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Preface

Recent advances in the development of high-strength materials coupled
with more advanced computational methods and design procedures
have led to a new generation of tall buildings which are slender and
light. These buildings are very sensitive to the two most common
dynamic loads — winds and earthquakes. The primary requirement for
a successful design is to provide safety during infrequent events such
as severe earthquakes. In addition, serviceability requirements such as
human comfort and integrity of structural components during strong
winds or moderate earthquakes need to be addressed. As such, the
design of tall buildings subject to winds and moderate earthquakes is
governed by stiffness. To resist strong earthquakes and suffer only
repairable damage, the current trend is to incorporate weak elements
in the structural system so that they act as structural fuses in the event
of extreme loading. Thus the efficiency of the design depends on the
type of structural systems chosen for construction. From teaching,
research and the consultancy experience of the author, an attempt has
been made in this book to provide a well balanced and broad coverage
of the information needed for the design of structural systems for
wind- and earthquake-resistant buildings. To this end, the basic
concepts in structural dynamics and structural systems, assessment of
wind and earthquake loads acting on the system, evaluation of the
system response to such dynamic loads and finally the design for
extreme loading are presented. Numerical examples are included in the
text. The book is intended for graduate students of structural engineering
as well as for practising structural engineers.

In writing this book, I am indebted to my family who has supported
me enthusiastically throughout. I would like to acknowledge my
gratitude to all who have helped me in the preparation of this
manuscript, in particular Lim Saukoon, Yeo Kathy, Liu Ding Mei and
Jayanti Krishnasamy for typing the manuscript and Mei Yin for
drafting the figures. My gratitude is extended to my sons, Viknesh and
Ganesh, for allowing their father to write with such little interruption.

T. Balendra
Singapore 1993
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Chapter 1

Fundamentals of Structural Dynamics

1.1 Introduction

Buildings, in addition to gravity loads, are liable to be subjected to timc?-varylng
loads arising from winds, earthquakes, machinery, roac.l and rail traiﬁ_c,
construction work, explosions, etc. These loads are dominant over certain
frequency ranges. For example, Fig. 1.1 depicts the frequency cont'enF of
turbulent winds and earthquakes, The influence of th-ese h_)ads on buildings
depends on the dynamic characteristics of the buildings in rel?ltlf)n to ‘the
dominant frequency range of the loading. For example, a stiff building with a
period of 0.5 s would only be slightly affected by the wind, but the effect of an
earthquake on this building could be serious. On the other hand, for a tall _and
flexible building of period 5s, moderate earthquakes may have no serious
effects, whereas winds could have a significant effect an'd would control the
design. In order to determine the extent to which the building would be a_ffected
by time-varying or dynamic loads, the building must be analysed using the

Earthquake
spectrum

Wind turbulence
spectrum

Power spectral density

0001 00 0] 1 10
Frequency (Hz)
mﬁn 100 10 1 01
Period (s)

Fig. 1.1. Spectral densities of earthquakes and winds.
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Fig. 1.2. A vertical structure subjected to dynamic loading.

principle of structural dynamics. In a dynamics problem, the applied loadings
(and hence structural responses such as deflection, internal forces, stress, etc.)
vary with time. Thus, unlike a statics problem, a dynamics problem requires
a separate solution at every instant of time. Consider a vertical structure of
mass m(z) per unit height subjected to a dynamic load due to wind gust as
shown in Fig. 1.2. The applied load p(z, t) produces a time-varying deflection
v(z, t) which would involve acceleration #(z, t). These accelerations generate
inertia forces fi(z, t) = m(z)ii(z, t) which oppose the motion. Thus the structure
may be considered as subjected to two loadings, namely the applied load
and the inertia forces. The inertia forces are the essential characteristic of a
structural dynamics problem. The magnitude of the inertia forces depends on
(a) the rate of loading, (b) the stiffness of the structure and (c) the mass of the
structure.

If the loading is applied slowly, the inertia forces are small in relation to the
applied loading and may be neglected, and thus the problem can be treated as
static. If the loading is rapid, the inertia forces are significant and their effect
on the resulting response must be determined by dynamic analysis.

Generally, structural systems are continuous and their physical properties or
characteristics are distributed. However, in many instances it is possible to
simplify the analysis by replacing the distributed characteristics by discrete
characteristics, using the technique of lumping. Thus mathematical models of
structural dynamics problems can be divided into two major types:

1. discrete systems with finite degrees of freedom
2. continuous systems with infinite degrees of freedom.

However in the latter case, a good approximation to the exact solution can be
obtained using a finite number of appropriate shape functions. The analysis of
a discrete system with one degree of freedom will be described first, followed
by a multi-degree-of-freedom system. Subsequently the analysis of a continuous
system will be presented.

Fundamentals of Structural Dynamics 3

1.2 One-degree-of-freedom System

1.2.1 Equation of Motion

Consider a one-storey building subjected to a lateral load P(t) as shown in
Fig. 1.3a. If the floor girder is assumed to be rigid, and axial deformations are
neglected, the lateral displacement v(t) of the floor is the only degree of freedom.
When the mass m is assumed to be lumped at the floor level, the physical
problem can be represented by the mechanical model shown in Fig. 1.3b. In
this model, the spring represents the stiffness of the storey and the dashpot
represents the viscous damping — the energy-loss mechanisms of the structure.
The free body diagram of the mass is shown in Fig. 1.3¢c where, according to
D’Alembert’s principle, the inertia force is such as to oppose the motion. Setting
the summation of forces to zero yields the equation of motion of the system as

mi + cv + kv = P(t) (1.1)

where m is the mass, ¢, the viscous damping coefficient and k the lateral stiffness
of the building. The consistent units for mass, stiffness, damping coefficient,
force and displacement are kilogram, Newton/metre, Newton second/metre,
Newton and metre, respectively.

1.2.2 Free Vibration

Vibration in the absence of external forces is called the free vibration, which is
caused by initial conditions such as initial displacement v(0), initial velocity &(0)
or a combination of initial displacement and initial velocity. The equation of

v(t)
P(t) m 10 R Ll
[ |\\ T A A
% | ! i m —=P(t)
|
| G
> (b)
(a)
kv —
LU B
q
(c)

Fig. 1.3. One-storey building subjected to lateral load: (a) physical model, (b) mechanical model
and (c) free body diagram.
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motion for free vibration takes the form

k
R P S (1.2)
m m
or
5+ 20wi + o®v =0 (1.2b)

where @ = \/k/ﬁm is the frequency of undamped vibration in radians/s, and {
is the damping ratio, expressing the damping as a fraction of critical damping
(2mw). The critical damping is the smallest damping for which the system
returns to its original position without oscillation. The solution to Eq. (1.2)
may be expressed as [1.1]

(o) + v(o){w

Dp

u(t) = e‘g‘”‘[ Sin wpt + v(o) Cos a)Dt:I (1.3)

where wp = w(l — {*)'/? is the frequency of the damped vibration. Since the
damping in civil engineering structures is small, less than 10%, (! < 0.1), wp ~ @
and thus the period of oscillation 7 can be taken to be 27t/w. The frequency of
oscillation f expressed in cycles per second (hertz) is 1/7..

The free vibration response obtained from Eq. (1.3) is shown in Fig. 1.4. The
direction of motion repeats periodically with period 7. The magnitude decays
exponentially with time owing to the presence of viscous damping.

The ratio between two successive positive or negative peaks can be shown
to be

Uy

= el (1.4)

Upty

Fig. 1.4. Damped free vibration.
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Taking the natural logarithm on both sides of Eq. (1.4) yields

5 ln( b ): ol (1.52)
Upn+1
Thus
c:% (1.5b)

where ¢ is called the logarithmic decrement. Thus, from Eq. (1.5a), the damping
in the system can be estimated. For better accuracy the response peaks which
are several cycles apart must be considered, and then the damping ratio is
determined from

(= lln( U ) (1.6)
2N \v, 4w

where N is the number of cycles between the amplitude peaks.

1.2.3 Response to Harmonic Loading

When the external forcing function is of the form
P(t) = P, el (1.7)

where P, is the amplitude and w; is the frequency of the applied loading, the
solution to Eq. (1.1) is obtained by setting

o) = a5 e (1.8)

where v# is complex. Substituting Egs. (1.7) and (1.8) into Eq. (1.1) yields
P
v§ = H(wy) f (1.9)

where the frequency response function H(wy) is given by

1

p-(2)

The modulus of the frequency response function is known as the mechanical
admittance function. It takes the form

H(w;) = (1.10)

1

-GIT-<ET

|H(w¢)] = (L.11)
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Equation (1.8) may be expressed as
u(t) = |p§] el@r—® (1.12)

where the displacement amplitude and the phase angle are given by

P
lu§l = f |H (e)| (1.132)

()
6 =Tan™! —w—\z
(%)

)
When the applied load is P, cos w;t, which is the real part of P, ¢, the
steady-state solution is obtained by taking the real part of Eq. (1.11), namely

and

(1.13b)

v(t) = |vE| Cos(wst — 6) (1.14)
Similarly if the applied load is P, Sin wt, then the corresponding solution is
o(t) = |vf| Sin(w,t — 6) (1.15)

The steady-state solution given in Egs. (1.14) and (1.15) must be added to
the transient solution arising from the initial conditions [Eq. (1.3)]. However,
the latter will become vanishingly small after a certain period of time, as a result
of damping, and thus insignificant in many practical cases.

Since Fy/k is the displacement that would be obtained if the load is applied
statically, the ratio [v§|/(Py/k) is called the dynamic magnification factor, D. The
plot of dynamic magnification factor against w¢/w is shown in Fig. 1.5 for
different damping ratios.

5.0
g=0
£ wol "
5
.E 10t
E’ 0.2
g 0}
o
E 05
£ 1
10
0 0 20 30 w0

Frequency ratio wy/w

Fig. 1.5. Magnification factor for different damping ratios.
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The condition w; = w is called resonance. At resonance, D = 1/2{. As is seen
from Fig. 1.5, the response of the undamped system tends to infinity at
resonance. With damping, the response is bounded at resonance, however the
magnitude is quite large. For instance, at 1% damping ({ = 0.01) the value of
D is 50, and at 2%, damping ({ = 0.02) the corresponding value of D is 25. Thus
the resonance condition should be avoided in designs where the structure is
subjected to a forcing function with a constant excitation frequency. When a
structure is subjected to a complex loading consisting of several frequency
components, as in the case of earthquake or wind loading, it is not possible to
avoid resonance because one of the exciting frequencies coincides with the
structural frequency. However, if the energy associated with such a frequency
is small, then it is possible to design the structure to withstand the effects of

resonance.

1.2.4 Response to Arbitrary Loading

Earthquake loading and wind loading are irregular and non-periodic. There
are various ways to determine the response to such loadings. One method is
to assume that the irregular load is made up of several impulses, as shown in
Fig. 1.6. By superposing the response due to each impulse, the total response

can be obtained.
To determine the response due to a single impulse, consider the Dirac delta

function (¢t — 1) acting at time ¢ = 7, as shown in Fig. 1.7. The properties of
the Dirac delta function are

o(t—1)=0, t#1 (1.162)
'[w 5t —1)dt =1 (1.16b)

The time interval & over which the Dirac delta function is not equal to zero is
infinitesimally small. When ¢ — 0, the magnitude is undefined, however, the

P(t)

Fig. 1.6. Arbitrary loading discretized into impulses.
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VE | i s

Fig. 1.7. Dirac delta function,

area under the curve is bounded and is equal to 1. The unit of Dirac delta
function is 1/seconds.

According to Egs. (1.16a) and (1:16b), the impulse P (in Newton seconds)
acting at time ¢= _1: can be converted to an 1mpuls1ve force P(t) defined for all
tzme t as L P : . o

| am
To deterrmne € response'due to an 1mpulse att = 0 we set 7 = - 0 in ‘the above
expressmn The govermng equatlon now. takes the form :

mv+ cv+kv -—Pé(t) - o o i : .- (L. 'IZSI)
Assumlng zero” mmal condltlons namely u(o) = v(o) - 0, at the tlme of

application of the impulse, integrating Eq. (1.18) over the interval £ and taking
the limit of ¢ — 0.[1.2]:

Lim | (m6 + ¢ + ko) df = Lim J Po@ydt=p ©(1.19)
e~0 Jo £0 Jo . .
Lim { m#dt = Lim m[3(e)] = méo®) U (1.20a)
=0 Jo £~

Lim | ctdt= Lim c[v(g)] = cofo*) : | (1.20b)
=0 Jo e—+Q

Lim § keodt = Lim (kvs) 0. : ' (1.20c)
e+0 Jgo Coe=0 o .

where #(0o™) is the'instantaneous éh'ang'e in velocity and v(o*) is the instan-
taneous change in displacement. As a finite time is required for displacement
to develop, v(0™) = 0 for a system starting from rest. Thus Eq. (1.19) yields

-t

O (1.21)

m -
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The physical interpretation of Eq. (1.21).is that the impulsive force produces
‘an instantaneous change in the velocity. In faqt;'this- is the manner in which
* the initial velocities are imparted to a systeim possessing inertia.

Since the external force is absent for t > 0%, the response due to the impulse

“is the free vibration due to the initial condition given:by Eq. (1.21). Using the

expression for free vibration given in Eq. (1.3), the”_résp'dnse cin be expressed as

a~

e Sinwpt, >0 .-

o(t) = mP

=0, o b S am)

' The response due to umt Impulse att = 0 is calied the meulswe response which

is obtained by setting P=1inEq. (1. 22) as.

a

1
W) = —e ' Sinwpt, >0
maon,

—0, £<0 )

Since the response due to unit impulse at ¢ = 7 is h(t — 1), referring to Fig. 1.6,
the response due to an impulse of P(z) At acting at time ¢ = 7 is given by

Av(t, ©) = P(tYh(t — ©) Ar, t>c {1.24)

Each impulse in Fig. 1.6 will contribute to the total response. Summmg the
effects of all the impulses and letting At — O:

o(t) = j P(h(t —tydr
0

= J P(z) e“c"’“ 9 Sin wD(t — 1:} d'r (1.25)
mwp Jo _ .

This is called the Duhamel integration '6r'cOnuéluiioﬁ-'imégi‘dl'. If the initial
conditions are non-zero at the time of application of the arbitrary loading, then
the response is obtained by adding Eq. (1.3) to Eq. (1.25).

Example 1.1. Derive the expressions for displacement time history when the
shear building shown in Fig. 1.8 is subjected to a half Sine pulse. Neglect
damping and assume zero initial conditions. '

Solution. The forcing function is given as

P(t)=POSiIICUft, 0£t£t0

=0, t>t0




Py sin eyt

S K R

Fig. 1.8. One-storey shear building subjected to half sine pulse:

Thus for 0 < t < t, (phase I), Eq. (1.25) yields

B[t ,
v(t) = — | Sin wer Sinw(t — 7} dt
mw Jo

B 1 Si Sir 6t
_,.Em[ in et — f mwt}

where f=—L .. -

I_."‘or. t> t (phase II) o
B . .. Po. ;!n A . t .
C o) = —— J Sin @, Sin w(t — 1) dr + J (o) dr .
X mor 0. . fo X

B

—kw =5 LB(Cos wyty — Cos wty) Sin w(t — t,)

+ (8in ety — f Sin wt,) Cos w(t — t,)]

Note that, during phase II, the system executes free vibration for which the
initial conditions are the displacement and velocity at ¢ = to (end of phase I).
Thus, the response for ¢ > ¢, can also be obtained from Eq. (1.3) as

v(t) = (CDO) Sin w(t -~ to) + v(to) Cos co(t — ty)
where :
v(to.).. 1: (1. 152) [Sin @yt — £ Sin wt,]
B(te) = ( ! ﬁz) [o; Cos wity — o Cés ﬁ)toj
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1.3 Multi-degree-of-freedom System

1.3.1 Equation of Motion

" Consider a three-storey building ideaii?éd:ﬂs &.dis_ip.retg_ SYstem._If the floor
* girders are assumed to be rigid and the axial deformation of the columns is -

neglected, then this system will have three degrees of freedom one degree of
translation per floor, as shown in Fig. 1.9a. -

Let the lumped masses at the first, second and third storeys be m,, m, and
m,. If the lateral stiffnesses of the first, second and third storeys are k,, k, and
k, and the corresponding viscous damping coefficients are ¢y, ¢, and c;, then
this physical system can be represented by the mechanical system shown in
Fig. 1.9b, Referring to the free body diagram shown in Fig. 1.9¢, three equations
of motion, one for each mass, can be written. These three equations can be
expressed in matrix form as follows; :

[M1{s} + [C{e} + [K]{v} = {P} o (1-26)

" where

- the force vector

{P}=

(v} =

' the displacement-'vector-.- -

- —=Vy[t}
m, :
Pytt)—== Z77Z3—V{t}
kZ
S1oomy
P lt)y—FEZ — Wit
by
becrd P
[ﬂ’_ : : oV Kl ¥, - \‘}] k34v3 v3
. ' 17 "—m‘v, rn
. Py 1) WP(!} ---P{t]
c-l‘h e g | —— ——-—
64 1:3{\"3 v2
(e} -

Fig. 1.9. Multistorey shear building subjected to lateral load: (&) physical model, (b) mechanical
model and (c) free body diagram.
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my
[IM]= m, ; the mass matrix
my
-.c1 + ¢, - _
C[Cl=| —c¢; e34c3 —cy |;the dami)ing m'atrix_ _
X —C3 €3 |
and
k1+k; —kyo o SR
K] = =k ks ¥k ks s th‘e stiffness matrix
. ks ks |

In the governing ¢quation, the mass matrix is diagonal because of the lumped
mass idealization adopted. The stiffness and damping matrices are symmetrical
with positive diagonal termis and with the largest term being in the dlagonal

A convenient method to’ determine the elements of the stiffness matrix is -

through the definition of the stiffiess influence coefficient k;;, which is defined
as the force requlred at degree of freedom i to produce a unit” dlsplacement at
degree. of freedom J and zero “displacemients at all the rcmammg ‘degrees of
freedom:.

For example, 1f we set v, —1 and v, =0y, =0 to the shear building in
Fig. 1.9a, then from the deformation configuration shown in Fig, 1.10a, the first
column of the stiffness matrix is determined. Similarly, setting v, = 1, v, = v, =0
and vy = 1, v; = v, = 0 as shown in Figs. 1.10b and 1.10c yxelds respectively
the second and third columns of the stiffness matrix.

In practice, the damping matrix is constructed by assuming it to be
proportional to the mass matrix and/or the stiffness matrix. The proportionality
constants are determined through damping ratios in different modes of
vibrations obtained from vibration tests conducted on similar structures.

ST ! :
Ak —kg (P —ky
i ! -
-\~ ' .
.. B kZi F r.a Au—kn : v T sre, B kn
|
z 24—~k 227777z~ by
S o o vy

fa} B ' {b) {c)

Fig, 1.10.: Deterrmnatlon of stiffness’ matrix: @y =14 vy=0y=0, (b) v2 =1L oy=py=0 and
©@uv=10, =v,=0 "
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For a system with N degrees of freedom; the governing equation of motion,
Eg. (1.26), consists of matrices of size' N. X' N.representing N coupled simul-
taneous second-order differential equations.. The' solution is obtained through
a step-by-step integration procedure [1:1]: with certain ‘assumptions about the
variation of acceleration, velocity and dzsplacemcnt over the selected time step.
However, in the case of the linear system, a more convenient and elegant method
to solve this set of equations is through modal analysis, where the solution is
obtained as the superposition of the contribution from different modes of
vibrations. This method will be elaborated in: subsequent sectlons ol' this
chapter,

132 Undamped Free Vibration

According to Eq. (1.26), the governing equation for undamped free vibration
takes the form

[M1{5} + [K1{v} = {0} o o (127)

In analogy to the single-degree-of-freedom system, assuming that the free
vibration motion of the multi-degree-of-freedom system is simple harmonic, let

{v(®)} = {6} Sin{wt + 6) ' (1.28)

This implies that we are looking for a solation 'in which all the coordinates
v(t), j = 1,2,..., N execute a synclironous motion, ie. all the coordinates have
the same time dependence. Thus the general configuration-of the motion does
not change, except for the amplitude. _ N

Substituting Eq. (1.28) into Eq. (£1:27) yields: @ 7

[[K] — *[M]1{8} = {0} . am

Determining the values of »? for the non-trivial solution of Eq.. (1.29) is known
as the eigen value problem. Non-trivial solution is possible only if the determinant
of the matrix vanishes. Thus

K] - w’M]=0 (1.30)

The above equation is called the characteristic equation. Expanding this
equation leads to a polynomial equation of N-th degree in ©*. In general, there
are N distinct roots or eigen values to this equation. For real symmetric, positive
definite mass and stiffness matrices which pertain to stable structural systems,
the eigen values are real and positive. If the eigen values arranged in ascending
order are denoted as wi, w3,..., 04 (0] > 0k, ..., > w}), then the square
roots of these quantities are the frequencies of the 1st, 2nd, ..., N-th modes of
vibration. The mode having the lowest frequency is called the fundamental mode.

Associated with each frequency @, there is a non-trivial vector {8,} satisfying

[K1(0} - w?{MI{6} = {0}, r=12...N (131
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The vectors {4,}, r =1 to N are known as the eigen vectors. Equation (1.31)
satisfies identically, since the frequency is determined from this equation. Thus
it consists of only N — 1 independent equations and hence the amplitude of all
the elements of vector {f,} cannot be determined. However the ratios between
the elements are determined uniquely, which implies that the shape of {f,} is
known. Thus we could express

{t:} = c{d.} (1.32)

where {¢,} is the r-th mode shape corresponding to frequency w,, and ¢, is the
unknown amplitude. :
According to Eq. (1.28), the response due to the r-th mode of vibration is
given by
{v(@®)}, = ¢, {¢,} Sin(w,t + 6,) (1.33)

Since for a linear system, the general solution is the sum of the individual
solutions, the general solution for free vibration takes the form

N N

o} =3 {®}, = Y c{¢,}sin(w,t+6,) (1.34)
r=1 r=1

in which the unknown amplitude ¢,, »r = 1 to N, and phase angle 8,, r = 1 to

N, are determined from 2N initial conditions, namely {v(0)} and {#(0)}.

Example 1.2. Calculate the frequencies and mode shapes of the three-storey
shear building in Fig. 1.11. The storey stiffness and the floor masses are as
indicated in the figure.

Solution. The mass and stiffness matrices for the building are determined from
Eq. (1.26) as
2.0
[M] =103 1.5 kg

1000k 10

500 x 10° W/m

.BLL -50 -257 é
1200 10° W/m

30 - 676 247
i 1600 % 10° W/m
i v
Mode 1 Mode 2 Mode 3
w, = LSmd/s w, = 31.2 rod/s @, =6 rad/s

Fig. 1.11. Modal shapes of three-storey shear building.
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3000 —1200 0
[K]=10%| —1200 1800 —600 | N/m
0 —600 600
Setting the determinant to zero, as in Eq. 1.30, leads to
AP —55124+750-2=0
where
(1)2

" 600

The roots of the above polynomial equation are i, = 0.351, A, = 1.61 and
A3 = 3.54. The values correspond to ®; = 14.5rad/s, w, = 31.2rad/s and
w; = 46.1 rad/s. The corresponding mode shapes are found to be

0.30 —0.676 247
{p,} =10.644 ), {¢,} =1 —0.601 }, {3} =4 —2.57
1.0 1.0 1.0

Note that mode 1 does not intersect the zero displacement line, whereas mode 2
intersects it once and mode 3 twice.
Orthogonality of Mode Shapes

Consider two distinct solutions w2, {¢,} and w2, {¢,} of the eigen value problem
expressed in Eq. (1.29). Thus we have

[K1{¢,} = o} [M1{$,} (1.35a)

[K1{¢.} = 0l [M1{,} (1.35b)
Premultiplying Eq. (1.35a) by {¢,}" and Eq. (1.35b) by {¢,}" yields

{6 [K1{¢,} = 0}{o,} [MI{¢,} _ (1.36a)

{¢.)T[KI{$s} = o?{¢,} [MI{s} (1.36b)
Taking the transpose of Eq. (1.36b) leads to

{0)T[K){¢} = 0i{¢,} [M]{¢,} (1.36¢)
Subtracting Eq. (1.36¢) from Eq. (1.36a) yields

(@7 — @){} [MI{$,} =0 (1.37)

Since w, # w,, Eq. (1.37) implies
(¢} (M p,} =0, r#s (1.38)
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Substituting Eq. (1.38) into Eq. (1.36¢) leads to
{6)7[K){¢,} =0, r#s (1.39)

Equations (1.38) and (1.39) are the orthogonality conditions of the modal
vectors.

Response to Initial Condition

The free vibration response of a multi-degree-of-freedom system is given by
Eq. (1.34) as

N

o®©} =Y {4} Sin(w,t + 6,) (1.40)

=1

If {v(o)} and {ii(0)} are the initial displacement and velocities respectively, then
applying Eq. (1.40), at t = 0 '
N

{v(0)} = ; ¢,{¢,} Sin 6, (L41a)
{i(0)} = Z‘ ¢,0,{¢,} Cos 0, (1.41b)

Premultiplying Eqs. (1.41) by {¢,}"[M] and invoking the orthogonality
condition given in Eq. (1.38) lead to

() IMIf(0))
, Sin g, = &} D00}
¢, Sin {fﬁr}T[M]{(i’r} (1.42a)
L ()T IM1(0)}
, Cos 0, = — 1t IMJu00)
O o (6. IM1(6,) (1428)
Applying Eq. (1.42), Eq. (1.40) yields
X (1B IMIGO) . ()T IMI{()) )
©) = (———s i 4 LB [MI{(0)}
wOF= 2\ o I ot e ey O )
(1.43)

From the above equation, the free vibration response can be determined for
any given initial conditions. For instance, if the initial displacement vector
resembles a particular modal vector, say {¢,}, and the initial velocity vector is
zero, then setting {v(0)} = a{¢,} and {i(0)} = {0} in Eq. (1.43) yields

{00} = a{$,} Cos o, (1.44)

Thus the system executes a harmonic oscillation at natural frequency w, and
the system configuration resembles the s-th mode all the time. This implies that
the natural modes can be excited independently of one another by the
appropriate choice of initial conditions.
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1.3.3 Forced Vibration Response

Undamped System

For a system with N degrees of freedom, the governing equation of motion,
according to Eq. (1.26), takes the form

[M1{5} + [K1{v} = {P()} (145)

For a linear system, the solution to the above equation is obtained more
conveniently by modal analysis which uncouples the system of differential
equations of motion into a set of independent differential equations, each
representing a single-degree-of-freedom system. This is achieved by trans-
forming the physical coordinates {v()} into modal coordinates {g(t)}, namely

PO} = [0 {40} (1.46)
Nx1 Nxnnxl

where

[¢] = [{¢1}{¢2} ’ {an}] . (1.47)

is the mode shape matrix comprising the first n eigen vectors (where n is much
smaller than the total number of degrees of freedom N) determined from the
corresponding free vibration problem.

