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Preface

In modern engineering, as a basis of construction, arches have a diverse range of

applications. Today the theory of arches has reached a level that is suitable for most

engineering applications. Many methods pertaining to arch analysis can be found in

scientific literature. However, most of this material is published in highly

specialized journals, obscure manuals, and inaccessible books. This is not

surprising, as the intensive development of arch theory, particularly stability and

vibration have mostly occurred in the 1940s to the 1960s. Therefore, most engineers

lack the opportunity to utilize these developments in their practice.

The author has committed to the goal of presenting a book which encompasses

essential and tested methods on fundamental methods of arch analysis and equally

important problems.

The objective of the Book is to provide to readers with detailed procedures for analysis of
the strength, stability, and vibration of various types of arched structures, using exact
analytical methods of classical Structural Analysis.

In 2004, professor L.A. Godoy published the article “Arches: A Neglected Topic
in Structural Analysis Courses.” This in-depth investigation highlights a deep rift

between the modern level of development of arch theory and the level of presenta-

tion of this theory in existing material on structural analysis.

In 2009, the author of this book, with co-author O. Lebed published the textbook

“Advanced Methods of Structural Analysis” (Springer), in which arch theory is

presented in a much greater depth and volume than in existing textbooks. However,

the issue of producing a single book which covers both general and specialized

problems of arches remained unsolved. The book presented here sheds light on

issues of strength, stability, and vibrations, as well as special problems of arches

and arched structures.

In this book special attention is directed toward the discussion of fundamental

properties of structures. An engineer who is armed with fundamental knowledge

and means of computation is essentially set to succeed in modern day engineering.

Solutions of problems of strength, stability, and vibrations of arches in most cases
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are broken down to basic formulas which can be easily applied to engineering

practice.

This book is based on the author’s experience as a teacher and consultant in

structural mechanics. It is intended for senior undergraduate students in structural

engineering and for postgraduate students who are concerned with different pro-

blems of arches structures. The book will be a useful reference for engineers in the

structural industry.

Vancouver, Canada Igor A. Karnovsky
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Distribution of Material in the Book

This book contains an introduction, four parts (nine chapters), and an appendix.

The first part “Strength” contains three chapters. Chapter 1 is devoted to

fundamental methods of determining displacement of elastic structures in general

accompanied by examples specifically for arches.

Chapter 2 covers the analysis of three-hinged arches, while analysis of redundant

arches is considered in Chap. 3; in these chapters a special attention is dedicated to

the analysis of arched structures using influence lines.

Second part “Stability” contains two chapters. Chapter 4 provides analytical

methods of the stability of arches. These methods are based on the integration of

differential equations.

Chapter 5 presents Smirnov’s matrix method and approximate method. Approx-

imate method is based on the approximation of the arch by straight members with

subsequent application of the precise displacement method in canonical form.

The third part, “Vibration” contains two chapters. Chapter 6 deals with compu-

tation of eigenvalues and eigenfunctions for arches. For analysis of the circular

uniform arch, Lamb’s differential equation is used; for analysis of parabolic

uniform arch the Rabinovich’s model is applied. The frequency of vibration for

arches with different ratio “rise/span” of an arch are presented on the basis of this

model.

Chapter 7 presents forced vibrations of arches.

The fourth part of the book, “Special Topics” holds the goal of presenting

introductory information regarding problems which until now have only been

discussed in specialized literature. Chapter 8 contains the static nonlinear problems.

They are plastic analysis of the arches and arched structures with one-sided con-

straints. Chapter 9 is devoted to dynamical stability of arches, and dynamics of

arched structures subjected to moving inertial load.

Finally, the appendix contains the fundamental tabulated data essential for

engineering practice involving arches.

Sections 2.1, 2.2, 2.4, and 2.6 were written by Olga Lebed.
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Introduction

Arches and arched structures have a wide range of uses in bridges, arched dams and

in industrial, commercial, and recreational buildings. They represent the primary

structural components of important and expensive structures, many of which are

unique. Current trends in architecture heavily rely on arched building components

due to their strengths and architectural appeal.

Complex structural analysis of arches is related to the analysis of the arches

strength, stability, and vibration. This type of multidimensional analysis aims at

ensuring the proper functionality of an arch as one of the fundamental structural

elements.

Terminology

We start our consideration from terminology for a bridge arch (Fig. 1a). The arch

is supported by abutments. The heels and crown are the lowest and highest points

of the arch, respectively; supports may be rolled, pinned, or fixed. Horizontal

distance between two heels is span l, a vertical distance between heels line and

crown is rise f. Extrados is the top outer surface of the arch. Intrados is the lower

inner surface of the arch. A body of the arch itself may be solid or with webbed

members.

As a bridge trusses, the bridge arches are connected using arch bracing.

All structural members over the arch are called overarched construction. Deck

and arch are connected by vertical members called posts. If the roadway is located

below an arch, then vertical members are called hangers. If movement of vehicles is

at the intermediate level, then a loaded deck is partially connected with arch by

poles and partially by hangers. The posts are compressed, while the hangers are

extended.

For structural analysis, a real structure has to be presented in the idealized and

simplified form using the axial line of the structural components. For this, a so-

xix



called design diagram of the real structure is used. Design diagram is a critically

important concept of structural analysis. Design diagram of a real structure reflects

the most important and primary features of the structure such as types of members,

types of supports, types of joints, while some features of secondary importance

(shapes of cross-sections of members, existence of local reinforcements or holes,

size of supports and joints, etc.) are ignored.

Few general rules of representing a real structure by its design diagram are:

l A structure is presented as a set of simple structural members
l Real supports are replaced by their idealized supports
l Any connection between members of a structure are replaced by idealized joints
l Cross-section of any member is characterized by its area or/and moment of

inertia

It is obvious that a real structure may be represented using different design

diagrams.

An arch with overarched members and its design diagram is shown in Fig. 1b.

Design diagram also contains information about the shape of the neutral line of the

arch. Usually this shape is given by the expression y ¼ f ðxÞ.
Note that posts or hangers are connected to the arch itself by means of hinges.

In bridge construction the arches are subdivided into deck-bridge arch (Fig. 1),

through-bridge arch, and arch with deck at some intermediate level (Fig. 2).

Also, double-deck bridges exist with the lower deck designed for a railway, and

the upper deck is utilized for a roadway.

x 

y 

y=f(x)

l 

f 

A B 

C 

b

Arch bracing Arch 

Span 

Deck loads 
Arch post 

Abutment 

Roadway

Crown 

Rise 
Extrados  

Intrados  

Heel
Crown depth 

a

Plan 

Fig. 1 (a, b) Components of an arch bridge and design diagrams for a deck-arch bridge
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Based on their design, arches are divided into hingeless (arch with fixed

ends), one-hinged, two-hinged, and three-hinged ones (Fig. 3a–d). All arches

presented in Fig. 3, except for the three-hinged arch (d), are statically indeterminate

(redundant) ones.

A tie is an additional member which allows us to reinforce an arch. A single tie

may be installed on the level of the supports (Fig. 4a), or elevated (b). The tie may

also be complex (c). Prestressed tie allows us to control the internal forces in the

arch itself.

The aches may be constructed with supports at different elevations. In this case

they are called askew arches.

Peculiarities of Arch Behavior

Since posts have hinges at the ends (Fig. 2), then only axial force arises in them.

If the posts with fixed ends are thin elements with small flexural stiffness, then they

cannot perceive and transmit the bending moments. In both cases, the loads from

deck are transferred through posts (hangers) on the arch as concentrated forces.

Fig. 2 Design diagrams of the through-bridge arch and arch with deck at intermediate level

b

c d

a

Fig. 3 Design diagrams of arches: (a) hingeless arch; (b) two-hinged arch; (c) one-hinged arch;

(d) three-hinged arch

tie

a b c
Elevated

tie
Complex

tie

Fig. 4 Arches with tie
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The fundamental feature of an arched structure is that horizontal reactions

appear even if the structure is subjected to vertical load only. These horizontal

reactions HA ¼ HB ¼ H are called a thrust (Fig. 5). If structure has a curvilinear

axis but thrust does not exist then this structure cannot be treated as an arch. The

presence of thrust leads to a fundamental difference in behavior between arches and

beam – the bendingmoments in arches are smaller than in beams of the same span and

loads. Advantages of arches over beams increase as the length of a span increases.

Presence of thrust demands reinforcement of the part of a structure which is

subjected to horizontal force.

However, the thrust may be absorbed by a tie; with this, supports of the arch are

only subjected to vertical forces.

In addition to the bending moments and shear forces that arise in beams, axial

compressive forces are also present in arches. These forces may cause a loss of

stability of the arch.

There are advantages and disadvantages of each type of arches. Different design

diagrams of the arches may be compared, taking into account different criteria.

These include differences in their deformability, internal forces, critical loads,

frequencies of vibration, sensitivity of arches to settling of supports, temperature

changes, fabrication errors, etc.

Three-hinged arches have less rigidity than two-hinged and hingeless arches.

Breaks in elastic curve over a hinge leads to additional forces in the cases where a

moving load is present. In the cases when a structure is built on weak soil, three-

hinged arches are preferred over hingeless arches since additional stresses caused

by the settling of supports do not arise in these structures [Bro99], [Sch80].

Figure 6 shows characteristic distribution of the maximum bending moments in

different arches in the presence of a moving load; each arch (diagrams a–d) has a

unique bending moment (diagram e) [Kis60]. It is evident that a one-hinged arch

(curve c) is the least efficient in regards to bending moment at its supports. In

hingeless arches (curve d), the distribution of bending moment is most favorable

because of its smoothness.

In the three-hinged arch (a), internal forces arise as a result of external load only.

The rest of the arches (b–d) are sensitive to the displacements of supports, changes in

temperature, and errors of fabrication. For masonry or concrete arches, material

shrinkage should be taken into account, since this property of material leads to

additional stresses.

A B

P

VA VB

HBHA

Fig. 5 Reactions of the arch
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Initial Data for Structural Analysis

A comprehensive structural analysis includes the strength, stability, and vibration

analysis. Strength analysis (static analysis) deals with the determination of internal

forces and deflections of the arch due to action of static loads only. Stability

analysis deals with the determination of loads which leads new forms of equilibri-

um (the loss of stability) of the arch. Vibration analysis considers determination of

frequencies of free vibration of arch, as well as determination of internal forces and

displacements of the arch subjected to specific external disturbing loads.

For analysis of arches, the following data have to be clearly outlined and

specified: type of arch (hingeless, two-hinged, etc.); its shape (circle, parabolic,

etc.); its dimensions (span and rise); location of supports (same or different

elevation); presence of the tie, its type (single or complex), and its location. In

the case of an arched bridge, it is necessary to show location of a loaded deck

(Figs. 1–2), location of the hangers (or/and posts), and ways of theirs connections

with arch itself and with loaded deck.

Computation of internal forces for two-hinged and hingeless arches requires

knowing the law of change of cross-sectional area A(x) and corresponding moment

of inertia I(x), along the axis of the arch. For a tie it is necessary to present the ratio
EIarch/EAtie. For computation of deflections for all types of arches it is necessary to

know A(x) and EI(x).

b

c

d

a

a

c

b

d

e

Fig. 6 (a–d) Types of arches; (e) approximate distribution of maximum bending moments across

the span of different types of arches. In Fig. 6e design diagram as two-hinged arch is shown

arbitrary
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Assumptions

Some of the common assumptions made in this book include the following:

1. Material of the arch obeys Hooke’s law (physically linear statement)

2. Deflections of the arches are small compared with the span of the arch (geomet-

rically linear statement). The cases of nonlinear statement are specifically

mentioned.

3. All constraints, which are introduced into the arched structure are two-sided, i.e.,

each constraint prevents displacements in two directions. The case of one-sided

constraints is specifically mentioned.

4. In the case of elastic supports the relationship between deflection of constraint

and corresponding reaction is linear.

5. The load is applied in the longitudinal plane of symmetry of the arch. The case of

out-of-plane loading is specifically mentioned.

Besides the above assumptions, supplementary assumptions are introduced in

corresponding parts of the book.

Some remarks related to structural analysis of the arches:

1. Since arches are represented by curvilinear rods, then their analysis, strictly

speaking, should be performed using the theory of the curvilinear rods.

However, curvature of the arches used in the construction is small (R/h>10),

therefore, the curvature of the arch may be neglected and deflections of the arch

are assumed to be calculated as for straight rods [Kis60].

2. The superposition principle is valid under assumptions 1–4. In the case of one-

sided constraints the superposition principle requires special treatment.

Shape of the Arches

As it is shown below, distribution of internal forces in arches depends on the shape

of the central line of an arch. According to their shapes, arches are divided into the

circular arch, parabolic arch, etc. Equation of the central line and some necessary

formulae for circular and parabolic arches are presented below. For both cases,

origin of coordinate axis is located at point A as shown in Fig. 7.

Circular arch. Ordinate y of any point of the central line of the circular arch is

calculated by the formula

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ; R ¼ f

2
þ l2

8f
; (1Þ

where x is the abscissa of the same point of the central line of the arch; R is the

radius of curvature of the arch; f and l are the rise and span of the arch.
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The angle ’ between the tangent to the center line of the arch at point (x, y) and
horizontal axis is determined as follows:

sin ’ ¼ ðl� 2xÞ 1

2R
; cos ’ ¼ ðyþ R� f Þ 1

R
: (2Þ

Parabolic arch.Ordinate y of any point of the central line of the parabolic arch is

y ¼ 4fxðl� xÞ 1
l2
: (3Þ

Trigonometric functions of the angle between the tangent to the center line of the

arch at point (x, y) and a horizontal axis are as follows:

tan ’ ¼ dy

dx
¼ 4f

l2
l� 2xð Þ; cos ’ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 ’
p ;

sin ’ ¼ cos ’� tan ’: (3aÞ

For the left half-arch the functions sin ’ > 0; cos ’ > 0, and for the right half-

arch the functions sin ’ < 0 and cos ’ > 0.

Length S of half-axis of symmetrical arch and length of the axis of the arch

Sk from the origin (point A) to an arbitrary point k with coordinates xk ¼ xkl,
yk ¼ �kl are

S ¼ l

4
sec ’0 þ

1

4m
ln 4mþ sec ’0ð Þ

� �
;

Sk ¼ S� l

16m

tan ’k

cos ’k

þ ln
1þ sin ’k

cos ’k

� �
: (4Þ

where ’0 is a slope at the support A; parameter m ¼ f l= .

xA

C 

l

f

B

y

HA HB 

RA RB

x

y= f(x)
Ix

IC 

y

j

Fig. 7 Design diagram of two-hinged arch
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Catenary arch. Ordinate y of any point of the central line of the catenary arch

as a function of load may be calculated by the formula which is presented in

Sect. 2.3.2.

More expressions y(x) for different arch shapes are presented in Tables A.1–A.5
[Kar01].

Strictly speaking, the concept of arch shape includes not only equation of central

line as shown above, but also the law of flexural rigidity along the axis of the arch

[Kis60]. The flexural rigidity EI(x) may be constant or variable along the axis of the

arch depending on expected distribution of internal forces, requirements of a

constructive nature and asthetic considerations. Usually the variable rigidity of

the arch EI(x) expresses in terms of rigidity of the arch at crown, EIC, where E is

a modulus of elasticity, IC is a moment of inertia of a cross section at the crown C of

an arch. This will be considered in more details in Sect. 3.1.

Loads

Arches, as main structural components, are subject to a variety of loads depending

on the purpose of the arch and conditions of its operation.

For arches in public and industrial buildings the main loads are deadweight, live-

load, and snow. These loads act in the longitudinal plane of symmetry of the arch

and lead to in-plane bending. A significant load for arched structures is a wind

pressure. The wind leads to the positive and negative loads onto the arch.

A simplified scheme of the wind pressure is shown in Fig. 8.

In the case of a tall arch, the in-plane wind loads leads to significant internal

forces in the arch. If a tall arch has a small own weight, then the formation of the

negative reactions is possible; this dangerous phenomenon leads to the separation

of the arch from abutment.

Pressure of the wind, which is directed perpendicular to the plane of the arch,

leads to out-of-plane bending of the arch. These loads are absorbed by bracing

between arches.

A dangerous phenomenon is observed in the case of an arched cover with open

sides. Wind pressure, which is parallel to an open aperture, flows around them and

creates a vacuum inside. As a result, the positive pressure onto the arch increases

and suction decreases.

Positive
pressure

Negative pressure (suction)

Wind

Fig. 8 Pressure of the wind on the surface of the arch
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For arched bridges the main loads, which lead to the in-plane bending of the

arch, are the following: deadweight, vertical loads from vehicles, and horizontal

load caused by their longitudinal deceleration. Also, in the case of a bridge with

curvature in the horizontal plane, one should take into account horizontal loads,

which are caused by moving vehicles in a curvilinear trajectory.

The settlement of supports may induce in-plane and out-of-plane bending. Out-

of-plane bending also arises by horizontal out-of-plane wind pressure, and seismic

loads. Asymmetric location of the load with respect to the longitudinal plane of

symmetry also leads to out-of-plane bending of the arch.

Some types of loads have a distinctly dynamic nature. Among them are seismic

loads, wind gusts, moving inertial loads and their deceleration, impacts of wheels

on the joints of rails on railway bridges. In the case of road bridges one should take

into account the roughness of their surface.

If the shell is reinforced with ribs and is immersed into a liquid, then the pressure

on the shell is transmitted on ribs and each rib can be considered as an arch due to a

uniformly distributed radial load.

Determination of loads on the arch and the consideration of all possible

combinations of loads is an important part of engineering analysis
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Chapter 1

Deflections of Elastic Structures

This chapter describes some effective methods for computing different types of

deflections of deformable structures. The structure may be subjected to different

actions, such as variety of external loads, change of temperature, settlements of

supports, and errors of fabrication. Advantages and disadvantages of each method

and field of their effective application are discussed. Much attention is given to a

graph multiplication method which is a most effective method for bending

structures. Fundamental properties of deformable structures are described by recip-

rocal theorems.

1.1 General

Any load which acts on the structure leads to its deformation. It means that a

structure changes its shape, the points of the structure displace, and relative position

of separate points of a structure changes. There are other reasons of the deformation

of structures. Among them is a settlement of supports, change of temperature,

etc. Large displacements could lead to disruption of a structure functioning

properly and even its collapse. Therefore, an existing Building Codes establish

limit deflections for different engineering structures. Ability to compute deflections

is necessary for the estimation of rigidity of a structure, for comparison of theoreti-

cal and actual deflections of a structure, as well as theoretical and allowable

deflections. Besides that, computation of deflections is an important part of analysis

of any statically indeterminate structure. Computation of deflections is also an

integral part of a dynamical analysis of the structures. Thus, the computation of

deflections of deformable structures caused by different reasons is a very important

problem of structural analysis.

Outstanding scientists devoted their investigations to the problem of calculation

of displacements [Tim53]. Among them are Bernoulli, Euler, Clapeyron,

Castigliano, Maxwell, Mohr, and others. They proposed a number of in-depth and

ingenious ideas for the solution of this problem. At present, methods for

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
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computation of the displacements are developed with sufficient completeness and

commonness for engineering purposes and are brought to elegant simplicity and

perfection.

The deformed shape of a bend structure is defined by transversal displacements

y(x) of every points of a structural member. The slope of the deflection curve is

given by yðxÞ ¼ dy=dx ¼ y0ðxÞ. Deflected shapes of some structures are presented

in Fig. 1.1. In all cases, elastic curves (EC) reflect the deformable shape of the

neutral line of a member; the EC are shown by dotted lines in exaggerated scale.

A cantilever beam with load P at the free end is presented in Fig. 1.1a. All points

of the neutral line have some vertical displacements yðxÞ. Equation y ¼ yðxÞ is the
EC equation of a beam. Each section of a beam has not only a transversal

displacement, but also an angular displacement y(x) as well. Maximum vertical

displacement DB occurs at B; maximum slope yB also happens at the same point.

At the fixed support A, both linear and angular displacements DA and yA are zero.

The simply supported beam with overhang is subjected to vertical load P as

shown in Fig. 1.1b. The vertical displacements at supports A and B are zero. The

angles of rotation yA and yB are maximum, but have different directions. Since

overhang BC does not have external loads, the elastic curve along the overhang

presents the straight line, i.e., the slope of the elastic curve y within this portion is

constant. The angles of rotation of sections, which are located infinitely close to the

left and right of support B are equal.

Figure 1.1c shows the frame due to action of horizontal force P. At fixed support
A the linear and angular displacements are zero, while at pinned support B the angle

A B 
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C D 
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Fig. 1.1 (a–d) Deflected shapes of some structures. (e–h) Deflected shapes of beams and arches

caused by the settlement of support B
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of rotation yB 6¼ 0. The joints C and D have the horizontal displacements DC and

DD; under special assumptions these displacements are equal. Joints C and D have

angular displacements yC and yD (they are not labeled on the sketch). The linear and

angular displacements of joints C and D lead to deformation of the vertical

members as shown on the sketch. Since support A is fixed, then the left member

AC has an inflection point.

Figure 1.1d shows the frame with hinged ends of the cross-bar CD; the frame is

subjected to horizontal force P. In this case, the cross-bar and column BD has a

displacement but does not have deflection and members move as absolutely rigid

one – the motion of the member CD is a translation, while the member BD rotates

around point B. Thus, it is a possible displacement of the member without the

relative displacements of its separate points. So a displacement is not always

accompanied by deflections, however, deflections are impossible without displace-

ment of its points.

Figure 1.1e, f shows the shapes of the beams caused by settlement of support.

A new form of statically determinate beam (Fig. 1.1e) is characterized by displace-

ment of portion H–B as absolutely rigid body, i.e., without deflection of the beam.

In case 1.1f, a new form of the beam occurs with the deflection of the beam.

Figure 1.1g, h shows the deflected shapes of the arches caused by settlement of

support. Elastic curve in the case of the hingeless arch is a monotonic function,

while in case of a one-hinged arch (Fig. 1.1h) this property of elastic curve of

deformable axis of the arch is disrupted at hinge C.
There are two principle analytical approaches to computation of displacements.

The first of them is based on the integration of the differential equation

EIðd2y=dx2Þ ¼ �MðxÞ of the elastic curve of a beam. Modification of this method

leads to the initial parameters method. The second approach is based on the

fundamental energetic principles. The following precise analytical methods repre-

sent the second group: Castigliano theorem, dummy load method (Maxwell–Mohr

integral), Graph multiplication method (Vereshchagin rule), and elastic load

method.

All methods from both groups are exact and based on the following assumptions:

1. Structures are physically linear (material of a structures obey Hook’s law).

2. Structures are geometrically linear (displacements of a structures are much less

than their overall dimensions).

1.2 Initial Parameters Method

Initial parameters method presents a modification of double integration method in

case when a beam has several portions and as a result, expressions for bending

moments are different for each portion. Initial parameter method allows us to obtain

an equation of the elastic curve of a beam with any type of supports (rigid or elastic)

and, most important, for any number of portions of a beam.

1.2 Initial Parameters Method 5



Fundamental difference between the initial parameter and the double integration

method, as it is shown below, lies in the following facts:

1. Initial parameters method does not require setting up the expressions for bending

moments for different portions of a beam, formulating corresponding differential

equations and their integration. Instead, the method uses a once-derived expres-

sion for displacement. This expression allows us to calculate slope, bending

moments, and shear along the beam and is called the universal equation of elastic

curve of a beam.

2. Universal equation of the elastic curve of a beam contains only two unknown

parameters for any number of portions.

A general case of a beam under different types of loads and the corresponding

notational convention is presented in Fig. 1.2a. The origin is placed at the extreme

left end point of a beam, the x-axis is directed along the beam, and y-axis is directed
downward. Support A is shown as fixed, however, it can be any type of support or

even free end. Load q is distributed along the portion DE. Coordinates of points
of application of concentrated force P, couple M, and initial point of distributed

load q are denoted as awith corresponding subscript P,M, and q. This beam has five

portions (AB, BC, CD, DE, and EL), which leads to the ten constants of integrating

using the double integration method.

The initial parameter method requires the following rules to be entertained:

1. Abscises x for all portions should be reckoned from the origin; in this case, the

bending moment expression for each next portion contains all components

related to the previous portion.

2. Uniformly distributed load may start from any point but it must continue to the

very right point of the beam. If a distributed load q is interrupted (point E,
Fig. 1.2a), then this load should be continued till the very right point and action

of the added load must be compensated by the same, but oppositely directed

load. The same rule remains for load which is distributed by triangle law. If load

is located within the portion S–T (Fig. 1.2b), it should be continued till the very

right point L of the beam and action of the added load must be compensated by

the same but oppositely directed loads (uniformly distributed load with intensity
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Fig. 1.2 Initial parameters method notation
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k0 and load distributed by triangle law with maximum intensity k–k0 at point L).
Both of these compensated loads start at point T and do not interrupt until the

extremely right point L.
3. All components of a bending moment within each portion should be presented in

unified form using the factor (x–a) in specified power, as shown in Table 1.1. For
example, the bending moment for the second and third portions (Fig. 1.2a)

caused by the active loads only are

M x2ð Þ ¼ �P x2 � aPð Þ;
M x3ð Þ ¼ �P x3 � aPð Þ �M x3 � aMð Þ0:

4. Integration of differential equation should be performed without opening the
parenthesis.

All of these conditions are called Cauchy–Clebsch conditions [Tim53].

Initial parameters method is based on the equation EIy 00 ¼ �MðxÞ. Integrating it
twice leads to the following expressions for slope and linear displacement

EIy ¼ �
Z

MðxÞdxþ C1;

EIy ¼ �
Z

dx

Z
MðxÞdxþ C1xþ D1: (1.1)

The transversal displacement and slope at x ¼ 0 are y ¼ y0; y ¼ y0 . These
displacements are called the initial parameters. Equations (1.1) allow getting the

constants in terms of initial parameters

D1 ¼ EIy0 and C1 ¼ EIy0:

Table 1.1 Bending moments in unified form for different type of loading

M

aM
x

y

x

P

aP
x

y

q

aq
x

y

k = tanb

ak
x

b

y

M(x) �M x� aMð Þ0 � P x� aPð Þ1 � q x� aq
� �2

2
� k x� akð Þ3

2� 3

R
MðxÞdx �M x� aMð Þ � P x� aPð Þ2

2
� q x� aq

� �3
2� 3

� k x� akð Þ4
2� 3� 4

R
dx

R
MðxÞdx �M x� aMð Þ2

2
� P x� aPð Þ3

2� 3
� q x� aq

� �4
2� 3� 4

� k x� akð Þ5
2� 3� 4� 5
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Finally (1.1) may be rewritten as

EIy ¼ EIy0 �
Z

MðxÞdx;

EIy ¼ EIy0 þ EIy0x�
Z

dx

Z
MðxÞdx: (1.2)

These equations are called the initial parameter equations for uniform beam.

For practical purposes, the integrals from (1.2) should be calculated for special

types of loads using the above rules 1–4. These integrals are presented in Table 1.1.

Combining (1.2) and data in Table 1.1 allows us to write the general expressions

for the linear displacements y(x) and slope y(x) for a uniform beam:

EIyðxÞ ¼ EIy0 þ EIy0x�
X

�F x� aFð Þn
n!

; (1.3)

EIyðxÞ ¼ EIy0 �
X

�F x� aFð Þn�1

n� 1ð Þ! ; (1.4)

where EI is a flexural rigidity of the beam; F is any load (concentrated, couple, or a

distributed one); y0 and y0 are transversal displacement and slope at x ¼ 0; aF is the
distance from the origin of the beam to the point of application of a concentrated

force, couple, or to the starting point of the distributed load and n is the parameter,

which depends on the type of the load. Types of load F and corresponding

parameter n are presented in Table 1.2.

Equation (1.3) is called the universal equation of elastic curve of a beam. This

equation gives an easiest way of deriving the equation of elastic curve of uniform

beam and calculating displacement at any specified point. This method is applicable

for a beam with arbitrary boundary conditions, subjected to any types of loads.

Notes

1. The negative sign before the symbol S corresponds to the y-axis directed

downward.

Table 1.2 Initial parameters

method. Parameter n for the

specific loads

Type of load F n

Couple M 2

Concentrated force P 3

Uniformly distributed load q 4

The load distributed by triangle law k 5
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2. Summation is related only to loads, which are located to the left of the section x.
It means that we have to take into account only those terms, for which the

difference x� að Þ is positive.
3. Reactions of supports and moment of a clamped support must be taken into

account as well, like any active load.

4. Consideration of all loads including reactions must start at the very left end and

move to the right.

5. Sign of the load factor � F x� aFð Þn=n! coincides with the sign of bending

moment due to the load, which is located at the left side of the section x.
6. Initial parameters y0 and y0 may be given or be unknown, depending on

boundary conditions.

7. Unknown parameters (displacements or forces) are to be determined from the

boundary conditions and conditions at specified points, such as the intermediate

support and/or intermediate hinge.

For positive bending moments at x due to couple M, force P, and uniformly

distributed load q, the expanded equations for displacement and slope are

EIyðxÞ ¼ EIy0 þ EIy0x�M x� aMð Þ2
2!

� P x� aPð Þ3
3!

� q x� aq
� �4

4!
; (1.5)

EIyðxÞ ¼ EIy0 �M x� aMð Þ � P x� aPð Þ2
2

� q x� aq
� �3

6
: (1.6)

Expressions for bending moment and shear force may be obtained by formula

MðxÞ ¼ �EIy00ðxÞ; QðxÞ ¼ �EIy000ðxÞ: (1.7)

Advantages of the Initial Parameters Method

1. Initial parameters method allows to obtain the expression for elastic curve of the

beam. The method is very effective in case of large number of portions of a beam.

2. Initial parameters method do not require to form the expressions for bending

moment at different portions of a beam and integration of differential equation of

elastic curve of a beam; a procedure of integration was once used for deriving the

universal equation of a beam and then only simple algebraic procedures are

applied according to (1.3).

3. The number of unknown initial parameters is always equals two and does not

depend on the number of portions of a beam.

4. Initial parameters method may be effectively applied for beams with elastic

supports and beams subjected to displacement of supports. Also, this method

may be applied for statically indeterminate beams. Detailed examples of appli-

cation of initial parameters method are considered in [Kar10].
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1.3 Maxwell–Mohr Integral

The Maxwell–Mohr procedure presents a universal method for computation of

displacement at any point of any deformable structure. Also, the Maxwell–Mohr

procedure allows calculating mutual linear and angular displacements. Different

sources, which may cause displacements of a structure, are considered. They are

different types of loads, and change of temperature.

1.3.1 Deflection Due to External Loads

A general expression for displacements of any deformable structure may be written as

Dkp ¼
XZ s

0

Mp
�Mk

EI
dsþ

XZ s

0

Np
�Nk

EA
dsþ

XZ s

0

m
Qp

�Qk

GA
ds: (1.8)

Summation is related to all elements of a structure. Fundamental expression (1.8)

is known as Maxwell–Mohr integral. The following notations are used: Dkp is dis-

placement of a structure in the kth direction in P condition, i.e., displacement in

direction of unit load (first index k) due to the given load (second index p);Mp,Np, and

Qp are the internal forces (bending moment, axial and shear force, respectively) in P
condition; and Mk; Nk; Qk are the internal forces due to the unit load, which acts in

the kth direction and corresponds to the required displacement.A and I are the area and
moment inertia of a cross-section; E and G are Young’s and shear modulus of

elasticity; � is nondimensional parameter depends on the shape of the cross section.

For rectangular cross section � ¼ 1:2, for circular cross section � ¼ 10=9. The unit
load (force, couple, etc.) also termed the dummy load.

Proof. For bending systems, the Castigliano’s theorem for computation of linear

and angular displacements at point k may be presented as follows [Cra00]:

yk ¼
Z

MðxÞ
EI

@MðxÞ
@Pk

dx; yk ¼
Z

MðxÞ
EI

@MðxÞ
@Mk

dx;

whereM(x) is bendingmoment at section x;Pk andMk are force and couple at section k.
Both formulas may be simplified. For this purpose, let us consider the simply

supported beam subjected to force P and couple M (Fig. 1.3).

P
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Fig. 1.3 Simply supported beam loaded by P and M
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Reaction RA ¼ Pðl� a=lÞ þMð1=lÞ and the bending moment for the left and

right portions of the beam are

MðxÞ ¼ RAx ¼ P
l� að Þ
l

xþM
x

l
; x � að Þ

MðxÞ ¼ RAx� P x� að Þ ¼ P
a

l
l� xð Þ þM

x

l
; x � að Þ:

Both expressions present the linear functions of the loads P and M. In general

case, suppose a structure is subjected to the set of concentrated loads P1, P2,. . .,
couples M1, M2,. . ., and distributed loads q1, q2,. . .. This condition of structure

is called as P condition (also known as the actual or loaded condition). In case of

P condition, a bending moment at any section x is a linear function of these loads

MðxÞ ¼ a1P1 þ a2P2 þ � � � þ b1M1 þ b2M2 þ � � � þ c1q1 þ c2q2 þ � � �

where coefficients ai, bi, and ci depend on geometrical parameters of the structure,

position of loads, and location of the section x.
If it is required to find displacement at the point of application of P1, then, as an

intermediate step of Castigliano’s theorem we need to calculate the partial deriva-

tive of bending moment M(x) with respect to force P1. This derivative is

@MðxÞ=@P1 ¼ a1. According to expression for M(x), this parameter a1 may be

considered as the bending moment at section x caused by unit dimensionless
force (P1 ¼ 1). State of the structure due to action of unit dimensionless load

(unit force or unit couple) is called unit state. Thus, calculation of partial derivative
in Castigliano’s formula may be changed by calculation of a bending moment

caused by unit dimensionless load

yk ¼
Z

MðxÞ
EI

@MðxÞ
@P

dx ¼
Z

MðxÞMk

EI
dx;

where Mk is bending moment in the unit state. Keep in mind that Mk is always

a linear function and represents the bending moment due to a unit load, which

corresponds to the required displacement.

In a similar way, terms, which take into account the influence of normal and

shear forces, may be transformed. Thus, displacements caused by any combination

of loads may be expressed in terms of internal stresses developed by given loads

and unit load, which corresponds to required displacement. That is the reason why

this approach is termed the dummy load method.

For different types of structures, relative contribution of first, second, and third

terms of (1.8) in the total displacement Dkp is different. For practical calculation,

depending on type and shape of a structure, the following terms from (1.8) should

be taken into account:

(a) For trusses – only second term.

(b) For beams, arches and frames with ratio of height of cross section to span 0.2

or less – only first term.
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(c) For beams with ratio of height of cross section to span more than 0.2 – the first

and third terms.

(d) For gently sloping arches – the first and second terms.

(e) For arches with ratio of radius of curvature to height of cross section 5 or more –

all terms.

In case of trusses, the displacement should be calculated by formula

Dkp ¼
XZ l

0

NpNk

EA
ds: (1.8a)

Since all elements are straight ones, and axial stiffness are constant along all

length of each elements, then this formula may be presented as

Dkp ¼
XNpNk

EA
l: (1.8b)

Strictly speaking, integral equation (1.8) is applicable only for structure which

contains the straight members. Effect of curvature will be discussed further. □

Procedure for Computation of Deflections Using
Maxwell–Mohr Integral

1. Express internal forces in P condition for an arbitrary cross section in terms of its

position x.
2. Construct the unit condition. For this we should apply unit load (dummy load),

which corresponds to the required displacement:

(a) For linear displacement, a corresponding dummy load represents the unit

force, which is applied at the point where displacement is to be determined

and acts in the same direction.

(b) For angular displacement, a corresponding dummy load is the unit couple,

which is applied at the point where angle of rotation is to be determined.

(c) For mutual linear displacement of two sections, a corresponding dummy

load represents two unit forces, which are applied at the points where

displacement is to be determined and act in the opposite directions.

(d) For mutual angular displacement of two sections, a corresponding dummy

load represents two unit couples, which are applied at given sections and act

in the opposite directions.

3. Express the internal forces in unit condition for an arbitrary cross section in

terms of its position x.
4. Calculate Maxwell–Mohr integral.
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Positive sign of displacement means that the real displacement coincides with the

direction of the unit load, or work performed by unit load along the actual direction

is positive.

Now we demonstrate the application of general formula (1.8) for calculation

of displacement of curvilinear bar.

Example 1.1. A circular uniform bar with central angle 180� is clamped at point

B and carrying horizontal force P at point A as shown in Fig. 1.4a. Calculate the

horizontal displacement DA of point A.

Solution. For the given problem, the unit state labeled by index k presents the force
P ¼ 1 applied at point A in the same direction as force P for the actual state

(Fig. 1.4b). Free-body diagram is presented in Fig. 1.4c.

For computation of bending moment M at point C, it is convenient to use the x
and y axis with origin at A, while for computation of shear Q and axial force N at

same point C it is convenient to use the X–C–Y axis (Fig. 1.4c). Equilibrium

conditions
P

MC ¼ 0;
P

X ¼ 0;
P

Y ¼ 0 lead to the following expressions

of internal forces for actual and unit states (Table 1.3).

This data lead to the following expression for required displacement:

DA ¼ 1

EI

Z pR

0

Py2dsþ 1

EA

Z pR

0

P sin2 ’ dsþ m
GA

Z pR

0

P cos2 ’ ds: (a)
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b

Fig. 1.4 Design diagram of the curvilinear bar, unit state and free-body diagram

Table 1.3 Internal forces of the circular bar for actual and unit state

State Bending moment Axial force Shear force

Actual Mp ¼ �Py Np ¼ �P sin ’ Qp ¼ �P cos ’

Unit �M ¼ �1� y �N ¼ �1� sin ’ Q ¼ �1� cos ’
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Now let us represent y and ds in terms of polar coordinates as follows: ds ¼
R d’, y ¼ R sin ’ (Fig. 1.4a). Changing limits of integration (pR ! p), becomes

DA ¼ PR3

EI

Z p

0

sin2 ’ d’þ PR

EA

Z p

0

sin2 ’ d’þ mPR
GA

Z p

0

cos2 ’ d’: (a)

Since
R p
0
sin2 ’ d’ ¼ R p

0
cos2 ’ d’ ¼ p=2, then the final result for required

displacement is

DA ¼ PR3

EI

p
2
þ PR

EA

p
2
þ mPR

GA

p
2
¼ PR3

EI

p
2

1þ I

A

1

R2
þ mEI

GA

1

R2

� �
: (b)

All terms in the parenthesis take into account the bending moment, axial forces,

and shear, respectively.

Discussion

Let us compare the displacements due to bending moments, axial forces, and

shearing forces. For this purpose, let us replace A, I, and m by their values, which

correspond to the rectangular cross section of the bar as follows: A ¼ bh;

I ¼ ðbh3=12Þ. Shear modulus of elasticity is G ¼ E=2 1þ nð Þ. If h ¼ 2b, the

Poisson’s coefficient n ¼ 0.25 and coefficient m ¼ 1.2, then

DA ¼ PR3

EI

p
2

1þ 1

12

h2

R2
þ 1

4

h2

R2

� �
:

Even if the ratio ðh=RÞ ¼ 0:1, then

DA ¼ PR3

EI

p
2

1þ 0:000833þ 0:0025ð Þ:

Therefore, in our case, the displacements due to axial and shearing forces

constitute about 0.08 and 0.25% of the displacement due to bending moment.

Let us assume that shear and axial forces for the bar in Fig. 1.4a are neglected;

it is easy to show that in this case the vertical and angular displacements for point A
are as follows:

Dvert
A ¼ 2PR3

EI
"ð Þ; yA ¼ 2PR2

EI
clockwiseð Þ:
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1.3.2 Deflections Due to Change of Temperature

It is very often in engineering practice that the members of a structure undergo the

thermal effects. In case of statically determinate structures, the change of tempera-

ture leads to displacements of points of a structure without an appearance of

temperature internal forces, while in case of statically indeterminate structures

the change of temperature causes an appearance of temperature internal forces.

Often these internal forces may approach significant values. Analysis of any

statically indeterminate structure subjected to change of temperature is based on

the calculation of displacement of statically determinate structure. So, calculation

of displacements due to change of temperature is a very important problem for

analysis of both statically determinate and indeterminate structures.

The first two terms of Maxwell–Mohr’s integral equation (1.8) may be rewritten

as follows:

Dkp ¼
XZ l

0

�MkDyp þ
XZ l

0

�NkDxp; (1.9)

where Dyp ¼ Mp dx=EI is the mutual angular displacement of both sections faced

apart at distance dx due to the given load and Dxp ¼ Np dx=EA is the mutual axial

displacement of both sections faced apart at a distance dx due to the given load.

These terms may be easily computed for the case of temperature change. Let us

consider elementary part of a structure with length dx. The height of the cross

section of the member is h0. The upper and bottom fibers of the member are

subjected to temperature increase t1 and t2, respectively, above some reference

temperature. Corresponding distribution of temperature (temperature profile) is

presented in Fig. 1.5. If the change of temperature for bottom and uppers fibers

are equal (t1 ¼ t2), then this case presents the uniform change of temperature; if

t1 6¼ t2 then this case is referred as nonuniform change of temperature [Rab60].

Bottom fibers

+t1

+t2

t1 + t2

2

Temperature profile

Upper fibers

dx

+t1

+t 2

Du/2

Dqt/2 Dqt/2

Dxt/2 Dxt/2

Db/2 Db/2

h 0

Fig. 1.5 Distribution of temperature and displacements within the height of cross section

1.3 Maxwell–Mohr Integral 15



The expansion of the upper and bottom fibers equals to Du ¼ at1 dx and

Db ¼ at2 dx, respectively; these expressions contain coefficient of thermal expan-

sion a of member material. In the case of symmetrical cross section, the expansion

of the fiber at the mid-height equals to

Dxt ¼ a
t1 þ t2

2
dx: (1.9a)

The mutual angle of rotation of two plane sections, which are located apart from

each other on distance dx

Dyt ¼ a
t1 � t2j j
h0

dx: (1.9b)

Now we can substitute (1.9a) and (1.9b) into (1.9). Finally, the displacement in

kth direction due to change of temperature may be presented in the following form:

Dkt ¼
XZ s

0

a
t1 þ t2

2
�Nk dsþ

XZ s

0

a
t1 � t2j j
h0

�Mk ds; (1.10)

where �M; �N are bending moment and axial force due to the unit generalized

force in kth direction; this force should be corresponding to required temperature

displacements.

A difference t1 � t2 is a temperature gradient; a half-sum t1 þ t2ð Þ=2 is a

temperature at the centroid of the symmetric cross section (the axis of symmetry

coincides with neutral axis). If the cross section is nonsymmetrical about its neutral

axis, then the term t1 þ t2ð Þ=2 must be replaced by t2 þ t1 � t2ð Þ=2½ 	y; where y is

the distance of the lower fiber to the neutral axis.

The term t1 þ t2ð Þ=2 means that a bar is subjected to uniform thermal effect;

in this case, all fibers are expanded by the same values. The term t1 � t2j j=h0
means that a bar is subjected to nonuniform thermal effect; in this case a bar

is subjected to bending in such way that the fibers on the neutral line have no

thermal elongation. So, the first and second terms in (1.10) present displacements

in kth direction due to uniform and nonuniform change of temperature, respec-

tively. Integrals
R

�Mk ds and
R

�Nk ds present the areas of bending moment

and axial force diagram in unit condition, which corresponds to required

displacement.

The presentation of Maxwell–Mohr integral in form (1.10) allows us to calculate

any displacement (linear, angular, mutual linear, mutual angular) caused by

uniform or nonuniform change of temperature. This formula does not take into

account the influence of shear. The procedure of summation in formula (1.10) must

be carried over all members of the system. The signs at all terms in this formula will

be obtained as follows: if the displacements of the element induced by both the

change of temperature and by the unit load occur at the same direction, then the

corresponding term of the equation will be positive.
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Procedure for analysis is as follows:

1. Construct the unit state. For this, we should apply unit generalized force X,
which corresponds to the required displacement.

2. Construct the bending moment and axial force diagrams in the unit state.

3. For each member of a structure to compute the term
R
Nk dx, which is the area of

axial force diagram in the unit state.

4. For each member of a structure to compute the term
R
Mk dx, which is the area of

bending moment diagram in the unit state.

5. Apply formula (1.10).

Example 1.2. Determine the horizontal displacement of point B of the uniform

semicircular bar in Fig. 1.6a, if the indoor and outdoor temperature rises by t1
�C and

t2
�C, respectively. The height of cross-section bar is h0.

Solution. A temperature effect related to curvilinear bar, therefore the general

expression for temperature displacement, should be presented in the form (1.10),

i.e., in terms of curvilinear coordinate s instead of x as for straight member.

Unit load X ¼ 1 (Fig. 1.6b) corresponds to required horizontal displacement

at B. In the unit state reaction HA ¼ 1 and internal forces due to unit load X are

as follows:

�Nk ¼ �1� sin ’; �Mk ¼ �1� y ¼ �1� R sin ’:

Thus (1.10) for displacement at B becomes

DB ¼ a
t1 þ t2

2

Z pR

0

� sin ’ð Þdsþ a
t1 � t2j j
h0

Z pR

0

�R sin ’ð Þds:

Integration is performed along a curvilinear road of length pR. In the polar

coordinates d’ ¼ ds=R; sin ’ ¼ y=R the limits of integration become 0 � p:

DB ¼ a
t1 þ t2

2

Z p

0

� sin ’ð ÞR d’þ a
t1 � t2j j
h0

Z p

0

�R sin ’ð ÞR d’:

x
X=1

R
x

y

dj
R

dsy

A B

HA

C

DB=?

b

RR

R

A B

C

+t1 +t2 +t2+t1
DB

a
h0

j

Fig. 1.6 Curvilinear bar. Design diagram and unit state
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Thus, for required displacement we get the following expression

DB ¼ a
t1 þ t2

2
�2Rð Þ þ a

t1 � t2j j
h0

�2R2
� � ¼ �aR t1 þ t2ð Þ � 2aR2 t1 � t2j j

h0
: (a)

Negative sign in (a) means that unit force X produces negative work on the real

displacement, i.e., the displacement of the point B due to temperature changes is

directed from left to right.

For uniform change of temperature (i.e., when gradients for indoor and outdoor

temperatures are the same), i.e., t1 ¼ t2, a difference t1 � t2 ¼ 0 and only first term

of (1.10) or (b) should be taken into account. In this case, the horizontal displace-

ment equals to DB ¼ �2aRt.

Summary

1. Maxwell–Mohr integral presents the fundamental and power method for the

calculation of arbitrary displacements of any elastic structure. Displacements

may be the result of any types of loads and change of temperature.

2. In order to calculate any displacement, it is necessary to consider two states

of a structure, i.e., the given and unit states. Unit state presents the same

structure, but loaded by unit generalized force corresponding to the required

displacement.

3. The terms of (1.8), which should be taken into account depend on the type of

structure (discussed in Sect. 1.3.1).

4. For both states, given and unit, it is necessary to set up expressions for

corresponding internal forces and calculate the required displacement by the

Maxwell–Mohr integral.

1.4 Graph Multiplication Method

Graph multiplication method presents most effective way for computation of any

displacement (linear, angular, mutual, etc.) of bending structures, particularly

for framed structures. The advantage of this method is that the integration proce-

dure according to Maxwell–Mohr integral is replaced by elementary algebraic

procedure on two bending moment diagrams in the actual and unit states. This

procedure was developed by Vereshchagin (1925) and is often referred as the

Vereshchagin rule [Rab60].
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1.4.1 Vereshchagin Rule

Let us consider some portion AB which is a part of a bending structure; the flexural

stiffness, EI, within of this portion is constant. The bending moment diagrams

for this portion in actual and unit state are MP and M. Both diagrams for portion

AB are presented in Fig. 1.7. In general case, a bending moment diagram Mp in

the actual state is bounded by curve, but for special cases may be bounded by

straight line (if a structure is subjected to concentrated forces and/or couples).

However, it is obvious that in the unit state the bending moment diagram M is

always bounded by the straight line. Just this property of unit bending moment

diagram allows us to present the Maxwell–Mohr integral for bending systems in

the simple form.

Ordinate of the bending moment in actual state at section x isMp(x). Elementary

area of a bending moment diagram in actual state is dO ¼ Mp(x) dx. Since

M ¼ x tan a, then integral in Maxwell–Mohr formula may be presented as (coeffi-

cient 1=EI by convention is omitted)

Z
MpM dx ¼

Z
Mp x tan að Þdx ¼ tan a

Z
x dO:

Integral
R
x dO represents the static moment of the area of the bending moment

diagram in actual state with respect to axisOy. It is well known that a static moment

may be expressed in terms of total area O and coordinate of its centroid xc
by formula

R
x dO ¼ Opxc. It is obvious that xc tan a ¼ yc. Therefore, the

Maxwell–Mohr integral may be presented as follows:

1

EI

Z
MpM dx ¼ Opyc

EI
: (1.11)

Mp (Actual state)

M (Unit state)

Centroid of Mp graph 

yc

Ωp

y

x

a

dx 

M

Mp(x) 
dΩ=Mp(x)dx 

xc

O

A Bx

Fig. 1.7 Graph multiplication method. Bending moment diagrams Mp and M in actual and

unit states
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The procedure of integration
R
MpM dx ¼ Opyc is called the “multiplication” of

two graphs.

The result of multiplication of two graphs, at least one of which is bounded by a straight line

(bending moment diagram in unit state), equals to area O of the bending moment diagram

Mp in actual state multiplied by the ordinate yC from the unit bending moment diagram M,

which is located under the centroid of the Mp diagram.

It should be remembered, that the ordinate yC must be taken from the diagram
bounded by a straight line. The graph multiplication procedure (1.11) may be

presented by conventional symbol (�) as

EIDkp ¼
Z

MpMk dx ¼ Mp �Mk: (1.12)

It is obvious that the same procedure may be applicable to calculation of

similar integrals, which appear in Maxwell–Mohr integral, i.e.,
R
NpN dx andR

QpQ dx.

1.4.2 Trapezoid and Simpson Rules

If the structure in the actual state is subjected to concentrated forces and/or couples,

then both the bending moment diagrams in actual and unit states are bounded by

the straight lines (Fig. 1.8a). In this case, the multiplication procedure of two

diagrams is commutative. It means that the area O could be calculated on any of

the two diagrams and corresponding ordinate yC will be measured from the second

d

M M

e

Ω2

Ω1

Ω1 Ω1 Ω2 Ω3Ω2

M

Mp Mp

Mp

Mp

Mp

y2 

y2 
y2 y1 y 

y1

y1

a

l/2

a c

d
M M

l/2

e

f

b

b

l/2

a c

d

l/2

e

f

c

b

Fig. 1.8 Multiplication of two bending moment diagrams
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one, i.e., O1y1 ¼ O2y2. This expression may be rewritten in terms of specific

ordinates, as presented in Fig. 1.8b.

In this case, the displacement as a result of the multiplication of two graphs may

be calculated using the two following rules:

1. Trapezoid rule allows calculating the required displacement in terms of extreme
ordinates

D ¼ l

6EI
2abþ 2cd þ ad þ bcð Þ; (1.13)

where the crosswise end ordinates has unity coefficients. This formula is precise.

2. Simpson’s rule allows calculating the required displacement in terms of extreme
and middle ordinates

D ¼ l

6EI
abþ 4ef þ cdð Þ: (1.14)

Equation (1.14) may also be used for the calculation of displacements, if

the bending moment diagram in the actual condition is bounded by a curve line.

If the bending moment diagram Mp is bounded by quadratic parabola (Fig. 1.8c),

then the result of multiplication of two bending moment diagrams by formula (1.14)

is exact; this case occurs if a structure is carrying uniformly distributed load. If the

bending moment diagram Mp is bounded by cubic parabola, then the procedure

(1.14) leads to the approximate result.

If a graphMp is bounded by a broken line, then both graphs have to be divided by

several portions as shown in Fig. 1.8d. In this case, the result of multiplication of

both graphs is

Z
MpM dx ¼ O1y1 þ O2y2:

Sometimes it is convenient to subdivide the curved bending moment diagram by

a number of “good” shapes, for example, in Fig. 1.8e. In this case

Z
MpM dx ¼ O1y1 þ O2y2 þ O3y3:

1.4.3 Signs Rule

According to (1.12) the displacement will be positive, when the area of the diagram

Mp and the ordinate yC of the diagram M have the same sign. If ordinates in (1.13)

or (1.14) of bending moment diagram for actual and unit states are placed on

the different sides of the basic line, then result of their multiplication is negative.
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The positive result indicates that displacement occurs in the direction of applied

unit load.

Procedure for computation of deflections by graph multiplication method is as

follows:

1. Draw the bending moment diagram Mp for the actual state of the structure.

2. Create a unit state of a structure. For this apply a unit load at the point where the

deflection is to be evaluated. For computation of linear displacement we need to

apply unit force P ¼ 1, for angular displacement to apply unit coupleM ¼ 1, etc.

3. Draw the bending moment diagramM for the unit state of the structure. Since the

unit load (force, couple) is dimensionless, then the ordinates of unit bending

moment diagramM in case of force F ¼ 1 and coupleM ¼ 1 are units of length

(m) and dimensionless, respectively.

4. Apply the graph multiplication procedure using the most appropriate form:

Vereshchagin rule (1.11), trapezoid rule (1.13), or Simpson’s formula (1.14).

Useful tables for multiplication of two bending moment diagrams are presented

in [Kar10].

Example 1.3. A cantilever beam AB, length l, carrying a uniformly distributed load

q (Fig. 1.9). Flexural rigidity EI is constant. Compute (a) the angle of rotation yA;
(b) the vertical displacement DA at the free end.

Solution. Analysis of the structure starts from construction of bending moment

diagram Mp due to given external load. This diagram is bounded by quadratic

parabola and maximum ordinate equals ql2=2.

(a) Angle of rotation at point A. The unit state presents the same beam subjected to

unit coupleM ¼ 1 at the point where it is required to find angular displacement;

direction of this couple is arbitrary (Fig. 1.9a). It is convenient that both unit and

actual state and their bending moment diagrams locate one under another.

The next step is “multiplication” of two bending moment diagrams. The area

of square parabola is O ¼ ð1=3Þ � ðql2=2Þ � l. Centroid of this diagram is

located on the distance l/4 from fixed support. Corresponding ordinate yC from

diagramM of unit state is 1. Multiplication procedure is presented in Table 1.4.

This table also contains computation of required displacement using the

Simpson rule. Ordinates a and b are taken from the bending moment diagrams

for actual and unit states, respectively, at the left end of a beam (point A);
ordinates e and f are taken at the middle of the beam AB, and ordinates c and d at
the right end (point B).

(b) Vertical displacement at point A. The bending moment diagram Mp for actual

state is shown in Fig. 1.9b; this diagram for problems (a) and (b) is same. The

unit state presents the same structure with concentrated force P ¼ 1, which acts

at point A; direction of the unit force is chosen in arbitrary way. The unit state

with corresponding bending moment diagram M is presented in Fig. 1.9b.

Computation of displacements using Vereshchagin rule in general form and by

Simpson rule are presented in Table 1.5.
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Actual statea

qA
A B

e = ql2 / 8

c = ql2 / 2

l / 2 l / 4

Mp
(kNm )

W

q

•

Centroid C

M = 1

d =1
f =1 yc

M

a =0

b =1

Unit state 
for qA

Actual stateb

l /2
Ω

l /4

A B

q

•

Centroid 

P=1

1�l/2
1�l

M (m)

Unit state 
for

ql2 / 8 ql2 / 2

Mp
(kNm)

yc

Fig. 1.9 (a) Actual state, unit state for yA and corresponding bending moment diagrams. (b) Actual

state, unit state for DA and corresponding bending moment diagrams

Table 1.4 Graph multiplication procedures

Displacement

General formula (1.11)

D ¼ 1

EI
OyC

Simpson rule (1.14)

D ¼ l

6EI
abþ 4ef þ cdð Þ

Angular

yA ¼MP�M

EI
yA ¼ 1

EI
�1

3

ql2

2
l|fflffl{zfflffl}

O

� 1|{z}
yC

¼ ql3

6EI
yA ¼ l

6EI
0�1|ffl{zffl}
ab

þ4
ql2

8
�1|fflfflfflffl{zfflfflfflffl}

4ef

þql2

2
�1|fflfflffl{zfflfflffl}
cd

0
BB@

1
CCA¼ ql3

6EI
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1.5 Maxwell–Mohr Formula for Curvilinear Rods

Strictly speaking, the three-term Maxwell–Mohr formula is only valid for straight

rods. The formula reduces to only an approximation for curvilinear rods. We show a

modification of this formula that can be applied to curvilinear rods.

Consider an infinitely small element of a curvilinear rod with curvature r and

length ds. The corresponding central angle is denoted by d’. The cross-sectional

area of the element is A. A force N is applied at the ends of the element, as shown in

Fig. 1.10.

The total shrinkage (elongation) of this element is equal to N ds=EA. The axial
strain is equal to N=EA. If we neglect the change in radius of curvature, then we can
assume that the angle of rotation of the two ends of the elements will be

ðN=EAÞd’ ¼ ðN=EAÞðds=rÞ. When N ¼ 1 the angle of rotation of ends sections

becomes ds=EAr (unit displacement). By the law of reciprocal unit displacements

(for more details see Sect. 1.8, and [Dar89], [Kar10]) it follows that if two unit

couples M ¼ 1 act on the cross-sectional faces of the element ds, then the same

deformation occurs in the axial direction of the element, i.e., dik ¼ dki. In the case of
an arbitrary couple M, the axial deformation becomes M ds=EAr. This elongation
(shrinkage) is due to the fact that the sections rotate about a neutral axis, which does

not pass through their center of gravity. Therefore, bending moments induce axial

deformations, while axial forces cause bending in curvilinear rods. So, bending

moments lead to additional work being done by axial forces, while axial forces lead

to additional work which is performed by bending moments. Therefore, the refined

formula for displacements takes the form [Rab54a]

DiP ¼
XZ

Mi
Mp

EI
þ Np

EAr

� �
dsþ

XZ
Ni

Np

EA
þ Mp

EAr

� �
ds

þ
XZ

m
QiQp

GA
ds: (1.15)

Here, as before, the horizontal bar indicates that the corresponding force is

related to a unit state.

Table 1.5 Graph multiplication procedures

Displacement

General formula (1.11)

D ¼ 1

EI
OyC

Simpson rule (1.14)

D ¼ l

6EI
abþ 4ef þ cdð Þ

Linear

DA¼MP�M

EI
DA¼ 1

EI
�1

3

ql2

2
l|fflffl{zfflffl}

O

�3

4
�1� l|fflfflfflffl{zfflfflfflffl}
yC

¼ ql4

8EI
DA¼ l

6EI
0�0|ffl{zffl}
ab

þ4
ql2

8
�1� l

2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
4ef

þql2

2
�1� l|fflfflfflfflffl{zfflfflfflfflffl}
cd

0
BB@

1
CCA¼ ql4

8EI

24 1 Deflections of Elastic Structures



Example 1.4. A horizontal force P is applied to a semicircular uniform rod of R
(Fig. 1.11a). Determine the horizontal displacement of the point at which the force

is applied.

Solution. We limit ourselves to only the first term of the general formula (1.15).

