. 12.4.3.

Here the objective function is defined as:

B;(X)

Max F(X) = 70 (12.4.18)

iy

%%1

Fig. 12.4.3. The optimum design of permanent magnet machine

A
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where V(X) is volume of the rotor of the permanent magnet machine. The
design variables X(«;, r;) are the sizes and the geometry of the magnet pole.
These variables r;, o; (i = 1,2,3) have to satisfy the following constraints, e.g.

a;<r;<b and <K< Pi. (12.4.19)

Using the barrier function method, the constrained optimization problem is
transformed to a sequence of unconstrained optimization problems, i.e. the
equivalent objective function is

maxF(}(’):max{M i 1[( Xi )+< xi )]} (12.4.20)
i=1 P iu — Xi Xi — Xit

where p is the penalty parameter and the subscripts u and [ indicate the
upper and the lower bound of the design variables. Any of the unconstrained
optimization methods which were introduced in Chap. 11 can be used to
solve Eq. (12.4.20). Results using different optimization methods are given in
reference [26].

12.5 Summary

The optimum design of electromagnetic devices is achieved by combining field
analysis and mathematical optimization. The general idea of optimum design
has been introduced in this chapter. The methods of solution are problem
dependent and the results are not unique. Except in a few well defined problem it
is unlikely that the first automatically-optimized solution would be entirely
satisfactory. The user’s intervention in redefining the requirements and con-
straints is needed during the process of optimum design.
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