Substituting Eq. (1.46) into Eq. (1.45) and premultiplying the resulting
equation by [¢]" yields

[41" [MI[¢1{4} + [$1"[K1[$1{q} = [¢1" {P(1)} (1.48)

According to the orthogonality conditions given in Egs. (1.38) and (1.39),
Eq. (1.48) takes the form:

m*q, + k¥q, = p¥t), r=12...,n (1.49)
or
r;f,+w3q,-——pi(§, r=12...,4
where
m} = {¢,}T[M1{¢,} (1.50a)
k¥ = {$.}T[K){$,} (1.50b)
{pF()} = {&,}{PO)} (1.50c)

Equation (1.49) consists of n uncoupled equations, each representing the motion
of a single-degree-of-freedom system in modal coordinates.
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According to Egs. (1.3) and (1.25), the solution to Eq. (1.49) is given by

q,(t) = M Sin w,t + g,(0) Cos w,t
)

r

+

J‘t p¥(7) Sin w,(t — t) dt (1.51)

%
mfw, Jo

where g,(0) and ¢,(o) are the initial displacement and initial velocity of the r-th
modal coordinate, which are determined from

{a(0)} = [M*]™'[¢]"[M]1{v(0)} (1.52a)
{d(0)} = [M*]™'[¢]" [M]{i(0)} (1.52b)
in which
my¥ 0
[M*] = m3
0 m¥

n

The dynamic response of the given system is then obtained by solving for each
modal coordinate separately and superposing each solution according to Eq.
(1.46). This procedure is also called the mode superposition method. '

Damped System

The governing equation of motion is given in Eq. (1.26) as
[M1{5} + [CI{s} + [K]){v} = {P(®)} (1.53)

The modal analysis technique will lead to uncoupled modal equations if the
damping matrix is assumed to be proportional to the mass and stiffness matrices
in the form

[C]1=o[M] + B[K] (1.54)

where « and f are the proportionality constants.
Since the mass and stiffness matrices satisfy the orthogonality condition, pre-
and postmultiplying Eq. (1.52) will lead to

mq, + ¢¥q, + kg, = p}(1), r=12...,n (1.55a)
or
&
3 ) *(t
g, + 20,0,4, + w2q, =2 i), r=1,2,...,n (1.55b)
where
c¥ = am¥ + Pk* (1.56a)
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or

o  fo
e 1.56b)
¢ 2m, 2 (

The above equation can be used to determine the values of « and f§ provided
the damping ratios in any two modes are known. If damping ratios are known
for the fundamental mode and for a higher mode, the resulting values of o and
B will give a reasonable approximation of damping for the intermediate modes.
However, often the damping is known only for the fundamental mode from the
test conducted on similar structures. Then the accepted procedure is toset o = 0
and f = 2{,/w;.
According to Egs. (1.3) and (1.25), the solution to Eq. (1.55) is given by

4,(0) + q,(0){,
le’

q,.(t) = eﬁgf“’"[ " Sin wp,t + ¢,(0) Cos wD,t]

r
+ J P*(1) e~%“r®=9 Sin wp,, (t — 1) dt

%
m,Wp, Jo

r=12,...,n (157

where wp, = (1 — {?)"?w,, and g¢,(0) and 4,(0) are determined from Eq. (1.52).
The modal coordinates determined from Eq. (1.57) are superposed according
to Eq. (1.46) to obtain the response of the damped system.

Example 1.3. If the top floor of the three-storey shear building in Example 1.2
(Fig. 1.11) is subjected to the rectangular pulse shown in Fig. 1.12, determine
the expressions for displacement of the top floor, neglecting damping. Assume
zero initial conditions.

Solution. The governing equation of motion is given by

2.0 7, 3000 —1200 0] (v,
103 1.5 i, ¢ + 10%| —1200 1800 —600 |{ v,
1.0 &, | —600 600 vy

0

=4 0

P(t)

where
P(t) = P,, forO<t<t,

=0, fort > t,
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P(1)
I

—={

to
Fig. 1.12. Rectangular pulse.

Expressing the displacement in normal coordinates

v, 0.30 —0.676 2.47
v, p =1 0.644 pg,(t) + { —0.601 } q,(t) +{ —2.57 } q5(0)
v 1.0 1.0 1.0

the governing equation becomes [Eq. (1.49)]
(t)

'.

G, (1) + w?q,(t) = ri=il 2 3

in which, m¥, r = 1, 2, 3 are determined from Eq. (1.50a) as
m} = 1.80 x 10° kg
m¥ =246 x 10% kg
m$ = 23,11 x 10% kg

Applying Eq. (1.51)

q,(t) =

(1 — Cos w, 1), r=1.23 = fort<i;

rr

P,
= 2[Cosw,(t—xt,,)—Cosa) t], r=1,2,3 fort > t,
m¥w;

Since the mode shapes have unit value at the top floor, the top-floor
displacement is obtained as

U3(r) = Z qr(t)

r=1

3
=F

- Cos w,1), L <t
r=1

n 3 {

Cos o t]} t ity
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1.4 Continuous System

1.4.1 Equation of Motion

For a uniform beam with distributed mass m per unit length and flexural
stiffness EI subjected to an applied loading of p(z, t), the governing equation
of motion takes the form

o dv o*v
ﬁ +c a + IF = p(z, t) (1.58)
where v(z, t) is the displacement of the beam in the y direction and ¢ the damping
coefficient of the viscous dashpots which are distributed uniformly along the
beam, connecting the beam to the ground as indicated in Fig. 1.13. Although
such an arrangement of dashpots has no physical meaning, it provides a
mechanism for energy dissipation.

1.4.2 Free Vibration

The equation of motion for undamped free vibration is given by

o*v o*v
— +E[—=0 1.59
m at.‘l + 624 ( )
Let
v(z, 1) = P(z)q(r) (1.60)

where the function ¢(z) defines the deflected shape as the beam vibrates and
q(t) defines the amplitude of vibration.

plz)

El,m,c

E |

ES |

Fig. 1.13. Flexural beam with distributed mass, stiffness and damping.
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Substituting Eq. (1.60) into Eq. (1.59) yields

d*q(r)
de?

d*¢(z) 61
dz* =i (161)

me(z) + Elq(t)

Grouping the terms in z and ¢ together leads to
EI 1 d*(z) 1 d*q)
m ¢(z) dz* q(t) di*

Since the expression on the left is a function of z only while the expression on

the right is a function of ¢t only, each expression must be a constant for Eq.
(1.62) to be true. Denoting this constant by w?, we have

(1.62)

4
£r? d’ff) = w*md(z) (1.63a)
z
d?q(r)
g Tt =0 (1.63b)
The solution to Eq. (1.63b) is given by
q(t) = A Cos wt + B Sin wt (1.64)

whereas the general solution to Eq. (1.63a) takes the form

¢(z) = C, Sinaz + C, Cos az + C; Sinh az + C, Cosh az (1.65)
in which
a* = w’*m/EI (1.66)

The constants C,, C,, C; and C, depend on the boundary conditions, while the
constants 4 and B depend on the initial conditions. Three of the four constants
in Eq. (1.61) and the value of @ are determined from the boundary conditions
and hence the modal shape will be known. The constants 4 and B which absorb
the fourth constant of Eq. (1.65) are determined from the initial conditions and
hence the amplitude of free vibration can be determined.

Cantilever Beam

For a cantilever beam fixed at z = 0 and free at z = H, the boundary conditions
are

d
o0, 1) = 0, Linb=0 (1.67a)
dz
2 d3u(H, ¢
Efd_[m_’t!=0 EI,_U(?):{) (1.67b)
dz? dz
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Mode 1 Mode 2 Mode 3

L

Fig. 1.14. Free vibration mode shapes for a cantilever flexural beam.

representing zero displacement and zero slope at the fixed end, and zero bending
moment and zero shear at the free end. Substituting Eq. (1.65) into the boundary
conditions leads to the following frequency equation and the mode shape:

Cos oH CoshoH +1=0 (1.68)

Sin aH + Sinh aH
Cos aH + Cosh aH

P(z) = [Sin oz — Sinh az + (Cosh oz — Cos ocz):|

(1.69)

The lowest three values of aH which satisfy Eq. (1.68) are 1.875, 4.694 and
7.855. The first three frequencies are obtained by substituting these values of
oH into the following equation:

(xH)* |EI
o= = (1.70)

The corresponding mode shapes are depicted in Fig. 1.14. They represent the
sway modes of towers and tall buildings that deform predominantly in flexural
modes.

1.4.3 Orthogonality of Modes of Vibration

If ¢,(z) and ¢,(z) are two distinct modes of vibration corresponding to
frequencies w, and w,, then from Eq. (1.59) we have

d*¢,(z) _ wim

i - El ¢,(2) (1.71a)
d4 2
f;‘fZ) - “’E;" 6,(2) (1.71b)

Multiplying Eq. (1.71a) by ¢,(z) and Eq. (1.71b) by ¢,(z), and integrating
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from 0 to H:

a2 %f qs(zw(z)dz—f 8.0 0 g, (1722)

,m H B H d“(f)s(z) 5
@ EIL ¢,(2)¢s(2) dz = L e@— 5 % (1.72b)

Subtracting Eq. (1.72b) from Eq. (1.72a) leads to

(w} fwz)—J ¢,(2)ps(2) dz

= [ {002 g0 e (1.73)

For free, fixed or pinned end conditions, each term on the right-hand sides
through integration by parts becomes

4 2 2
¢,5( )d ff) @ 4, [ d°¢.(2)d°0,(2) | (1.74)
W 0 dZ dz
Thus, for @, # w,, Eq. (1.73) yields the following orthogonality condition:
rH
$,(2)p,(2) dz = 0, r#s (1.75)

Substituting Eq. (1.75) into Eq. (1.72a) yields

j gaiiibn - FRNE G (1.76)
o dz2  dZ?

For a beam with non-uniform mass and stiffness, the corresponding orthog-
onality conditions are

jH m(z) $,(2)§,(2) dz = 0 (1.77a)
0
d*¢,(2) d*¢s(2)
’ dz=0 1.77b
L ElG) — 57 (1.77b)

1.4.4 Forced Vibration Response

Consider the undamped forced vibration given by

Pl o*v
m 4 Bl = p(a) (1.78)
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As the displacement can be expressed as a linear combination of all possible
modes, let

@0 = 3 6.4, (1.79)

where ¢,(z) is the r-th mode shape and g,(f) is the modal coordinate.
Substituting Eq. (1.79) into Eq. (1.78) leads to

d? & d*%
Z ¢.(2) q'(t) Lyt ¢4(Z) () = Pz 1) (1.80)
M oy=1 d m
Applying Eq. (1.63a), the above expression becomes
Z ¢.(2) q'( ! + Z ¢, (2)w7q,(t) = P ) (1.81)
Premultiplying Eq. (1.81) by ¢,(z) and integrating from 0 to H:
P (j e dz)q,(t) +3 ( f $,2)9,:)0? dz)q,(t)
1 H
=— f p(z, 1) ,(z) dz (1.82)
mJo

In view of the orthogonality condition given by Eq. (1.75), every term in the
summation vanishes, except when r = s. Thus the above equation reduces to

30+ ol ) =" l'\f;), #1160 06 (1.83)

r

in which the generalized force P,(t) and the generalized mass M, are given by

F() = IH p(z, 1) (2) dz (1.84a)

M, (1) = IH me?(z) dz ' (1.84b)

0

It is to be noted that Eq. (1.83) represents a set of single-degree-of-freedom
systems. There are an infinite number of equations for a continuous system.
However only the first few equations need to be solved since the contributions
from higher modes become negligible. The solution to each single-degree-of-
freedom system is obtained as discussed in section 1.2.4. Then the response in
physical coordinates is obtained by substituting the modal coordinates in
Eq. (1.79).

If the equation of motion contains a damping term as in Eq. (1.58), then if
the damping coefficient ¢ is assumed to be proportional to m, the governing
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equation in modal coordinates becomes

Pt
g, + 20,@,4,(t) + 0?2q,(t) = }V(I)’ r=1to oo (1.85)

r

where ¢, is the damping ratio in the r-th mode of vibration. The solution to
the above equation is given by

t
.00 = j P.(z) e~ 52~ Sin o, (t — 1) d7 (1.86)
+@pr Jo
in which
op, = 0,(1 — {HY? (1.87)

Substituting Eq. (1.87) into Eq. (1.79) yields the forced vibration response of
damped continuous system.

References

L1. Clough, R W and Penzien I, Dynamics of Structures, McGraw-Hill, New York, 1975.
1.2. Meirovitch L, Elements of Vibration Analysis, McGraw-Hill, New York, 1975.

Chapter 2

Behaviour of Buildings under Lateral Loads

2.1 Structural Systems

Gravity loads are the primary loading on a building. However, as a building
becomes taller, it must have adequate strength and stiffness to resist lateral
loads imposed by winds and moderate earthquakes. As the height of a building
increases, the additional stiffness required to control the deflection, rather than
the strength of the members, dictates the design. Figure 2.1 shows the additional
weight of steel required to resist the wind loads as the number of storeys

~ increases. Buildings up to 10 storeys, designed for gravity loads, can resist lateral

loads without any increase in the size of members, because of the increase in
the permissible stresses allowed for combined loading. Beyond 10 storeys, the
additional material required to resist the lateral load increases non-linearly.
Thus for reasons of economy it is desirable to use an appropriate structural
system to resist the lateral loads, in addition to gravity loads.

A tall building essentially comprises several vertical cantilevers tied together
by the floor slabs. Under horizontal loading, each cantilever bends about its
own axis, but deforms in unison with other cantilevers owing to the in-plane
rigidity of the floor slabs. The various types of vertical cantilever used in

00f

E

= Gravity + Wind loads

= 2 0F

£ Wind bracing
%]

s Gravity londs

= 100} Y

% Columns

=

Floor framing
0 10 2 0 W 5 6 M 8 %0 10 1
Number of floors

Fig. 2.1. Weight of steel in high-rise buildings.
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buildings are rigid frame, braced frame, wall and tube. They individually or in
combination form the structural system which resists the lateral loads in a
building. The structural systems used in tall buildings are:

. Braced frame

. Rigid frame

. Shear wall

. Shear wall-frame

. Framed tube

. Tube in tube

. Bundled tube

. Outrigger-braced.

00 1 N b BW N~

Many of the above structural systems are suitable for either steel or reinforced
concrete buildings, however some are more appropriate for steel and some for
reinforced concrete buildings. The behaviour of these structural systems and
their areas of application will now be discussed.

2.1.1 Braced Frame Structures

A braced frame consists of columns, beams and diagonal braces, so that the
entire system acts as a vertical cantilever truss. The girders and braces form
the web of the truss while the columns act as the chord. The horizontal shear
due to the lateral load is resisted by the axial action of the braces, and thus it
is an efficient system for steel buildings of any height in providing the required
stiffness and strength to resist the lateral load.

The common types of braced frame are shown in Fig. 2.2. The axial forces
acting in the braces, columns and girders are also shown in this figure. Because
the lateral load is reversible, the braces are subjected to both tension and
compression, and thus they must be designed for the more stringent case of
compression. Consequently, for larger bay widths, K-type bracing is preferred

0
0
u —ry
L J - -

Fig. 2.2. Direction of axial forces in braces, columns and girders of different types of braced frames.
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Fig. 2.3. (a) Flexural deflection of high-rise braced frame structure and (b) shear deflection of
low-rise braced frame structure.

because of the shorter length of the braces. In resisting the horizontal shear,
the diagonals are in tension while the girders are in compression. Thus the
elongation of the diagonal and shortening of the girders give rise to shear
deformation of the frame. The external moment is resisted by tension in the
windward columns and compression in the leeward columns. Consequently, the
extension of the windward columns and shortening of the leeward columns
tend to cause flexural deformation in the structure. Thus low-rise buildings
deflect predominantly in shear mode (Fig. 2.3b) while high-rise buildings deflect,
predominantly in flexural mode (Fig. 2.3a).

As diagonal braces obstruct the internal planning and locations of door and
window openings, they should be located where such access is not required, for
example around the elevator, service and stair wells. They may also be placed
along walls and partition lines.

2.1.2 Rigid Frame Structures

A rigid frame structure consists of columns and girders connected by moment-
resisting joints (Fig. 2.4). Resistance to lateral loading is provided by the
bending resistance of the columns, girders and their connections. Rigid frames
are economical for buildings up to 25 storeys. For more storeys than this, deeper
girders are required to control the drift, and hence the design becomes
uneconomical. However, rigid frames can be used economically for taller
buildings, in combination with shear walls or braced frames. The open
rectangular arrangement of the members of the rigid frame allows freedom for
the internal layout. Because of the inherent rigidity of the reinforced concrete
joints, the rigid frame construction is ideally suited for reinforced concrete
buildings. However, this structural system is also used for steel buildings,
although moment-resisting connections in steel are costly.
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Fig. 24. (a) Rigid frame and (b) deflection configuration of rigid frame.

When a rigid frame is subjected to a lateral load, the horizontal shear in a
storey is resisted by shear forces in the columns of that storey. The shear causes
the columns of the storey to bend in double curvature with points of
contraflexure at approximately mid-storey level. The moments acting on joints
from columns above and below, as shown in Fig, 2.4a, are resisted by the girders
framing into each joint. The corresponding shear causes each girder to bend
in double curvature, with points of contraflexure at approximately mid-span.
These deformations of columns and girders allow racking of the frame with
horizontal deflection in each storey, causing an overall deflection resembling a
shear mode, as shown in Fig. 2.4b.

The overall moment caused by the external lateral load is resisted at each
storey level by a couple resulting from axial forces in columns, namely tension
and compression on opposite sides of the structure. The extension and
shortening of the columns cause overall bending, with horizontal deflection of
the structure. The storey drift due to overall bending increases with height,
while that due to racking tends to decrease. However, the contribution of overall
bending to total drift is less than 10% of that of racking, and hence the overall
deflection configuration of a rigid frame resembles a shear mode.

2.1.3 Shear Wall Structures

Shear wall structures consist of reinforced concrete vertical walls, in the form
of separate planar walls or non-planar assemblies of connected walls around
elevator, stair and service shafts (Fig. 2.5). The walls act as cantilever beams
which undergo lateral deflection as a result of bending and shear. The ratio of
bending deflection to shear deflection of a shear wall increases with the ratio
of height to width of the wall. For example, the bending deflection is about 7
times the shear deflection for a height to width ratio of 3. Because of high
in-plane stiffness and strength, shear walls are ideally suited to resisting lateral
loads. As shear walls are much stiffer horizontally than rigid frames, they are
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ﬁ[Jl:re wall

Fig. 2.5. Shear wall structure.

L. Shear wall

economical up to 35 storeys. However, shear walls of solid form tend to restrict
planning where open internal spaces are required.

Shear walls often contain openings to accommodate windows and doors. For
example, Fig. 2.6 shows a coupled wall structure where two walls are connected
by beams or stiff floor slabs at floor levels. Depending on the stiffness of Fhe
connecting members, the two walls can behave independently, each bendlpg
about its own axis (for very flexible coupling beams), or as a composite
cantilever, bending about a common centroidal axis of the walls. Thus
depending on the relative stiffness of the walls and coupling beams, the coupled
shear wall structure deflects in either flexural, shear, or a combination of flexural
and shear modes. Typical coupled walls deflect in a shear—flexure mode, with
the flexural mode configuration in the lower region and the shear mode
configuration in the upper region.

— Openings

DDDD\Q

(I

Fig. 2.6. Coupled shear wall structure.

2.1.4 Shear Wall-Frame Structures

An economical way to stiffen a reinforced concrete rigid frame structure is by
combining it with a reinforced concrete shear wall. As illustrated in Flg. 27
under lateral loads, the rigid frame tends to deflect in a shear mode while the
wall deflects in a flexural mode. Because of the horizontal rigidity of the girders
and slabs which connect the walls and frames, they are constrained to deform
in a common deflected shape, namely the shear—flexure mode, with a flexural
mode in the lower region and a shear mode in the upper region. From the
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Fig. 2.7. (a) Shear wall-frame structure and (b) deflection configuration of shear wall-frame
structure.

directions of the interaction forces, it can be seen that the wall supports the
frame in the lower region while the frame supports the wall in the upper region.
In consequence, a stiffer and stronger structural system evolves. This structural
system can be used for up to 60 storeys. Because of the interaction, the lateral
loads cannot be distributed between the walls and frames according to their
relative stiffnesses. It is important to note that the total shear carried by the
frame at the top storeys can exceed the applied storey shear at these levels,
since the frame, in addition to resisting the external lateral load, supports the
wall. Thus distributing the applied shear forces according to the relative stiffness
can lead to erroneous results. In the case of steel structures, the steel-braced
frame takes the role of the shear wall in deflecting in a flexural mode and
interacting with the steel rigid frame, which deforms in a shear mode, as
illustrated in Fig. 2.8.

2.1.5 Framed Tube Structures

The framed tube is one of the most significant modern developments in the
structural forms of tall buildings. In a framed tube structure, lateral resistance
is provided by a very stiff moment-resisting frame that forms a tube around
the perimeter of the building. The tube is formed by closely spaced columns
at 2 to 4m spacing tied together by deep spandrel beams 1 to 1.5m deep
(Fig. 2.9a) to create a rigid wall-like structure around the building exterior.
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Fig. 2.8. Interaction between braced frame and rigid frame.
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Fig. 2.9. (a) Framed tube structure and (b) axial force distribution in the exterior columns.

Under lateral loads, the framed tube responds as a cantilever box beam;
the perimeter frames aligned in the direction of loading act as the webs, and
those normal to the direction of the load act as the flanges of the box beam.
The entire lateral load is resisted by the exterior tube and the interior
columns are assumed to carry only vertical loads. As the internal shear walls
or bracings are eliminated, the frame tube structure provides a free space
suitable for architectural planning. Furthermore, the closely spaced facade grid
can provide mullions for the glazing. The framed tube structure is economical
up to 80 storeys for steel buildings and up to 60 storeys for concrete buildings.
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Trussed Tube

In practice, the framed tube does not deform in a pure flexural mode, as the
shear in the web frame causes bending of the columns and spandrel beams,
resulting in racking of the frame which produces shear lag. As a result, the
columns in the corners are forced to take a greater share of the load than the
columns in between (Fig. 2.9b), and the shear mode deformation becomes more
significant in the total deflection configuration. This reduces the efficiency of
framed tube structures. As the inherent weakness of the framed tube is due to
the flexibility of the spandrel beams, by transferring the shear through diagonal
members instead of spandrel beams, the rigidity of the framed tube can be
greatly improved. Such a system is called trussed tube (Fig. 2.10), which exhibits
nearly pure flexural behaviour. The diagonals together with the spandrel beams
provide a wall-like rigidity against lateral loads. The diagonals, in addition to
carrying a major portion of the lateral loads, act as inclined columns supporting
the gravity loads, with nett compressive loads in the diagonals. The dual
function of the diagonal members make the trussed tube system very efficient
for steel buildings up to 100 storeys. In this arrangement, the column spacing
can be much larger than that in framed tube structures. In the case of reinforced
concrete buildings, the diagonals can be created by filling the window openings
in a diagonal pattern, as shown in Fig. 2.11.

2.1.6 Tube in Tube Structures

An alternative method of stiffening framed tube structures is by introducing
interior cores within the building. The lateral loads are now resisted by both
the internal core and the exterior framed tube. The rigid floor diaphragm ties
the exterior and interior tubes together so that both tubes respond as a single
unit to lateral loads. The interaction behaviour between the framed tube and
the interior tube is similar to that of a shear wall-frame structure, however the
framed tube is much stiffer than the rigid frame, with a shear—flexure mode as

Fig. 2.10. Trussed tube in steel.
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Fig. 2.11. Trussed tube in reinforced concrete.
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Fig. 2.12. (a) Tube in tube structure and (b) deflection configuration of tube in tube structure.

shown in Fig. 2.12. It is seen that the exterior tube resists most of the lateral
loads in the upper region of the building, while the interior tube carries most
of the lateral loads in the lower region of the building. This system has been
used for buildings with large plan areas, with the central cores being used as
the service shafts. The column-free spaces between the tubes are ideal for
architectural planning. '

2.1.7 Bundled Tube Structures

In this arrangement the exterior framed tube is stiffened by interior cross
diaphragms made of closely spaced columns tied by spandrel beams (Fig. 2.13),
to form an assemblage of several tubes. The interior diaphragms in the direction
of the lateral loads act as webs of a huge cantilever beam in resisting the shear
forces, thus minimizing the shear lag effects. Otherwise most of the exterior
flange columns towards the centre of the building will be of little use in resisting
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Fig. 2.13. Bundled tube structure.
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the overturning moment caused by the lateral loads. The internal diaphragms
tend to distribute the axial stresses equally along the flange frames. Although
the shear lag effects may still be present, deviation from ideal tube behaviour
is significantly less than if there were no internal diaphragms present. The
decrease in shear lag effects improves the bending and torsional warping
behaviour of the building. The torsional resistance of the bundled tube is much
higher than a corresponding single perimeter framed tube system.