The actual and unit states are shown in Fig. 1.11. Corresponding internal forces are

Mp ¼ �Py; Np ¼ �P sin ’; M1 ¼ �1� y:

The first term in the general formula is broken up into two integrals:

Dip ¼
Z

Mi
Mp

EI
þ NP

EAr

� �
ds ¼

Z
Mi

Mp

EI
dsþ

Z
Mi

Np

EAR
ds: (a)

In polar coordinates ds ¼ R d’, y ¼ R sin ’ so the formula takes the form

Dip ¼
Z p

0

Mi
Mp

EI
R d’þ

Z p

0

Mi
Np

EAR
R d’

¼
Z p

0

�1yð Þ �Pyð Þ
EI

R d’þ
Z p

0

�1yð Þ �P sin ’ð Þ
EAR

R d’:

xP
Rx

y
dj

j j

R

ds
y

A B

Actual state 

DA=? 

O

a

P=1 Rx

y

R

y

x

A B

Unit state b

Fig. 1.11 (a) Design diagram of the curvilinear bar, (b) unit state
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Fig. 1.10 Angular strain due by axial forces and axial strain due by couples
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Substitute y ¼ R sin ’ and evaluate the integrals. As a result we get

Dip ¼ PR3

EI
� p

2
þ PR

EA
� p

2
¼ PR3

EI
� p

2
1þ r2

R2

� �
; (b)

where r ¼ ffiffiffiffiffiffiffiffi
I=A

p� 	
is the radius of inertia of the cross-section of the curvilinear

rod. For given ratio r=Awe can evaluate effect of second term in the parenthesis and

compare with result in Example 1.1.

1.6 Elastic Loads Method

Elastic load method allows simultaneous computation of displacements for a set of
points of a structure. This method is based on conjugate beam method. This method

allows us to consider beams of variable cross sections. For trusses this method leads

to precise results. For arches this method is approximate, however, very effective.

1.6.1 Computation of Elastic Load

Let us consider a part of any actual structure; the vertical displacements y for

specified points, labeled as n � 2, n � 1, n, n + 1, n + 2, etc., are to be determined.

Corresponding displacement diagram is presented in Fig. 1.12a.

Now let us consider a fictitious structure subjected to any loads W applied at

point where we are required to find displacements (Fig. 1.12b); these fictitious loads

of the fictitious structure are not yet known. Displacement of a real structure and

moment of fictitious structure are related as y ¼ Mf =EI. Therefore, the problem is

to find such loads W so that the bending moment diagram of fictitious structure

would be proportional to the vertical displacement diagram of the actual structure.

Loads W are called elastic loads, i.e., they are such fictitious loads so that bending

moment diagram of fictitious structure coincides (with accuracy to constant multi-

plier 1/EI) with displacements diagram of the real structure [Kar10].

Corresponding fictitious bending moment diagram of a structure is shown in

Fig. 1.12b; index “f – fictitious” for bending moments M and shear Q is omitted.

Shear forces within the portions ln and ln+1 are

Qn ¼ Mn �Mn�1

ln
; Qnþ1 ¼ Mnþ1 �Mn

lnþ1

:

Equilibrium equation for a free-body diagram of an infinitesimal element of a

structure in vicinity of a point n (Fig. 1.12c) leads to the following expression for

applied load Wn:

Wn ¼ Qn � Qnþ1:
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In terms of bending moments, this expression may be rewritten as follows:

Wn ¼ Mn �Mn�1

ln
�Mnþ1 �Mn

lnþ1

¼ �Mn�1

1

ln
þMn

1

ln
þ 1

lnþ1

� �
�Mnþ1

1

lnþ1

: (1.16)

This formula allows us to calculate fictitious load Wn at point n if bending

moments at points n � 1, n, and n + 1 are known. If this formula is used for

calculating all forces Wi and after which the resulting forces will be used for

construction of bending moment diagram, then this diagram will be same as the

diagram in Fig.1.12b.

Thus, the elastic load at point n becomes

Wn ¼ �yn�1

1

ln
þ yn

1

ln
þ 1

lnþ1

� �
� ynþ1

1

lnþ1

: (1.17)

Our fundamental goal is calculating the displacement using elastic loads; on the

other hand, for calculation of the elastic loads according to (1.17), it is necessary to

Fictitious state:
Bending moment diagram 

Mn–1

Mn–2
Mn+1Mn

Mn+2

Wn+2Wn+1 WnWn–1Wn–2 Wn

b

Qn Qn+1

c

n

a

ln+2 ln+1ln–1 ln

ln+2 ln+1ln–1 ln

n+1
nn–1n–2 

n+2

yn–2
yn–1

yn+1

yn+2

yn

Actual state:
Vertical displacement diagram 

Fig. 1.12 (a, b)

Resemblance of vertical

displacement and bending

moment; (c) free-body

diagram in vicinity of point n
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know displacements. In order to get away from this “closed circle” we need to

modify formula (1.17).

For this purpose, we need to understand the physical meaning of this expression.

Let us calculate the mutual angle of two portions at the point n. The unit state of the
given structure contains two unit couples M ¼ 1 with opposite directions as shown

in Fig. 1.13. The couple M ¼ 1, which acts at the left portion, may be replaced by

two forces of same magnitude 1/ln, but having opposite signs; similarly, the right

couple M ¼ 1 may be replaced by two forces 1/ln+1.
Now we can see that the right-hand side of (1.17) represents the work done by

forces within the real displacements. Indeed, the first term (� yn�1ð1=lnÞ)
represents the work performed by force 1=ln of the unit state on the real displace-

ment yn�1; negative sign means that this force and real displacement have the

opposite directions. The second term of (1.17) represents the work, which is

produced by two forces 1=ln and 1=lnþ1 of the unit state on the real displacement

yn. Similarly, the last term (1.17) represents the work done by force 1=lnþ1 of the

unit state within the real displacement yn+1.
Since forces 1=ln and 1=lnþ1 are the result of two unit couples M ¼ 1, then

expression (1.17) may be considered as a work done by these unit couples on the

mutual angle of both portions at point n. On the other hand, the work done by unit

couples M ¼ 1 on the mutual angle may be expressed in terms of internal forces
using the Maxwell–Mohr integral:

� yn�1

1

ln
þ yn

1

ln
þ 1

lnþ1

� �
� ynþ1

1

lnþ1

¼ M
XZ l

0

M
MP dx

EI
þ
XZ l

0

N
NP dx

EA
þ
X

�

Z l

0

Q
QP dx

GA


 �
;

where expression in the parenthesis in right-hand side represents the mutual angle.

Since M ¼ 1, then finally the right-hand side of (1.17) may be rewritten as

follows:

� yn�1

1

ln
þ yn

1

ln
þ 1

lnþ1

� �
� ynþ1

1

lnþ1

¼
XZ l

0

M
MP dx

EI
þ
XZ l

0

N
NP dx

EA

þ
X

�

Z l

0

Q
QP dx

GA
:

n+1
nn–1

M=1M=1 

1
ln+1

1
ln+1

1
ln

1
ln

ln+1ln

Fig. 1.13 Unit state
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As a result, the general formula for elastic loads in terms of internal forces is

Wn ¼
XZ l

0

M
MP dx

EI
þ
XZ l

0

N
NP dx

EA
þ
X

�

Z l

0

Q
QP dx

GA
: (1.18)

This formula resembles the Maxwell–Mohr integral. The fundamental difference

comes from the fact that the unit state is constructed differently. In other words, the

right-hand side of (1.18) is similar to that of (1.8), while the left-hand side of (1.18)

represents an elastic load and the left-hand side of (1.8) is a displacement.

For beams, only the first term of (1.18) should be taken into account; the

accuracy of elastic curve depends on the number of points (number of elastic

loads). For arches it is necessary to take into account the first and third terms of

(1.18). The elastic curve will be approximate. Construction of displacement of joint

points of a truss requires only the second term of (1.18). In this case, expression for

elastic loads becomes

Wn ¼
XNnNPl

EA
: (1.19)

Application of elastic loads method is the most interesting and effective to a truss.

The procedure for computing displacements is outlined below.

1. Calculate the axial forces NP in all elements of the truss caused by given loads.

2. Calculate the elastic load at a joint n. For this

(a) Show a fictitious truss. If a real truss is simply supported then the fictitious

truss is also simply supported.

(b) Apply two unit couplesM ¼ 1 to members, which are adjacent to the joint n.
Present each couple using forces Fn�1 ¼ ð1=dn�1Þ for span dn�1 and Fn�1 ¼
ð1=dnÞ for span dn, as shown in Fig. 1.14.

(c) Calculate the axial forces Nn in all elements of the truss caused by forces in

Fig. 1.14.

(d) Calculate the elastic load Wn at the joint n by (1.19).

n

dndn–1

Fn = 1/dnFn–1 = 1/dn–1 FnFn–1

M=1 M=1

Fig. 1.14 Unit state for calculation of elastic load at joint n
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3. Calculate the elastic loadsW for remaining joints of the truss chord, as explained

in procedure 2.

4. Show the fictitious beam subjected to all elastic loads W. If the elastic load is

positive, then it should be directed downward, i.e., in the same direction as the

adjacent forces of neighboring couples.

5. Construct the bending moment diagram for fictitious beam on the tensile fibers.

This diagram presents displacements of all joints of the entire real truss.

Detailed examples and advantages of this method are discussed in [Kar10].

1.6.2 Expanded Form for Elastic Loads

Finally, we present the important expanded expression of elastic loads for beams

and rigid frames. This expression will take into account not only bending moments,

but also axial forces. We consider a case when inclined members with length

of sn and sn+1 are subjected to bending moments and axial forces (Fig. 1.15). We

assume that the axial forces Nn and Nn+1 within portions n and n + 1 are constant.

Axial forces in the unit state are Nn ¼ � sin bn=ln and Nnþ1 ¼ sin bnþ1=lnþ1 for

the left and right portions, respectively. Calculation of these forces is shown in

Fig. 1.15, joints A and B.

1

1+nN

B

Portion n+1Portion n

ln

1

ln

1

Nn

A

n

n–1

n+1
bn+1

bn

bn

bn+1

ln+1

Mn

Mn+1

Actual state

M=1

M=1

1
ln+1

1
ln+1

ln+1ln

1
lnUnit state

1

A

B

EIn

EIn+1

Mn–1

sn+1

sn

Fig. 1.15 Deriving of the expanded formula for elastic load
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Within the limits of the left portion n, the calculation of the first term of (1.18)

may be performed using multiplication of two bending moment diagrams (trape-

zoid rule 1.13) in actual and unit states. For left portion we have

XZ l

0

M
MP dx

EA
¼ sn

6EIn
2Mn�1 � 0þ 2Mn � 1þMn�1 � 1þMn � 0ð Þ

¼ sn
6EIn

Mn�1 þ 2Mnð Þ:

The second term of (1.18) may be presented as

XZ l

0

N
NP dx

EA
¼ � 1

EAn
� sin bn

ln
Nnsn ¼ � 1

EAn
� sin bn

ln
Nn

ln
cos bn

¼ � Nn

EAn
� tan bn:

Within the limits of the right portion n + 1, the calculation of the first and

second terms of (1.18) may be performed by similar manner.

Finally, the elastic loads should be calculated by the following expanded formula:

Wn ¼ sn
6EIn

Mn�1 þ 2Mnð Þ þ snþ1

6EInþ1

2Mn þMnþ1ð Þ � Nn

EAn
tan bn

þ Nnþ1

EAnþ1

tan bnþ1: (1.20)

We can see that during the calculation of elastic loadWn, the sum of the integrals

is affecting only two adjacent elements at a node n [Sni66]. This formula is known

as the expanded formula for elastic loads and may be effectively applied for the

calculation of displacements of arches. Thus, for the calculation of elastic load at

point n we need to know the bending moments in actual state, at three consecutive

points (n � 1, n, n + 1) and axial forces within the adjacent portions.

Example 1.5. Design diagram of a cantilever beam is presented in Fig. 1.16a.

Compute the deflections of the beam at the points 0, 1, 2.

Solution. Subdivide the beam into two equal parts (0–1 and 1–2). The bending

moment diagram for actual beam is shown in Fig. 1.16b. Fictitious beam and elastic

loads W0 and W1 are shown in Fig. 1.16c. For calculation of W0 we need to know

bending moments at three consecutive points; dotted line shows additional portion

of the beam with ends points �1 and 0; the length and stiffness of this portion are

l0 and EI0 ¼ 1, respectively. The elastic loads are

W0 ¼ l0
6EI0

M�1 þ 2M0ð Þ þ l1
6EI1

2M0 þM1ð Þ

¼ l0
1 M�1 þ 2M0ð Þ þ l

12EI
2Plþ Pl

2

� �
¼ 5Pl2

24EI
;
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W1 ¼ l1
6EI1

M0 þ 2M1ð Þ þ l2
6EI2

2M1 þM2ð Þ

¼ l

12EI
Plþ 2

Pl

2

� �
þ l

12EI
2
Pl

2
þ 0

� �
¼ Pl2

4EI
:

Now these elastic loads should be applied to the fictitious beam. Since the

bending moment diagram is traced on the tensile fibers and ordinates ofM diagram

are located above the axis, the elastic loads should be directed upward.

Corresponding bending moment diagram of fictitious beam is presented in

Fig. 1.16c. At the same time, this diagram presents the elastic displacements of

the real beam. Displacements at the points 0, 1, and 2 are exact. This result may

be obtained using graph multiplication method; in this case two unit states should

be constructed.

Example 1.6. Design diagram of a nonuniform beam is presented in Fig. 1.17a.

Determine the displacements at the free end point and at the point where force P is

applied.

Solution. Subdivide the beam into three parts length l1, l2, and l3. The points with
required displacements are labeled as 0, 1 and 2. The bending moment diagram Mp

for actual beam is shown in Fig. 1.17b. Fictitious (conjugate) beam with elastic

loadsW1 andW2 are shown in Fig. 1.17c. LoadW0 at free end of the entire beam is

not shown.

10 2

l

l1 = l/2l0 l2 = l/2

l1 = l/2 l2 = l/2

P

EIEI0= •

–1
a

Fictitious
beam

48EI
5Pl3

EI
Pl3

3

W 1W 0

c

M

M 0= Pl
2
Pl

b

Fig. 1.16 (a) Design

diagram; (b) bending moment

diagram of the real beam;

(c) fictitious beam, bending

moment diagram, and

displacement of the real beam
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Elastic loads according to (1.20) are

W1 ¼ l1
6EI1

M0 þ 2M1ð Þ þ l2
6EI2

2M1 þM2ð Þ

¼ a

6EI1
0þ 2� 0ð Þ þ l

2� 6EI2
2� 0þ Pl

4

� �
¼ Pl2

48EI2
;

W2 ¼ l2
6EI2

M1 þ 2M2ð Þ þ l3
6EI2

2M2 þM3ð Þ

¼ l

2� 6EI2
0þ 2� Pl

4

� �
þ l

2� 6EI2
2� Pl

4
þ 0

� �
¼ Pl2

12EI2
:

The fictitious structure is a Gerber–Semikolenov beam [Kar10]; corresponding

interaction scheme is shown in Fig. 1.17d. Bendingmoments of the fictitious beam are

Mf
2 ¼ W2l

4
¼ Pl2

12EI2

l

4
¼ Pl3

48EI2
;

Mf
0 ¼ � W1 þW2

2

� �
a ¼ � Pl2a

16EI2
:

Vertical displacements of the initial beam are

y0 ¼ Mf
0 ¼ � Pl2a

16EI2
; y1 ¼ Mf

1 ¼ 0; y2 ¼ Mf
2 ¼ Pl3

48EI2
:

l3 = l/2l2 = l/2l1 = a

P
y0

y1=0 

y2
EI1

EI2a

P
M0 = 0 M1 = 0

M2 = Pl/4

MP

b

Fictitious beam

f
M2

W2W1

W2W1

fM0

1 = 0fM

c

d

Fig. 1.17 Computation of displacement by elastic loads method
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Example 1.7. Curvilinear simply supported uniform circular rod AB is subjected to

loads Pi (Fig. 1.18a). Determine the vertical displacements at points 1, 2, 3.

Solution. Required displacements are shown in Fig. 1.18b. Let us replace the

curvilinear bar by a set of straight members of the same flexural rigidity; they are

shown by dotted line in Fig. 1.18a. For curvilinear rod with parameters l ¼ 32m

and f ¼ 8m, according to (1) the coordinates for point 1 are x ¼ 8 m, y ¼ 6.33 m;

the lengths of straight elements are sA�1 ¼ 10:2m and s1�2 ¼ 8:33m;
tan b1 ¼ 0:7912; tan b2 ¼ 0:2087:

Bending moments in loaded state are M1 ¼ 160 kNm; M2 ¼ 240 kNm;
M3 ¼ M1:

Fictitious beam is shown in Fig. 1.18c. According to (1.20), elastic loads consist

of two parts

Wn ¼ WnðMÞ þWnðNÞ;

where

WnðMÞ ¼ sn
6EIn

Mn�1 þ 2Mnð Þ þ snþ1

6EInþ1

2Mn þMnþ1ð Þ

WnðNÞ ¼ � Nn

EAn
tan bn þ

Nnþ1

EAnþ1

tan bnþ1:

B A 
y3y2y1

W1 W2 W3

b

M f (kNm3)
Factor 1/EI

fM1

BA 

f
RA

Fictitious  beam

fRB

f
M2

f
M3

Bending moment diagram of fictitious beam 

c

Design diagram

P1 = 10kN
P2 = 20kN
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EI

f = 8m

B 
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RA RB
Vertical displacements diagram

Fig. 1.18 Curvilinear simply supported bar. (a) Design diagram; (b) vertical displacements;

(c) fictitious beam and corresponding bending moment diagram
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It is easy to check that the axial forces for entire structure are NA�1 ¼ �32:267 kN
and N1�2 ¼ �49:07 kN:

The components of a first elastic load are

W1ðMÞ ¼ sA�1

6EI
MA þ 2M1ð Þ þ s1�2

6EI
2M1 þM2ð Þ

¼ 10:2

6EI
0þ 2� 160ð Þ þ 8:1724

6EI
2� 160þ 240ð Þ ¼ 1; 307 kNm2

EI
;

W1ðNÞ ¼ �NA�1

EA
tan b1 þ

N1�2

EA
tan b2 ¼ � 32:267

EA
0:7912� 49:07

EA
0:2087

¼ � 35:77 kN

EA
:

The first elastic load becomes

W1 ¼ 1; 307

EI
� 35:77

EA
¼ 1; 307

EI
1� 0:0274

I

A

� �
:

Similarly, for second elastic load we get

W2ðMÞ ¼ s1�2

6EI
M1 þ 2M2ð Þ þ s2�3

6EI
2M2 þM3ð Þ

¼ 6:33

6EI
160þ 2 � 240ð Þ þ 8:1724

6EI
2� 240þ 160ð Þ ¼ 1; 547

EI
;

W2ðNÞ ¼ �N1�2

EA
tan b2 �

N2�3

EA
tan b3 ¼ � 49:07

EA
0:2087� 2 ¼ � 20:48

EA
;

W2 ¼ 1; 547

EI
1� 0:0132

I

A

� �
:

It is clear that W3 ¼ W1. If axial forces are neglected, then the second terms in

the formulas for elastic loads should be omitted.

Reactions of fictitious beam, corresponding bending moments and required

displacements are

Rf
A ¼ Rf

B ¼ W1 þW2

2
;

Mf
1 ¼ Rf

A � 8; Mf
2 ¼ Rf

A � 16�W1 � 8;

y1 ¼ Mf
1 ; y2 ¼ Mf

2 ; y3 ¼ y1:

1.6 Elastic Loads Method 35



1.7 Differential Relationships for Curvilinear Rods

This section contains two groups of differential relations for curvilinear rods. The

first group establishes relationships between internal forces while the second group

establishes the relation between displacements and strains.

1.7.1 Relationships Between Internal Forces

The following internal forces arise in planar arches: bending momentM, shear force

Q, and axial force N. We establish a relationship among them. An infinitely small

element i–j, with length ds, central angle d’, and radius of curvature r is shown in

Fig. 1.19. This element is subjected to normal, tangential and moment loads

distributed among the entire length ds. We denote their intensities by q, p, and m,
respectively. The following internal forces act on the ends of the element:M,Q, and
N at section i, and the same forces with their elementary gain dM, dQ, and dN at

section j. Positive directions of internal forces are shown in Fig. 1.19. The x and y
axis are directed along the tangent and normal to the element at section i. The point
O denotes the intersection point of two tangents from sections i and j. The angle

between these two tangents is equal to the central angle d’. We construct the

equilibrium equations for this element [Rzh82].

1. Projection of all forces onto the x axis is

X
X ¼ N � N þ dNð Þ cos d’þ Qþ dQð Þ sin d’� p ds ¼ 0:

Since sin d’ ffi d’ and cos d’ ffi 1, we get ðdN=dsÞ ¼ Qðd’=dsÞ � p. And
since ðd’=dsÞ ¼ ð1=rÞ, then

dN

ds
� Q

r
þ p ¼ 0: (1.21)

Derivative of the axial force along the axis is directly proportional to the shear
force. The coefficient of proportionality is the curvature of the rod.

i

j
q 

p 

m M 

Nx

Q 

M+dM

N+dN

Q+dQ

dj0 

x

y 

 
Fig. 1.19 Free-body diagram

of the curvilinear member i–j

36 1 Deflections of Elastic Structures



2. Projection of all forces onto the y axis is

X
Y ¼ Q� Qþ dQð Þ cos d’� N þ dNð Þ sin d’� q ds� cos

d’

2
¼ 0:

Neglecting the infinitely small second order term we get

dQ

ds
þ N

r
þ q ¼ 0: (1.22)

3. The sum of moments about point 0 is

X
M0 ¼ �M þ M þ dMð Þ � Q

ds

2
� Qþ dQð Þ ds

2
� q ds� xþ m ds ¼ 0:

Here, x is the distance from the resultant load q on the element ds to the point O.
It is clear that this is also an infinitely small quantity. After simplification we get

dM

ds
� Qþ m ¼ 0: (1.23)

Integrate (1.21)–(1.23) and limit ourselves to a circular bar with only a uniform

radial load q0. We also assume that loads N, Q, and M act on the ends of the bar, as

shown in Fig. 1.20.

In polar coordinates, with the chosen direction of initial forces (1.21)–(1.23) take

the form

dN

d’
¼ Q; (1.21a)

dQ

d’
¼ �N � qR; (1.22a)

dM

d’
¼ QR: (1.23a)

Equations (1.21a)–(1.23a) are known as Kirchhoff’s equations [Kir76], [Lov20].

Differentiate (1.22a) by ’ and take into account (1.21a). The equation becomes

R 

j

N0

qj

Q0

M0

q0

Fig. 1.20 Design diagram of circular rod
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d2Q

d’2
þ Q ¼ 0: (1.23b)

Boundary conditions:

1. When ’ ¼ 0, shear Q ¼ Q0.

2. When ’ ¼ 0, ðdQ=d’Þ ¼ �N0 � q0R.

Integrating (1.23b) leads to an expression for the shear force expressed in terms

of the initial parameters N0 and Q0.

Q ¼ Q0 cos ’� N0 þ q0Rð Þ sin ’: (1.24)

Substitute this expression into (1.21a) and (1.23a). After integrating we get

N ¼ N0 cos ’þ Q0 sin ’� q0R 1� cos ’ð Þ; (1.25)

M ¼ M0 þ Q0 R sin ’� N0Rþ q0R
2

� �
1� cos ’ð Þ: (1.26)

Equations (1.24)–(1.26) allow us to determine the distribution of internal loads

in a circular rod of radius R subjected to a uniform hydrostatic radial load q0 in

terms of the initial parameters N0, Q0, and M0.

Another way of calculating the internal forces consists of bringing (1.21)–(1.23)

to one resolving equation for a curvilinear rod. From (1.22) we express N as N ¼
�rðdQ=dsÞ � rq and substitute this expression into (1.21)

� d

ds
r
dQ

ds

� �
� d

ds
rqð Þ � Q

r
þ p ¼ 0:

Substitute the expression for Q from (1.23) into the above equation. As a result

we get

d

ds
r
d2M

ds2

� �
þ 1

r
dM

ds
� pþ d rqð Þ

ds
þ d

ds
r
dm

ds

� �
� m

r
¼ 0: (1.27)

In the case of a rod with a circular shape (r ¼ R ¼ const), (1.27) takes the form

R
d3M

ds3
þ 1

R

dM

ds
� pþ R

dq

ds
þ R

d2m

ds2
� m

R
¼ 0: (1.28)

Noticing that ds ¼ R d’, (1.28) can be written in terms of polar coordinates

d3M

d’3
þ dM

d’
¼ R2 p� dq

d’

� �
þ R m� d2m

d’2

� �
: (1.29)
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Integrating this equation allows us to find an expression for the bending moment

as a function of the angle. Following this, we can find an expression for the shear

force using (1.23) and then find the axial force using (1.21).

Later we use (1.29) for static analysis of symmetric circular two-hinged arches

with constant cross section and modified equation (1.27) for stability analysis of

redundant arches.

1.7.2 Relationships Between Displacements and Strains

Equations (1.21)–(1.23) may be presented in tabulated form (Table 1.6) using the

differential operators.

The top row contains forces N, Q, and M. The last column contains loads p, q,
and m, in accordance to Fig. 1.19. Three subsequent rows represent the three

differential equations (1.21)–(1.23). For example, the first row may be rewritten

in the form ðdN=dsÞ � ðQ=rÞ þ 0�M þ p ¼ 0, which corresponds to the differ-

ential equation (1.21).

The left most column contains the displacements which correspond to the type of

load. Tangential displacement u corresponds to longitudinal force p, normal dis-

placement u corresponds to transversal load q, and the angle of rotation C
corresponds to the moment load m.

The bottom row contains the strains of member. Longitudinal strain e
corresponds to the longitudinal force N, shear strain g corresponds to shear force

Q, and additional warp of the axis of the rod w to its initial curvature corresponds to
the bending moment M.

Through this table we can easily understand the relationships between

displacements and strains [Rzh82]. To achieve this, we apply a matrix transpose

and obtain

� du

ds
þ u
r
þ 0� cþ e ¼ 0;

� u

r
� du

ds
� 1� cþ g ¼ 0;

0� uþ 0� u� dc
ds

þ w ¼ 0:

Table 1.6 Differential

relationships for

curvilinear bar Displacement

Internal forces

LoadsN Q M

u d/ds �1/r 0 p

u 1/r d/ds 0 q

C 0 �1 d/ds m

Strain e g w
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From these expressions we get the relations

e ¼ du

ds
� u
r
;

g ¼ u

r
þ du

ds
þ c;

w ¼ dc
ds

:

(1.30)

Special Cases

1. Shear strain g is neglected. In this case (1.30) become

e ¼ du

ds
� u
r
; c ¼ � u

r
� du

ds
; w ¼ dc

ds
¼ � d

ds

u

r

� �
� d2u

ds2
: (1.31)

2. Shear strain g and axial strain e are neglected. Equations (1.31) lead to

u ¼ r
du

ds
; c ¼ � u

r
� d

ds
r
du

ds

� �
; w ¼ dc

ds
¼ � d

ds

u

r

� �
� d2

ds2
r
du

ds

� �
: (1.32)

3. For a straight rod (r ¼ 1; s ¼ x). Equations (1.30) become

e ¼ du

dx
; g ¼ du

dx
þ c; w ¼ dc

dx
:

This leads to

e ¼ du

dx
; c ¼ g� du

dx
; w ¼ dc

dx
¼ dg

dx
� d2u
dx2

: (1.33)

4. For a straight elastic rod (r ¼ 1; s ¼ x; w ¼ M=EI; g ¼ �ðQ=GAÞ) the
second and third equations of (1.33) lead to

w ¼ M

EI
¼ dc

dx
¼ d

dx
g� du

dx

� �
¼ �

GA

dQ

dx
� d2u
dx2

or

d2u
dx2

¼ �M

EI
þ �

GA

dQ

dx
:
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5. For a circular bar (r ¼ R ¼ const; ds ¼ R d’) (1.30)–(1.32) lead to the fol-

lowing results:

e¼ 1

R

du

d’
� u

� �
; g¼ 1

R
uþ du

d’

� �
þc; w¼ 1

R

dc
d’

; (1.30a)

e¼ 1

R

du

d’
� u

� �
; c¼� 1

R
uþ du

d’

� �
; w¼ dc

ds
¼� 1

R2

du

d’
þ d2u
d’2

� �
; (1.31a)

u¼ du

d’
; c¼� 1

R
uþ d2u

d’2

� �
; w¼� 1

R2

du

d’
þ d3u

d’3

� �
¼� 1

R2
uþ d2u

d’2

� �
: (1.32a)

1.7.3 Lamb’s Equation

Let us consider a circular rod of a constant cross-section, subjected to uniform

radial load q; in axial direction the rod is nondeformable. In this case, the equilib-

rium equations can be combined into one sixths order ordinary differential

equations with constant coefficients, relative to tangential displacements u

d6u

d’6
þ 2

d4u

d’4
þ d2u

d’2
þ qR3

EI

d4u

d’4
þ d2u

d’2

� �
¼ 0;

where angle ’ determines the position of the point on the nondeformable axis of the

rod. This equation is known as Lamb’s equation [Lam1888], [Rek73], [Rzh55].

Let the central angle be 2a. If the angle ’ is measured from vertical line, then

� a � ’ � a. The positive displacement u is directed along the tangent of the

circle in the direction in which ’ increases.

Boundary conditions: For the fixed end, the tangential and radial displacements,

and slope are u ¼ 0; @u=@’ ¼ 0; @2u=@’2 ¼ 0, respectively. For hinged end

u ¼ 0; @u=@’ ¼ 0; @3u=@’3 ¼ ðR2=EIÞMs. The last condition takes into

account external moment Ms at the support.

Lamb’s equation will be used for static and dynamic stability analysis of a

circular uniform arches.

Another form of the solution is possible; one can integrate equations

((1.21)–(1.23)) and take the constant of integration to represent the initial

parameters [Bir68]. It is clear that the corresponding solution will represent a

generalization of the initial parameter method (Sect. 1.2) for circular uniform rod.

The books [Bir68, vol. 1], [Uma72-73], [Roa75] contain numerous tabulated data

for computation of internal forces and displacements of circular uniform arches for

cases of in-plane and out-of-plane loading.
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Note the equation of plane curvilinear rod in a general case (nonuniform cross

section, variable radius of curvature) may be found in [Rzh55]. This differential

equation of the sixth order with respect to tangential displacement u takes into

account the tangential and radial distributed loads.

1.8 Reciprocal Theorems

Reciprocal theorems reflect fundamental properties of any linear statistical deter-

minate or indeterminate elastic systems. These theorems find extensive application

in the analysis of redundant structures [Kar10]. Primary investigations were

performed by Betti (1872), Maxwell (1864), Lord Rayleigh (1873–1875),

Castigliano (1872), and Helmholtz (1886) [Tim53], [Tod60].

1.8.1 Theorem of Reciprocal Works (Betti Theorem)

Let us consider elastic structure subjected to loads P1 and P2 separately; let us call it

as first and second states (Fig. 1.21). Set of displacements Dmn for each state are

shown below. The first index m indicates the direction of the displacement and the

second index n denotes the load, which causes this displacement.

Thus, D11 and D12 are displacements in the direction of load P1 due to load P1

and P2, respectively, D21 and D22 are displacements in the direction of load P2 due

to load P1 and P2, respectively.

Let us calculate the strain energy of the system by considering consequent

applications of loads P1 and P2, i.e., state 1 is additionally subjected to load P2.

Total work done by both of these loads consists of three parts:

1. Work done by the force P1 on the displacement D11. Since load P1 is applied

statically (from zero to P1 according to triangle law), then W1 ¼ P1D11=2.
2. Work done by the force P2 on the displacement D22. Since load P2 is applied

statically, then W2 ¼ P2D22=2.
3. Work done by the force P1 on the displacement D12; this displacement is caused

by load P2. The load P1 approached its maximum value P1 before application of

P2. Corresponding P1–D1 diagram is shown in Fig. 1.21, so W3 ¼ P1D12.

Since potential energy U equals to the total work, then

U ¼ 1

2
P1D11 þ 1

2
P2D22 þ P1D12: (1.34)

On the other hand, considering of application of load P2 first and then P1, i.e., if

state 2 is additionally subjected to load P1, then potential energy U equals
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U ¼ 1

2
P2D22 þ 1

2
P1D11 þ P2D21: (1.35)

Since strain energy does not depend on the order of loading, then the following

fundamental relationship is obtained

P1D12 ¼ P2D21 or W12 ¼ W21; (1.36)

The theorem of reciprocal works (1.36) said that in any elastic system the work
performed by load of state 1 along displacement caused by load of state 2 equals to
work performed by load of state 2 along displacement caused by load of state 1.

1.8.2 Theorem of Reciprocal Displacements (Maxwell Theorem)

Let us consider two states of elastic structure subjected to unit loads P1 ¼ 1 and

P2 ¼ 1. Displacements caused by unit loads is called the unit displacements and
denoted by letter dmn. The first index m indicates the direction of the displacement

and the second index n denotes the unit load, which causes this displacement.

Thus, d11 and d12 are displacements in the direction of load P1 due to load

P1 ¼ 1 and P2 ¼ 1, respectively; d21 and d22 are displacements in the direction of

load P2 due to load P1 ¼ 1 and P2 ¼ 1, respectively.

In case of unit loads, the theorem of reciprocal works P2D21 ¼ P1D12 leads to the

following fundamental relationship d12 ¼ d21. In general,

dnm ¼ dmn: (1.37)

This equation shows that in any elastic system, displacement along nth load
caused by unit mth load equals to displacement along mth load caused by unit nth
load. The term “displacement” refers to linear or angular displacements, and the

term “load” means force or moment.

P1 P1

P1 P2

P2

P2

D11 D21
D21D11

D12 D22

D1
D11 D12 D22

D2

D22D12

State 1 

State 2 

W1 W3 W2

Fig. 1.21 Two state of the elastic structure. Computation of work done by the load P1 and

additional load P2
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This theorem is demonstrated by the following example. Fixed-free circular

bar is subjected to unit radial load X1 in the first state and unit axial load X2

in the second state (Fig. 1.22). According to Table A.7, we get d12 ¼ d21 ¼
ðR3=2EIÞ 1� cos gð Þ2. This table contains expressions for other unit displacements.

Theorem of reciprocal displacements will be widely used for analysis of redun-

dant arches by the Force method.

1.8.3 Theorem of Reciprocal Reactions (Rayleigh First Theorem)

Let us consider two states of elastic structure subjected to unit displacements of
supports. They are Z1 ¼ 1 and Z2 ¼ 1 (Fig. 1.23a). Reactions caused by unit

displacements are called the unit reactions and denoted by rmn. The first index m
indicates constrain where unit reaction arises and the second index n denotes

constrain, which is subjected to unit displacement.

Thus r11 and r12 are reactions in the constrain 1 due to displacement Z1 ¼ 1and

Z2 ¼ 1, respectively; r21 and r22 are reactions in the constrain 2 due to displacement

Z1 ¼ 1 and Z2 ¼ 1, respectively.

The theorem of reciprocal works r11 � 0þ r21 � 1 ¼ r12 � 1þ r22 � 0 leads to

the following relationships r21 ¼ r12. In general

rnm ¼ rmn: (1.38)

State 1

B
R

A
X1=1

X2=1
State 2

B
R

d12

d21

gg

A

Fig. 1.22 Theorem of reciprocal unit displacements

State 2r12

r12

r21

r11 r21

r22

Z1=1 Z1=1 

Z2=1 

Z2=1 

State 11

a

State 2

State 11 2

1 2

b

Fig. 1.23 Theorem of reciprocal unit reactions: (a) clamped–clamped beam; (b) clamped–pinned

beam
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The theorem of reciprocal reactions said that in any elastic system reaction
rnm, which arises in nth constrain due to unit displacement of constrain mth,
equals reaction rmn, which arises in mth constrain due to unit displacement of
constrain nth.

This is demonstrated by the following example (Fig. 1.23b). Unit displacements

of the clamped–pinned beam are as follows: Z1 ¼ 1 is a unit angle of rotation of the

clamped support and Z2 ¼ 1 is a vertical linear displacement of the pinned support.

Unit reactions are as follows: r21 is a vertical reaction in constrain 2 caused by unit

angular displacement of support 1 and r12 is a moment in constrain 1 caused by

unit vertical linear displacement of support 2. It is known [Kar10] that unit reactions

are r21 ¼ r12 ¼ 3EI=l2.

1.8.4 Theorem of Reciprocal Displacements and Reactions
(Rayleigh Second Theorem)

Let us consider two states of elastic structure subjected to unit displacement Z1 ¼ 1

and unit load P2 ¼ 1 (Fig. 1.24a). Displacement d021occurs in direction of load P2

due to unit displacement Z1. Reaction r12 arises in constrain 1 due to unit load P2.

The theorem of reciprocal work in extended form should be presented as

follows:

� r12 � 1 ¼ 1� d021

so we get that � r12 ¼ d021. In general,

rjk ¼ �d0kj: (1.39)

The theorem of reciprocal unit displacements and reactions said that reaction in
jth constrain due to unit load of kth direction and displacement in kth direction due
to unit displacement of jth constrain are equal in magnitude but opposite in sign.

This theorem is illustrated in Fig. 1.24b. In order to find a vertical displace-

ment at the point A due to unit rotation of the support B, apply unit force F ¼ 1

along required displacement. Moment at fixed support due to force F ¼ 1 is

rBA ¼ �F (a + b). Since F ¼ 1, therefore the vertical displacement is

d0AB ¼ aþ b:

rBA

a b

B
A

F= 1

State 2 

Z1=1

P2=1

State 1 
1 2 d21

a

r12 

a=1

a b

B
A

b

dAB

Fig. 1.24 Theorem of reciprocal of unit displacements and reactions
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1.8.5 Transfer Matrix

Let us consider fixed-free circular rod of radius R loaded by a radial distributed load

within the portion CB (Fig. 1.25). The radial, tangential, and angular displacements

lC; xC; cC of the section C are known. The problem is to determine the

displacements of the free end A, assuming that portion AC displaces as absolutely

rigid body.

Apply the unit force P ¼ 1 in direction of lA. Reaction RCA, which corresponds

to displacement lC is RCA ¼ �P cos g. The negative sign shows that direction of

RCA is opposite to the displacement lC. According to theorem of reciprocal

displacements and reactions, we get lA ¼ lC cos g. Similarly, the vector displace-

ment at the section A in terms of transfer matrix and displacement vector of the

section C may be represented as follows [Uma72]:

l
x
c

2
666

3
777
A

¼
cos g � sin g R sin g
sin g cos g R 1� cos gð Þ
0 0 1

2
4

3
5 �

l
x
c

2
666

3
777
C

: (1.40)

1.9 Boussinesq’s Equation

Boussinesq’s differential equation (1883) describes the behavior of a circular rod

with constant cross-sectional dimensions.

1.9.1 Two Forms of Boussinesq’s Equation

Let us consider a circular rod of radius R. For deriving of differential equation we

consider two cases.

Case 1. Axial force is neglected. Bending moment M ¼ wEI; taking into account

equation (1.32a) we get the differential equation with respect to radial displacement

d2u
d’2

þ u ¼ �MR2

EI
: (1.41)

A 

ClA

lC

R 

g g

B 

A 

C

RCA

P=1

Fig. 1.25 Design diagram of

the fixed-free circular rod
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Let the clamped-free rod is subjected to uniform radial load q (Fig. 1.20).

Expression (1.26) for bending moment M ¼ M0 þ Q0R sin ’� N0Rþ q0R
2ð Þ�

1� cos ’ð Þ is substituted into (1.41) and integrated with respect to ’. We get

expression for radial displacement in terms of initial parameters

u ¼ u0 cos ’þ y0R sin ’� u0 sin ’�M0c 1� cos ’ð Þ � Q0cR

� sin ’� ’ cos ’

2
� q0R� N0ð ÞcRb; (1.42)

c ¼ R2

EI
; b ¼ 1� cos ’� ’ sin ’

2
:

We can apply this expression for hingeless arch subjected to uniformly

distributed radial load q0. Since the initial parameters are u0 ¼ y0 ¼ u0 ¼ 0 and

M0 ¼ Q0 ¼ 0; N0 ¼ �q0R, then for radial displacement we get

u ¼ � q0R� N0ð ÞcRb ¼ �2q0
R4

EI
b:

If a central angle is 180� then for ’ ¼ 90� (crown) parameter b ¼ 0:2146 and

u ¼ 0:4292ðq0R4=EIÞ.
Case 2. Axial force is taken into account. According to (1.31a), the curvature w of
the rod, in addition to the initial curvature is

w ¼ dc
ds

¼ � 1

R2

du

d’
þ d2u
d’2

� �

so the expression for bending moment becomes

M ¼ wEI ¼ � EI

R2

du

d’
þ d2u
d’2

� �
: (a)

The axial deformation is e ¼ ð1=RÞððdu=d’Þ � uÞ, so

N ¼ eEA ¼ EA

R

du

d’
� u

� �
: (b)

From (a) and (b), we extract the du=d’ term and equate the right-hand sides.

As a result we arrive at the Boussinesq equation [Sni66]

d2u
d’2

þ u ¼ �MR2

EI
� NR

EA
: (1.43)
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If we substitute the expressions for bending moment (1.26) and axial force

(1.25) into (1.42) and integrate, we obtain an expression for radial displacement

u. Using relationship u ¼ du=d’, we can find the tangential displacement u and

then we can find the angle of rotation c and additional warp of the axis of the rod

w to its initial curvature. For this we use the second and third equation of (1.32a).

We employ an important result for design diagrams in Fig. 1.26. Assume the central

angle is 2a and the cross-sectional area is A.
The axial force works out to be N0 ¼ �q0Rf , where f ¼ n� l aþ 1ð Þð Þ=ðn� lÞ

and l¼ðr2=R2Þ; r2 ¼ I=A; n¼ a�1ð Þ tan a�1þ aþ2 tan að Þcot a. Table 1.7

presents the parameter f in terms of l and a.
In a large range of values of l and a, the parameter f is very close to unity, so we

can take Boussinesq’s equation to be in the form of (1.41), with a high degree of

precision.

1.9.2 Displacements of a Circular Rod

We use Boussinesq’s equation to determine radial displacements of a uniform

circular rod with a central angle of 90º (Fig. 1.27a, b).

N0

R 

q0
q0

Q0

M0 
u0 

u0

uj

q0

2aj

Fig. 1.26 Design diagram of uniform circular rod

Table 1.7 Parameter f in terms of l and a

l

a

p/6 p/4 p/3 p/2

0.001 0.9984 0.9995 0.9994 1.0

0.005 0.9997 0.9975 0.9969 1.0

0.01 0.9968 0.9950 0.9938 1.0

0.05 0.9834 0.9742 0.9680 1.0

b

B 

P

R 

R 

A 

B 

M0 

R 

u u

j j
R 

A 

aFig. 1.27 Design diagram

of a circular uniform rod
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Loading in Fig. 1.27a

Bending moment M ¼ �M0, and Bousssinesq equation (1.41) takes the form

d2u
d’2

þ u ¼ M0R
2

EI
: (1.44)

This equation has the solution u ¼ u1 þ u�. Since the right-hand side of the

equation in constant, we look for a particular solution in the form u� ¼ k, where k is
a some unknown constant. To determine the unknown constant, substitute this expres-

sion back into the differential equation. As a result we get k ¼ ðM0R
2Þ=EI, and the full

solution is u ¼ A cos ’þ B sin ’þ k, where A and B are constants of integration.

Boundary conditions:

1. When ’ ¼ p=2 the radial displacement is u ¼ 0. This condition leads to

B ¼ �k ¼ �ðM0R
2Þ=EI.

2. When ’ ¼ p=2 (fixed support) we have du=d’ ¼ 0, so � A sin ’þ
B cos ’ ¼ 0. This condition leads to A ¼ 0.

The final expression for the radial displacement is

u ¼ M0R
2

EI
1� sin ’ð Þ:

On the free end the vertical displacement is Dvert ¼ M0R
2

EI
#ð Þ.

Loading in Fig. 1.27b

In this case, the bending momentM ¼ �PR sin ’ and Boussinesq’ equation (1.41) is

d2u
d’2

þ u ¼ �M’R
2

EI
¼ PR3

EI
sin ’: (1.45)

Its solution has the form u ¼ u1 þ u�. Note that the coefficient of ’ in the right-

hand side and the second term in the left-hand side are both equal to unity (1� u
and sin 1� ’ð Þ). So we look for a particular solution in the form of u� ¼ k’ cos ’.
Substitute this expression into the differential equation to determine the unknown

coefficient. As a result we obtain k ¼ �ðPR3=2EIÞ, and the full solution is

u ¼ A cos ’þ B sin ’� ðPR3=2EIÞ’ cos ’:
Boundary conditions:

1. When ’ ¼ p=2 the radial displacement is u ¼ 0. This condition leads to B ¼ 0.

2. When ’ ¼ p=2

du
d’

¼ �A sin ’� k cos ’þ k’ sin ’ ¼ 0
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and this leads to A ¼ PpR3=4EI. The final expression of the radial displacement is

given by

u ¼ PpR3

4EI
1� 2

’

p

� 	
cos ’:

On the free end the vertical displacement is Dvert ¼ PpR3

4EI
#ð Þ:

Now let us consider a more general case. A radial load P is applied to the free

end of the uniform clamped-free rod of radius R and central angle g (Fig. 1.28).
Bending moment is M ¼ �PR sin ’. Boussinesq’ equation (1.41) becomes

d2u
d’2

þ u ¼ �M’R
2

EI
¼ PR3

EI
sin ’:

Its solution gain has the form u ¼ u1 þ u�. As before, we look for a particular

solution in the form u� ¼ k’ cos ’. To determine the unknown constant we plug

this expression back into the differential equation. As a result we get

k ¼ �ðPR3=2EIÞ, and the full solution becomes

u ¼ A cos ’þ B sin ’� PR3

2EI
’ cos ’: (a)

Boundary conditions:

1. When ’ ¼ g, the radial displacement of support B is u ¼ 0, so

u ¼ A cos gþ B sin g� PR3

2EI
g cos g ¼ 0: (b)

2. When ’ ¼ g the slope du=d’ ¼ 0. The slope at any point is

du
d’

¼ �A sin ’þ B cos ’� PR3

2EI
cos ’� ’ sin ’ð Þ;

B 

P

R 

R 
u

g

j

A 

Fig. 1.28 Uniform circular rod carrying the radial force P
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du
d’

’¼g
�� ¼ �A sin gþ B cos g� PR3

2EI
cos g� g sin gð Þ ¼ 0: (c)

Solution of (b) and (c) are

B ¼ PpR3

2EI
cos2 g;

A ¼ �PR3

2EI
cos g sin g� gð Þ:

Radial displacement becomes

u ’ð Þ ¼ PR3

2EI
g� cos g sin gð Þ cos ’þ cos2 g sin ’� ’ cos ’

 �
: (d)

Special Cases

1. For free end of the bar ’ ¼ 0. In this case formula (d) becomes

uð0Þ ¼ PR3

2EI
g� cos g sin gð Þ ¼ PR3

EI

g
2
� sin 2g

4

� �
:

2. Let the central angle be g ¼ p=2. In this case for any ’ we get

u ’ð Þ ¼ PpR3

4EI
1� 2

’

p

� 	
cos ’:

3. Let g ¼ p=2 and ’ ¼ 0. In this case Dvert ¼ ðPpR3=4EIÞ #ð Þ.
We can derive expressions for displacement in a similar manner when we are

dealing with different types of loads. The most important types of loads and the

corresponding results are presented in Tables A.6 and A.7.

Discussion

It is evident that the differential relations allow us to find the displacement equation

for an arbitrary section, while the Mohr integral allows us to determine displace-

ment at a fixed section.

Detailed analysis of uniform two-hinged circular arch subjected to a single force

is presented in [Tim72]. Numerous reference data, related to circular and elliptical

rings, subjected to different loads is presented in [Roa75], [You89], [Bir68, vol. 1].
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Example 1.8. The circular rod AB of radius R ¼ 24 m and central angle g ¼ 75º

together with cantilever CD of length 6 m is loaded as shown in Fig. 1.29a. The

structure is subjected to a concentrated force F ¼ 10 kN and radial uniformly

distributed load q ¼ 2 kN/m. (a) Determine the reactions of support B; (b) deter-
mine the displacements at point C and at the free end A.

Solution. We first perform some preliminary operations. Transfer the force F to the

point C; additional clockwise couple isM ¼ F� CD ¼ 60 kNm. Resolve a force F
at point C into the radial and axial components Frad ¼ F sin 15þ bð Þ ¼ 5 kN and

Ft ¼ �F cos 15þ bð Þ ¼ �8:66 kN. The negative sign corresponds to the data in

Table A.6. Figure 1.29b presents the initial design diagram in the equivalent form:

the load q acts within the entire rod AB, and load (�q) within the portion BC; also,
the axial force Ft, radial force Frad, and couple M act at point C.

Reactions at the support B. According to the principle of superposition and data in

Tables A.6 and A.7 we get (A.6, 1–1 means Appendix Table A.6, column 1, row 1)

QB ¼ QðqÞ þ Q �qð Þ þ Q Fradð Þ þ Q Ftð Þ þ QðMÞ
¼ qR sin 75�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A:6;1�1

� qR sin 15�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
A:6;1�1

þFrad cos 15�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A:7;1�1

þFt sin 15�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A:7;2�1

þ 0|{z}
A:7;3�1

¼ 36:53 kN;

NB ¼ NðqÞ þ N �qð Þ þ N Fradð Þ þ N Ftð Þ þ NðMÞ
¼ �qR 1� cos 75�ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A:6;1�2

þ qR 1� cos 15�ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A:6;1�2

�Frad sin 15�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A:7;2�2

þFt cos 15
�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A:7;3�2

þ 0|{z}
A:7;3�3

¼ �43:6 kN;

MB¼qR2 1�cos75�ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A:6;1�3

�qR2 1�cos15�ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A:6;1�3

þFradR sin15
�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

A:7;1�3

þFtR 1�cos15�ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A:7;2�3

þ M|{z}
A:7;3�3

¼898:5kNm:

Displacements at point C. Displacement components of the point C caused by loads

which act on the portion BC Frad; Ft; M; �q
� �

are presented in Table 1.8; for

computation of displacements we use the principle of superposition and data in

Tables A.6 and A.7.

A 
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C D 

F 

q 

g g
60∞ 60∞

15∞ 15∞
15∞b =15∞

a A 

MB

M 

q 

-q 

Fr

Ft
C 

NB

QB

b

Fig. 1.29 Design diagram of circular bar and its equivalent presentation
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Displacements at the free end. (gAB ¼ 75� ¼ 5p=12; gAC ¼ 60� ¼ p=3).
For calculation of displacements at the free end we use the transfer matrix (1.40)

lA ¼ lC cos gAC � xC sin gAC þ cCR sin gAC þ F1ðqÞ
xA ¼ lC sin gAC þ xC cos gAC þ cCR 1� cos gACð Þ þ F2ðqÞ
cA ¼ cC þ F3ðqÞ:

Functions FiðqÞ take into account load q within all length AB. In our case

lA ¼ 1130:7

EI
cos 60� � 94:63

EI
sin 60� þ 377:8

EI
R sin 60�

þ qR3 R

EI

1� cos 75�ð Þ2
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A:6; 1�4

¼ 190; 597 kNm3

EI

xA ¼ 1130:7

EI
sin 60� þ 94:63

EI
cos 60� þ 377:8

EI
R 1� cos 60�ð Þ

þ qR3 R

EI

3

2
� 5p

12
� 2 sin 75� þ sin 150�

4

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A:6;1�5

¼ 109; 504 kNm3

EI

cA ¼ 377:8

EI
þ qR2 R

EI

5p
12

� sin 75�
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A:6;1�6

¼ 9; 863 kNm2

EI
:

These values will be used for analysis of symmetrical circular uniform arch in

Sect. 3.10.2.
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Chapter 2

Three-Hinged Arches

This chapter is devoted to the analysis of statically determinate three-hinged arches,

subjected to fixed and moving loads. Analysis of an arch in the case of fixed loads

implies determination of reactions of supports and construction of internal force

diagrams. Analysis of an arch in the case of moving load implies construction of

influence lines for reactions, thrust, and internal forces.

Some important concepts are discussed. Among them are a reference beam,

thrust, nil points of influence lines, etc. Analytical formulas for computation

of internal forces as well as for construction of influence lines for reactions

and internal forces are developed. Special types of arches are considered; among

them are arches with simple and complex ties, arches with support points on

different levels. Analysis of the multispan arched structure and truss enforced by

arched chain are discussed.

Fundamental investigation in the area of static analysis of arches is attributed to

Bresse [Bre59], Kirchhoff [Kir76], and Winkler [Tim53] to name a few.

2.1 General

Idealized design diagram of the arch without overarched members is shown in

Fig. 2.1a. This diagram contains two curvilinear members which are hinged

together at the crown; connections of curvilinear members with abutment are also

hinged. These three hinges are distinguishing features of the three-hinged arch.

Design diagram also contains information about the shape of the neutral line of the

arch. Usually, this shape is given by an expression of the form y ¼ f ðxÞ.
Expressions for some characteristic shapes are presented in Tables A.1 and A.2.

Degrees of freedom of the arch in Fig. 2.1a, according to Chebushev formula

[Kar10], are determined by the formula

W ¼ 3D� 2H0 � S0 ¼ 3� 2� 2� 1� 4 ¼ 0; (2.1)

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_2, # Springer Science+Business Media, LLC 2012
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where D, H0, and S0 are the number of rigid discs, the number of simple hinges, and

the number of constraints of support, respectively. SinceW ¼ 0, this structure does

not have redundant constraints, while all existing constraints constitute the geo-

metrically unchangeability. Indeed, two rigid discs AC and BC are connected with

the ground by two hinges A and B and line AB does not pass through the inter-

mediate hinge C.
This structure has four unknown reactions, i.e., two vertical reactions RA, RB

and two horizontal reactions HA, HB. For their determination, three equilibrium

equations can be formulated considering the structure in whole. Since bending

moment at the hinge C is zero, this provides additional equilibrium equation.

It means that the sum of the moments of all external forces, which are located on

the right (or on the left) part of the structure with respect to hinge C is zero

X
left

MC ¼0 or
X
right

MC ¼0 (2.2)

These four equations of equilibrium determine all four reactions at the supports.

Therefore, three-hinged arch is a geometrically unchangeable and statically deter-

minate structure.

The fundamental feature of arched structure is that horizontal reactions appear

even if the structure is subjected to vertical load only. These horizontal reactions

HA ¼ HB ¼ H called as a thrust; such types of structures are often called as thrusted
structures.

It will be shown later that at any cross section of the arch, the bending moments,

shear, and axial forces arise. However, the bending moments and shear forces are

considerably smaller than corresponding internal forces in a simply supported beam

covering the same span and subjected to the same load. This is the fundamental

property of the arch thanks to thrust. Thrusts in both supports are oriented toward

each other and reduce the bending moments that would arise in beams of the same

span and load. Therefore, the height of the cross section of the arch can be much less

then the height of a beam to resist the same loading. So the three-hinged arch is

more economical than simply supported beam, especially for large-span structures.

Introducing a tie into the system increases the number of constraints by one and

therefore, in order for the arch with a tie to remain statically determinate, one of the

x A 

C 

B 

y 

RA RB

Tie

b

x A 

C 

l 

f
B 

y 

HA HB

RA RB

a

y= f(x) 

x

y 

j

Fig. 2.1 (a, b) Design diagram of three-hinged arch without tie and with elevated tie
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pinned support must be replaced by a rolled support. A tie changes the distribution

of internal forces in arch. The tie may be located at the level of the supports or

above them. Arch with an elevated tie is shown in Fig. 2.1b. If tie is connected with

arch by means of hinges, then the tie is subjected only to a tensile internal force.

In the case of vertical loads, which act on the arch with a tie, the horizontal

reactions of supports equals zero while an extended force (thrust) arises in a tie.

Let us have a quick look at the structure shown in Fig. 2.2. Is this an arch? The

arch is characterized by two fundamental markers such as a curvilinear axis and

appearance of the thrust. Therefore, the structure in Fig. 2.2 presents the curvilinear

trustless simply supported element, i.e., this is just a member with a curvilinear axis,

but not an arch.

It is obvious that, unlike the beam, in this structure the axial compressed forces

arise; however, the distribution of bending moments for this structure and for a

beam of the same span and load will not differ, while the shear forces are less in this

structure than that in beam. Thus, the fundamental feature of the arch (decreasing

of the bending moments due to appearance of the thrust) for structure in Fig. 2.2

is not observed.

2.2 Reactions of Supports and Internal Forces

Let us consider a three-hinged symmetrical arch with intermediate hinge C at the

highest point of the arch and with supports A and B at one elevation. Design

diagram of the corresponding three-hinged arch is presented in Fig. 2.3; the span

and rise of the arch are labeled as l and f, respectively. Equation of central line of

the arch is y ¼ yðxÞ.

Reactions of Supports

The stress analysis, and especially, construction of influence lines for internal

forces of the three-hinged arch may be easily and elegantly performed if the

conception of the “reference (or substitute) beam” is introduced. The reference

A B

P

RBRA

Fig. 2.2 Simply supported thrustless curvilinear member
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beam is a simply supported beam of the same span as the given arch and subjected

to the same loads, which act on the arch (Fig. 2.3).

The following reactions arise in arch: RA; RB; HA; HB. The vertical reactions of

three-hinged arches carrying the vertical loads have same values as the reactions of

the reference beam

RA ¼ R0
A; RB ¼ R0

B: (2.3)

The horizontal reactions (thrust) at both supports of three-hinged arches

subjected to the vertical loads are equal in magnitude and opposite in direction

HA ¼ HB ¼ H: (2.4)

Bending moment at the hinge C of the arch is zero. Therefore, by definition of

the bending moment

MC ¼ RA
l

2
� P1

l

2
� x1

� �
� P2

l

2
� x2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M0
C

�HA � f ¼ 0:

Underlined set of terms is the bending moment acting over section C of the

reference beam (this section is located under the hinge of the arch). Therefore, last

equation may be rewritten in the form

M0
C � HA � f ¼ 0;

R0
A R0

B

l

Pn

C

Reference beam

P2P1

x2

x1

HB

A

C

l

f

B

y

xk

RB

HA

yk

jk

RA

P1
Pnk

TangentP2

y(x)

Fig. 2.3 Three-hinged arch. Design diagram and reference beam
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which immediately allows us to calculate the thrust

H ¼ M0
C

f
: (2.5)

Thus, the thrust of the arch equals to bending moment at section C of the

reference beam divided by the rise of the arch.

Internal Forces

In any section k of the arch, the following internal forces arise: the bending moment

Mk, shear Qk, and axial force Nk. The positive directions of internal forces are

shown in Fig. 2.4.