The bundled tube system is ideal for buildings which are very tall with
extremely large floor areas. It has been used for buildings up to 120 storeys.
The individual tubes can be discontinued at any level without loss of structural
integrity. This feature enables an architect to create setbacks in a variety of
shapes and sizes.

2.1.8 Outrigger-braced Structures
In this structural system, the central core is connected to the perimeter columns

by rigid horizontal cantilever ‘outrigger’ girders or trusses as shown in Fig.
2.14. Under lateral loads, the rotation of the central core in the vertical plane

(a) (b)

Fig, 2.14. Outrigger-braced structure: (a) single outrigger, (b) multiple outriggers.
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is restrained through the outrigger by the axial forces in the perimeter columns.
As the columns and core behave as a composite structure, the lateral stiffness
of the building is increased and hence the lateral deflection and moment in the
core are reduced. For this system to be effective, the depth of the outrigger
needs to be one to two storeys high. Thus the outriggers are located at the
plant levels of the building. By providing a rigid horizontal truss or girder
around the perimeter, at the outrigger level, even the columns other than those
directly connected to the outrigger can be made to participate in providing the
lateral stiffness. Furthermore, a multilevel outrigger structure is more effective
than a single-level outrigger structure. This structural system has been used for
buildings up to 70 storeys.

2.2 Modelling of Structural Systems

A building consists of structural components (beams, columns, braces, slabs,
walls and core walls) and non-structural components (claddings, partitions and
stairs). For lateral load analysis, only the principal structural components are
included. The effects of other structural components and the non-structural
components are assumed to be small and are thus neglected. The principal
structural components are identified according to the contribution of each
element to the dominant mode of deformation of the building.

2.2.1 Behaviour of Buildings

Horizontal loads due to winds and earthquakes exert a shear, moment and,
sometimes, a torque at each level of a building. The building, which behaves
as a vertical cantilever, resists the external moment through flexural and axial
actions of its vertical components. If the vertical shearing stiffness of the
elements connecting the vertical components (girders, slabs, vertical diaphragms
and braces) is large, then a greater portion of the external moment will be
carried by the axial forces in the vertical components. The horizontal shear at
any level of the building is resisted by shear in the vertical components and by
the horizontal components of the axial force in any inclined brace members at
that level. The torsion is resisted by shear in the vertical components, by the
horizontal components of the axial force in any brace members in the vertical
plane, and by the torsional resistance of the corewalls. In order to model the
torsional resistance of the building correctly, the individual components with
appropriate torque constants must be correctly located, and the horizontal
shear connection between the components must be correctly modelled.

If a building contains orthogonally connected bents or walls, then the vertical
shear connection must be included in the model to obtain the correct bending
and torsional resistance of the building. When the vertical components have
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dissimilar lateral deflection characteristics, there will be a horizontal force
interaction between the vertical components. For instance, wall and frame have
dissimilar deflection characteristics and when they are connected horizontally
by the floor slabs, they are subjected to horizontal interactive forces while
assuming a common deflection configuration. Similarly, in constraining different
vertical components to have equal twist at each floor level, the floor slabs are
subjected to horizontal interaction forces which redistribute the torque between
the vertical components.

For lateral load analysis, the floor slabs are assumed to be rigid in their
plane. Thus the displacements of all the vertical components at floor level are
defined by the rigid body translation and rotation of the floor slabs. The
transverse bending stiffness of the slabs in a rigid frame can be neglected, but
its value in a flat plate structure must be taken into account. The stiffness of
the shear walls about the minor axis and the torsional stiffness of the columns,
beams and plane walls are assumed to be negligible. Since beams are monolithic
with the floor slabs, and because of the in-plane rigidity of the latter, the axial
deformation of the beams is negligible. Furthermore, shear deformation of the
beams is negligible unless they are deep. For buildings with a height to width
ratio of less than 5, the axial deformation of the columns is negligible.

For an accurate determination of deflection and member forces, a three-
dimensional analysis of the structure discretized into finite elements is required.
In this model, the beams and columns are discretized into beam elements, braces
into truss elements, and the shear walls and core walls into plane stress
membrane elements. The degrees of freedom of beam elements, truss elements
and membrane elements, for two- and three-dimensional analyses, required for
the above discretization are shown in Fig. 2.15. Analysis programs for these
elements are available in various commercial packages [2.1, 2.2].

In situations where the transverse bending stiffness of the slabs can be omitted
(for example, in beam—column framed structures), the role of the slabs is
to serve as rigid diaphragms which distribute the horizontal loadings to the

_ T
4 {a) / // //

(c) (d)

Fig. 2.15. Degrees of freedom of: (a) beam element for two-dimensional analysis, (b) beam element
for three-dimensional analysis, (c) truss element, (d) quadrilateral membrane element.
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vertical components, and hold the building in plan shape when it translates
and twists. Thus in three-dimensional analysis, the in-plane rigidity of the slab
may be represented by a horizontal frame of rigid beams joining the vertical
components. The beams are rigid for bending in the horizontal plane. However,
if the transverse bending stiffness of the slab is part of the lateral load-resisting
system, as in flat slab structures, the bending action of the slab between the
vertical components is simulated by a connecting beam of equivalent flexural
stiffness in the vertical plane. In the horizontal plane, the beam is assumed to
be rigid to hold the plan shape of the building.

2.2.2 Modelling of Plane Structures

Discretization of a plane structure is shown in Fig. 2.16. If the span to depth
ratio of the beams is greater than 5, shear deformation needs to be included.
By setting a large value for the axial area of the beam, the effects of in-plane
rigidity of the floor slabs can be simulated. From this analysis, axial forces,
shear forces and bending moments in the members can be determined, in
addition to vertical and horizontal nodal displacements, and rotation of nodes
in the vertical plane.

Generally, rectangular plane stress membrane elements are used for the walls.
When a finer mesh is required at a particular region of the wall, quadrilateral
elements can be used for the transition region (Fig. 2.17). The membrane plane
stress elements yield the horizontal and vertical nodal displacements, vertical
and horizontal direct stresses and shear stresses in the elements. As membrane
elements do not have a degree of freedom to represent the in-plane rotation of
the nodes, when a beam is connected to the wall as in Fig. 2.17, it is effectively
connected through a hinge. Thus in order to simulate a rigid connection
between the beam and the wall so that a moment can be transferred, a flexurally
rigid fictitious beam needs to be added. The beam is rigid for bending in the
vertical plane. Alternative ways of placing this fictitious beam are shown in
Fig. 2.17. The rotation of the wall is now defined by the relative transverse
displacements of the ends of the fictitious beam. The edge of the external beam

T Beam elements —= +——Truss elements
Beam element ——| |— Beam element with
with the left NN\ 7] right end rotation
end rotation released
released
JV b = g F

Fig. 2.16. Discretization of rigid frame and braced frame.
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Fig. 2.17. Discretization of plane shear wall. -

will be constramed to rotate through th1s angle and eonsequently a moment is
transferred to the external beam.

2.2.3 Modelling of 'Th'ree‘-dimen'sienelz Structures

A three- drmensronal ngld frame structure such as that in Flg 2. 18, can be
dxscretlzed into the beam elements shown in Fig. 2. 15b, The element has six
degrées of freedom at each node, ‘namely axial, two transverse dlspiacements
and rotation about three axes. Thus axial area, shear areas in two transverse
directions 'and ‘moments of inertia about three axes (for in-plane bending,
out-of-plane bending and twist) need to be defined. However, in general the
axial deformation of the beams and shear deformatlons of the beams and
columns are neglrgxblc
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Fig: 2.18; Discretization of three-dimensional rigid framié. - ..

Behaviour of Buildings under Lateral Loads 41

Beam element, rigid for bending
= ;n !I::s!%nzonlul plone o
rep ing th s }~ Ficlitious beam, rigid
- spandret. begm) for beeding in lmgronlul
A Ueting — pore
1 Ficlitions 1 Membrane element
tersionat
3 column e
— Fictitious beam, rigid for
bending in horizontel - .
E ond verlicel plone
(-
1
{b}
fa} -

Fig. 2.19. Discretization of three-dimensional shear walk {a) core wall with opemng, (b dis-
cretization of the shaded area.

The three-dimensional shear walls (Fig. 2.19) are assemblies of planar walls
and thus each planar wall can be modelled using plane stress membrane
elements. However, as the plane stress element cannot provide the out-of-plane
rigidity required to maintain the sectional shape of the cross-section, a fictitious
horizontal frame of rigid beams needs to be added at each nodal level (Fig.
2.19). The beams are rigid for bending in the horizontal plane. A Jlarge axial
area and moment of inertia corresponding to bending in the horizontal plane
are assigned to the beams in order to simulate the rlgrd dlaphragm eﬂ'ects of
the slab. :

The torsional stiffness of the wall is simulated by adding a fictitious column
as shown in Fig. 2.19. The torsional constant of this column is equal to' the
sum of the torsional constants of individual plane walls (3 3bt*, where b is the
breadth and ¢ the thickness of each plane wall). The axial area and ‘moment
of inertia of this fictitious column are taken to be zero. This fictitious column
is important for open-section shear wall assemblies, but may be neglected for
closed sections.

2.2.4 Reduction ef Size of Model
Symmetry.

The size of the model can be reduced drastically by taking advantage of
geometric symmetry. For instance, a building symmetrical about the Y-Z plane
(Fig. 2.20a) when subjected to lateral loads which are antisymmetrical with
respect to the Y-Z plane can be analysed by considering only half the structure,
provided that the boundary conditions at the plane of symmetry are simulated
properly. The appropriate boundary conditions for the structure to deform
antisymmetrically about the Y-Z plane are: : :
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{a) (b)

Fig. 2.20. Degrees of freedom for: (a) antisymmetric deformation, (b} symmetrical deformation.

1. displacements in the Y-Z plane are zeto
2. rotation normal to the Y-Z plane is Zero.

If the 1oads are symmetrical about the pIane of symmetry, then the structure
will deform symmetrleally about the pIane of symmetry, and | in thxs case the
approprtate boundary cond:txons are (F1g 2 20b)

1. dlsplacements normal to the plane of symmetry (the YMZ plane) is zero.
2 rotatlons m the pIane of symmetry are zero. :

In the half model the r1g1d1t1es of members Iymg in the plane of symmetry must
be halved.

Now consxder a symmetneal shear wall-frame subjected to lateral loads
(Fig. 2.21). The load is divided into a symmetrical load and an antlsymmetncal
load in Figs. 2.21b and 2.21c respectively. In Fig. 2.21b when axial deformations
are neglected; no forces will be induced in the structure except for the axial
load i in the beams. Thus, only the structure in Fig. 2.21¢ needs to be analysed.
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Fig, 2.21. (a) Symmetneal frame subjected to lateral Ioads (b) symmetncal frame subjeeted to
symmetrical loads, {c) symmietrical frame subjected to. antlsymmetncal Joads and (d) eqmvalent
model for frame subjected to antisymmetrical loads. . S .. :
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Taking advantage of antisymmetry, the appropriate model for the analysis is
shown in Fig. 2.21d.

Horizontal Lumping

The size of the model may be reduced under certain circumstarnces. For instance,
symmetrical structures under antisymmetrical loading will not twist; and thus
a two-dimensional analysis is possible provided the interaction effects between
various vertical components are incorporated. Consider the symmegtrical buildirig
in Fig. 2.22a. It has two identical frames and two identical walls symmetrically
situated with respect to the line of symmetry. Both the walls can be lumped
into a single wall as they are of the same kind in terms of, deformation
characteristics. Similarly, the two frames can be lumped into a single frame for
the same reason. The properties of the lumped wall and the lumped frame are
as indicated in Fig, 2.22b, The lumped frame and the lumped wall are then
assembled as a planar model using rigid links (axially stiff truss elements) which
play the role of a rigid slab in forcing the lateral displacement of the walls and
frames to be the same at each floor fevel. The model is analysed for total lateral
load and the resulting forces in the lumped wall are distributed to the individual
walls according to the stiffnesses of the walls. Similarly the resulting forces in
the lumped frame are distributed to the individual frames according to the
stiffnesses of the frames. Alternatively, taking advantage of antisymmetry, only
half the structure need be analysed for half the load using the model in Fig. 2.22¢.
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Fig. 2.22. (a) Symmetrical structuré with parallfel bents, (b) equivalent lumped model and (c}
equivalent lumped model for antisymmetric structure.



44 Vibration of Buildings to Wind and Earthquake Loads

Vertical Lumping

In tall buildings when storey heights and beam sizes are repetitive, it is possible
to lump the floor beams vertically. For instance, for the rigid frame structure
in Fig. 2.23a, three floor beams are replaced by a single lumped beam at the
middle beam location. The top few and bottom few beams are left in their
original positions in order to retain the local effects. The lateral loads are also
lumped and applied at the middle beam level (Fig. 2.23b). The properties of
the lumped structure are determined as follows:

1. The flexural rigidity of the lumped beam is equal to the sum of the individual
beams.

2. The flexural rigidity of the column in the lumped model is obtained by forcing
the column to beam stiffness ratio to be the same in both the lumped and
unlumped models. If

I, I, = moments of inertia of column and beam in the unlumped model
I, I, = moment of inertia of column and beam in the lumped model

l = length of beam in the unlumped and lumped models
h = length of column in the unlumped model
h' = length of column in the lumped model

then equating the stiffness ratio in the lumped model to that in the unlumped
model:

(TLe/h) _ U/h)
I/ U/

-5
I,/ \h
If ' = 3h, I}, = 3I,, then I’ = 91,

3. The axial areas of the columns in the two models are the same.

In the case of wall-frame structures (Fig. 2.24a), the properties of the wall
in the lumped model will be the same as in the unlumped model (Fig. 2.24b),
because the wall behaves predominantly in a single curvature.

The resulting moment and shear in a lumped beam must be divided by the
number of beams being lumped to obtain the moment and shear in the middle
beam of the unlumped model. Once the forces in all the middle beams of the
unlumped model are obtained, the forces in the other beams may be obtained
by interpolating between the values obtained for the middle beams above and
below. The external shear at any level of the unlumped model will be distributed
among the columns in the same ratio as the distribution of the shears at the
corresponding level of the lumped model. The product of the shear in a
particular column and half-storey height (on the assumption that the point of
contraflexure is at mid-storey) gives approximately the moment in that column.
However, the moment in the wall at any level of the unlumped model is given
by the moment in the wall at the corresponding level of the lumped model.
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Fig. 2.23. (a) Rigid frame with repetitive floor beams and (b) equivalent lumped model.
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Fig. 2.24. (a) Shear wall-frame structure with repetitive floor beams and (b) equivalent lumped
model.
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Chapter 3

Dynamic Effects of Winds on Buildings

Wind is the movement of air caused by thermal and pressure conditions in the
atmosphere. As air moves over the surface of the earth, it strikes and sweeps
past all kinds of obstacles in its path, including engineering structures. In many
instances, the forces induced and the resulting responses of the structure must
be considered if the safety and serviceability of a given design are to be
maintained.

Information on the characteristics of winds, which are required to determine
the wind loading on objects, is provided by meteorologists, whereas estimation
of loading on obstacles due to a defined flow of air is dealt with by
aerodynamicists. Structural dynamicists estimate the response of structures
from information provided by meteorologists and aerodynamicists. In some
instances, additional loading will be induced by deformation of the structures.
In such cases, the extra loading arising from wind-induced structural vibrations
must be taken into account in the design through the application of the laws
of aeroelasticity. The steps involved in the design of structures for wind
effects, as illustrated schematically in Fig. 3.1, will be discussed in this chapter
with respect to buildings and towers. The wind effects on other engineering
structures, such as masts, bridges, chimneys, etc., are beyond the scope of this
book.

3.1 Characteristics of Wind

3.1.1 Mean Wind Speed

The velocity of wind (wind speed) at great heights above the ground is constant
and is called the gradient wind speed Ug. As shown in Fig. 3.2, close to the
ground surface, the wind speed is affected by frictional forces caused by the
terrain, and thus there is a boundary layer within which the wind speed varies
from zero to the gradient wind speed. The thickness of the boundary layer H,
(gradient height) depends on the ground roughness. For example, the value of



48 Vibration of Buildings to Wind and Earthquake Loads
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Fig. 3.1. Schematic diagram for design of structures for wind effects.
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Fig. 3.2. Change of wind speed distribution with terrain roughness.

H, is 457 m for large cities, 366 m for suburbs, 274 m-for open terrain and 213 m
for open sea [3.1].

The velocity of wind averaged over one hour is called the hourly mean wind
speed U. The mean wind velocity profile within the atmospheric boundary layer
is described by a power law

_ — z %
0e) = U(z,ef)() 3.1
Zref
where U(z) is the mean wind speed at height z above the ground, z.; the
reference height, normally taken to be 10 m, and o the power law exponent.
An alternative description of mean wind velocity is given by the logarithmic
law '

0(z) = %u* m(z = d) (3.2)

Zg

where u,, is the friction velocity, k von Karman’s [3.2] constant (equal to 0.4),
zq is the roughness length and d the height of the zero plane (where the velocity
is zero) above the ground. Generally, the zero plane is about one or two metres
below the average height of buildings and trees providing the roughness. Typical
values of z,, a and d are given in Table 3.1 [3.1, 3.3].

The influence of ground roughness on the mean wind profile is depicted in
Fig. 3.3. The roughness affects both the thickness of the boundary layer and
the power law exponent. As seen from Fig. 3.3, the thickness of the boundary
layer and the power law exponent increase with the roughness of the surface.
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Table 3.1. Typical values of terrain parameters z,, o and d.

zo (m) o d (m)
City centres 0.7 0.33 15-25
Suburban terrain 0.3 0.22 5-10
Open terrain 0.03 0.14 0
Open sea 0.003 0.10 0
500
E
S
E 250+
wd
A : ~h |
Open sea Open level Suburbs ; woodland  City centres
country
7, =0.003 zp= 0.03 7o =03 75 =07

Fig. 3.3. Profiles of mean wind speed within the boundary layer of different terrains.

Consequently the velocity at any height decreases as the surface roughness
increases. However, the gradient velocity will be the same for all surfaces. Thus
if the velocity of wind for a particular terrain is known, using Eq. (3.1) and
Table 3.1 the velocity for some other terrain can be computed.

3.1.2 Turbulence

The variation of wind velocity with time is shown in Fig. 3.4. The eddies
generated by the action of wind blowing over obstacles cause the turbulence.
In general, the velocity of the wind may be represented in a vector form as

U(z, t) = U@2)i + u(z, )i + v(z, H)j + w(z, Hk (3.3)

where u, v and w are the fluctuating components of the gust in the x, y and z
axes (longitudinal, lateral and vertical axes) as shown in Fig. 3.5, and U(z) is
the mean wind along the x axis. The fluctuating component along the mean
wind direction, u, is the largest and therefore the most important for vertical
structures such as tall buildings which are flexible in the along-wind direction.
The vertical component w is important for horizontal structures which are
flexible vertically, such as long-span bridges.

An overall measure of the intensity of turbulence is given by the root
mean square value (r.m.s.). Thus for the longitudinal component of the
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Wind speed U(z,t)

Time, 1

Fig. 3.4. Typical trace of longitudinal component of wind speed with time.
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Fig. 3.5. Velocity components of turbulent wind.

turbulence, the r.m.s. value is given by

1 To 1/2
0,(2) = [T J {u(z, O} dt] (3.4)
04J0

where T is the averaging period. For the statistical properties of the wind to
be independent of the part of the record being used, 7, is taken to be one hour.
Thus, over one hour fluctuating wind is a stationary random function.

The value of a,(z) divided by the mean velocity U(z) is called the turbulence
intensity

1,(2) = 0,(2)/U(2) (3.5)

which increases with ground roughness and decreases with height. The vertical
and lateral turbulence intensities may be similarly defined.
The variance of longitudinal turbulence can be determined from [3.4]

0% = pu (36)
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Table 3.2. Values of § for various roughness lengths.

zg (m) 0.005 0.07 0.30 1.0 25
B 6.5 6.0 5.25 4,85 4.0

where u,, is the friction velocity determined from Eq. (3.2) and f, which is
independent of height, is given in Table 3.2 for various roughness lengths.

For example if z = 10 m, z, = 0.3 m and U(10) = 18 m/s, then from Eq. (3.2),
assuming the zero plane is 5 m above the ground

04 x 18
10— 5)
In
0.3

From Table 3.2, § = 5.25. Thus, the turbulence intensity

= 2.56m/s

U, =

1.(10) = 5.25 x 2.56 0325
N 18

3.1.3 Integral Scales of Turbulence

As mentioned previously, the fluctuation of wind velocity at a point is due to
eddies transported by the mean wind U. Each eddy may be considered to be
causing a periodic fluctuation at that point with a frequency n. The wavelength
of the eddy 4 = U/n is a measure of eddy size. The average sizes of the turbulent
eddies are measured by integral length scales. For eddies associated with
longitudinal velocity fluctuation u, the integral length scales are L, L?, and L,
describing the size of the eddies in the longitudinal, lateral and vertical
directions, respectively. Similarly, there are three integral length scales associated
with the lateral and vertical turbulent velocity components v and w.

The dynamic loading on a structure depends on the size of eddies. If L? and
L% are comparable to the dimension of the structure normal to the wind, then
the eddies will envelope the structure and give rise to well correlated pressures,
and thus the effect is significant. On the other hand, if L? and L7 are small,
then the eddies produce uncorrelated pressures at various parts of the structure
and the overall effect of the longitudinal turbulence will be small.

Mathematically the integral length at any height z is obtained from the
autocorrelation function of the turbulent velocity. For the longitudinal com-
ponent of turbulence u(t), the autocorrelation function is determined from

oo y(t)u(t + t) dzt
(3 u(r) dt

R,(1) = (3.7

where 7 is the time shift of the velocity signal u(t). The plot of autocorrelation
function is shown in Fig. 3.6. The average period of eddies is given by the area

I $
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Ry(T)

T

Fig. 3.6. Typical variation of autocorrelation function of wind turbulence.

under the autocorrelation function. Thus

n=r}mmr (38)

0

which is the integral time scale. The integral length scale L is given by
Ly =U@)/T, (3.9)

where U is the mean velocity at the point considered.
The following empirical expression for the integral length scales LY is given
by Counihan [3.5]:

X = czm (3.10)

where L} and z are in metres and the coefficients ¢ and m are given in Fig. 3.7.
The expressions for L}, and LZ are given in [3.6] and [3.7], respectively, as

L} =02L% (3.11)

L:=6,/z (3.12)

1000

100

) B T o (SO S [ =1 W | T 0 P A |

1 -
0.001 om 01 10 10

7, (metres)

Fig. 3.7. Values of C and m as functions of z, (Reproduced by permission of the Journal of
Atmospheric Environment, p. 888, 1975.).
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3.1.4 Spectrum of Turbulence

The frequency content of the turbulence is represented by the power spectrum,
which indicates the power or kinetic energy per unit time, associated with eddies
of different frequencies. An expression for the power spectrum is given by Simiu

[3.8]:
nS,(z,n) 200f
w2 (L+500)%°

(3.13)

where f = nz/U(z) is the reduced frequency. A typical spectrum of wind
turbulence is shown in Fig. 3.8.

The spectrum has a peak value at a very low frequency around 0.04 Hz. As
the typical range for the fundamental frequency of tall buildings is 0.1 to 1 Hz,
such buildings are affected by high-frequency small eddies characterizing the
descending part of the power spectrum.

3.1.5 Cross Spectrum of Turbulence

The cross spectrum of two continuous records is a measure of the degree to
which the two records are correlated. If the records are taken at two points M,
and M, separated by a distance r, then the cross spectrum of longitudinal
turbulent component is defined as

Suma(ts 1) = 83 4, (r,n) + i83,,,(r, n) (3.14)

where the real and imaginary parts of the cross spectrum are known as the
co-spectrum and the quadrature spectrum, respectively. However, the latter is
small enough to be neglected. Thus the co-spectrum may be expressed
non-dimensionally as the coherence and is given by

25, ) = Sunna WP
rem = msum

where S, (n) and S,,(n) are the longitudinal velocity spectra at M, and M,,
respectively. Devenport [3.9] has suggested the following expression for the
square root of the coherence:

(3.15)

yr,n) =e~f (3.16)
where

f - ”[53(21 - 2_2)2 E= Cﬁ()’l - y2)2]1/2
%[U(ZO i U(zz)]

in which y,, z, and y,, z, are the coordinates of points M; and M,. The line
joining M, and M, is assumed to be perpendicular to the direction of the

(3.17)
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Fig. 3.8. Spectrum of longitudinal turbulence.

mean wind. The suggested values of ¢, and ¢, for engineering calculations are
16 and 10, respectively [3.10].

3.2 Wind-induced Dynamic Forces

3.2.1 Forces due to Uniform Flow

When a bluff body is immersed in a two-dimensional flow as shown in Fig. 3.9,
it is subjected to a nett force in the direction of flow (drag force) and a force
perpendicular to the flow (lift force). Furthermore, when the resultant force is
eccentric to the elastic centre, the body will be subjected to a torsional moment.

For uniform flow, these forces and moment per unit height of the object are
determined from

F, = 1pC,BU? (3.18)
F. =1pC BU? (3.19)
= }pC. B2 _ (3.20)
f
fy

Fig. 39. Drag and lift forces and torsional moment on an arbitrary bluff body.
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Drag coefficient Cj

Aspect ratio 0/8

Fig. 3.10. Drag coefficient for a rectangular section with different aspect ratios. (Reproduced by
permission of ASCE [3.11]).

where U is the mean velocity of the wind, p the density of air, C, and C, the
drag and lift coefficients, C; the moment coefficient and B the characteristic
length of the object, such as the projected length normal to the flow.

The drag coefficient for a rectangular shape is shown in Fig. 3.10 for various
depth to breadth ratios [3.11]. The flow separation occurs at windward corners.
The shear layers originating from the separation points surround a region
known as the wake. Near the separation zones, strong shear stresses impart
rotational motions to the fluid particles. Thus discrete vortices are produced
in the separation layers. For elongated sections, the stream lines which separate
at the windward corners re-attach themselves to the body to form a narrower
wake. This contributes to the reduction in the drag for larger aspect ratios. For

cylindrical shapes, the drag coefficient is dependent on Reynolds number, as
indicated in Fig. 3.11.

1.5
Subcritical  Critical Supercritical

= L0}
]
- 05t
e
=

0 L

10° 105 0

Reynolds number

Fig. 3.11. Variation of drag coefficient with Reynolds number for a circular cylinder in uniform flow.
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Fig. 3.12. Vortex formation in the wake of a bluff body.

Unlike the drag force, the lift force and torsional moment do not have a
mean value for a symmetric object with a symmetric flow around it, as the
symmetrical distribution of mean forces acting in the across-wind direction
cannot produce a nett force. If the direction of the wind is not parallel to the
axes of symmetry or if the object is asymmetrical, then there will be a mean
lift force and a torsional moment. However, because of vortex shedding, a
fluctuating lift force and a torsional moment will be present in both the
symmetric and the non-symmetric structures. Figure 3.12 shows the mechanism
of vortex shedding. The air travels over the face of the body until it reaches the
points of separation on each side of the body where thin sheets of tiny vortices
are generated. As the vortex sheets detach, they interact with one another or
roll up into discrete vortices which are shed from the sides of the object. The
asymmetric pressure distribution created by the vortices around the cross-
section leads to an alternating transverse force (lift force) on the object. The

vortex shedding frequency in Hz, n, is related to a non-dimensional parameter
called the Strouhal number S defined as

A (3.21)

where U is the wind speed and B the width of the object normal to the wind.
As shown in the Fig. 3.13, for objects with rounded profiles such as circular

05

oLk Random vortex sheddiq».;,"‘-‘
5 Periodic vortex shedding i
E 03} “A Y
2 J Ny
B 02 -7
2
& 0}

[} . . 1

e 0* 10° 10° w

Reynolds number

Fig. 3.13. Variation of Strouhal number with Reynolds number for a circular cylinder.
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B/D

Fig. 3.14. Strouhal number for a rectangular section.

i i Re defined as
cylinders, the Strouhal number varies with Reynolds number Re

i (3.22)
Re = pUB/u

where p is the density of air and g the dynamic yiscosity of tl;c ai; T2e3v:rI8)é
shedding becomes random in the transition regloril o(fi 4 thO < [rf, o
face of the cylinder changes :
where the boundary layer at the sur r ch : e
i i iti rtex shedding is regular, pro
to turbulent. Outside this transition range, VO R marib.
jodic li _sections with sharp corners, the Strou .
a periodic lift force. For cross-sec p Cf e e o el
is i ber. The variation of Strou
independent of the Reynolds num ion ¢ al nu '
izngthpto breadth ratio of a rectangular cross-section is shown in Fig. 3.14

3.2.2 Forces due to Turbulent Flow

If the wind is turbulent, then the velocity of the wind in the along-wind direction
is described as follows:

U®t) = U + u(t)

where U is the mean wind and u(t) the turbulent compgc;lne-nt igttbe a‘;l()filfr;\lvgc(li
i it height is obtame .
 ection. The time-dependent drag force per un .
?;ffg;lg;l replacing U by U(t). As the ratio u(t)/U rarely exceeds 0.2 tf)or prizl;l::;
ra.nges of turbulent intensities, the time-dependent drag force can be €xp

as

(3.23)

A 3.24)
fo®)=fo + fo(®) (

where f, and fp are the mean and the fluctuating parts of the drag force per
D -
unit height which are given by

fo= 1pU*CpB
= pUuCpB

The value of Cp, varies slightly because of the presence of turbulence. However,

(3.25)
(3.26)
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for most cases of interest in practice, drag coefficients obtained under uniform
flow can be used in Egs. (3.25) and (3.26).

The spectral density of the fluctuating part of the drag force is obtained from
the autocorrelation function

1 (12
R, (t) = Lim T f Fo@fp(t + 7)de

T=w -T/2
= p*U*B*CRu(t)u(t + 1) (3:27)

The Fourier transformation of Ry, yields the spectral density as
S¢,(n) =2 J R¢,(z) Cos 2nnt dt

= p?U?B2C:S,(n) (3.28)

where S, (n) is the spectral density of the turbulent velocity.

From Eq. (3.26), it is evident that the fluctuating drag force varies linearly
with the turbulence in the wind buffeting on a structure. Thus, large integral
length scale and high turbulent intensities will cause strong buffeting and
consequently increase the along-wind response of the structure.

As mentioned previously, the time-varying lift force under uniform flow is
due to vortex shedding. The regularity of this vortex shedding is affected by
the presence of turbulence in the along wind. Consequently, the across-wind
motion and torsional motion due to vortex shedding decrease as the level of
turbulence increases.

3.3 Along-wind Response

3.3.1 Point Structures

Elevated water tanks, observation towers, etc. can be classified as point
structures where most of the mass is concentrated at a single point. The point
structure shown in Fig. 3.15 can be modelled as a single-degree-of-freedom
system. The elastic stiffness is provided by the columns supporting the mass.
The equation of motion of the system is

%+ 2(,(2nn,)% + (2rn,)*x = F(t)/m (3.29)

where x is the displacement, n; the natural frequency in Hz, {, the damping
ratio, m the mass and F(t) the fluctuating drag force which according to Eq.
(3.26) may be expressed as

F(t) = pOu(t)CpBD (3.30)
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~

~

Fig. 3.15. Schematic representation of a point structure.

where B and D are the breadth and depth of the structure as shown in Fig.
3.15. The power spectral density of the fluctuating force, according to Eq. (3.28),
takes the form

Sp(n) = p*T2B2D2C2S, (n) (3.31)

where S, is the power spectral density of the along-wind turbulence. However,
in practice, the presence of the structure distorts the turbulent flow, particularly
the small high-frequency eddies. A correction factor known as the aerodynamic
admittance function y(n) may be introduced [3.12] to account for these effects.
The following empirical formula has been suggested by Vickery [3.13] for y(n):

1
B (3.32)

) 4/3
1 +[ "_ﬂ}
U(z)
where A is the frontal area of the structure. Now with the introduction of the
aerodynamic admittance function, Eq. (3.31) may be rewritten as
Sg(n) = p>UB*D*CRx*()S,(n) (3.33)

As the forcing function is random, the response of the system will be
non-deterministic. Using random vibration theory [3.14], the power spectrum
of the response can be determined as

1
S.(n) = |Hy(n)[*S(n) — (3.34)

where K = (4n*n?m) is the stiffness and |H,(n)| is the mechanical admittance
function obtained from Eq. (1.11) as

1

LG T+))”

|Hy(n)| = (3.35)
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The variance of the displacement is obtained from

2 J‘m S.(n) dn

(o}

= 2 f |H,(n)|2Sg(n) dn (3.36)
K* Js
The calculation of the above integral is very much simplified by observing the
plot of the two components of the integrand shown in Fig. 3.16. The mechanical
admittance function is either 1.0 or zero for most of the frequency range.
However, over a relatively small range of frequencies around the natural
frequency of the system it attains very high values if the damping is small. As
a result, the integrand takes the shape shown in Fig. 3.16¢c. It has a sharp spike
around the natural frequency of the system. The broad hump is governed by
the shape of the turbulent velocity spectrum which is modified slightly by the
aerodynamic admittance function. The area under the broad hump is the
broad-band or non-resonant response, whereas the area in the vicinity of the
natural frequency gives the narrow-band or resonant response. Thus Eq. (3.36)
can be rewritten as

ny—An 1 ny+An
o2 = = Se(n) dn + — Sx(m) [H, (n)|? dn
0 ny—An
i ny—An S
il Se(n)dn + )
K 0 4C1K
=2+ a3 (3.37)

where oy and oy, are the variance of the non-resonant and the resonant displace-
ments, respectively.
The r.m.s. acceleration is obtained from

6p = (2nn,)%op (3.38)

3.3.2 Line-like Structures

Tall slender buildings, such as that shown in Fig. 3.17, can be idealized as a
line-like structure where the breadth of the structure is small compared with
the height. Modelling the building as a continuous system, the governing
equation of motion for along-wind displacement x(z, ) can be written as [3.15]

m(z)%(z, t) + c(z)%(z, t) + EI(z)x""(z, £) — GA(z)x"(z, t) = f(z, 1) (3.39)

where m, ¢, EI and GA are respectively the mass, damping coefficient, flexural
rigidity and shear rigidity per unit height. Furthermore, f(z, t) is the fluctuating
wind load per unit height given in Eq. (3.26). The dots denote the derivative
with respect to time ¢ and the primes denote the derivative with respect to z.
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Fig. 3.16. Schematic diagrams for computation of Eq. (3.36).
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H

Fig. 3.17. Typical deflection mode of shear wall-frame building.

Expressing the displacement in terms of the normal coordinates
N
x(z,0) = ), $:(2)q:(t) (3.40)
=1

where ¢; is the i-th vibration mode shape and g; is the i-th normal coordinate,
and using the orthogonality conditions given in Chapter 1, Eq. (3.39) can be
expressed as

miq; + cfq; + kifqi=p¥; i=1toN (3.41)

where m, c¥ and k¥ are the generalized mass, damping and stiffness in the i-th
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mode of vibration, while p¥ is the generalized force. These are determined from

H
mi = J m(z) $7(z) dz

0
fH

= | c)iz) dz

v 0

k¥= | EI@)¢!"(z)¢,(z) dz — I GA(2)§{(2) p:(z) dz

0
fH

pi = [z 0)¢i(2)dz
0

H

= pCpB ‘[ U(2) u(z, 1) §i(z) dz (342)
0

Equation (3.41) consists of a set of uncoupled equations, each representing a

single-degree-of-freedom system. Thus the response in each normal coordinate
can be obtained as in section 3.3.1:

1

S5, (n) = |H;(n)|*S,,»(n) ) (3.43)
where

1
H,(n)| =
[H;(n)| ([1 B (E)z]z ) 4{1_2(11)2)”2

n,- ni

k¥ = 4n’n?m¥ (3.44)

in which n; and {; are the frequency and damping ratio in the i-th mode. The
spectral density of the generalized force takes the form

H [H _
Spp(n) = PZC%BZXZ(”) f _[ 0(31)U(Zz)su.uz(r’ n)¢i(z,) ¢i(z,) dz, dz,

(3.45)

where S, ,,(r, n) is the cross spectral density defined in Eq. (3.14) with r being
the distance between the coordinates z, and z,. In Eq. (3.45), the aerodynamic
admittance has been incorporated to account for the distortion caused by the
structure to the turbulent velocity.

According to Eq. (3.15), Eq. (3.45) may be expressed as
H (H
Spp(”) = PZCIZ)BZXZ(”) J J ¢’i(zl)¢i(z2)[7(zl)g(zz)
0 0

X /84, (n)</ Sy, (n) y(r, n) dz, dz, (3.46)
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where y(r, n) is the square root of the coherence given in Eq. (3.15), and §,(n)
is the spectral density of the turbulent velocity.
The variance of the i-th normal coordinate is obtained from

]

1 ni—An ‘ﬂ:ﬂi
=WU Soe (") d"*@SP-‘("f’]

_ 2
= Opg; + Oy (3.47)
in which oy, and oy, are the non-resonating and the resonating r.m.s. responses

of the i-th normal coordinate. As the response due to various modes of vibration
are statistically uncorrelated, the response of the system is given by

N N
oi(z) = ;1 $¥(2) 08y, + 'Zl $7(2) 0By, (3.48)

which gives the variance and hence the r.m.s. displacement at various heights.

It should be noted that in order to determine the total displacement t, the
static deflection due to the mean drag load given in Eq. (3.25) must be included,
which is determined conveniently as follows. The mean generalized force is
given by

fi= jﬂ 10Co T22)By(2) d
(4]

H
=3pCpB f U?(2) $i(z) dz (3.49)
0
Then the mean displacement is determined from
X y /. ] 3.50
x(z) = .';1 ¢i(z)[m (3.50)

The r.m.s. acceleration is obtained from

N 1/2
wr=| £ amprsiont]” 351

i=1
The dynamic shear and bending moment at any height z are obtained from the
vibratory inertia forces in each mode and then by summing the modal
contributions. For example, the variance of the base shear, Q, is obtained as

0 = i L (3.52)
i=1
where
H
To, =anff m(z)(2nn;)? ¢y(z) dz (3.53)
0
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3.3.3 Evaluation of Peak Response

The probability of the response exceeding a certain magnitude is determined
using a peak factor on the r.m.s. response. Devenport [3.16] recommended the
following expression for 50%, probability of exceedence:

[2In(vTy)] + 0 (3.54)
[2In(vTp)]

where g is the peak factor, v the expected frequency at which the fluctuating
response crosses the zero axis with positive slope and T, the period (usually
3600 s) during which the peak response is assumed to occur.

For resonant response, v is equal to the natural frequency and, thus, the peak
factor for the resonant response g, is obtained from Eq. (3.54) by setting v = n.
For the non-resonating or broad-band response, the peak factor has been
evaluated to be [3.17]:

gy = 3.5

Using these peak factors, the most probable maximum value of the load effect,
E, such as displacement, shear, bending moment, etc., is determined as follows:

Enax = E + [(g0ope)* + (gp0ope)?]H? (3.55)

where oy and apg are the non-resonating and the resonating components of
the load effect and E is the load effect due to the mean wind.

Example 3.1. An observation tower with dimensions H = 70 m, B = 60 m and
D =12 m (see Fig. 3.15) is situated in a suburban terrain. The period of the
tower is 1.6 s. The damping ratio is estimated to be 1%. The mass concentrated
at the top of the tower is 325000 kg. Idealizing the tower as a point structure,
determine the maximum drift and base shear for a 50 year wind. The reference
wind speed at 10 m height is 15 m/s. Assume the drag coefficient Cy, is 1.3 and
the density of air is 1.2 kg/m?>.

Solution. From Table 3.1, for suburban terrain the roughness length z, is 0.3
and the height of the zero plane above the ground is 5 m. Thus, from Eq. (3.2),
the friction velocity

gL KO@) _ 04(15) ) 213 m/s
* (z - d) (10 = 5) '
In In
Zg 0.3

U(70) = é x 2.13 x In(z%) = 28.64 m/s

The power spectrum of the wind at 70 m height is determined as follows. The
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reduced frequency

nz _ n(70)
T U@z 2864

From Eq. (3.13):

- 200 2.13% x 200 x 2.44
S m =122 _ 213" x 200 x

n (1+500)53 (1 + 50 x 2.44)5/3

2214
T 1+ 1220)%3

Response to mean wind
The mean force

F = 4pC,BD[U(70)1*
= $(1.2)(1.3)(6)(12)(28.64%)
= 46065 N

The stiffness of the tower
— 325000 x (2")
1.6

= 5 x 105 N/m
Thus the mean displacement

_ 606
o e 000 s 9
5 x 10°

Non-resonant displacement
The variance of the non-resonant displacement is given by Egs. (3.37) and
(3.33) as
1 _ ny—An
op = i p*U(H)B*D*C}, J 1 (n)S,(n) dn
0
The admittance function y(n) can be taken to be unity for larger eddies with

low frequencies, which are responsible for the non-resonant displacement.
Furthermore, from Eq. (3.6):

or = Pul = f S,(n) dn

0
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where f# = 5.25 from Table 3.2. Thus
1.2% x (28.64)* x 6% x 12 x 1.3% x 5.25 x 2.13?

o3 = m?
® (5 x 105)2
=3.14mm
Resonant displacement
. I '
The admittance function at n, = 6= 0.625 Hz
1
x(ny) = =
43
1+ 2’11\/2]
| UHY) | -
== — == 0.79
2 x 0.625. /12 x 6:|4’3
I+
28.64
From Eq. (3.33): ' 3 s
SF(nl) = pzﬁz(H)szzc% xz(nl)Su(H! nl) .
= 127 % 2864 % 6% % 122 x 1.3% x (0.79)?
3 [ 014 ]
(1 + 122 x 0.625)°7
= 10.2 x 10° N*/Hz
From Eq. (3:37), the variance of resonant displacement
2 mny Sp(n;)
P4 K?
_ m(0625)(102 x 109,
40015 x 10972
op =448 mm
The r.m.s, acceleration
. 448 L
ép = (2r x 0.625)? = 0.069 m/s*
From Eq. (3.154),'the'péé11{' factor for the resonant response,
gn = +/2 In(0.625 x 3600) + 0377 408

/2 1n(0.625 x 3600)

Assuming a peak factor of 3.5 for a non-resonant response, the most probable
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maximum displacement is

=921 + /(3.5 x 3.14)? + (408 x 4.48° mm
= 30.54 mm

. ) 30.54 1
Maximum drift = ——— = ——
70000 2292 -

Maximum dynamic base shear = 325000 x 4.08 x 0.069 = 91494 N

Maximum base shear due to non-resonant displacement

35
=5 x 10% x T x 3.14'= 54950 N

9.21 .
Mean base shear = 5 x 10% x o =46050 N

Thus, the most probable maximum base shear

= 46050 + /(54950) + (91494) = 152777 N

Example 3.2. A rectangular building of height H = {94 m is situated in a
suburban terrain. The breadth B and width D of the building are 56 m and
32 m respectively. The period of the building corresponding to the fundamental
sway mode is 5.15 5. The values of the mode shape at various heights are:

H{m) 0 20 40 75 95 135 150 170 194
¢ 0 0032 0096 0248 0365 0611 0746 0849 1.0

The generalized mass and damping ratio corresponding to this mode are
18 x 105 kg and 2%, respectively.

Assuming that the mean wind profile follows the power law with a power
law coefficient o = 0.22, determine the maximum drift for a 50 year wind storm
of 21 m/s at 10 m height, blowing normal to the breadth of the building. The
friction velocity is 2.96 m/s, the drag coefficient Cp is 1.3 and the density of air
pis 1.2 kg/m>.

Solution. The mean height of the building H = 97 m

0©7) = U(m)(?%)o'u

0.22
= 21(23> =346m/s -
10 '
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At mid-height, the reduced frequency

= MO _ s
0(H)

f 346

(=)

From Eq. (3.13), the spectrum of turbulent wind is given by

2.96% x 200 x 2.8 4906

S,(H,n) = =
(H,m) (1450 x 2.8n)%® (1 + 140m)°7

Response to mean wind
From Eq. (3.49), the mean generalized force

fl = 3pCpB JH U%(z)¢,(2) dz

0

%pcDB[ﬁ(ﬁ)JZ(%)M j " () de

0

1 0.44
=1x12x13x 56 x (34.6)2(ﬁ) x 684

=48 x 10°N

The generalized stiffness
2 2
It =(_“) x 18 x 106
5.15

=26.8 x 10° N/m
Thus the mean displacement

_ 48 x 10°
=Y S 10°=179mm
26.8 x 10°

Resonant displacement
The resonant frequency

1
n, = —— = 0.194 Hz
5.15

and therefore

4906

S,(H,n) =
(H, n.) (1 + 140 x 0.194)%3

= 18.8 m?%/s
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The admittance function, from Eq. (3.32), becomes

1
x(n) =
{4 |:2n, /56 x 194}‘”3
34.6
3 1
"1+ 10.96n*?
¥(ny) =045

From Eq. (3.46):

[T

Spr(n) = pzc[z)Bzxz(n)Su(Ei n) Hza

H [H
X J‘ f &1(21) $1(22)2123Y(21,. 25, 1) dz; dz,
o Jo
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The square root of coherence y is determined from Eq. (3.16), considering only

the vertical correlation. Thus

(34.6)*

970.44

Spp(ny) = 122 x 1.32 x 567 x (0.45)% x 18.8 x x 16900

= 7.85 x 10!° N?/Hz

From Egs. (3.47) and (3.48), the variance of the resonant displacement at the

top of the building is obtained as

1 =mn,
ap = ‘.b%(H)‘le)q, = Wr‘i’: Spe(ny)
2
=( L ) (n(0'194))(7.85 x 101°)10¢ mm?
26.8 x 10° 4(0.02)

op = 28.9 mm

Non-resonant displacement :

The variance of the non-resonant displacement at the top of the building is

determined from Egs. (3.47) and (3.48) as

ny—An

0-125 = ¢%(H)a§q'| = (ki)z J. Spr(ﬂ) dn

0

565 x 10°

= — X 106 mim
(26.8 x 10°)?

oy = 28 mm

The peak factor gy, for the resonant response is determined from Eq. (3.54)
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as 3.78. Using a peak factor of 3.5 for the non-resonant response, the most
probable maximum displacement is

Xmax = X + ‘\/(gBGB)Z + (QDGD)Z
= 179 + /(3.5 x 28)% + (3.78 x 28.9)?
= 326 mm

The most probable maximum drift would be

326 1
194000 595

3.4 Across-wind Response

For most modern tall buildings, the across-wind response is more significant
than the along-wind response. Across-wind vibration of structures is caused by
the combination of forces from three sources: (1) buffeting by the turbulence
in the across-wind direction; (2) wake excitation due to vortex shedding and
(3) acroelastic phenomiena such as lock-in, galloping and flutter.

The across-wind force due to lateral turbulence in the approaching flow is
generally small compared with the effects due to other mechanisms. Lock-in,
galloping and flutter are displacement-dependent excitations and in practice
tall buildings are not prone to galloping or flutter. Galloping can be significant
for flexible, lightly damped and slender tower-like structures [3.18, 3.19],
whereas flutter is most likely to occur in bridge decks [3.20] or cantilevered
roofs. Figure 3.18 illustrates schematically the range of reduced frequencies over
which various sources of across-wind excitation prevail,

Lock-in is the term used to describe large-amplitude across-wind motion
which occurs when the vortex shedding frequency is close to the natural
frequency. If the across-wind response exceeds a certain critical value, it causes
an increase in the excitation force, which in turn increases the response. The
vortex shedding frequency tends to couple with the natural frequency of the
structure for a range of wind velocities, and the large-amplitude response will
persist. Lock-in is likely to occur only in the case of structures with re]atwely
low stiffness and low damping, operating near the critical wind velocity given by

_ nyB
Useis = %— : o (3.56)

where U, is the critical wind speed, B the breadth of the structure normal to
the wind stream, n, (Hz) the fundamental natural frequency of the structure in
the across-wind direction and S the Strouhal number. : o
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Fig, 3.18. Spectra of across-wind forces. (Reproduced by permission of Cambridge University Press
{3.241)

In practice, chimneys and stacks are the only structures commonly affected
by lock-in. Structures should be designed so that lock-in effects do not occur
during their anticipated life. If the r.ms. displacement at the top of the structure
is less than a certain critical value, then lock-in will not occur. For square tall
buildings, the critical r.m.s. displacements o, expressed as a ratio with respect
to the breadth (o,/B) are [3.21] approxamatcly 0.015, 0.025 and. 0.045,
respectively, for open terrain, suburban terrain and city centres. For circular
sections with diameter D, the value of 0,./D is approx1mately 0 006 for suburban
terrain.

Thus, for buildings the most common cause for across- wznd motion is wake
excitation. Turbulence in the atmospheric boundary layer affects the regularity
of vortex shedding. However, the shed vortices have a predominant period
which can be determined from an appropriate Strouhal number. Because vortex
shedding is random, the fluctuating across-wind force is effectively broad band,
as shown in Fig. 3.19. The bandwidth and the energy concentration near the
vortex shedding frequency depend on the geometry of the bulldlng and the
characteristics of the dpproach flow.

The response due to this across-wind random excitdation can be determined
using random vibration theory. Idealizing the tall: building as a line-like
structure, as in section 3.3.2, the across-wind displacement y(z,f) can be
expressed in terms of the normal coordinates r,(t) as

e = 3 @) o (3.57)

=1

where (z) is the i-th vibration mode in the across-wind direction and N is
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' Fig. 3.19. Effects of turbulence irtteﬁéttjﬁhd afterbody let:gth on across-wind force spectra.

‘the total number of modes considered to be sxgnlﬁcant Thie governing equatlon
of motion in terins of ‘generalized mass m}, generalized damping ¢} and
generahzed stlﬁ'ness k* takes the form SR e

m;r +c r + k*r.uf*(t) i= 1 to N o '.'(3.'5'8'}

mwhmh o | |

| m*m J ;ﬁ(z)}p,?(z') dz |
kz*;(ziﬁ,.)?;};y_"" e
of = 2\ /mikt o ) o Cen
'ff(r)—J fe2 t)w(z)dz:_f-].'_} | o (359)

where H is the helght of the bu:ldmg, m(z) the mass per umt length n; the
frequency of the i-th mode in the across-wind direction, {; the. damping ratio
in theé'i-th mode, f(z, ) the across-wind force per unit height and f¥(t) the
generalized across-wind force in the i-th mode. The spectral denmty of-each
normal coordmate can: be: determined from . ST

|H; (ﬂ)!2

o Sﬁ() o y e (3..60)

Sn( )=

where |H(n)| is the mechanical admittance function and 'S f? (n) the power
spectral density of the generalized across-wind force. _
Unlike the case of drag force due to along-wind buffeting, it is not pracucal
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to relate analytically the velocity fluctuation in the approach flow to the
pressure acting on the sides of the building in'a separated flow. Thus across-
wind spectra are determined experimentally. Kareem [3.22] has proposed the
following empirical expression for the spectral den31ty of across-wind force 3;

for square buildings:

nS;(Z, n) a*ﬁ*(i)&g CR= Ry .
n, '

O'r

L™

N a\03 . .
ma*ﬁ*(m) . hxn _. . (36D
where
b

TTOTRET
s [ AR (- o

where n, is the shedding frequency = SU(z)/B; § the Strouhal number, U(z) the
mean speed at height z, B the breadth of the building, 67 the mean square
value of the fluctuating across-wind force, « the exponent term in the power
iaw, b the bandwidth coefficient = \/— I(z)y and I(z) the turbulence intensity at

height z.
According to Eq (3.59), the normalized power spectrum for the generalized

across-wind force in the i-th mode may be expressed as

_ nmSpm f f (nsf(zl'-; n))m(nsf(zz, n))”z
CpUA(H)BHT 2(zy) 52 (z5)

X CL(Zt)CL(Zz) Coh(zy, z5, WV (z)¥i(z,) dz, dz, (3.63)

in which

 a®
O~ pso)

o)l TS 20
ool
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x [Cos{( 20m (_LB—) — 1] ; _«_’?B < F*
S\ == \T@E) o THE) .
e Coh(é_f, F*) exp( ZO(AZ) (_p’:B )I,'z); : _nB .> -
H ) \o@m) ) T@E
(3.64)

where Az = |z, — z,| and F* = 1.25(1 — 2)/10. Equatlon (3.63) can be used to
generate force spectra for different approach flow characteristics and building
heights. Using linear mode, the generalized force spectra obtained from Eq.
(3.63) for open country, suburban and urban flow conditions are presented in
Fig. 3.20 for an aspect ratio of 1:6 [3.22].