Internal forces acting over a cross section k may be obtained considering the

equilibrium of free body diagram of the left or right part of the arch. It is convenient

to use the left part of the arch. By definition

Mk ¼ RAxk �
X
left

Piðxk � xiÞ � Hyk;

Qk ¼ RA �
X
left

P

 !
cos’k � H sin’k;

Nk ¼ � RA �
X
left

P

 !
sin’k � H cos’k;

where Pi are forces which are located at the left side of section k; xi are

corresponding abscises of the points of application; xk and yk are coordinates

of point k; and ’k is the angle between the tangent to the center line of the arch at

point k and a horizontal.

xk

H

Tangent

RA

Mk
Nk

Qkyk

jk

k
P2

P1

x2

x1

x

y

Fig. 2.4 Positive internal forces at any section k
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These equations may be represented in the following convenient form

Mk ¼ M0
k � Hyk;

Qk ¼ Q0
k cos’k � H sin’k;

Nk ¼ �Q0
k sin’k � H cos’k; (2.6)

where expressions

M0
k ¼ RAx�

X
left

Piðx� xiÞ; and Q0
k ¼ RA �

X
left

P;

represent the bending moment and shear force at section k for the reference beam

(beam’s bending moment and beam’s shear).

Analysis of (2.5) and (2.6)

1. Thrust of the arch is inversely proportional to the rise of the arch.

2. In order to calculate the bending moment in any cross section of the three-hinged

arch, the bending moment at the same section of the reference beam should be

decreased by the value Hyk. Therefore, the bending moment in the arch less

than that of in the reference beam. This is the reason why the three-hinged arch

is more economical than simply supported beam, especially for large-span

structures.

In order to calculate shear force in any cross section of the three-hinged arch,

the shear force at the same section of the reference beam should be multiplied

by cos ’k and this value should be decreased by H sin ’k.

3. Unlike beams loaded by vertical loads only, there are axial forces, which arise

in arches loaded by vertical loads only. These axial forces are always

compressed.

Example 2.1. Design diagram of the three-hinged circular arch subjected to fixed

loads is presented in Fig. 2.5a. The forces P1 ¼ 10 kN, P2 ¼ 8 kN, q ¼ 2 kN/m.

It is necessary to construct the internal force diagrams M, Q, N.

Solution. Reference beam. The reactions are determined from the equilibrium

equations of all the external forces:

X
MB ¼ 0 ! �R0

A � 32þ P1 � 24þ q� 8� 12þ P2 � 4 ¼ 0 ! R0
A ¼ 14:5 kN;X

MA ¼ 0 ! R0
B � 32� P1 � 8� q� 8� 20� P2 � 28 ¼ 0 ! R0

B ¼ 19:5 kN:

The bending moment M0 and shear Q0 diagrams for reference beam are pre-

sented in Fig. 2.5b. At point C (x ¼ 16 m), the bending moment isM0
C ¼ 152 kN m.

Three-hinged arch. The vertical reactions and thrust of the arch are

RA ¼ R0
A ¼ 14:5 kN; RB ¼ R0

B ¼ 19:5 kN; H ¼ M0
C

f
¼ 152

8
¼ 19 kN:
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For construction of internal forces diagrams of the arch, a set of sections has to be

considered and for each section internal forces should be calculated. All computa-

tions concerning geometrical parameters and internal forces of the arch are presented

in Table 2.1. The column 0 contains the numbers of sections. For specified sections A,
1–7, and B, the abscissa x and corresponding ordinate y (in meters) are presented in

columns 1 and 2, respectively. Radius of curvature of the arch is

R ¼ f

2
þ l2

8f
¼ 8

2
þ 322

8� 8
¼ 20m:

Coordinates y are calculated using the following expression

yðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400� ð16� xÞ2

q
� 12 ðmÞ:

Design diagram 

RA

R0
A

RB

q=2kN/m 

P2=8kN P1=10kN 

A

l= 32m

l = 32m

C

f= 8m
B

H H

1

4 53
2

k

7

6
n

4m4m

y

x

a

P2P1 q

C

BA

R0
B

Reference
beam

11.5 

Q0 (kN) 
14.5 4.5

19.5 

+

−

b

154 

M0 (kNm) 

116 

152 

78 

124 

58 

125 134

Fig. 2.5 (a) Design diagram of three-hinged circular arch and (b) reference beam and

corresponding internal forces diagrams
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Columns 3 and 4 contain values of sin ’ and cos ’, which are calculated by the

formula

sin’ ¼ l� 2x

2R
¼ 32� 2x

40
; cos’ ¼ yþ R� f

R
¼ yþ 12

20
:

Values of bending moment and shear for reference beam, which are presented

in columns 5 and 7, are taken directly from the corresponding diagrams in Fig. 2.5b.

Values for Hy are contained in column 50. Columns containing separate terms

for Q0 cos’; Q0 sin’; H cos’; H sin’ are not presented. Values of bending

moment, shear, and normal forces for three-hinged arch are tabulated in columns 6,

8, and 9. They have been computed using (2.6). For example, for section A we have

QA ¼ Q0
A cos’A � H sin’A ¼ 14:5� 0:6� 19� 0:8 ¼ �6:5 kN;

NA ¼ �Q0
A sin’A � H cos’A ¼ �14:5� 0:8� 19� 0:6 ¼ �23 kN:

The final internal force diagrams for the arch are presented in Fig. 2.6. Bending

moment diagram is shown on the side of the extended fibers, thus the signs of

bending moments are omitted. As for beam, the bending moment and shear

diagrams satisfy to Schwedler’s differential relationships. In particularly, if at any

point a shear changes its sign, then a slope of the bending moment diagram equals

zero, i.e., at this point the bending moment has local extreme (e.g., points 2, 7, etc.).

It can be seen that the bending moments which arise in cross sections of the arch are

much less than that of in a reference beam.

It is obvious that for supports R2
A þ H2 ¼ Q2

A þ N2
A and R2

B þ H2 ¼ Q2
B þ N2

B.

2.3 Rational Shape of the Arch

The shape of the arch, which is subjected to a given fixed load, is called rational if

the bending moments in the cross section of the arch equal to zero. An example of a

rational arch could be in the form of a circular arch which is loaded by uniform

radial (hydrostatic) load [Rzh82].

2.3.1 Vertical Load Does Not Depend on the Shape of the Arch

In this case, the reactions of the arch and bending moments for reference beam

do not depend on the shape of the arch. Thus, for a rational arch, we have the

condition

Mk ¼ M0
k � Hyk ¼ 0; (2.7)
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where M0
k is a bending moment in the reference simply supported beam; H is a

thrust of the arch; yk is a vertical coordinate of the point on the axis of the arch.

Therefore, the shape of the rational arch is determined by its y coordinate

yk ¼ Mo
k

H
: (2.8)

It is easy to prove the following statement: if a three-hinged arch is subjected to

a vertical load and the vertical ordinates y of the arch, measured from the support

line AB, are proportional to corresponding ordinates of the bending moment

diagram of the reference beam, then the bending moments at all sections of the

arch are equal to zero. This statement is true for any position of the intermediate

hinge C [Rab60].

Design diagram
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Fig. 2.6 Design diagram of three-hinged circular arch. Internal forces diagrams
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Indeed, let for any section k of the arch, the y-ordinate of the axis and bending

moment of the reference beam be related by the formula yk ¼ nM0
k , where n is an

arbitrary number. Bending moment at section k is

Mk ¼ M0
k � Hyk ¼ M0

k � HnM0
k ¼ M0

kð1� nHÞ:

For crown hinge C, the bending moment MC ¼ M0
Cð1� nHÞ ¼ 0: Since

M0
C 6¼ 0, then ð1� nHÞ ¼ 0.

Thus, the bending moment at any section equals to zero.

Example 2.2. Three-hinged symmetric arch of span l and rise f is loaded by a

uniformly distributed load q within the entire span. Origin is placed on the left

support and the axis x is directed to right. Expression for bending moment of the

reference beam is M0
x ¼ qxðl� xÞ=2.

The thrust of the arch is H ¼ M0
C=f ¼ ql2=ð8f Þ. Therefore, the required equation

of the axis of the arch becomes

yðxÞ ¼ M0
x

H
¼ 4f

l2
xðl� xÞ:

Thus, if a uniformly distributed vertical load acts within the entire span of the

three-hinged parabolic arch, then the bending moments do not arise in the arch.

Note, if a given load is governed by the law qðxÞ ¼ q0 þ kx, then the bending

moment diagram and the rational axis of the arch are characterized by third-order

polynomials [Kis60].

2.3.2 Vertical Load Depends on Arch Shape

Let us consider a three-hinged arch load as shown in Fig. 2.7. We can see that a

shape of the arch determine the value of load. According to the definition, in the

case of a rational arch, only axial forces arise in the cross sections.

Free body diagram for infinitesimal element i–j is shown in Fig. 2.7; horizontal

projection of this element is dx. Equilibrium equation

X
X ¼ N cos’� ðN þ dNÞ cosð’þ d’Þ ¼ 0;

leads to d(N cos’Þ ¼ 0. It means that

N cos’ ¼ const ¼ H; (2.9)

where H is the thrust of the arch.
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Equilibrium equation

X
Y ¼ N sin’þ qðxÞdx� ðN þ dNÞ sinð’þ d’Þ ¼ 0 leads to

d

dx
ðN sin’Þ ¼ qðxÞ:

(2.9a)

Since N ¼ H cos’= , (2.9a) can be rewritten as follows

d

dx
ðH tan’Þ ¼ qðxÞ or d

dx
H
dy

dx

� �
¼ H

d2y

dx2
¼ qðxÞ:

Thus, the equation of the rational axis of the arch in the case of a load, which

depends on the shape of the arch obeys the differential equation [Kis60]

d2y

dx2
¼ qðxÞ

H
: (2.10)

For each specified load, the problem of determining the rational shape of the arch

comes down to integration of (2.10).

Example 2.3. Symmetrical three-hinged arch of span l and rise f is subjected to

vertical load q(x), which consists of two parts. One part of load, q0, is uniformly

distributed within the entire span of the arch. The second part of load depends on the

shape of the arch. Assume that this part of the load is proportional to coordinate у.
Thus, the total load becomes qðxÞ ¼ q0 þ g� y. Design diagram of right-hand part

of the arch and location of the x and y axis are shown in Fig. 2.8.

Differential equation (2.10) becomes

d2y

dx2
¼ q0 þ g� y

H
or

d2y

dx2
� k2y ¼ q0

g
k2; k2 ¼ g

H
:

Its solution and first derivative are

y ¼ A sinh kxþ B cosh kx� q0
g
;
dy

dx
¼ Ak cosh kxþ Bk sinh kx:

j 
i 

N 

N+dN

q(x)dx

j+dj

j

B A
y

x
C

dx
q(x)

j 
i 

y(x)

Fig. 2.7 Three-hinged arch subjected to load which depends on the shape of the arch
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Constants of integration are found from the boundary conditions for symmetrical

arch:

1. At x ¼ 0 (indeterminate hinge C), dy/dx ¼ 0. This condition leads to A ¼ 0.

2. At x ¼ 0 y ¼ 0, so B ¼ q0 g= .

Equation of the axis of the rational shape of the arch becomes

yðxÞ ¼ q0
g
ðcosh kx� 1Þ:

This curve is called a catenary [Kis80]. Some data for catenary arch with the

given span l and rise f and parameter of the load d ¼ qmax=q0 are presented below.

Equation of the shape of the arch is

y ¼ f

d� 1
ðcosh kx� 1Þ;

where relationship between parameters k and d is

d ¼ cosh
kl

2
; so k ¼ 2

l
arc cosh d:

The slope of the axis of the arch is

tan’ ¼ f

d� 1
k sinh kx:

The thrust H of the arch, axial force N in any cross section of the arch, and

maximum axial force Nmax are:

H ¼ q0ðd� 1Þ
fk2

; N ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2’

p
; Nmax ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2f 2

dþ 1

d� 1

r
:

Vertical component of the reaction of support is

V ¼ H
f

d� 1
k sinh

kl

2
:

q0

B
y

x

C
y(x)

g.y

qmax

l / 2

f

Fig. 2.8 Load change according to the shape of the arch, q(x) ¼ q0 + gy
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2.3.3 Radial Load

Let us consider an arch with arbitrary equation for the central axis. The arch is

loaded by a radial load. It means that the load is directed along the radius of

curvature at each infinitesimal element of the arch. Design diagram of such element

of length ds, central angle 2da, and radius of curvature r is shown in Fig. 2.9. The

load q is directed to the center of curvature; the load q should be treated as

uniformly distributed within the portion ds. Since the arch is rational, then bending

moments are absent.

From the equilibrium equations

X
MO ¼ Nr� ðN þ dNÞr ¼ 0;

we get dN ¼ 0. It means that in the case of a radial load, the axial force in arch is

constant.

Since sin da ffi da and ds ¼ r� 2da, then the equilibrium equation in projec-

tion of all forces onto the normal axis

X
n ¼N sin daþ ðN þ dNÞ sin da� qds ¼ 0;

leads to the following expression for the radius of curvature r ¼ N q= . Curvature

of the axis of the rational arch is proportional to the intensity q of the external load.
In the case of a uniformly distributed radial load (q ¼ const), the axis of the rational

arch presents a circle [Kis60].

The simplest problems of optimal three-hinged and redundant uniform arches

are presented in [Gol80]: in these problems, it is necessary to find the shape of the

arch which minimize its volume. Different types of loading are considered. Among

them are fixed, moving, and wind loads.

2.4 Influence Lines for Reactions and Internal Forces

This section is devoted to construction of influence line for reactions, thrust, and

internal forces. Three precise approaches are considered. They are the analytical

approach, the nil points of influence lines, and fictitious beam methods. Influence

N 

N+dN

da r

ds

n 

0

q

Fig. 2.9 Infinitesimal element subjected to radial load and axial force
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lines method for structural analysis was developed by Winkler (1835–1888) and

independently by Mohr (1835–1918) in 1868.

2.4.1 Analytical Approach

Equations (2.3), (2.5), and (2.6) can be used for deriving the equations for influence

lines. The equations for influence lines for vertical reactions of the arch are derived

from (2.3). Therefore, the equations for influence lines become

ILðRAÞ ¼ IL RO
A

� �
; ILðRBÞ ¼ IL RO

B

� �
: (2.11)

The equation of influence lines for thrust is derived from (2.5). Since for a given

arch, a rise f is a fixed number, then the equations for influence lines becomes

ILðHÞ ¼ 1

f
� IL MO

C

� �
: (2.12)

Thus, influence line for trust H may be obtained from the influence line for

bending moment at section C of the reference beam, if all ordinates of the latter will

be divided by parameter f.
The equations for influence lines for internal forces at any section k may be

derived from (2.6). Since for a given section k, the parameters yk, sin ’k, and cos ’k

are fixed numbers, then the equations for influence lines become

ILðMkÞ ¼ IL MO
k

� �� yk � ILðHÞ;
ILðQkÞ ¼ cos’k � IL QO

k

� �� sin’k � ILðHÞ;
ILðNkÞ ¼ � sin’k � IL QO

k

� �� cos’k � ILðHÞ: (2.13)

In order to construct the influence line for bending moment at section k, it is
necessary to sum two graphs: one of them is influence line for bending moment at

section k for reference beam and second is influence line for thrust H with all

ordinates of which have been multiplied by a constant factor (�yk).
Equation of influence lines for shear also has two terms. The first term presents

influence line for shear at section k in the reference beam, all the ordinates of which

have been multiplied by a constant factor cos ’k. The second term presents the

influence line of the thrust of the arch, all the ordinates of which have been

multiplied by a constant factor ð� sin’kÞ. Summation of these two graphs leads

to the required influence line for shear force at section k. Similar procedure should

be applied for the construction of influence line for axial force. Note that both terms

for axial force are negative.
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Figure 2.10a presents the arched structure consists of the arch itself and

overarched construction, which includes the set of simply supported beams and

vertical posts with hinged ends. Unit load, which moves along the horizontal

beams, is transmitted over the posts on the arch at discrete points. Thus, this design
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Fig. 2.10 Three-hinged arch. (a) Design diagram; (b) influence lines for reactions of the arch; and

(c) influence lines for internal forces at section k for reference beam
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diagram corresponds to indirect load application. Parameters of the arch are same as

in Fig. 2.5a.

It is required to construct the influence lines for vertical reactions, thrust and for

bending moment Mk, shear Qk, and normal force Nk for section k.

Influence Lines for Reactions

According to (2.11), influence lines for vertical reactions RA and RB of the arch do

not differ from influence lines for reaction of supports of a simply supported beam.

Influence line for thrust may be constructed according to (2.12); the maximum

ordinate of influence line for bending moment at section C of the reference beam

equals to acbc l= ¼ 8m. Therefore, the maximum ordinate of influence line for

thrust H of the arch becomes ð1=f Þ � ðacbc=lÞ ¼ l=4f ¼ 32=4� 8 ¼ 1. Influence

lines for reactions of supports of the arch and internal forces for reference beam are

shown in Fig. 2.10b, c. Indirect load application is taken into account [Kar10].

Influence Lines for Internal Forces at Section k

Section k is characterized by the following parameters: ak ¼ 10 m, bk ¼ 22 m, yk ¼
7.0788 m, sin ’ ¼ 0.30, cos ’ ¼ 0.9539 (Table 2.1). Algorithms for the construc-

tion of influence lines of internal forces for arch are described in Sect. 2.4.1.

Bending moment. Influence line forM at section k may be constructed according to

(2.13).

ILðMkÞ ¼ IL M0
k

� �� yk � ILðHÞ: (2.13a)

Step 1. Influence line for bending moment at section k of reference beam M0
k

presents the triangle with maximum ordinate akbk l= ¼ 10� 22 32= ¼ 6:875m at

sections k and 5.0 m at section C (Figs. 2.10 and 2.11).

Step 2. Influence line for thrust H presents triangle with maximum ordinate

l ð4f Þ= ¼ 1 at section C. Term yk � ILðHÞ presents the similar graph; the maximum

ordinate is yk � 1 ¼ 7:0788m. So the specified ordinates of graph yk � ILðHÞ at
section k and C are 4.42425 and 7.0788 m, respectively (Fig. 2.11).

Step 3. Procedure (2.13a) is presented in Fig. 2.11, construction of influence line

Mk. Since both terms in (2.13a) has different signs, then both graphs, IL M0
k

� �
and

yk � ILðHÞ should be plotted on the one side on the basic line. The ordinates of

required ILðMkÞ will be located between these both graphs. Specified ordinates of

final influence line (2.13a) at section k and C are

6:875� 4:42425 ¼ 2:45075m and 5:0� 7:0788 ¼ �2:0788m:
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Step 4. Influence line between joins 2 and 3 presents a straight line because of

indirect load application [Kar10]; this connected line is shown by solid line. Final

influence line ILðMkÞ is shown in Fig. 2.11.

Shear force. This influence line may be constructed according to equation

ILðQkÞ ¼ cos’k � IL Q0
k

� �� sin’k � ILðHÞ: (2.13b)

Step 1. Influence line for shear at section k for the reference beam is shown in

Fig. 2.10c; the specified ordinates at supports A and B equal to 1.0. The first term

cos’k � IL Q0
k

� �
of (2.13b) presents a similar graph with specified ordinates

cosfk ¼ 0:954 at supports A and B, so ordinates at the left and right of section k
are � 0:298 and 0.656, while at crown C is 0.477.

Step 2. Influence line for thrust is shown in Fig. 2.10b; the specified ordinates at

crown C equals to 1.0. The second term sin’k � ILðHÞ of (2.13b) presents a

similar graph with specified ordinates 0:3� 1:0 ¼ 0:3 at crown C. Specified ordi-

nate at section k is 0.1875.
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+ –
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 yk

+
–*
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Inf. line Mk (m)
Connected line 

Fig. 2.11 Three-hinged arch. Design diagram and construction of influence line for bending

moment at section k of the arch
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Step 3. Procedure (2.13b) is presented in Fig. 2.12. As in case for bending moment,

both terms in (2.13b) has different signs, therefore both graphs cos’k � IL Q0
k

� �
and sin’k � ILðHÞ should be plotted on the one side on the basic line. Ordinates

between both graphs present the required ordinates for influence line for shear.

Specified ordinates of final influence line (2.13b) at left and right of section k are

0:298þ 0:1875 ¼ 0:4855 and 0:656� 0:1875 ¼ 0:4685:

At crown C, ordinate of influence line Qk is 0:477� 0:3 ¼ 0:177.

Step 4. Influence line between joins 2 and 3 presents a straight line; this connected

line is shown by a solid line. Final influence line ILðQkÞ is shown in Fig. 2.12.

Axial force. This influence line may be constructed according to the following

equation

ILðNkÞ ¼ � sin’k � IL Q0
k

� �� cos’k � ILðHÞ: (2.13c)
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Fig. 2.12 Three-hinged arch. Design diagram and construction of influence line for shear at

section k of the arch
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Step 1. Influence line for shear at section k for the reference beam is shown in

Fig. 2.10c. The first term sin’k � IL Q0
k

� �
of (2.13c) presents a similar graph with

specified ordinates sin’k ¼ 0:30 at supports A and B, so at the left and right of

section k ordinates are 0.09375 and � 0:20625, while at crown C is � 0:15.

Step 2. Influence line for thrust is shown in Fig. 2.10b; the specified ordinates

at crown C equals to 1.0. The second term cos’k � ILðHÞ of (2.13c) presents a
similar graph with specified ordinates 0:9539� 1:0 ¼ 0:9539 at crown C. Specified
ordinate at section k is 0.59618.

Step 3. Procedure (2.13c) is presented in Fig. 2.13. Both terms in (2.13c) has same
signs; therefore, both graphs, sin’k � IL Q0

k

� �
and cos’k � ILðHÞ, should be

plotted on the different sides on the basic line. Ordinates for required ILðNkÞ
are located between these both graphs. Specified ordinates of final influence

line (2.13c) at left and right of section k are � ð0:59618� 0:09375Þ ¼
�0:50243 and � ð0:59618þ 0:20625Þ ¼ �0:80843:
At crown C, ordinate of influence line Nk is � ð0:9539þ 0:15Þ ¼ �1:1039.

Step 4. Influence line between joins 2 and 3 presents a straight line; this connected

line is shown by a solid line. Final influence line ILðNkÞ is shown in Fig. 2.13.

Properties of the Influence Lines for Internal Forces

1. Influence line for bending moment has significantly less ordinates than for

reference beam. This influence line contains the positive and negative ordinates.

It means that at section k, extended fibers can be located below or above the

neutral line depending on where the load is placed.
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Fig. 2.13 Three-hinged arch. Design diagram and construction of influence lines for axial force at

section k of the arch
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2. Influence line for shear, as in the case of reference beam, has two portions with

positive and negative ordinates; all ordinates are significantly less than that of in

the reference beam.

3. Influence line for axial force has only negative ordinates. So in case of arbitrary

load, the axial forces in arch are always compressed.

2.4.2 Nil Points Method

Each influence lines shown in Figs. 2.11–2.13 has the specified point labeled as (*).

These points are called as nil (or neutral) point of corresponding influence line.

Such points of influence lines indicate a position of the concentrated load on the

arch, so internal forcesM, Q, and N in the given section k would be zero. Nil points
may be used as simple procedure for the construction of influence lines for internal

forces and checking the influence lines which were constructed by the analytical

approach. This procedure for three-hinged arch of span l is discussed below.

Bending Moment

Step 1. Find nil point (NP) of influence lineMk. If load P is located on the left half of

the arch, then reaction of the support B pass through crown C. Bending moment at

section k equals zero, if reaction of support A pass through point k. Therefore, NP
(Mk) is the point of intersection of line BC and Ak (theorem about three concurrent

forces). The nil point (*) is always located between the crown C and section k
(Fig. 2.14).
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Fig. 2.14 Construction of influence line Mk using the nil point method
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Step 2. Lay off along the vertical passing through the support A, the abscissa of

section k, i.e., xk.

Step 3. Connect this ordinate with nil point and continue this line till a vertical

passing through crown C and then connect this point with support B.

Step 4. Take into account indirect load application; connecting line between joints 2
and 3 is not shown.

Location of NP(Mk) may be computed by the formula

uM ¼ l f xk
ykl2 þ xk f

: (2.14)

Shear Force

Step 1. Find nil point (NP) of influence lineQk. If load P is located on the left half of

the arch, then reaction of the support B pass through crown C. Shear force at section
k equals zero, if reaction of support A will be parallel to tangent at point k.
Therefore, NP(Qk) is point of intersection of line BC and line which is parallel to

tangent at point k. For a given design diagram and specified section k, the nil point
(*) is fictitious one (Fig. 2.15).

Step 2. Lay off along the vertical passing through the support A, the value cos’k.

Step 3. Connect this ordinate with nil point. A working zone of influence line is

portion between section k and vertical passing through crown C – right-hand portion
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Fig. 2.15 Symmetrical three-hinged arch. Construction of influence line Qk using the nil point

method. The case of fictitious nil point
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1 (RHP-1). Then connect the point under crown Cwith support B – right-hand portion
2 (RHP-2).

Step 4. Left-hand portion (LHP) is parallel to right-hand portion 1 and connects two
points: zero ordinate at support A and point under section k.

Figure 2.16 presents a nonsymmetrical three-hinged arch with real nil point for
influence line Qk; this point is located within the span of the arch. Therefore, we

have one portion with positive shear and two portions with negative shear.

Location of NP(Qk) for cases in Figs. 2.15 and 2.16 may be computed by the

formula

uQ ¼ l tan b
tan bþ tan’k

: (2.15)

Axial Force

The nil point of influence line Nk is point of intersection of line BC and line passing

through support A perpendicular to tangent at section k.

Step 1. Find nil point (NP) of influence line Nk. If load P is located on the left half of

the arch, then reaction of the support B pass through crown C. Axial force at section

k equals zero, if reaction of support A will be perpendicular to tangent at point k.
The nil point (*) is located beyond the arch span (Fig. 2.17).

Step 2. Lay off along the vertical passing through the support A, the value sin’k.

Inf. line Qk

RHP -1cosjk

+

– *
RHP -2LHP

uQ

A

C

B

P = 1
NP (Qk)Tangent at k

Parallel to
tangent at kjk b

k

Fig 2.16 Nonsymmetrical three-hinged arch. Construction of influence line Qk using the nil point

method. The case of real nil point
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Step 3. Connect this ordinate with nil point and continue this line till vertical passes
through crown C. A working zone is portion between section k and vertical passing
through crown C (first right-hand portion RHP-1). Then connect the point under

crown C with support B (second right-hand portion – RHP-2).

Step 4. LHP is parallel to RHP-1 and connects two points: zero ordinate at support A
and point under section k.

Location of NP(Nk) may be computed by the formula

uN ¼ l tan b
tan b� cot’k

: (2.16)

2.4.3 Fictitious Beam Method

Influence lines for internal forces of the three-hinged arch may be constructed as the

bending moment diagram for the fictitious beam subjected to the special type of

loads [Uma72-73].

Influence Line for Mk

Fictitious beam is loaded by two forces Pf
k ¼ 1 at section k and V f

C ¼ yk f= at

section C (Fig. 2.18). For arch in Fig. 2.5a and Table 2.1, we get V f
C ¼ yk=f ¼

7:0788=8 ¼ 0:88485.

Inf. line Nk*
sinjk

NP(Nk)

A

C

B

1

53
2

–

k

7

6

P=1

NP(Nk)

Tangent at k

Perpendicular
to tangent at k

LHP
RHP-1

RHP-2

jk

b

uN

RB

RA

Fig. 2.17 Construction of influence line Nk using the nil point method
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Reactions of fictitious beam are

Rf
A ¼ 1� 22� 0:88485� 16

32
¼ 0:245075 ð"Þ; Rf

B ¼ 0:129925 ð#Þ:

All forces and reactions are dimensionless. Bending moment diagram is shown

on the extended fibers (positive ordinates are placed below the neutral line).

Bending moments at specified points of the fictitious beam are

Mf
k ¼ Rf

A � ak ¼ 0:245075� 10 ¼ 2:4507m;

Mf
C ¼ �Rf

B �
l

2
¼ �0:129925� 16 ¼ �2:0788 m:

These ordinates of influence line forMk have been obtained earlier and presented

in Fig. 2.11.

Influence Line for Qk

Fictitious beam is loaded by the couple Mf
k ¼ cos’k ¼ 0:9539 (clockwise) at

section k and force V f
C ¼ sin’k f= ð1/mÞ (upwards) at section C (Fig. 2.19). For

arch in Fig. 2.5a and Table 2.1, we get V f
C ¼ sin’k=f ¼ 0:3=8 ¼ 0:0375 ð1/mÞ.

A

C

B
1

3
2

k

ak=10m

P=1

 l/2=16m

yk=7.0788
f=8m

Bending moment
diagram for fictitious
beam (Inf. line Mk)

+

2.0788 

2.4507 

A B
Fictitious beam 

= 1f
Pk

fykVC
f =

f
RB

f
RA

–

Fig. 2.18 Three-hinged arch. Fictitious beam for Mk is loaded by two forces Pf
k ¼ 1 at section k

and V f
C ¼ yk f= ; the bending moment diagram presents the influence line forMk for the entire arch
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Reactions of fictitious beam are

Rf
A ¼ 0:048559 ð1/mÞð#Þ and Rf

B ¼ 0:011059 ð1/mÞð"Þ:

Bending moments at specified points of the fictitious beam are

Mf ;left
k ¼ �Rf

A � ak ¼ �0:048559 � 10 ¼ �0:4855;

Mf ;right
k ¼ �Rf

A � ak þ 0:9539 ¼ �0:048559� 10þ 0:9539 ¼ 0:4684;

Mf
C ¼ Rf

B �
l

2
¼ 0:011059� 16 ¼ 0:177:

Fictitious bending moments are dimensionless. These ordinates of influence line

for Qk have been obtained earlier and presented in Fig. 2.12.

Influence Line for Nk

Fictitious beam is loaded by the couple Mf
k ¼ sin’k ¼ 0:30(counterclockwise)

at section k and force V f
C ¼ cos’k=f ¼ 0:9539=8 ¼ 0:11924 ð1/mÞ (upwards) at

section C (Fig. 2.20).

Bending moment
diagram for fictitious
beam (Inf. line Qk)

+
A B

Fictitious beam 

fVC
f
= sinjk

Mk
f

cosj=

f
RB

f
RA

0.177 
0.4684 

0.4855 

–

Fig. 2.19 Fictitious beam for Qk. Bending moment diagram for fictitious beam presents the

influence line Qk for the entire arch

Bending moment
diagram for fictitious
beam (Inf. line Nk)

A B
Fictitious beam 

1.1039 0.80243 

–
0.50243 

fVC
f

cosjk=Mk
f

sinj=

f
RB

f
RA

Fig. 2.20 Fictitious beam for Nk. Bending moment diagram for the fictitious beam presents the

influence line Nk for the entire arch
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Reactions of fictitious beam are

Rf
A ¼ 0:05024 ð1/mÞð#Þ and Rf

B ¼ 0:06899 ð1/mÞð#Þ:

Bending moments at specified points of the fictitious beam are

Mf ;left
k ¼ �Rf

A � ak ¼ �0:050243� 10 ¼ �0:50243;

Mf ;right
k ¼ �Rf

A � ak � sin’k ¼ �0:50243� 0:30 ¼ �0:80243;

Mf
C ¼ �Rf

B �
l

2
¼ �0:06899� 16 ¼ �1:1039:

Fictitious bending moments are dimensionless. These ordinates of influence line

for Nk have been obtained earlier and presented in Fig. 2.13.

2.4.4 Application of Influence Lines

Influence lines, which describe the variation of any function Z (reaction, bending

moment, shear, etc.) in the fixed section due to moving concentrated unit load

P ¼ 1 may be effectively used for calculation of this function Z due to arbitrary
fixed and moving loads [Dar89], [Kar10].

Fixed load. Three types of fixed loads will be considered: concentrated loads Pi,

uniformly distributed loads qj, and couples Mk (Fig. 2.21).

Any function Z as a result of application of these loads may be calculated by the

formula

Z ¼ �
X

Piyi �
X

qjoj �
X

Mk tan ak; (2.17)

where y is the ordinates of influence line for function Z at the point where force P is

applied;o is the area of influence line graph for function Z within the portion where

load q is applied; ak is the angle between the x-axis and the portion of influence line
for function Z within which M is applied.

y1 y2

w1 w2
a

q1
P1 P2 M

Inf. line for Z

q2

Fig. 2.21 Application of influence line for fixed loads
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The sign of Z due by load P depends on the sign of ordinate y of influence line.
The sign of the area o coincides with sign of ordinates of influence line; if the

influence line within the load limits has different signs, then the areas must be taken

with appropriate signs. If couple tends to rotate influence line toward base line

through an angle less than 90�, then the sign is positive.

Formula (2.17) reflects the superposition principle and may be applied for any

type of statically determinate and redundant structures.

Example 2.4. Assume that arch is subjected to fixed loads as shown in Fig. 2.5a.

Calculate the reactions and internal forces of the arch at section k using influence lines.

Solution. Reactions of supports. Ordinates of influence line for RA at the points

of application the loads P1 and P2 are 0.75 and 0.125, respectively (Fig. 2.10b).

The area of the influence line under the uniformly distributed load is

o ¼ 0:5þ 0:25

2
� 8 ¼ 3:0 ðmÞ:

Therefore, the reaction RA ¼ P1 � 0:75þ q� 3þ P2 � 0:125 ¼ 14:5 kN.
The thrust H of the arch, using influence line (Fig. 2.10b) equals

H ¼ P1 � 0:5þ q
1þ 0:5

2
� 8þ P2 � 0:25 ¼ 19 kN:

Internal forces in section k. The internal forces can be found in a similar way, using

the relevant influence lines (Figs. 2.11–2.13). They are following:

Mk ¼ P1 � 1:96� q
2:0788þ 1:0394

2
� 8� P2 � 0:5194 ¼ �9:500 kN m

Qk ¼ �P1 � 0:3883þ q
0:177þ 0:0885

2
� 8þ P2 � 0:04425 ¼ �1:405 kN;

Nk ¼ �P1 � 0:40194� q
1:1039þ 0:5519

2
� 8� P2 � 0:2759 ¼ �19:473 kN:

The magnitudes of just found internal forcesMk, Qk, and Nk coincide with those

computed in Example 2.1 and presented in Table 2.1.

These values of reactions coincide with those computed previously (Example 2.1).

Moving loads. Influence line for any function Z allows us to calculate Z for any
position of a moving load, and that is very important, the most unfavorable position

of the moving loads and corresponding value of the relevant function. Unfavorable

(or dangerous) position of a moving load is such position, which leads to the

maximum (positive or negative) value of the function Z. The following types of

moving loads will be considered: one concentrated load, a set of loads, and a

distributed load.

The set of connected moving loads may be considered as a model of moving

truck. Specifications for truck loading may be found in various references, for

example, in the American Association of State and Highway Transportation

Officials (AASHTO). This code presents the size of the standard truck and the
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distribution of its weight on each axle. The moving distributed load may be

considered as a model of a set of containers which may be placed along the loading

counter of the arch at arbitrary position.

Note that the term “moving load” with respect to influence line concept implies

only that position of the load is arbitrary, i.e. this is a static load, which may have

different positions along the beam. The time, velocity of the moving load, and any

dynamic effects are not taken into account. Thus, for convenience, in this section

we will use notion of “moving” or “traveling” load for static load, which may have

different position along the structure.

The most unfavorable position of a single concentrated load is its position at a

section with maximum ordinate of influence line. If influence line has positive and

negative signs, then it is necessary to calculate corresponding maximum of the

function Z using the largest positive and negative ordinates of influence line.

In case of set of concentrated moving loads, we assume that some of loads may

be connected. This case may be applicable for moving cars, bridge cranes, etc. We

will consider different forms of influence line.

Influence Line Forms a Triangle

A dangerous position occurs when one of the loads is located over the vertex of an
influence line; this load is called a critical load. (The term “critical load” for

problems of elastic stability, Chaps. 4 and 5, has a different meaning.) The problem

is to determine which load among the group of moving loads is critical. After a

critical load is known, all other loads are located according to the given distances

between them.

The critical load may be easily defined by a graphical approach. Let the moving

load be a model of two cars, with loads Pi on the each axle (Fig. 2.22). All distance

between forces are given.

Step 1. Trace the influence line for function Z. Plot all forces P1, P2, P3, P4 in order

using arbitrary scale from the left-most point A of influence line; the last point

is denoted as C.

P3

P3

P4

P4

P2

P2

C

B

P1

P1

y1 y2
y3

y4

A
D

a

B
q

A

a b

l
b

Fig. 2.22 Graphical definition of the unfavorable position of load for triangular influence line. (a)

Set of concentrated load and (b) uniformly distributed load of fixed length l

2.4 Influence Lines for Reactions and Internal Forces 83



Step 2. Connect the right most point B with point C.

Step 3. On the base line show point D, which corresponds to the vertex of influence
line and from this point draw a line, which is parallel to the line CB until it intersect

with the vertical line AC.

Step 4. The intersected force (in our case P2) presents a critical load; unfavorable

location of moving cars presented in Fig. 2.22a.

Step 5. Maximum (or minimum) value of relative function is Z ¼PPi � yi.

Influence Line Forms a Polygon

A dangerous position of the set of moving concentrated loads occurs when one or

more loads stand over vertex of the influence line. Both the load and the apex of the

influence line over which this load must stand to induce a maximum (or minimum)

of the function under consideration are called critical. The critical apex of the

influence line must be convex.

In case of uniformly distributed moving load, the maximum value of the function

Z corresponds to the location of a distributed load q, which covers maximum one-

sign area of influence line. The negative and positive portions of influence line must

be considered in order to obtain minimum and maximum of function Z.
The special case of uniformly distributed moving load happens, if load is

distributed within the fixed length l. In case of triangular influence line, the most

unfavorable location of such load occurs when the portion ab ¼ l and base AB will

be parallel (Fig. 2.22b).

Example 2.5. Simply supported beam with two overhangs is presented in Fig. 2.23.

Determine the most unfavorable position of load, which leads to maximum (posi-

tive and negative) values of the bending moment and shear at section k. Calculate
corresponding values of these functions. Consider the following loads: uniformly

distributed load q and two connected loads P1 and P2 (a twin-axle cart with different

wheel loads).

Solution. Influence lines for required functions Z are presented in Fig. 2.23.

Action of a uniformly distributed load q ¼ 1.6 kNm. Distributed load leads to

maximum value of the function if the area of influence lines within the distributed

load is maximum. For example, the positive shear at section k is peaked if load q
covers all portions of influence line with positive ordinates; for minimum shear in

the same section the load q must be applied within portion with negative ordinates.

QkðmaxþÞ ¼ 1:6� 1

2
ð0:3� 3þ 0:4� 4Þ ¼ 2 kN;

Qkðmax�Þ ¼ �1:6� 1

2
ð0:6� 6þ 0:3� 3Þ ¼ �3:6 kN;

MkðmaxþÞ ¼ 1:6� 1

2
10� 2:4 ¼ 19:2 kNm;

Mkðmax�Þ ¼ �1:6� 1

2
ð1:2� 3þ 1:8� 3Þ ¼ �7:2 kNm:
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Positive value of Mk max means that if load is located between AB, the tensile

fibers of the beam at section k are located below longitudinal axis of the beam.

If load is located within the overhangs, then bending moment at section k is

negative, i.e., the tensile fibers at section k are located above the longitudinal axis

of the beam.

Action of the set of loads P1 ¼ 5 kN and P2 ¼ 8 kN. Unfavorable locations of two

connected loads are shown in Fig. 2.23. Critical load for bending moment at section

k (triangular influence line) is defined by the graphical method; the load P2 is a

critical one and it should be placed over the vertex of influence line.

QkðmaxþÞ ¼ 5� 0:4þ 8� 0:2 ¼ 3:6 kN,

Qkðmax�Þ ¼ �ð5� 0:4þ 8� 0:6Þ ¼ �6:8 kN,

MkðmaxÞþ ¼ 5� 1:6þ 8� 2:4 ¼ 27:2 kNm,

Mkðmax�Þ ¼ �ð5� 0:6þ 8� 1:8Þ ¼ �17:4 kNm:

If a set of loads P1 and P2 modeling a crane bridge, then the order of loads is
fixed and cannot be changed. If a set of loads P1 and P2 is a model of a moving car,

then we need to consider the case when a car moves in opposite direction. In this

case, the order of forces from left to right becomes P2 and P1.

q

Inf. line Mk (m)

2.4

+

–

1.80.6

1.6

1.2

Inf. line Qk

1

1
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0.4 0.2
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P1

P1

P1 P2

P1

P1 P2

P2

P2

P2
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2m

6m 4m 3m
k
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Fig. 2.23 Design diagram of the beam, influence lines, and most unfavorable positions of two

connected loads
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2.5 Core Moments and Normal Stresses

This paragraph is devoted to simplifying the procedure to calculate the normal

stresses caused by the simultaneous action of M and N. The concept of the “core

moments” is introduced and their influence lines are constructed. We discuss the

most unfavorable loading of the influence line.

2.5.1 Normal Stresses

Let us consider an arbitrary section nm of the arch. Assume that the load acts in

the one of the main planes of the cross section. The point of application of the

resultant R is shifted from the axial line of the arch by a length e; magnitude of this

force, its direction, and point of application may be determined using a concept

“curve of pressure” as explained in Appendix “Pressure curve”. This force is

resolved into the normal N and shear force Q (Fig. 2.24a).

In the case of an eccentrically loaded bar, the maximum normal stresses, caused

by the bending moment M and compressed force N, arises at the extreme fibers of

the cross section

s ¼ �N

A
�M

W
; (2.18)

where N is the normal component of a force R and the bending momentM ¼ Ne; A,
W, Ix are the area, elastic section modulus, and moment of inertia of the cross

section of the arch, respectively. In the case of a nonsymmetrical section, the elastic

section moduli are Wn ¼ Ix a1= and Wm ¼ Ix a2= , where a1 and a2 are the distances
from the neutral line to an extreme fibers.

For determining the maximum normal stresses due to moving load, it is neces-

sary to load the influence lines for M and N. These influence lines have different

shapes and the influence lines forM can alternate in sign. Therefore, this procedure

becomes cumbersome. However, the two-termed formula (2.18) may be simplified.

n 

m 

axial line Km

Kn 

•

•

R 

e 

km 

a1

kn a2

N 

Q 

a

m 

n 

x

b

Km

km

kn

Kn

Fig. 2.24 (a) Internal forces at section n–m and (b) core of the cross section
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Figure 2.24b presents the core (kern) for rectangular cross section; determination of

its shapes and dimensions for arbitrary cross section may be found in the strength of

materials textbooks. The concept of the core of the cross section was introduced by

Bresse [Bre54], [Tim53], [Tod60]. The top and bottom points of the core are

denoted by Km and Kn.

If a force is applied at the bottom point Kn of the core, then M ¼ N � kn and

normal stresses at the top fibers n equals zero

sn ¼ �N

A
þ M

Wn
¼ �N

A
þ Nkn

Wn
¼ 0: (2.18a)

This equation leads to the formula kn ¼ Wn=A. Similarly, if a force is applied at

the top point Km of the core, then normal stresses at the bottom fibers m equals to

zero and we get km ¼ Wm=A.
If the compressed force N is applied as shown in Fig. 2.24a, then the normal

stress at the bottom point m is

sm ¼ �N

A
� M

Wm
¼ �N

A
� Ne

Wm
¼ � N

Wm

Wm

A
þ e

� �
¼ � N

Wm
ðkm þ eÞ:

The core moment presents the moment of the force N about the top core point Km

Mcore
Km

¼ Nðeþ kmÞ: (2.19)

This moment differs from the usual bending moment by a term Nkm. Finally,
for normal stress in the bottom fibers of the cross section, we get the formula

sm ¼ �Mcore
Km

Wm
: (2.20)

This formula shows that the maximal normal stresses caused by the moment M
and force N equal to the normal stress caused by the core moment only. Similarly,

the normal stress at the upper fibers n may be calculated by the formula sn ¼
Mcore

Kn
=Wn, where core moment

Mcore
Kn

¼ Nðe� knÞ;

presents the moment of the force N about the bottom core point Kn.

2.5.2 Influence Lines for Core Moments

For construction of the influence line for core moments at section k, we will use the
nil point method. This procedure will be the same as for construction of influence
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line for bending moment at section k (Figs. 2.14 and 2.25a, b); indirect load

application is not taken into account.

We show the top and bottom fiber points n and m at section k and denote the

top and bottom core points by Km and Kn (Fig. 2.25). These core points have

coordinates xm and xn. Influence lines for core moments contain additional areas

which are placed between two vertical lines; one of these lines passes through

point k laying on the axis of the arch, and other vertical line passes over the core

point (Fig. 2.25c). Additional areas of influence lines arise because in this section

of the arch the influence line of axial force has a jump. Ordinates of this additional

area of influence line are small and they may be neglected [Dar89]. However, it is

important that the location of the nil points for core moments do not coincides with

nil point for bending moment.

Influence lines for core moments allow us to answer the following question:

which part of influence lines should be loaded by a uniformly distributed load

(or any live load) in order for the tensile normal stresses at extrados (top) fibers of

section k to be maximum.

+
*

Inf. line for moment at core point Kn (m)

+ *
Inf. line for moment at core point Km (m)

Inf. line Mk (m)

xk

xm

xn

+
*uM

b

c
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m
A

Axis of arch
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B 
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xk

P=1

m

xn 

xn 

Kn 

Km

xm 
xm 

k

NP(Mm)
NP(Mk)

NP(Mn)
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–

Fig. 2.25 Three-hinged arch. (a) Design diagram; (b) influence lines for bending momentMk; and

(c) influence lines for core moments at section k
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The stresses at the top fibers n will be tensile if a resultant of all external

left-hand (or right-hand) forces will passes below the bottom core point Kn.

Given this, the moment about the core point Kn will be negative. Therefore, the

load should be placed over the negative ordinates of the influence line for bending
moment at core point Kn. If load will be placed over the positive ordinates of

the same influence line, then a compressed stresses at extrados fibers n of section k
will arise.

2.6 Special Types of Three-Hinged Arches

This paragraph contains analysis of the special types of three-hinged arch subjected

to fixed and moving loads. Among them are the circular arch with elevated simple

tie, parabolic arch with complex tie, and askew arch.

2.6.1 Arch with Elevated Simple Tie

Three-hinged arch with tie may be obtained from an ordinary three-hinged arch

without a tie, if the horizontal constraint at support B (or A), which prevents

horizontal displacement of the abutment hinge, is replaced by a tie. The tie

may be located on the level of the supported points (Fig. 2.26a) or above them

(elevated tie) (Fig. 2.26b). Application of complex tie is also possible. One type of

an arch with a complex tie is shown in Fig. 2.26c. Three-hinged arches with ties

represent geometrically unchangeable statically determinate structures and have

certain peculiarities of their analysis, which are presented below.
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f
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c

Fig. 2.26 Design diagrams of three-hinged arches with tie. (a) Simple tie on support level;

(b) arch with elevated simple tie; and (c) arch with complex tie
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In case (2.26a), the tensile force in the tie (thrust) is H ¼ MO
C f= , where MO

C

represent the bending moment at section C for the reference beam. Two forcesH act

at points A and B, as for an ordinary three-hinged arch without tie. Therefore,

internal forces in cross sections of the given arch will be exactly the same as for

arch without tie and may be calculated using (2.6). However, support B of the arch

with tie has a horizontal displacement due to the elastic properties of the tie, while a

three-hinged arch without tie has no a horizontal displacement.

In case (2.26b), the thrust in the tie is

H ¼ MO
C

f � f0
: (2.21)

Two forces H act above points A and B. Internal forces in cross sections of the

arch are obtained from modified (2.6); they depend on location of the section on the

arch (below or above the tie). If sections are located below the tie level then

Mx ¼ M0
x ; Qx ¼ Q0

x cos’; Nx ¼ �Q0
x sin’: (2.22)

If sections are located above the tie level, then

Mx ¼ M0
x � Hðy� f0Þ;

Qx ¼ Q0
x cos’� H sin’;

Nx ¼ �Q0
x sin’� H cos’; (2.23)

where M0
x ; Q

0
x are bending moment and shear force at section x for the reference

beam.

In the case of a complex tie, it is necessary to determine a thrust in the tie, then

internal forces in all the members of the tie and finally, internal forces in the arch

itself. The complex tie of the arch allows us not only to increase the strength of the

arch structure but also to distribute internal forces in the arch as required.

Example 2.6. Design diagram of three-hinged circular arch with elevated tie is

presented in Fig. 2.27. Geometrical parameters of the arch and loads are the same as

for a three-hinged arch without tie (Fig. 2.5a). We need to compute the internal

forces in the arch and compare results obtained for the same arch without tie.

Solution. The vertical reactions of supports, as in Example 2.1, are RA ¼ R0
A ¼

14:5 kN; RB ¼ R0
B ¼ 19:5 kN.

Horizontal reaction HA at the support A may be calculated from the equationP
X ¼ 0 !HA ¼ 0.

The force H in the tie may be determined using equilibrium condition for left

(or right) part of the arch (section 1–1)

H !
X

Mleft
C ¼ 0 ! RA � 16� P1 � 8� Hð f � f0Þ ¼ 0 ! H ¼ M0

C

f � f0
¼ 152

8� 2
¼ 25:33 kN:

Computations of the geometrical parameters and internal forces of the arch are

presented in Table 2.2.
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Fig. 2.27 Three-hinged arch with simple elevated tie. Design diagram, reference beam, and

internal force diagrams
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Radius of the circle, according to (1) is R ¼ ðf=2Þ þ l2=8f ¼ ð8=2Þ þ ½322=
ð8� 8Þ� ¼ 20m: Columns 1 and 2 contain ordinate x and corresponding ordinate y
(in meters) for specified sections. Ordinate yðxÞ is

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400� ð16� xÞ2

q
� 12 ðmÞ:

Columns 3 and 4 contain values of sin’ ¼ ðl� 2xÞ=2R ¼ ð32� 2xÞ=40 and

cos’ ¼ ðyþ R� fÞ=R ¼ ðyþ 12Þ=20:
Values of bending moment and shear for reference beam are tabulated in

columns 5 and 7 and taken directly from corresponding diagrams, which are pre-

sented in Fig. 2.27. Values of H(y � f0) are given in column 50. Sections A and B
have no entries for column 50, which means that force in the tie does not effect on

the bending moment at corresponding section of the arch. Values of bending

moment, shear, and normal forces for three-hinged arch are tabulated in columns

6, 8, and 9. They have been computed using (2.22) for sections which are located

below the tie. For example, for section A, we get

QA ¼ Q0
A cos’A ¼ 14:5� 0:6 ¼ 8:7 kN

NA ¼ �Q0
A sin’A ¼ �14:5� 0:8 ¼ �11:6 kN:

For sections above the tie, we need to use (2.23). For example, for section 3,

we get

Mx ¼ M0
x � Hðy� f0Þ ¼ 134� 25:33� ð7:596� 2Þ ¼ �7:7467 kNm;

Qx ¼ Q0
x cos’� H sin’ ¼ 4:5� 0:9798� 25:33� 0:2 ¼ �0:6569 kN;

Nx ¼ �Q0
x sin’� H cos’ ¼ �4:5� 0:2� 25:33� 0:9798 ¼ �25:718 kN:

Corresponding diagrams are presented in Fig. 2.27. Bending moment diagrams

for beam and arch are shown on the extended fibers; therefore, the signs of bending

moments are omitted. For convenience, different scales have been adopted for

different diagrams.

Verification. The vertical concentrated force P leads to value of discontinuity

P cos’ and P sin’ for diagram Q and N, respectively; the horizontal force H
leads to value of discontinuity H sin’ and H cos’ for same diagrams Q and N.

Values of discontinuity on shear and normal force diagrams due to concentrated

forces H and Pi are:

Shear force diagram point at M: 10.15 � (�7.938) ¼ 18.088 ¼ H sin ’,
Point 2: 3.1572 � (�6.0) ¼ 9.1572 ¼ P1 cos ’.

Normal force diagram point at M: �10.35 � (�28.08) ¼ 17.73 ¼ H cos ’,
Point 2: �25.01 � (�29.01) ¼ 4.0 ¼ P1 sin ’.
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Values of discontinuity on shear and normal force diagrams for points 7 and K
are verified in a similar manner.

Now we will compare the internal force diagrams for the arch without tie

(Fig. 2.6) and the arch with the elevated tie (Fig. 2.27). Unlike the arch without

tie, two horizontal forces H act at points M and K. Therefore, the shear and axial

force diagrams at points M and K have abrupt changes H sin’ for the Q diagram

and H cos’ for the N diagram. The axial force N for both arches remains

compressed.

The fundamental change occurs in the distribution of bending moments. For

example, for all sections of the left part of the arch without tie, the extended fibers

are located above the neutral line (Fig. 2.6), while for arch with the tie, the extended

fibers are located below the neutral line (Fig. 2.27) (portion A-2 and slightly

further). For the right part of the arch without tie, the bending moment diagram

changes the sign three times: in the neighborhood of point n and 7, the extended

fibers are located above and below the neutral line, respectively, while for arch with

tie, the entire right part of the arch has extended fibers below the neutral line.

2.6.2 Arch with Complex Tie

Analysis of such structure subjected to fixed and moving load has some features.

Design diagram of the symmetrical parabolic arch with complex tie is presented

in Fig. 2.28. The arch is loaded by vertical uniformly distributed load q ¼ 2 kN/m.

We need to determine the reactions of the supports, thrust, and internal forces at

section k (ak ¼ 18 m, yk ¼ 11.25 m, tan ’k ¼ 0.25, cos ’k ¼ 0.970, sin ’k

¼ 0.2425) as well as to construct the influence line for above-mentioned factors.

Reactions and Internal Forces at Section k

The vertical reactions are determined from the equilibrium equations of all the

external forces acting on the arch

y

x1

1 q=2kN/m

HH

D

12m

RA RB

E

F

HA B
A

C

f=12m

Parabolic
arch

f0=2m 

ak=18
l=48m 

k

A B

Fig. 2.28 Design diagram of the arch with complex tie
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RA !
X

MB ¼ 0 : �RA � 48þ q� 12� 6 ¼ 0 ! RA ¼ 3 kN;

RB !
X

MA ¼ 0 : RB � 48� q� 12� 42 ¼ 0 ! RB ¼ 21 kN:

Horizontal reaction at support A is HA ¼ 0.

The thrust H in the tie (section 1–1) is determined from the following equation

H !
X

Mleft
C ¼ 0 : �RA

l

2
þ Hðf � f0Þ ¼ 0 ! H ¼ M0

C=ðf � f0Þ ¼ 7:2 kN:

(2.24a)

Equilibrium equations of joint F lead to the axial forces at the members of AF
and EF of the tie.

Internal forces at section k for a reference simply supported beam are as follows:

M0
k ¼ RA � xk ¼ 3� 18 ¼ 54 kNm;

Q0
K ¼ RA ¼ 3 kN:

Internal forces at point k for three-hinged arch are determined as follows

Mk ¼ M0
k � Hðyk � f0Þ ¼ 54� 7:2� ð11:25� 2Þ ¼ �12:6 kNm;

Qk ¼ Q0
k cos’k � H sin’k ¼ 3� 0:970� 7:2� 0:2425 ¼ 1:164 kN;

Nk ¼ � Q0
k sin’k þ H cos’k

� � ¼ �ð3� 0:2425þ 7:2� 0:970Þ ¼ �7:711 kN:

(2.24b)

Note, that the discontinuity of the shear and normal forces at section E left and

right of the vertical member EF is NEF � cos’ and NEF � sin’, respectively.

Influence Lines for Thrust and Internal Forces (M, Q, N) at Section k

Influence lines for vertical reactions RA and RB for arch and for reference simply

supported beam coincide, i.e.,

ILðRAÞ ¼ IL R0
A

� �
; ILðRBÞ ¼ IL R0

B

� �
:

According to (2.24a), the equation of influence line for thrust becomes

ILðHÞ ¼ 1

f � f0
� IL M0

C

� �
:

The maximum ordinate of influence line for H at crown C is 1=ðf � f0Þ�
ðl=4Þ ¼ 48=½4� ð12� 2Þ� ¼ 1:2. Influence line for thrust H may be considered

as a key influence line (Fig. 2.29).
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Fig. 2.29 Three-hinged arch with complex tie. Design diagram and influence lines
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Bending Moment

According to (2.24b) for bending moment at any section, the equation of influence

line for bending moment at section k is

ILðMkÞ ¼ IL M0
k

� �� ðyk � f0Þ � ILðHÞ ¼ IL M0
k

� �� 9:25� ILðHÞ: (2.24c)

Influence line M0
K presents a triangle with maximum ordinate akbk l= ¼

18� 30 48= ¼ 11:25m at section k, so the ordinate at crown C equals to 9 m.

Influence line for thrustH presents the trianglewithmaximumordinate 1.2 at crownC.

Ordinate of the graph ðyk � f0Þ � ILðHÞ at crown C equals ð11:25� 2Þ � 1:2 ¼
11:1m, so ordinate at section k equals 8.325 m. Detailed construction of influence

line Mk is shown in Fig. 2.29. Since both terms in (2.24c) has different signs, they
should be plotted on the one side on the basic line and the final ordinates of

influence line are located between two graphs IL M0
k

� �
and 9:25� ILðHÞ.

Shear Force

According to (2.24b) for shear at any section, the equation of influence line for

shear at section k is

ILðQkÞ ¼ cos’k � IL Q0
k

� �� sin’k � ILðHÞ
¼ 0:970� IL Q0

k

� �� 0:2425� ILðHÞ: (2.24d)

Ordinates of the graph 0:970� IL Q0
k

� �
are 0.36375 and 0.60625 to the left and

to the right at section k, so ordinate at crown C is 0.485. Maximum ordinate of the

graph 0:2425� ILðHÞ ¼ 0:2425� 1:2 ¼ 0:291 is located at crown C, so ordinate

at section k is 0.21825.
Ordinate of influence line for shear at crown C equals 0.485–0.291 ¼ 0.194; the

left and the right of section k ordinates of influence line become

� ð0:36375þ 0:21825Þ ¼ �0:582 and 0:60625� 0:21825 ¼ 0:388:

Detailed construction of influence line Qk is shown in Fig. 2.29.

Normal Force

According to (2.24b) for normal force at any section, the equation of influence line

for normal force at section k is

ILðNkÞ ¼ � sin’k � IL Q0
k

� �� cos’k � ILðHÞ
¼ � 0:2425� IL Q0

k

� �þ 0:970� ILðHÞ� 	
(2.24e)
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Maximum ordinate of the graph 0:970� ILðHÞ is 0.970 � 1.2 ¼ 1.164; this

ordinate is located at crown C. Specific ordinates of the graph 0.2425 � IL(Qk
0) are

0.09094 and 0.1516 and located to the left and to the right of section k.
Detailed construction of influence line Nk is shown in Fig. 2.29. This figure also

represents the construction of influence lines using nil point method; note that

construction of the nil points must be done on the basis of conventional supports

A0 and B0.

2.6.3 Askew Arch

The arch with support points located on the different levels is called askew

(or rising) arch. Three-hinged askew arch is geometrically unchangeable and

statically determinate structure. Analysis of askew arch subjected to fixed and

moving loads has some features.

Design diagram of three-hinged askew arch is presented in Fig. 2.30. Let the

shape of the arch is parabola, span of the arch l ¼ 42 m and support B is D ¼ 3:5m
higher than support A. The total height of the arch at hinge C is 8m. The arch is

loaded by force P ¼ 10 kN. It is necessary to calculate the reactions and bending

moment at section k, construct the influence lines for thrust and bending moment

Mk, and apply influence lines for calculation of bending moment and reactions due

to fixed load.