The variance of the normal coordinate is given by

|H(m)?
ol = j (k*)z Sep(n) dn o _ (3.65)
Hence, the variance of the across-wind displacement is obtained from
o}(z) = sz(z)a,, o e

In Eq. (3. 65) 1f the contributlon from the non-resonatmg component is

neglected, then the LS responsc of the across-wind displacement is determined
from B

' N WZ(Z) n, 1/2 e
o,(z) = [ )t a— m)y{ . . . (3.67)
y . i . AR k
=1 2mn Y (m¥)? 4& _
10 o
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Fig. 3.20. Generalized force spectra for open country, suburban and urban flow conditions.
(Reproduced by permission of the publishers Butterworth Heinemann Ltd. [3.221)
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For convenient use of the above equatlon the generahzed force spectra obtained
experimentaily by Kwok and Melbourne £3. 23] and Saundcrs and Melbourne
[3.24] are presented in Fig. 3.21 for various. aspect ratlos of square and
rectangular buildings deflecting in a linear mode.

Vikery [3.25] has proposed the following: empmcal expressmn for the
across-wind displacement of various cross- sectlons as shown in Flg 3 22, w1th

nB
ot ] 1 5 % ' .
o) 5 (b}
S 7/ r‘ J.a.} ,;3\\
1L s \{\‘ — {8 L ~ Dy
3 ’f/ \ s \\ . Da
L 3 / \'._‘ ’,’/‘/"-... AN
5F ‘ \\\
. OF y Y
= 1 // \\ -7 N
= Ewi / S
g‘.— ",‘a 55 \"\
o~ L N
= gt
o Suburban felch \ Gily centre felch
Bt 1§
5 i _______ 5101
7L R N P P
}[]'5 MR TR . :ll La b oa b "
an 0 [IA] 02 0% A 005 i} 01 05 08
L
um.
TiH}:
g
00 i 10 5 - B 0 5 2
{c} {d}
- e e
LN T o
"]‘1 3 e h\\ /,/ - .
. / N . o
s 17 — s — [
== 1wk
. E
w = 3
& AN
= N |
W Suberbon fetch ) . City centre Letcah .
Sy T o ———— 12
Tt : —_— s : ———b:b 15
R 1 SR PN _ = —
ag? 0% |11 3 ¥ 0s 00 117 N 1
nf
ufH)

Fig. 3.21. Generalized force spectra for square and rectangufar buildings in suburban and city
centre fetches.
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ai_l- avérag'e'mas's- déﬁsifj of 200 kg/m3 and a da.mpi:ngwratiq of 19%: -
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\/Z i Py

where ¢,(H) is the rm.s. tip displacement, H the height of the building, A the
cross-sectional area of the building, U(H) the mean wind speed at the tip of
the building, n; the fundamental frequency of vibration, {; the damping ratio,
p the air density and p, the mass density of the building. The constant ¢ is
determined empirically as 0.00015 + 0.00006. The peak displacement is obtained
by multiplying the r.m.s. value by a peak factor of 4. In view of the empirical
nature of Eq. (3.68), it would be unwise to apply this equation to buildings
with properties well removed from the range investigated.
The r.m.s. acceleration at the top of the structure can be estimated as

o (H) = (2nm, Vo, (H) o 369

(3.68)

L

Example 3.3. Consider the building of Example 3.2. If the period of vibration
in the across-wind direction is 4.6 s, assuming a linear mode determine the
acceleration in the across-wind direction. The generalized mass corresponding

to the linear mode is 17.5 x 10° kg and the damping i in this mode of oscillation
is 2.

Solution. The building is rectangﬁ!éf with an aspect ratio of

H:B:D=6:175:1

Dynamic Effects of Winds on Buildings 77

- Q. '

— 8
7 \/E T
Z N e

- - Roos2

— A

— A JA
2 T
__ [T

' Fig, 322, Characteristics of models tested for Eq, (3.68). _
Sihce the building'is in a suburban terréin,’ the generalized across-wind force
can be determmed from Fig, 3.21e. The wind speed at the tip of the building
: 194)\% 22 o
U(H) U(IO) ( 10) = 40 3 m/s
The redigl'c:éd'i.'i'éqﬁency: :- | N
0217 x 56°
U(H ) _ 403

=03 -

0 from Flg 321f: w

| 00004\ . S
sf,( e (0217)(2 z><4032 X 56 1947

S 2 6 x 1011 Nz/Hz
From Eq (3. 67)

. x x 0217 : S T 12
=[{ =22 )26 x 1011 - ]
a”(H)_ [( 4 x 002 )( X )(21c x 0.217)%(17.5 x 105)?

= 0.046m

Assﬁming a peak factor of 4, the peak acceleration in the across-wind direction
6,(H) = 4 x 0.046 x (21)*(0.217)?
=034 m/s> 34% g)
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Alternatively, the r.m.s. across-wind displacement may be evaluated from Eq.
(3.68), using the average density of the building determined as
3m¥ 3 x 17.5 x 108
Po=4H T 56 x 32 x 194 B

In Eq. (3.68), the coefficient ¢ ranges from 0.00009 to 0.00021. Correspondingly,
the r.m.s. displacement at the tip would lie between 0.038 m and 0.088 m. It
should be noted that the value obtained from Fig. 3.21 lies within the range
predicted by Eq. (3.68).

3.5 Torsional Response

Buildings will be subjected to torsional motion when the instantaneous point
of application of the resultant aerodynamic load does not coincide with the
centre of mass and/or the elastic centre. Even in a symmetrical building,
along-wind forces can cause torsional motion as a result of uncorrelated wind
loads acting across the breadth of the building. However, the major sources of
dynamic torque are the flow-induced asymmetries in the lift force and the
pressure fluctuation on the leeward side caused by vortex shedding. Any
eccentricities between the centre of mass and the centre of stiffness present in
aysmmetrical buildings can amplify the torsional effects.

Safak and Foutch [3.26] have presented a method for estimating the
along-wind, across-wind and torsional responses of rectangular buildings in the
frequency domain. Recently Balendra et al. [3.27] have presented a time-domain
approach to estimate the coupled lateral-torsional motion of buildings due
to along-wind turbulence and across-wind forces, and torque due to wake
excitation. The experimentally measured power spectra of across-wind forces
and torsional moments [3.28] were used in this analysis. These methods are
useful at the final stages of design, since specific details which are unique for a
particular building can be easily incorporated into the analytical model. A useful
method to assess the torsional effects at the preliminary design stage is given
by the following empirical relation [3.7] which yields the peak base torque
induced by wind speed U(H) at the top of the building as

Toeac = ¥{T + gr T, e} (3.70)

where ¥ is a reduction coefficient, g the torsional peak factor equal to 3.8,
and T and T, the mean and the root mean square base torques which are
given by

T = 0.038pL*Hn3U?

1
Time = 0.00167 —— pL*Hn2 U268 (3.71)

Cr
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in which
UH
U= (H)
nyL
7 _dlrds (3.72)

JA

where p is the density, H the height of the building, n; and {; the frequency
and damping ratio in the fundamental torsional mode of vibration, |r| the
distance between the elastic centre and the normal to an element ds on the
boundary of the building and A4 the cross-sectional area of the building. The
expressions for T and T, are obtained for the most unfavourable directions
for the mean and r.m.s. values of the base torque. In general these directions
do not coincide, and furthermore will not be along the direction of the extreme
winds expected to occur at the site. As such, a reduction coefficient ¥
(0.75 < ¥ < 1) is incorporated in Eq. (3.70).

Assuming a linear fundamental mode shape, the peak-torsional-induced
horizontal acceleration at the top of the building at a distance a from the elastic
centre is given by [3.29]

il = 2091 Tis

3:73
p, BDHr2, (3:73)

where @ is the peak angular acceleration, p, the mass density of the building,
B and D the breadth and depth of the building and r,, the radius of gyration.
For a rectangular building with uniform mass density

re =12(B* + D?) (3.74)
Example 3.4. If the torsional frequency of the building in Example 3.3 is 0.5 Hz,
assuming a linear mode and 2%, damping ratio, determine the peak acceleration

at the corner of the building due to torsional motion. Take the centre of rigidity
to be at the geometric centre of the building.

Solution. For a rectangular building
~[|r| ds = ¥{(B* + D?)
Thus from Eq. (3.72):

L= L(B% D)l =491m
/BD
(7 40.3
U — UH)

A = = 1.64
neL 0.5 x 49.1
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From Eq. (3.71):

1
T,pne = 0.00167( ——— | (1.2)(49.1)*(194)(0.5)%(1.64)*5#
(\/@)( )(49.1)%(194)(0.5)*(1.64)

=15 x 10° Nm

The corner of the building is at a distance a = 32.2 m.
Thus from Eq. (3.73), the peak torsional acceleration of the corner

2 x 322 x 38 x 15 x 10°

= = 0.202 m/s?
151 x 56 x 32 x 194 x 346.7

The above acceleration should be added vectorially with the peak along-wind
and peak across-wind accelerations obtained in Examples 3.2 and 3.3, respect-
ively. A reduction factor 0.80 may be employed while summing the peak
responses, as the individual peaks may not occur simultaneously.

3.6 Serviceability Requirements

With the development of light-weight high-strength materials, the recent trend
is to build tall and slender buildings. The design of such buildings is often
governed by the need to limit wind-induced accelerations and drifts to
acceptable levels for human comfort and integrity of non-structural com-
ponents, respectively. Thus to check for serviceability of tall buildings, the peak
resultant horizontal acceleration and displacement due to the combination of
along-wind, across-wind and torsional loads are required. As an approximate
estimation, the peak effects due to along-wind, across-wind and torsional
responses may be determined individually and combined vectorially. A reduction
factor of 0.8 may be used on the combined value to account for the fact that,
in general, the individual peaks do not occur simultaneously. If the calculated
combined effect is less than any of the individual effects, then the latter should
be considered for the design.

British Standard BS 6611, 1984 [3.30] defines the comfort criterion as
complaint by more than 2% of people in the upper floors of the building during
the worst 10 minutes of a storm with a return period of 1 in 5 years. This is
shown in Fig. 3.23 in terms of the r.m.. acceleration for different frequencies
[3.31]. However, as a rule of thumb the allowable peak acceleration is taken
to be 20 milli g (0.2 m/s?).

The allowable drift, defined as the resultant peak displacement at the top of
the building divided by the height of the building, is generally taken to be
around 1/500.
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Fig. 3.23. Human response to horizontal motion.
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Chapter 4
Wind Tunnel Studies of Buildings

4.1 Introduction

There are many situations where analytical methods cannot be used to estimate
certain types of wind loads and their associated structural responses. For
example, the aerodynamic shape of the building is uncommon or the building
is very flexible so that its motion affects the aerodynamic forces acting on it.
In such situations, more accurate estimates of wind effects on the buildings are
obtained through model tests in a boundary-layer wind tunnel, where the
boundary layer is simulated by means of the ‘roughness, barrier and mixing
device’ recommended by Cook [4.1]. A typical arrangement of the hardware
in a wind tunnel is shown in Fig. 4.1.

The simulated wind must match the vertical variation of the mean wind speed
and the turbulent intensity of the atmospheric wind (see Chapter 3). The
geometric scale chosen to model the building should closely match the length
scale used for the depth of the boundary layer and the integral scale of the
longitudinal component of the turbulence. Consistent scaling is important to
ensure similarity of the spatial and temporal variations of the fluctuating
wind-induced pressures. For sharp-edged bodies, it is not necessary to match
the Reynolds numbers, however attaining a minimum value for the Reynolds
number is an important consideration in selecting the geometric scale. Another
consideration in selecting the geometric scale is with regard to blockage. It is
important to avoid excessive (more than 10%) blockage of the test section by
the model of the building and the surrounding structures. A geometric scale of
1:300 to 1:500 is commonly used in wind load measurements.

In addition to modelling the approaching flow, it is important to include the
influence of the immediate surroundings. This is normally achieved by con-
structing a proximity model which reproduces in block outline form all major
buildings within 0.5 km.
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The wind tunnel tests are carried out to determine: >
(a) the wind pressures on the extérior surfaces of the bulldmg, for claddmg
demgn

(b) the ovcrtummg moments and shear forces actlng on the buﬂdmg, for
structural design

(c) the acceleration levels in the bulldmg, to ensure human comfort

(d) the charnges in the wind environment at ground Ieve] to ensure thc safety
of pedestrlans . : R

Accordmg to the objectlves of the test dlﬁ'erent types of modcls are uscd in
wmd tunnel tests.
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42 Rigid Model Studies

Rigid models are used to determine the fluctuating local: pressures: on the
exterior surfaces of the building, It is common to use perspex as the construction
material. The exterior features of the building that are conmdered to be
important with regard to the wind flow are simulated to the corréct length scale’
using architectural drawings. Usually a scale of 1:300 to 1:500 is used: R

The model is instrumented with a large number of pressure taps: (SOOItc')_._ :
800) around the model surface to obtain a good distribution of pressures. More ';
tappings are required in regions of high-pressure gradients, such as corners.
The pressure tappings arc connected by plastic tubing to miniature electronic
pressure transducers which can measure the fluctuating pressures. The length
of plastic tubing is kept as short as possible to minimize the damping of
fluctuating pressures in the tubing. As it is uneconomical to use a single
transducer for each pressure tapping, the transducer is mounted onto a
pressure-scanning device, such as a scanivalve, which automatically switches the
pressure transducer between about 40 to 50 pressure taps, one at a time.
Pressure data is acquired by an on-line computer system capable of sampling
data at a high speed. Usually a rate of 300 samples/s is used. As the transducer
measures only the pressure differentials, the static pressure upstream of the
tunnel is used as the reference pressure.

The model is mounted on 4 turntable in the boundary-layer wind tunnel with
the surrounding buildings within a radius of about 500 m. Because of the ease
of construction, nearfield features are simulated by polystyrene foam. The
turntable provides the facility to test the model at different wind directions by
simply rotating the turntable to the desired angle. The pressure measurements
are taken for wind directions spaced 10° to 20° apart. For each wind direction,
the data are collected for a duration equivalent to 1 hour in the prototype, to
obtain stationary values for mean and root mean square pressures. The data
record is divided into segments corresponding to 5 to 10 s duration in full scale,
and' the maximum and minimum values of pressure are calculated for each
segment. These individual maximum and minimum values are used in an
extreme-value analysis to determine the most probable maximum and minimum
values apptlicable for the whole sample period. The maximum and minimum
pressures are expressed as pressure coefficients using the dynamic pressure at
the free stream. Knowing the statistical data of a windstorm at the building
site, the peak pressures and suctions are computed for the prototype for return
periods of 50 years and 100 years. The calculated data are presented in the
form of pressure contours or isobars as shown in Fig. 4.2.

In evaluating the peak wind loads on the exterior surface of the prototype,
the effects of internal préssure arising from air leakage through openings should
be considered. It is also necessary to consider the possibility of window breakage
caused by flying debris during a windstorm. As a guide, the resulting internal
pressures can be taken to be +25kg/m? at the base of the building to
+ 100 kg/m? at the roof for a 50-storey building.
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Fig. 4.2. Typical local pressure distribution in terms of pressure coefficients.

For glass design, 1 minute wind loading is commonly used. Since the
estimated peak loading is for a duration of 5 to 10 s, a reduction factor has to
be used on the peak loads obtained from the wind tunnel tests. Glass
manufacturers’ recommendations suggest reduction factors of 0.80, 0.94 and
0.97 for annealed float glass, heat strengthened glass and tempered glass,
respectively.

For buildings which are not dynamically sensitive to wind action, the rigid
model test results can be used to determine the loads for structural design.
Generally for buildings with height to width ratios of less than 5, the mean load
is obtained from the rigid model tests by integrating the mean pressures over
the surface. Then an appropriate gust factor is used to account for the effects
of turbulence. The gust factor may be determined from a building code [4.2,
4.3]. The gust factor depends on the averaging period of the mean wind load,
terrain roughness in relation to building height, natural frequency of the
building, intensity of turbulence and damping of the building.

The procedure to obtain the structural loads is as follows. The mean pressures
at various tappings are multiplied by the tributary surface area to obtain the
forces acting in two orthogonal directions on elemental areas of the building.
These hourly mean forces are multiplied by the appropriate gust factor to
include the effects of gusts on the overall loading. By summing the forces acting
on elemental areas at particular levels, the distribution of wind loads along the
height of the building is obtained. From statics, shear and bending moments
at various levels are obtained. The torsional moment can be obtained by
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appropriate summation of moments about the vertical axis caused by the forces
acting on the tributary area of the pressure tappings. As a building in a built-up
area may experience reduced mean loads, while the dynamic loads may be quite
high, this procedure may underestimate the peak wind loads in some instances
and thus it should be used with caution.

4.3 Aeroelastic Model Studies

For buildings which are sensitive to the dynamic action of winds, such as tall,
slender and flexible buildings, the body motion may influence the aerodynamic
forces acting on the building and hence the resultant response. In such cases,
aeroelastic model studies are required to determine the overall mean and
dynamic loads, displacements, rotations and accelerations. Aeroelastic model
studies may be required under the following situations:

. when the height to width ratio exceeds 5
. when the structure is light with a density of the order of 1.5 kN/m?

1
2
3. when the fundamental period is long — of the order of 5 to 10s
4

. when the natural frequency of the building in a cross-wind direction is in
the neighbourhood of the shedding frequency

wn

. when the building is torsionally flexible

6. when the building is expected to execute strongly coupled lateral-torsional
motion.

For aeroelastic tests, in addition to modelling the properties of atmospheric
wind and aerodynamically significant features of the exterior geometry, it is
necessary to simulate the mass, stiffness and damping properties of the building.

Thus, equality of the following ratios in model and in full scale needs to be
maintained:

p, _ inertia force of building

4.1
p inertia force of flow el
E _ elastic force 42)
pV?  inertia forces of flow '
dissipating structural forces
= pating (4.3)

inertia forces of flow

where p, py,, E, ¥ and { are respectively the density of air, density of building
elastic modulus, wind speed and damping ratio. Measurements on aeroelastic
models are carried out at wind speeds that correspond to common events for
serviceability and relatively rare events for strength design. Often a 10 year
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return period is used for the former to obtain information with regard to human
comfort and drift, while a 50 or 100 year return period is used for the latter.

Since only the lower modes of vibration contribute significantly to the
wind-induced motion of buildings, wind effects can be studied using simple
models to simulate the equivalent dynamic properties. The various types of
equivalent aeroelastic models are discussed below.

4.3.1 Aeroelastic Model with Linear Mode (Semi-rigid Models)

When the fundamental sway mode of the building can be approximated by a
straight line, a rigid model pivoted at the base, as shown in Fig. 4.3, is used as
the equivalent aeroelastic model. The pivotal point is chosen in such a way
that the corresponding linear mode provides the best fit for the fundamental
mode of the prototype. For instance, in the case of a building with a very stiff
podium, the pivotal point may be chosen at the intersection of the tower and
the podium.

As the model rotates instead of translating, the mass moment of inertia about
the pivotal point instead of the mass must satisfy the appropriate model scale.
If subscript r denotes the ratio between the prototype and model parameters,
that is

H I
H=—-EL, L=2 (4.4)

H, L
where H is the length, I the mass moment of inertia, and suffixes p and m
denote prototype and model respectively, then the appropriate scale for mass

Perspex or —=|
Balsa wood
Diaphragms
Wind tunnel floor
ﬁzzz/zz'T“ mLm
Gimbal — Force transducers
Springs Adjustable weight
Electromagnet

Fig. 4.3. Semi-rigid model with a linear sway mode.
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moment of inertia is given by
I = HE (4.5)

The stiffness scaling is determined from Eq. (4.2) or its equivalent for the lumped
parameter system. The equivalent of Eq. (4.2) for vibration in a particular mode
with frequency n is

(nD) _(nD) e
V) \7), s

where D is the width of the building. From this the velocity scale becomes

v, D H
A (ﬁ)(_P) T W 4.7
Vo \Mwu/\Dy T,

where T, is the time scale and T the period of vibration. When the velocity
scale is chosen, the stiffness scale becomes

b= o = HPH 48)
when k is the rotational stiffness about the pivotal point.

The model mass moment of inertia is determined from the generalized mass
of the prototype building for the linear model. Perspex is used to simulate the
exterior geometry of the building. To achieve the correct scaling of the mass
moment of inertia, the thickness of the outer shell may be varied or mass may
be added at the appropriate locations. The damping ratio of the model is
adjusted to be the same as the damping ratio for the prototype structure. Typical
values for damping are 19 for a steel building and 2%, for a concrete building.
To construct the model, a convenient model frequency is chosen and from the
known prototype frequency the time scale is established. If, for example,
h, =24 Hz, n, = 0.18 Hz and H, = 400, then ¥; = 3. Thus the design hourly
wind speed is reduced by one-third in the wind tunnel. The one hour of full
scale event would be compressed to 27 s, since the chosen time scale is 133.
Thus the wind tunnel data are collected for 27 s to obtain a stationary sample.
From the model test, moment, M, and accelerations, a, are obtained. These are
related to the prototype by the following non-dimensional expressions:

nZH?

-3 (4"”
n*H

= am(—nﬁiHi ) (4.10)

Other quantities of interest are the pressures, P, and shear forces, F, which are
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given by
n:H?>
Po= Pm(;é’ﬁ) (4.11)
nZH*
=n() W

For a model simulating sway motions in two orthogonal directions and
torsional motion about a vertical axis, in addition to the modelling parameters
discussed above, the following parameters must be equal in both the model and
the prototype:

(a) the critical damping in the longitudinal, lateral and torsional directions
(b) the ratio between the torsional frequency and the longitudinal frequency
(c) the ratio between the lateral frequency and the longitudinal frequency.

A semi-rigid model with three degrees of freedom is shown in Fig. 4.4.
Balendra and Nathan [4.4] used five torsion bars to provide stiffness in three
orthogonal directions. In the test rig, a single torsion bar is used for the
measurement of torsional response, and it is inserted within the model along
its vertical axis. The top end of this torsion bar is attached to the model while
the botom end is fastened to a perspex disc. The perspex disc is coaxially
mounted on an aluminium disc and is free to rotate on top of this disc to vary
the angle of attack. The aluminium disc has a vernier scale which allows

Turntable to
vary angle of
incidence

Fig. 4.4. Semi-rigid model with three degrees of freedom.
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the angle of attack to be set to an accuracy of one-tenth of a degree. One pair
of torsion bars, aligned normal to the along-wind direction for measuring the
along-wind response, supports the aluminium disc at one end while the other
end is bolted to a cross-beam. Another pair of torsion bars, aligned in the
direction of along wind for measuring the across-wind response, supports the
cross-beam at one end, while the other end is bolted to a fixed support. The
cross-beam is also supported on a pair of ball-bearings to prevent the bending
of torsion bars in the along-wind direction. The bending of the torsion bar in
the vertical direction is prevented by inserting a ball-bearing between the
bottom flange of the torsion bar and the model. The choice of torsional rigidity
of the torsion bars determines the natural frequency of the building in any of
the three orthogonal directions, and the model can be constrained to oscillate
in any particular direction.

A cylindrical perforated damper, mounted onto a second aluminium disc,
allows the damping to be simulated in the rocking and torsional modes of
oscillations. The damping ratio is changed either by varying the depth of oil in
the container or the size of the cylinder. Damping can also be varied by changing
the viscosity of the oil. To measure the oscillations of the model, a pair of
dynamic strain gauges is attached to each of the torsion bars.

Although the above set-up simulates a torsional mode which has a unit value
along the height instead of a linear variation, it nevertheless provides a means
of studying the importance of torsional effects and the sensitivity of the dynamic
response to eccentricities between the mass centre and the stiffness centre.

4.3.2 Aeroelastic Model with Shear—Flexure Mode

The linear mode used in the semi-rigid model is an approximation to the actual
mode shape of typical tall buildings which are constructed with shear walls and
frames. When the shapes of a building are complex, with setbacks or major
variations in stiffness along the height, the assumption of a linear mode of
vibration is not valid. Under lateral loads, the walls deflect in a flexural mode
while the frames deflect in a shear mode. As the walls and frames are tied
together by the floor slabs, the building deflects in a shear—flexure mode. When
the building is modelled as a shear—flexure beam, the governing equation of
motion for along-wind displacement of the building u(z, t) is given by

m(z)i(z, t) + c(2)u(z, t) + EI(z)u"(z,t) — GA(z)u"(z, t) = f(z, 1) (4.13)
where m and c are the mass and damping coefficient per unit height, and EI
and GA are respectively the flexural and shear rigidities. Furthermore, f(z, f)
is the fluctuating wind load per unit height. In Eq. (4.13), the dots denote the
derivative with respect to time ¢ and the primes denote the derivative with
respect to z.