Inf. line H
+

1.1428 

Inf. line Mk (m)

xk=6m
+ 

x0=16.8m

2.5714 1.7143 

8m

C

B

A

P=10kN

ZA

ZB

R Bac=24m 

a

bc=18m 

l=42m 6m

12m 

D=3.5m 
k

NP(Mk) 

f    h 

f0 B
• x

y

yk=3.5m 

xk=6m 

–

RA

1.71428

L=48m

Fig. 2.30 Three-hinged askew arch. Design diagram and influence lines
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Equation of the axis of parabolic arch is

y ¼ 4ð f þ f0Þ � ðL� xÞ � x

L2
;

where span for arch A–C–B0 with support points on the same level is L ¼ 48 m.

For x ¼ 42 m (support B), ordinate y ¼ 3.5 m, so

tan a ¼ D
l
¼ 3:5

42
¼ 0:0833 ! cos a ¼ 0:9965 ! sin a ¼ 0:08304:

Other geometrical parameters are

f0 ¼ 24 tan a ¼ 2:0m ! f ¼ 8� 2 ¼ 6m ! h ¼ f cos a ¼ 6� 0:9965 ¼ 5:979m:

For x ¼ 6 m (section k), the ordinate yk ¼ 3.5 m.

Reactions and Bending Moment at Section k

It is convenient to resolve total reaction at point A into two components. One of

them, R0
A, has vertical direction and other, ZA, is directed along the line AB.

Similarly resolve the reaction at support B. These components are R0
B and ZB. The

vertical forces R0
A and R0

B represent a part of the total vertical reactions. These

vertical forces may be computed as for the reference beam

R0
A !

X
MB ¼ 0 : �R0

A � 42þ P� 12 ¼ 0 ! R0
A ¼ 2:857 kN;

R0
B !

X
MA ¼ 0 : R0

B � 42� P� 30 ¼ 0 ! R0
B ¼ 7:143 kN:

Since a bending moment at crown C is zero then

ZA !
X

Mleft
C ¼ 0 : ZA � h�M0

C ¼ 0 ! ZA ¼ M0
C

h
¼ 2:857� 24

5:979
¼ 11:468 kN;

ZA ¼ ZB ¼ Z;

where M0
C is a bending moment at section C for the reference beam.

Thrust H represents the horizontal component of the Z, i.e., H ¼ Z cos a ¼
11:468� 0:9965 ¼ 11:428 kN.

The total vertical reactions may be defined as follows

RA ¼ R0
A þ Z sin a ¼ 2:857þ 11:468� 0:08304 ¼ 3:809 kN;

RB ¼ R0
B � Z sin a ¼ 7:143� 11:468� 0:08304 ¼ 6:191 kN:
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Bending moment at section k:

Mk ¼ M0
k � Hy ¼ 3:809� 6� 11:428� 3:5 ¼ �17:144 kN:

Influence Lines for Thrust and Bending Moment Mk

Thrust. Since H ¼ Z cos a ¼ M0
C h=

� �
cos a, then equation of influence line for

thrust becomes

ILðHÞ ¼ cos a
h

� IL M0
C

� �
:

The maximum ordinate of influence line occurs at crown C and equals

cos a
h

� aCbC
l

¼ 0:9965

5:979
� 24� 18

42
¼ 1:71428:

Bending moment Mk. Since Mk ¼ M0
k � Hyk, then equation of influence line for

bending moment at section k becomes

ILðMkÞ ¼ IL M0
k

� �� yk � ILðHÞ:

Influence line may be easily constructed using the nil point method. Equation of

the line Ak is

y ¼ 3:5

6
x ¼ 0:5833x:

Equation of the line BC is

y� yC ¼ mðx� xCÞ ! y� 8 ¼ � 4:5

18
ðx� 24Þ ! y ¼ 14� 0:25x;

where m is a slope of the line BC.
The nil point NP(Mk) of influence line forMk is the point of intersection of lines

Ak and BC. Solving these equations leads to x0 ¼ 16:8m. Influence lines for H and

Mk are presented in Fig. 2.30. Maximum positive and negative bending moment at

section k occurs if load P is located at section k and hinge C, respectively. If load P
is located within portion x0, then extended fibers at section k are located below the

neutral line of the arch.

The thrust and bending moment at section kmay be calculated using the relevant

influence lines

H ¼ Py ¼ 10� 1:1428 ¼ 11:428 kN

Mk ¼ Py ¼ 10� ð�1:7143Þ ¼ �17:143 kNm:

These values coincide exactly with those calculated previously.
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As before, the influence line for thrust constructed once may be used for its

computation for different cases of arbitrary loads. Then, knowing the vertical

reactions and thrust, the internal forces at any point of the arch may be calculated

by definition without using influence line for that particular internal force.

2.6.4 Latticed Askew Arch

Design diagram of the modified askew arched structure with over-arch construction

is presented in Fig. 2.31a. Pinned supports A and B are located at different

elevations. Each half-arch itself (A-1–3 and B-2–4) represents the structure with

webbed members. Panel block 1–2–3–4 has no diagonal member, thus both half-

arches are connected by means of two parallel rods 1–2 and 3–4. Therefore, the

vertical relative displacement of two half-arches is possible (Fig. 2.31b), while in

b

3

A
B

+
–l

h

l

h Inf. line H 

lRA

P= 1

h

A

HA

1 

4 3 

2 

RB

HBB

x1 x21 

1 

a

HB
B

RB

c

4

1 2

j

Fig. 2.31 Modified askew arched structure
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the classic three-hinged arch only angular relative displacement of two half-arches

is possible. The vertical posts are used only to transmit loads directly to the upper

chord of the structure.

Degree of freedom equals

W ¼ 2 J � S� S0 ¼ 2� 27� 47� 7 ¼ 0;

where J, S, and S0 are the number of hinged joints, members of structure and

constraints of supports, respectively [Kar10]. Though the both part of arch represent

the simplest truss (or rigid disc), they are connected in a specific way, mainly by

members 1–2 and 3–4 as well as an imagine member AB (ground). These members

are not parallel. The structure is statically determinate and geometrically

unchangeable.

For analysis of this structure, we will apply the following procedure:

1. Replace the constraint of the support B, which prevents horizontal displacement,

by a diagonal member 2–3 (dotted line in Fig. 2.31a) and apply external forceHB

at point B (Fig. 2.31a, c). Such a substitution does not change the number of

degree of freedom.

2. Consider two positions x1 and x2 of a moving load P and determine thrust HA ¼
HB ¼ H in terms of x, l, and h, when the internal force in the substitute member

2–3 is zero.

Force P ¼ 1 is located at the left part of the structure. Thrust H !P
MA ¼ 0:

RBlþ Hh� Px ¼ 0 ! RB ¼ 1

l
ðPx� HhÞ:

Internal force in substitute member D23 section 1–1 is determined as follows

X
Yright ¼ 0 : RB � D23 cos’ ¼ 0:

Taking into account the previous result for reaction RB, internal force in diagonal

member becomes

1

l
ðPx� HhÞ � D23 cos’ ¼ 0:

However, diagonal member is absent, therefore D23 ¼ 0 and the expression for

thrust is

H ¼ Px

h
; so ILðHÞ ¼ x

h
:
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Force P ¼ 1 is located at the right part of the structure. ThrustH !P
MA ¼ 0:

RBlþ Hh� Pðl� xÞ ¼ 0 ! RB ¼ Pðl� xÞ � Hh

l

Internal force in the substitute member D23 !
P

Yright ¼ 0 : RB � D23

� cos’� P ¼ 0.

Taking into account the previous result for reaction RB, equation for internal

force in diagonal member becomes

� D23 cos’� Px

l
� Hh

l
¼ 0:

However, D23 ¼ 0 so the expression for thrust becomes

H ¼ �Px

h
; so ILðHÞ ¼ � x

h
:

Influence line for H represents two parallel lines with ordinates l/h at the support
points and connecting line within the panels 1–2. The sign of thrust H depends on

location of the moving load (unlike previously considered arched structures).

Influence line H is a fundamental characteristic of the system. Knowing the

influence line H allows us to calculate this reaction for any type of loadings.

Calculation of all other reactions and internal forces in any members presents no

difficulties.

Note if supports A and B will be located at the same level, then the system

becomes instantaneously changeable. Indeed, in this case, two rigid discs (the left

and right parts of the structure) are connected by three parallel members, mainly

1–2, 3–4 and AB [Kar10].

2.7 Complex Arched Structures

This paragraph contains analysis of the complex arched structures subjected

to fixed and moving load. Among them are the multispan three-hinged arched

structure and trusses with arched hinged chain.

2.7.1 Multispan Three-Hinged Arched Structure

Multispan three-hinged arched structure is a geometrically unchangeable structure,

which consists of three-hinged arches connected together by means of hinges.

Figure 2.32a presents the multispan arched structure which contains three-hinged

arch ACB with overhang BG, arch DIF with overhang HD, and central three-hinged
archGEH, which is connected with left and right arches by means of hingesG andH.
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It is necessary to construct the influence lines for bending moment, shear, and

normal forces at sections k and n, using the nil point method. Indirect application of

the load on the arch system should not be taken into account.

Kinematical Analysis

Degrees of freedom of this arch structure, according to Chebushev formula, are

determined asW ¼ 3D� 2H0 � S0 ¼ 3� 6� 2� 5� 8 ¼ 0, where D, H0, and S0
are number of rigid discs, number of simple hinges, and number of constraints of

support, respectively [Kar10].

The whole structure may be presented as two main arched structures ACBG and

HDIF and a suspended arch GEH; corresponding interaction diagram is shown in

Fig. 2.32b. Each arched structures ACBG and HDIF present two rigid discs,

connected with the ground. Two curvilinear members GE and EH are connected

by hinge E and supported by two unmovable rigid discs, which can be considered

as ground. Thus, the entire structure is statically determinate and geometrically

unchangeable.

Influence line for bending moment Mk. There exist two nil points of influence line

for Mk as the points of intersection of two lines:

1. Lines AC and Bk: their intersection point is NP(Mk).

2. Lines BG and HE: their intersection point is NPB.

The nil point NPB possesses interesting properties. If moving load is traveling

along the horizontal portion GE, then reaction at H is passing through hinge E and

b
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Fig. 2.32 Multispan arched structure. (a) Design diagram, (b) interaction scheme, and

(c) influence lines for internal forces at sections k and n
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reaction at G might have various directions in accordance to the theorem about

three concurrent forces RH, P ¼ 1, and RG. The last reaction RG is transformed as

active force on the arch ACBG, in which reactions RA and RB arise. Reaction RG is

an active force for arch ACBG, passing through support B. This force is perceived
by support B and reaction RA is zero. Therefore, at all sections of the arch ACB, all
internal forces are zero. Thus, if load P is located at NPB, then all internal forces of
the arch ACB are zero.

Since arch GEH is suspended, the bending momentMk does not arise if load P is

traveling along the portion HF.

Influence line for Mn. There exist two nil points of IL(Mn) as the points of

intersection of two lines:

1. Lines FI and Dn: their intersection point is NP(Mn).

2. Lines DH and GE: their intersection point is NPD.

It is evident that point NPD possesses the same properties for arch DIF as point

NPB for arch ACB: if moving load is located on the vertical passing through

point NPD, then at all sections of the arch DIF all internal forces are zero.

Influence line for shear force Qn. There exist two nil points of influence line for Qn.

They are the point of intersection of line FI and the line which is parallel to tangent
at section n and point NPD.

Influence line for axial force Nn. There exist two nil points of influence line for Nn.

They are the point of intersection of line FI and line which is perpendicular to tangent
at section n and point NPD. Specific ordinates and positions of the nil points allow us

to easily construct the influence lines. Some of them are presented in Fig. 2.32c.

Note that the nil points NP1(Qn) and NP1(Nn) are not real; they only facilitate the

construction of influence lines Qn and Nn, respectively.

It is left to reader to construct influence lines of shear and normal force in section

k; construction of influence lines for internal forces for any section of central arch

GEH should present no challenge.

2.7.2 Arched Combined Structures

Some examples of arches combined structures are presented in Fig. 2.33. In all

cases, these systems consist of two trusses, AC and CB, connected by hinge C and

stiffened by additional structures called a hinged (or arched) chain. The hinged

chain may be located above or below the trusses. Vertical members connect the

hinged chain with the trusses. The connections between the members of the arched

chain and the hangers or posts are hinged. In case (c), all the hinges of the hinged

chain are located on one line. In cases (a) and (b), a load is applied to the truss

directly, while in case (c), the load is applied to the joint of the hinged chain and

then transmitted to the truss.
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Truss with Over-Truss Arched Chain

The typical truss with a hinged chain located above the truss is shown in Fig. 2.34.

Assume that the parameters of the structure are as follows: d ¼ 3 m, h ¼ 2 m,

f ¼ 7 m, L ¼ 24 m. We need to construct the influence lines for the reactions and

the internal forces in hanger, Vn�1.

As usual we start with the kinematical analysis of the structure. Since the

structure consist only members with hinges at the ends, then degrees of freedom
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of this complex arched structure is determined as W ¼ 2J � S� S0 ¼
2� 24� 45� 3 ¼ 0, so the structure is geometrically unchangeable and statically

determinate.

Reaction of Supports and Internal Forces

Reactions RA and RB for any load can be calculated using following equilibrium

conditions:

RA !
X

MB ¼ 0 : RB !
X

MA ¼ 0:

For calculation of the internal forces that arise in the members of the hinged

chain, we need to show the free body diagram for any joint n (Fig. 2.34). The

equilibrium condition
P

X ¼ 0 leads to relationship

Sn cos a ¼ Sn�1 cos g ¼ H: (2.25)

Thus, for any vertical load acting on the given structure, the horizontal com-

ponent of the forces, which arise in all the members of the hinged chain, is equal.

The horizontal component of the forces Sn, Sn�1 is called a thrust.

Now we will provide an analysis for the case of a moving load. The influence

lines for reactions RA and RB are the same as for a simply supported beam.

However, the construction of an influence line for thrust H has some special

features. Let us consider them.

Thrust H (section 1–1, the sectioned panel of the load contour – SPLC – is panel

7-C; Ritter’s point is C). Internal force S, which arises in the element m–k of the

hinged chain, is denoted as Sleft and Sright. The meaning of the subscript notation is

clear from Fig. 2.34.

If load P ¼ 1 is located to the left of joint 7, then thrust H can be calculated by

considering the right part of the structure. The active forces are reaction RB and

internal forces S7-C, S8-C, and Sright. The last force Sright can be resolved into two

components: a horizontal component, which is the required thrust H, and a vertical

component, which acts along the vertical line C–k. Now we form the sum of the

moment of all forces acting on the right part of the structure around point C, i.e.,

H !P
Mright

C ¼ 0. In this case, the vertical component of force Sright produces no

moment, while the thrust produces moment Hf.
If load P ¼ 1 is located right at joint C, then thrust H can be calculated by

considering the left part of the structure. The active forces are reaction RA and

internal forces S7-C, S8-C, and Sleft. The force Sleft, which is applied at joint m, can be
resolved into a horizontal component H and a vertical component. The latter

component acts along vertical line m–7. Now we find the sum of the moment of

all the forces, which act on the left part of the truss, around point C. In this case, the
vertical component of force Sright produce the nonzero moment around joint C and

thrust H has a new arm (m–7) around the center of moments C. In order to avoid
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these difficulties, we translate the force Sleft along the line of its action from joint m
into joint k. After that we resolve this force into its vertical and horizontal com-

ponents. This procedure allows us to eliminate the moment due to the vertical

component of S, while the moment due to the horizontal component of S is easily

calculated as Hf.
Construction of the influence line for H is presented in the table below.

P ¼ 1 left at SPLC P ¼ 1 right at SPLC

H !
X

Mright
C ¼ 0 : RB4d þ Hf ¼ 0

H ¼ � 4d

f
RB ! ILðHÞ ¼ � 4d

f
ILðRBÞ

H !
X

Mleft
C ¼ 0 : RA4d þ Hf ¼ 0

H ¼ � 4d

f
RA ! ILðHÞ ¼ � 4d

f
ILðRAÞ

The left portion of the influence line for H (portion A-7) presents the influence

line for RB multiplied by coefficient � 4d f= and the right-hand portion (portion

C–B) presents the influence line for RA multiplied by the same coefficient. The

connecting line is between points 7 and C (Fig. 2.34). The negative sign for thrust

indicates that all members of the arched chain are in compression.

Force Vn. Equilibrium condition for joint n leads to the following result:

X
Y ¼ 0 : �Vn þ Sn sin a� Sn�1 sin g ¼ 0 ! Vn ¼ Hðtan a� tan gÞ:

Therefore,

ILðVnÞ ¼ ðtan a� tan gÞ � ILðHÞ:
Since a < g andH is negative, then all hangers are in tension. The corresponding

influence line is shown in Fig. 2.34.

The influence line for thrust H can be considered as the key influence line, since

thrust H always appears in any cut-section for the entire structure. This influence

line allows us to calculate thrust for an arbitrary load. After that, the internal force in

any member can be calculated simply by considering all the external loads, the

reactions, and the thrust as an additional external force.

Discussion

For any location of a load, the hangers are in tension and all members of the chain

are compressed. The maximum internal force at any hanger occurs if load P is

placed at joint C.
To calculate the internal forces in different members caused by an arbitrary fixed

load, the following procedure is recommended:

1. Construct the influence line for the thrust.

2. Calculate the thrust caused by a fixed load.

3. Calculate the required internal force considering thrust as an additional external

force.

This algorithm combines both approaches: the methods of fixed and of moving

loads and so provides a very powerful tool for the analysis of complex structures.
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Example 2.7. The structure in Fig. 2.34 is subjected to a uniformly distributed load q
within the entire spanL. Calculate the internal forces T andD in the indicated elements.

Solution. The thrust of the arch chain equals H ¼ qoH ¼ �qð1=2ÞLð2d=f Þ ¼
�ðqLd=f Þ, where oH is area of the influence line for H under the load q. After
that, the required force T according to (a) is

T ¼ H

cos a1
¼ � qLd

f cos a1
:

We can see that in order to decrease the force T, we must increase the height f
and/or decrease the angle a1.

To calculate force D, we can use section 2–2 and consider the equilibrium of the

right part of the structure:

D !
X

Y ¼ 0 : D sin bþ RB þ T sin a1 ¼ 0 !

D ¼ � 1

sin b
qL

2
� qLd

f
tan a1

� �
:

Thus, this problem is solved using the fixed and moving load approaches:

thrust H is determined using corresponding influence lines, while internal forces

D and T are computed using H and the classical method of through sections.

Arched Chain with Over-Arch Trussed Structure

The typical arched chain with a truss located above the arched chain is shown in

Fig. 2.35. Assume that the parameters of the structure are as follows: d ¼ 2 m,

h ¼ 2 m, f ¼ 8 m, l ¼ 12d ¼ 24 m, aK ¼ 6 m. We need to construct the influence

lines for the reactions, thrust, and the internal forces in indicated membersU4 andD4.

Kinematical analysis shows that degree of freedom is W ¼ 2J � S� S0 ¼
2� 34� 61� 7 ¼ 0, so the structure is statically determinate and geometrically

unchangeable. The structure has the four support points: A1, A2, B1, and B2 and the

following reactions: RA1; RA2;RB1; RB2; HA; HB.

Reactions of Support and Internal Forces

Total vertical reactions of a structure as a whole are RA ¼ RA1 þ RA2;
RB ¼ RB1 þ RB2, where

RA !
X

MB ¼ 0 : � RAlþ Pðl� xÞ ¼ 0 ! RA ¼ Pðl� xÞ
l

! ILðRAÞ ¼ l� x

l
;

RB !
X

MA ¼ 0 : RBl� Px ¼ 0 ! RB ¼ Px

l
! ILðRBÞ ¼ x

l
:
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Influence lines for total vertical reactions of support are the same as for a simply

supported beam.

Thrust. For the entire structure, the equilibrium condition
P

X ¼ 0 leads to

relationship HA ¼ HB ¼ H. Section 1–1 passes through joints S and C.

Inf. line U 4

aK
h

= 3

1.031 

0.9844 
+ 

NP (U4)

Inf. line R A1
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2
1tanj −

4
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f
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Fig. 2.35 Arched chain with over-arch trussed structure. Design diagram and influence lines
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P ¼ 1 left at joint C0 P ¼ 1 right at joint C0

H !
X

Mright
S ¼ 0 : �Hf þ RB

l

2
¼ 0

H ¼ l

2f
RB ! ILðHÞ ¼ l

2f
� ILðRBÞ

H !
X

Mleft
S ¼ 0 : Hf � RA

l

2
¼ 0

H ¼ l

2f
RA ! ILðHÞ ¼ l

2f
� ILðRAÞ

The maximum ordinate under the joint C is equal to l 4f= .

Vertical components of reactions. Equilibrium conditions for joint A2 are

X
X ¼ 0 : S1�2 cos’þ H ¼ 0 ! S1�2 ¼ �H cos’= ;X
Y ¼ 0 : S1�2 sin’þ RA2 ¼ 0 ! RA2 ¼ �S1�2 sin’:

So the vertical component of reaction at point A2 becomes RA2 ¼ H tan’;
corresponding influence line is

ILðRA2Þ ¼ tan’� ILðHÞ:

Similarly, ILðRB2Þ ¼ tan’� ILðHÞ.
Influence lines for RA2 and RB2 may be obtained by multiplying all ordinates of

influence line forH by a constant factor tan ’. The maximum ordinate under joint C
is equal to ðl=4f Þ tan’.
Reaction at point A1. Since total reaction RA ¼ RA1 þ RA2, then

RA1 ¼ RA � RA2 ! ILðRA1Þ ¼ ILðRAÞ � ILðRA2Þ ¼ ILðRAÞ � tan’� ILðHÞ:
Construction and final influence line for vertical component RA1 is presented

in Fig. 2.35. The nil point of influence line for RA1 is point of intersection of lines

B2–S and 1–2. The location of this nil point is defined by the formula x0 ¼
ðl=2Þ � ½ðl tan’� 2f Þ=ðl tan’þ 2f Þ�. For the entire structure, we get tan’ ¼
ð3=2Þ and x0 ¼ 4:6154m.

Ordinate of influence line RA1 at point C equals to ðl=4f Þ tan’� ð1=2Þ ¼
½24=ð4� 8Þ� � ð3=2Þ � ð1=2Þ ¼ 0:625.

Note that reaction RA1 may be directed upward and downward as well.

Force U4. Section 2–2 passes across the fourth panel of the truss and arch member

2–3 just under joint K; the vertical line passing through joint K intersects the

member 2–3 at yK ¼ 6.75 m. The internal force F2–3 in the arch chain is resolved

into vertical Fvert and horizontal H components. Obviously, the horizontal compo-

nent equals to thrust H.

P ¼ l left at SPLC P ¼ l right at SPLC

U4 !
X

Mright
K ¼ 0

� U4hþ RB9d � Hðf þ cþ hÞ þ Hðc1 þ cþ hÞ ¼ 0

� U4hþ RB9d � H � yK ¼ 0

U4 ¼ 1

h
ðRB9d � H � yKÞ !

ILðU4Þ ¼ 1

h
½9d � ILðRBÞ � yK � ILðHÞ�

U4 !
X

Mleft
K ¼ 0

U4h� RA3d þ Hðf þ cþ hÞ � Hðc1 þ cþ hÞ ¼ 0

U4h� RA3d þ H � yK ¼ 0

U4 ¼ 1

h
ðRA3d � H � yKÞ !

ILðU4Þ ¼ 1

h
½3d � ILðRAÞ � yK � ILðHÞ�
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The term H(c1 + c + h) presents the moment with respect to point K due to

thrust, which arise in member 2–3; the moment with respect to the same point K due

to Fvert (vertical component of force F2–3) is zero.

The nil point of influence line for U4 is the point of intersection of lines B2–S and
the line which originates from joint 1 and passes through member 2–3 under

point K. This point is real.
Ordinate of influence line U4 at point C equals to 1=h ð5:0625� 3:0Þ ¼ 1:031.

Force D4 (section 1–1). Assume that internal force S2–3 is tensile.

P ¼ l left at SPLC P ¼ l right at SPLC

D4 !
X

Yright ¼ 0

D4 sin aþ RB � S2�3 sin’1 ¼ 0; S2�3 ¼ � H

cos’1

D4 sin aþ RB þ H tan’1 ¼ 0

D4 ¼ � 1

sin a
ðRB þ H � tan’1Þ !

ILðD4Þ ¼ � 1

sin a
½ILðRBÞ þ tan’1 � ILðHÞ�

D4 !
X

Yright ¼ 0

RA � D4 sin aþ S2�3 sin’1 ¼ 0; S2�3 ¼ � H

cos’1

RA � D4 sin a� H tan’1 ¼ 0

D4 ¼ 1

sin a
ðRA � H � tan’1Þ !

ILðD4Þ ¼ 1

sin a
½ILðRAÞ � tan’1 � ILðHÞ�

Construction and final influence line for D4 is presented in Fig. 2.35. The nil

point of influence line forD4 is point of intersection of lines B2–S and the line which
originates from joint 1 and passes parallel to the member 2–3. This point for given

’1 is fictitious.

Influence line for thrust H of the structure is very useful for the calculation of

internal force in any member of the truss. Let the structure be subjected to

uniformly distributed load q along the entire span l of the truss. In this case, the

thrust of the arch chain equals to H ¼ qoH ¼ qð1=2Þlðl=4f Þ ¼ ðql2=8f Þ, where oH

is the area of influence line for H under the load q. Positive sign indicates that

shown direction for the thrust at points A2 and B2 coincides with actual direction of

thrust. Knowing the thrust allows us to perform an analysis of the structure. For

example, the force S1�2 ¼ �ðH= cos’Þ ¼ �ðql2=8f cos’Þ. Negative sign

indicates that the member 1–2 is compressed.

In the case of a fixed concentrated force P at joint C’ and uniformly distributed

load q within C’–M, we get:

U4 ¼ �1:031P� 1

2
� 1:031� 6d � q ¼ �1:031P� 6:186q ðkNÞ:

2.8 Deflection of Three-Hinged Arches Due to External Loads

This section presents computation of displacement of three-hinged arch. Different

approaches are applied: Maxwell–Mohr integral and graph multiplication method

using Simpson–Kornouhkov rule.
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2.8.1 Uniform Circular Arch: Exact Solution

Three-hinged semicircular uniform arch of radius R carrying uniformly distributed

load q is shown in Fig. 2.36. The flexural stiffness is EI. For calculating the vertical
displacement of the hinge C, we assume that influence of axial and shear forces on

displacement is negligible. The expression for displacement for this problem takes

into account only the bending moments

DC ¼
Z s

0

MP
�M

EI
ds;

where MP denotes the bending moment due to actual load. Now we will consider

two states, the actual and unit ones, and form the expressions for bending moments

for both of them.

Actual State

The vertical reactions of supports and thrust are:

RA ¼ RB ¼ ql

2
¼ qR; H ¼ M0

C

f
¼ qð2RÞ2

8R
¼ qR

2
;

where l ¼ 2R is the span of the arch; M0
C is the bending moment at point C for

reference beam; f is the rise of the arch, f ¼ R. The magnitude of the bending

moment induced at any section by the given load q is

MP ¼ RAx� Hy� qx2

2
¼ q Rx� Ry

2
� x2

2

� �
:
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Fig. 2.36 Design diagram of the arch and unit state
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Unit State

This state presents the same arch subjected to unit vertical force P at hinge C. The
vertical reactions of supports and thrust are:

�RA ¼ �RB ¼ 1

2
; �H ¼ M0

C

f
¼ 1� l

4R
¼ 1

2
:

The magnitude of the bending moment induced at any section by the unit load P is

�M ¼ �RAx� �Hy ¼ 1

2
x� 1

2
y:

Now, the vertical displacement at point C may be presented as:

DC ¼ 2

Z pR 2=

0

MP M

EI
ds ¼ 2q

EI

Z pR 2=

0

Rx� Ry

2
� x2

2

� �
� x

2
� y

2


 �
ds (2.26a)

Let us change to polar coordinates: ds ¼ Rd’, y ¼ R sin ’, x ¼ R � R cos ’ ¼
R(1 � cos ’). The upper limit s ¼ pR 2= should be changed to ’ ¼ p 2= . In this

case, (2.26a) becomes

DC ¼ q

EI

Z p 2=

0

R2ð1� cos’Þ�R2

2
sin’�R2

2
ð1� cos’Þ2

� 

� Rð1� cos’Þ�R sin’½ �Rd’

¼qR4

EI

Z p 2=

0

1� cos’�1

2
sin’�1

2
ð1� cos’Þ2

� 
�ð1� cos’� sin’Þd’:

Integrating procedure is cumbersome, but elementary. On rearrangement, the

final result for vertical displacement at C can be written as

DC ¼ qR4

4EI
ðp� 3Þ: (2.26b)

In case of concentrated force P at point C, the vertical displacement at C is

DC ¼ ðPR3=2EIÞðp� 3Þ.

2.8.2 Nonuniform Arch of Arbitrary Shape: Approximate
Solution

In general case of the nonuniform arch and arbitrary shape, the general idea for

computation of displacement remains the same – it is necessary to “multiply” the
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bending moments diagrams in the entire and the unit states. However, the

Vereshchagin rule becomes none applicable, since the basic line of both diagrams

is curvilinear. Therefore, it is only possible to determine the displacement in the

general case of the arch numerically. For this, a curvilinear axis of the arch should

be presented as a set of straight elements (usually 8–10), followed by a multiplica-

tion procedure of two bending moment diagrams. As before, the normal and shear

forces will be neglected.

Let us subdivide the arch into segments with equal horizontal projections.

The length of the ith chord between two nodal points equals Ds ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � xlÞ2 þ ðyr � ylÞ2

q
. Ordinates of the left and right ends of the portion, xl, yl

and xr, yr, should be calculated according to the equation y ¼ f ðxÞ of the axis of the
arch. Now Mohr integral may be presented in approximate form

DiP ¼
Z

MiMP

EI
ds ffi 1

EI0

X
n

MiMP � I0
Im

Ds; (2.27)

where MP and Mi are bending moment diagrams in the entire and unit states,

respectively; n is the total number of segments, I0 and Im are the moment of inertia

of the cross section at the crown C and at the middle of the segment Ds. The
moment of inertia Im should be calculated according to the law I ¼ IðxÞ, or as half-
sum of the moments of inertia at the ends of a segment. Simpson’s formula [Dar89]

EI0DiP ¼
X
n

Ds0

6
ðabþ 4ef þ cdÞ;Ds0 ¼ Ds

I0
Im

(2.28)

is applied to each straight segment and is subsequently summed over all the

segments. Ordinates a, e, and c of the bending moment diagram MP in the loading

state relate to the left end, the middle point, and the right end of the ith segment

(Fig. 2.37a); ordinates b; f ; d of the bending moment diagram �M in the unit state

relate to the same points (Fig. 2.37b).

Figure 2.38 presents a nonuniform parabolic arch and its approximate model.

C 

Ds

xl xl 

xm xm 

xr xr 

yl 

Im 

yr 

c
e

a

MP 

I0

a
C 

Ds

d
f

b

M

b

Fig. 2.37 Notation of ordinates of the bending moment diagrams within the one straight segment;

MP and M are bending moment diagrams in the actual and unit states
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Specified Points of the Arch

The span of the arch is divided into eight equal parts; the specified points are

labeled 0–8. Parameters of the arch for these sections are presented in Table 2.3;

the following formulas for calculation of trigonometric functions of the angle ’
between the tangent to the arch and x-axis have been used: tan’ ¼
y0 ¼ ½4f ðl� 2xÞ�=l2; cos’ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2’

p
.

The lengths of each straight segment are presented in Table 2.4. Table 2.5

presents the geometrical parameters at specified sections of the arch, and computa-

tion of the conventional length Ds0 for each segment.

Approximation of entire arch

0

1
2 3

4

5
6

7

8l/8 l/8

b P

l=24m

y 

x 

f=
6
mI=IC cosj

Pa
C

j

Fig. 2.38 Parabolic arch. Design diagram and approximation of entire arch

Table 2.3 Geometrical parameters of parabolic arch

Points

Coordinates (m)

tan ’ cos ’x y

0 0 0.0 1.00 0.7070

1 3 2.625 0.75 0.800

2 6 4.500 0.50 0.8944

3 9 5.625 0.25 0.9701

4 12 6.000 0.0 1.0

5 15 5.625 �0.25 0.9701

6 18 4.500 �0.5 0.8944

7 21 2.625 �0.75 0.800

8 24 0.0 �1.00 0.7070

Table 2.4 The chord lengths of each straight segment

Portion 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8

Length (m) 3.9863 3.5377 3.2040 3.0233 3.0233 3.2040 3.5377 3.9863

Table 2.5 Geometrical parameters at specified sections of nonuniform arch (I ¼ IC cos ’)

Portion

Geometrical parameters (m)

Im (factor IC) Ds0 ¼ Ds IC
Im

xl xm xr yl ym yr Ds

0–1 0 1.5 3 0 1.4062 2.625 3.9863 0.7535 5.2904

1–2 3 4.5 6 2.625 3.6562 4.500 3.5377 0.8475 4.1743

2–3 6 7.5 9 4.500 5.1562 5.625 3.2040 0.9323 3.4366

3–4 9 10.5 12 5.625 5.9062 6.000 3.0233 0.9850 3.0693
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The moment of inertia Im ¼ 0:5ðIl þ IrÞ. For example, for segment 0–1 we get

I0�1 ¼ 0:5 ð0:707þ 0:800Þ IC ¼ 0:7535IC:

Table 2.6 contains the bending moments at specified sections for loaded and unit

states. These moments are calculated by the formula Mk ¼ M0
k � Hyk, where

H ¼ M0
C=f ¼ Pl=4f ¼ 1� P. For each segment, the section at the left end has

ordinates a and b, at the middle section the ordinates are e and f and at the right

end ordinates are c and d.
For example, in P-condition RA ¼ P 2= and H ¼ P, so for points 1 and 2 -

(portion 1–2) we get

M1 ¼ P

2
� 3� P� 2:625 ¼ �1:125P; M2 ¼ P

2
� 6� P� 4:5 ¼ �1:5P:

Data for the right half-arch is not presented due to the symmetry of structure.

Required displacement of point C is equals to twice the sum of the members of

the last column. In our case,

DiP ¼ 2ð2:6348þ 7:9491þ 6:5443þ 1:5286Þ P

EIC
¼ 37:3136

P

EIC
: (2.26c)

The above-discussed procedure is very effective for computation of displace-

ment of any nonsymmetrical three-hinged arches. If it is necessary to take into

account the shear and axial forces, the corresponding terms of Maxwell–Mohr

integral (1.8) should be included and Table 2.6 to be expanded [Rab54a].

2.9 Displacement Due to Settlement of Supports

and Errors of Fabrication

Settlement of supports and errors of fabrication often occur in engineering practice.

If this happens in a statically determinate structure, the internal stresses in the

members of the structures are not induced. So computation of displacement of any

point of statically determinate structures reflects the kinematical nature of a

problem.

Table 2.6 Bending moments at specified sections and computation of deflection

Portion Ds0
MP, factor (�P) M factor (�1) Ds0

6
abþ 4ef þ cdð Þ

a e c b f d

0–1 5.2904 0.0 0.65625 1.125 0.0 0.65625 1.125 2.6348P

1–2 4.1743 1.125 1.40625 1.50 1.125 1.40625 1.50 7.9491P

2–3 3.4366 1.50 1.40625 1.125 1.50 1.40625 1.125 6.5443P

3–4 3.0693 1.125 0.65625 0.0 1.125 0.65625 0.0 1.5286P
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2.9.1 Settlements of Supports

Let us consider a three-hinged arch of span l and rise f; supports A and B settles in

vertical and horizontal directions as shown in Fig. 2.39a. The new position of the

arch, in an exaggeration scale, is shown by a dotted line. It is necessary to calculate

the vertical Du
C and horizontal Dh

C displacements of the hinge C. Unit state presents
the same structure subjected to unit force X, which corresponds to the required

displacement.

An effective method for solution of this type of problem is the principle of

virtual displacements

X
dWact ¼ 0: (2.29)

According to this principle, the elementary work done by all active forces on any
virtual displacements, which are compatible with constraints, is zero.

Procedure for Computation of Displacement Caused

by the Settlement of Support

1. At point K where displacement should be determined, we need to apply a unit

generalized force X ¼ 1, corresponding to the required displacement.

2. Show reactions R at the settled support, caused by unit generalized force X ¼ 1,

and compute these reactions.

A 

C 

B 

a

DA
DB

hDC

hDA

hDB

DC

A 

C 

B H=l/4f H

RA=0.5 RB=0.5 

b
X1=1 

A 

C 

B 

l
f

R A ⋅=1•

c

X2=1

H B=0.5H A=0.5

l
f

RB =1•

u

u
u

Fig. 2.39 (a) Settlement of supports A and B; (b) unit state for calculation of Du
C; and (c) unit state

for calculation of Dh
C
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3. Calculate the total work (2.29) done by unit force and all reactions on the

displacements of the supports.

4. Solve this equation with respect to required displacement.

Vertical displacement of the hinge C. Let us apply X1 ¼ 1 in vertical direction; this

force corresponds to the required vertical displacement Du
C. Reactions at the

supports A and B are shown in Fig. 2.39b. These reactive forces should be

considered as active, and (2.29) becomes

X1 � Du
C � RA � Du

A � RB � Du
B � H � Dh

A þ H � Dh
B ¼ 0:

Since X ¼ 1, then

Du
C ¼ �

X
R� D ¼ RA � Du

A þ RB � Du
B þ H � Dh

A � H � Dh
B: (2.29a)

Formula (2.29a) may be generalized for the case of displacements caused by

settlements of several supports

Dks ¼ �
X

RD; (2.30)

where Dks is the displacement in kth direction due to settlement of supports, D is the

given settlement of support; R are the reactions in the support which is settled; this

reaction caused by unit load which corresponds to the required displacement.

Summation covers all supports.

Horizontal displacement of the hinge C. Horizontal force X2 ¼ 1 corresponds to the

required horizontal displacement Dh
C. Reactions at the supports A and B are shown

in Fig. 2.39b. Equation (2.30) leads to the following result:

Dh
C ¼ �

X
R� D ¼ R0

A � Du
A � R0

B � Du
B þ H0

A � Dh
A þ H0

B � Dh
B:

Discussion

1. Equation (2.30) reflects a kinematical nature of problem; it means that

displacements of any point of a statically determinate structure are determined

by the geometrical parameters of a structure without taking into account the

deformations of its elements. Any settlement of support of such structure does

not depend on the stiffness of the structure, and therefore leads to displacement

of its separate parts as rigid discs.

2. The positive results for required Dimeans that unit load X on the displacement Di

performs positive work.

3. Assume that Du
A 6¼ 0, while all other displacements are zero. Thus, in case of

vertical displacement of only one of the support, the crown hinge C has the

vertical and horizontal displacements.
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2.9.2 Errors of Fabrication

Deflections of the structural members may occur as a result of the geometric misfit.

This topic is sometimes referred to as geometric incompatibility.

The following procedure may be applied for this type of problems:

1. At point K, where displacement should be determined, we need to apply a unit

generalized force X ¼ 1 corresponding to the required displacement.

2. Compute all reactions caused by the unit generalized force X ¼ 1.

3. Calculate the work done by these reactions on the displacements.

Example 2.8. The tie AB of the arch ACB in Fig. 2.40 is D ¼ 0.02 m longer then

required length l. Find the vertical displacement at point C, if l ¼ 48 m, f ¼ 6 m.

Solution. The actual position of the tie is AB0 instead of required AB position. For

computation of the vertical displacementDCwehave to apply a unit vertical force atC.
Reactions of the three-hinged arch and thrust in tie caused by the force P ¼ 1 equal

RA ¼ RB ¼ 0:5;H ¼ M0
C f= ¼ l ð4f Þ= ¼ 2:

Application of principle of virtual displacements leads to the following

expression

X � DC � H � D ¼ 0:

Since X ¼ 1, then the required displacement becomes

DC ¼ þH � D ¼ þ0:04m (downward)

It is obvious that the effect of geometric incompatibility may be useful for the

regulation of stresses in the structure. Let us consider a three-hinged arch which is

loaded by any fixed load. The bending moments are MðxÞ ¼ M0 � Hy, where M0

is the bending moment in the reference beam. If a tie is fabricated longer than is

required, then the thrust becomes H ¼ H1 þ H2 where H1 and H2 are thrust due to

fixed load and errors of fabrication, respectively.

A 

C 

f 

DC

D D

DC

Actual state 

l 

B A 

C 
X=1

Unit state 

H B

RA RBl

B
C

Fig. 2.40 Design diagram of the arch (error fabrication) and unit state
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Discussion

For computation of displacement due to the settlement of supports and errors of

fabrication, we use the principle of virtual work. This principle and the

Maxwell–Mohr integral method have the general concept of generalized coordinate

and corresponding generalized unit force in common.

2.10 Matrix Form Analysis of Arches Subjected

to Fixed and Moving Load

This paragraph presents the matrix analysis of three-hinged arch subjected to fixed

and moving load.

Design diagram of three-hinged parabolic arch subjected to fixed load is shown

in Fig. 2.41. The span of the arch is divided into n equal portions, so d ¼ l/n; in the
case of Fig. 2.41, n ¼ 8.

Let the span and rise of the arch be l ¼ 16 m and f ¼ 4 m, respectively.

If the equation of the arch obeys formula (3), then

y1 ¼ y7 ¼ 1:75m; y2 ¼ y6 ¼ 3:0m; y3 ¼ y5 ¼ 3:75m; y4 ¼ f ¼ 4:0m:

Vector of bending moments at the nodal points 1–7 is

M
!¼ L�

mLm P
!
; (2.31)

where the influence matrix of bending moments is

L�
m ¼

1 0 0 m�
1 0 0 0

0 1 0 m�
2 0 0 0

0 0 1 m�
3 0 0 0

0 0 0 0 0 0 0

0 0 0 m�
5 1 0 0

0 0 0 m�
6 0 1 0

0 0 0 m�
7 0 0 1

2
666666664

3
777777775

A

4

B

l
dd

1

2
3 5

6

7

y1
y2

y4= f

P7

P6

P5
P4P3P2

P1

y

y3

d d

Fig. 2.41 Design diagram of

three-hinged parabolic arch
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To find the entries m�
i we need to construct a bending moment diagram for

three-hinged arch subjected to self-balanced load, which acts as shown in Fig. 2.42.

The trust is H ¼ 1 f= , so the bending moments at the nodal points are

m�
1 ¼ m�

7 ¼ � y1
y4

¼ � 1:75

4
; m�

2 ¼ m�
6 ¼ � y2

y4
¼ � 3

4
;

m�
3 ¼ m�

5 ¼ � y3
y4

¼ � 3:75

4
:

Therefore, matrix L�m becomes

L�
m ¼

1 0 0 �0:4375 0 0 0

0 1 0 �0:75 0 0 0

0 0 1 �0:9375 0 0 0

0 0 0 0 0 0 0

0 0 0 �0:9375 1 0 0

0 0 0 �0:75 0 1 0

0 0 0 �0:4375 0 0 1

2
666666664

3
777777775
:

Influence matrix of bending moments for the arch coincides with influence

matrix for bending moments for simply supported beam of the same span

Lm ¼ d

n
Iðn�1Þ;

where Iðn�1Þ is a matrix of order n � 1 and has the following special form

I n�1ð Þ ¼

n� 1 n� 2 n� 3 ::: 1

n� 2 ::: ::: ::: 2

::: ::: ::: ::: :::
2 4 6 ::: n� 2

1 2 3 ::: n� 1

2
66664

3
77775:

A

4

B

l
dd

1

2
3 5

6

7

2/d

1/d 1/d

H H

y4

*m7

*m6

*m5
*m3

*m2

*m1

Fig. 2.42 Bending moment

diagram due to self-balanced

load 1/d–2/d–1/d
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If n ¼ 8 then Lm becomes

Lm ¼ d

8

7 6 5 4 3 2 1

6 12 10 8 6 4 2

5 10 15 12 9 6 3

4 8 12 16 12 8 4

3 6 9 12 15 10 5

2 4 6 8 10 12 6

1 2 3 4 5 6 7

2
666666664

3
777777775
:

This matrix is symmetric with respect to both diagonals. The entries of the last

row and last column, as well as the entries of the first column (from bottom to top)

and first row (from right to left) present the natural numbers 1,2,…, (n�1). Any

entry mki, which is located on the main diagonal or above, is determined as a

product of the k-th entry of the very first row and the number i of the row .

Vector of bendingmoments is the result of multiplication of the followingmatrices

M
!¼

M1

M2

M3

M4

M5

M6

M7

666666666666666666664

777777777777777777775

¼

1 0 0 �0:4375 0 0 0

0 1 0 �0:75 0 0 0

0 0 1 �0:9375 0 0 0

0 0 0 0 0 0 0

0 0 0 �0:9375 1 0 0

0 0 0 �0:75 0 1 0

0 0 0 �0:4375 0 0 1

2
666666666666666664

3
777777777777777775

� 2

8

7 6 5 4 3 2 1

6 12 10 8 6 4 2

5 10 15 12 9 6 3

4 8 12 16 12 8 4

3 6 9 12 15 10 5

2 4 6 8 10 12 6

1 2 3 4 5 6 7

2
666666666666666664

3
777777777777777775

�

P1

P2

P3

P4

P5

P6

P7

2
66666666666666666666

3
77777777777777777777

:

If we assume that the vector of external loads is P
!¼ 1 4 2 0 0 2:5 0b cT

[Kle80], then the vector of bending moments at the nodal points 1–7 becomes

M
!¼ 2:75 6 3:75 0 �1:25 0 �1:25b cT:
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This matrix approach may be effectively used for the construction of influence

lines for bending moments. If force P ¼ 1 is placed only at joint 1, then the vector

of external load becomes

P
!¼ 1 0 0 0 0 0 0b cT

and procedure (2.31) gives us the bending moments at the nodal points 1–7.

In order to calculate all ordinates of influence lines for bending moments at

sections 1–7, the vector of loads P
!

should be replaced by an identity matrix P;

if n ¼ 8, then this matrix is of order 7.

The final result of multiplication of the three squared matrices is

M ¼

IL M1ð Þ
IL M2ð Þ
IL M3ð Þ
IL M4ð Þ
IL M5ð Þ
IL M6ð Þ
IL M7ð Þ

2
666666666666666

3
777777777777777

¼

1:3125 0:6250 �0:0625 �0:7500 �0:5625 �0:3750 �0:1875

0:7500 1:5000 0:2500 �1:0000 �0:7500 �0:5000 �0:2500

0:3125 0:6250 0:9375 �0:7500 �0:5625 �0:3750 �0:1875

0 0 0 0 0 0 0

�1:1875 �0:3750 �0:5625 �0:7500 0:9375 0:6250 0:3125

�0:2500 �0:5000 �0:7500 �1:0000 0:2500 1:5000 0:7500

�1:1875 �0:3750 �0:5625 �0:7500 �0:0625 0:6250 1:3125

2
6666666666664

3
7777777777775

:

The ith row of this matrix represents the influence line of bending moment at the

ith nodal point.

It is easy to verify that each influence line for bending moment consist of the

strength portions; this means that the structure under consideration is indeed

statically determined.
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Chapter 3

Redundant Arches

This chapter is devoted to the analysis of statically indeterminate arches. Numerous

examples of application of this method for the analysis of different arches are

presented. Among them are uniform and nonuniform arches with and without ties,

arches with elastic supports, etc., subjected to external fixed and moving loads,

temperature changes, concrete shrinkage, settlements of supports, and errors of

fabrication.

3.1 Types, Forms, and Peculiarities of Redundant Arches

Typical statically indeterminate arches are shown in Fig. 3a–c. A two-hinged arch

(Fig. 3b) has one redundant constraint. A hingeless arch (arch with fixed ends)

(Fig. 3a) has three redundant constraints. One-hinged arch (Fig. 3c) has two

redundant constraints. All of these arches may be symmetrical or nonsymmetrical.

In the general case, the following internal forces arise in an arch: bending

moments M, shear Q, and axial force N. In the statically indeterminate arches,

internal forces are the result of the action of external loads, as well as settlements of

supports, change of temperature, errors of fabrication, and shrinkage. Since a two-

hinged arch is more flexible than a hingeless arch, the internal forces are smaller in

a two-hinged arch when compared to the hingeless counterpart. Distribution of

internal forces and displacements in an arch depends on the shape of the arch. The

shape of the arch is described by the equation y ¼ f(x) of the axis of the arch, as

well as the law of change of moment of inertia of the cross section of the arch along

its axis.

The choice of the arch shape is determined by the engineer on the basis of a

number of requirements. The first important requirement is that the distribution of

material along the axis of the arch must corresponds to distribution of internal

forces. For example, in the pinned support, the bending moment equals to zero;

therefore, the moment of inertia of the cross-section should be minimal.

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_3, # Springer Science+Business Media, LLC 2012
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The second requirement concerns the ability to obtain accurate solutions, which

will in turn allow the engineer to perform an analytical analysis of results. Several

laws of the change of moment of inertia of the cross section for symmetrical arches

are presented below.

3.1.1 Two-Hinged Arch

In the case of an arch of variable cross-section, the following law for moment of

inertia Ix of cross-section may be assumed Ix ¼ I0 cos’x, where I0 is the moment of

inertia at the crown, ’x is the angle between tangent to the axis of the arch and the

horizontal line [Kle80], [Dar89]. This expression describes a decrease in flexural

stiffness of the arch from crown to supports (Fig. 3.1a) and corresponds to insignif-

icant bending moments in the vicinity of the supports of the arch subjected to a

uniformly distributed load. This law also satisfies the esthetic requirements.

It is possible to assume that Ax ¼ A0 cos’x, where A0 is the area of the cross-

section at the crown [Dar89].

For two-hinged symmetrical arches, the following relationships are also possible

(origin is placed at the left support) (Fig. 3.1b) [Kis60]:

I ¼ I0
cos’

� 1

1þ n� 1ð Þ x
l1

; I ¼ I0
cos’

� 1

1þ n� 1ð Þ x
l1

� �5 ; (3.1)

where l1 is a half-span of the arch; n ¼ I0 Is cos’sð Þ= , subscript “s” refers to the

cross-section at the support of the arch.

If n ¼ 1, then Is cos’s ¼ I0; this case leads to the change of moment of inertia

by the law I ¼ I0= cos’ [Sni66], [Dar89]. According to this formula, the flexural

stiffness decreases from support to the crown. In the case of a parabolic arch, this

relationship allows us to perform the integration procedure in a close form.

x

a
Ix= I0 cosjx I0

b

x

y I0

l1

Is
js

j

Fig. 3.1 Two-hinged nonuniform arch

126 3 Redundant Arches



3.1.2 Hingeless Arch

For such arches, the maximum bending moments arise at supports (for typical

loads, such as a uniformly distributed load along half-span, or nonuniformly

distributed loads, etc.). For these cases, the following law for moment of inertia

of cross-section may be assumed: Ix cos’x ¼ IC. This expression corresponds to an
increase of flexural stiffness of the arch from crown to supports (Fig. 3.2a).

For hingeless symmetrical arches, it is also possible to assume the following

relationships (origin is placed at the highest point of the arch (Fig. 3.2b) [Kis60],

[Sni66])

I ¼ I0
cos’

� 1

1� 1� nð Þ x
l1

; I ¼ I0
cos’

� 1

1� 1� nð Þ yf
; (3.2)

where n ¼ I0 Is cos’sð Þ= , I0 and Is are moment of inertia at the crown and at

support; l1, f are half of the span and rise of the arch, respectively.

If n ¼ 1, then Is cos’s ¼ I0. This case leads to the change of moment of inertia

by the law I ¼ I0= cos’ (Fig. 3.2a).

Thus, it can be observed that the shape in Fig. 3.2a is not wise to use for pinned

supports, while the shape in Fig. 3.1a is dangerous to use in case of clamped

supports. It is obvious that the laws for moment of inertia of cross-section in real

structures are not limited to the cases considered above. There are other laws of

variation of moments of inertia listed in the books [Mor35], [Mel31], [Str27],

and [Ric99].

If an axial force should be taken into account, then we need to know how to

change the area Ax of the cross section of the arch along the axis of the arch. For

rectangular cross section of the arch with width b ¼ constant and variable thickness

hðxÞ, the moment of inertia at any section and crown are Ix ¼ bh3x 12= , I0 ¼ bh30 12= ,

respectively. Since Ax ¼ bhx, A0 ¼ bh0 then in case of n ¼ 1 we get

Ax ¼ A0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos’x

3
p�

. This formula may be replaced by the simpler approximate

form Ax� A0 cos’x= . This formula leads to an accurate approximation of the thrust

and bending moments [Dar89].

x

x

y

l1 

Ix = 
I0 I0 I0

Is

cosjx

a b

j
js

Fig. 3.2 Hingeless nonuniform arch

3.1 Types, Forms, and Peculiarities of Redundant Arches 127



In the case of flat arches (f<l 8= ), we can assume cos’x � 1, the length of

the elementary segment ds and its horizontal projection dx are equals, and Ax ¼
A0 ¼ const for all cross sections of the arch.

3.2 Force Method

The Force method presents a powerful method for analyzing linear elastic statically

indeterminate structures; this method also has a wide application in problems of

stability and dynamics of structures. The method is very attractive because it has

clear physical meaning, which is based on a convenient and well-ordered procedure

of calculation of displacements of deformable structures, and presently, this method

has been brought to elegant simplicity and perfection.

3.2.1 Primary System and Primary Unknowns

Degree of redundancy, or statical indeterminacy, equals to the number of redundant

constraints whose elimination leads to the new geometrically unchangeable and

statically determinate structure. Thus, degree of statical redundancy is the differ-

ence between the number of constraints and the number of independent equilibrium

equations that can be written for a given structure.

Primary unknowns represent reactions (forces and/or moments), which arise in

redundant constraints. Unknown internal forces also may be treated as primary

unknowns. Primary system is such structure, which is obtained from the given one

by eliminating redundant constraints and replacing them by primary unknowns

[Kar10].

3.2.2 Canonical Equations of the Force Method

A two-hinged arch (Fig. 3.3a) presents a structure with one redundant constraint.

Let the primary unknown X1 be the horizontal reaction of the right support. The

primary system is shown in Fig. 3.3b; this structure is subjected to given loads as

well as the force X1.

The canonical equation of the Force method and primary unknown is given as

follows:

d11X1 þ D1P ¼ 0; X1 ¼ �D1P

d11
: (3.3)
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Coefficient d11 of canonical equation represents the displacement of the primary

structure along the direction of unknown X1 due to unit primary unknowns

(Fig. 3.3c), and therefore this coefficient is called unit displacement. Unit displace-
ment is always strictly positive, d11>0. The term d11X1 represents the displacement

along the direction of unknown X1 due to the action of real unknown X1. Free term

D1P represents displacement in the primary system along the direction of unknown

X1 due to the action of actual load. Displacement caused by applied loads D1P is

called load term (Fig. 3.3d).

Left part of (3.3), d11X1 þ D1P; represents the total displacement along the

direction of unknown X1 due to its action and a given load. Total displacement,

which occurs in the primary structure in the direction of eliminated restriction

caused by primary unknown and applied load, equals to zero. In this case, the

difference between the given and primary structures vanishes.

The form of presentation of the canonical equation d11X1 þ D1P ¼ 0 is always

the same for a two-hinged arch; it does not depend on its peculiarities (uniform/

nonuniform arch, symmetrical/nonsymmetrical arch), and type of external actions

(forces, support settlements, temperature change, fabrication error).

It is possible to adopt the primary system as a three-hinged arch (Fig. 3.3e). In

this case, the primary unknown will be the moment at a crown. Coefficient d11 is a
mutual angle of rotation at the crown caused by unit moment X1 ¼ 1, and D1P is the

mutual angle of rotation of two sections – left and right at the crown – caused by a

given load. In this case, the canonical equation means that a mutual angle of

rotation at the crown caused by primary unknown X1 and given load equals to zero.

A two-hinged arch with tie presents a structure with one redundant constraint.

Internal force in a tie may be treated as the primary unknown X1. In this case, the

primary system represents a simply supported curvilinear rod. Coefficient d11 is

mutual linear displacement due to the unit force X1 ¼ 1, and D1P is mutual linear
displacement in the tie due to the given load. The canonical equation means that

mutual linear displacement of any two sections, which belongs to the tie, caused by

primary unknown X1 and given load equals to zero.

a

P

e
X1 P

c

X1=1

b

X1 

P

d P

D1P
d11

Fig. 3.3 Design diagram and primary systems of two-hinged arch
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Hingeless arch present a structure with three redundant constraints. The different

primary systems are shown in Fig. 3.4.

Nonsymmetrical primary system is shown in Fig. 3.4a. The redundant

constraints are all constraints of one of the support. Primary unknowns are three

reactions of the eliminated constraints.

Primary system as a three-hinged symmetric arch is shown in Fig. 3.4b. Primary

unknowns are pair wise moments at the crown and moments at supports.

Primary system may be chosen as two symmetric curvilinear fixed-free bars

(Fig. 3.4c). Primary unknowns are internal forces which arise at the axis of

symmetry; they are pair wise axial forces X1, moments X2, and shear force X3.

It is obvious that other versions of the primary systems are possible.

For any primary system in Fig. 3.4, the canonical equation of Force method is

written as follows

d11X1 þ d12X2 þ d13X3 þ D1P ¼ 0;

d21X1 þ d22X2 þ d23X3 þ D2P ¼ 0;

d31X1 þ d32X2 þ d33X3 þ D3P ¼ 0:

(3.4)

The form of presentation of the canonical equation (3.4) is always the same for

hingeless arches; it does not depend on the peculiarities of the arch, and type of

external exposures (forces, support settlements, temperature change, fabrication,

error). Canonical equations for an n-times redundant structure may be written in a

similar form.

All coefficients dik of canonical equations represent a displacement of the

primary structure due to unit primary unknowns; these coefficients are called unit
displacements.

Coefficient dik is the displacement along the direction of unknown Xi due to

action of unit unknown Xk; term dikXk presents displacement along the direction of

unknown Xi due to action of real unknown Xk. Coefficients dik, which are located on
the principal diagonal (i ¼ k), are called principal (main) displacements. All other

displacements dik(i 6¼ k) are called the secondary unit displacements.

Free term DiP presents displacement along the direction of unknown Xi due to the

action of actual load on primary system. Displacements DiP caused by applied loads

are called the loaded terms or free terms. Loaded displacements DiP may be

positive, negative, or equals zero.

X2 

X1 

X3 

a
X1 

X2 X3 

b

X3 

X2 

X1 X1 

c

Fig. 3.4 Primary systems for hingeless arch
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Physical meaning of the canonical equations: The left part of the ith equation

presents the total displacement along the direction of unknown Xi due to action of

all real unknowns Xk as well as applied load. Total displacement of the primary

structure in directions of eliminated constraints caused by primary unknowns and

applied load equals zero. In this case, the difference between the given and primary

structures is vanished.

3.2.3 Unit and Loading Displacements

Computation of coefficients and free terms of canonical equations presents signifi-

cant and very important part of analysis of any statically indeterminate structure.

For their calculation, any methods can be applied. The graph multiplication method

is the best suited for arched structures. For this, it is necessary in primary system to

construct bending moment diagrams M1;M2; :::;Mn due to unit primary unknowns

Xi, i ¼ 1,. . .,n and diagram M0
P due to given load. Unit displacements and loaded

terms are calculated by Maxwell–Mohr formulas. If the shear and axial forces are

neglected, then

dik ¼
XZ

Mi �Mk

EI
ds; DiP ¼

XZ
Mi �M0

P

EI
ds: (3.5)

Computation of these displacements may be performed using the graph multi-

plication method. Book [Kar10] presents different types of verifications for unit and

loaded displacements.

Properties of unit coefficients are as follows:

1. Main displacements are strictly positive (dii>0).

2. Secondary displacements dik, i 6¼ k may be positive, negative, or zero.

3. Secondary displacements satisfy the reciprocal displacement theorem

dik ¼ dki: (3.6)

It means that unit displacements symmetrically placed with respect to the

principal diagonal of canonical equations are equal.

The unit of displacements dik presents the ratio of unit for displacement

according to index i and units for force according to index k. For example, for

primary system in Fig. 3.4a, we get

d11ðrad=ðkNmÞÞ; d12ðrad=kNÞ; d21ðm=ðkNmÞ ¼ 1=kNÞ; d22ðm=kNÞ:
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3.2.4 Procedure for Analysis

Solution of canonical equation for structure with n redundant constraints is the

primary unknowns Xi, i ¼ 1,. . .,n. After that the primary system may be loaded by

primary unknowns and given load, internal forces may be computed as for usual

statically determinate structure. However, the following way allows once again an

effective use of the bending moment diagrams in primary system. The final bending

moment diagram MP may be constructed by the formula given below

MP ¼ M1 X1 þM2 X2 þ � � � þMn Xn þM0
P: (3.7)

Thus, in order to compute the ordinates of the resulting bending moment

diagram, it is necessary to multiply each unit bending moment diagrams Mk by

the corresponding primary unknown Xk and summing up with bending moment

diagram due to applied load in the primary system M0
P. This formula expresses the

superposition principle. Advantage of (3.6) is that it may be effectively presented in

tabulated form.

Shear and axial forces may be calculated by formulas

QP ¼ Q1 X1 þ Q2 X2 þ � � � þ Qn Xn þ Q0
P;

NP ¼ N1 X1 þ N2 X2 þ � � � þ Nn Xn þ N0
P; (3.7a)

where Qi; and Ni are shear and axial force diagram due to unit ith primary unknown

Xi ¼ 1:
Note, for framed structure, shear forces may be easily calculated on the basis of

bending moment diagram using Schwedler theorem and axial forces may be

calculated on the basis of shear force diagram by considering equilibrium of joints

of the structure [Kar10]. Finally, having internal force diagrams, all reactions are

easy to determine.

Procedure for the analysis of statically indeterminate arches is as follows:

1. Choose the primary system of the Force method.

2. Accept the simplified model of the arch, i.e., the arch is divided into several

portions and each curvilinear portion is changed by straight member. Calculate

the geometrical parameters of the arch at specified points.

3. Calculate the unit and loaded displacements; (3.5) may be applied.

4. Find the primary unknown using canonical equation of the Force method.

5. Construct the internal force diagrams; (3.7)–(3.7a) may be applied.

6. Calculate the reactions of supports and provide their verifications.
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3.3 Arches Subjected to Fixed Loads

This section contains analysis of parabolic two-hinged uniform arch, subjected to

uniformly distributed load q within all span. It is shown that this arch is rational.

3.3.1 Parabolic Two-Hinged Uniform Arch

Design diagram of two-hinged uniform arch subjected to uniformly distributed load

q within all span is shown in Fig. 3.5a. The flexural stiffness of the cross section of

the arch is EI. The equation of the neutral line of the arch is y ¼ 4fx l� xð Þ l2
�

. It is

necessary to find the distribution of internal forces.

The arch under investigation is statically indeterminate of the first degree. The

primary system is shown in Fig. 3.5b; the primary unknown X1 is the horizontal

reaction of the right support. Canonical equation of the Force method is

d11X1 þ D1P ¼ 0.The primary unknown X1 ¼ �D1P d11= .

Specified Points of the Arch

The span of the arch is divided into eight equal parts; the specified points are

labeled 0–8. Parameters of the arch for these sections are presented in Table 3.1; the

following formulas for the calculation of trigonometric functions of the angle

between the tangent to the arch and x-axis have been used:

tan’ ¼ y0 ¼ 4f l� 2xð Þ
l2

; cos’ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2’

p ; sin’ ¼ cos’ tan’:

The length of the chord between points n and n � 1 equals

ln;n�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � xn�1ð Þ2 þ yn � yn�1ð Þ2

q
:

The chord lengths of each portion of the arch are presented in Table 3.2.

y

x

l = 24m 

a
q = 2kN/m

f=
6m

b
q = 2kN/m

Primary system
X1
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6
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8
l/8 l/8

j

Fig. 3.5 Parabolic arch. Design diagram and primary system
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Internal Forces in the Unit State

The arch is subjected to unit primary unknown X1 ¼ 1 (Fig. 3.5b). Horizontal

reaction H ¼ 1 and the positive directions of internal forces are shown in Fig. 3.6.

M1 ¼ �1� y;

Q1 ¼ �1� sin’;

N1 ¼ �1� cos’: (3.8a)

Table 3.2 Chord length for portions of the arch

Portion Chord length (m)

0–1 3.9863

1–2 3.5377

2–3 3.2040

3–4 3.0233

4–5 3.0233

5–6 3.2040

6–7 3.5377

7–8 3.9863

Table 3.1 Geometrical parameters of parabolic arch

Points

Coordinates (m)
tan ’ cos ’ sin ’x y

0 0 0.0 1.00 0.7070 0.7070

1 3 2.625 0.75 0.800 0.6000

2 6 4.500 0.50 0.8944 0.4472

3 9 5.625 0.25 0.9701 0.2425

4 12 6.000 0.0 1.0 0.0

5 15 5.625 �0.25 0.9701 �0.2425

6 18 4.500 �0.5 0.8944 �0.4472

7 21 2.625 �0.75 0.800 �0.6000

8 24 0.0 �1.00 0.7070 �0.7070

y

j

j Q1

M1 N1

H = 1

x

Fig. 3.6 Positive directions of internal forces
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Internal forces at specified points in the unit state according to (3.8a) are

presented in Table 3.3.

The unit displacement caused by primary unknown X ¼ 1 equals

d11 ¼
Z
ðsÞ

M1 �M1

EI
ds: (3.8b)

Thus, the only column M1 (Table 3.3) will be used for the calculation of unit

displacement; the columns Q1 and N1 will be used for computation of final shear

and axial forces as indicated in step 5 of the procedure.

Internal Forces in the Loaded State

Displacement in the primary system caused by the applied load is given as

follows

D1P ¼
Z
ðsÞ

M1 �M0
P

EI
ds; (3.8c)

where M0
P is bending moments in the arch in the primary system due to the given

load q. Thus, as in the case of unit displacement, for the computation of loaded

displacement, we will take into account only bending moment.

The reactions of supports of the primary system in the loaded state are

R0
A ¼ R0

B ¼ 24 kN; this state is not shown. Expressions for internal forces are

follows (0 � x � 24)

M0
P ¼ R0

Ax� q
x2

2
¼ 24x� x2;

Q0
P ¼ R0

A � qx
� �

cos’ ¼ 24� 2xð Þ cos’;

Table 3.3 Internal forces of the arch in the unit state

Points M1 Q1 N1

0 0.0 �0.7070 �0.7070

1 �2.625 �0.6000 �0.8000

2 �4.50 �0.4472 �0.8944

3 �5.625 �0.2425 �0.9701

4 �6.00 0.0 �1.0000

5 �5.625 0.2425 �0.9701

6 �4.50 0.4472 �0.8944

7 �2.625 0.6000 �0.8000

8 0.0 0.7070 �0.7070

3.3 Arches Subjected to Fixed Loads 135



N0
P ¼ � R0

A � qx
� �

sin’ ¼ � 24� 2xð Þ sin’:

Internal forces at specified points in the loaded state of the primary system are

presented in Table 3.4.

Computation of Unit and Loaded Displacements

For the calculation of displacement, the Simpson formula is applied. Unit and

loaded displacements are

d11 ¼ M1 �M1

EI
¼
Xn
1

li
6EI

a21 þ 4c21 þ b21
� �

;

D1P ¼ M1 �M0
P

EI
¼
Xn
1

li
6EI

a1aP þ 4c1cP þ b1bPð Þ;

where li is the length of the ith straight portion of the arch (Table 3.2); n is the

number of straight portions of the arch (in our case, n ¼ 8); a1, aP are the ordinates
of the bending moment diagrams M1 and M0

P at the extreme left end of the portion;

b1, bP are the ordinates of the same bending moment diagrams at the extreme right

end of the portion; c1, cP are the ordinates of the same bending moment diagrams at

the middle point of the portion.

Calculation of the unit and loaded displacements is presented in Table 3.5. In

columns a1, c1, and b1 of columnhead “Unit state” contain data from columnM1 of

Table 3.3. In columns aP, cP, and bP of columnhead “Loaded state” contain data

from column M0
P of Table 3.4. As an example for portion 1–2, the entries of

columns 6 and 10 are obtained by the following way

Table 3.4 Internal forces of the arch in the loaded state

Points M0
P Q0

P N0
P

0 0.0 16.968 �16.968

1 63 14.400 �10.800

2 108 10.7328 �5.178

3 135 5.8206 �1.455

4 144 0.0 0.0

5 135 �5.8206 �1.455

6 108 �10.7328 �5.178

7 63 �14.400 �10.800

8 0.0 �16.968 �16.968
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3:5377

6EI
� �2:625ð Þ� �2:625ð Þþ4 �3:5625ð Þ� �3:5625ð Þþ �4:50ð Þ� �4:50ð Þ½ �

¼45:9335

EI
;

3:5377

6EI
� �2:625ð Þ�63þ4 �3:5625ð Þ�85:5þ �4:50ð Þ�108½ �¼�1;102:40

EI
:

Sum of the columns 6 and 10 are:

darch11 ¼ 479:4484

EI
ðm=kNÞ;

D1P ¼ � 11; 506:74

EI
ðmÞ:

Canonical equation and primary unknown (thrust) become

479:4484

EI
X1 � 11; 506:74

EI
¼ 0 ! X1 ¼ 24:00 kN:

Construction of Internal Force Diagrams

Internal forces, which arise in the entire structure, may be calculated by the

formulas given below

M ¼ M1X1 þM0
P;

Q ¼ Q1X1 þ Q0
P;

N ¼ N1X1 þ N0
P:

Table 3.5 Calculation of coefficient and free term of canonical equation

Portion

l

6EI

Unit state M1 �M1

EI

Loaded state M1 �M0
P

EIa1 c1 b1 aP cP bP

1 2 3 4 5 6 7 8 9 10

0–1 0.6644 0.0 �1.3125 �2.625 9.1563 0.0 31.5 63 �219.75

1–2 0.5896 �2.625 �3.5625 �4.500 45.9335 63 85.5 108 �1102.40

2–3 0.5340 �4.500 �5.0625 �5.625 82.4529 108 120.5 135 �1978.87

3–4 0.5039 �5.625 �5.8125 �6.000 102.1815 135 139.5 144 �2452.35

4–5 0.5039 �6.000 �5.8125 �5.625 102.1815 144 139.5 135 �2452.35

5–6 0.5340 �5.625 �5.0625 �4.500 82.4529 135 121.5 108 �1978.87

6–7 0.5896 �4.500 �3.5625 �2.625 45.9335 108 85.5 63 �1102.40

7–8 0.6644 �2.625 �1.3125 0.0 9.1563 63 31.5 0.0 219.40
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Calculation of internal forces in the arch due to the given fixed load is presented

in Table 3.6; internal forces M1, Q1, and N1 due to unit primary unknown X1 ¼ 1

are presented earlier in Table 3.3.

Corresponding axial force diagram N is presented in Fig. 3.7.

Knowing the internal forces at points 0 and 8, we can calculate the reactions at

supports A and B. Axial force N0 ¼ 33.936 kN is shown at support A (Fig. 3.7).

Reactions of this support are

RA ¼ N0 sin’0 ¼ 33:936� 0:707 ¼ 24 kN; H ¼ N0 cos’0 ¼ 24 kN:

For primary unknown X1, we have obtained previously the same result.

Discussion

1. If two-hinged uniform parabolic arch is subjected to uniformly distributed load

within all span, then this arch is rational since the bending moments and shear

forces equal to zero in all sections of the arch. In this case, only axial compressed

forces arise in all section of the arch. Such a conclusion can be made if the effect

Table 3.6 Calculation of internal forces at specified points of the arch

Points M1X1 Q1X1 N1X1 M0
P Q0

P N0
P M Q N

0 0.0 �16.968 �16.968 0.0 16.968 �16.968 0.0 0.0 �33.936

1 �63 �14.400 �19.2 63 14.400 �10.80 0.0 0.0 �30.0

2 �108 �10.733 �21.466 108 10.733 �5.178 0.0 0.0 �26.644

3 �135 �5.820 �23.282 135 5.820 �1.455 0.0 0.0 �24.737

4 �144 0.0 �24.00 144 0.0 0.0 0.0 0.0 �24.0

5 �135 5.820 �23.282 135 �5.820 �1.455 0.0 0.0 �24.737

6 �108 10.733 �21.466 108 �10.733 �5.178 0.0 0.0 �26.674

7 �63 14.40 �19.20 63 �14.40 �10.800 0.0 0.0 �30.0

8 0.0 16.968 �16.968 0.0 �16.968 �16.968 0.0 0.0 �33.936
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of axial and shear forces on the unit and loaded displacements are not taken into

account.

If the axial forces are taken into account, then the change of the primary

unknown is insignificant. However, the condition of the arch has changed

fundamentally since the arch has ceased to be rational. Detailed analysis is

presented in Sect. 3.11.2.

2. Procedure for the analysis of nonuniform arch remains the same. However, in this

case, Table 3.1 must contain an additional column with parameter EI for each
point 0–8, Table 3.2 must contain the parameter EIi for the middle point of each
portion, and column 2 of the Table 3.5 should be replaced by the column li 6EIi= :

3.3.2 Some Comments About Rational Axis

In the previous section, we showed that uniform parabolic two-hinged arch, subjected

to uniform vertical load, is a rational arch. Taking into account the axial forces which

arise in the arch, this wonderful feature of the arch immediately disappears. It is

possible to show that if a hingeless arch is shaped according to pressure polygon of

three-hinged arch (Appendix, Pressure Polygon), then inevitably bending moments

arise in the arch if the axial forces are taken into account.

Let us show that it is essentially impossible to construct a rational hingeless arch

(i.e., an arch wherein all the sections of which the bending moments are zero).

Assume that it is possible to construct a rational hingeless arch. For this arch,

MP ¼ QP ¼ 0 and the axial force in the arch is NP ¼ H cos’:= Let us determine the

horizontal displacement of the left support (Fig. 3.8a). Unit state presents any
statically determinate system subjected to unit load, which corresponds to required

displacement [Kar10].

One version of primary system and corresponding unit state is shown in

Fig. 3.8b.

In this state, internal forcesMi 6¼ 0;Qi 6¼ 0; and Ni ¼ cos’. Therefore, required
displacements becomes

Dleft
hor ¼

Z
s

NiNP

EA
ds ¼

Z
x

cos’� H

cos’

1

EA
� dx

cos’
:

a

Pi=1

bFig. 3.8 Design diagram

of hingeless arch and unit

state for calculation of

horizontal displacement of

the left support
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It is obvious that this result does not equal to zero, so the initial assumption about

zero bending moments is false. Thus, any change in the axis of the arch cannot lead

to the zero bending moments [Kis60]. Strictly speaking, even for rational axis of the

three-hinged arch, deflection of the arch caused by axial forces leads to the change

of the curvature of the arch, and as a result leads to appearance of bending moments.

Note that it is possible to achieve a zero bending moment by controlling the

stresses in the arch. This problem is considered in ref. [Kis60].

3.4 Symmetrical Arches

This section describes properties of symmetrical structures, introduces the concept

of elastic center, and contains analysis of parabolic nonuniform arch and semicir-

cular uniform arch.

3.4.1 Properties of Symmetrical Structures

Symmetrical structures mean their geometrical symmetry, symmetry of supports,

and symmetry for stiffness of the members. Symmetrical arch subjected to vertical

load P is shown in Fig. 3.9a. This load may be presented as a sum of symmetrical

and antisymmetrical components (Fig. 3.9b, c). In general, any load may be

presented as the sum of symmetrical and antisymmetrical components.

At any section of a member, the following internal forces arise: symmetrical
unknowns, such as bending moment M and axial force N and antisymmetrical
unknown shear force Q (Fig. 3.10).

At the point of the axis of symmetry, the following displacements arise: the

vertical Dv, horizontal Dh, and angular ’. In the case of symmetrical load, the

horizontal and angular displacements at the point C are zero, while the vertical

displacement occurs. In the case of antisymmetrical load, the horizontal and angular

displacements at the point A exist, while a vertical displacement is zero.

= +

Symmetrical
load  

a b c

P/2 P/2 P/2 P/2

AS

Antisymmetrical
load 

AS
Axis of
symmetry   

P C

Fig. 3.9 Presentation of the load P as a sum of the symmetrical and antisymmetrical components
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Fundamental properties of internal force diagrams for symmetrical structures:

1. In the case of symmetrical loading, the internal force diagrams for symmetrical

unknowns (M, N) are symmetrical and the diagram for antisymmetrical

unknown (Q) is antisymmetrical.

2. In the case of antisymmetrical loading, the internal force diagrams for symmet-

rical unknowns (M, N) are antisymmetrical and the diagram for antisymmetrical

unknown (Q) is symmetrical.

More detail of the properties for the symmetrical structures is presented in ref.

[Kar10].

3.4.2 Elastic Center

Let us consider a hingeless arch subjected to arbitrary load (Fig. 3.11a). For such

arch, the system of three canonical equations is written in the form of (3.4). Elastic

center is a special point, where primary unknowns should be placed so that a system

of coupled canonical equations of the Force method would be presented as three

independent equations [Dar89], [Bro06].

Let us consider symmetric arch and find location of the elastic center. Let the

primary unknowns be the axial force X1, shear X2, and bending moment X3; they act

at the crown C of the arch. Since the bending moments diagrams M1 and M3 are

symmetrical while M2 is antisymmetrical, then

M M

Q

Q

N N

Fig. 3.10 Symmetrical and antisymmetrical internal forces

B

a b
y

A

l/2 l/2

C

f

q

x

IC

Ix 

P

A B

cX3 

X1

X3 

X1
X2X2

D
y0

y1 

y
C

y

j

Fig. 3.11 Primary system using the concept of elastic center
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d12 ¼ d21 ¼
Z

M1M2

EI
ds ¼ 0 and d23 ¼ d32 ¼

Z
M2M3

EI
ds ¼ 0:

In this case, the dependent equations (3.4) are reduced to the system of two

coupled equations with respect to symmetrical unknowns X1 and X3

d11X1 þ d13X3 þ D1P ¼ 0;

d31X1 þ d33X3 þ D3P ¼ 0; (3.9)

and one independent equation with respect to antisymmetrical unknown X2.

d22X2 þ D2P ¼ 0: (3.9a)

Note, that in case of one-hinged symmetrical arch, the bending moment X3 at the

crown equals zero.

Now the secondary unit displacements of the system (3.9) may be reduced to

zero. For this, we introduce two absolutely rigid cantilevers CD of length c, and the
primary unknowns are located at point D (Fig. 3.11b). The origin of coordinates

coincides with the crown C and axis y is directed downward. If three unknowns are
placed at the point D, then the bending moments due to unit primary unknowns are

M1 ¼ �1� y1;M2 ¼ �1� x and M3 ¼ 1, where y1 is ordinate of the axis of the

arch with respect to line of the unknown X1. Let us find the length c so that unit

displacement be zero: d13 ¼ 0. In this case, two coupled equations break down into

two independent equations. It happens if

d13 ¼
Z

M1M3

EI
ds ¼�

Z C

A

y1ð Þ � 1

EI
ds ¼

Z C

A

y1ds

EI
¼ 0:

Thus, initial system of (3.4) is transformed into three independent equations:

d11X1 þ D1P ¼ 0;

d33X3 þ D3P ¼ 0;

d22X2 þ D2P ¼ 0:

The ith canonical equation means that a mutual displacement of two sections at

point D caused by primary unknown Xi and external load is zero. Unit displacement

dii presents a mutual displacements of two sections at point D due to primary

unknown Xi ¼ 1, while DiP is a mutual displacement of two sections at same

point D due to the given load.

The primary unknowns are Xi ¼ �DiP dii= . The point D is called the elastic

center (Fig. 3.11b).

The coordinate of elastic center is

c ¼ S1
S2

; S1 ¼
Z l 2=

0

y
ds

EI
; S2 ¼

Z l 2=

0

ds

EI
: (3.10)
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Indeed, an integral
R C
A y1ds=EI ¼ 0 may be presented as

Z C

A

c� yð Þds
EI

¼ c

Z C

A

ds

EI
�
Z C

A

yds

EI
¼ 0;

and this expression immediately leads to (3.10). Positions of elastic center for

different shapes of arches are presented below.

3.4.2.1 Hingeless Symmetrical Parabolic Nonuniform Arch

Assume that y ¼ 4f=l2 lx� x2ð Þ and Ix ¼ IC= cos’.
Since ds ¼ dx= cos’, then ds=EI ¼ dx=EIC, so S1 ¼ 4f=ðl2EICÞ

R l 2=
0

lx� x2ð Þdx;
S2 ¼

R l 2=
0

dx=EIC and for coordinate of elastic center we get y0 ¼ 2f=3; c ¼ f=3.

3.4.2.2 Hingeless Symmetrical Cubic Nonuniform Arch

Let equation of the axis and the moment of the cross section be [Sni66].

y ¼ m
x2

l21
þ 1� mð Þ x

2

l21

� 	
f origin is placed at the crownð Þ

I’ ¼ I0
cos’

� 1

1þ bðx=l1Þ ;

where 2l1 is a span of the arch, m and b are any parameters, 0� m� 1:4, and
� 1� b� 0. In this case,

c ¼ f
15þ 5mþ b 12þ 3mð Þ

30 2þ bð Þ :

3.4.2.3 Hingeless Symmetrical Circular Uniform Arch [Kle80]

In this case, the elastic center coincides with a center of gravity of the thin

semicircular line, i.e., y0 ¼ 2R p= .
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3.4.2.4 Any Symmetrical Hingeless Nonuniform Arch [Bro06]

In case of symmetrical arch of arbitrary shape and with any law of the moment of

inertia I of the cross section, the coordinate of elastic center may be determined by

numerical method with the following steps.

1. The span of the arch is divided into 8–12 equal portions and each curvilinear

segment of the arch is replaced by a straight member of length Ds.
2. For each nodal point of the arch, calculate the moment of inertia; for middle

point of the straight member, the moment of inertia may be calculated by the

formula I ¼ 0:5 Il þ Irð Þ, where Il and Ir are the moments of inertia at the left and

right end points of the straight member.

3. Determine conventional length of each member: Ds0 ¼ ðIC=IÞDs (IC is a moment

of inertia at the crown).

4. Determine coordinates x and y for middle point of each straight member.

5. For middle point of each straight member, determine the bending momentM0
P in

the primary system caused by the given load.

For calculation of unit and loaded displacements, we obtain the following

formulas

EICd11 ¼
Z

M
2

1ds
0 ¼

XC
A

y2Ds0; EICD1P ¼
Z

M1M
0
Pds

0 ¼
XC
A

yM0
PDs

0;

EICd22 ¼
Z

M
2

2ds
0 ¼

XC
A

x2Ds0; EICD2P ¼
Z

M2M
0
Pds

0 ¼ �
XC
A

xM0
PDs

0;

EICd33 ¼
Z

M
2

3ds
0 ¼

XC
A

Ds0; EICD3P ¼
Z

M3M
0
Pds

0 ¼
XC
A

M0
PDs

0:

(3.11)

All calculations are presented in the tabulated form (Table 3.7).

If it is necessary, the normal and shear forces may be easily taken into account

[Rab54a].

The primary unknowns are Xi ¼ �DiP dii= ; i ¼ 1; 2; 3: The reactions of

supports may be calculated considering equilibrium of the left and right half-arch

subjected to given loads and primary unknowns.

In case of any nonsymmetrical hingeless arch, for full separation of the coupled

equations we need to determine two coordinates (x0; y0) and angle of rotation (a) of
the axis (Fig. 3.12) [Rab54], [Bro06]. These axis are called the principal axes.

Table 3.7 General form for calculation of unit and loaded displacements

Portion Ds I Ds0 x y y2Ds0 x2Ds0 M0
P yM0

PDs
0 xM0

PDs
0 M0

PDs
0

1

. . .
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Position of elastic center and direction of principal axis may be calculated by the

formulas presented in ref. [Bro06]. However, the numerical procedure to calculate the

position of the elastic center turns out to be very cumbersome, and thus the advantage

of using the elastic center in all further calculations becomes questionable.

The physical meaning of the concept “elastic center”: in the middle point of each

straight segment apply a load ds I= , which is called the elementary fictitious elastic

load. The center of gravity of these loads represents the elastic center [Dar89].

3.4.3 Parabolic Hingeless Nonuniform Arch

Symmetrical parabolic nonuniform arch is subjected to uniformly distributed load q
(Fig. 3.13a). Equation of the central line of the arch is given by y ¼ 4fx l� xð Þ l2

�
:

The moment of inertia of the cross section of the arch changes according to the law

I ¼ IC cos’= . The primary system is shown in Fig. 3.13b.

Position of the elastic centerD is c ¼ f 3= : In this case, the primary unknowns are

Xi ¼ �DiP dii= ; i ¼ 1; 2; 3: If the axial and shear forces are neglected, then

expressions for unit and loaded displacements become

dii ¼
Z

M
2

i ds

EIx
¼ 1

EIC

Z
M

2

i dx; DiP ¼
Z

MiMPds

EIx
¼ 1

EIC

Z
MiMPdx:

x

xc 

y

yc 

C

X

Y

y0

x0

ds
ds

x

y xc

yc a

Fig. 3.12 Elastic center concept for nonsymmetrical hingeless arch
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Fig. 3.13 (a, b) Design diagram and primary system for hingeless arch
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Bending moment diagrams in a primary system caused by unit primary

unknowns and given load are shown in Fig 3.14.

Construct expressions for bending moments in the primary system caused by

unit primary unknowns Xi ¼ 1 and external load q. Let the origin be placed at

support A for left half-arch and at support B for right-half arch; the positive

direction of the axis x for right-half arch is directed from right to left.

M
left

1 ¼ M
right

1 ¼ 2

3
f � y;

M
left

2 ¼ � l

2
þ x; M

right

2 ¼ l

2
� x;

M
left

3 ¼ M
right

3 ¼ 1;

Mleft
P ¼ ql

2
x� ql2

8
� qx

x

2
; Mright

P ¼ 0:

For unit displacements, we get

d11 ¼
Z

M
2

1ds

EIx
¼ 2

EIC

Z l 2=

0

2

3
f � y


 �2
dx ¼ 4f 2l

45EIC
;

d22 ¼
Z

M
2

2ds

EIx
¼ 2

EIC

Z l 2=

0

l

2
� x


 �2
dx ¼ l3

12EIC
;

d33 ¼
Z

M
2

3ds

EIx
¼ 2

EIC

Z l 2=

0

dx ¼ l

EIC
:

X1=1 

X3=1 

1.c

1.y0 

M1 X2=1 
M2

M3

D

1.l/2

1 

q 

MP
0

ql2/8

xql/2

Fig. 3.14 Bending moment diagrams in the primary system caused by unit primary unknowns and

external load
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The loaded displacements become

D1P ¼
Z

M1MPds

EIx
¼ 1

EIC

Z l 2=

0

2

3
f � y


 �
ql

2
x� ql2

8
� qx

x

2


 �
dx

¼ 1

EIC

Z l 2=

0

2

3
f � 4f

l2
lx� x2
� �� 	

ql

2
x� ql2

8
� qx

x

2


 �
dx ¼ � qfl3

180EIC

D2P ¼
Z

M2MPds

EIx
¼ 1

EIC

Z l 2=

0

� l

2
þ x


 �
ql

2
x� ql2

8
� qx

x

2


 �
dx ¼ ql4

2� 64EIC
;

D3P ¼
Z

M3MPds

EIx
¼ 1

EIC

Z l 2=

0

1� ql

2
x� ql2

8
� qx

x

2


 �
dx ¼ � ql3

48EIC
:

Primary unknowns are

X1 ¼ �D1P

d11
¼ ql2

16f
; X2 ¼ �D2P

d22
¼ � 3

32
ql; X3 ¼ �D3P

d33
¼ ql2

48
:

Now we can calculate the reaction of supports (Fig. 3.15): thrust and vertical

reactions are

H ¼ X1 ¼ ql2

16f
; RA ¼ ql

2
þ X2 ¼ 13

32
ql "ð Þ; RB ¼ X2 ¼ 3

32
ql "ð Þ:

Bending moment at the crown and at the supports are

MC ¼ X3 � X1c ¼ ql2

48
� ql2

16f
� f

3
¼ 0:

H A

l/2l/2

q

C

f
64
ql2

MA = 64
ql2

MB =

16f
ql2

H  =

32
13RA =

B

I

ql
32
3RB  = ql

j

Fig. 3.15 Reactions of hingeless parabolic arch; I ¼ IC cos’= . Location of expanded fibers in the

vicinity of supports are shown by dotted lines
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MA ¼ X1y0 � X2

l

2
þ X3 � ql

2
� l

4
¼ ql2

16f
� 2

3
f þ 3

32
ql� l

2
þ ql2

48
� ql2

8
¼ � ql2

64

extrados fibers are extendedð Þ:

MB ¼ X1y0 þ X2

l

2
þ X3 ¼ ql2

16f
� 2

3
f � 3

32
ql� l

2
þ ql2

48
¼ ql2

64

intrados fibers are extendedð Þ:

These results are presented in Table A.31, line 3 for case n ¼ 0; k ¼ 1.

Now we can calculate the reactions of supports in the case of a uniform loading

of parabolic arch within the entire span; they are RA ¼ RB ¼ ql 2;H ¼ ql2 8f ;=
�

MA ¼ MB ¼ 0: Bending moment at crown MC ¼ 0:

3.4.4 Circular Hingeless Uniform Arch

Semicircular uniform arch is subjected to a uniformly distributed load q (Fig. 3.16).
The primary system contains the absolutely rigid cantilevers of length c. Primary

unknowns Xi are placed in the elastic center D at the axis of symmetry of the arch,

y0 ¼ 2R p= . The origin coincides with center D.
Since loading of the arch is symmetrical, the antisymmetrical unknown X3 ¼ 0.

Canonical equations become

d11X1 þ D1P ¼ 0;

d22X2 þ D2P ¼ 0

and the primary unknowns are X1 ¼ �D1P d11= ; X2 ¼ �D2P d22= : For calculation
of unit and loaded displacements, the shear and axial forces are ignored.

q

A B

R R

R

C

y

A

dj

B

X1 X1 

X2 

X3

X2

R R

c
D

y0 

x

ds
K

C

R

j

Fig. 3.16 Design diagram of the arch and primary system
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Coordinates of arbitrary section K of the arch are

x ¼ R cos’;

y ¼ R sin’� y0 ¼ R sin’� 2R

p
:

Bending moment at section K caused by unit primary unknowns X1 ¼ 1, X2 ¼ 1

and external load are

M1 ¼ �1� y ¼ �R sin’þ 2R

p
; M2 ¼ �1; M0

P ¼ � qx2

2
¼ � qR2

2
cos2’:

During the calculation of unit and loaded displacements, integration along the

length of the arch, ds, is replaced by integration of its polar counterpart d’,
ds ¼ Rdf.

Unit displacements are

EId11 ¼ 2

Z p 2=

0

�R sin’þ 2R

p


 �2

Rd’ ¼ p
2
� 4

p


 �
R3;

EId22 ¼ 2

Z p 2=

0

Rd’ ¼ pR:

Displacements along X1 and X2 due the external load are

EID1P ¼ 2

Z p 2=

0

� qR2

2
cos2’


 �
�R sin’þ 2R

p


 �
Rd’ ¼ � qR4

6
;

EID2P ¼ 2

Z p 2=

0

� qR2

2
cos2’


 �
�1ð ÞRd’ ¼ pqR3

4
:

Primary unknowns are

X1 ¼ �D1P

d11
¼ qR

6 p 2= � 4 p=ð Þ ¼ 0:5602qR; X2 ¼ �D2P

d22
¼ � qR2

4
:

Bending moments at supports and at the crown are

MA ¼ MB ¼ X1y0 � X2 � qR2

2
¼ qR

6 p 2= � 4 p=ð Þ �
2R

p
þ qR2

4
� qR2

2
¼ 0:108qR2;

MC ¼ �X1 R� y0ð Þ � X2 ¼ qR

6 p 2= � 4 p=ð Þ R� 2R

p


 �
þ qR2

2
¼ 0:046qR2:
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Bending moment at any section of the arch is

Mx ¼ �X1y� X2 � qx2

2
¼ � qR

6 p 2= � 4 p=ð Þ R sin’� 2R

p


 �
þ qR2

4
� qR2cos2’

2
:

Corresponding bending moment diagram is shown in Fig. 3.17.

We find a section of the arch where the maximal bending moment arises.

Condition dM=d’ ¼ 0 leads to sin’0 ¼ 0:562, cos’0 ¼ 0:827, and

’0 ¼ 34�100. The maximal negative moment (extrados fibers are extended)

becomes Mmax ¼ �0:05qR2.

3.5 Settlements of Supports

If there is a relative displacements of supports of the redundant arches, then internal

forces arises in the arch. This section is devoted to the analysis of two-hinged and

hingeless arches subjected to the settlements of supports. Settlements of rigid

supports occur regardless of a presence of external load.

3.5.1 Two-Hinged Arch

Different settlements of support of two-hinged arch are shown in Fig. 3.18. Hori-

zontal reaction (thrust) will constitute the primary unknown X1. Canonical equation

is d11X1 þ D1D ¼ 0, where the free term D1D is displacement in the primary system

along the primary unknown caused by the given displacement of support. This term

is determined by the formula

D1D ¼ �R1D; (3.12)

where R1 is a component of reaction (due to X1 ¼ 1) which coincides with the

direction of displacement D [Kar10]. Let us consider two cases.

0.108

A B

q

j0 

0.0460.05

R

Fig. 3.17 Bending moment

diagram; factor qR2
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1. Vertical displacement of support (Fig. 3.18a). Assume that displacement a is

small. Reaction R1 (caused by X1 ¼ 1) along displacement (i.e., the vertical

reaction ) is zero and therefore D1D ¼ �0� a ¼ 0. Thus, in the case of a small

vertical displacement, the thrust of the arch is equal to zero.

If a vertical displacement a of support A is large, then this support also has a

horizontal displacement D (Fig. 3.18b). Approximate expression for this dis-

placement is given by

D ¼ l 1� cos bð Þ ffi l 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

l2

r !
:

Along the displacement D, the reaction is R1 ¼ �1. The negative sign means

that this reaction and primary unknown X1 ¼ 1 have opposite directions. Free

term of canonical equation becomes

D1D ¼ �R1D ¼ � �1ð Þ � D ¼ l 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

l2

r !
:

2. Horizontal displacement of support (Fig. 3.18c). Assume that displacement b
occurs inside of the arch. Along the displacement b, the reaction is R1 ¼ �1.

According to (3.12), we get

D1D ¼ �R1D ¼ � �1ð Þ � b ¼ b:

The thrust H ¼ X1 ¼ �D1P d11= : In both cases, unit displacement d11 is calcu-

lated as usual. Computation of internal forces does not pose a problem when

thrust is known.

3.5.2 Hingeless Arch

Symmetrical hingeless arch and settlements of its right support is shown in

Fig. 3.19a.

b

aa

a b C

l

AX1 X1

b

Fig. 3.18 Different settlements of support of two-hinged arches
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If the primary unknowns are placed in the elastic center (Fig. 3.19b), then (3.4)

will be separated

diiX1 þ DiD ¼ 0: (3.13)

Primary unknowns are Xi ¼ �DiD dii= ; i ¼ 1; 2; 3:

Unit displacements are dii ¼
R
M

2

i ds=EIx; all of them may be presented in the

form dii ¼ Ki EI0= , where Ki are some strictly positive numbers, and EI0 is a

flexural rigidity of a certain section of the arch. It means that the primary unknowns

in case of the settlements of supports are proportional to the flexural rigidity of the

arch. Increasing the flexural rigidity leads to increasing of primary unknowns

[Kis60].

Free terms DiD(i ¼ 1, 2, 3) of the system (3.13) represent displacements of the

primary system in the direction of primary unknowns Xi due to displacements of

supports; subscript D refers to displacements caused by settlements of supports. For
calculation of these terms, we need to use the theorem of reciprocal unit

displacements and reactions (1.39).

It is easy to show [Kis60], [Kar10] that the formula for calculation of the free

terms of (3.13) is

Di ¼ �
X
i

Rik � di: (3.14)

In this formula, the subscript D –“settlements” – at DiD is omitted; Rik is reaction of

the constraint in the direction of a given displacement di due to unit primary

unknown Xk ¼ 1. In other words, Ri1 and Ri2 are found as reactions in the primary

system due to primary unknowns X1 ¼ 1 and X2 ¼ 1, respectively; these reactions

must be determined in the supports, which are subjected to settlement.

Each primary unknown leads to appearance of the unit reactions in the displaced

support; these reactions in direction of the settlement of support are shown in

Fig. 3.20.
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Fig. 3.19 (a, b) Hingeless arch. Settlement of support and primary system
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Formula (3.14) leads to the following results

D1D ¼ �
X

R1id1 ¼ � R1aþM1y
� � ¼ � �1� a� 1� f � cð Þy½ � ¼ aþ f � cð Þy;

D2D ¼ �
X

R2id2 ¼ � R2bþM2y
� � ¼ � þ1� b� 1� l

2
y

� 	
¼ �bþ l

2
y;

D3D ¼ �
X

R3id2 ¼ � M3y
� � ¼ � �1� yð Þ ¼ y:

After calculation of the primary unknowns Xi, construction of internal forces is

performed as usual.

3.6 Arches with Elastic Supports

If the arch is supported by the elastic-yielding structure or insufficiently robust

foundation, then the elastic properties of supports should be taken into account. In

this paragraph, we are dealing with the deformation of supports caused by external

loads unlike settlements of supports without action of any loads as it is discussed in

Sect. 3.5. Taking into account the compliance of support enables us to find a more

accurate distribution of internal forces in the arch.

Let us consider a hingeless arch with elastic supports. Figure 3.21 presents the

support A subjected to the unit forces Xa, Xb, and a moment Xc. New position of

flexible support is A0. The stiffness of a support is characterized by three principal

positive displacements daa; dbb; dcc. The first subscript represents direction and

second represents cause. The second displacements dab; dac; dbc may also be

negative.

Primary unknowns (shear force X1, normal force X2, and moment X3) are applied

at the elastic center D (Fig. 3.22).

Now we will consider action of each primary unknown separately (Fig. 3.23).

Primary unknown X1 ¼ 1 leads to the following pressure on the support A:
the vertical force Xa ¼ 1 and a clockwise moment 1� l 2= . Therefore, each

X1=1 

X3=1 

R1=1

M3=1

M1=1.( f −c)

f

R2=1

l/ 2
2
l

X2=1 M2=1.

c

Fig. 3.20 Reactions along the settlements of support due to unit primary unknowns Xi
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Fig. 3.21 Notation of displacements due to action of each unit load at support A
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Fig. 3.22 Primary system and primary unknowns (supports A and B are elastic)
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displacement consists of two terms. The first term daa; dba; dcað Þ corresponds to

unit force Xa ¼ 1, while the second terms ðl=2Þdac; ðl=2Þdbc; ðl=2Þdccð Þ
corresponds to the moment 1� l 2= as shown in Fig. 3.21.

Similarly unit displacements may be calculated in case of X2 ¼ 1. If the primary

system is loaded by X3 ¼ 1, then a unit displacement contains only one term since

the action on the support A is a unit moment, which coincides with loading Xc ¼ 1

as shown in Fig. 3.21.

Since pointD is the elastic center, we get three uncoupled equation. Note that the

position of the elastic center in case of elastic supports does not coincide with the

elastic center for arch with absolutely rigid supports. Position of the elastic center

may be calculated by the formula [Rab60]

a ¼ K þ EI0dbcR C
A

I0
I dsþ EI0dcc

; K ¼
Z C

A

y0
I0
I
ds ffi

XC
A

y0
I0
I
Ds; (3.15)

where I0 is a moment of inertia of the cross section of the arch in crown;

displacements dbc and dcc according to Fig. 3.21 are elastic characteristics of the

abutment.

Procedure for Analysis

Curvilinear axis line of the arch is presented as a set of straight members of length

Ds. For the middle point of each member, calculate coordinate y0 (Fig 3.22) and a

moment of inertia I of a cross section of the arch. Then find position of the elastic

center by (3.15). Primary unknowns are Xi ¼ �DiP dii= ; i ¼ 1; 2; 3:
Unit displacements which depend on deflections of arch itself are denoted by

d011; d
0
22; d

0
33. Taking into account elastic properties of supports, the unit

displacements become

EI0d11 ¼ EI0d
0
11 þ 2EI0 daa þ ldac þ l2

4
dcc


 �
;

EI0d22 ¼ EI0d
0
22 þ 2EI0 dbb � 2adbc þ a2dcc

� �
;

EI0d33 ¼ EI0d
0
33 þ 2EI0dcc: (3.16)

Analysis of properties of these expressions is presented in ref. [Rab60].

The external load in the primary system leads to the pressure and moments

which act on the supports A and B; they are denoted by Fleft, Fright and MP
A, M

P
B,

respectively. The forces are positive, if they are directed downwards. The moments

are positive if intrados fibers are extended.
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Loaded displacements which depend on deflections of arch itself are denoted by

D0
1P; D

0
2P; D

0
P. Taking into account elastic properties of supports, the loaded

displacements become [Rab60]

EI0D1P ¼EI0D
0
1PþEI0 Fleft�Fright

� �
daaþ l

2
dca


 �
þEI0 MP

B�MP
A

� �
dacþ l

2
dcc


 �
;

EI0D2P ¼EI0D
0
2PþEI0 FleftþFright

� �
dba�adcað Þ�EI0 MP

BþMP
A

� �
dbc�adccð Þ;

EI0D3P ¼EI0D
0
3PþEI0 FleftþFright

� �
dca�EI0 MP

BþMP
A

� �
dcc:

(3.17)

In case of an absolutely rigid abutment, all displacements in Fig. 3.21 are zero;

therefore all unit and loaded terms depend only on the deflections of the arch itself.

Knowing the primary unknowns, computation of internal forces should be carried

out as usual.

Difference between analysis of the redundant arch in case of the settlements of

supports (Problem 1, Sect. 3.5), and analysis of the redundant arch in case of the

elastic supports (Problem 2) is presented in Table 3.8.

3.7 Arches with Elastic Tie

This section presents an exact solution for circular uniform arch with elastic tie and

approximate solution for nonuniform arch of arbitrary shape with elastic tie.

Table 3.8

Problem 1 Problem 2

Redundant arch with rigid

supports (hinged of fixed)

Redundant arch with

elastic supports

Settlements of supports Does not depend on the

external load

Depend on the external loads

Unit displacement of

canonical equations

Depend on the elastic

properties of the arch

itself and do not depend

on the settlements of

supports

Depend on the elastic

properties of the arch and

elastic supports

Loaded terms Depend only the settlements

of supports

Depend on the elastic

properties of the arch and

elastic supports

Elastic center Depend on the elastic

properties of the arch

itself and do not depend

on the settlements of

supports

Depend on the elastic

properties of the arch and

elastic supports
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3.7.1 Semicircular Uniform Arch

Design diagram of the circular arch with tie is shown in Fig. 3.24a. The flexural

stiffness of the arch EI ¼ const. The stiffness of the tie is EtAt.

The structure has one unknown of the Force method. Canonical equation is

d11X1 þ D1P ¼ 0. Let the primary unknown X1 be the force which arises in the tie

(Fig. 3.24b). Canonical equation means that a mutual displacement of two sections

of the tie caused by primary unknown X1 and external load is zero. Unit displace-

ment d11 represents the mutual displacements of two sections of a tie due to the

primary unknown X1 ¼ 1, while D1P is the mutual displacement of two sections of a

tie due to a given load.

In the polar coordinates, we get x ¼ R 1� cos’ð Þ; y ¼ R sin’; ds ¼ Rd’.
The bending moments in primary system due to P and X1 ¼ 1 are

MP ¼ Px

2
¼ PR 1� cos’ð Þ

2
;

M1 ¼ �1� y ¼ �R sin’:

In calculating the unit displacement d11, we take into account the bending of the
arch itself and extension of the tie

d11 ¼
Z pR

0

M1 �M1

EI
dsþ

Z l

0

N1 � N1

EtAt

dx

¼
Z p

0

R2sin2’

EI
Rd’þ

Z l¼2R

0

1� 1

EtAt

dx ¼ pR3

2EI
þ 2R

EtAt

: (3.18)

In calculating the loaded displacement D1P, we take into account the bending of

the arch itself

P

R

R

A BEt At 

x

P

x

y
dj

dsy

A B
O

Primary system

a b

X1 X1 

P/2 P/2

j

Fig. 3.24 Two-hinged arch with tie
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D1P ¼
Z pR

0

M1 �M0
P

EI
ds ¼ � 2

EI

Z p 2=

0

PR

2
1� cos’ð ÞR sin’� Rd’

¼ �PR3

2EI
: (3.19)

The force in the tie (thrust) becomes

X1 ¼ H ¼ �D1P

d11
¼ PR2

F
; where F ¼ pR2 þ 4EI

EtAt

:

It can be seen that increasing the stiffness of the tie leads an increase of internal

force in the tie.

Knowing the thrust, the internal forces may be calculated by the formulas

Mk ¼ MO
k � Hyk;

Qk ¼ QO
k cos’k � H sin’k;

Nk ¼ � QO
k sin’k þ H cos’k

� �
;

where MO
k and QO

k related to the simple supported reference beam.

The bending moment in arch depends on the stiffness of the tie. As in the case of

three-hinged arch, the presence of a tie leads to a decrease of the bending moments

in comparison with reference beam. Increasing the stiffness of the tie leads to a

decrease of the positive moments in the arch.

Let 4EI=EtAt ¼ pR2. In this case, the thrust is H ¼ P=2p. Bending moments at

specific sections are

M x ¼ 0:134R; ’ ¼ 30�ð Þ ¼ P

2
R 1� cos 30�ð Þ � P

2p
R sin 30� ¼ �0:0126PR;

M x ¼ 0:5R; ’ ¼ 60�ð Þ ¼ 0:1121PR; M x ¼ R; ’ ¼ 90�ð Þ ¼ 0:3407PR:

Final bending moment diagram is shown in Fig. 3.25.
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Fig. 3.25 Bending moment diagrams for the arch; 4EI=EtAt ¼ pR2
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If EtAt ¼ 1, then thrust becomes H ¼ P/p. Bending moments at specific

sections are

M x ¼ 0:134R; ’ ¼ 30�ð Þ ¼ P

2
R 1� cos 30�ð Þ � P

p
R sin 30� ¼ �0:092PR;

M x ¼ 0:5R; ’ ¼ 60�ð Þ ¼ 0:02565PR; M x ¼ R; ’ ¼ 90�ð Þ ¼ 0:1817PR:

If a tie presents an absolutely rigid member, then thrust in the tie is more than the

thrust which arises in a two-hinged arch without a tie. This result may be explained

by taking into account the expression for X and d11.

3.7.2 Nonuniform Arch of Arbitrary Shape

Design diagrams of two-hinged arches with ties are shown in Fig. 3.26. Among

them are arches with ties on elevated supports (a, b), arches with elevated ties (c, d),

and an arch with a complex tie (e).

Let us provide the structural analysis of the nonuniform arch of arbitrary shape

with tie at the level of supports (Fig. 3.26a). Assume that the flexural stiffness of the

arch EI along its axis is variable. The axis of the arch is described by an arbitrary

equation y ¼ f(x). The tie has a constant cross section along its length; the modulus

of elasticity and area of the cross section of the tie are Et and At, respectively. Let us

a b

c d

e

Fig. 3.26 Two-hinged arches with tie

3.7 Arches with Elastic Tie 159



find expression for thrust, taking into account all components of the Mohr integral

and the stiffness of the tie.

Canonical equation of the Force method is d11X1 þ D1P ¼ 0. Primary unknown

is the force X1 in a tie (thrust H). Primary system is shown in Fig. 3.27.

For computation of displacements d11 and D1P, we will take into account not

only the bending moments but also the axial and shear forces.

The unit primary unknown X1 ¼ 1 and external forces lead to the following

internal forces

M1 ¼ �1� y; N1 ¼ � cos’; Q1 ¼ � sin’;

MP ¼ M0; NP ¼ �Q0 sin’; QP ¼ Q0 cos’;

whereM0 andQ0 are bending moment and shear of the reference beam; the positive

signs of internal forces are shown in Fig. 3.27c.

Let I0 be the moment of inertia of the cross section of the arch at the specified

section, for example, at the crown. Then, Maxwell–Mohr integral for unit and

loaded displacements becomes

EI0d11 ¼
Z

y2
I0
I
dsþ

Z
cos2’

I0
A
dsþ

Z
sin2’

mEI0
GA

dsþ
Z l

0

12
EI0
EtAt

ds; (3.20)

EI0D1P ¼ �
Z

yM0

I0
I
dsþ

Z
Q0 sin’ cos’

I0
A
ds�

Z
Q0 sin’ cos’

mEI0
GA

ds:

(3.21)

With the exception of last term for d11, integration of all the terms should be

performed along the axis of the arch. The last term in (3.20) evaluates to

ðEI0=EtAtÞl. The precise integrating may be done only in the specified cases. In

the general case, numerical integration must be used: the axis of the arch should be

divided into separate straight portions of equal length Ds, for middle point of the

portion the quantities y; I0=I; sin’; cos’, etc., are computed. For the given

equation of the axis line of the arch, y ¼ f(x), trigonometric functions of the

angle ’ are

a

X1= 1

c

Q1

φ
M 1 N1P

Et At x

y y = f (x )
I(x )

b

X1 X1

P

x

y

y

Fig. 3.27 Design diagram and primary system
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tan’ ¼ dy

dx
; cos’ ¼ 
 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2’
p ; sin’ ¼ tan’ cos’:

For the right-hand half-arch, the functions sin’<0 and cos’>0. Calculation of

unit d11 and loaded D1P displacements is shown in Tables 3.9 and 3.10, respectively.

Expression for unit displacement becomes

EI0d11 ¼ S1 þ S2 þ S3ð ÞDsþ EI0
EtAt

l: (3.22)

The term S1 takes into account the bending moments in the arch, while terms S2Ds
and S3Ds take into account the axial and shear forces in the arch; the last term in

(3.22) takes into account the axial force in the tie.

Similarly, expression for loaded displacement (3.21) may be presented as

follows

EI0D1P ¼ �S4 þ S5 � S6ð ÞDs: (3.23)

Computations of S4, S5, and S6 are presented in Table 3.10. Note that the tie is not

subjected to any external forces in the primary system.

Primary unknown is

X ¼ H ¼ �D1P

d11
¼ � EI0D1P

S1 þ S2 þ S3ð ÞDsþ EI0
EtAt

l
: (3.24)

This is the precise expression for thrust which arises in the tie. Ignoring the axial

force (terms S2 and S5) or/and shear force (terms S3 and S6) leads to the approxi-

mate expression for thrust. Influence of the axial forces is significant for shallow

Table 3.9 General form for calculation of unit displacement; Ds0 ¼ ðI0=IÞDs

Member y A I sin’ cos’ Ds0 y2Ds0 cos2 ’ I0
A

� �
sin2 ’ mEI0

GA

� �

1 2 3 4 5 6 7 8 9 10

1

. . .

S1 S2 S3

Table 3.10 General form for calculation of the loaded displacement D1P; Ds0 ¼ ðI0=IÞDs

Member y A I sin’ cos’ Ds0 M0 Q0 yM0Ds0
Q0

I0
2A

sin 2’ Q0

mEI0
2GA

sin 2’

1 2 3 4 5 6 7 8 9 10 11 12

1

. . .

S4 S5 S6

3.7 Arches with Elastic Tie 161



(gently) arches. The greater the parameter h l= (h is a height of the cross section of

the arch), the greater is the influence of the shear forces. As shown in Table 3.10

(columns 10–12), the relative influence of different terms depends not only on the

shape of the arch and dimensions of the cross sections, but also on the external load

[Rab54a].

If EtAt ¼ 0, then the force in the tie is zero, and arch reduces into a simply

supported curvilinear beam. In the case of absolutely rigid (nondeformable) tie, the

thrust H becomes

Hlim ¼ � EI0D1P

S1 þ S2 þ S3ð ÞDs :

In this case, the elongation of tie is zero; this leads to the usual two-hinged arch

without tie.

All internal forces in the arch may be calculated by (2.6) if the force in the tie is

known.

Note that a rational axis of the two-hinged arch with tie may be obtained if and

only if the tie is nondeformable and influence of the shear and axial forces on the

deflection of the arch is ignored [Rab54a].

3.8 Special Effects

This section is devoted to analysis of redundant arches in case of change of

temperature and shrinkage of concrete. Two types of arches are considered. They

are two-hinged arch with tie and a hingeless nonuniform arch.

3.8.1 Change of Temperature

If statically indeterminate arch is subjected to a change of temperature, then internal

forces arise in the arch. Corresponding structural analysis of the arches may be

effectively carried out by the Force method. Free terms of canonical equations

present the temperature displacement in primary system. For their computation,

(1.10) should be applied. This formula takes into account the uniform and nonuni-

form thermal effect.

3.8.1.1 Two-Hinged Arch with Tie

Let us consider the uniform arch with tie; the span of the arch is l and height of the

cross section is h0. The temperature of extrados and intrados fibers of the arch has

been increased by t1 and t2 degrees, respectively. Coefficients of thermal expansion
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of the material of the arch and tie are a and at. Let the primary unknown be the force

H in tie. Canonical equation and primary unknown are

d11X1 þ D1t ¼ 0; X ¼ H ¼ �D1t

d11
: (3.25)

The unit displacement d11 should be calculated as usual. Free term of canonical

equation may be presented as

D1t ¼
Z

N1atdsþ
Z

M1at0

h0
ds; (3.26)

where t ¼ t1 þ t2ð Þ 2= and Dt ¼ t0 ¼ t1 � t2 are average temperature and tempera-

ture gradient; forces caused by unit primary unknown X1 ¼ 1 are

N1 ¼ � cos’; M1 ¼ �y for arch and N1 ¼ 1; M1 ¼ 0 for tie.

Assume that temperature along the arch and tie is constant. In this case,

D1t ¼ �at
Z
s

cos’ds� at0
Z
s

y

h0
dsþ attl: (3.27a)

The first term in (3.27a) corresponds to the heating of the arch itself. The

negative sign means that heating of the arch leads to an increase of the distance

between two points of the tie, while the positive unknown X1 leads to a decrease of

the distance. Since cos’ds ¼ dx, then

� at
Z
s

cos’ds ¼ �at
Z
l

dx ¼ �atl:

The second term in (3.27a) corresponds to the nonuniform heating of the arch.

The temperature gradient is positive if it leads to the convexity of the arch being in

same direction as a positive unknown X1, i.e., upward. The third term corresponds

to a uniform heating of the tie. In the case of an arch without a tie, we let at ¼ 0.

In case of uniform heating, the gradient t0 ¼ t1 � t2 ¼ 0 and the free term for

arch with tie becomes

D1t ¼ �atlþ attl ¼ at � að Þtl: (3.27b)

The primary unknown is

H ¼ �D1t

d11
¼ � at � að Þtl

d11
:

In the case of an arch without tie, the free term of (3.25) is D1t ¼ �atl.
Internal forces in the arch itself are

M ¼ �Hy; N ¼ �H cos’; Q ¼ �H sin’: (3.27c)
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If t > 0, then in an arch without a tie, the thrust is directed into the span. In an

arch with a tie, the direction of the H depends on the relationship between a and at.
If a > at, then tie is extended. If a ¼ at, then H ¼ 0. If compressed temperature

force in a tie (a < at) is more than extended force caused by external load, then a

loss of stability of the tie may happen [Rab54a].

3.8.1.2 Symmetrical Hingeless Arch

Let us consider an arch with an arbitrary shape of the axis line; the flexural stiffness

EIx of the cross section of the arch varies by an arbitrary law. The temperature of

extrados and intrados fibers of the arch has been increased by t1 and t2 degrees,

respectively. Coefficient of thermal expansion of the arch’s material is a. As before,
the gradient and average temperature are denoted asDt ¼ t1 � t2 and t ¼ t1 þ t2ð Þ 2= :

The primary unknowns are placed in the elastic center (Fig 3.28). Canonical

equations become

d11X1 þ D1t ¼ 0; d22X2 þ D2t ¼ 0; d33X3 þ D3t ¼ 0:

Since the deformation of the arch is symmetrical, the antisymmetrical unknown

is X2 ¼ 0. Unit displacements are

d11 ¼
Z
s

y� cð Þ2 ds

EIx
þ
Z
s

cos2’x

ds

EAx
;

d33 ¼
Z
s

ds

EIx
:

(3.28)

In expression for d11, the second term takes into account the axial forces.

Free terms of canonical equations are

D1t ¼ a t1 � t2ð Þ
Z
s

M1

ds

h
þ a

t1 þ t2
2

Z
s

N1ds¼�aDt
Z
s

y� cð Þds
h
� at

Z
s

cos’xds;

D3t ¼ a t1 � t2ð Þ
Z
s

M3

ds

h
¼�aDt

Z
s

ds

h
;

(3.29)
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Fig. 3.28 Hingeless arch subjected to thermal effect
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where h is a height of the cross section of the arch.

Primary unknowns are X1 ¼ �ðD1t=d11Þ; X3 ¼ �ðD3t=d33Þ. The bending

moment at the support of the arch due to the change of temperature is

Msup ¼ X3 þ X1 f � cð Þ.

Symmetrical Parabolic Arch

If the origin is placed in the crown C, then equation of the axis of the arch is y ¼
4fx2 l2

�
The moment of inertia of cross section and the height of the cross section at

the crown C are denoted by IC and hC. Let the moment of inertia of the cross section

varies by the law Ix ¼ IC cos’x= . If a cross section is a rectangle, then the height of

the cross section becomes hx ¼ hC
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos’x

3
p�

. However, for shallow arches with a

sufficient degree of accuracy, we can assume hx ¼ hC cos’x= . These assumptions

lead to the following expressions for primary unknowns

X1 ¼ 45atEIC
4 1þ mð Þf 2 ;

X3 ¼ aDtEIC
hC

:

Parameter which takes the axial force into account is

m ¼ J1
J2

; J1 ¼
Z
s

cos2’x

ds

Ax
; J2 ¼

Z
s

y� cð Þ2 ds
Ix
:

The expression for X1 reflects the following fact: the thrust due to a change in

temperature increases together with the rigidity of the arch and with reduction of its

rise [Dar89].