Introducing the following non-dimensional parameters

u* =

2 opx=Z and r=" (4.14)
H T
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where H is the height of the building and T its period, Eq. (4.13) becomes

2
i € 5% EI T2 E (GA) Tz K\ T f(z, I)
Sy @y — (SN oy =T 4.15
! m (m H“(u) m Hz( ) H m (415)

If subscript r denotes the ratio between the prototype and the model parameters,
for Eq. (4.15) to be valid for both prototype and model

2
Lih_y «h_, (4.16a,b)
Hr m, m,

ELT? G, A, T?

itk 1, T R = 417ﬂ,b
m, H* m, H? ( ;

Denoting the velocity of the wind as ¥, then for air density ratio p, = 1:

fo=ViH (4.18a)
Since ¥V, = H,/T,, substituting Eq. (4.18a) into Eq. (4.16a) leads to
m, = H} (4.18b)

Since c,/m. = {,@,, where {, is the damping ratio and w, the frequency,
Eq. (4.16b) yields

=1 (4.18¢)
Substituting Eq. (4.18b) into Egs. (4.17a) and (4.17b) yields
El.=V!H}, G,A =V!H? (4.19a, b)

If the aeroelastic model is constructed to satisfy the mass and stiffness
distribution according to Egs. (4.18b), (4.19a) and (4.19b), then it would have
a mode shape similar to the prototype, and the ratio between its frequency and
that of the prototype would be the same as the chosen time scale. For ease of
construction, the frame elements may be neglected provided the sizes of the
flexural elements are adjusted to reflect the shear mode [4.5]. To accomplish
this, the prototype should be re-analysed with flexural elements and without
the shear elements for the same mass. The sizes of the flexural elements may
be adjusted by introducing openings and changing the widths so that the
prototype has the same frequency and mode-shape as the one with both flexural
and shear elements. Two steel bars have been used to simulate the stiffness of
the building in the along-wind direction. The stiffness in the across-wind
direction is similarly simulated with another two steel bars. By adjusting the
positions of these four steel bars in plan, it should be possible to obtain the
required torsional stiffness. The mass and exterior geometry of the building are
simulated using a non-structural shell made of perspex. For the model to deflect
according to the deformation of the steel bars, the outer shell is made of several
segments with small gaps between them. Each segment is connected to the steel
bars through horizontal diaphragms. The viscoelastic tape used to cover the
gaps between the segments of the outer shell provide the damping.
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The base overturning moment is measured using strain gauges at the base
of the steel bars. The distribution of wind-induced forces along the height can
be obtained by measuring the cross power spectral densities of the pressures
acting on the model. The modal force is then given by [4.6]

B B [H [H
Sg+(n) = J -[ J‘ J ¢(21)¢(32)Sp(x1, Zy, X, Z3, 1) dx, dx, dz, dz,
0o Jo Jo Jo
(4.20)

where B is the breadth, H the height, ¢(z) the mode-shape and S, the cross
power spectral density of pressures between two points (x,, z,) and (x,, z,),
which is obtained by measuring the pressure signals from two tappings at the
same time using a sample and hold hardware device. The data are then
converted into the frequency domain by the fast Fourier transform technique.

The power spectral density of displacement at any height of the model is then
determined from

Sa(z, 1) = 2(2)|H(n)|*Sp-(n) (4.21)

where |H(n)| is the transfer function of the modal equation corresponding to
the mode-shape ¢(z), and n,, is the corresponding frequency of vibration.
The root mean square dynamic displacement is given by

[ #0  @m) ]”2
i e [(m*)z(znnm)“ T it

(4.22)

where m* is the generalized mass and {,, the damping ratio for the chosen mode
of vibration. The root mean square acceleration at any height is given by

a,.(2) = (2nn,)%0,4(2) (4.23)

The root mean square shear and the moment at any height z, from the base
of the model is obtained from

H

Q(zo) = (2nn,,)* f m(z)a,(z) dz _ (4.24)

Zo

H

M(z,) = (2nn,,)? J (z — zo)m(z)o4(z) dz (4.25)

zZo

4.3.3 Aeroelastic Model with Coupled Modes

For more complex buildings where torsional modes are important or in
situations where the modes of vibrations are strongly coupled due to eccentricity
between the mass centre and the elastic centre, a discrete model with several
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Lumped masses with three
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Fig. 4.5. Schematic diagram of discrete aeroelasti del: ior vi
e elastic model: (a) exterior view of the model, (b) lumped

lutppf:d masses interconnected by flexible columns is used [4.7 4.8]. The
building is divided into several zones and the mass of each zone is cc;ncentrated
at the centre of the zone on a horizontal diaphragm with two translational and
one rotational (about the vertical axis) degrees of freedom. The horizontal
dlaphragms are connected by flexible columns, and then the entire mechanical
system 1s enclosed by a non-structural shell which simulates the exterior
geometry of the building (Fig. 4.5). The shell is made discontinuous to allow
relative movements between the masses. If the diaphragms are made stiff, then
the modfal simulates the behaviour of a shear building where the’axial
deformathn of the columns and rotation of horizontal girders are neglected
Wlth.conmderable fabrication effort, Isyumov [4.9] has simulated the girdm"
rotation and axial deformation of the columns (Fig. 4.6).

In studies of most tall buildings, four lumped masses with 12 degrees of
freedom are found to be sufficient. Inclusion of higher sway modes in
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Fig. 4.6. Aeroelastic model with: (a) axial deformation of columns, (b) rotaﬁon of floor diaphragms.
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multi-degree-of-freedom system simulation improves the results only marginally,
as the response is predominantly in the two fundamental sway modes.

4.4 High-frequency Force Balance Model

An aeroelastic model provides comprehensive information on the dynamic
loads and motion of the prototype. However, construction of an aeroelastic
model is complex and costly, and cannot be carried out until the essential
structural features, such as the distribution of stiffness and mass of the prototype
are finalized. The high-frequency force balance technique provides an alternative
method which is more economical and time efficient. In this method, the
generalized wind-induced forces in a building with a linear mode-shape are
determined by measuring the dynamic base moment acting in a rigid model
simulating the geometry of the building. The model is mounted on a highly
sensitive stiff force balance which measures the base overturning moment. The
frequencies of the model and the balance are chosen to be sufficiently high, so
that there are no distortions in the dynamic wind loads due to resonance in
the frequency range of interest. The power spectrum of the measured base
moment is the same as the power spectrum of the generalized force corre-
sponding to a linear mode. From the power spectrum of the generalized force,
the root mean square dynamic displacement, acceleration, shear and moment
are determined analytically using Egs. (4.21) to (4.25).

The high-frequency force balance technique allows the dynamic response of
several alternative structural systems to be evaluated economically. However,
it is applicable only when the motion of the building does not affect the
aerodynamic forces, as the model does not simulate the dynamic properties of
the building.

4.5 Pedestrian Wind Studies

During high winds, when the path of the wind is blocked by the broad side of
a tall, flat building, the tendency of the wind is to drift in a vertical direction
rather than to go around the building at the same level. As such, some of the
wind will be deflected upward, but most will spiral to the ground creating a
strong wind at the pedestrian level. Thus walking in the neighbourhood of
skyscrapers may become extremely unpleasant and some times dangerous for
pedestrians. The presence of other tall buildings nearby may aggravate the
situation. Thus for successful design of buildings at the pedestrian level, it is
important to estimate the wind conditions in outdoor areas of buildings and
building complexes through model studies to ensure safety and comfort. These
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studies reduire a geometrically scaled model which includes aerodynamically
significant details of the building. Significant structures nearby and any
important topographic features also need to be included.

When the model is tested in the wind tunnel under the simulated atmospheric
wind, wind speed measurements are made at various locations at the pedestrian
level and compared with a set of standard acceptance criteria. If unacceptable
pedestrian-level wind speeds are detected, remedial procedures can be suggested
through these model studies. The effects of erecting a proposed building within
a cluster of existing buildings are obtained by comparing the pedestrian-level
wind speeds with and without the proposed building.
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Chapter 5

Analysis of the Behaviour of Buildings
During Earthquakes

5.1 Earthquake Loading

Earthquakes are vibrations of the earth’s surface caused by sudden movements
of the earth’s crust which consists of a number of thick rock plates that float
on the earth’s molten mantle. The plates drift on convection currents generated
by hot spots deep within the earth, and deform as they move, owing to
interlocking at plate boundaries. As a result, stress builds up and when the
shear stress exceeds the strength of the rock, a rupture occurs along the fault
line in the rock and energy is released in the form of seismic waves. The origin
of the fracture is known as the focus of the earthquake (Fig. 5.1). Two kinds
of body waves are propagated from the focus. The first is the compressional or
P wave, which is propagated as an expanding sphere of disturbance. The
second is the § wave which is characterized by shearing distortion without any
volumetric change. The point on the surface directly above the focus is called
the epicentre of the earthquake. When body waves strike the free surface, they
give rise to two kinds of surface wave. The first are called Love waves, and
consist of a horizontal motion of the surface transverse to the direction of
propagation. The second are called Rayleigh waves, in which surface particles

Continental crust

Fig. 5.1. Types of seismic waves.
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move in vertical retrograde elliptical orbits. Body-wave amplitudes decay at the
rate of » 2, where r is the radial distance from the focus, whereas surface-wave
amplitudes decay at the rate of r~'/2. As the latter decay much less rapidly,
such earthquakes may be felt hundreds of miles from their epicentres, and
contribute more to earthquake damage.

Ground motions caused by seismic waves are measured by the strong motion
accelerograph, a device sensitive to the ground motions most likely to affect
structures. It records three components of ground acceleration, two horizontal
and one vertical. An example of a strong motion record is shown in Fig. 5.2.
The recorded horizontal acceleration, after correction for instrument character-
istics, is digitized and then integrated to obtain the velocity and displacement
time histories shown in Fig. 5.2.

Since the foundation is the point of contact between the building and the
earth, the seismic waves act on the building by shaking the foundation back
and forth. The mass of the building resists this motion, setting up inertia forces

){throughout the structure. Vertical inertia forces are generally unimportant

however, since buildings are already designed for static vertical loading and
hence are strong in this direction. Thus only horizontal inertia forces need be
considered, and these may exceed the wind forces acting on a structure.

The magnitude of the horizontal inertia force depends on the building’s mass,
the ground acceleration and the type of structure. If a building and its
foundation were rigid, it would have the same acceleration as the ground, and
the peak lateral force would be mass times peak acceleration. In reality, this is
never the case, since all buildings are flexible to some degree. For a structure
that deforms only slightly, thereby absorbing some energy, the force may be

~N e~
o o

1
—
o

Acceleration (g/100)
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o
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DLAD KA N
VYV
05 W 5 0 % 0 % 4
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Fig. 5.2. Earthquake strong motion record.
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less than the product of mass and acceleration. But a very flexible structure,
having a natural period near that of the ground motion, may be subject to a
much larger force. Thus the magnitude of the lateral force on a building depends
not only on the peak acceleration of the ground motion but also on the
frequency content. The importance of the frequency content was well illustrated
by the 1985 Mexico City earthquake. The ground motion at Mexico City had
a predominant period of 2 s. This coincided with the natural period of vibration
of buildings in the medium-height range, typically six to twenty storeys, many
of which collapsed or suffered serious damage, whereas other buildings were
practically unaffected.

5.2 Response Spectrum Analysis of SDOF

The most widely adopted method of studying the frequency content of
earthquakes is by the response spectrum technique. The response spectrum of
an earthquake depicts the variation of peak dynamic response of a single-
degree-of-freedom system (SDOF) for different values of its natural frequen‘cy,
and for a particular damping ratio. Consider a single-storey shear building
subjected to ground motion v,(t), as shown in Fig. 5.3. The mass is not subjected
to any external loading, thus for equilibrium

F+Fp+ F=0 (5.1)

where F is the inertia force, F, the damping force and Fs the elastic restoring
force. The inertia force depends on the total acceleration of the mass, #,, which
is given by

§,(6) = () + (1) (5.2)

(t)
il

Reference |

ing:———= | F

| ==&

ng]|

(b)
(a)

Fig. 5.3. (a) One-storey shear building subjected to ground motion and (b) forces acting on the
floor masses.
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Thus the governing equation of motion becomes

mi + ¢t + kv = P (f) (5.3)
where
P (1) = —mi, (5.4)

is the effective force resulting from the ground motion. The other symbols, m,
¢, and k, are as defined in Chapter 1.

The solution to Eq. (5.3) for zero initial condition is given by the Duhamel
integral. Neglecting the small difference between the damped frequency and the
undamped frequency, and also the negative sign in Eq. (5.4), as it is of little
interest in earthquake response analysis, we have

0

u(t) = él:jr U, (1) e 74079 sin w(t — 1) dr] (5.5)

The above equation gives the time history response of relative displacement
which is a function of the natural frequency, , and the damping ratio, {, of
the system. :

The maximum relative displacement is determined from the maximum value

of the integral which is denoted as S,(w, {) and is called the spectral pseudo
velocity:

S, (0, ) = [ j 1 5,(t) € 59 gin (t — 1) dr} (5.6)

0 max

According to Eq. (5.6), the maximum relative displacement is given by
1
[0(8)]max = " S(@,0) = S4(e, 0) (5.7)

where S, is the spectral displacement. The maximum absolute acceleration or
the spectral acceleration, S,, may be expressed as

Sa(@, ) = 0?Sy(w, {) (5.8)

For a given earthquake record, by assuming a specific value of damping for
the SDOF oscillator, it is possible to plot the variation of S,, S, and §; with
the natural period or frequency of the oscillator. The graph showing such a
variation is called the response spectrum of the earthquake motion. For example,
the acceleration response spectrum of the El-Centro earthquake is shown in
Fig. 5.4. The sharp peaks and valleys in the response spectrum are due to local
resonances in the ground motion record. Such irregularities are not of
fundamental significance and may be smoothed out by averaging the response
spectra of a number of different earthquake records which are normalized to a
particular intensity level, to obtain the design spectrum. In Fig. 5.5, a design
spectrum normalized to a peak ground acceleration of 1g is presented.
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5.3 Response Spectrum Analysis of MDOF

When a shear building with N storeys, as shown in Fig. 5.6, is subjected to
base excitation, the governing equations of motion take the form

[M1{5} + [C1{s} + [K]{v} = — [M1{1}5, (5.9)

where #, is the ground acceleration, {v} is the displacement vector of floor
masses with respect to the base, {1} represents a unit vector and [M1], [C] and
[K] are as defined in Chapter 1 (section 1.3).
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Fig. 5.6. N-storey shear building subjected to ground motion.

For a linear system with proportional damping, Eq. (5.9) can be solved
effectively by modal analysis. For earthquake response analysis, the modal
analysis technique becomes much more efficient, because ground motions tend
to excite strongly only the lowest few modes of vibration. Thus, Eq. (5.9) can
be reduced to n modal equations of the form

q.r S 2Crerjr + w:!qr " _ﬁg}’rs r= 1’ 29 cees (510)
wh.ere n (<N) is the number of significant modes and the modal coordinate
q, 1s related to the displacement of the i-th mass as follows:

U= 21 D4, (5.11)
in which @, is the i-th component of the r-th mode-shape vector. Furthermore,
the modal participation factor y, in Eq. (5.10) is given by

y = Efv=1 m;®,,

T I, m@; Bl

Equation (5.10) represents the equation of motion of a SDOF system and the
response is obtained from the Duhamel integral as

t

g,(t) = ﬁ(’:—; 5,(t) e 4= sin o (¢t — 1) dr (5.13)
rJo

The time history response of the i-th mass is then determined from Eq. (5.11) as

v;(t) = @;;9,(2) + D@pq,(0) +---

Ist modal  2nd modal (5.14)
response response

To determine the maximum response, according to Eq. (5.6), the maximum
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response of the modal coordinate is first obtained from Eq. (5.3) as
S,
(qr)max = Yp=— (CU,., Cr)
ml’

=7,84(®,, () (5.15)

where S, is the spectral displacement corresponding to modal frequency @, and
modal damping ratio {, in the r-th mode. According to Eq. (5.14), the maximum
relative displacement of the i-th mass in the r-th mode is given by

(Uir)max = (Dir(Qr)max * (5.16)

The maximum interstorey drift between any two storeys in the r-th mode may
be obtained from

(V4 + Vi1 )max = @ — @i 1,.) 7. Sa(@,, £;) (5.17)
The maximum inertia force in the r-th mode at the i-th level is given by
(Fi)max = 1107 (Vir ) max
= m; @7, 5,(, {;) (5.18)

and the maximum dynamic shear at the k-th storey and base shear in the r-th
mode are obtained by summing the inertia forces induced:
N

(I/kr)max = 'Yrsa(wrs Cr) Z mid)ir (5193.)
i=k
N

(Qr)max = 'VrSﬂ(wra Cr) Z mid)ir (5.19b)
i=1

where S, is the spectral acceleration corresponding to modal frequency o, and
damping ratio (.

According to Eq. (5.14), the total response is the sum of the modal responses.
Since the maximum response in each mode would occur at different times, it
would be conservative to superpose the maximum responses obtained for each
mode of vibration. The recommended procedure to determine the most
probable maximum response is by the square root sum square (SRSS) method
[5.1]. Accordingly, the maximum response R is given by

R= [ > (R,)ﬁm}m (5.20)

=1

where (R,),,,, is the maximum value of the quantity R (displacement, drift, base

shear, etc.) in the #-th mode. ‘
The SRSS method may lead to significant errors if the modal frequencies are

closely spaced. For such cases, the CQC (complete quadratic combination)
method is recommended [5.2]. Accordingly

n n 1/2
R = [ 32 R,ﬁmRs] (521)

s=1



104 Vibration of Buildings to Wind and Earthquake Loads

where R, and R, are the maximum responses in the r-th and s-th modes,
respectively, and the cross modai coefficient §,; obtained from random vibration
theory is given by

(L L)AL + pL0*?
(1= p* + 4. Lp(1 + p*) + 4 + (D)7
where p = w,/w,, and ¢, and {, are the damping ratios in the r-th and' s-th

modes.
The elastic response spectrum technique described above would give the

(5.22)

ﬁrs =

maximum response if the structure remained elastic. However, since buildings

are designed with a certain amount of ductility to absorb energy through
inelastic deformation in the event of a severe earthquake, the recommended
procedure by the Canadian Code of Practice {5.3] is to scale down the response
obtained from the elastic response spectrum by a factor equal to the ratio
between the equivalent lateral base shear given in the code (which accounts for
ductility, see section 5.5) and the dynamic base shear obtained from the elastic
response spectrum technique.

Example 5.1. Compute the maximum floor displacement and storey shear for
a six-storey shear building using the elastic response spectrum given in Fig, 5.5
for 5%, damping. The peak ground acceleration is to be taken as (.05g. The
mass at various floors, the first three modes and the corresponding periods of
vibrations are given in Table 5.1.

Solution. The maximum floor displacement and the maximum inertia force at
floor level i in the r-th mode of vibration are given by

Ve
(vir)max = (Dir 72 Sa(mn gr)
w,
(E‘r)max_z mi<I),-,y,Sa(m,,, Cr) . -
The modal participation factor computed from
_ Z?I: 1y 0y

¥r &
2
=1 M0

Table 5.1. Properties of building for Example 5.1,

Floor level Mass (kg) Mode 1 Mode2 - Mode3

i m; o @y, By5
6 1.2 x 108 0.550 —0520 0455
5 12 x 10° 0.520 0252 —0.135
4 12 x 106 0.456. 0140 - —0560°
3 1.2 x 10° 0.365 0.460 —0.254
2 12 x 10° 0.254 0.560 0372
1 12 x 106 0.120- 0.368° 0.520
Period (s)
T

0.60 0.20 0.10:
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for the first three modes are

yl - 2.28
¥, = 0.746
'}’3 = 0-393

The spectral acceleration for the first three modes are deterined from Fig. 5.5
as

S,(T1, ) = 8,(0.60,0.05) = 2.13g
Sa(Ty, {2) = 5,(0.20,005) = 3g - -
S,(T5, L3) = §,(0.10, 0.05) = 3g R

Since the spectrum in Fig. 5.5 is for a peak ground acceleration of 1.0g, the
above spectral values must be multiplied by 0.05 to obtain the spectral values
corresponding to a peak ground acceleration of 0.05g. Thus, for mode 1:

i) = P (2. 28)(0 60) (2.136)(0.05)(1000)

= 21.7(1)"1 mimn
(Fit)max = mi®;4(2.28)(2.139)(0.05)
= 2.38m‘-®1-1 N

For mode 2: _ _
) = B30, 746)(0 20) (010051000

= 1.1(1)‘2 mm
(Fiz)max = m;:2(0.746)(3¢)(0.05)
— i.lmi(l)iz N

For mode 3: _
0.10
(¥12)max = Pis(0. 393)( ) (39)(0. 05)(1000)

= 0‘146®i3 mmnt
(Fi3)max = m;®:3(0.393)(3¢)(0.05)
= 0.5781111-(1),-3 N

The maximum modal displacements and inertia forces at various floor levels
are tabulated in Table 5.2 for the first three modes. From the inertia forces, the
maximum modal storey shears ¥ are computed from statics. Since the
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frequencies are well separated, the modal maxima are combined using the SRSS

z
N . - o - method to obtain the most probable maximum floor displacements and storey
ROl IR § Tz 9 shears.
7
:\8 _\2 ol - o vy
— X o - » - .
X T T 9 5.4 Site and Soil-Structure Interaction Effects
e 3 2 ¢ 8 3
e S 3 2 2 9 g When seismic waves propagate through the soil layer overlying rock the soil
— L layer filters the high-frequency components of rock motion and introduces a.
5 large proportion of longer-period components centred around the site perlod
'§“<’:> 2 a3 RO 8 Thus the surface motion could be significantly different from the rock motion -
T s 2 3 3 &8 3 both in magnitude and frequency content owing to the site effect. Seed ¢t al.
et bt 5.47 have obtained earthquake response spectra for different soil conditions.
q P D
5 (Fig. 5.7). It can be seen that the effect of the subsoil is to magnify the ground
Blg ooz o= g motion around the site period. Thus if the building period happened to be in
A |2 e 8 R 9
SRR ° & S S 3 the neighbourhood of the site period, there will be a resonance effect at the
= soil-structure period. Balendra and Heidebrecht [5.5] proposed a foundation
o factor that could be used in building codes to account for the amplification of
52 . 1 e ) .

,:Eg base shear in buildings constructed on stiff soil, deep cohesionless soit and soft
IR hW s 8 8 oy soil, considering both the site and soil-structure interaction effects. The latter
“ oMo on w3 introduces additional degrees of freedom to the footing (translation and rocking
<9 . . . - B
E-z 7 motion for two-dimensional structures) to account for deformation of soil
4| £g around the footing during energy transmission between the soil and the
R x E g = 3 2 F structure. The translation component is important for low buildings whereas
“*: c ° the rocking component is more significant for tall buildings. However, soll—

o

g — structure interaction has another important cffect — energy dissipation due to
-

gl & E E § § § § § radiation of waves into the soil medium. This increases the damping of the
3 - - system substantially. Consequently, the effect of soil—structure interaction on
9l oa-lg L 9 o5 o3 o® the base shear can be conservatively neglected [5.6]. Because of rocking, the
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Fig. 5.7. Average acceleration spectra for different site conditions.
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defiection increases for taller buildings, but the effect is smail. Thus a building
supported on a soil layer could be analysed by the method described in the
preceding section, using the appropriate response spectrum which accounts for
the site effect. In the absence of such a spectrum, Balendra et al. {5.71 modified
the power spectral density of the rock motion to account for the site effect and
obtained the power spectral density of the ground motion. From this, the most
probable maximum response of buildings was obtained, using random vibration
theory.

55 Equivalent Latén.'al'L.o.a.d A:ialysis. .

In this method, the dynamics problem is reduced to a statics problem. The base
shear, @, induced during earthquake motion is expressed as a fraction of the
weight of the building, namely -

Q=CW e

where W is the total dead load plus part of the live load that could possibly
be present, and C is the seismic coefficient, which is expressed in several different
ways in the various building codes. However, a useful general version to
illustrate the salient features is given by Smith [5.8] as '

C,=ASIR S o 524

where A is the site-dependent effective peak acceleration (as a fraction of @,
§ the seismic response factor, I the importance factor and R a factor related to
the ductility of the structure.- :

The effective peak acceleration, A, is relateéd to the seismicity of the site. The
appropriate value of A may be obtained from a seismic zoning map given in
building codes. Since the spectral velocity is almost constant over the practical
range of building periods, the value of 4 is related to the peak velocities given
in seismic zone maps. The seismic response factor, S, takes into account the
influence of the period of the building and the effect of soil condition. The
approved variation of § (Fig. 5.8) with period is given by the Applied
Technology Council [5.6]. The three types of soil condition, 8, 85, and §,, are
described as follows:

St Rocks of any type with shear wave velocities greater than about 750 m/s;
shallow stable deposits of sands, gravels or stiff clays overlying rock.

35: Deep cohesionless or stiff clay deposits of 50 to 100 m depth.

83t Soft to medium stiff clays and sands with depths of 10 m or more.

The period of the building, T (in seconds), required to estimate the seismic
response factor may be calculated as follows [5.8]:
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Fig. 5.8. Seismic response factor for 4 =10, ~ "’ s

1 For moment-resisting frames of N storeys. . o
T=0.IN T (525
2. For shear-wall buildings and braced steel frames of height H (m) and breadth
B (m) in the direction of the seismic forces

T = 0.09H/BY? (5.26)

The importance factor I is introduced to ensure certain categories of buildings
are designed for greater levels of safety;

I=1.51is used for essential bﬁi]dings, such as _ho_spitais, fire stations, etc.
I = 1.2 is used for places for assembly, such as schools, theatres, etc.
I = 1.0 is used for other types of building.

The factor R accounts for the ductility capacity of the structuye, which is
defined as the ratio of the displacement at ultimate l?ad to .the displacement
at yield, as illustrated in Fig. 5.9. It also reflects the ability of dfffercnt structural
forms to develop alternative load paths. The values of R for different structural
systems are indicated in Table 5.3.
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- / T~—Flastic design
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L. '
2 :
3 | |

Vield faiture Displacement

Fig. 5.9. Lateral forces in ductile design and elastic design.
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Table 5.3. R-factors used to account for ductility.

Type of structural system Seismic-resisting system R

Building frame system

An essentially complete space frame providing . Reinforced concrete shear 5.5
support for vertical loads, where seismic resistance walls
is provided by shear walls or braced frames Braced frames 50
Unreinforced masonry L5
shear walls
Moment-resisting frame
Similar to above except that seismic force resistance Reinforced concrete 70
is provided by special moment-resisting frames frames
capable of resisting the total seismic forces Steel [rames 8.0
Dual system
Seismic resistance is provided by a combination of Reinforced concrete 80
special moment-resisting frames {at least 25% of shear walls
seismic forces) and shear walls or braced frames Braced frames 6.0
Inverted pendulum structure
The framing acts essentially as a vertical cantilever Special moment-resisting 25
resisting seismic and vertical loads, e.g elevated frame of steel or
storage tanks reinforced concrete

The base shear calculated from Eq. (5.23) is distributed along the height of
the building. The distribution of lateral forces along the height of the building
depends on the mode-shape of the building, Thus the base shear obtained from
Eq. (5.23) may be distributed as

m;h; : : :
fi= Q(Zimihi) o L G2

where F, is the lateral force at level i, m; thie mass at level i and k; the height
of level i from the base. The above distribution assumes the fundamental mode
to be linear. This assumption is valid for regular short-period buildings as the
influence of higher modes is small, and the mode-shape is approximately linear.
However, for long-period buildings, the influence of higher modes can be
significant, and in regular tall buildings the fundamental mode lies approximately
between a straight line and a parabola. In order to reflect the contribution of
higher modes, the Applied Technology Council [5.6] has proposed the following
distribution:

mht

F=0.12
' QZimthi‘

(5.28)

where the value of k is taken as.
k=1for T<05s
k=2forT>25s

For periods between 0.5 and 2.5 5, k is obtained by linear interpolation.

e

As the ground motion tould
orthogonal axes, the resultant res
due to 100%; of the lateral forces
of the lateral forces along the orthog

The equivalent lateral force analysis is no
form, irregular mass or stiffness distribution,
the method is not useful when information on:
required. For such cases, dynamic analysis is reco ;

5.6 Inelastic Response Analysis

Inelastic response analysis is important in the earthqgake desigr.: gf buil_din‘gs
because a structure is permitted to go into the inelastic range .1f it is subjected
to strong but rare earthquake motion. Thus in o'rder to determn}e the response
of buildings to strong earthquakes, a proper inelastic anah{sm needs to.be
carried out. To do this, an appropriate analytical ynodel ldeﬁnmg the restoring
force-displacement characteristics of the structure is required. For stee.} frames,
cither the bilinear hysteretic model in Fig. 5.10a or the elasto plastic model
(slope of AB in Fig. 5.10a is zero) is used.

£
£ E
(a)  F | (b}
A B 5
Fl/ ¢t Y
: n/“//ﬂ
f 1}
(e)

Fig. 5.10. Force-displacement hysteresis: {a) bilinear model, (b) trilinear model, (c) model with
stiffness degradation.
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A trilinear model applicable to reinforced concrete frames is shown in
Fig. 5.10b. Points A and B correspond to points of cracking and yielding,
respectively. Line CD is parallel to OA and twice as long as OA. Similarly, DE
is parallel to AB and twice the length of AB. A model is shown in Fig. 5.10c
which allows for stiffness degradation due to load reversal in reinforced concrete
frames that yield in flexure. Many models of this type are available in the
literature [5.9, 5.10]. In Fig. 5.10c, line BC is parallel to OA. From C the stiffness
changes and the line heads towards point D, the yield point in the negative
direction. The line EF is parallel to line OA, but at F the slope changes, and
the line heads towards point B, the load reversal point in the previous cycle.

The most popular method for non-linear analysis is the step-by-step direct
integration technique, in which the time domain is discretized into many small
intervals of time At, and for each interval with some assumption on the variation
of acceleration, the equation of motion is solved using the displacement, velocity
and acceleration of previous time step. The stiffness is assumed to be constant
during each time step. Often the tangent stiffness at the beginning of the time
step given by line AC of Fig. 5.11 is taken to be constant in a step-by-step
manner as described below.

Consider the SDOF in Fig. 5.3, with the force—displacement hysteresis similar
to that in Fig. 5.10. If (Eq. 5.1) is written for time t; and t; + At, then the
incremental equation of motion, according to Eq. (5.2), takes the form

m Aw;(t) + C Av;(t) + k; Av(t) = AP(1) (5.29)
where
APR(t) = —m{r’)'g(t,- + Atf) — r}'g(t,-)} (5.30)

where Av;, Ad; and Ad, are the incremental displacement, velocity and acceleration
of the mass, and AP, is the incremental force. F urthermore,

k= (%9 ~ (5.31)

which is the tangential slope (Fig. 5.11). Among the procedures available for

P(t)
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Fig. 5.11. Determination of stiffness for step-by-step integration technique,
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performing step-by-step integration of Eq. (5.29), two popular methods are:

1. the constant acceleration method, where the acceleration is assumed to be
constant over the interval, t; and t; + At

2. the linear acceleration method, where the acceleration is assumed to be linear
over the interval ¢; and ¢t; + At

If the acceleration is assumed to vary linearly, then vclog‘ity and dis_placeme_nt
must vary in a parabolic and cubic polynomial form. The increments in velocity
and displacement become

Av; = #; At + 3AT; At
Av; = 0; At + 56; At? + EAG; Ar (5.32)

Solving Eq. (5.32) for A#; and Ad; and substituting the expression into Eq. (5.29)
leads to

Av, = AP,/k; (5.33)
where
k= k; + bm + 3¢
T AT A
At
AP, = AP, + m{f— ; + 31’)}-} -+ .9{3:3i + o vi} (5.34)
I I E

Ad, is now obtained, using Av, from Eq. (5.32). Thus, at the end of the time step
Vi1 =0; + Av;
i1 = 0 + AD; (5:35)

Finally the acceleration #;,, at the end of the time step is obtained directly
from the equation of motion as

Uiy = l {Pi+1 — Clipg — ki 1Ui+1} (5.36)
m

where the stiffness is evaluated at time t;,, (=t; + At). The proced}xrc is
repeated for the next time step. The errors int_roduccd on the as:%umptlon of
linear variation of acceleration and constant stiffness during the time step are
small if the time step At is short. However these errors generally tend to
accumulate. This accumulation of error is avoided by imposing a total dynamic
equilibrium condition at each step, as given by Eq. (§.36). -
The accuracy of the results increases if sma'ller time steps are used: e
following factors should be taken into account in selecting the time step:

1. the natural period of the structure — a time interval smaller than one-tenth
of the period — is recommended
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2. the rate of variation of the loading function — the time interval should be
small enough to represent properly the variation of load with time

3. the complexity of the stiffness function — it is desirable to use smaller steps
in the neighbourhood of drastic changes.

The above numerical procedures can be easily extended to MDOF systems.
When the linear acceleration method is used for MDOF systems, the acceleration
1s assumed to be linear over the time interval ¢; to t, + 6 At, where 8 > 1.38 for

the solution to be unconditionally stable. This procedure is called the Wilson-
0 method [5.11].
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Chapter 6

Earthquake-resistant Design of Buildings

6.1 Design Philosophy

The current seismic design philosophy emphasizes the safety of lives in the event
of a severe earthquake. As the nature and occurrence of earthquakes are
indeterminate, it is necessary to consider different levels of earthquake intensity
in the design of earthquake-resistant structures. This requirement is expressed
in three levels of structural performance as follows:

1. The structure is to resist minor earthquakes without any damage.

2. The structure should resist moderate and frequently occurring earthquakes
without any structural damage, but limited non-structural damage may be
tolerated.

3. The structure should not collapse under rare and severe earthquakes.

Exceptions to these requirements include essential facilities such as hospitals,
where more stringent criteria must be followed. .

The provisions permit structures to yield under strong earthquake lgadlngs,
since it is generally uneconomical to design structures that remain elastlf: under
severe earthquakes which have a low probability of occurrence during thp
life-span of the structures. The ability of structures to sustain loads in th_e p1a§t1c
and strain hardening regimes provides an economical solution for seismic design
under severe earthquake loadings. ‘

As a consequence of the above seismic design philosophy, the design of
seismic-resistant buildings in regions of high seismic activity must satisfy two
general criteria. First, under frequently occurring low-to-moderate earthqualfes,
the structure should have sufficient strength and stiffness to control deflection
and prevent any structural damage. Second, under rare and severe earth.ql'lakes,
the structure must have sufficient ductility to prevent collapse. A minimum
functional condition of the building should be maintained so that any trapped
occupants may safely escape after the earthquake. Thus, in order tg resist severe
earthquake, the structural systems of buildings must have sufficient ductility
in addition to stiffness and strength. The ductility is obtained through the
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By

Fig. 6.1. Force displacement history under repeated loading: (2) poor in ductility, (b) good in
ductility.

formation of stable plastic hinges which provide reasonably constant high levels
of lateral load resistance during several reversed cyclic inelastic displacements,
with as little loss of stiffness as possible after every such cycle. Figures 6.1a and

6.1b show the load—displacement hysteresis of loops of two different structures.’

In the first case (Fig. 6.1a) the carthquake-resistant capacity is poor since the
strength and stiffness deteriorate under repeated loading and the hysteresis
loops are pinched, which reduces the energy dissipation capacity, measured by
the area under the hysteresm ioop In the second case (Fig. 6.1b) the earthquake-
resistant capacity is good since the structure exhibits stable hysteresis loops
without strength or stiffness degradation, and thus the energy dissipation is
large.

6.2 Structural Configuration

The structural systems discussed in Chapter 2 can be made ductile through
proper design and detailing. Both steel and concrete have been used successfully

in designing ductile systems for earthquake-resistant structures. However, there

are some important considerations with regard to vertical and horizontal.

configurations, as outlined below.

6 2 1 Vertlcal Conﬁguratlon
Soft First Storey
When the stiﬂ‘ness'and streﬁgth of the ﬁrst stbrey is significantly less than those

of the storeys immediately above, the deflection at first-storey level will be large,
and plastic. deformation tends to concentrate in the first storey which may
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cause the entire building to collapse as.a resuIt of fallure of the first-storey
columns. Soft first storey could occur : :

{a) if the heights of first-storey colurnns are much high
in the other storeys B

(b) if the shear walls are made discontinlious"'bel'o

The soft storey is avoided by fitting addzt:ona] columns_or"bramng"m the =

soft storey, which will increase the stiffness and strength to a Ievel comparabfe_
with the other storeys.

Short Columns

If both short and long columns exlst in the same storey, then the reIatlvely Stiff

column will attract a larger portion of the storey shear and could fail. This
problem could arise at sites on hilly ground or by the introduction of a
mazzanine floor which stiffens some of the columns in a particular storey,
leaving the rest of the columns at their full unbraced length. This problem can
be avoided by introducing spandrels which convert the long columns into short
colurnns. :

Vertical Setbacks

A vertical setback is a horizontal offset in the plan of the exterior boundary of
a structure. Setbacks are introduced when a smaller floor area is required at
upper levels or to admit light into adjoining sites. Asymmetrical setback
introduces torsional forces, resulting in complex behaviour. Thus a symmetrical
setback is preferable..

6.2.2 deizonts'i'Conﬂguration

Simple symmetrical configurations such as square or circular shapes are
preferable. In buildings with wings such as L, T, H, +, etc.,, damage will occur
at the intersection of the wings. This problem can be avoided by separating the
building structurally into simple shapes by means of seismic joints. There must
be enough clearance at the seismic joints so that the adjoining portions do not
pound each other.

In an asymmetrical layout, the centre of stiffness and the centre of mass do
not coincide and thus the building twists, with the corner columns being severely
punished. In order to improve torsional rigidity, some of the vertical resisting
elements should be placed further away from the centre.

ani those of columns
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6.3 Steel Structures

As steel exhibits a high level of material ductility and energy absorption, it is
an ideal material for earthquake-resistant structures. However, in order to take

advantage of the inherent ductility of steel, considerable care is needed in the

design and detailing of the members and connections of the structural systems.
Commonly used structural systems in steel buildings are:

(1) the moment-resisting frame (MRF)
(2) the concentric braced frame (CBF).

MRFs are ductile and thus excellent for energy dissipation. However, they
tend to be flexible to conirol the drift unless the sizes of the beams are increased.

On the other hand, CBFs are stiff but suffer from lack of ductility owing to.

buckling of the braces. Thus neither MRFs nor CBFs provide an economical
solution to seismic-resistant design. However, it is feasible to obtain an
economical system which combines the advantages of MRFs with those of
CBFs. Two such systems are: :

(1) the eccentric braced frame (EBF)
(2) the knee-brace-frame (KBF). '

These two systems strike a balance between stlﬁ'ness strength and ductlhty to

provide an economical solution. The design principles of these structural
systems are presented below.

6.3.1 Moment-Resisting Frame (MRF)

The MRF derives its stiffness, strength arid ductility from the flexural resistance
of the beams and columns. It is customary to design MRFs on the basis of the

strong column-weak beam concept. The columns are designed to remain elastic,:

except for bottom-storey columns where plastic hinges may be present in an
approved manner, as shown in Fig. 6.2.

Fig. 6.2. Failure mode for a typical multistorey frame with' plastic hinges at column ends.
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Design of Beams

The beams are designed to yleld w1th adequ ate Iastlc'rotatmn capacity so that
they provide energy absorption. For: stable. hysterém ; behaviour under cyclic
loading, which is desirable for energy- absorpuon -local’ and- lateral torsional
bucklmg of the beams must be avoided or’ ‘controlled.: Latera _;orswnal buckhng
is controlled by providing lateral restraints to the ‘compr
particular spacings, as stipulated in Table 6.8: 0 0 N,
Local buckling of webs or flanges of a beam is less s serious b cause. of he'-'

significant post-buckling strength of plate elements. However such buck]lng'-_ ; g
will lead to pinching of the hysteresis loops and hence reduces’ the ‘energy

dissipation, which is undesirable. There is also a tendency for the magnitude -
of the buckles to grow with each successive cycle, and the local distortion of
the section may increase the iateral deformation elsewhere and thereby réduce
the overall stability of the beam. Thus to prevent local buckling, the maximum
width to thickness ratios must satisfy the values given in Table 6.2,

Design of Columns

When plastic hinges are allowed to occur in columns, the ability for the columns
to dissipate encrgy in a stabic flexural mode depends on the ability against
lateral—torsional buckling and local buckling. The level of axial load is also
important as it can increase the tendency for lateral or local buckling, leading
to accelerated strength degradation. To control lateral-torsional buckling,
Butterworth and Spring [6.2] recommend lateral restraints to the flanges in the
plastic hinge zone L,, defined as the length over which the moment, M, exceeds
75%, of the plastic moment of the column M,,., allowing for the effects of axial
compression load. The spacing of the lateral restraints is the same as for the
beams given in Table 6.1, except for the definition of L,. However, if the
axial load, P, is less than 15% of the squash load P, (= A, f,), where A, is the
cross-sectional area and f, is the yield stress, then L, is the same as for beams.
To prevent local buckling, the width to thickness ratios must comply with the
limits given in Table 6.3.

Tal:lé 6.1, Spacing of lateral restraints for fully ductile members [6.1].

L, > 480, /f V* L, < 4801‘,/f;"2
Spacing of braces < 480r, /f 1% - one brace required
within length L, _ .
Spacing of brace : < T20r, /f 11 < 720r, /f 1/

adjacent to length L,

L, = Flange length where moment M exceeds 859/ of the plastic moment
of resistance of the beam.

r, = Radius of gyratmn about the minor axis.

f Yield stress in N/mm?.
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Table 6.2. Maximum width to thickness ratios for fully ductile

members [6.1].
Flanges and plates in compression b, fu? 120
. with one unstiffened edge {e.g. —r '
flanges of J or | sections)_ o ke ) o
Flanges of welded box sections in .. by fliz. 500
conipression —t’L
P S LY
Flanges of rectangular hollow N T 350
sections ——~———t" :
. E
Webs under flexural compression 4, f;:ir. T 1000
tW . . .
Webs under uniform compression . fx.'z 300
L, .
Notes -

(1) The symbols bl, by, dl, tr and ¢, are defined in Fig. 6.3.
{2) f, is the yield stress in N/mm?,

Fig. 6.3. Section nomenclature for Table 6.2,

The column must be checked for its load-carrying capacity, taking into
account the moment-axial load interaction. For I sections, using a linear
equation for moment-axial load interaction, the load-carrying capamty of the
columns at the support section is given by [6.2]:

(i) Bending about the major principal axis
§51.0f0r5<o.15 e

o Y
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Table 6.3. Maximum wxdth o thlckncss:__ P
ratios for fully ductﬂe colnmns {621

b - e
- (I column ﬁa:’:ge)_ L
T . B

? (box flange) 'g 560/(' ;rz
f EEI

4 web) < s00/y2E |

W

£, = Yield stress in N/mm?.

t; = Flange thickness.

t, = Web thickness,

d = Clear depth of column web,

b = Gutstand of flange beyond connection
to web (I columns), or clear distance
between sides of box columns.

P orossM ciotor Psoias R (6.2)
Py Mp 'Py

(i) Bending about the minor principal axis

M R U
— g t0for — <04 0 i 6.3)
Mp o Py ST
PNE UM P e
(—) 4085 —<10for—>04 = (6.4)
(iiiy Bending about both principal axes -~
M, +£J—"~510for£<015 )
M, M, p.y_.
P M, M, P S
S} 10for—>015 (6.6)
Yoo px Py Py

where M, M and M. M, den'dte'thé-'rni_bmé';:lt'éﬁdz'-pi _ tlcmomentabout the
x'and y axes. - oo S e

Design of Connections

The moment-resisting beam—column conuectlons of MRFs must accommodate
the inelastic response of the members. The normal practlce is for the connection
to remain elastic. Bolted connections may lead to pinched hysteresis 1oops as
asresult- of slippage. Thus all welded or bolted web and welded flange
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Fig. 64. Welded beam—column connection; (a) about strong axis, (b) about weak axis,

connections are preferred to ensure sustainable ductility of the frame. Typical
welded beam—column connections are shown in Fig, 6.4,

The forces acting on a beam—column connection are shown in Fig. 6.5. The
forces to be resisted are those arising when plastic hinges are formed in the
connection members; the variability of yield strength above the minimum value
and the over-strength due to strain hardening should be taken into account.
The typical deformation of the connection under failure load is shown in
Fig. 6.6. As shown in the figure, at the location of compression beam flanges,
the column web could cripple and at the locations of the tensmn beam ﬂanges
the column flange weld could fracture.

The crippling of column web due to compression from the beam ﬂange can
be avo1ded by ensurmg

-d_ < e I R ).

¥c

%

Earthquake eSl'St_?i::lfltf.Dé's.!ggl_'. of ‘Biiildings

Fig. 6.6. Deformation of beam--column connection.

where d, and t,,, are the depth and thickness of the column web and f,; is the
yield stress in N/mm?.

To prevent web yielding under compressive load from the beam flange, the
thickness of the column web must satisfy the following expression [6.3]:

- 158, T, Sv
_ T+ Sk 42T, + 2w foe _
where f,, is the beam yield stress and f,. the column yield stress. The other
symbols are defined in Fig. 6.7.
The flexural failure of the column flange due to tensile force from the beam
flange can be avoided if [6.4]

(6.8)

fw\'?
toe > 0.6(31,1},’) S {6.9)
where t,, is the thickness of the column flange, B, and T, are the breadth and
thickness of the beam flange, f,,, is the beam yield stress and f,, is the column
yield stress.
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Fig. 6.7. Parameters affecting the dispersion of load from the compression beam flange.

Fig. 6.8. Shear yielding of panel zone.

‘The panet zone of the connection may yield under shear, as shown in Fig. 6.8.
To prevent this mode of failure, the shear force acting in the panel zone, V,

must be less than the shear capacity of the panel V,y- Based on the von Mises
yield criterion

¥y =055 t..d, | | . (6.10)

and from eq.z'lilib:i‘iunﬁ of forces in Fig. 6.5

T SN (3 1)

where ¥, is the shear in the column M,, the moment in the column dy, the depth
of the beam d. the depth of the column, t,, the thickness of the column web
and f,, the yleid stress of the column web.

In order to satisfy the above criterion, doubler plates or diagonal stll’feners
may be used in the panel zone.

Howevcr as CBFs tend to be stiffer than MRFs a combina
systems is commonly used to res1st seismic loads Typ1ca :

of the braces pass through the beamwcolumn joints, whereas fo_r V bfacmg
the pair of braces meet at a point along the beam. In the case of Z bracing,

the braces in different bays slope in opposite directions in order to avoid the
large residual sway deflection that would occur if the braces were arranged-.-'-"

asymmetrically. :

If the braces are very slender and hence capable of temsile resistance only,
there will be undesirable impact type response as the braces straighten out from
the buckled zero load state to the tensile load-carrying state, Thus it is good
practice to provide braces that are capable of compressive as well as tensile
resistance.

The local, lateral-torsional buckling and tensile yielding of the braces reduce
the stiffness, strength and energy dissipation capacity of CBFs under cyclic
loading. The deflection ductility factors u [6.5] that can be achieved by CBFs
having negligible bending strength are given in Table 6.4. The value of u
decreases with increase in slenderness ratio of the brace. It also decreases with
pumbser of storeys, and not more than three storeys are recommended with this
type of construction. However, if the frame conrnections are made moment

Type A

Type B

Fig. 6.9, Types of concentric braced frame.
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'Tahle 64. Design values of g for CBFs having negligible bending
strength {6.5].

Bracing type No. of Bracing slenderness
(Fig. 6.9) storeys Xl 7 )
E o r V\250
<40 41-48 81-135 -
u # I
3 5.0 39 30
Type A 2 4.5 135 24
3 40 30 18
. 1 37 24 1.5
Type B 2 30 1.8 12
- 3 27 L5 10

resisting and with appropriate energy dissipating devices in the brace, CBFs
can be used for buildings with more than three storeys.

633 :Ecce.ntrically Braced Frame (EBF) :

In an eccentrically braced frame, the centre line of the brace is eccentric to the
beam—column joint, as shown in Fig. 6.10. The short segment of the beam
between the brace—bearn joint and the beam—column joint is called the active
link. The axial force in the brace is transmitted to the column through shear
and bending in the link. Under severe earthquake this link yields in shear to
dissipate energy and prevent brace buckling. Thus in the alternative types of
EBFs shown in Fig. 6.10, each brace is connected to at least one link which
can undergo large displacements to prevent brace buckling. Unlike CBFs, EBFs

can accommodate such architectural features as door and window openings
with less interference,

Elastic Behaviour

The influence of the eccentricity e, the length of the active link, on the elastic
stiffness is shown in Fig. 6.11 for different aspect ratios of the frame [6.6] and
a fixed set of sectional properties. As ¢/L varies from 0 to 1.0, the system changes
from CBF to MRF. It is seen that for e/L > 0.5, there is no benefit from the
brace: However, as e/L values decrease there is a substantial increase in stiffness:
Thus for higher stiffness, smaller values of /L are preferred.

For frames with wide bays, a singlé brace cannot be used since the length of
the brace becomes too long. In this case, split K bracing as shown in Fig. 6.11b
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Fig, 6.11, Influence of eccentricity on the elastic stiffness of EBFs.

could be used. The stiffness of this framing system is more sensitive to ¢/L ratio
than the one with a single brace.

Inelastic Behaviour

Because of larger shear forces, the link will yield in shear when it is short, F_igure
6.12 shows the collapse mechanism using rigid plastic theory. From simple
geometry, the frame deformation 8 is related to member deformation y by

. OL=veory=0/(e/L) | | | (6.12)
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Fig. 6.12. Collapse mechanism of one-storey EBFs,

Thus, the smaller the eccentricity, the larger will be the deformation of the
link or the ductility demand. Although a shorter link is preferred for stiffness,
in order to meet the ductility demand, the length of the link will be governed
by the available ductility in the link. Experimental testing shows that short
links which yield in shear (shear links), when provided with suitable stiffeners
to prevent web buckling, dissipate much more energy than longer ones with
moment hinges (moment links). A shear link is created by ensuring that the
webs of the link yield in shear, For this, the length of the link [6.7]

e< LOME/VE (6.13)

where
Mg = f(d~ 16~ 1)t | (6.142)
va— I gy, | | (6.14b)

P
\/_
where f, is the tensile yield stress, d and b the depth and breadth of the WF
beam, t; the thickness of the flange and t,, the thickness of the web.

To prevent web buckling in the shear links under cyclic loadings, web
stiffeners are required. The stiffeners should be placed 25¢,, to 30t, apart, It is
sufficient to provide stiffeners only on one side of the web and they need not
be welded to the top flange of the beam. The lateral restraints to prevent lateral
buckling of the shear link are provided by the transverse floor beams. Test
results indicate that properly stiffened shear links can sustain plastic shear
rotations of up to +0.1 radian.

Design of Other Components of EBFs

For [ailure mode control, other members of EBFS need to be suﬂimently
stronger than shear links. For this, when estimating the ultimate capacity of

Both full scale and scaled models of EBFs have Béen_testcd-
[68 6 10] The test results show the excel]ent performanc

floor damage could occur owing to the large shear deformatlon of the 1

6.3.4 Knee-Brace-Frame (KBF)

In a knee-brace-frame (KBF), one end of the diagonal brace is connected to a
knee anchor instead of the beam-column joint, as shown in Fig. 6.13. In this
system the diagonal brace provides the required stiffness during moderate
earthquakes, while the knee anchor yields in fiexure to dissipate energy in the
event of a severe earthquake, and hence prevents brace buckling or yielding of
beams or columns.