Knowing the primary unknowns, the internal forces in the arch may be calcu-

lated by formulas

Mx ¼ �X1yþ X3;

Nx ¼ �X1 cos’:

Special Cases

1. If axial force is neglected, then parameter m ¼ 0:
2. In case of uniform change of temperature, the temperature gradient Dt ¼ 0 and

primary unknown X3 ¼ 0.
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3. If conditions 1 and 2 hold simultaneously, then bending moment at the crown

and supports are

MC ¼ X1c ¼ 15atEIC
4f

extrados fibers extendedð Þ;

MA ¼ MB ¼ X1 f � cð Þ ¼ 15atEIC
2f

intrados fibers extendedð Þ:

3.8.2 Shrinkage of Concrete

Shrinkage of concrete effect of the arch may be equivalent presented as a change of

temperature. Indeed, if the coefficient of thermal expansion of the concrete is a,
then at is the elongation of the unit length of the concrete member, if a temperature

is changed by t�. During shrinkage of concrete, the linear dimensions of the member

decrease by 0.025%. If we assume a ¼ 0:00001 for concrete, then shrinkage of

concrete is equivalent to a decrease in temperature by 25�C. For practical purposes
this value is taken to be between 10 and 15�C. Thus, analysis of the arch in the case
of shrinkage of concrete boils down to analysis of the arch subjected to a uniform

decrease of temperature by 10–15�C. Therefore, the bending moment diagram

caused by the shrinkage of concrete will be the same as in the case of a uniform

change of temperature [Kis60]. Note that the effect of shrinkage of concrete may be

particularly suppressed by controlling internal forces using the tie [Dar89], [Kis60].

3.9 Influence Lines

This section is devoted to analytical construction of influence lines for redundant

arches. The Force method is applied. The following arches are considered: two-

hinged parabolic nonuniform arch, two-hinged circular uniform arch with tie, and

hingeless parabolic nonuniform arch.

Construction of influence lines for internal forces in redundant arches starts from

construction of influence lines for primary unknowns. The following procedure is

recommended.

1. Adopt the primary unknowns and show the corresponding primary system. Write

the canonical equations of the Force method.

2. Compute the coefficients of canonical equations. These unit displacements

depend on the primary system, distribution of stiffnesses, and therefore present

some values.
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3. Compute the free terms of canonical equations. These displacements depend on

the location of the unit load and therefore present some functions.
4. Solve the canonical equations; since the free terms are functions, then the

primary unknowns will also present functions of location of unit load.

5. Construct the influence lines for reactions and internal forces at the specified

section of the arch.

3.9.1 Two-Hinged Parabolic Nonuniform Arch

Design diagram of symmetrical parabolic arch of span l and rise f is shown in

Fig. 3.29a. Equation of the axial line is y ¼ 4f x l� xð Þ l2
�

. The moment of inertia of

the cross section of the arch varies by the law I ¼ I0 cos’= , where I0 is a moment of

inertia of the cross section of the arch at the crown, ’ is the angle between tangent at

the given section of the arch and a horizontal line.

Canonical equation of the Force method is d11X1 þ D1P ¼ 0. The primary

system is shown in Fig. 3.29b. The primary unknown is X1 ¼ �D1P d11= . In this

formula, the unit displacement d11 is a number, while the loaded displacement D1P

presents a function of the location of the force P ¼ 1. Therefore, the equation for

the required thrust should be rewritten as follows

ILðX1Þ ¼ ILðHÞ ¼ � IL D1Pð Þ
d11

: (3.30)

In the Mohr–Maxwell integral, we will only take bending moments into account.

Bendingmoment in the primary system caused by unit primary unknown X1 ¼ 1 is

M1 ¼ �1� y:

X1 X1 
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x
l 

EI0 
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x
x

y

y = f(x)
y

x1 

f

a by

Fig. 3.29 Two-hinged arch subjected to moving load P ¼ 1
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Bending moments in the primary system caused by unit single force P areM0
P ¼

R0
Ax ¼ ðPb=lÞx for left portion of the arch (0� x� a), M0

P ¼ R0
Bx1 ¼ ðPa=lÞx1 for

right portion of the arch (0� x1 � b).
Taking into account the expressions for moment of inertia, the unit displacement

becomes

d11 ¼
Z
s

M1�M1

EI
ds¼

Z l

0

M1�M1

EI0
dx¼

Z l

0

y2

EI0
dx¼ 16f 2

l4

Z l

0

x2 l� xð Þ2 dx

EI0
¼ 8f 2l

15EI0
:

(3.31)

The loaded displacement, taking into account two portions of the arch, is

D1P ¼
Z
s

M1 �M0
P

EI
ds ¼ �

Z a

0

y
Pbx

l

dx

EI0
�
Z b

0

y
Pax1
l

dx1
EI0

: (3.32)

Substitution of the given equation y ¼ f(x) into (3.32) leads to the following

expression

D1P ¼ �
Z a

0

4f

l2
x l� xð ÞPbx

l

dx

EI0
�
Z b

0

4f

l2
x l� xð ÞPax1

l

dx1
EI0

¼ � 4Pf

l3EI0
b

Z a

0

l� xð Þx2dx� a

Z b

0

l� xð Þx21dx1
� 	

: (3.33a)

After integration, we get

D1P ¼ � 4Pf

12l3EI0
ba3 4l� 3að Þ þ ab3 4l� 3bð Þ� 

:

Assume P ¼ 1, dimensionless parameter u ¼ a l= , then for loaded displacement,

we get

D1P ¼ � l2f

3EI0
u 1� uð Þ 1þ u� u2

� �
: (3.33b)

Thus, the equation of the influence line for thrust becomes

ILðHÞ ¼ 5

8

l

f
u 1� uð Þ 1þ u� u2

� �
: (3.34)

It can be seen that this curve is fourth order. Influence line for thrust is shown in

Fig. 3.30a.

Now we can construct the influence lines for internal forces in the arch. As for a

three-hinged arch, we have
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IL Mkð Þ ¼ IL MO
k

� �� ykILðHÞ;

IL Qkð Þ ¼ cos’kIL QO
k

� �� sin’kILðHÞ;

IL Nkð Þ ¼ � sin’kIL QO
k

� �� cos’kILðHÞ:

Here IL MO
k

� �
and IL QO

k

� �
are influence lines for bending moment and shear at

the section k of the simply supported beam; yk and ’k are ordinate of point k and

angle between the tangent at the same point and horizontal line, respectively.

Corresponding influence lines are shown in Fig. 3.30b.

Influence lines for shear and axial force at section k has discontinuity cos’k and

sin’k, respectively. Two tangents at the left and right portions at section k of these
influence lines are parallel; these tangents are shown by dotted lines.
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Fig. 3.30 Influence lines for

thrust H and internal forces at

section k
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3.9.2 Two-Hinged Circular Uniform Arch with Elastic Tie

The uniform semicircular two-hinged arch with elastic tie is shown in Fig. 3.31.

Flexural stiffness of the arch is EI, axial stiffness of the tie is EtAt. Let the primary

unknown be the internal force in the tie.

Canonical equation of the Force method is d11X1 þ D1P ¼ 0. Primary unknown

is X1 ¼ �D1P d11= :

Assumption

We will take into account deflection of the arch due to bending of the arch itself and

deflection of the tie due to tension.

Unit displacement is

d11 ¼
Z pR

0

M1 �M1

EI
dsþ

Z l

0

N1 � N1

EtAt

dx; (3.35)

where M; N are bending moment in the arch and normal force in the tie due to the

primary known X1 ¼ 1.

Coordinates of the arbitrary point n are x ¼ R 1� cos’ð Þ, y ¼ R sin’. Since

ds ¼ Rd’; N ¼ 1 and M1 ¼ �1� y ¼ �R sin’, then

d11 ¼
Z p

0

R2sin2’

EI
d’þ

Z l¼2R

0

1� 1

EtAt

dx ¼ pR3

2EI
þ 2R

EtAt

: (3.35a)

Free term of canonical equation is

D1P ¼
Z pR

0

M1 �M0
P

EI
ds; (3.36)

X1 X1

y

O
Primary system
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n

RA RB

P = 1 P = 1

x

x

y

R 

l = 2R 

O 

y
Tie

EI = const

Et A t

ul

dj 

ds

RA
0= 1 RB

0= 1.u

j jp

ul ul

Fig. 3.31 Circular uniform arch with elastic tie subjected to moving load P ¼ 1
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where M0
P is the bending moment in the primary system due to the given load

P ¼ 1.

Location of the moving load P is defined by central angle ’P, and therefore

ul ¼ R 1� cos’Pð Þ ! u ¼ 1

2
1� cos’Pð Þ ! u ¼ 1� u ¼ 1

2
1þ cos’Pð Þ:

The vertical reaction and bending moment in the primary system are

R0
A ¼ 1� u ¼ 1

2
1þ cos’Pð Þ;

M0
P ¼ R0

Ax ¼
1

2
1þ cos’Pð ÞR 1� cos’ð Þ; x� ul;

M0
P ¼ R0

Ax� P x� ulð Þ ¼ 1

2
ð1þ cos’PÞRð1� cos’Þ � ½Rð1� cos’Þ

�Rð1� cos’PÞ�; x� ul:

Free term of canonical equation becomes

D1P ¼ 1

EI

Z ’P

0

1

2
1þ cos’Pð ÞR 1� cos’ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M0
P

� �R sin’ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
M1

Rd’|{z}
ds

þ
Z p

’P

1

2
1þ cos’Pð ÞR 1� cos’ð Þ �R cos’P � cos’ð Þ

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M0
P

� �R sin’ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
M1

Rd’|{z}
ds

:

After integration, this formula may be presented as follows

D1P ¼ �R3

EI
f ’Pð Þ; f ’Pð Þ ¼ 2

3

4
� cos2’P þ

1

4
cos 2’P


 �
: (3.36a)

The primary unknown caused by arbitrary load P becomes

X1 ¼ �D1P

d11
¼ PR2

pR2 þ 4EI
EtAt

f ’Pð Þ: (3.37)

Ordinates of influence line for thrust H, according to (3.37), are presented in

Table 3.11.
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Verification

If load P is located at the highest point of the arch, then axial load in the tie equals

X1 ¼ H ¼ 1:0� PR2

pR2 þ 4EI
EtAt

:

Parameter 1.0 is taken from Table 3.11 for the given position of a load P. This
result has been obtained in Sect. 3.7.1.

Special Cases

1. Let EtAt ¼ 1. In this case, X1 ¼ H ¼ ðP=pÞf ’Pð Þ; this case corresponds to a

two-hinged arch without tie.

2. If 4EI=EtAt ¼ pR2, then X1 ¼ H ¼ ðP=2pÞf ’Pð Þ.
3. Let EtAt ¼ 0. In this case, X1 ¼ 0; this case corresponds to a simply supported

curvilinear rod.

3.9.3 Hingeless Nonuniform Parabolic Arch

Design diagram of a symmetrical parabolic arch with clamped ends is shown

in Fig. 3.32a. The equation of the neutral line is y ¼ 4f x l� xð Þ l2:
�

The cross-

sectional moments of inertia varies by law Ix ¼ IC cos’x;= where IC corresponds to

the highest point C of the arch; this law corresponds to increasing the moment of

inertia from crown to supports. It is necessary to construct the influence lines for

reactions of the support A and bending moment at the crown C.

Table 3.11 Influence line for thrust H, factor R2 pR2 þ kð Þ�
; k ¼ 4EI EtAt=

’P (degrees) 0.0 15 20 30 45 60 70 75 90

f ð’PÞ 0.0 0.0670 0.116980 0.25 0.5 0.75 0.883 0.993 1.0

dx = ds cosj

dx

ds

dy

X1 X1

X3

X2 X2
C

Primary system
x

y

a b

l

f

P =1
P =1

x

a = ul

y
IC

Ix 

A B

C

j

Fig. 3.32 Parabolic arch with clamped ends. (a) Design diagram; (b) primary system
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This arch is statically indeterminate to the third degree. Let us accept the primary

system presented in Fig. 3.32b, so the primary unknowns are the bending moment

X1, the normal force X2, and shear X3 at the crown C of the arch.

Canonical equations of the Force method are written in the form of (3.4).

The unit coefficients are dik ¼
R l
0
ðMi �Mk=EIx)ds. Since X1 and X2 are sym-

metrical unknowns, the unit bending moment diagrams M1 and M2 are symmetri-

cal, while M3 diagram is antisymmetrical. It is obvious that all displacements

computed by multiplying symmetrical diagram by antisymmetrical ones equal to

zero. Therefore, d13 ¼ d31 ¼ 0; d23 ¼ d32 ¼ 0, and the canonical equations fall

into two independent systems

d11X1 þ d12X2 þ D1P ¼ 0;

d21X1 þ d22X2 þ D2P ¼ 0;

(
and d33X3 þ D3P ¼ 0:

Note, we do not use the concept of the elastic center.

Coefficients and free terms of canonical equations will be calculated taking into

account only bending moments, which arise in the arch. The expression for bending

moments in the left part of the primary system for unit and loaded states (the force

P ¼ 1 is located within the left part of the arch) are presented in Table 3.12.

Unit Coefficients

d11 ¼
Z l

0

M1 �M1

EIx
ds ¼

Z l

0

1� 1� cos’x

EIC
� dx

cos’x

¼
Z l

0

dx

EIC
¼ l

EIC
;

d12 ¼
Z l

0

M1 �M2

EIx
ds ¼

Z l

0

1� f � yð Þ dx

EIC
¼
Z l

0

f � 4f

l2
l� xð Þx

� 	
dx

EIC
¼ fl

3EIC
;

d22 ¼
Z l

0

M2 �M2

EIx
ds ¼

Z l

0

f � yð Þ2 dx

EIC
¼
Z l

0

f � 4f

l2
l� xð Þx

� 	2
dx

EIC
¼ f 2l

5EIC
;

d33 ¼ 2

Z l=2

0

M3 �M3

EIx
ds ¼ 2

Z l=2

0

l

2
� x


 �2
dx

EIC
¼ l3

12EIC
:

Table 3.12 Bending moments due to unit primary unknowns and given unit load

M1 M2 M3 M0
P¼1

Bending moment expression 1 1� f � yð Þ � 1� l
2
� x

� �
M0

P ¼ �1� a� xð Þ

3.9 Influence Lines 173



Free Terms

Since P ¼ 1, then the free terms are denoted through diP

d1P ¼
Z a

0

M1 �M0
P

EIx
ds ¼ �

Z a

0

1� a� xð Þ dx

EIC
¼ � a2

2EIC
;

d2P ¼
Z a

0

M2 �M0
P

EIx
ds ¼ �

Z a

0

1� f � yð Þ � 1� a� xð Þ dx

EIC

¼ �
Z a

0

1� f � 4f

l2
l� xð Þx

� 	
a� xð Þ dx

EIC
¼ a2f

EIC
� 1

2
þ 2

3
u� 1

3
u2


 �
;

d3P ¼
Z a

0

M3 �M0
P

EIx
ds ¼

Z a

0

l

2
� x


 �
a� xð Þ dx

EIC
¼ l3

EIC
u2

1

4
� u

6


 �
:

Canonical equations become

lX1 þ fl

3
X2 ¼ a2

2
;

fl

3
X1 þ 1

5
f 2lX2 ¼ �fa2 � 1

2
þ 2

3
u� 1

3
u2


 �
and

l3

12
X3 þ l3u2

1

4
� u

6


 �
¼ 0:

The solution of these equations leads to the following expressions for the

primary unknowns in terms of dimensionless parameter u ¼ a l= ; which defines

the location of the unit force P:

X1 ¼ u2 � 3

4
þ 5

2
u� 5

4
u2


 �
l;

X2 ¼ 15

4
u2 1� uð Þ2 l

f
;

X3 ¼ 12u2 � 1

4
þ u

6


 �
:

(3.38)

These formulae should be applied for 0� u� 0:5. Since X1 and X2 are symmet-

rical unknowns, the expressions for these unknowns for the right part of the arch

0:5� u� 1ð Þ may be obtained from (3.38) by substitution u ! 1 � u. Since X3 is

antisymmetrical unknown, the sign for X3 should be changed and parameter u
should be substituted by 1 � u. Influence lines for the primary unknowns X1, X2,

and X3 may be constructed easily.

After computation of the primary unknowns, we can calculate the reaction and

internal forces at any section of the arch.
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Reactions of Support A

The following reactions should be calculated: thrust, vertical reaction, and moment.

Thrust: H ¼ X2 ¼ ð15=4Þu2 1� uð Þ2ðl=f Þ for 0� u� 1:0
This formula presents the thrust of the arch as the function of the dimensionless

parameter u, i.e., this expression is the influence line for H (Fig. 3.33a).

Maximum thrust is Hmax ¼ 0:2344Pl=f and it occurs when the force P is located

at the crown C. This formula shows that decreasing of the rise f leads to increasing

of the thrust H.

Vertical reaction: RA ¼ X3 þ 1 ¼ 12u2 �1=4þ u=6ð Þ þ 1 for 0� u� 0:5

u = 0.1 0.50.40.30.2 0.6 0.7 0.8 0.9
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Fig. 3.33 Parabolic nonuniform arch. Design diagram and influence lines
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Since X3 is antisymmetrical unknown, for the right part of the arch it is necessary

to change sign on the opposite and make the change u ! 1 � u. Therefore, if unit
load P is located on the right part of the arch, then reaction RA is

RA ¼ X3 ¼ �12 1� uð Þ2 � 1

4
þ 1� u

6


 �
for 0:5� u� 1:0:

Corresponding influence line is presented in Fig. 3.33b.

Moment at Support A

MA ¼ �1� ulþ X1 þ X2 � f � X3 � l

2
¼ u �1þ 9

2
u� 6u2 þ 5

2
u3


 �
l

for 0� u� 0:5;

MA ¼ X1 þ X2f � X3

l

2
¼ 1� uð Þ2 5

2
u2 � u


 �
l for 0:5� u� 1:0:

Corresponding influence line is presented in Fig. 3.33c.

Bending Moment at Crown C

MC ¼ X1 ¼ u2 � 3

4
þ 5

2
u� 5

4
u2


 �
l for 0� u� 0:5:

Since X1 is symmetrical unknown, for the right part of the arch, it is necessary to

make the change u ! 1 � u. Therefore, if unit load P is located on the right part of

the arch, then bending moment at crown is

MC ¼ X1 ¼ 1� uð Þ2 � 3

4
þ 5

2
1� uð Þ � 5

4
1� uð Þ2


 �
l for 0:5� u� 1:0:

Corresponding influence line is presented in Fig. 3.33d.

Conclusions

If load P is placed in the portion of 0.132l in both sides from crown C, then the

extended fibers at C are located below the neutral line of the arch. The direction of

the support moment MA depends on the location of the load: if load P is placed
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within 0.4l from the left support, then extended fibers in vicinity of the A are

extrados fibers.

Discussion

1. For the given parabolic nonuniform arch, we obtained the precise results. It

happens because the area moment of inertia of a cross section of the arch varies

according to formula Ix ¼ IC cos’x= . Since dx ¼ ds cos ’x, ds EIx= ¼ dx EIC=
and all integrals are presented in exact form.

For numerical construction of influence lines, the elastic loads method may be

recommended [Dar89].

2. In arch with clamped supports subjected to distributed load along half-span, the

maximum bending moments arise at supports. For this case, the law for moment

of inertia of cross-section Ix cos’x ¼ IC corresponds to increasing of flexural

rigidity of the arch from crown to supports.

3. In arch with pinned supports, the zeros bending moments arise at supports. For

these cases, the following law for moment of inertia of cross-section may be

taken as: IC cos’x ¼ Ix. This expression corresponds to decreasing of flexural

rigidity of the arch from crown to supports.

Thus, it can be observed that it is not wise to use shape Ix cos’x ¼ IC for arches

with pinned supports; and it is dangerous to use the shape IC cos’x ¼ Ix in case of

clamped supports [Kar10]. It is obvious that the laws for moment of inertia of cross-

section in real structures are not limited to two considered cases above [Kis60].

Note that influence lines for the primary unknowns of a nonuniform catenary arch

are presented in ref. [Kis60].

Influence Lines for Internal Forces at Arbitrary Section

Expressions (3.38) for primary unknowns are used for construction of influence

lines for internal forces at arbitrary section. The specified section k of the arch has

the following parameters xk; yk; sin’k; cos’k (Fig. 3.34a). First of all, we need to

construct the expressions for internal forces at section k and after that transform

these expressions into an equation of the corresponding influence lines.

For calculation of internal forces at section k, we will consider the left part of the
arch (part AC, Fig. 3.34b) and take into account the forces which are located right

hand at section k, i.e., on the portion k � C.
Bending moment at section k is

Mk ¼ X1 þ X2 f � ykð Þ � X3

l

2
� xk


 �
� P ul� xkð Þ:
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Underlined terms should be taken into account only if load P is located within

the portion k � C (ul� xk � 0)

Now equation of influence line for bending moment at section k becomes

IL Mkð Þ ¼ IL X1ð Þ þ f � ykð ÞIL X2ð Þ � l

2
� xk


 �
IL X3ð Þ � 1� ul� xkð Þ: (3.39a)

Similarly, shear force at section k and corresponding influence line are

Qk ¼ �X2 sin’k þ X3 cos’k þ P cos’k;

IL Qkð Þ ¼ � sin’kIL X2ð Þ þ cos’kIL X3ð Þ þ 1� cos’k: (3.39b)

For axial force at section k and its influence line, we get

Nk ¼ � X2 cos’k þ X3 sin’kð Þ � P sin’k;

IL Nkð Þ ¼ � cos’kIL X2ð Þ � sin’kIL X3ð Þ � 1� sin’k:
(3.39c)

General shape of influence lines are shown in Fig. 3.34c. Maximum positive

bending moment at section k arises if load P is placed at this section; position

of force P, which leads to the extended intrados fibers at section k, is shown by a

dotted line.

X2 X2
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X1 X1
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Primary system
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a = ul 
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A B
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Inf. line Nk

a b
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+
−

−
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−

jk

Fig. 3.34 Parabolic arch with clamped supports. (a) Design diagram; (b) primary system;

(c) shape of influence lines
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3.9.4 Application of Influence Lines

Let us show the application of the obtained influence lines for computation of

reactions for support A and internal forces (shear and bending moment) at the crown

C. Design diagram of symmetric parabolic nonuniform arch with clamped ends is

presented in Fig. 3.35. The cross-sectional moment of inertia varies by law Ix ¼
IC cos’x;= as considered above. The arch is subjected to concentrated load P ¼ 30

kN and uniformly distributed load q ¼ 2 kN/m.

Influence lines for reactions and bending moment at the crown C are presented in

Figs. 3.33 and 3.35.

Internal forces may be defined using the corresponding influence lines by

formula S ¼ Pyþ qO, where y is the ordinate of influence line under concentrated
force, O is the area of influence line within acting distributed load. The area of

curvilinear influence line may be calculated approximately by replacing curvilinear

segments between two neighboring ordinates by straight lines (Fig. 3.36).

If a horizontal distance h, which separates these ordinates, remains constant,

then the area bounded by two ordinates yn and ym will be given by the formula

Om
n ¼ h

yn
2
þ ynþ1 þ ynþ2 þ � � � þ ym�1 þ ym

2

� �
: (3.40)

Ordinates of influence lines in Fig. 3.35 are presented over 0.05l ¼ 1.2 m. Now

we can calculate reactions of support A due to fixed force P and q.

Thrust:

H ¼ l

f
P� 0:1320þ q

0:2344

2
þ 0:2295þ 0:2160

2


 �
1:2

� 	
¼ 20:20 kN:

Vertical reaction:

RA ¼ P� 0:844þ q
0:5

2
þ 0:425þ 0:352

2


 �
1:2

� 	
¼ 27:36 kN:

Moment at support:

MA ¼ l �P� 0:0528þ q
0:0312

2
þ 0:0418þ 0:048

2


 �
1:2

� 	
¼ �33:32 kNm:

Obtained values of reactions at support A (as well as the influence lines for primary

unknowns Xi) allow us to calculate all internal forces at any section of the arch. For

this, it is necessary to eliminate all constraints at the left end of the arch and replace

them by the reactive forces just found, i.e., to consider the given arch as a statically

determinate structure clamped at B only and subjected to given load and reactions at

support A. For example, bending moment at crown C, by definition, equals
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MC ¼ RA
l

2
� Hf þMA � P

l

2
� 0:25l


 �

¼ 27:36� 12� 20:20� 6� 33:32� 30 12� 6ð Þ ¼ �6:2 kNm:

Thus, we use the fixed and moving load approaches in parallel [Kar10].

The bending moment at crown C using the influence line is

MC ¼ l �P� 0:0127þ q
0:0468

2
þ 0:0246þ 0:008

2


 �
1:2

� 	
¼ �6:15 kNm:

Relative error is ð6:2� 6:15=6:175Þ100% ¼ 0:8%. This error is due to the

approximate calculation of the area of influence lines.

Shear force at crown C is obtained by projecting all forces, located to the left of

this section, onto the vertical: QC ¼ RA � P ¼ 27:36� 30 ¼ �2:64 kN.

We can see that influence lines for primary unknowns have a fundamental

meaning – they allow us to easily calculate reactions of a statically indeterminate

arch subjected to any fixed load. After that, calculating of internal forces at any

section of the arch may be performed as for a statically determinate structure.

3.10 Arch Subjected to Radial Pressure

This section presents the internal forces for circular arch subjected to in-plane

uniform radial load. Two approaches are considered. They are analysis of the

arch on the basis of integration of differential equations and by the Force method.

Behavior of a curvilinear rod of arbitrary radius of curvature r is described by

the differential equations (1.21–1.23)

dN

ds
� Q

r
þ p ¼ 0;

dQ

ds
þ N

r
þ q ¼ 0;

dM

ds
� Qþ m ¼ 0:

Here p, q, and m present the intensity of the tangential, normal, and moment

loads distributed along the rod (Fig. 1.19). Let us apply these formulas for the

analysis of a circular arch of radius R with central angle 2a. The arch is subjected to
radial uniform pressure q0 ¼ q’ ¼ q. In this case, the system of equations

(1.21–1.23) is simplified. In polar coordinates ds ¼ Rd’, the system becomes

dN

d’
¼ Q; (3.41a)

dQ

d’
¼ �N � qR; (3.41b)
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dM

d’
¼ QR: (3.41c)

Assume that the forces and moment act on the ends of the arch, as shown in

Fig. 3.37. Here subscript 0 is related to initial section of the arch (’ ¼ 0) and

subscript 1 is related to the final section of the arch (’ ¼ 2a).

3.10.1 Internal Forces Taking into Account
and Neglecting Shrinkage

Expressions (3.41a)–(3.41c) do not take into account shrinkage of material of the

arch. On the basis of these equations, we can easily derive expressions for internal

forces in arbitrary section, which is characterized by the angle ’.
Differentiate (3.41b) with respect to ’ and take into account (3.41a). We obtain

the following differential equation d2Q=d’2 ¼ �Q: Solution of this equation is

Q ¼ C1 cos’þ C2 sin’. Constant of integration is determined from the boundary

conditions:

1. At ’ ¼ 0, the shear Q ¼ Q0. This condition leads to C1 ¼ Q0.

2. Since dQ=d’ ¼ �C1 sin’þ C2 cos’, then according to (1.22), we get

dQ0=d’ ¼ Q0
0 ¼ �N0 � q0R. At ’ ¼ 0, � N0 � q0R ¼ �C1 � 0þ C2 � 1.

This condition leads to C2 ¼ �N0 � q0R. Thus, for shear in any section, we get

Q ¼ Q0 cos’� N0 þ q0Rð Þ sin’: (3.42)

Equation (3.41a) becomes dN=d’ ¼ Q0 cos’� N0 þ q0Rð Þ sin’. Solution of

this equation is

N ¼ Q0 sin’þ N0 cos’þ cos’� 1ð Þ q0R: (3.43)

According to (3.41c), dM=d’ ¼ QR ¼ Q0R cos’� N0 þ q0Rð ÞR sin’. Solu-
tion of this equation is

M ¼ M0 þ Q0R sin’� N0Rþ q0R
2

� �
1� cos’ð Þ: (3.44)

Q1

qj

M0 M1

N1

Q0

q0

N0

o

R
c

j a

Fig. 3.37 Free-body diagram

of circular rod subjected to

uniform radial load
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Expressions (3.42)–(3.44) give a complete picture of the distribution of internal

forces in the circular rod subjected to uniform distributed radial load.

Apply derived formulas for the analysis of uniform hingeless arch with central

angle 2a. Equations (3.42)–(3.44) contain unknown initial parameters Q0, N0, and

M0. Since the structure is symmetrical, then antisymmetrical unknown on the axis

of symmetry ’ ¼ að Þ is QC ¼ 0, thus

Q0 cos a� N0 þ q0Rð Þ sin a ¼ 0:

On the right end of the arch ’ ¼ 2að Þ, we have Q1 ¼ Q0, thus

Q0 cos 2a� N0 þ q0Rð Þ sin 2a ¼ Q0:

Solving the last two equations, we get the axial and shear forces, which arise in

the initial section

N0 ¼ �qR; Q0 ¼ 0:

Since dM=d’ ¼ QR ¼ 0, thenM ¼ M0, i.e., the bending moments along the arch

are constant. It is known that in the case of a closed uniform ring, subjected to the in-

plane uniform radial pressure, bending stresses do not arises [Bir68, vol. 1]. Thus, in

such condition, there is a hingeless and two-hinged uniform circular arches with

arbitrary central angle. Therefore, M0 ¼ M ’ð Þ ¼ 0. The tabulated data for arches

with nonsymmetrical boundary conditions may be found in ref. [Roa75], [You89].

Now let us determine the internal forces taking into account the shrinkage of

material of an arch. For hingeless uniform circular arch with arbitrary central angle

subjected to action of radial uniform load, the final results are presented below.

These results are obtained on the basis of the Bussinesk’s equation (1.43) [Sni66].

The shear force and bending moment at the left end are

Q0 ¼ � q0Rþ N0ð Þ tan a;

M0 ¼ � q0Rþ N0ð Þ
a

R tan a� að Þ: (3.45)

The axial force on the left end is N0 ¼ �q0R f a; lð Þ, where function f a; lð Þ takes
into account shrinkage of the material:

f a; lð Þ ¼ n� l aþ 1ð Þ
n� l

;

n ¼ a� 1ð Þ tan a� 1þ aþ 2 tan að Þ cot a:

where l ¼ r2=R2, while r ¼ ffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration of the cross section of

the arch. The function f a; lð Þ, in terms of half-central angle a and dimensionless

parameter l, is presented in Table 3.13

It can be seen that shrinkage of the material leads to a slight decrease in axial

force N0 due to the factor f a; lð Þ.
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3.10.2 Complex Loading of Circular Arch

First of all let us consider the solution of the classic problem. A hingeless semicir-

cular uniform arch is subjected to a uniform radial load within the total arc. For

analysis of this problem, we use the Force method together with the tabulated data.

Design diagram of the arch and primary system are shown in Fig. 3.38.

Primary unknowns are axial force X2 and bending moment X3 at crown A.

Numeration of unknowns is adopted according to Table A.7. Since the loading is

symmetrical, the antisymmetrical unknown shear force X1 ¼ 0. Canonical

equations of the Force method are

d22 90�ð ÞX2 þ d23 90�ð ÞX3 þ D2P ¼ 0;

d32 90�ð ÞX2 þ d33 90�ð ÞX3 þ D3P ¼ 0:

Free terms of canonical equations, i.e., the axial displacement and slope at point

A, caused by given the load q, according to Table A.6 are

D2P ¼ xA ¼ qR3ay
3g
2
� 2 sin gþ sin 2l

4


 �
¼ qR4

EI

3

2

p
2
� 2 sin 90� þ sin 180�

4


 �

¼ qR4

EI

3p
4

� 2


 �
;

D3P ¼ cA ¼ qR2ay g� sin gð Þ ¼ qR3

EI

p
2
� sin 90�

� �
¼ qR3

EI

p
2
� 1

� �
:

Table 3.13 Function f a; lð Þ
l a ¼ p/6 p/4 p/3 p/2

0.001 0.9997 0.9995 0.9994 1.0

0.005 0.9984 0.9975 0.9969 1.0

0.01 0.9968 0.9950 0.9938 1.0

0.05 0.9834 0.9742 0.9680 1.0

B

A

90°
R

R

q
X3 X3

X2

Axis of
symmetry

Fig. 3.38 Design diagram of hingeless arch and primary system
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Unit displacements at the free end of the half-arch, according to Table A.7, are

d22 90�ð Þ ¼ 1� R2ay
3

2
gþ sin 2g

4
� 2 sin g


 �
¼ R3

EI

3

2

p
2
þ sin 180�

4
� 2 sin 90�


 �

¼ R3

EI

3p
4

� 2


 �
;

d23 90�ð Þ ¼ d32 90�ð Þ ¼ 1� Ray g� sin gð Þ ¼ R2

EI

p
2
� sin 90�

� �
¼ R2

EI

p
2
� 1

� �
;

d33 90�ð Þ ¼ 1� ayg ¼ R

EI

p
2
:

Canonical equations become

R3 3p
4

� 2


 �
X2 þ R2 p

2
� 1

� �
X3 ¼ �qR4 3p

4
� 2


 �
;

R2 p
2
� 1

� �
X2 þ R

p
2
X3 ¼ �qR3 p

2
� 1

� �
:

Solutions of these equations are X2 ¼ �qR; X3 ¼ 0.

Reactions at the clamped support are

Naxial
B ¼ NBðqÞ þ NB X2ð Þ þ NB X3ð Þ ¼ �qR 1� cos 90�ð Þ þ ð�qRÞ cos 90� ¼ �qR;

MB ¼MBðqÞþMB X2ð ÞþMB X3ð Þ¼ qR2 1� cos90�ð Þþð�qRÞR 1� cos90�ð Þ ¼ 0:

Thus, in the case of a uniform circular hingeless arch subjected to uniform

distributed radial load q, the axial force at any section of arch is �qR, while the

bending moment is zero.

Now let us consider a complex loading of the symmetrical arched structure,

partially subjected to a radial load with two concentrated forces as shown in

Fig. 3.39a. Uniform hingeless circular arch of radius R ¼ 24 m has a central

angle g ¼ 150�. Two cantilevered rods CD and C0D0 of length 6 m have rigid

connections with the arch at points C and C0. Forces F ¼ 10 kN act at the end point

of the cantilevers. The portion of the arch C–A–C0 is subjected to uniform

distributed radial load q ¼ 2 kN/m.

For analysis of this structure, let us modify the left part, BA, of a structure so we
can use data that has already been tabulated, and is given in Tables A.6 and A.7.

Transfer the force F into the rigid joint C on the arch and in doing so, add a couple

M ¼ 60 kN/m. Resolve the force F into the radial and axial components

Frad ¼ F sin 15þ bð Þ ¼ 5 kN; Ft ¼ �F cos 15þ bð Þ ¼ �8:66 kN:

Load the total portion AB by a uniformly distributed radial load q, and in doing

so add a compensating load q of opposite direction within the portion BC. The same

procedure should be done over the right part AB0 of the structure. Thus, the initial
design diagram of the arched structure is presented in the equivalent form: hingeless

arch BAB0 subjected to radial load q across the entire arch, uniform load �q within
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the portions BC and B0C0, as well as the axial force Ft, radial force Fr, and coupleM
at the points C and C0 (Fig. 3.39b).

Primary unknowns are the axial force X2 and bending moment X3 at crown A

(Fig. 3.39c).

Antisymmetrical unknown (shear force), according to the properties of symmet-

rical structures is X1 ¼ 0.

Canonical equations of the Force method are

d22 75�ð ÞX2 þ d23 75�ð ÞX3 ¼ �D2P ¼ �xA ¼ � 109; 504

EI
;

d32 75�ð ÞX2 þ d33 75�ð ÞX3 ¼ �D3P ¼ �cA ¼ � 9; 863

EI
:

Free terms of canonical equations xA and cA had been calculated in Chap. 1,

Sect. 1.9, Example 1.8.

Displacements of the free end of the half-arch, according to Tables A.6 and A.7 are

d22 75�ð Þ ¼ 1� R2ay
3

2
gþ sin 2g

4
� 2 sin g


 �
¼ 243

EI

3

2

5p
12

þ sin 150�

4
� 2 sin 75�


 �

¼ 2; 165:5

EI
;

d23 75�ð Þ ¼ 1� Ray g� sin gð Þ ¼ 242

EI

5p
12

� sin 75�

 �

¼ 197:6

EI
;

d32 75�ð Þ ¼ 1� Ray g� sin gð Þ ¼ 197:6

EI
;

d33 75�ð Þ ¼ 1� ayg ¼ R

EI
� 5p

12
¼ 31:4

EI
:

M
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Ft Ft

FtFt
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Fig. 3.39 (a) Design diagram of arch structure; (b) modified design diagram; (c) primary system
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Canonical equations become

2; 165:5X2 þ 197:6X3 ¼ �109; 504;

197:6X3 þ 31:4X3 ¼ �9; 863:

The primary unknowns are

X2 ¼ �50:81 kN;

X3 ¼ 5:68 kN m:

Reactions at Support

Now these primary unknowns should be considered as initial parameters and for

computation of reactions at support, we can use the modified expressions (1.25) and

(1.26). For this, it is necessary to add corresponding terms due to all loads (q along

arc AB, �q along arc BC, couple M and forces Frad and Faxial at section C). These
terms are denoted as [N(g)] and [M(g)]; they should be calculated according to

Tables A.6 and A.7

N ¼ N0 cos’þ Q0 sin’þ NðgÞ½ �;

M ¼ M0 þ Q0R sin’� N0R 1� cos’ð Þ þ M gð Þ½ �: (3.46)

For the structure in Fig 3.39a, we have

N0 ¼ X2; M0 ¼ X3; Q0 ¼ 0:

N gð Þ ¼ �qR 1� cos 75ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
q along AB

þ qR 1� cos 15ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
�q along BC

�Frad sin 15|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Fradat C

�Ft cos 15|fflfflfflfflffl{zfflfflfflfflffl}
Ftat C

þ 0|{z}
M at C

:

The expression for M gð Þ may be constructed in a similar manner.

3.11 Deflections of the Arches

This section is devoted to computation of displacements of redundant arches. Two

approaches are considered. They are displacement of the specified points along the

given direction (linear, angular, mutual) and displacements of the arches in contin-

uous form. The first approach is based on the Maxwell–Mohr integral and multipli-

cation of two bending moment diagrams, while the second approach is based on the

integration of Boussinesq’s equation of the arch (this approach is considered in

Sect. 1.9).
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3.11.1 Deflections at the Discrete Points of Redundant Arches

As in the case of a statically determinate arch, computation of displacement of some

special section of two-hinged and hingedless arches may be performed using the

Mohr integral. For this, we need to construct bending moment diagram M in the

entire state, form a unit state, construct bending moment diagram M in the unit

state, and multiply both diagrams. In the general case, the flexural stiffness EI of the
arch is not constant and basis line is curvilinear. Therefore, the arch should be

substituted by a set of chords, followed by the application of Vereshchagin rule (or

Simpson or trapezoid rule) within each straight portion.

The construction of bending moment diagram MP in the entire state is discussed

above using the Force method. Now the following principal question arises: how to
construct the unit state? It is obvious that unit load must correspond to the required

deflection. But which structure must carry this unit load? It is obvious that unit load

may be applied to the given statically indeterminate structure; for construction of

bending moment diagram M and for statically indeterminate structure, the addi-

tional analysis is required. Therefore, computation of deflections for redundant

structure becomes cumbersome. However, solution of this problem can be signifi-

cantly simplified, taking into account a following fundamental concept.

Bending moment diagram MP of any statically indeterminate structure can be

considered as a result of application of two types of loads to a statically determinate
structure. They are the given external loads and primary unknowns. It means that a

given statically indeterminate structure may be replaced by any statically determi-
nate structure subjected to a given load and primary unknowns, which are treated

now as external forces. It does not matter which primary system has been used for

final construction of bending moment diagram, since on the basis of any primary

system the final bending moment diagram will be the same. Therefore, the unit load

(force, moment, etc.), which corresponds to required displacement (linear, angular,

etc.) should be applied in any statically determinate (!) structure, obtained from a

given structure by the elimination of any redundant constraints.
Application of this fundamental concept for an arbitrary redundant structure is

presented in [Kar10]. For example, for the calculation of vertical displacement DC

of the crown C for a two-hinged arch, the unit state may be adopted according to

any version shown in Fig. 3.40. In the schemes (a) and (b), the primary unknown is

horizontal reaction of one of the supports, therefore the primary system presents a

simply supported curvilinear rod. In the version (c), the primary unknown is the

bending moment at an arbitrary section k. Therefore, the primary system presents a

three-hinged nonsymmetrical arch.

Thus, the following procedure may be applied:

1. Construct the bending moment diagram for the entire redundant structure MP.

2. Show any statically determinate structure, apply unit load which corresponds to

the required displacement and construct bending moment diagram M.

3. Apply the procedure discussed in Sect. 2.8.2.

This procedure is very effective for the computation of displacement of non-

symmetrical arches.
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3.11.2 Effect of Axial Forces

Let us evaluate the influence of the axial forces in the arch on the unit and loaded

displacements of canonical equations. These displacements should be determined

by the formulas

d11 ¼ dðMÞ
11 þ dðNÞ11 ¼

Z
ðsÞ

M
2

1

EI
dsþ

Z
ðsÞ

N
2

1

EA
ds; (3.47)

D1P ¼ DðMÞ
1P þ DðNÞ

1P ¼
Z
ðsÞ

M1 �M0
P

EI
dsþ

Z
ðsÞ

N1 � N0
P

EA
ds: (3.48)

Here,M1;N1 are the bending moment and axial force, respectively, in the primary

system caused by the primary unknown (e.g., thrust) X ¼ 1;M0
P;N

0
P are, respectively,

the bending moment and axial force in the primary system caused by the external

load; I and A are moment of inertia and area of a cross section of the arch.

If a cross section of the arch is constant, then (3.47)–(3.48) may be rewritten as

follows [Rzh82]

d11 ¼ 1

EI

Z
ðsÞ

M
2

1dsþ
1

EA

Z
ðsÞ

N
2

1ds ¼
1

EI

Z
ðsÞ

M
2

1 þ r2N
2

1

� �
ds; (3.47a)

D1P ¼ 1

EI

Z
ðsÞ

M1 �M0
P þ r2N1 � N0

P

� �
ds; (3.48a)

where r2 ¼ I A= is a radius of gyration of the cross section of the arch.

P =1

C kC

q 

C

a b

c d

∇

C=?

P =1

P =1

C

Fig. 3.40 Design diagram of two-hinged arch and versions of unit states for calculation of

displacement D1C
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Returning to the example in Sect. 3.3.1, the two-hinged uniform arch of span

24 м and rise 6 м is loaded by uniformly distributed load q ¼ 2 kN/m. Analysis of

the arch with such parameters, neglecting axial forces leads to terms of displace-

ment (3.47) and (3.48), which according to Table 3.5 are

dðMÞ
11 ¼ 479:4484

EI
DðMÞ
1P ¼ � 11; 506:74

EI
:

For calculation of additional terms, we will use modified design diagram

(parameters of this diagram are presented in Tables 3.1 and 3.2) and multiplication

the normal forces diagram in the form of the Simpson rule. All computations are

presented in Table 3.14.

Because symmetrical structure obtained values must be doubled, we obtain

dðNÞ11 ¼ 21:0555

EA
; DðNÞ

1P ¼ 154:57

EA
:

Note the precise value of the second term in (3.47) is [Rzh82]

dðNÞ11 ¼
Z
ðsÞ

N
2

1ds ¼
Z l 2=

�l 2=

N
2

1dx

cos’
¼
Z l 2=

�l 2=

cos’ dx

¼
Z l 2=

�l 2=

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2 l2=

p 0:8814� 24:0 ¼ 21:1536:

The unit displacement and loaded term of the canonical equation becomes

d11 ¼ 1

EI
479:4484þ 21:0555

I

A


 �
;

D1P ¼ 1

EI
�11; 506:74þ 154:57

I

A


 �
:

Assuming a height of the rectangular cross section of the arch is 1.2м, then
I/A ¼ 0.12 and the primary unknown becomes X1 ¼ �D1P d11= ¼ 23:83 kN. If the

Table 3.14 Computation of additional terms dðNÞ11 and DðNÞ
1P

Portion

li
6

Unit state N1

N2
1 li

Loaded state No
P

N1N
o
Plia1 c1 b1 a2 c2 b2

0–1 0.6644 �0.7070 �0.7535 �0.8000 2.2661 �16.968 �13.884 �10.800 41.5123

1–2 0.5896 �0.8000 �0.8472 �0.8944 2.5418 �10.800 �7.9890 �5.1780 23.7874

2–3 0.5340 �0.8944 �0.9322 �0.9701 2.7861 �5.1780 �3.3160 �1.4550 9.8309

3–4 0.5039 �0.9701 �0.9850 �1.000 2.9338 �1.4550 �0.7275 0.00 2.1556

10.5278 77.2862
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axial compressed forces are neglected, then the thrust H ¼ 24 kN. The change of

thrust becomes nonsignificant. Computation of the bending moments is performed

by the formula M ¼ M1X1 þM0
P and presented in Table 3.15.

It is evident that the axial compressed forces lead to insignificant change of the

thrust and the occurrence of minor bending moments. However, the uniqueness of

this example lies in the following. If axial forces are taken into account, then the

behavior of arch change qualitatively; in addition to axial forces which arise in the

arch, bending moments are present as well. Neglecting the bending moments may

leads to the collapse of the arch.

For two-hinged arch with rise/span ratio of f < l/3 and thickness/span ratio of

h < l/10, the shear may be neglected for the calculation of d11, and shear and axial

forces may be neglected for the calculation of D1P [Kle80].

Let us present the results of analysis of a two-hinged parabolic symmetrical

uniform arch subjected to single force P at the crown. If axial forces are neglected,

then thrust X ¼ 0:785P. If the axial compressed forces are taking into account, and

dimensionless parameter l ¼ ðl=iÞ ¼ 20; i ¼ ffiffiffiffiffiffiffiffi
I A=

p
, then for thrust we get

X ¼ 0:725P[Rzh82].
A significantly greater effect causes horizontal compliance of the arch. Assume

the two-hinged arch has a thin tie on the elevation of support. With this, a loaded

term D1P remains unchanged, while the unit displacement should be calculated by

the formula

d11 ¼ dðMÞ
11 þ dðNÞ11 þ d Ntieð Þ

11 ¼
Z
ðsÞ

M
2

1

EI
dsþ

Z
ðsÞ

N
2

1

EA
dsþ 12 � l

EtAt

;

where l is a span of the arch. Therefore, the thrust of the arch (force in a tie)

becomes

X ¼ �D1P

d11
¼ � D1P

d011 þ l
EtAt

;

where d011 is determined by (3.47).

Numerous reference data for hingeless nonuniform parabolic arches under

different types of loads (reactions and bending moments taking into account axial

forces) is presented in Table A.31.

Table 3.15 Computation of the bending moments

Points M1 M1X1 M0
P M(kNm)

0 0.0 0.0 0.0 0.0

1 �2.625 �62.685 63 0.315

2 �4.500 �107.46 108 0.55

3 �5.625 �134.32 135 0.675

4 �6.000 �143.28 144 0.72
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3.12 Arch Loaded Orthogonally to the Plane of Curvature

This paragraph contains some information about the analysis of hingeless arch

subjected to a load which acts perpendicular to the plane of the arch.

Let us assume the following coordinate system: the arch lies in the plane x–z, the
y-axis is perpendicular to the plane of the arch, x-axis coincides with tangential

direction, the z-axis is directed to the principal normal of the axis of the arch. Let the

y- and z-axis be the principal axis of the cross section of the arch. In the cross-

section of a structure, in the general case of loading, the following internal forces

arise: axial force Nx, shear forces Qx; Qz, bending moments My; Mz; as well as

torque or twisting moment T.
The bending moment My acts in the plane x–z, bending moment Mz acts in the

plane x–y, twisting moment T acts in the plane y–z; the vector of moments are

shown by double-arrow lines (Fig. 3.41a).

We define a planar system to be a system that satisfies the following conditions:

1. Longitudinal axis of all the rods and one of the principal axis of all the cross-

sections lie in the same plane P.
2. The supports are positioned in such a way that a load acting in the plane P leads

to all the deformations and forces arise in a plane that is parallel to P.

For this structure, according to mutual displacement and reaction theorem

rjk ¼ �d0kj
� �

, one can show that if a load acts orthogonally to plane P, then axial

and shear forces, as well as the bending moment in plane P are all equal to zero.

Thus, if a load F is perpendicular to plane P (Fig. 3.41a, b), then Nx ¼ 0, Qz ¼ 0,

and My ¼ 0.

Let us consider a uniform circular arch of radius R and central angle 2’0

[Rab54a]. The arch is subjected to uniformly distributed load q which acts perpen-

dicular to the plane of the arch (into the page) (Fig. 3.42a).

x

y

z

Nx
T

Mz

Qz
My

Qy

a

M

M

Qy

b

x

y

z

T

Mz

F⊥ P

P

Fig. 3.41 (a) General notation, (b) planar system, load F acts normally to plane P
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The feature of this design diagram is that thrust of the arch for the given loading

does not arise. It means that the arch behaves as a clamped–clamped curvilinear

beam. The second feature of this loading is the appearance of torque.

Due to symmetry, the structure has one unknown of the Force method. The

primary unknown X1 is the bending momentMz at the middle section C of the span,

X1 ¼ Mz. The primary system is shown in Fig. 3.43.

The bendingmoment and torque at any section caused by unit primary unknown are

Mz ¼ 1� cos’; T ¼ �1� sin’:

Canonical equation of the Force method is d11X1 þ D1P ¼ 0. The unit displace-

ment d11 is a mutual angular displacement in the plane x–y of two sections at

point C.
Figure 3.42b presents coordinates x and y of an arbitrary point D with respect to

tangent and radial axis with an origin at the point K

x ¼ R 1� cos ’� að Þ½ �; y ¼ R sin ’� að Þ:

+
A B

R

x

y

C

DK

A B

R

T

Mz

a b

K
q

+

+ + + + +
+

+
+

j
j

j0

a

Fig. 3.42 (a) Design diagram of the arch, (b) coordinates of the any point D

A B

R

X1=1

Mz

T

Mz

C
T

+
+

+ + +
+

+
+

j
j0

Fig. 3.43 Primary system.

Internal forces at the arbitrary

section K are T and Mz.
Vector X1 at the crown C is

resolved into two

components, parallel to

vectors T and Mz
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Moments of external load q with respect to K are

MP
z ¼ �R

Z ’

0

qyda ¼ �qR2

Z ’

0

sin ’� að Þda ¼ �qR2 1� cos’ð Þ;

TP ¼ R

Z ’

0

qxda ¼ qR2

Z ’

0

1� cos ’� að Þ½ �da ¼qR2 ’� sin’ð Þ:

The unit displacement is

d11 ¼ dM11 þ dT11 ¼ 2R

Z ’0

0

cos2’

EI
þ sin2’

GIT


 �
d’:

After integration, we get

EId11 ¼ R

2
2

EI

GIT
þ 1


 �
’0 �

EI

GIT
� 1


 �
sin 2’0

� 	
:

The combined quantity GIT is referred to as the torsional rigidity. For a square

cross-section T ¼ 0:1426a2; for a rectangular cross-section, a > b,

IT ¼ ðb3=3Þ a� 0:63bð Þ. For steel structures E=G ffi 2:57; for concrete

E=G ffi 2:33:
The free term of canonical equation is

EID1P¼EI DM
1PþDT

1P

� �¼ 2R

Z ’0

0

MP
z Mzd’þ2R

Z ’0

0

TPT
EI

GIT
d’;

¼�qR3

2

EI

GIT
þ1


 �
4sin’0�2’0ð Þ�4

EI

GIT
’0 cos’0þ

EI

GIT
�1


 �
sin2’0

� 	
:

Primary unknown is X1 ¼ �ðD1P=d11Þ.
The bending moment and torque, in terms of the angle ’, become

Mz ’ð Þ ¼ MP
z þMzX1 ¼ �qR2 1� cos’ð Þ þ X1 cos’;

T ’ð Þ ¼ TP þ TX1 ¼ qR2 ’� sin’ð Þ � X1 sin’:

For circular arch subjected to out-of-plane load, the following relationship holds:

Mz ¼ �ðdT=d’Þ.
Numerous formulas for arches loaded orthogonally to the plane of curvature are

presented in refs. [Bir68], [Roa75], and [You89].
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Part II

Stability Analysis



Chapter 4

Elastic Stability of Arches

Theory of structural stability is a special branch of structural analysis. This theory

explores very important phenomenon that is observed in the behavior of the

structures subjected to compressed loads. This phenomenon lies in the abrupt

change of initial form of equilibrium. Such phenomenon is called a loss of stability.

As a rule, the loss of stability of a structure leads to it collapse. Engineering practice

knows a lot of examples when ignoring this feature of a structure led to its failure.

This chapter is devoted to stability analysis of arches and arched structures

subjected to compressed loads. Different types of arches and their loadings

are considered. Analytical methods of determining the critical loads on arches are

considered on the basis of integration of differential equations of the arch.

4.1 General

The mathematical basis of stability theory of arches was first implemented
by Kirchhoff (1824–1887) [Kir76]. The first systematic analysis of equilibrium

stability was performed by Bryan [Bry88]. Southwell [Sou13] continued further

studies of the general stability theory of equilibrium of elastic bodies. Fundamental

research on the stability of rings and circular arches was investigated by Nikolaii

[Nik18]. Significant contributions solving the problem of stability of arches added

by Timoshenko [Tim61], [Tim72], Federhofer [Fed34], Lokshin [Lok34],

Shtaerman [Sht35], Morgaevsky [Mor39], [Mor40], [Mor61], Dinnik [Din46],

Pfl€uger [Pfl50], Chudnovsky [Chu52]. Numerical methods of stability analysis of

arches are largely the works of Smirnov [Smi84], [Pi02]. Experimental work on the

subject was contributed by Gaber [Gab34], Dinnik and Morgaevsky [Din46],

Pavlenko [Pav66].

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_4, # Springer Science+Business Media, LLC 2012
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4.1.1 Fundamental Concepts

Stable equilibrium state means that if the structure, under compressed load is

disturbed from an initial equilibrium state and after all disturbing factors are removed,

then the structure returns to the initial equilibrium state. This is concerning to the

elastic structures. If a structure consists of plastic or elasto-plastic elements, then a

complete returning to the initial state is impossible. However, equilibrium state is

assumed to be stable, if a structure even tends to return to the initial equilibrium state.

In case of absolutely rigid bodies, we are talking about stable position of a

structure, while in case of deformable elements we are talking about stable equilib-

rium form of a deformable state. In all these cases, we assume that the acting

compressed load is less than the critical one.

The critical force Pcr is the maximum force at which the structure holds its initial

equilibrium form (the structure is still stable), or minimum force, at which the structure

no longer returns to the initial state (the structure is already unstable) if all disturbing

factors are removed.

Unstable equilibrium state means that if a structure under compressed load is

disturbed from an initial equilibrium state and after all disturbing factors are

removed, then the structure does not return to the initial equilibrium state. In this

case, we say that the acting compressed load is larger than the critical one.

Change of configuration of a structure under the action of compressed load is called

a loss of stability of the initial form of equilibrium or a buckling. If the compressed

load is a static one, then this case is referred as the static loss of stability. In this

chapter, we consider elastic arches subjected to static loads only. If a structure swit-

ches to other state (as a result of loss of stability) and remains in this state in

equilibrium, then this new equilibrium state is called the adjacent form of equilibrium.

The main types of loads for in-plane stability analysis of the arch, as follows:

(a) Tracking load. For this load, an angle d between the load and deformable axis of

an arch remains constant (Fig. 4.1a); (b) hydrostatic load, which is directed

perpendicular to the deformable axis of an arch. This load is a special case of the

tracking load at d ¼ p=2 (Fig. 4.1b); (c) polar (radial for circular arch) load

directed to a fixed center (Fig. 4.1c); (d) gravity load. Direction of this load does

not depend on the deflections of the arch (Fig. 4.1d).

The state of a structure that corresponds to a critical load is called the critical

state. The switching of a structure into a new state occurs suddenly and as a rule

leads to the collapse of a structure. The theory of static stability of structures is

devoted to methods of calculation of critical loads.

4.1.2 Forms of the Loss of Stability of the Arches

The loss of stability can manifest itself in several ways. Note the most important

of them: (1) the emergence of qualitatively new adjacent forms of equilibrium; (2) the
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emergence of nonadjacent forms of equilibrium; (3) complete disappearance of any

forms of equilibrium.

Arches with pinned and fixed supports are shown in Fig. 4.2a, b. If an arch

is subjected to symmetric loading, then the loss of stability may occur in two

simplest forms. They are symmetrical form (a), when elastic curve is symmetrical

with respect to vertical axis of symmetry and, otherwise, is antisymmetrical (b).

Qualitatively new adjacent forms of equilibrium correspond to the loss of stability,

in the Euler sense [Din46]. The buckling of arches in the Eulerian sense are

considered in this chapter.

In the case of a very shallow arch, its compression should be taken into account.

Due to this, the loss of stability of two-hinged and hingeless arches occurs differ-

ently, as shown in Fig. 4.2. Specifically, the lowest critical load corresponds to the

symmetric form of the loss of stability along one sinusoidal half-wave (Fig. 4.3).

With this two cases are possible. (1) The sign of the curvature remains the same

(line 1); (2) sign of the curvature changes (line 2). Structures that abruptly transform

Tracking load

a b
P

Hydrostatic load

p/2
p/2 PTangentd d

c d

Polar load Gravity load

Fig. 4.1 Types of loads on the arches

A B

Arch with pinned endsa b

c d

C

Arch with fixed ends

A B

C

jA ≠ 0

jA ≠ 0

jA = 0

jA = 0

jC = 0
dC ≠ 0

jC ≠ 0
dC = 0

jC ≠ 0
dC = 0

jC = 0
dC ≠ 0

Fig. 4.2 Arches with different boundary conditions. Symmetrical and antisymmetrical forms of

stability loss
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to state 2 (or 3) are called structures with a jump. Note that antisymmetrical form

for loss of stability with one nodal point at the middle span (3) is possible.

Note that the general sensitivity theory in problems of stability of elastic

structures is considered in detail in [God00].

4.1.3 Differential Equations of Stability of Curvilinear Rod

Let us present a set of differential equations of stability for planar curvilinear rod

for some special cases. Assume that distributed radial load q is tracking.

The stability equation of a uniform rod (EI ¼ const) of a variable radius of

curvature r may be presented as follows (derivative, with respect to the curvilinear

coordinate s, is denoted by the prime symbol):

EI r ru0ð ÞIV
h i0

þ r
u

r

� �000� �0
þ 1

r
ru0ð Þ000 þ 1

r
u

r

� �00( )
þ r2q ru0ð Þ00 þ u

r

� �0� �� �0
¼ 0:

This differential equation of sixth order, with respect to tangential displace-

ment u, takes into account the radial distributed load q [Rzh55].

In case of circular rod of radius r ¼ R ¼ const and variable flexural stiffness

EI we get

R4 EIu000ð Þ000 þ R2 EIu0ð Þ000 þ R2 EIu000ð Þ0 þ EIu0ð Þ0 þ R5 qu000ð Þ0 þ R3 qu0ð Þ0 ¼ 0:

For circular uniform rod ðr ¼ R ¼ const; EI ¼ const) subjected to uniform

distributed radial load q ¼ const we have

R6uVI þ 2R4uIV þ R2u00 þ qR3

EI
R4uIV þ R2u00
� 	 ¼ 0:

In the polar coordinate ’ ¼ s=R the last equation may be rewritten as Lamb’s

equation [Lam1888] (see Sect. 1.7.3)

d6u

d’6
þ 2

d4u

d’4
þ d2u

d’2
þ qR3

EI

d4u

d’4
þ d2u

d’2

� �
¼ 0:

Note that the stability equation of a planar curvilinear rod in the general case

(nonuniform cross-section EI, variable radius of curvature (r) may be found in

[Mor39], [Rzh55]. This book also contains a set of equations for case of non-

tracking load.

1

2

3
Fig. 4.3 Shallow arch. The

forms of loss of stability
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4.1.4 Methods of Analysis

The problem of determining critical load on the arches may be obtained in the

precise analytical form only in simplest cases. Such cases include uniform circular

arches, which are subjected to uniform pressure normal to the axis of the arch.

Analytical solution to the issue of stability of arches of various shapes is based

on the integration of differential equations of the arch and generally leads to a

transcendental equation of stability. The roots of these equations are the para-

meters of the critical loads. Each parameter of a critical load corresponds to the

specific form of loss of stability. For practical purposes, only the first form of loss of

stability and the corresponding smallest critical load is of interest.

Approximate method of solving stability problems for arches consists of

approximating the arch by a framed structure, and proceeding with analysis

by the three-moment equations [Sni66] and the displacement method [Kar10].

In general cases of arbitrary equations of the axial line of the arch, Smirnoff’s

matrix method [Smi84] is most effective. Peculiarities and limitations of this

method are considered in Chap. 5.

In the case of a nonuniform arch of arbitrary shape, strictly speaking, it is

possible to derive the corresponding differential equation, however, its order may

be high. In the case of nonuniform arch, the coefficients are variable; it becomes

impossible to present the solution in analytical form. Therefore, in most cases the

solution may be obtained using only approximate methods, in particular, variational

ones [Vol67]. Many important solutions related to stability of arches have been

obtained by Dinnik [Din46]. In case of shallow arches, the solution of differential

equation of stability may be obtained in closed form. However, the solution

becomes very cumbersome. For the analysis of very shallow arches, it is preferable

to utilize the Bubnov–Galerkin method [Rzh55].

Unless stated otherwise, we consider stability of arches under the following

assumptions:

1. The arch material is linearly elastic (Hooke’s law applies).

2. The center line of an arch is incompressible.

3. Loads on arches are conservative.

4.2 Circular Arches Subjected to Radial Load

This section is devoted to analysis of stability of the uniform circular arch with

different boundary conditions. In all cases, arches are subjected to uniform

distributed radial load. Analysis of stability is based on the Boussinesq’s and

Lamb’s equations. Analytical solutions for critical load are presented.
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4.2.1 Solution Based on the Boussinesq’s Equation

Behavior of the uniform circular arch of radius R and flexural rigidity EI is

described by differential equation of the second order with respect to radial

displacement u of any point on the axis of the arch

d2u
d’2

þ u ¼ �MR2

EI
; (4.1)

where u is a displacement point of the arch in radial direction, and M is bending

moment which is produced in the cross sections of the arch when it loss a stability

[Pro48], [Bou1883].

This equation allows us to determine in the close form a critical load on the arch

with different boundary conditions. The following procedure may be proposed:

1. Find analytical expression for bending moment M
2. Integrate the differential equation (4.1)

3. Use the boundary conditions to compute the constants of integration

4. Nontrivial solution presents the stability equation

4.2.1.1 Two-Hinged Arch

Circular two-hinged arch of radius R and constant cross-section is subjected to

uniform radial pressure q. The central angle of the arch is 2a and flexural rigidity is
EI. Antisymmetric and symmetric forms of the loss of stability of the arch are

shown in Fig. 4.4 by dotted lines.

Antisymmetric buckling mode gives smaller values of critical load than sym-

metrical form. Therefore, we limit ourselves to the antisymmetric form.

In case of uniform radial load at any section of the arch only axial force

N ¼ qR arises. Bending moment at any section is M ¼ Nu ¼ qRu. Boussinesq’s
equation (4.1) becomes

d2u
d’2

þ u ¼ � quR3

EI
or

d2u
d’2

þ n2u ¼ 0; (4.2)

R
j

uj

ja a

q

a b

R

q

Fig. 4.4 Design diagram of two-hinged arch and the forms of the lost of stability
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where

n2 ¼ 1þ qR3

EI
: (4.3)

A homogeneous second-order linear differential equation (4.3) has the following

general solution:

u ¼ A cos n’þ B sin n’;

where A and B are constants of integration. These constants should be evaluated

using boundary conditions.

1. When ’ ¼ 0 (left support) the radial displacement u ¼ 0. This condition leads

to A ¼ 0.

2. At ’ ¼ a (section at the axis of symmetry) u ¼ 0. This condition leads to

equation B sin na ¼ 0. Solution B ¼ 0 is trivial and should be rejected. Thus,

the stability equation becomes sin na ¼ 0. The roots of this equation are

na ¼ p; 2p; . . . ; kp.

The minimum critical parameter n ¼ p=a corresponds to smallest critical load.

According to (4.3)

qmin
cr ¼ n2 � 1

� 	 EI
R3

¼ p2

a2
� 1

� �
EI

R3
: (4.4)

Axial critical force for two-hinged uniform arch becomes [Kis80], [Rzh55]

Nmin
cr ¼ qmin

cr R ¼ p2

a2
� 1

� �
EI

R2
:

Special Cases

1. In case of semicircular arch the expression (4.4) leads to Levy’ formula [Lev84]

for critical load

qmin
cr ¼ 3EI

R3
:

Problems of this nature arise during analysis of a cylindrical shells enforced by

circular ribs. Central angle 2a ¼ p corresponds to an arc located between two

points of inflection of elastic curve of the ring. Circular arches (ribs) function as

receivers of radial forces from the connected cylindrical shell.
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2. For shallow arches with f/l � 0.2–0.3 the angle a � p, therefore p2=a2 � 1

and the unity can be neglected, then Nmin
cr ffi p2EI=S20 where S0 ¼ Ra. Thus,

the critical axial force for the gentle arch is approximately equal to that of the

force found by Euler’s formula for column which has a buckling length of half

the length of the axis of the arch.

Note, that stability analysis of a two hinged uniform arch may be effectively

performed using (1.27). In case of a uniformly distributed radial load, the two last

terms of (1.27) should be omitted [Rzh82].

4.2.1.2 Hingeless Arch

As in case of two-hinged arch the most probable loss of stability realization will

occur in an antisymmetric form (Fig. 4.5a) [Kis80].

In contrast to the two-hinged arch, the bending moments M0 arise at the support

sections. They lead to the appearance of inflection points. These points are specified

by sign (*) (Fig. 4.5b). Bending moment diagram caused by support moments M0

is shown in Fig. 4.5c. Additional bending moment at the arbitrary section is

M0ðsin ’= sin aÞ, where the angle ’ is measured from the axis of symmetry.

The total bending moment at any section, which is characterized by displace-

ment u, is

M ¼ qRu�M0

sin ’

sin a
:

Boussinesq’s equation becomes

d2u
d’2

þ n2u ¼ M0R
2

EI sin a
sin ’ ¼ C sin ’; C ¼ M0R

2

EI sin a
: (4.5)

R 
a a

q

a b

c

RM0
M0

M0

M0

sin a
sin jM0

*
*

j
uj

Fig. 4.5 Design diagram of hingedless arch, form of the stability lost, and bending moment

diagram
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where n is still calculated by (4.3). Pay attention that C is unknown, since moment

M0 is unknown.

Solution of nonhomogeneous differential equation (4.5) is u ¼ u1 þ u2. The
partial solution u2 should be presented in the form of the right part of (4.5), mainly

u2 ¼ k sin ’. Substituting this expression into (4.5) leads to formula

k ¼ 1

n2 � 1
� M0R

2

EI sin a
¼ C

n2 � 1
:

Thus the total solution of (4.5) becomes

u ¼ A cos n’þ B sin n’þ 1

n2 � 1
� M0R

2

EI sin a
sin ’:

Boundary condition:

1. For point of the arch on the axis of symmetry ð’ ¼ 0Þ the radial displacement

u ¼ 0 (because the antisymmetric form of the loss of stability). This condition

leads to A ¼ 0.

Given this, equations for radial displacement and slope are

u ¼ B sin n’þ C

n2 � 1
sin ’;

du
d’

¼ Bn cos n’þ C

n2 � 1
cos ’: (4.6)

Two unknowns B and C may be obtained from the following boundary

conditions:

2. At ’ ¼ a (support point) the radial displacement u ¼ 0.

3. At ’ ¼ a du=d’ ¼ 0.

Taking into account these conditions, the system of equations (4.6) becomes

B sin naþ C

n2 � 1
sin a ¼ 0;

Bn cos naþ C

n2 � 1
cos a ¼ 0:

Since these equations are algebraic and homogeneous, then nontrivial solution

are possible if determinant of the matrix consisting of coefficients of the unknowns

is equal to zero. After simplification we get the equation of critical loads

sin na
1

n2 � 1
sin a

n cos na
1

n2 � 1
cos a


















¼ 0:
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This equation may be presented in different forms, in particular

a
tan a

¼ na
tan na

: (4.7)

Transcendental equation (4.7) allows us to calculate parameter n of critical load;
they are for different angles a, which are presented in Table 4.1.

According to (4.3) the critical load is

qcr ¼ n2 � 1
� 	 EI

R3
: (4.8)

Corresponding compressed axial force is Ncr ¼ qcrR ¼ ðEI=R2Þðn2 � 1Þ:

Special Case

If a ¼ p 2= (semicircular arch) then (4.7) can be presented in form cotðnp=2Þ ¼ 0,

so ðnp=2Þ ¼ ðp=2Þ; ð3p=2Þ; . . . : Solution n ¼ 1 is trivial because this solution,

accordingly (4.3), corresponds to q ¼ 0. Thus, smallest root is n ¼ 3. Thus,

for semicircular arch with clamped supports the radial critical load equals

qcrmin ¼ 8ðEI=R3Þ [Rzh55].

Three-Hinged Arch

If loss of stability occurs by antisymmetric form (Fig. 4.6a) then a critical load

will be same as for two-hinged arch. This happens because in case of two-hinged

arch by antisymmetric loss of stability form (Fig. 4.4a) in the crown C the bending

moment equals to zero. So this point may be treated as the hinge of three-hinged

arch [Kis80].

Table 4.1 Minimum root n of transcendental equation (4.7)

a (�) 30 45 60 90

n 8.621 5.782 4.375 3.000

R

q

a b

R

q

a a

Fig. 4.6 Design diagram of three-hinged arch and the loss of stability forms
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Symmetric loss of stability is shown in Fig. 4.6b. In this case, the hinge at the

crown has a vertical displacement. Calculations and experiments showed that a

smallest critical load corresponds to symmetrical loss of stability [Pav66], [Mor40].

Critical load is determined by the formula

qcr ¼ 2�

a

� �2

� 1

" #
EI

R3
; (4.9)

where a critical parameter � is a root of transcendental equation [Din46], [Kis80]

4 tan a� að Þ
a3

¼ tan � � �

�3
:

The roots of this equation for different angle a are presented in Table 4.2.

Expression for radial critical loads (4.4), (4.8), and (4.9) for different types of

arches may be combined using general formula qcr ¼ KðEI=R3Þ. Coefficients K are

presented in Table 4.3.

Axial compressed force in all cases equals

Ncr ¼ qcrR ¼ K
EI

R2
:

The critical stress is scr ¼ Ncr=A where A is area of the cross section of the arch.

All calculations above are legitimate if the critical stresses are less than the yield

stress [Kle72].

4.2.2 Solution Based on the Lamb’s Equation

This equation allows us to find the critical radial load for circular arches with

different boundary conditions.

Table 4.2 Circular three-hinged arch. Critical parameter � for symmetrical form of the loss of

stability

a (�) 30 45 60 90

� 1.3872 1.4172 1.4584 p/2 ¼ 1.5708

Table 4.3 Parameter K for critical radial load of circular uniform arches with different boundary

conditions [Din46], [Kle72], [Sni66]

Types of arch a ¼ 15� 30� 45� 60� 75� 90�

Hingeless First form 294 73.3 32.4 18.1 11.6 8

Second form 484 120 53.2 29.7 18.8 12.9

Two-hinged First form 143 35 15 8 4.76 3

Second form 320 79.2 34.7 19.1 11.9 8.0

Three-hinged (symmetrical form) 108 27.6 12 6.75 4.32 3

One-hinged arch 162 40.2 17.4 10.2 – 4.61
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Behavior of the arch of radius R, with central angle 2a and a constant cross

section subjected to uniform radial load q is described by Lamb’s equation with

respect to tangential displacement u [Lam1888]

d6u

d’6
þ 2

d4u

d’4
þ d2u

d’2
þ qR3

EI

d4u

d’4
þ d2u

d’2

� �
¼ 0: (4.10)

where EI is a flexural rigidity of the arch.

Two approaches of finding the critical load are presented below.

Exact Solution

Characteristic equation and corresponding roots are

l6 þ 2l4 þ l2 þ k l4 þ l2
� 	 ¼ 0; k ¼ qR3

EI
;

l1;2 ¼ 0; l3;4 ¼ 	i; l5;6 ¼ 	ib; b ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ k

p
:

General solution is

u ¼ C1 þ C2’þ C3 sin ’þ C4 cos ’þ C5 sin b’þ C6 cos b’:

Since the axis of the arch is incompressible, then e ¼ ðdu=R d’Þ � ðu=RÞ ¼ 0,

therefore

u ¼ du

d’
¼ C2 þ C3 cos ’� C4 sin ’þ C5b cos b’� C6b sin b’:

4.2.2.1 Two-Hinged Arch

In this case, the boundary conditions at ’ ¼ 	a are

u ¼ 0; u0 ¼ u ¼ 0; u000 ¼ 0:

The last condition means that bending moment M ¼ 0. Now we consider two

forms of the loss of stability separately.

Symmetric Form of the Loss of Stability

In this case, the radial displacement u is even function, so the tangential displace-

ment u should be presented in terms of odd functions

u ¼ C2’þ C3 sin ’þ C5 sin b’:
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We subject this solution to the boundary conditions. This yields the set of

homogeneous algebraic equations

C2aþ C3 sin aþ C5 sin ba ¼ 0;

C2 þ C3 cos aþ C5b cos ba ¼ 0;

�C3 cos a� C5b
3 cos ba ¼ 0:

Equation for critical load becomes

a sin a sin ba
1 cos a b cos ba
0 � cos a �b3 cos ba














 ¼ 0:

In expanded form we get

a b� b3
� 	þ b3 tan a ¼ tan ba:

Antisymmetric Form of the Loss of Stability

In this case, tangential displacement u should be presented in terms of even

functions

u ¼ C1 þ C4 cos ’þ C6 cos b’:

According to boundary conditions

C1 þ C4 cos aþ C6 cos ba ¼ 0;

�C4 sin a� C6b sin ba ¼ 0;

C4 sin aþ C6b
3 sin ba ¼ 0:

Equation for critical load becomes

1 cos a cos ba
0 � sin a �b sin ba
0 sin a b3 sin ba














 ¼ 0:

In expanded form we get b� b3
� 	

sin a sin ba ¼ 0:
Two cases are possible.

1. Assume sin a ¼ 0. In this case a ¼ np. Since a cannot be more than p then only

n ¼ 1 may be considered. However, in this case we get a closed ring with one

hinged support, i.e., a geometrically changeable system.

4.2 Circular Arches Subjected to Radial Load 209



2. Let sin ba ¼ 0. In this case ba ¼ mp, b2 ¼ m2p2=a2, critical parameter

k ¼ b2 � 1, so critical load

qcr ¼ m2p2

a2
� 1

� �
EI

R3
:

For semicircular arch ð2a ¼ pÞ we get qcr min ¼ 3ðEI=R3Þ:

4.2.2.2 Hingeless Arch

In this case, the boundary conditions at ’ ¼ 	a are

u ¼ 0; u0 ¼ u ¼ 0; u00 ¼ 0:

Antisymmetric Form of the Loss of Stability

In this case

u ¼ C1 þ C4 cos ’þ C6 cos b’:

Proceeding as before, we subject this expression to the boundary conditions.

Equation for critical parameter b becomes b tan a ¼ tan ba. Critical load is qcr ¼
b2 � 1
� 	ðEI=R3Þ: In case a ¼ p 2= stability equation can be presented in the form

cot bp=2ð Þ ¼ 0, so bp ¼ p; 3p; . . . . Solution b ¼ 1 is trivial because this solu-

tion corresponds to q ¼ 0. Thus, the minimum root is b ¼ 3, so for a semicircular

arch with clamped supports the critical load equals qcr min ¼ 8ðEI=R3Þ.

Variational Approach

Let us consider two-hinged arch. Limiting ourselves to the approximate solution, set

u ’ð Þ ¼ �f
a
p

1þ cos
p’
a

� 
:

This expression satisfies all the boundary conditions. Namely, the tangential and

radial displacements and bending moment at the supports are equal to zero.
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Bubnov–Galerkin procedure [Vol67]

Z a

�a

d6u

d’6
þ 2

d4u

d’4
þ d2u

d’2
þ qR3

EI

d4u

d’4
þ d2u

d’2

� �� �
1þ cos

p’
a

� 
d’ ¼ 0:

As a result, we get the following relationships

� x6 � 2x4 þ x2
� 	þ qR3

EI
x4 � x2
� 	

; x ¼ p
a
:

From here we immediately obtain expression for smallest critical load

qcrmin ¼ C
EI

R3
; C ¼ x3 � x

� 	2
x4 � x2

: (4.11)

For semicircular arch 2a ¼ pð Þ we get qcr min ¼ 3EI=R3; which coincides with

the exact solution.

If a central angle of the arch is 2a ¼ p=3, then C ¼ 35.

4.2.3 Arch with Specific Boundary Conditions

Circular uniform arch of radius R and central angle 2a is subjected to uniform radial

load q. Support constraints are straight rods AB and BD with hinges at the ends.

The reaction which arises at the constraint may be resolved into the vertical and

horizontal (thrust) components at the points A and B. Thus, this structure in fact

represents a specific two-hinged arch. Indeed, inclination of the support constraint

defines the direction of the resultant of the vertical reaction and the thrust for any

type of load. Assume these rods are directed along the tangent to the arch at the

support points (Fig. 4.7).

Therefore, before the loss of stability of the arch, reactions at the points A and B
coincide with this tangent. At the instant the loss of stability occurs, the axial

compressed force N ¼ qR, at the points A and B will be directed at any angle y to

the deformable axis of the arch.

R
2a

q

A B

C D

q

Fig. 4.7 Circular arch with

hinged ends support rods
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Exact solution of the stability problem is obtained on the basis of (4.10). In the

case of symmetrical loss of stability at ’ ¼ 	a, the boundary conditions (tangential
displacement u, bending moment and shear) are u ¼ 0; M ¼ 0; Q ¼ qRy.
These conditions, in terms of displacement u may be presented as follows:

u ¼ 0; u000 þ u0 ¼ 0; uIV þ u00 þ qR3

EI
u00 þ uð Þ ¼ 0:

If we denote ðqR3=EIÞ ¼ b2 � 1, then for stability equation and corresponding

critical load we get [Rzh55]

tan ba
ba

¼ 1� b2;

qcr ¼ b2 � 1
� 	 EI

R3
:

Critical parameter b, in terms of half of central angle is presented in Table 4.4.

For arch with these specific supports a smallest critical load corresponds

to symmetrical form of loss of stability. In case of antisymmetrical form of

buckling the critical load coincides with critical load for two-hinged arch, i.e.,

qcr ¼ ððp2=a2Þ � 1ÞðEI=R3Þ.

4.3 Circular Arches with Elastic Supports

This section is devoted to stability analysis of circular arches with elastic supports.

The case of uniform radial load is considered. Stability equation is derived and

classical boundary conditions are considered.

Stability analysis of a complex arched structure (supports of the arch are

deformable frames) is presented.

4.3.1 General Solution and Special Cases

Assume that symmetrical circular uniform arch of radius R has the elastic-fixed

supports; their rotational stiffness coefficient is k [kN m/rad]. The central angle of

the arch is 2a; the flexural rigidity is EI, and the intensity of the radial uniformly

distributed load is q (Fig. 4.8a).

Table 4.4 Critical parameter b in terms of half of central angle a
a (rad) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 p/2
b 1.58 1.61 1.66 1.73 1.81 1.90 2.01 2.11
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In case of arch with elastic supports, symmetrical and antisymmetrical forms

mean that both supports rotate in the opposite directions or in the same directions,

respectively. As it is shown by analytical analysis and experiments, the smallest

critical load for hingeless and two-hinged arch corresponds to antisymmetrical form

of the loss of stability.

For stability of the arch with elastic supports, we use the Boussinesq’s equation

d2u
d’2

þ u ¼ �MR2

EI
; (4.12)

where u is a displacement point of the arch in radial direction (Fig. 4.8b).

It is easy to show that the horizontal and vertical components of reaction N
are H ¼ qR cos a and V ¼ qR sin a; so the axial compressive force of the arch

caused by uniformly distributed hydrostatic load q is N ¼ qR [Kar10]. The slope ’
at the elastic support and corresponding reactive moment M0 are related as

M0 ¼ k’. Distribution of bending moments caused by two antisymmetrical angular

displacements ’ of elastic supports (or reactive moments M0) is presented in

Fig. 4.8c. Bending moment at section with central angle y caused by only reactive

moments M0 equals m. The total bending moment at any section, which is

characterized by displacement u free-body diagram is shown in Fig. 4.8d, equals

M ¼ qRu� sin y
sin a

k’:

The second term takes into account additional moment due to elastic supports.

R
2a kk

q

a b d

c

N
m

M0

sina
sinq M0m =

M0= kj

j

M0= kj

M0= kj
M0N = qR

N = qR
N

dq 

ds

u(q ) 

u (q) 
q a

j j
q

Fig. 4.8 (a) Design diagram of the circular arch with elastic supports; (b) reactions and

antisymmetrical buckling form; (c) distribution of bending moments caused by two reactive

moments M0; (d) free-body diagram for portion of the arch (load q is not shown)
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Thus, differential equation (4.12) becomes

d2u

dy2
þ 1þ qR3

EI

� �
u ¼ k’

EI

R2

sin a
sin y: (4.13)

Denote

n2 ¼ 1þ qR3

EI
(4.13a)

C ¼ k’R2

EI sin a
(4.13b)

Pay attention that C is unknown, since the angles of rotation ’ of the supports are

unknown. Differential equation (4.13) may be rewritten as follows:

d2u

dy2
þ n2u ¼ C sin y: (4.14)

Solution of this equation is

u ¼ A cos nyþ B sin nyþ u
: (4.15)

The partial solution u
 should be presented in the form of the right part of (4.14),

mainly u
 ¼ C0 sin y, where C0 is a new unknown coefficient. Substituting of this

expression into (4.14) leads to equation

� C0 sin yþ n2C0 sin y ¼ C sin y;

so C0 ¼ C=ðn2 � 1Þ. Thus the solution of (4.14) becomes

u ¼ A cos nyþ B sin nyþ C

n2 � 1
sin y: (4.16)

Unknown coefficients A, B, and Cmay be obtained from the following boundary

conditions:

1. For point of the arch on the axis of symmetry ðy ¼ 0Þ, the radial displacement

u ¼ 0 (because the antisymmetrical form of the loss of stability); this condition

leads to A ¼ 0.

2. For point of the arch at the support ðy ¼ aÞ, the radial displacement is u ¼ 0, so

B sin naþ C

n2 � 1
sin a ¼ 0: (4.17)
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3. Using (4.17), the slope is

du
dy

¼ Bn cos nyþ C cos y
n2 � 1

: (4.18)

The slope at the support is du=ds ¼ �’, the negative sign means the reactive

moment M0 and angle ’ have the opposite directions. On the other hand

du=ds ¼ du=R dy, so du=dy ¼ �R’. According to (4.13b) we get

’ ¼ C
EI sin a
kR2

; so
du
dy

¼ �C
EI sin a

kR

If y ¼ a then the expression (4.18) becomes

Bn cos naþ C
cos a
n2 � 1

þ EI sin a
kR

� �
¼ 0: (4.19)

Equations (4.17) and (4.19) are homogeneous linear algebraic equations with

respect to unknown parameters B and C. The trivial solution B ¼ C ¼ 0

corresponds to state of the arch before the loss of stability. Nontrivial solution

occurs if the following determinant is zero:

D ¼
sin na

sin a
n2 � 1

n cos na;
cos a
n2 � 1

þ EI sin a
kR


















¼ 0: (4.20)

This stability equation may be presented as follows [Kle72]:

tan na ¼ nk0
k0 cot aþ n2 � 1ð Þ ; k0 ¼ kR

EI
: (4.21)

Solution of this transcendental equation for given a and dimensionless parameter

k0 is the critical parameter n. According to (4.13a) the critical load

qcr ¼ n2 � 1
� 	 EI

R3
:

If the central angle 2a ¼ 60�, then the roots of (4.21) for different k0 are

presented in Table 4.5.

Table 4.5 Critical parameter n for circular arch with elastic clamped supports, 2a ¼ 60�

k0 0.0 1.0 10 100 1,000 105

n 6.0000 6.2955 7.5294 8.4628 8.6051 8.621

4.3 Circular Arches with Elastic Supports 215



Parameter k0 ¼ 105 in fact corresponds to the fixed support.

For an arch with elastic supports, parameter k satisfy to condition k1 � k � k2,
where k1 ¼ 0 and k2 ¼ 1 related for two-hinged and hingeless arches,

respectively.

Limiting Cases

1. Two-hinged arch. In this case, the stiffness of support k ¼ 0 and stability

equation (4.21) is tan na ¼ 0. The minimum roots of this equation is na ¼ p,
so n ¼ p=a and corresponding critical load equals

qcrmin ¼ p2

a2
� 1

� �
EI

R3
:

This formula coincides with (4.4). Critical load for a ¼ p=2 (semicircular arch)

equals qcr min ¼ 3EI=R3:
2. Arch with fixed supports. In this case, the stiffness k ¼ 1 and stability equation

(4.21) becomes

tan na ¼ n tan a

This equation coincides with (4.7). The minimum roots in terms of a are

presented in Table 4.1.

Two Cases of the Ring with Braces (Circular Tunnel Lining)

1. The ring of radius R with one brace in the diameter is subjected to uniform radial

load q. Each half of the ring may be considered as semicircular arch with elastic

fixed ends. If flexural rigidity of the arch and the cross-bar are I0 and I1,
respectively, then the stability equation becomes

cot
np
2

¼ 2 n2 � 1ð Þ
3n

I0
I1
; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qR3

EI0

s
:

If I1 ¼ 4I0, then qcr ¼ 6:6ðEI0=R3Þ [Pro48].
2. The ring of radius R with two braces in the diameters is subjected to the same

loading. Braces are perpendicular to each other and connected in the center of

the ring by a fixed joint or by a multiple hinge. We assume that I1 ¼ 2I0. In both
cases the stability equation is

cot
np
4

¼ n2 þ 2

3n
and qcr ¼ 20:9

EI0
R3

:
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4.3.2 Complex Arched Structure

In practical engineering, the stiffness coefficient k of the elastic supports is not

given as a clear value. However, in special cases, it can be determined from an

analysis of adjacent parts of the arch [Kle72].

Let us calculate the critical load for a structure shown in Fig. 4.9a. The central

part of the structure presents the circular arch; supports of the arch are rigid joints A
and B of the frames. The arch is subjected to uniformly distributed radial load q.
Assume that R ¼ 20 m and the central angle 2a ¼ 60�. The stiffness of all

members of the structure is EI.
Since the left and right frames are deformable structures, then the each joint A

and B has some angle of rotation, so the arch AB should be considered as arch with

elastic supports with rotational stiffness k. For this case of circular arch with given

type of load, the stability equation according to (4.21) becomes:

tan na ¼ n

cot aþ n2 � 1ð ÞEI
kR

: (4.23)

Rotational stiffness coefficient k is a coupleM, which arises at elastic support of

the arch if this support rotates through the angle ’ ¼ 1. Since the joints A and B are

rigid, so the angle of rotation for frame and arch are same. Therefore, for calculation

of the stiffness k we have to calculate the couple M, which should be applied at the

rigid joint A of the frame in order to rotate this joint by angle ’ ¼ 1.

6m 6m10m

8mEI

q

R = 20m

a = 20°

A B

a

M = k = ?
M = k = ?

R1P

d ecb

i1= EI/6

i2= EI/8

1
r11 Z1= 1

4i2

2i2

3i1

Fig. 4.9 (a) Design diagram of the structure. (b–e) Calculation of the stiffness k of the elastic

supports of the arch
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The frame subjected to unknown moment M ¼ k is shown in Fig. 4.9b.

For solving of this problem we can use the displacement method [Kar10].

The primary system of the displacement method is obtained by introducing

additional constraint 1 (Fig. 4.9c). The primary unknown Z1 is angular displace-

ment of introduced constraint. Canonical equation is

r11Z1 þ R1P ¼ 0:

Displacement Z1 ¼ 1 and corresponding bending moment diagram is shown in

Fig. 4.8d. The unit reaction

r11 ¼ 3i1 þ 4i2 ¼ 0:5EI þ 0:5EI ¼ 1EI:

The primary system subjected to external unknown couple M is presented

in Fig. 4.9e, so R1P ¼ �M. The canonical equation becomes 1EI � Z1 �M ¼ 0.

If the angle of rotation Z1 ¼ 1, then M ¼ k ¼ 1EI. For given parameters R and a,
the stability equation (4.23) of the structure becomes

tan n
p
6
¼ n

cot
p
6
þ n2 � 1ð Þ

20

or tan 0:5236nð Þ ¼ 20n

33:64þ n2
:

The root of this equation n ¼ 7.955. The critical load is

qcr ¼ 7:9552 � 1
� 	 EI

R3
¼ 62:28

EI

R3
:

According to Table 4.3, the critical load for arch with fixed supports and for

two-hinged arch (the central angle in both cases is 2a ¼ 60�) are qcr ¼ 73:3ðEI=R3Þ
and qcr ¼ 35ðEI=R3Þ, respectively. Above calculated critical load is located

between two limiting cases.

4.4 Gentle Circular Arch Subjected to Radial Load

Earlier we considered arches with an incompressible axis. As a result, in case of

two-hinged and hingeless arches the antisymmetrical form was the most unstable.

In a gently circular arch ðf=l � 0:3Þ, we must consider the change in length of the

arch’s axis due to compression. This leads to a characteristically new form for loss

of stability. In Fig. 4.10, the dotted line 1 corresponds to the loss of stability by

symmetric form with one half-wave. Given this, the curvatures in the deformable

and initial states have the same sign. Dotted line 2 also corresponds to the symmet-

ric buckling with one half-wave. However, the curvatures in the deformable and

initial states have the different signs. Antisymmetrical form of the loss of stability
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(3) with two half-waves is also possible. Structures that abruptly transform to state 2

(or 3) are called structures with a jump; this phenomenon is called snap
transformation.

4.4.1 Mathematical Model and Bubnov–Galerkin Procedure

Let us consider a shallow circular uniform arch of the span l and radius R. Arch is

subjected to radial uniformly distributed load q. Differential equation of stability

is [Rzh55]

EI
d4u
dx4

þ P
d2u
dx2

¼ q� P

R
: (4.24)

Here P is compressed load which arise in the cross-sections of the arch. A rigorous

solution of this equation can be found in [Rzh55], however, such solution is very

cumbersome. It is easier to solve this problem by Bubnov–Galerkin’s method

[Vol67].

The procedure for solving the problem is as follows:

1. Assume the radial displacement of the arch is uðxÞ ¼ u0f ðxÞ which satisfies the

boundary conditions. The assumed functions uðxÞ for different boundary

conditions are covered adequately in the book [Kar01].

2. According to Bubnov–Galerkin procedure,

Z l

0

EI
d4u
dx4

þ P
d2u
dx2

þ P

R
� q

� �
f ðxÞ dx ¼ 0:

This procedure leads to the relationships which includes the unknown critical

load q, radial displacement at the crown u0, and axial compressive load P.
3. The expression for difference in distances between the support points of the arch

Dl ¼ � 1

R

Z l

0

udxþ 1

2

Z l

0

u0ð Þ2dxþ Pl

EA
;

where A is the cross-sectional area of the arch.

4. Condition of intractability of supports Dl ¼ 0 yields to additional relationships

between P and u0.

1

2

x

y

l

f 3
f/l ≤ 0.3

Fig. 4.10 Gentle arch and

loss of stability forms
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5. Eliminating P we obtain a relationships between q and u0.
6. The critical load q is found through the condition dq=du0 ¼ 0.

We show applications of this procedure for stability analysis of the different

types of arches.

4.4.2 Two-Hinged Arch

Assume that the symmetrical form of the loss of stability may be described

by formula uðxÞ ¼ u0 sinðpx=lÞ [Rzh55]. This expression satisfies to boundary

conditions u ¼ 0 and u00 ¼ 0 at x ¼ 0 and x ¼ l.
Bubnov–Galerkin’s procedure

Z l

0

EI
d4u
dx4

þ P
d2u
dx2

þ P

R
� q

� �
sin

px
l
dx ¼ 0 (4.25)

leads to relationships

q ¼ p3u0
4l4

p2EI � Pl2
� 	þ P

R
: (4.26)

This equation includes unknowns critical load q, radial displacement at the

crown u0, and axial compressive load P.
The difference in distances between the support points of the arch is

Dl ¼ � u0
R

2l

p
þ u20p

2

4l
þ Pl

EA
:

Equation of intractability of supports Dl ¼ 0 yields

P ¼ � p2u20g
4l

þ 2lu0g
pR

; g ¼ EA

l
:

We notice that the relationships between the displacement u0 and compressive

force P in arch are nonlinear.

Substituting expression for P into (4.26) leads to

q ¼ p3u0
4l4

p2EI þ p2u20gl
4

� 2u0gl3

pR

� �
� p2u20g

4lR
þ 2lu0g

pR2
: (4.27)

This expression relates the required critical load q and parameter u0 of deform-

able arch. The critical q is found from the condition dq=du0 ¼ 0. From this
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condition we get u
 ¼ 1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� dÞ=3p
. Substituting of this expression into (4.27)

leads to the final expression for the critical load

qcr ¼ 4l2EA

p4R3
q
;

q
 ¼ d	 2
1� d
3

� �3 2=

; d ¼ p6i2R2

4l4
¼ p6

4

IR2

Al4
:

The dimensionless parameter d in terms of central angle 2a and slenderness

ratio of the arch l ¼ l=i (i ¼ ffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration of the cross section

of the arch) becomes d ¼ 240:4= 2að Þ2l2.

4.4.3 Graphical Interpretation of Results

For two-hinged arch, the relationship between load q
 ¼ qðp4R3=4l2EAÞ and radial
displacement u
 ¼ u0ðp3R=4l2Þ for special parameters d is shown in Fig. 4.11.

All parameters q
; u
; d are dimensionless.

All curves characterize the state of equilibrium. Curve d ¼ 1 divides the state

diagram into two regions. In the upper region d>1:0 arch does not lose stability,

but deforms smoothly when acted upon by a load. In the bottom region d<1:0 loss

of stability is possible. In this region state curve has two extreme points. The upper

u*

q*
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•
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Fig. 4.11 Curves of

equilibrium states for two-

hinged arch
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extreme point B corresponds to the critical state of the arch under a monotonal

increase in the load. For this point in the expression for q
 we assign a positive sign.
After moving past this critical state the deformation of the arch increases by a

jump under constant load. With this, the sign of initial curvature of the arch

changes.

This state is shown by dotted arrow BD. The lower critical point C corresponds

to the critical conditions which are achieved with a monotonal decrease of the load.

Reaching the load which corresponds to point C a jump in the system occurs in the

opposite direction. The dotted arrow CA corresponds to this jump. With this,

the line BC corresponds to unstable equilibrium. This form of equilibrium may be

realized only with additional constraints.

For d ¼ 1 both critical loads are coincides. The inflection point (*) has

coordinates u
 ¼ 1:0; q
 ¼ 1:0.
Thus at d>1 for two-hinged arch the jump does not occur, and the arch smoothly

deforms under the load [Rzh55].

Notes

1. Since arch is gentle, then its shape and type of load (tracking or fixed direction)

does not significantly influence the value of critical load [Uma72-73].

2. In case of very shallow arch, we should take into account the change in length of

the arch caused by the compressive forces. Two-hinged sinusoidal arch y ¼ f �
ðsinðpxÞ=lÞ have been considered by Timoshenko [Kle72], and Dinnik [Din46]

under the above assumptions. Parameter u of critical load, under which the

jump occurs is u ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1� mð Þ3=27m2

q
, where m ¼ 4I=Af 2<1, A-area of

cross-section of an arch. In case of vertical uniformly distributed load q within

all span l parameter u ¼ ð5ql4=384EIÞ � ð1=f Þ. In case of vertical force P at the

crown we have u ¼ ðPl3=48EIÞ � ð1=f Þ. If m � 1, then exists only unity stable

form of equilibrium.

A jump of shallow two-hinged arch of the arbitrary shape by antisymmetric

form of the loss of stability with nodal point in the mid-span [Uma72-73] is

possible. In this case, the critical load is qcr ¼ 32p2ðf=lÞðEI=l3Þ. Detailed analy-
sis of very gentle parabolic two-hinged arch is presented in [Din46].

3. The jump phenomena characterizes the shallow arch as nonlinear structure

[Kaz09]. This nonlinearities turn out to be static type [Kar01].

4. In case of the arch of the variable cross-section instead of (4.24) should be

considered equation

d2

dx2
EI

d2u
dx2

� �
þ P

d2u
dx2

¼ q� P

R
:

Stability analysis of the such arch of any shape and arbitrary boundary

conditions can be carried out by numerical methods.
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4.4.4 Hingeless Arch

An approximation of the radial displacement of the arch has the form [Rzh55]

u ¼ u0
2

1� cos
2px
l

� �
:

This expression satisfies the boundary conditions at u ¼ 0 and u0 ¼ 0 at x ¼ 0

and x ¼ l. Bubnov–Galerkin procedure

Z l

0

EI
d4u
dx4

þ P
d2u
dx2

þ P

R
� q

� �
1� cos

2px
l

� �
dx ¼ 0:

Next we apply the above-described algorithm, the result of which gives us the

critical load [Rzh55]

qcr ¼ l2EA

64p2R3
q

;

q

 ¼ 3d1 � 30	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19� d1

3

r
2d1 � 38

3
; d1 ¼ 64p4i2R2

l4
¼ 64p4IR2

Al4
:

In terms of the central angle 2a and the slenderness of the arch l ¼ l=i, the
dimensionless parameter d1 becomes d1 ¼ 6; 234= 2að Þ2l2. At d1>19 for hingeless

arch the jump does not occur, and the arch smoothly deforms under the load [Rzh55].

The cases of shallow two-hinged and hingeless arches with elastic supports are

considered in [Rzh55].

4.5 Parabolic Arch

This section is devoted to analysis of stability of the uniform parabolic arches with

different boundary conditions. In all cases arches are subjected to vertical loads

only. Analysis of stability for uniformly distributed load is based on the Dinnik’s

equation. Some important results of numerical solutions of critical load for typical

arches are presented.

4.5.1 Dinnik’s Equation

The parabolic uniform symmetrical arch of span l and rise f is subjected to vertical
uniform distributed load q within span of an arch. Let the radius of curvature at the

crown be R0 and arbitrary section of the arch is defined by angle y which is
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measured from the vertical. The radius for some section of the arch according to

(A.2) is r ¼ R0=cos
3 y. Assume that during loading the load is tracking. Under

these assumptions the stability of such arch with in-plane bending describes by

Dinnik’s equation [Din46]

d2

dy2
þ 1

� �
cos3 y

dM

dy

� �
þ �q

d

dy
M sec4 y
� 	 ¼ 0: (4.28)

This is a homogeneous differential equation of third order with variable

coefficients with respect to bending moment M which arises in the arch when the

loss of stability occurs. Parameter of critical load �q ¼ qR3
0=EI. Dinnik’s equationmay

be derived by two different ways: the first way is based on the Kirchhoff equations

[Kir76], [Din46]. The second way is based on Lokshin’s equation [Lok34], [Kle72],

which is the general equation of the stability for plane curvilinear rod.

Analytical solutions of stability equation for parabolic arch are generally more

complicated then the corresponding equation for circular arches. Stability problem

of parabolic arches under the given assumptions reduces to the determining the

lowest parameter �q, for which a nonzero solution of (4.28) for bending moment M
may exist and satisfy the boundary conditions for M. Numerical procedure is

described in [Din46]. For two-hinged arch the bending moment at support

M að Þ ¼ 0; we need to find the parameter qR2
0=EI, under which the moment at the

axis of symmetry isMð0Þ ¼ 0. For hingeless arch we have the same condition with

additional boundary conditions, which means that the angle of rotations of terminal

cross-sections is zero.

Let us show some numerical results. Just as with radial load, for two-hinges and

hingeless arch a smallest critical load corresponds antisymmetric form the loss of

stability. Critical load may be calculated by formula

qcr ¼ K
EI

l3
: (4.29)

Parameter K for parabolic uniform different types of arches is presented in

Table 4.6. In case of three-hinged arch the coefficient K are presented for symmet-

ric and antisymmetric form of the loss of stability.

Coefficient K for conservative load is shown in parenthesis [Uma72-73]. Dashes

represent unavailable data.

For two-hinged and three-hinged arches at antisymmetric forms of the loss of

stability coefficients K coincides. This fact was discussed earlier. Note that the

coefficients K for the cases of nonuniform arches I ’ð Þ ¼ IC=cos
3 ’ and I ’ð Þ ¼ð

IC= cos’Þ subjected to tracking load, as well as for uniform arches subjected to

gravity load are presented in [Mor73].

For three-hinged arch relationships stability coefficient K for symmetrical (1)

and antisymmetrical (2) form of the loss of stability vs. dimensionless parameter f=l
is presented in Fig. 4.12.

For very gentle arches (f=l<0:3) the symmetrical form of the loss of stability

is realized.
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4.5.2 Nonuniform Arches

Let us consider arches with variable cross-section loaded by uniformly distributed

load within the entire span. Assume A ¼ A0= cos ’, where A0 is area of the cross

section of the arch at the crown. Two cases are considered:

1. Rectangular cross-section of the arch has constant width. In this case h ’ð Þ ¼
h0= cos y and I ¼ I0=cos

3 y where h0 and I0 are height and inertia moment of the

cross section at the crown. Critical load may be calculated by formula qcr ¼
K1ðEI0=l3Þ where coefficient K1 is presented in Table 4.7.

2. Rectangular cross section of the arch has constant height. In this case b ’ð Þ ¼
b0= cos y and I ¼ I0= cos y, where b0 is a width of the cross section at the crown.
Critical load may be calculated by formula qcr ¼ K2ðEI0=l3Þ where coefficient

K2 is presented in Table 4.8.

The book [Din46] has a list of differential equations for in-plane and out-

of-plane stability problems for different shapes of the arches with variable cross

section, different loading and corresponding critical loads.

Table 4.6 Parameter K for parabolic uniform arch [Kle72], [Mor73], [Sni66]

f

l

Hingeless arch

antisymmetric

form

Two-hinged arch

antisymmetric

form

One-hinged

arch

Three-hinged arch

Antisymmetric form

Symmetric

form

0.1 60.7 28.5 (28.8) 33.8 See two-hinged arch

(antisymmetric form)

22.5 (22.7)

0.2 101.0 45.4 (46.1) 59.0 39.6 (40.2)

0.3 115.0 46.5 (48.4) 84.0 47.3 (49.8)

0.4 111.0 43.9 (45.0) 96.0 49.2 (54.5)

0.5 97.4 38.4 (�) 87.0 43 (�)

0.6 83.8 30.5 (31.7) 80.0 38.0 (�)

0.8 59.1 20.0 (�) 63.0 28.8 (�)

1.0 43.7 14.7 (15.4) 48.0 22.1 (�)

40

0.2 0.3 0.4
f/l

K

20

30

50

0.1

1
2 

Fig. 4.12 Coefficient of

stability K for three-hinged

arch vs. parameter f=l
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4.5.3 Partial Loading

We present approximate formulas for critical loads for parabolic uniform arch

loaded by partial uniformly distributed load and concentrated force at the crown.

To derive these formulas, the elastic loads method was applied [Pro48].

1. Two-hinged arch of span l and rise f is subjected to simple load P at the crown

(Fig. 4.13a). For such loading we have symmetrical bending but antisymmetrical

formof the loss of stability. Letm ¼ f=l � 0:2. In this case the critical load [Pro48]

Pcr ¼ 76:8mm
1þ 6m2mð Þ S

EI

l2
; m ¼ H3

H2

ffi 1:25; S ¼ S

l

where S is a length of an axial line of a half-arch; H3 and H2 are trust of the

three-hinged and two-hinged arches for given loading.

2. Partial loading of the arch by uniform distributed load q within portion 2z
(Fig. 4.13b). Let m ¼ f=l � 0:2
Critical thrust is

Hcr ¼ 19:2 2� �ð Þ
2� � þ 12m2mð Þ S

EI

l2
if z<

l

4

Hcr ¼ 19:2 2� � �2ð Þ
2� � �2 þ 6m2mð Þ S

EI

l2
if z>

l

4

Here m ¼ H3=H2 for given loading.

Table 4.7 Coefficient K1

ðI ¼ I0=cos
3 yÞ [Din46],

[Kis80]

f

l

Type of the arch

Hingeless One-hinged Two-hinged Three-hinged

0.1 65.5 36.5 30.7 24

0.2 134 75.8 59.8 51.2

0.3 204 – 81.1 81.1

0.4 277 187 101 118

0.6 444 332 142 –

0.8 587 497 170 –

1.0 700 697 193 –

Table 4.8 Coefficient K2;

I ¼ I0= cos y [Din46],

[Kis80]

f

l

Type of the arch

Hingeless One-hinged Two-hinged Three-hinged

0.1 62.3 34.3 29.5 23.2

0.2 112 70 49 43.6

0.3 – 94 – 59

0.4 154 115 57 68

0.6 152 139 52 70

0.8 133 140 44 –

1.0 118 133 37 –

226 4 Elastic Stability of Arches



Limiting Cases

1. If we set � ¼ 0, then the formula for critical thrust for arch subjected to single

force at the crown becomes

HcrðPÞ ¼ Pl

4fm
¼ 19:2

1þ 6m2mð Þ S
EI

l2

2. If we set � ¼ 1, then the formula for critical thrust for arch subjected to

uniformly distributed load within all span of the arch. In this case m ¼ H3=H2 ¼ 1

(Tables A.10, A.16) and for critical thrust we get

HcrðqÞ ¼
ql2

8f
¼ 19:2

1þ 6m2ð Þ S
EI

l2

4.6 Parabolic Arch with Tie

Let us consider uniform two-hinged symmetric parabolic uniform arch with tie

at the level of supports. The arch is loaded by the vertical uniformly distributed

load q within all span l (Fig. 4.14). A feature of this problem is that even before loss

of stability the arch is compressed-bent [Kle72], [Smi84]. The tie may be connected

with arch itself by hinges at the ends (flexible tie) or by rigid ends (rigid tie).

Differential equation of the bending for parabolic arch with tie at the level

of supports is described by Shtaerman’s equation [Sht35], [Kle72]:

d2

dy2
þ 1

� �
cos2 y

dM1

dy

� �
þ �q � � 1þ sec2 y

� 	
sec2 y

dM1

dy
þ

�q � � 1þ 4sec2 y
� 	

sec2 y� tan y�M1 ¼ 0 (4.30)

where �q ¼ ðqR3
0=EIÞ; � ¼ ðHtie=HÞ, R0 is a radius of curvature of the arch at the

crown, H and Htie are the thrust of two-hinged parabolic arch without tie and the

P

a b

l

f

z z

q

l

f
H H

h =
l
2z

Fig. 4.13 Special loading of two-hinged arch
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such arch with tie, respectively, M1 is additional bending moment which arises at

the buckling.

This is a differential equation of third order with variable coefficients. Integration

of this equation with respect to M1 may done by numerical methods. Shtaerman’s

equation allows us to consider the flexible or rigid tie as shown above.

Antisymmetric form of the loss of stability is characterized by two half-waves.

In case of flexible tie the boundary conditions are Mð0Þ ¼ 0; M00ð0Þ ¼ 0. Thus,

the boundary conditions at the crown and at the support are

M1ð0Þ ¼ 0;
d2M1

dy2






y¼0

¼ 0

M1 að Þ ¼ 0, respectively.

Numerical integration of (4.30) leads to the following result for critical load of

the arch with flexible tie qcr ¼ KðEI=l3Þ, where coefficient K for arch with ratio

f=l ¼ 0:2 are presented in Table 4.9 [Kle72].

One should pay attention to the unusual fact; decreasing of the stiffness EA of the

tie at the fixed stiffness of the arch EI leads to decreasing of the axial force which

arise in a tie. It means that the ratio � ¼ ðHtie=HÞ is also decreasing. However, from
Table 4.9 it is evident that coefficient K is increasing. This can be explained by the

fact that decreasing the axial load in a tie leads to decreasing axial compressed force

in the arch [Kle72], [Pav51].

In case of rigid tie we need to take into account an additional boundary condition

Z a

0

tan ’ sec3 ’M d’ ¼ � 1

6a
Iarch
Itie

tan aM að Þ;

where 2a is a central angle, M að Þ is a moment at the rigid joint. This condition

expresses continuity of the angular deflection of the arch and tie [Kle72]. Critical

load is

q

R0

Iarch 

Itie

q a

Fig. 4.14 Design diagram of two-hinged arch with flexible and rigid tie

Table 4.9 Critical parameter

K for two-hinged arch with tie � ¼ Htie

H

1.0 0.9 0.8

K 45.4 50.5 57
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qcr ¼ K
EI

l3
:

Some results for arch with parameter f=l ¼ 0:2 and � ¼ Htie H ¼ 1= are

presented in Table 4.10.

4.7 Out-of-Plane Loss of Stability of a Single Arch

In the case of loaded and bent in-plane arches the height of the cross section usually

more than its width. If the moments of inertia of cross-sections significantly differ

from each other, then a gradual increase in load on the arch leads to the flat shape of

the bending of the arch to become unstable. The phenomenon of the loss of stability

is characterized by the fact that the arch starts to bend in other planes and a

new form of equilibrium becomes the spatial form [Mor39]. In Fig 4.15 a new

form of equilibrium is shown by dotted line.

The spatial stability of a single arch does not depend on the type of supports

in the plane of the arch, but on the type of out-of-plane supports of the arch)

[Uma72–73].

Below we consider a circular arch of radius R with central angle 2a and a

parabolic arch. Assume that load is applied in the plane of the arch, material of

the arch obeys to Hook’s law, the axis of the arch is uncompressed and out-of-plane

rotation of the support sections are not possible (fixed in out-of-plane directions).

4.7.1 Circular Arch Subjected to Couples on the Ends

Critical couple M is determined by formula [Smi84]

Mcr ¼ EIy þ GId
2R

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIy � GId
� 	2

4R2
þ p2

4a2
EIyGId
R2

s
: (4.31)

Here, EIy is a flexural rigidity of the arch in direction which is perpendicular to the
plane of the arch; GId is a torsional rigidity of the arch. If for rectangle cross

Table 4.10 Critical parameter K for different ratio Iarch=Itie [Kle72]

Type of arches

Two hinged (Table 4.6) Hingeless (Table 4.6)

Arch with tie, parameter
Iarch
Itie

0.28 1.6 4.45

K 45.4 101 82 61.5 53
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section h � b (Fig. 4.15), then Id may be calculated by Timoshenko’s formula

[Smi84]

Id ¼ hb3

3
1� 0:630

b

h

� �
:

If support moment M decreases the curvature of the arch, as shown in Fig. 4.15,

then in (4.31) we must put a negative sign in front of the square root.

4.7.2 Circular Arch Subjected to Uniform Radial Load

If a load remains parallel to the initial plane of the arch then critical load is

determined by formula

qcr ¼ K
EIy
R3

Coefficient K may be determined from transcendental equation [Mor73]

tan r1a
tan r2a

¼ r1
r2

1� r21
1� r22

� �2

;

r1;2 ¼ 1þ K

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

2

� �2

þ K
EIy
GId

� 1

s
(4.32)

Table 4.11 gives the coefficient K in terms of the central angle 2a of the arch and
ratio EIy=GId between flexural and torsional rigidity.

b

h

y

M M2a

R

Front

Plan

Fig. 4.15 Out-of-plane

buckling of the single arch
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4.7.3 Parabolic Arch Subjected to Uniform Vertical Load

Let a load preserve its initial direction and be distributed within the entire span.

Then the critical load may be determined by formula qcr ¼ K1ðEIy=l3Þ, where
coefficient K1 depending on parameter f=l and ratio EIy=GId between the flexural

and torsion rigidity (Table 4.12) [Mor73].

In the case of a tracking load, the coefficient K1 is shown in parenthesis [Mor73].

Table 4.12 Coefficient K1 in terms of f=l and EIy=GId

f

l

Parameter
EIy
GId

0.7 1.0 2.0

0.1 28.5 28.5 (31.7) 28.0

0.2 41.5 41.0 (65.0) 40.0

0.3 40.0 38.5 (137) 36.5

Table 4.11 Coefficient K in terms of a and parameter EIy=GId [Mor73]

2a (�)

Parameter
EIy
GId

0.7 2.0 5.0 10 20 30

90� 13.8 13.3 12.1 10.86 9.25 7.9

120� 7.05 6.7 5.88 5.06 3.94 3.3
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Chapter 5

Matrix and Displacement Methods

This chapter is devoted to numerical analysis of stability for different types of

arches. Among them are two approaches – Smirnov’s matrix method and classical

methods of structural analysis. A procedure for constructing the stability equation

for different approaches is discussed.

5.1 General

Determination of critical loads on the arches can be achieved by the precise or

approximate methods. By “precise methods” we will assume that this is done by

integration of differential equation of the arch, or by some other method under

which the initial design diagram of the arch does not have to be modified to

accommodate a numerical procedure. Precise methods for finding critical loads

have been discussed in Chap. 4.

The only way to determine critical loads of an arch with variable stiffness is by

approximate methods. The terms “Approximate methods” means replacing the arch

by set of the members, followed by precise methods of analyzing the modified

design diagram. Here the engineer is faced with two important issues. The first is

how to approximate the arch, and the second is which method of analysis to choose

for analysis of the modified design diagram. In the general case, one must choose

such an approximation of the design diagram, and such a method for analysis that

will simplify the numerical procedures without compromising the numerical accu-

racy. There exists a variety of approaches and their variations. Among them are

Smirnov’s matrix method, classical methods of structural analysis, and of course,

finite element method.

Smirnov’s matrix method [Smi47], [Smi84] considers the arch as a series of

curvilinear segments, each of which coincides with the corresponding portion of

the arch.

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_5, # Springer Science+Business Media, LLC 2012
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Nomodification of the design diagram is performed under this method. Therefore,

this method should be treated as an exact method in matrix form. Smirnov’s method

is based on the classic concepts of the fictitious (conjugate) beam, elastic loads, and

utilizes the tools of the matrix algebra.

Classical methods of structural analysis (the Force method, Displacement

method and Mixed method in canonical form) [Kar10] are precise, but an approxi-

mate result is the consequence of a change in the design diagram of the arch by its

approximate (modified) diagram.

Finite element method is implemented in modern computer software and allows

the user to obtain the value of critical loads with a high accuracy. Nowadays this is

an effective method for stability analysis of arches with peculiarities (piecewise-

linear stiffness, nonlinearities, the need to account for secondary effects, etc.).

5.2 Smirnov Matrix Method

This method allows us to numerically determine the critical loads on the arches. The

shape of the arch and the law under which the moment of inertia of the cross section

of the arch changes along the axis line are unspecified. At the heart of the method lies

a discretization of the system in association with elastic load method (see Sect. 1.6).

In the case of a circular arch, we can use two fundamental differential equations.

The first equation is constructed with respect to radial displacements (Boussinesq’s

equation)

d2u
ds2

þ u
R2

¼ �M

EI
:

The second equation is constructed with respect to bending moments in the

curvilinear bar

d2M

ds2
þ M

R2
¼ �q:

These equations are similar, so computation of radial displacements u may be

replaced by the computation of fictitious bending moments caused by the load

q ¼ M=EI; this load is replaced by elastic loads W [Smi84].

5.2.1 Matrix Form for Elastic Loads

Ignoring the axial forces, elastic loads, according to (1.20), become

Wn ¼ sn
6EIn

Mn�1 þ 2Mnð Þ þ snþ1

6EInþ1

2Mn þMnþ1ð Þ; (5.1)
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where sn is a length of an structural element between joints (n � 1) and n
(Fig. 1.15).