Elastic Stiffness

Through dimensional analysis, the elastic stiffness of KBFs may be expressed
as follows:

K _ f{fﬁ AL bR E} (6.15)
EI/H® L'I/H W H' B

where E is Young’s modulus of elasticity, A the cross-sectional area of the brace,
I the length of the brace and I, I, the second moment of area of column

D Ly I

I

T

Fig. 6.13. Knee-brace-frame.
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and knee, respectively. The parameter H/B represents the aspect ratio of the
frame, while b/h and h/H describe the orientation and length of the knee anchor.
The influence of various parameters on the stiffness of alternative types of KBF
is depicted in Fig. 6.14. The stiffness increases substantially with the brace area.
However, beyond a certain limit, any further increase in brace arca produces
only a small increase in stiffness. For a stiffer knee anchor, which corresponds
to a larger value of I, /I, the stiffness increases substantially,. When the length
of the knee is varied by changing the ratio h/H while keeping the orientation
of the knee anchor (b/h) constant, higher stiffness is obtained for a shorter knee.
The stiffness improves substantiaily for h/H values less than 0.3.

From Fig. 6.14 it is evident that KBFs with a knee anchor at the top or
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" Fig, 6.14. Effects of: (a) brace area, (b) moment of inertia of knee anchor, {c} length of knee anchor,
on the stiffness of KBFs.
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bottom end of the brace are superior to those with a knee anchor at both ends
of the brace.

Inelastic Behaviour of KBFs |

The amount of energy that can be dissipated by a KBF depends on the ductility
capacity of the knee anchor. In order to achieve sufficient ductility, local flange
buckling and laterai-torsional buckling of the knee anchor must be eliminated
or controlled. As lateral bracing of the kaee anchor is generally difficult, a
convenient solution is to use a square box section for the knee anchor. Because
of its high torsional rigidity and the fact that its lateral stifiness is not less than
its in-plane stiffness, there is no lateral—torsional buckling limit state for this
section shape. Through pseudo-dynamic testing of large-scale KBFs, it has been
found that hot rolled square box sections are suitable to give good ductile
performance to knee anchors when they are designed against local buckling
[6.11]. The results show that a well designed knee anchor can sustain a plastic
rotation of +0.1 radian.

When a KBF is subjected to lateral loading, each segment of the knee anchor,
namely segments between the beam-knee and knee-brace joints and the
column-knee and knee-brace joints, deforms approximately in an antisymmetric
manner. Based on this assumption, a bilinearized moment—rotation relationship
can be established for each segment of the knee anchor [6.12]. The elastic
stiffness (M/6) would be 6EI/L, where EI is the flexural rigidity and L the
length of the segment. The yield moment M, and the strain hardening coefficient
f are determined from Fig. 6.15, where M, is the plastic moment of the
section and o is-the strain hardening coefficient of the bjlinearized uniaxial
stress—strain relationship. Using this moment-rotation relationship, the in-
clastic response of KBFs can be determined. Analytical studies conducted for
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a seven-storey building [6.13] reveal that the KBF system is an attractive
alternative to the EBF system. It'has a clear advantage of greatly reduced floor
deformation as illustrated in Fig. 6.16. The envelopes of inelastic deformation
of the knee anchors and shear links of the building are depicted in Fig. 6.17.
In the case of KBF the damage sustained during an extreme earthquake is
confined to the knee anchor, which is a secondary member. Thus, a retrofitting
process is much simpler and economical than in the case of EBF where the
shear link is an integral part of the main structural member.

6.3.5 Applications

When adequate precautions are taken against premature local and lateral
buckling of members as well as failure of connections, steel structures are very
effective in resisting earthquakes owing to their lightness and inherent ductility
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Fig. 6.18. Plan view of Bank of America [6.14].

which provide sufficient reserves of strength at large displacements to absorb
energy. As such, a substantial proportion of high-rise buildings in earthquake-
prone regions are steel structures. In recent years, EBFs have become popular
structural systems for seismic design. To illustrate the advantages of the EBF
system, its application in the construction of the Bank of America in San Diego
[6.147 and the Getty Plaza in Los Angeles [6.15] are discussed in this section.

The plan of the Bank of America is shown in Fig. 6.18. The building has a
tower extending from a five-storey concrete base. The tower contains sixteen
floors of office space with the first office level at 12.5 m above the plaza level.
Thus the height of the tower is that of 2 19-storey building. In plan the tower
is 26 m wide and 58.5 m long. It consists of two cores about 6.5 m long at each
end. The office area contains only four columns.

This building is located is seismic zone 3 as defined in the Uniform Building
Code [6.16]. According to this code, any building over 50 m height must
incorporate ductile moment-resisting frames to resist lateral loads. Either
complete ductile frame systems or dual systems are permitted. The latter must
consist of braced frames capable of resisting 100%; of the code-specified lateral
forces and a system of completely independent ductile frames capable of
resisting not less than 25% of the code-specified lateral forces. For a complete
ductile moment frame solution, the close column spacing in the core areas could
perform efficiently as components in moment frames, however the wide column
spacing in the large area between the cores could not be used efficiently in the
moment-resisting frame owing to long beam spans. One could have moderate
beam spans above the first floor by introducing additional columns supported
by transfer girders at the first floor level. However, this arrangement would
lead to a soft first storey. As the performances of buildings with soft first storeys
have been found to be disastrous during past earthquakes, a complete moment
frame solution was not economicaily feasible. With the given building layout,
it was not possible to accommodate a dual system, that is, a ductile moment
frame and a braced frame. Thus, the EBF system was found to be best, as it
has the merits of both a ductile moment frame and a braced frame in a single
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Fig. 6.19. Arrangements of EBFs: (a) in plan, (b) in elevation {6.14].

system. It can provide adequate stiffness to withstand moderate earthquakes,
with small drift and ductility to absorb a great amount of energy during severe
earthquakes. .
The arrangements of EBFs are shown in Fig. 6.19. In each direction, eight
EBFs with shear links at each end of the brace are provided. The details of all
welded beam—brace connections are shown in Fig. 6.20. Structural tubes are
used for the braces. Details of shear link to column flange and shear link to
column web connections are shown in Fig. 6.21. All welded moment connections
are used. Web stiffeners are provided to prevent web buckling of shear links.
Since the shear link to column web connections are not as reliable as the shear
link to column flange connections, the link to column web connections are
placed at the lower ends of the braces, as links at lower ends are subjected t
less deformation. : S
The 36-storey Getty Plaza is chosen as the second example to illustrate the
effectiveness of the EBF system as one of the components of the dual system

for seismic design. The typical floor plan of this building is shown in Fig. 6.22.

If concentric braced frames were used for stiffness, their locations would be
restricted to the elevator core or other service areas in order to prevent any
interference with architectural planning, Since the widths of these areas were

Stitfener
Gusset .

Structural tobe

Fig. 6.20. Beam--brace connection.. -
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Fig, 6.21. Shear link to column connections: (a) shear link to column flange, (b) shear link to
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Fig, 6.22. Typical floor plan of Getty plaza [6.15].

small compared to the overall dimensions of the building, CBFs would need
to be slender and their stiffness would not be adequate to control the drift.
Thus additional framing such as a perimeter framed tube would be required to
meet the serviceability requirements at moderate excitation. Furthermore, for
severe excitation, as CBFs are not ductile they must be designed to resist IQO%
of the code-specified lateral loads while the independent ductile framed tube
must be designed to resist 25%, of the lateral loads. Thus the code penalizes
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CBFs by requiring them to carry the total seismic shear. The seismic shear
cannot be shared between the framed tube and CBFs. On the other hand if
EBFs are used instead of CBFs, as EBFs are ductilé, the seismic base shear can
be shared between EBFs and the framed tube. Using EBFs would not violate
the stiffness requirement because of their inherent rigidity. Thus in this project
the dual system comprising framed tube and EBFs were used. The EBFs were
located between adjacent elevator cores. Because of the wide spacing of the
columns, inverted K configuration was used with shear links at both ends of
the beam adjacent to the columns. The shear in EBF was determined using the
interaction between the framed tube which deforms in shear mode and the EBF
which deforms in flexural mode. As seen from Fig. 6.23, EBFs are supported
at the top by the framed tube, whereas the framed tube is supported by the
EBFs at the bottom. The EBFs need to be designed to carry only about 60%,
of the total base shear instead of 100%, as specified for the CBFs, Hence EBFs
in conjunction with the framed tube provide an economical solution in meeting
both the stiffness and ductility requirements. It should be noted that at the top,
the total shear carried by the framed tube exceeds the applied storey shear
because of interaction between the framed tube and the EBFs.

6.4 Concrete Structures

A properly designed, detailed and constructed reinforced concrete structilre can
withstand severe earthquakes because of its ductile behaviour. For a remforced
concrete sectlon the ductility capacity increases w1th

{a) increase in the content of compression steel

Earthquake-resistant Design of Buildings 137

{b) increase in the compressive strength of the concrete
(¢) increase in ultimate concrete strain,

and decreases with

(a) increase in the content of tensile steel
(b) increase in the yield strength of the steel
(c) increase of axial load.
The desired ductility capacity for a structure is achieved by a&optmg the
following principles: _
(a) under-reinforced sections are used in order to stabilize the ductility;

(b) beams are designed to yield while the columns remain elastic, so energy is
dissipated through plastic moment hinges in the beams of framed structures;

(c) in coupled shear walls, plastic hinges are located in the coupling beams so
that flexural cracking occurs at the base of the wall; o

(d) brittle failure due to shear is avoided by ensuring that the shear capacity
of the sections is larger than the shear at ultimate moment capacity,

(e) brittle failure due to inadequate bonding is prevented by avoiding high
stressed areas of concrete for anchoring and splicing reinforcement bars;

(f) core concrete in beams and columns is confined by stirrups or spiral
reinforcement, which increases the ultimate concrete strain in addition to
providing lateral support for the reinforcement; :

(g) concrete with a minimum strength of 20 N/mm? and remforcement w1th
yield stress of not more than 410 N/mm? are used.

Building codes, such as those of the American Concrete Instituté, ACI Com-
mittee 388 [6.17] and the New Zealand Standard Code of Practice [6.18],
provide recommendations on detailing the reinforced concrete elements for
seismic loading, A brief review of the recommendations for the design of various
clements is presented below. Further discussion on the subject is given by Park
and Paulay [6.19].

6.4.1 Moment-resisting Frames = ..
Beams

For beams to behave as compéct elements and to ensure effective transfer of
moments between beam and columns, the following restrictions are placed on
the size of beams:

(a) b not less than 250 mm

(b) b/h not less than 0.3

{c) b not greater than the column width plus 0.75h on each side '

(d) I/h not less than 4
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where b is the breadth, h the depth and [ the span of the beam.
The minimum bending moments in the beam are specified as follows.

1. the positive moment strength of the beam at the face of the column shall be
not less than one-half of the negative moment strength;

2. neither the negative nor the positive moment strength at any point in the
beam shall be less than one-quarter of the maximum moment at the face of
the column.

The upper and lower limits on longitudinal reinforcement content, as a

fraction of cross-sectional area of the beam (h x b), are 0.25 and L4/f,,

respectlvely, where ] is the yield strength in N/mm2. The minimum pemnssable
size for the longitudinal bar is 12 mm and there must be at least two bars in
both the top and the bottom of the section. The required amount of longitudinal
reinforcement is calculated using ultimate strength theory [6.19]. _

Transverse reinforcement must be provided to resist shear. The spacing of
the shear stirrups should not exceed d/2, where d is the cffective depth. The
minimum diameter for the stirrup is 10 mm.

The splices in the longitudinal reinforcement must be located in the zones of
low stress. Splices are not acceptable in the plastic zone nor in the column zone:
Where splices occur, the maximum spacing of the stirrups is d/4 or 100 mm.

Plastic Zone. Normally plastic hinges occur at the ends of the beam, and the
plastic zone is assumed to extend from the column face to a distance of twice
the beam depth. In order to provide adequate ductility in the plastic zone, the
area of the compressional steel should be not less than 50%, of the tensile steel.

Furthermore, the tensile reinforcement ratio, p, should not exceed values gwcn

by [6. 18}

max

1 +017(fc/7 3)( |
100

p .
Paax = 1/,

where p’ is the ratio of compressional reinforcements and f7 the concrete
compressive strength.

A minimum of two 16 mm bars should be provided in both the top and
bottom faces in the plastic zone. In order to ensure confinement of the concrete,
the stirrup spacing in the plastic zone should not exceed d/4, six times the
diameter of the largest main bar or 150 mm. The first stirrup tie must be W:thm
150 mm of the column face.

A typical arrangement of reinforcement in beams is shown in Fig, 6.24. .

Columns

To ensure plastic hinges cannot form in the columns, the ultimate moment
strength of the columns should be higher than that of beams framing into
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Fig. 6.24. Typical arrangement of beam reinforcements.

the columns along each principal plane of the structure. However, if seismic
loading occurs in a general direction, yielding can occur in the column.

The recommended minimum size of the column is 300 mm x 300 mm [6.17].
The minimum content of the longitudinal steel shouid be 1% of cross sectional
area. The maximum content should not be more than 6% for grade 300 steel
(f, = 300 N/mm?). The percentage could be increased to 8% at the locations
of splices, which are limited to the middle halif of the column. The corresponding
percentages for grade 400 steel ( f, = 400 N/mm?) are 4.5% and 6%, respectively.

The minimum size of the longitudinal bar is 12 mm. In the plastic zone, the
longitudinal bars should: not be spaced more than 200 mm apart, and the
smallest bar diameter should not be less than two-thirds of the largest bar
diameter in any one row.: : -

In the potential plastic zones, when splral or mrcuIar hoops are used for
confinement of concrete, the ratio between the volume of confining steel and
volume of core, denoted as p,, is given by

ps =011 /fm . (6.17)

where £ is the concrete compressive strength and f,,, the yield strength of the
stirrups, The total cross-sectional area, however, must not be less than a
specified minimum value [6.17]. The spacing of the stirrups in the vertical
direction should not be greater than one-quarter of the least column dimension
or 100 mm. In plan, the spacing of the stirrup legs or cross ties should not
exceed 350 mm. The minimum sizes for the stirrups and cross ties are 10 mm
and 8 mm, respectively. The distance over which the confining steel is required
is given by the greatcr of column depth, one-sixth of the clear column height
or 450 mm. :

Transverse remforcements are provided in the form of multiple stirrups or
stirrups and cross ties, positively anchored in order to restrain the longitudinal
column bars and to' give satisfactory confinement to the concrete. Spiral
reinforcement is almost twice as efficient as rectangular hoops. To prevent
unwinding of the spiral réinforcement, in the event of spalling of the concrete,
it must be positively anchored. Typical reinforcement details of columns are
shown in Figs. 6.25 and 6.26.
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Beam—Column Joint

The principal modes of failure of beam—column joints are -

(a) shear failure =
(b) anchorage failure of beam bars anchored in the ;omt
(c) bond failure of beam or column bars passing through the joint
For the joint to be strong enough to withstand the yielding of connectmg

beams or columns (occasionally), it is recommended that the confinement
reinforcement should continue into the core of the joint and there should

be sufficient reinforcement to carry the ultimate shear transmitted by the

beams.
The shear strength of the joint is determined approximately'using' the shear
panel ana_logy. From Fig. 6.26, the horizontal shear ih_the' connection is given by

Vi=(As+ A7 - V. o (6a8)
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Fig. 6.27. Foroe.s ina beam—cohirrin jbint: (a) equiliBrium of forces around the joint, (b} internal
steel and concrete forces at the joint.

where V, is the shear in the column above the joint, f7 is the factored yield
strength which allows for over-strength and A,,, A,, are the areas of tensile
reinforcement.

. The shear is resisted by the compressive strut action of concrete and tension
in the horizontal stirrups, which must cross the failure plane indicated in Fig.
6.27. The areas of stirrups may be calculated conservatively as

Ag=Vif, (6.19)

In order to avoid compressmn strut fallure the shear stresses in the joint
need to be limited to 240Aj\/: (N/mm?), where A ; is the cross-sectional area
of the joint and [, the compressive strength of concrete.

The anchorage failure of the beam bars in the external joint is avoided by
providing either sufficient anchorage length within the joint or beam stubs, so
that the longitudinal reinforcements may be anchored outside the core of the
joint. Bond failure of beam or column bars is avoided by limiting the diameter
of the bars,

6 4 2 Shear Wali Structures

Shear walls are excellent elements for selsmlc-rcswtant structures provided they
are properly designed and detailed for strength and ductility. When shear walls
are'used together with rigid frames, the rigidity of the wall reduces the deflection
demands on the other parts of the structure, such as column-beam joints.

. Figure 6.28 depicts the principal modes of failure of a shear wall. The
possibility of failure in any of these modes reduces with increase in axial load;
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{a} b (c}

Fig, 6.28. Failure modes of cantilever shear wall: (a) flexural failure, (b) shear failure, () sliding
failure.

however if the axial load is increased beyond a certain limit, the accompanied
reduction in ductility may offset the increase in- strength.

When the height of the wall is greater than twice the depth of the wall, the
bending. strength is calculated in the same way as the column provided the
reinforcements are concentrated near the extreme fibres. It is recommended that
much of the flexural steel of the wall be placed at the extreme fibres with a
minimum of 0.25% of the vertical bars in the remainder of the wall, in order
to enhance the curvature ductility of the wall,

The hinge zone at the base of the wall is taken as the length on plan or
one-sixth of the total height, but not more than twice the length on plan [6.18].

In the hinge zone, the main reinforcements need to be restrained in the same

manner as the columns. In the ultimate failure state (Fig. 6.28a), the tension
steel yields, resulting in large ductility and energy dissipation.

A shear wall with a smalil aspect ratio could fail in shear (Fig. 6.28b) with
diagonal cracks. If the horizontal reinforcement content is small, diagonal
tension failure -occurs; whereas if the vertical reinforcement is inadequate,
diagonal compression failure occurs. Thus adequate shear strength for the wall
is provided by following the rules for columns.

In the sliding shear failure (Fig. 6.28¢), the shear wall moves horxzontally
Vertical reinforcements uniformly spaced in the wall and diagonal reinforce-
ments are effective in preventing this mode of failure,

6.4.3 Coupled Shear Walls

In the case of coupled shear walls (Fig. 6.29), failure will be ébncéntraf'e'd'éround
the openings and at the base. The coupling beams are subjected to a high

ductility demand and they could fail in diagonal tension if they are too stiff.

The coupled walls are designed in such a way that plastic hinges first occur
in the coupling beams, followed by hinges at the base of ‘each wall: When the
depth of the coupling beam is greater than the clear span, it is difficult to achieve
sufficient ductility with the normal reinforcement arrangement. In such cases

the recommended arrangement is given by Park and Paulay [6.197 and is shown.
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in Fig. 6.30. The area of steel in each arm: of ..t..hf_: X .éQﬁﬁgﬁfﬁ_'tifqn:__is. given by

2 sina _ _
where « is the inclination of each arm and ¥ the uItlmate_ shear The uItunate
moment of resistance is then given by i : S

z
M,=V,2
2

'“@m

'°@m-

a

wherc l is the clear span of the coupled beam. 'I‘he above remforcement 1§
found to give far superior ductility than the conventlonal one.:
- Many papers on the seismic design of concrete structurcs ar avallable For
example, seismic design of concrete tubular systems i’ given by chngar and
Igbal [6.20]. Fintel and Ghosh [6.21] have discussed: ‘what modifications with
regard to strength and inelastic deformability would ‘be requu‘ed when 2
building proportioned to resist wind load is subjected to varymg levels of
earthquake intensities. A




144

Vibration of Buildings to Wind and Earthquake Loads

References

6.1,

6.2,

6.3,
64,

6.5.

6.6,

6.7.
6.8.
6.9,

6.10,

6.11.
6.12,

6.13,
6.14,
6.15.
6.16.
6.17.

6.18.

6.19.

6.20,

6.21.

Walpole W R and Butcher G W, Beam design, seismic design of steel structures study group,
section C, Bulletin of the New Zealand National Society for Earthquake Engineering 1985; 18:
337-343.

Butterworth I W and Spring K C F, Column design, seismic design of steel structures study
group, section I, Bulletin of the New Zealand National Society for Earthquake Engineering
1985; 18: 345-350.

Witeveen ] H, Stark J W B, Bijlaard F 8 K and Zoetemeizer P, Welded and bolted beam .

to column connections, Jowrnal of Structural Division, ASCE 1982; 108: 433-455.

Walpole W R, Beam—column joints, seismic design of steel structures study group, section H,

Bulletin of the New Zealand National Society for Earthquake Engineering 1985; 18: 369-380.

Walpole W R, Concentrically braced frames, seismic design of steel structures study group,

section E, Bulletin of the New Zealand National Society for Earthquake Engineering 1985; 18;

351-354.

Hjelmstad K D and Popov E P, Seismic Behaviour of Active Beam Links in Eccemncally

Braced Frames, Report No, UBC/EERC-83/15, Earthquake Engmecnng Research Center,

University of California, Berkeley, 1983,

Kasai K and Popov E P, General behaviour of WF steel shear fink beams, Journal of

Structural Division, ASCE 1986; 112: 362--382,

Balendra T, Lam K Y, Liaw C Y and Lee S L, Behaviour of eccentrically braced frame by

pseudo-dynamic test, Journal of Structural Division, ASCE 1987; 113: 673-688.

Whittaker A S, Uang C and Bertero V V, Earthquake Simulation Tests and Associated Studies

of a .3 Scale Model of a Six-storey Eccentrically Braced Steel Structure, Report No.

UBC/EERC-87/02, University of Califoinia, Berkeléy, 1987

Nishiyama |, Midorikawa M and Yamanouchi H, Inelastic behaviour of full scale eccantncally
K-braced steel building, Proceedings of the 9th World Conference on Earthquake Engmeermg

1988; 4: 261-266.

Balendra T, Sam M T and Liaw C Y, Dlagonal brace with ductile knee anchor for aseismic

steel frame, Earthquake Engineering and Structural Dynamics 1990; 19: 847-858,

Balendra T, Sam M T, Liaw C Y and Lee S L, Preliminary studies into the behaviour of

knee braced {rames subjécted to seismic loading, Journal of Engineering Structures 1991; 13;

6774,

Sam M T, A new Knee-Brace-Frame system for seismic resistant steel buildings, PhID thesis,

Nationat University of Singapore, 1952,

Libby J R, Eccentrically braced frame construction — a case history, Engineering Journal,

American Institute of Steel Construction 1981; 4: 149153,

Wang C, Structural system — Getty Plaza tower, Engmeenng .Iournal American Instttute of

Steel Construction 1984; 4: 49-359,

Uniform Building Code, International Conference of Building Officials, 1978 edn, Whittier,

California, 1978.

ACI Committee 318, Building Code Requirements for Reinforced Concrete (ACE 318-83),

American Concrete Institute, Detroit, 1983,

New Zealand Standard Code of Practice for the Design of Concrete Structires (NZS 3101

1982), Standard Association of New Zealand, 1982,

Park R and Paulay T, Reinforced Concrete Structures, Wiley, New York, 1975,

Iyengar H and Igbal M, Seismic design of composite tubular buildings. In: Beedle L s (edltor),

Advances in Tall Buildings, Council of Tall Buildings and Urban Habrtat Van Nostrand

Reinhold, New York, 1986, pp 133148, :

Fintel M and Ghosh 5 K, Earthquake resistance of buildings desxgncd for wind. In: Becd]e

L 8 (editor), Advances in Tall Buildings, Council of Tall Bufldmgs and Urban Habitat, Van

Nostrand Reinhold, New York, 1986, pp 461-472.

Subject Index

Acceleration 2

Acceleration response spectra 100—10!
Accelerographs, strong monon 98
Active links 126

Aerodynamic admittance function 59-60, 62 .

Aeroelastic models 87-95
with coupled modes. 93-95

with linear mode (semi-rigid modcls) 88—9I

with shear—flexure mode 91-93
Aeroclasticity 47
Along-wind motion 58
Along-wind response. 58-70. .. .
American Concrete Institute 137
Applied loading, frequency of 35
Arbitrary loading, response to 7
Atmospheric boundary layer 84 .
Autocorrelation function 51
Axial deformation. 40 . -

Base shear 103, 108
amplification of 107 -

Base torque 79

Beam elements 38

Beam—column connections, moment—resmtmg o

121-123, 140-141

Beams 137-138

coupling 143

design of 119

lateral torsional buckling of 19

local buckling of 119

reinforcements for 139-140
Bilinear hysteretic models 111
Body waves 97-98

P (compressional) 97

§ 97
Bolted connections 121-122 .
Boundary layer 47-49 ..
Boundary-layer wind tunnels 83
Brace buckling 128

prevention of 126 :
Braced frames 28-29, 109, 125—133 136
Buckling - .

brace, prcvcnt:on of 126 .

flange, prevention of 131

of knee-brace frames 118 .
 lateral-torsional 119, 131

local, prevention of 119, 131

web, prevention of 128

Buffeting 58
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Compressional waves 97 .
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Damping coefficient 3, 21
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Drag coefficient 55
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Dual systems 133-134
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importance of 115
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Energy dissipation capacity 116
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Finite elements 38
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Flexural stiffness 21, 23
Floor slabs 27
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Forced vibration responses 17-20, 24-26
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Frames
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High-frequency force balance model 95
Hinges

plastic 137, 143
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plastic moment 137
Horizontal configurations 117
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Inelastic deformation 104, 132
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Lift force 54, 56-58 : Phase angle 6, 14 - S :

Linear acceleration method 113 Pinching, of hysteresis lodps: Il9 121

Linear sway mode 88 Plane stress membrane clements 38-39, 41/

Line-like structures 60-63 Plane of symmeftry 41
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Mode shape matrix 17 of single degree of freedom 99-101

Mode shapes 146 . - . Restoring-force displacement characteristics 111

orthogonality of 15-16
Mode superposition method 18
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Moment—rotation relat;onslnp 131 Seismic design 115

Moment-resisting frames 32, 108, 118-124, Seismic response factor 108
133, 137141 Seismic waves 97, 107

Moment-resisting joints 29-30- Semi-rigid models 88-91
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applications of 132-136
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Torsional response 78-80
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cross-spectrum of 53-54
integral scales of 51-52
longitudinal 54
spectrum of 53
Turbulence intensities 50, 57, 83
Turbulent velocity 51
spectral density of 58, 63
Turbulent winds, frequency content of 1

Uniform Building Code 133

V bracing 125

Velocity spectra 53

Vertical lumping 44
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