In the stability problems (as opposed to the strength problems), ordinates of the

bending moment diagramM and even the general profile of design diagram are not

known in advance. Therefore, in the stability problems the bending moment

diagram is approximated either by the straight line segments or a set of quadratic

polynomials each of which passes through the three neighboring points (Sect. 1.6,

Fig. 1.15, dotted line). Each of these approximations allows us to represent the

elastic load at joint n in the form [Smi47], [Smi84]

Wn ¼ S0
6EI0

bn n�1ð ÞMn�1 þ bnnMn þ bn nþ1ð ÞMnþ1

� �
: (5.2)

In the case of approximating the bending moment diagram by parabolas, the

coefficients b may be presented in terms of length and moment of inertia of each

element (s, I) as well as length and moment of inertia in terms of some basic

element (S0, I0)

bn n�1ð Þ ¼
sn þ 2snþ1

2 sn þ snþ1ð Þ rn �
s2nþ1

2sn sn þ snþ1ð Þ rnþ1;

bnn ¼ 2þ sn
2snþ1

� �
rn þ 2þ snþ1

2sn

� �
rnþ1;

bn nþ1ð Þ ¼ � s2n
2snþ1 sn þ snþ1ð Þ rn þ

snþ1 þ 2sn
2 sn þ snþ1ð Þ rnþ1; rn ¼

snI0
InS0

: (5.3)

The vector of elastic loads is expressed by a matrix of elastic loads BW and the

vector of moments at the nodal points

W
!¼ S0

6EI0
BWM

!
: (5.4)

Vector of bending moments of any broken rod during buckling is presented as

M
!¼ M1 M2 . . . Mnb cT:

The matrix of elastic loads reduces to a Jakobi-like tri-diagonal matrix

BW ¼ S0
6EI

b11 b12 0 0 . . . . . . 0

b21 b22 b23 0 . . . . . . 0

0 b32 b33 b34 . . . . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . bn n�1ð Þ bnn

2
666664

3
777775
: (5.5)
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Special Case

Assume that the rod is divided into elements of same length

ðsn ¼ snþ1 ¼ S0 ¼ const). In this case, expressions for parameters b, according to

formulas (5.3) may be simplified

bn n�1ð Þ ¼
3

4
rn �

1

4
rnþ1;

bnn ¼
5

2
rn þ rnþ1

� �
;

bn nþ1ð Þ ¼ � 1

4
rn þ

3

4
rnþ1: (5.6)

Let us make an additional assumption In ¼ Inþ1 ¼ I0. In this case rn ¼ 1 and for

parameters b we get

b21 ¼ b32 ¼ . . . ¼ 0:5;

b11 ¼
5

2
r1 þ r2ð Þ ¼ 5; b22 ¼

5

2
r2 þ r3ð Þ ¼ 5; . . .

b12 ¼ b23 ¼ . . . ¼ 0:5; (5.7)

Matrix of elastic loads becomes

BW ¼ S0
6EI0

5 0:5 0 0 . . . . . . 0

0:5 5 0:5 0 . . . . . . 0

0 0:5 5 0:5 . . . . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . 0:5 5

2
66664

3
77775: (5.8)

If curvilinear bending moment diagram MP within portion sn and sn+1 are

replaced by straight elements, then

bn n�1ð Þ ¼ rn; bnn ¼ 2 rn þ rnþ1

� �
; bn nþ1ð Þ ¼ rnþ1: (5.9)

In a special case, if the length of all the elements is sn ¼ snþ1 ¼ S0 ¼ const and

In ¼ Inþ1 ¼ I then we get following matrix of elastic loads:

BW ¼ S0
6EI

4 1 0 0 . . . . . . 0

1 4 1 0 . . . . . . 0

0 1 4 1 . . . . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . 1 4

2
66664

3
77775: (5.9a)
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The matrix BW is a square matrix of (n � 1)th order, where n is the number of

elements of the arch.

Matrices (5.8) and (5.9a) are as presented assuming that the moments at the ends

points are equal to zero [Smi47], [Smi84].

5.2.2 Moment Influence Matrix

Let us consider two-hinged circular symmetrical arch of radius R and central angle

2a. The arch is loaded by uniform radial load q. In case of antisymmetric form of

loss of stability the initial arch is replaced by its equivalent half-arch with rolled

support at the axis of symmetry (Fig. 5.1) [Kar10]. Moment influence matrix L is

constructed for a fictitious (conjugate) structure. For design diagram in Fig. 5.1

fictitious structure coincides with real structure. Divide the axis of the half-arch into

n equals segments and number of all nodal points from 0 to n. The central angle for
each segment is b, therefore the length of each portion is S0 ¼ Rb.

Each column of the moment influence matrix L contains the moments at the

nodal points 1, 2, . . . caused by unit load which act at these arch points.

Let a unit radial force P ¼ 1 be applied at arbitrary nodal point k; this point is
defined by the angle kb (Fig. 5.1). The vertical reaction RC and radial reaction

RA are

RA ¼ sin kb
sin a

; RC ¼ sin a� kbð Þ
sin a

:

Bending moments at points i, k, j are

A

C

k

kb

1
i

ib

j

P = 1

R

R

A

C

3

1
2

k

Wk

W3

W2

W1

R

R

RA

RA

RC RC

0

n

b

a

Fig. 5.1 Equivalent half-arch of entire symmetric two-hinged circular arch, elastic loads at joints

1, . . ., k and the angles notation
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mik ¼ R
sin ib sin a� kbð Þ

sin a
i<kð Þ

mkk ¼ R
sin kb sin a� kbð Þ

sin a

mjk ¼ R
sin kb sin a� jbð Þ

sin a
i>kð Þ: (5.10)

If half-arch is divided into two equal parts, then k ¼ 1 and matrix L1m according

to the second formula (5.10) becomes

L1m ¼ R
sin2 b
sin a

1½ �: (5.10a)

If half-arch is divided into three equal parts, then for matrix L2m we get

L2m ¼ l11 l12
l21 l22

� 	
¼ R

sin2 b
sin a

2 cos b 1

1 2 cos b

� 	
: (5.10b)

If half-arch is divided into four equal parts, then for matrix L3m we get

L3m ¼ R
sin2 b
sin a

4 cos2 b� 1 2 cos b 1

2 cos b 4 cos2 b 2 cos b
1 2 cos b 4 cos2 b� 1

2
4

3
5: (5.10c)

The matrix Lm is symmetric and square order (n � 1).

5.2.3 Stability Equation in Matrix Form

Bending moment at any section is M ¼ qRu. Vector of elastic loads is

u!¼ LmW
!¼ qRLmBW u!:

Thus, the stability equation becomes

det C� lEð Þ ¼ 0;

where E is identity matrix, Lm is moment influence matrix,

C ¼ LmBW ; l ¼ 1=ðqRÞ:
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Matrix Procedures

In the case of a two-hinged circular arch subjected to uniform radial load q the

following procedure may be applied [Smi47], [Smi84]:

1. Divide the arch into n equal curvilinear segments. Larger values of n ensure

greater numerical accuracy.

2. Construct the moment influence matrix Lm and matrix BW of elastic loads

[Smi84].

3. Compute the matrix product C ¼ LmBW and forms the stability equation

det C� lEð Þ ¼ 0, where l ¼ 1=ðqRÞ is eigenvalue of the stability problem.

4. Find the greatest eigenvalue l and calculate the smallest critical load

qmin ¼ 1=ðlRÞ.
Application of this procedure for stability analysis of symmetrical arches of two

different shapes is discussed in the following sections.

5.3 Two-Hinged Symmetrical Arches

Two types of two-hinged arches are considered. They are circular and parabolic

symmetrical arches. Circular uniform and nonuniform arches are loaded by uniform

radial load, while the parabolic arch is loaded by uniform vertical load and simple

force at crown. Assume the antisymmetrical form of the loss of stability occurs. In

this case, equivalent half-arch has a rolled support on the axis of symmetry and half-

arch itself is statically determinate structure.

5.3.1 Circular Uniform Arch

This arch is loaded by uniform radial load. A half-arch is divided into two equal

portions with one nodal point (1). In this case, the moment influence matrix

according to (5.10a) has a single entry [Smi84]

L1m ¼ R
sin2 b
sin a

1½ �:

Elastic load is applied at point 1 and have radial direction. Matrix of elastic load

according to (5.8) is

BW ¼ 5S0
6EI

1½ �:
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The matrix product

C ¼ LmBW ¼ R
sin2 b
sin a

5S0
6EI

1½ �:

Stability equation is det C� lEð Þ ¼ 0.

We get the following expression for the required eigenvalue

l ¼ 5S0R

6EI

sin2 b
sin a

:

Since S0 ¼ Rb, then expression for l may be rewritten as

l ¼ 5R2b
6EI

sin2 b
sin a

:

The critical load becomes

qcr ¼ 1

lR
¼ 12

5b tan b
EI

R3
:

If a ¼ p=2; b ¼ p=4, then

qcr ¼ 3:055
EI

R3
:

Exact result according to Levy’s formula is qcr ¼ 3:0ðEI=R3Þ (see Sect. 4.2.1).

Relative error is 1.83%.

If half-arch is divided into three equal parts the critical load becomes [Smi47]

qcr ¼ 12 2 cos b� 1ð Þ
11b sin b

EI

R3
:

If a ¼ p=2; b ¼ p=6, then qcr ¼ 3:0504ðEI=R3Þ. Thus, approximating of the

uniform circular arch by only two segments leads to very good results.

5.3.2 Circular Nonuniform Arch

Design diagram of symmetrical two-hinged circular arch ACB is shown in Fig. 5.2a.

The radius of the arch is R and central angle 2a ¼ 120º. The relative moments of

inertia for special portions are underlined, i.e., IC�1 ¼ 1:0I0; I1�2 ¼ 0:8I0;
I2�3 ¼ 0:6I0; I3�A ¼ 0:5I0. The arch is subjected to uniform radial load q; this
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load is not shown. In case of antisymmetrical form of buckling the equivalent

design diagram of the half-arch is shown in Fig. 5.2b [Smi47], [Smi84].

The half-arch is divided into four equal portions with central angle b ¼ a=4 ¼
p=12 for each portion. For given presentation of the arch we get

sin b ¼ 0:2588; cos b ¼ 0:9659;

sin2 b ¼ 0:0670; cos2 b ¼ 0:9330; sin2 b= sin a ¼ 0:07737:

Matrix of moments according to (5.10c) becomes

Lm ¼ 0:07737R
2:732 1:9318 1:0
1:9318 3:732 1:9318
1:0 1:9318 2:732

2
4

3
5

¼ R
0:2114 0:1495 0:07737
0:1495 0:2887 0:1495
0:07737 0:1495 0:2114

2
4

3
5:

Since the arch is divided into equal segments, one must use (5.6) for construction

of the elastic loads matrix BW. The entries bkk of matrix BW are as follows:

b11 ¼ 5

2
r1 þ r2ð Þ ¼ 5

2
1� 1

1
þ 1

0:8

� �
¼ 5:625;

b22 ¼ 5

2
1� 1

0:8
þ 1

0:6

� �
¼ 7:2917; b33 ¼ 5

2
1� 1

0:6
þ 1

0:5

� �
¼ 9:1667:

C

3

a b

2
1

R

R

1.0
0.8

0.6

0.5 A

C

3

2
1

R

0.7046

0.4627

0.5380

2a = 120° a = 60°

BA

b
b

b b

b

b

Fig. 5.2 Design diagram of symmetrical two-hinged circular arch and its equivalent design

diagram for antisymmetrical buckling
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For entries bk kþ1ð Þ of matrix BW we get:

b12 ¼ � 1

4
r1 þ

3

4
r2 ¼ � 1

4
� 1

1
þ 3

4
� 1

0:8
¼ 0:6875;

b13 ¼ 0; b23 ¼ � 1

4
� 1

0:8
þ 3

4
� 1

0:6
¼ 0:9375:

The entries bk k�1ð Þ of matrix BW are

b21 ¼ 3

4
r2 �

1

4
r3 ¼

3

4
� 1

0:8
� 1

4
� 1

0:6
¼ 0:5208;

b31 ¼ 0; b32 ¼ 3

4
� 1

0:6
� 1

4
� 1

0:5
¼ 0:7500:

Elastic loads matrix BW becomes

BW ¼ S0
6EI0

5:6250 0:6875 0:0
0:5208 7:2917 0:9375
0:0 0:7500 9:1667

2
4

3
5:

For matrix C we get

C ¼ LmBW ¼ RS0
6EI0

1:2669 1:2935 0:8494
0:9913 2:3200 1:6418
0:5130 1:3018 2:0780

2
4

3
5:

Maximum eigenvalue of the stability equation

det LmBW � lEð Þ ¼ 0

is l ¼ 4:2241ðRS0=6EI0Þ. Corresponding eigenvector is �0:4627 �0:7046½
�0:5380�. The form of the loss of stability is shown in Fig. 5.2b by a dotted line.

Since l ¼ ð1=qRÞ ¼ 4:2244ðRS0=6EI0Þ and S0 ¼ bR ¼ ðpR=12Þ then for radial

critical load we get qcr ¼ 5:4251EI=R3:

5.3.3 Parabolic Uniform Arch

This section is devoted to stability analysis of two-hinged parabolic arch subjected

to two types of loading: vertical uniformly distributed load along the span of the

arch and concentrated force applied at the crown of the arch. In both cases, arches

are symmetric. In case of antisymmetric form of the loss of stability the initial

two-hinged arch is replaced by its equivalent half-arch. This scheme contains rolled
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support at the axis of symmetry and half-arch itself presents a statically determinate

structure. Therefore, computation of elastic loads is easily evaluated using only the

equilibrium conditions.

5.3.3.1 Uniformly Distributed Load

The arch of span l and rise f is loaded by a uniform vertical load distributed within

the entire span (Fig. 5.3a). The equivalent half-arch, assuming the antisymmetric

form of the loss of stability, is shown in Fig. 5.3b. The half-arch is a statically

determinate structure.

The axis of the arch is divided into equal curvilinear portions and the nodal

points are denoted as 1, 2, . . .
The nodal point i has coordinates xi ¼ xil and yi ¼ �il.

Geometrical Relationships

Equation of the axial line of the arch is y ¼ 4fx l� xð Þð1=l2Þ.
The general expressions for slope and slope at the support A are

tan ’ ¼ 4
f

l2
l� 2xð Þ; tan ’0 ¼ 4m; m ¼ f

l
:

Length of half-arch is determined as

S ¼ l

4
sec ’0 þ

1

4m
ln 4mþ sec ’0ð Þ

� 	
: (5.11)

The length Sk of axis of the arch from origin (point A) to arbitrary point K with

coordinates xk ¼ xkl, yk ¼ �kl is

A

C

a b

B

k

x

y

H H

l

f

xk 

yk

q

y(x)

A

C 

i k

j

l/2

P = 1

f
j0

jk

Fig. 5.3 Design diagram of symmetrical two-hinged parabolic arch and equivalent half-arch for

antisymmetrical form of the loss of stability and its equivalent design diagram for antisymmetrical

buckling
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Sk ¼ S� l

16m

tan ’k

cos ’k

þ ln
1þ sin ’k

cos ’k

� �
: (5.12)

Stability equation is det C� lEð Þ ¼ 0, where C ¼ LmBWG. The eigenvalue and
thrust are related by the formula l ¼ 1=H:

For constructing the influence matrix Lm it is necessary to apply the unit force at

point k and to determine the bending moment at the neighboring points (Fig. 5.3b);

expressions for the entries of this matrix can be found in [Smi84]. The matrix BW is

constructed in the same manner as for circular arch. The diagonal matrix G contains

the entries sec ’k.

Let us show this procedure and evaluate numerical results if the length of half-

arch is divided only into two equal portions; the nodal point 1 in Fig. 5.3 is not

shown. Assume m ¼ f=l ¼ 0:5.

Geometrical Parameters

Slope at the support A is tan ’0 ¼ 4m ¼ 2:0 and sec ’0 ¼ 2:2361.
The length of half-arch with adopted parameter m is

S ¼ l

4
2:2361þ 1

4 � 0:5 ln 4 � 0:5þ 2:2361ð Þ
� 	

¼ 0:740l: (5.12a)

The length of each curvilinear segment is S0 ¼ S=2 ¼ 0:370l.
The length S0 of the segment A � 1 and slope at point 1 are related by

0:370l ¼ l

16m

tan ’1

cos ’1

þ ln
1þ sin ’1

cos ’1

� �
: (5.12b)

Solution of this equation determines the slope at the point 1

’1 ¼ 50:7�; tan ’1 ¼ 1:2217; sin ’1 ¼ 0:7738; cos ’1 ¼ 0:6334:

Coordinates of joint 1 Dimensionless coordinates of point 1 are

x1 ¼ x1=l; �1 ¼ y1=l. For this point 1, we have tan ’1 ¼ 4m 1� 2x1ð Þ or

1:2217 ¼ 4 � 0:5 1� 2x1ð Þ. Solution of this equation is x1 ¼ 0:1945, so

x1 ¼ 0:1945l. For ordinate of point 1 we get y1 ¼ 0:3133l.
Stability equation Since the arch is divided into two portions, then each matrix

from C ¼ LmBWG will be a scalar.

Entry of matrix Lm is

Lm½ � ¼ l x1 cos ’1 þ �1 sin ’1ð Þ � 1� 2x1ð Þ
¼ l 0:1945� 0:6334þ 0:3133� 0:7738ð Þ � 1� 2� 0:1945ð Þ ¼ 0:2234l 1½ �:
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Entries of matrices BW and G are

BW½ � ¼ 5S0
6EI

1½ � ¼ 5 � 0:370l
6EI

1½ � ¼ 0:3083l

EI
1½ �;

G½ � ¼ sec ’1 1½ � ¼ 1:5788 1½ �:

For matrix C we get C ¼ LmBWG ¼ 0:2234l� ð0:3083l=EIÞ � 1:5788 1½ � ¼
ð0:1087l2=EIÞ:

Stability equation det C� lEð Þ ¼ 0 leads to the following eigenvalue

l ¼ 0:1087l2=EI:
Since l ¼ 1=H, while thrust H ¼ ql2=ð8f Þ, then for critical load we get

qcr ¼ 36:8EI=l3.
For different parameters m the critical load may be presented as qG = K(EI)/l3.

Parameter K is presented in Table 5.1; coefficients K, obtained by Dinnik [Din46]

are shown in parentheses. This table also contains the abscissa x1 for point 1 and

length S0.

Analysis of Results

With the half-arch divided only into two segments, Smirnov’s method leads to

acceptable results. Even for arches with parameters (m ¼ 0.8–1.0) the relative error

is not more than 6%. If the axis of the arch is divided into arbitrary number of the

segments, the analytical expressions for entries of C can be found in [Smi84].

5.3.3.2 Concentrated Load

The arch AB of span l and rise f is loaded by the single force P at a crown C. The

form of the loss of stability is shown in Fig. 5.4 by dotted line.

Table 5.1 Parameter K for critical load [Smi84], [Din46]

m ¼ f
l

x1
(factor l)

S0
(factor l) K

0.1 0.24524 0.25652 28.2 (28.5)

0.2 0.23333 0.27456 44.5 (45.4)

0.3 0.21896 0.30109 47.6 (46.5)

0.4 0.20562 0.33343 43.3 (43.9)

0.5 0.19463 0.36974 36.8 (38.4a)

0.6 0.18601 0.40882 30.6 (30.5)

0.7 0.17934 0.44992 25.3 (�)

0.8 0.17416 0.49251 21.1 (20)

0.9 0.17009 0.53623 17.7 (�)

1.0 0.16685 0.58085 15.0 (14.1)
aSee comment in [Smi84, p. 333]
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If half-arch is divided into two segments, then Smirnov’s method leads to the

following critical load

Pcr ¼ KPEI

l2
:

Parameter KP in terms of m ¼ f=l is presented in Table 5.2.

5.4 Hingeless Symmetrical Arches

In case of symmetrical hingeless arch we can replace it by equivalent half-arch.

However, in this case, in contrast to two-hinged arch, the half-arch now presents a

redundant structure. This fact adds additional features in Smirnov’s procedure: the

matrixC in the stability equation may be constructed after solution of corresponding

canonical equation [Smi47].

5.4.1 Duality of Bending Moment Diagram and Influence Line

For stability analysis of hingeless symmetrical arch we use the following theorem:

Bending moment diagram in the real structure caused by unit load (force or couple) which

acts at point k coincides with influence line of corresponding fictitious load factor at the

same point k for fictitious (conjugate) structure [Smi47].

This correspondence for some structures is shown in Table 5.3

We explain the concept of “corresponding load.” In the fictitious structure, the

bending moment in the point k due to the fictitious load is a linear displacement at

A

C

B

l

f

P
Pcr

Fig. 5.4 Design diagram of

symmetrical two-hinged

parabolic arch subjected to

load P and form of the loss of

stability and its equivalent

design diagram for

antisymmetrical buckling

Table 5.2 Parameter KP for critical load [Smi84]

m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

KP 15 23.8 25.9 24.3 21.4 18.4 15.6 13.3 11.4 9.8
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the same point of the real structure; this displacement and unit force P in the real

structure correspond to each other, so P ¼ 1 corresponds toMfict. Similarly,M ¼ 1

corresponds to fictitious shear force Qfict.

This theorem allows us to determine the displacements of the real structure by

applying elastic loads to the bending moment diagram and treating them as the

influence line [Smi47], [Kle80]. This theorem will also be used for stability analysis

of the hingeless arch.

Let us demonstrate the application of this theorem for computation of displace-

ment at the free end of the cantilever uniform beam of the span l (Fig. 5.5a).
Subdivide the beam into two equal parts (0–1 and 1–2). The specified points are

labeled as 0, 1, and 2. The bending moment diagram for actual beam is shown in

Fig. 5.5b. Fictitious beam and elastic loads W0 and W1 are shown in Fig. 5.5c.

Table 5.3 Correspondence of bending moment diagram for real structure and influence line for

fictitious structure

Bending moment diagram for

real structure

Influence line of corresponding factor

for fictitious structure

Mk

P =1

k

l

IL Mk
k

l

Mk

P =1

k

a

a

IL Mkk

a

a

Mk

P =1

l/2 l/2

k l/4 IL Mk
k

l/4

l/2 l/2

Mk

M =1
k

1

IL Qkk

1

Mk
M =1

k

1

IL Qkk

1

MkM =1 A

1

IL QA (RA)A

1
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For calculation of W0 we need to know bending moments at three consecutive

points; dotted line shows additional portion of the beam with end points �1 and 0;

the length and stiffness of this portion are l0 and EI0 ¼ 1. The elastic loads are

W0 ¼ l0
6EI0

M�1 þ 2M0ð Þ þ l1
6EI1

2M0 þM1ð Þ

¼ l0
1 M�1 þ 2M0ð Þ þ l

12EI
2Plþ Pl

2

� �
¼ 5Pl2

24EI
;

W1¼ l1
6EI1

M0 þ 2M1ð Þ þ l2
6EI2

2M1 þM2ð Þ

¼ l

12EI
Plþ 2

Pl

2

� �
þ l

12EI
2
Pl

2
þ 0

� �
¼ Pl2

4EI
:

Now these elastic loads should be applied to fictitious beam. Since the bending

moment diagram is traced on the tensile fibers and ordinates of M diagram are

located above the axis, then the elastic loads should be directed upward. Unit state

which corresponds to the required displacement and corresponding bending

moment diagram is shown in Fig. 5.5d. Influence line for bending moment at the

clamped support of the fictitious beam is shown in Fig. 5.5e. To determine vertical

10 2

l1= l/2 l2= l/2

P

EIEI0=

l0

–1

Fictitious
beam 

l1 l2

W 0
W 1

1.l

1.l

M

P =1

fictIL M 2

0.5l

0.5l

MP 

M 0= Pl

a

b

c

d

e

0.5 Pl

Fig. 5.5 (a) Design diagram

of the beam; (b) bending

moment diagram of the real

beam; (c) fictitious beam; (d)

unit state and corresponding

bending moment diagram; (e)

influence line for bending

moment at the clamped

support of the fictitious beam
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displacement at point 2 of the real structure we need to load the influence line Mfict
2

by the elastic loads

y2 ¼ W0 � 1� lþW1 � 0:5l ¼ 5Pl2

24EI
� lþ Pl2

4EI
� l

2
¼ Pl3

3EI
:

5.4.2 Parabolic Uniform Arch

Design diagram of hingeless parabolic uniform arch is shown in Fig. 5.6a. Let us

show the application of the theorem considered in the previous section for the

stability analysis by the Smirnov’s method. If the loss of stability occurs according

to the antisymmetrical form, then the equivalent half-arch is shown in Fig. 5.6b.

Stability equation, as before, is det C� lEð Þ ¼ 0; where E is identity matrix,

eigenvalue l ¼ 1=H, and thrust H ¼ ql2=ð8f Þ: However, since the half-arch is a

redundant structure, then matrix C should be determined by a different method

[Smi84]. The structure in Fig. 5.6b has one redundant constraint. Canonical equa-

tion of the Force method and primary unknown are

d11X1 þ D1P ¼ 0 ! X1 ¼ �D1P

d11
:

Let the primary unknown X1 be the moment at the fixed support. The axis of the

arch is divided into n equal curvilinear parts. The nodal points are denoted by 1, 2,

. . ., n�1, the coordinates of which need to be calculated. After that we show the

bending moment diagram for unit state (Fig. 5.7a). The matrix moments in the unit

state and its transposed matrix are

A

C

a b

B

k

x

y

l

f

xk 

yk

q

y(x)

A

C 

l/2

f
j0

jk

Fig. 5.6 Design diagram of symmetrical hingeless parabolic arch and equivalent half-arch for

antisymmetrical buckling and its equivalent design diagram for antisymmetrical buckling
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M1 ¼
M1A

M11

..

.

M1 n�1ð Þ

2
6664

3
7775;M

T

1 ¼ M1A M11 � � � M1 n�1ð Þ

 �

;

where first subscript 1 represents the primary unknown X1, while the second

subscript represents the index of the nodal point.

It can be shown [Smi84] that the unit displacement is

d11 ¼ 1

128m2EI
sec3 ’0 � 2S
� �

;

where

m ¼ f

l
; ’0 ¼ arctan 4m; S ¼ S

l
¼ 1

4
sec ’0 þ

1

4m
ln 4mþ sec ’0ð Þ

� 	
:

Free term D1P of canonical equation presents an angular displacement at support

A. This displacement may be presented in terms of shear at point A of a fictitious

structure. For given supports of the primary system (Fig. 5.7a) the fictitious

structure and real half-arch coincides. Fictitious shear at support A equals to the

reaction at A. Influence line of this reaction due to load P ¼ 1, which is directed

normally to the axis of the arch, coincides with bending moment diagram M1 (see

Table 5.3).

The final results are as follows [Smi84]. Matrix C of stability equation is

determined by formula

C ¼ LmBW E� 1

d11
M1M

T

1B
�
W

� �
G: (5.13)

A

C

M1

M2

2

1

l/2

f

X1= 1

Mn-1 

n-1

M1

1

a b

A

C

M1

M2

IL RA

2

1

Mn-1 

n-1

1

Fig. 5.7 Primary system, bending moment diagram due X1 ¼ 1 and influence line RA
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Moment influence matrix Lm will be the same as the one for a two-hinged

parabolic arch.

The matrices of elastic load for primary system and given structure are

B�
W ¼ S0

6EI

2 1 0 :

1 4 1 :

: : : : : : :

: 1 4 1

: 0 1 4

2
66666664

3
77777775
;

BW ¼ 5S0
6EI

0:5 0:1 0 :

0:1 1:0 0:1 :

: : : : : : :

: 0:1 1:0 0:1

: 0 0:1 1:0

2
66666664

3
77777775

(5.14)

At point A only one portion (A � 1) exist. Therefore, the first entry of the

matrices BW and B�
W are twice as small as the rest of the diagonal entries. Last

diagonal entry of these matrices remains unchanged since at the last point C the

bending moment is zero. Diagonal matrix

G ¼ diag sec ’0 sec ’1 . . . sec ’ n�1ð Þ

 �

:

Detailed stability analysis of uniform parabolic arch with ratio f=l ¼ 1=6 is

presented in [Smi84]. If half-arch is divided into four equal parts then the critical

load becomes

qcr ¼ 89:5EIð Þ=l3:

The critical uniformly distributed load may be determined by the formula (4.29)

qcr ¼ KðEI=l3Þ. Parameter K for different types of parabolic uniform arches in

terms of f/l is presented in Table 4.6 [Din46], [Mor73].

5.5 Arch with Complex Tie

A tie of the arch may be represented as the single member at the level of supports

(or the elevated tie), as well as a complex tie. One example of such complex tie is

shown in Fig. 5.8a. If a load is applied to the tie, then internal forces in the hangers

create the effect of elastic foundation for the arch. If load acts on the arch itself, then

with the aid of hangers the load is transferred onto the tie.

5.5 Arch with Complex Tie 251



The stability problem for arch with complex tie may be effectively solved by

Smirnov’s matrix method as shown below.

Design diagram of the uniform symmetric parabolic arch of span l and rise f is
shown in Fig. 5.8. The complex tie includes a tie at the level of supports and vertical

hangers. Connections of the hangers with arch itself are realized by means of simple

hinges, while the connections with horizontal part of the complex tie are realized by

means of multiple hinges. The tie of the arch is subjected to uniformly distributed

load (this load is not shown). Distances d between all hangers are equal. The span of
the arch is divided into 2n equal portions, so the length sk of each curvilinear portion
of the arch are different; in our case n ¼ 4.

Assume that parameter f=l ¼ 0:4; coordinates x and y for each joint (points

k ¼ 0, 1, 2, 3, 4), the trigonometric functions for these joints, and the length of

curvilinear portions of the arch are shown in Table 5.4.

As before, the stability equation is det C� lEð Þ ¼ 0. However, matrix C is

calculated by taking into account the features of design diagram.

Numerical procedure is based on the following additional structural analysis

[Smi84]:

1. Calculation of the vertical displacements of joints of a tie at the moment loss of

stability occurs and corresponding change of internal force in each hanger.

2. Calculation of additional forces which prevent the loss of stability and

corresponding additional bending moments in the arch.

h1l
h2l

x1l

s1 

l 

d

fs2

s3
s4

1

2
3 4

x

y

0

a b

A

C

l/2

f

P = 1

k
i

rk cik

xk

yk

RC= 2rk /l 

jk

Fig. 5.8 (a) Design diagram of two-hinged arch with complex tie; (b) half-arch and geometrical

notation

Table 5.4 Geometrical parameters of the parabolic arch [Smi84]

Point xk ¼ xkl yk ¼ �kl tan s’k sin ’k cos ’k sk

0 0.0 0.0 1.6 0.8480 0.5300 –

1 0.125 0.175 1.2 0.76822 0.64018 s1 ¼ 0.21506

2 0.250 0.300 0.8 0.62470 0.78087 s2 ¼ 0.17678

3 0.375 0.375 0.4 0.37138 0.92848 s3 ¼ 0.14577

4 0.500 0.400 0.0 0.0 1.00 s4 ¼ 0.12748

Factor l l l
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This analysis can be presented in matrix form [Smi84]. For antisymmetrical loss

of stability the first stage of numerical procedure for given arched structure includes

the construction of the following matrices:

Initial Matrices

(The total number of panels for half-arch is n ¼ 4)

1. Matrix of elastic loads according to (5.9) is

BWV ¼ l

6EI

2 r1 þ r2ð Þ r2 0

r2 2 r2 þ r3ð Þ r3
0 r3 2 r3 þ r4ð Þ

2
4

3
5 ¼ l

6EI
bikf g;

where rk ¼ skI=Ikl k ¼ 1; . . . ; 4ð Þ, so the relative flexibility rk of a member k of
an arch equals to its relative length, i.e.,

r1 ¼ s1=l ¼ 0:21506; r2 ¼ 0:17678; . . . . For entry b11 of matrix BWV we get

b11 ¼ 2 0:21506þ 0:17678ð Þ ¼ 0:78368:

2. For primary system the matrix (3 by 3) of elastic loads

B0
W ¼ l

6EI
b0ik

� 

is determined according to (5.3). For entry b011 of matrix B0
W we get

b011 ¼ 2þ s1
2s2

� �
r1 þ 2þ s2

2s1

� �
r2

¼ 2þ 0:21506

2 � 0:17678
� �

0:21506þ 2þ 0:17678

2 � 0:21506
� �

0:17678 ¼ 0:98715:

3. The moment influence matrix Lm is determined by radial forces

Lm ¼ 1

4

3r1 3r2 � 4c12 3r3 � 4c13
2r1 2r2 2r3 � 4c23
r1 r2 r3

2
4

3
5 ¼ 1

4
likf g;

where segments, according to Fig. 5.8b, are

r1 ¼ d cos ’1 þ �1 sin ’1; c12 ¼ d cos ’2 þ �2 � �1ð Þ sin ’2;

r2 ¼ 2d cos ’2 þ �2 sin ’2; c13 ¼ 2d cos ’3 þ �3 � �1ð Þ sin ’3;

r3 ¼ 3d cos ’3 þ �3 sin ’3; c23 ¼ d cos ’3 þ �3 � �2ð Þ sin ’3:
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For entry l12 ¼ 3r2 � 4c12 of matrix Lm we get

r2 ¼ 2d cos ’2 þ �2 sin ’2 ¼ 2� 0:125l� 0:78087þ 0:300l� 0:62470

¼ 0:38263l;

c12 ¼ d cos ’2 þ �2 � �1ð Þ sin ’2 ¼ 0:125l� 0:78087þ 0:30� 0:175ð Þl
� 0:62470 ¼ 0:17570l;

l12 ¼ 3r2 � 4c12 ¼ 3� 0:38263l� 4� 0:17570l ¼ 0:44509l:

In our case we get [Smi84]

Lm ¼ l

4

0:64338 0:44509 0:23675
0:42892 0:76526 0:39926
0:21446 0:38263 0:48745

2
4

3
5:

4. The moment influence matrix LmV is determined by vertical forces for simply

supported beam of length l=2.

LmV ¼ l

32

3 2 1

2 4 2

1 2 3

2
4

3
5:

5. Diagonal matrices G and GV are

G ¼
sec ’1 0 0

0 sec ’2 0

0 0 sec ’3

2
64

3
75;

GV ¼
cos ’1 0 0

0 cos ’2 0

0 0 cos ’3

2
64

3
75; (5.15)

where ’k is the angle between tangent at point k and horizontal line.

Matrix Procedures

1. Matrix C0 relates to the two-hinged arch without tie C0 ¼ LmB
0
WG.

2. Matrix C1 takes into account effect of tie C1 ¼ LmBWVLmVGV :
3. Stability equation of the arched structure is det C� lEð Þ ¼ 0. Stability matrix

C ¼ C0 � C1 ¼ ðl2=24EIÞ cikf g.
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4. Maximum stability parameter lmax should be calculated numerically. For given

arch lmax ¼ 0:895l2=24EI. Corresponding thrust is Hmin ¼ 1=lmax ¼
24EI=0:895l2 and smallest critical load is

qmin ¼ 8Hminf

l
¼ 85:81

EI

l3
:

According to the formula C ¼ C0 � C1, the critical load for arch with tie is more

than the critical load for arch without tie. For arch with tie in Fig. 5.8 the critical

load is almost twice as large as the critical load for the same arch without tie.

More stability problems of the arches (with elastic supports and with overarched

structure, out-of-plane stability, etc.) are presented in [Smi47], [Mor61], [Smi84].

5.6 Displacement Method

If an arch has certain features (e.g., nonsymmetrical or skew arch) then easiest

approach for stability analysis is based on substituting the arch by frame. The frame

is constructed from chords of the arch. Stability analysis of this substitute structure

may be performed by any classical method, in particular, by Displacement method

in canonical [Kar10], [Uma72-73] or expanded form [Sni66]. The Displacement

method is exact for stability analysis of frames. However, it leads to approximate

results when analyzing arches because the initial design diagram of arch is replaced

by its modified scheme. This method has also some disadvantages – the modified

design diagram contains the inclined members and diagram itself has sidesway.

Increasing the number of substitute straight members leads to an increase in the

overall computational complexity.

5.6.1 General

The distributed load which acts on the arch may be replaced by the set of

concentrated forces P. Position of the nodal points and their number depend on

the position of the flexural rigidity changes of the arch and required computational

numerical accuracy. Increasing the number of substitute straight members leads to a

increase in the numerical accuracy. Thus, this approximation may be performed by

several different ways.

Different variations of approximating the arch by straight members in the

vicinity of the crown C are shown in Fig. 5.9.

In all cases in Fig. 5.9 we obtained a framed structure and for its stability analysis

we can apply the Displacement method. In case of a symmetrical structure we can

replace the substitute frame by its equivalent half-frame.
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Canonical equations of the Displacement method for structure with n unknowns
Zj (j ¼ 1,2, . . ., n) are

r11Z1 þ r12Z2 þ � � � þ r1nZn ¼ 0

r21Z1 þ r22Z2 þ � � � þ r2nZn ¼ 0

..

.

rn1Z1 þ rn2Z2 þ � � � þ rnnZn ¼ 0:

(5.16)

Features of (5.16)

1. Since the forces Pi are applied only at the joints, then the canonical equations are

homogeneous ones.

2. Bending moment diagrams, caused by unit displacements of introduced

constrains, within the compressed members are curvilinear. Reactions of

constraints depend on axial forces in the members of the frame, i.e., contain

parameter u of critical load. If a frame is subjected to different forces Pi, then

critical parameters should be formulated for each compressed member

u2i ¼ Pili
2= EIð Þi and after that all of these parameters should be expressed in

terms of parameter u for specified basic member. Thus, the unit reactions are

functions of parameter, i.e., rik uð Þ.
The trivial solution Zi ¼ 0ð Þ of (5.16) corresponds to initial nondeformable design

diagram. Nontrivial solution Zi 6¼ 0ð Þ corresponds to the new form of equilibrium.

This occurs if the determinant, which is consisting of coefficients of unknowns,

equals zero, i.e.,

det

r11 uð Þ r12 uð Þ � � � r1n uð Þ
r21 uð Þ r22 uð Þ � � � r2n uð Þ

..

. ..
. ..

. ..
.

rn1 uð Þ rn2 uð Þ � � � rnn uð Þ

2
6664

3
7775 ¼ 0: (5.17)

Condition (5.17) is called the stability equation of a structure in a form of the

Displacement method. For practical engineering, it is necessary to calculate the

b ca

l

f

C

Fig. 5.9 Approximation of initial design diagram of the arch by substitute frame
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smallest root of the above equation. This root defines the smallest parameter u of

critical force, or smallest critical force. Canonical equation of the Displacement

method in the form (5.17) for stability analysis of the frames was developed by

Leites (1937) [Uma72-73, Chapters 17.1–17.10].

It is obvious that condition (5.17) leads to a transcendental equation with respect

to parameter u. The functions ’ uð Þ and � uð Þ are tabulated (Table A.33). Since the

determinant is very sensitive with respect to parameter u, it is recommended to

solve (5.17) using a computer. The functions ’ uð Þ and � uð Þ may be presented in

approximate form [Bol64]; in this case (5.17) leads to an algebraic equation.

The only limitation for applying this method is that the flexural rigidity and axial

compressed force should be constant within the each member.

Let us derive the stability equation and determine the critical load for frame

shown in Fig. 5.10a. This frame has one unknown of the Displacement method. The

primary unknown is the angle of rotation of rigid joint. Figure 5.10b shows the

primary system, elastic curve, and bending moment diagram caused by unit rotation

of introduced constrain. The bending moment diagram for compressed vertical

member of the frame is curvilinear. The ordinate for this member is taken from

Table A.32, row 1.

The bending moment diagram yields r11 ¼ 4i1’2 u1ð Þ þ 4i2, where i1 ¼ EI1=l1;

i2 ¼ EI2=l2 and parameter of critical load u1 ¼ l1
ffiffiffiffiffiffiffiffiffiffiffiffi
P=EI1

p
. Note that subscript 2 at

function ’ is related to the clamped–clamped member subjected to angular dis-

placement of one support (Table A.32), while the subscript 1 at the parameter u is
related to the compressed-bent member 1. Canonical equation of the Displacement

method is r11 u1ð ÞZ ¼ 0:
Nontrivial solution of this equation leads to equation of stability r11 ¼ 0 or in

expanded form

r11 ¼ 4EI1
l1

’2 u1ð Þ þ 4EI2
l2

¼ 0:

Elastic curve

r11

4i1j2(u1) 4i2

Z = 1
P

l1

l2

EI2

EI1

A

a b

Fig. 5.10 (a) Design diagram; (b) primary system of the Displacement method and unit bending

moment diagram
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Note, that Displacement method allows us to take into account some changes in

the design diagram; for example, if a fixed support A is replaces by a pinned

support, then stability equation becomes

r11 ¼ 3i1’1 u1ð Þ þ 4i2 ¼ 0:

Special Cases

1. Assume that l2 ! 0. In this case the second term ð4EI2=l2Þ ! 1, rigid joint is

transformed to clamped support and the initial frame is transformed into the

vertical clamped–clamped column. Stability equation becomes ’2 u1ð Þ ¼ �1.

The smallest root of this equation is u1 ¼ 2p and critical force becomes

Pcr ¼ u21EI
l121

¼ 4p2EI
l21

¼ p2EI

0:5l1ð Þ2 ;

where m ¼ 0:5 is effective-length factor for clamped–clamped column.

2. Assume EI2 ! 0. In this case, the rigid joint is transformed to hinge and the

initial frame is transformed into the vertical clamped–pinned column. Stability

equation becomes ’2 u1ð Þ ¼ 0. The smallest root of this equation is u1 ¼ 4:488
and for critical force we get

Pcr ¼ u21EI
l21

¼ 4:4882EI

l21
¼ p2EI

0:7l1ð Þ2 ; m ¼ 0:7:

3. If l1 ¼ l2; EI1 ¼ EI2, then stability equation becomes ’2 u1ð Þ þ 1 ¼ 0.

The smallest root of this equation is u1 ¼ 5:3269 and critical load equals

Pcr ¼ ðu21EI=l21Þ ¼ ð28:397EI=l21Þ:

Modified Approach of the Displacement Method

In general case, the Displacement method requires introducing constraints, which

prevent angular displacement of rigid joints and independent linear displacements

of joints. However, in stability problems of a frame with sidesway, it is possible for

some modification of the classical Displacement method. Using modified approach,

we can introduce a new type of constraint, mainly the constraint, which prevents

angular displacement, but simultaneously has a linear displacement (Table A.32,

row 3). Modified approach of the Displacement method is presented in [Kar10].
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5.6.2 Two-Hinged Arch

Let us demonstrate application of the Displacement method in canonical form for

stability analysis of two-hinged uniform symmetric arch loaded by two forces P
(Fig. 5.11a). Simplest version of the substituted frame is shown by solid lines; it is

constructed in such way so that forces are applied at the rigid joints of the frame.

The unavoidable disadvantage of this system is that the substituted frame is with

sidesway.

To obtain the primary system of Displacement method we need to introduce two

rigid joints 1 and 2 and support 3 into the design diagram; they are shown in bold in

Fig. 5.11b. Constraints 1 and 2 prevent angular displacements of joint 1 and 2 and

constraint 3 prevent linear displacement of the cross bars 1–2.

For stability analysis of this symmetrical frame it is very effective to adopt the

group unknowns of the Displacement method as shown in Fig. 5.11b; Z1 represents
the simultaneous angular displacement rotation of introduced constraints 1 and 2 in

one direction, while Z2 represents the simultaneous angular displacement of same

introduced constraints in opposite directions (Bresse’s method, 1854) [Bre54, 59];

Z3 represents a linear displacement of cross bars 1–2.

By using the group unknowns we can separate the full system of canonical

equations into two separate independent subsystems. First subsystem allows us to

determine the critical load for symmetrical form of loss of stability and second for

antisymmetrical form of loss of stability.

Stability analysis consists of the following steps:

1. Determine some parameters of the frame

l0�1 ¼ 13:4164m; tan b ¼ 0:5; sin b ¼ 0:44721; cos b ¼ 0:89443:

2. For a given frame we find the thrust H by any analytical approach, for example,

by the Force method or using tabulated data. Axial loads in members 0–1 and

1–2 in terms of H are N0�1 ¼ H= cos b; N1�2 ¼ H:

0

2 1

l0-1

N0-1

N1-2,i0-1,

l1-2, i1-2 3 Z3

J

JJ

3

Z1 Z1

Z2
Z2

x =12m

l = 32m

H H

a b

0

1 2

3

6m

8m

P P

0-1

1-2=

b

Fig. 5.11 (a) Design diagram of symmetrical two-hinged uniform arch and its substituted frame;

(b) primary system of Displacement method and group unknowns
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3. For each member of length li of the frame, calculate the parameter

#i ¼ li
ffiffiffiffiffiffiffiffiffiffiffiffi
Ni=EI

p
of critical force. For one specific member of the frame the

parameter of a critical load is adopted as the base parameter and all remaining

parameters are expressed in terms of the base parameter.

Parameter of critical loads for members 0–1 and 1–2 are

#0�1 ¼ l0�1

ffiffiffiffiffiffiffiffiffiffi
N0�1

EI

r
; #1�2 ¼ l1�2

ffiffiffiffiffiffiffiffiffiffi
N1�2

EI

r
¼ 8

ffiffiffiffiffi
H

EI

r
:

Assume the parameter #1�2 ¼ # is a base parameter. Then for #0�1 we get

#0�1 ¼ 13:4164

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

0:89443EI

r
¼ 1:7733� 8

ffiffiffiffiffi
H

EI

r
¼ 1:7733#:

Figure 5.11b contains the length l, stiffness per unit length i, axial forces N, and
critical parameter ϑ for each member of the substituted frame.

4. Now we need to construct bending moment diagrams caused by unit primary

unknowns of Displacement method and calculated unit reactions.

First unit state (Z1 ¼ 1). Bending moment diagram caused by the unit rotation of

introduced constraints Z1 ¼ 1 (antisymmetrical unknown) is shown in Fig. 5.12.

This diagram is antisymmetrical. Elastic curve is shown by dotted line.

M
ð1Þ
1�0 ¼ 3i0�1’1 #0�1ð Þ

M
ð1Þ
2�3 ¼ M

ð1Þ
1�0

M
ð1Þ
1�2 ¼ 4i1�2’2 #ð Þ þ 2i1�2’3 #ð Þ

M
ð1Þ
2�1 ¼ M

ð1Þ
1�2

Top subscript (1) atM denotes the first state. Subscript 1 at function ’1 relates to

pinned–fixed beam in case of angular displacement of fixed support while

2 1 3 r31

3

Z1= 1
Z1= 1

M1

M1-0

0.5r110.5r11

0

(1)

M1-2
(1) M2-3

(1)

M2-1
(1)

Fig. 5.12 Bending moment

diagram in the first unit state
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subscripts 2 and 3 relates to fixed–fixed beam (member 1–2) in case of angular

displacement of fixed support (Table A.32).

Unit reaction

r11 ¼ 2 M
ð1Þ
1�0 þM

ð1Þ
1�2

� �
¼ 2 3i0�1’1 #0�1ð Þ þ 4i1�2’2 #ð Þ þ 2i1�2’3 #ð Þ½ �:

After substituting the corresponding quantities we get

r11 ¼ 2 0:2236’1 1:7733#ð Þ þ 0:5’2 #ð Þ þ 0:25’3 #ð Þ½ �EI:

Secondary reactions will be calculated later.

Second unit state (Z2 ¼ 1). Bending moment diagram caused by the unit rotation of

introduced constraints Z2 ¼ 1 (symmetrical unknown) is shown in Fig. 5.13. This

diagram is symmetrical.

M
ð2Þ
1�0 ¼ 3i0�1’1 #0�1ð Þ

M
ð2Þ
2�3 ¼ M

ð2Þ
1�0

M
ð2Þ
1�2 ¼ 4i1�2’2 #ð Þ � 2i1�2’3 #ð Þ

Unit reaction

r22 ¼ 2 M
ð2Þ
1�0 þM

ð2Þ
1�2

� �
¼ 2 3i0�1’1 #0�1ð Þ þ 4i1�2’2 #ð Þ � 2i1�2’3 #ð Þ½ �:

After substituting the corresponding quantities we get

r22 ¼ 2 0:2236’1 1:7733#ð Þ þ 0:5’2 #ð Þ � 0:25’3 #ð Þ½ �EI:

Since M1 and M2 diagrams are antisymmetrical and symmetrical, respectively,

then r12 ¼ r21 ¼ 0. This is an important result due to application of group

unknowns. Other secondary reactions are discussed below.

0

21 r32

3M2

M1-0
(2)

M1-2
(2)

M2-3
(2)

Z2= 1 Z2= 1

0.5r22
0.5r22

Fig. 5.13 Bending moment

diagram in the second unit

state
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Third unit state (Z3 ¼ 1). Hinged scheme of the frame and its position caused by

Z3 ¼ 1 is shown in Fig. 5.14. The displacement of point 1 is directed perpendicu-

larly to member 0–1 and its new position is denoted as 10. Point 2 is moved

perpendicularly to member 2–3 and its new position is denoted as 20.

D0�1 ¼ csc b;

D1�2 ¼ cot b;

D2�3 ¼ csc b;

D2�1 ¼ cot b:

For member 1–2 relative vertical displacement of the ends is

D ¼ D1�2 þ D2�1 ¼ 2 cot b:

Bending moment diagram in the third unit state is shown in Fig. 5.15.

M
ð3Þ
1�0 ¼ 3

i0�1

l0�1

D0�1 � ’1 #0�1ð Þ

M
ð3Þ
2�3 ¼ M

ð3Þ
1�0

M
ð3Þ
1�2 ¼ 6

i1�2

l1�2

D� ’4 #ð Þ

M
ð3Þ
2�1 ¼ M

ð3Þ
1�2

2 

1

1

2

30

Z3= 1

Z3= 1
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b

D1-2 D0-1

D2-3

D2-1Fig. 5.14 Hinged scheme of

the frame and displacement of

the joints in the third unit state
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(3)Z3= 1Fig. 5.15 Bending moment

diagram in the third unit state

262 5 Matrix and Displacement Methods



Design diagram for calculation of r33. is shown in Fig. 5.16. The section

passing through member 0–1 is infinitely close to joint 1. Bending moment

M1–0 is directed according to position of extended fibers, which are shown by

dotted line; the top subscript “3” is omitted. This moment is equilibrated by shear

force Q1�0 ¼ ð3EI=l30�1Þ�1 #0�1ð ÞD0�1. Then this force is transferred on the part

which is adjacent to joint 1. Also we need to show the axial force N1–0.

Similar procedure is applied to portions 1–2 and 2–3. Shear force for fixed–fixed

member 1–2 subjected to relative vertical displacement D of the ends equals

Q1�2 ¼ Q2�1 ¼ ðEI=l30�1Þ�2 #ð ÞD. Equilibrium equations
P

X ¼ 0 and
P

Y ¼ 0

for joints 1 and 2 allow us to calculate the normal forces. Relationship N1�2 ¼ N2�1

can be used for verification of computed results. Moreover, N0�1 ¼ �N2�3. There-

fore, equation
P

X ¼ 0 for cross bar in whole leads to the following result

r33 ¼ 2Q
ð3Þ
1�0 sin b ¼ 2� 3EI

l30�1

D0�1�1 #0�1ð Þ sin b ¼ 2� 3EI

l30�1

�1 #0�1ð Þ:

Performing a similar procedure over the bending moment diagram M1 we get

r31 ¼ �2
3EI

l20�1 sin b
’1 #0�1ð Þ � 12EI

l21�2 tan b
’4 #ð Þ

� 	
:

This result may be obtained by considering equilibrium of joints 1 and 2 from

diagram M3. In this case, moment is

r31 ¼ �M
ð3Þ
1�0 þM

ð3Þ
1�2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Joint 1

þM
ð3Þ
2�1 �M

ð3Þ
2�3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Joint 2

:

Substituting the numerical data, we get

r11 ¼ 2 0:2236’1 1:7733#ð Þ þ 0:5’2 #ð Þ þ 0:25’3 #ð Þ½ �EI;
r22 ¼ 2 0:2236’1 1:7733#ð Þ þ 0:5’2 #ð Þ � 0:25’3 #ð Þ½ �EI;
r33 ¼ 2� 0:001242�1 1:7733#ð ÞEI;
r13 ¼ r31 ¼ �2 0:037476’1 1:7733#ð Þ � 0:375’4 #ð Þ½ �EI:

x

y

21 r333

0 3
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Q2-1

N2-1

Q1-2M1-0
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N2-3

M1-2

Fig. 5.16 Calculation of r33

5.6 Displacement Method 263



Since the bending moment diagramsM1 andM3 are antisymmetrical whileM2 is

symmetrical, then

r12 ¼ r21 ¼ 0 and r32 ¼ r23 ¼ 0:

Now we can form the stability equation, calculate the critical parameter, and

determine the critical load.

In our case, the set of canonical equations of stability

r11Z1 þ r12Z2 þ r13Z3 ¼ 0

r21Z1 þ r22Z2 þ r23Z3 ¼ 0

r31Z1 þ r32Z2 þ r33Z3 ¼ 0:

are separated into two independent systems

r11Z1 þ r13Z3 ¼ 0

r31Z1 þ r33Z3 ¼ 0
and r22Z2 ¼ 0:

Stability equations become

r11 r13
r31 r33

����
���� ¼ 0 and r22 ¼ 0:

The first subsystem describes the antisymmetrical loss of stability, while second

equation describes symmetrical loss of stability. For solution of these equations we

need to take into account expressions for functions ’i; � according to Table A.33.

For stability parameters we get

#ant ¼ 2:0344 and #sym ¼ 2:6007:

Critical thrust becomes

Hasym ¼ 2:03442
EI

82
;Hsym ¼ 2:60072

EI

82
:

After that we can calculate the critical load P. Note, these results corresponds to
a crude model approximating entire arch.

Numerical results for three-hinged and two-hinged arches subjected to uni-

formly distributed vertical load within the whole span are presented in [Sni66]. If

entire arch is represented as five chords with equal horizontal projections then

relative error of the Displacement method is no greater than 2%.
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5.7 Comparison of the Smirnov’s and Displacement Methods

Advantages and Disadvantages of Smirnov’s Method

In Smirnov’ method the axis of the arch is replaced by a set of curvilinear segments

which coincides with arch itself. Therefore, errors of the method arise from

numerically inaccurate calculation of nodal point coordinates obtained from the

solution of transcendental equation. It means that the results which are obtained

from Smirnov’ method should be treated as ground truth.

According to Smirnov’s method, the arch should be presented as a set of

curvilinear segments of equal length and constant stiffness within each segment.

Meeting these requirements is not always possible in case of arches with variable

stiffness (of course, with a reasonable number of the finite portions). The other

disadvantage is related to the difficulties of analyzing nonsymmetric arches.

Any change in the design diagram of the arch (addition of the overarched

structure, combined tie, elevated tie, fixed supports, etc.) leads to a procedure that

is not easily generalizable. Even if the governing general stability equation

det C� lEð Þ ¼ 0 holds true, the matrix C depends on the features of the arched

structure. These peculiarities limit the scope of the method.

We note that the span of a parabolic arch can be divided into a set of equal

lengths portions. In this case, we can use the concept of the parabolic chain

[Rab54b], [Rab58, Vol. II]. Its properties and important relationships are consid-

ered for free vibration analysis in Chap. 6.

Advantages and Disadvantages of the Classical Methods
in Canonical Form

Stability problems of the arches may be solved using the classical Force and

Displacement methods in canonical form. Approximate stability analysis by both of

these methods requires the construction of a substitute frame, and thus these methods

lead to the approximate results. A poor choice for the primary system of the Force

method can lead to significant difficulties of computational nature [Smi47]. Displace-

ment method does not have similar disadvantages, because the primary system is

constructed according to strong rules. These rules allow considering nonsymmetrical

arches, take into account the elastic supports as well as any type of loading. It is very
convenient that the Displacement method in canonical form is easily generalizable.

As in case of Smirnov’s method, computational procedure becomes more cumber-

some with increasing the number of elements which approximate an arch.

Displacement method, generally, allows constructing the stability equation for

the full spectra of critical forces. Given this, it is unnecessary to assume the initial

form of loss of stability. The group unknowns allow simplifying numerical proce-

dure and separate stability analysis for symmetrical and antisymmetrical forms of

the loss of stability.
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Chapter 6

Free Vibration of Arches

The theory of vibration is a special branch of structural analysis. This theory allows

us to evaluate internal forces and displacements in the structure caused by

dynamical loads of different nature. Often it is the case that these forces and

displacements are significantly greater than the forces and displacement for the

case of static loading. Engineering practice has seen a lot of cases when

underestimation of this feature of dynamical loads leads to the collapse of structure.

This chapter is devoted to free vibration analysis of arches. Different types of

arches are considered. Among them are circular and parabolic arches with different

boundary conditions. Analytical methods of analysis are demonstrated.

6.1 Fundamental Concepts

The mathematical basis for the theory vibration of the arches was laid by Kirhhoff

(1824–1887) [Kir76]. Fundamental investigation of vibration of deformable

structures was performed by Lord Rayleigh (1842–1912) [Ray77], Love

(1863–1940) [Lov20], Timoshenko (1878–1972) [Wea90]. Duhamel (1797–1872)

gave a general method for analyzing the forced vibration of elastic bodies [Duh43].

A significant contribution to the problem of vibration of arches was done by

Morgaevsky [Mor40], Demidovich [Dem49], Rabinovich [Rab51], [Rab58],

Chudnovsky [Chu52], Pratusevich [Pra52], Bolotin [Bol78], [Bol84]. Prokofiev

and Smirnov [Pro48], Laura [Lau87a,b], [Lau88a–c], to name a few, devoted a

significant amount of work to developing numerical methods of dynamical analysis

of arches.

6.1.1 General

We begin with considering some of the key concepts.

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_6, # Springer Science+Business Media, LLC 2012

269



Kinematics of Vibrating Processes

The simplest periodic motion can be written as

yðtÞ ¼ A sin o tþ ’0ð Þ;

where A is the amplitude of vibration; ’0 is the initial phase of vibration; t is the
time. This case is presented in Fig. 6.1a. The initial displacement y0 ¼ A sin’0 is

measured from the static equilibrium position. The number of cycles of oscillation

during 2p seconds is referred to as circular (angular or natural) frequency of

vibration o ¼ 2p=T(radians per second or s�1), T(sec) is the period of vibration.

Figure 6.1b, c presents the damped and increased vibration with constant period.

Vibration Forces

During vibration, a structure is subjected to different forces. These forces are

different in nature and exert a different influence on the vibrating process. All

forces may be divided into the following groups: disturbing forces, positional

(restoring) forces, resisting forces, and forces of the mixed character.

1. Disturbing forces are functions of time. These forces are usually subdivided into

the following types: immovable periodical loads, impact (impulsive) loads,

moving loads, seismic loads.

2. Restoring forces depend on the displacement of the structure, arise due to

deviation of system from a static equilibrium position and tend to return the

system to its initial position. Restoring properties of a system are described by its

elastic characteristic P ¼ PðyÞ, where P is a static force which is applied to the

structure. Characteristic P� y may be linear or nonlinear. Some types of

characteristics P � y are presented in Table 6.1; in all cases y is the displace-

ment at the point of P.
3. Resisting forces. The forces of inelastic resistance (friction or damping forces)

depends on the velocity u of motion, R ¼ R uð Þ, and always act in the opposite

direction of velocity. These forces are the result of internal friction in the

material of a structure and/or in the connections of a system.

t

y
T

y0
A

T

t

y
T T

t

y

T T

a b c

Fig. 6.1 Types of oscillatory motions
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Degrees of Freedom

Fundamental concept in the structural dynamics is the degrees of freedom of a

structure. They are independent geometrical parameters that describe positions of a

structure at any moment in time. The difficulties and features of dynamical analysis

of structures depends first of all on the number of degrees of freedom.

All structures may be divided into two principal classes according to their

number of degrees of freedom. They are structures with concentrated and

distributed parameters. Members with concentrated parameters assume that the

distributed mass of the member itself may be neglected in comparison with the

lumped mass, which is located on the member. The structure with distributed

parameters is characterized by uniform or nonuniform distribution of mass within

its parts. From a mathematical point of view, the difference between the two types

of systems is the following: systems of the first class are described by ordinary

differential equations, while systems of the second class are described by

partial differential equations.

The fundamental difference of the concept of “degrees of freedom” in static and

structural dynamics and computation of degrees of freedom for different deform-

able structures is discussed in [Kar10].

Free and Forced Vibrations

Different types of forces acting on a structure lead to different types of vibrations.

Among them are two general classes – free and forced vibration.

Vibrations of a system in which disturbing forces are absent are called free

vibrations. In the case of free vibrations, the system is subjected to forces inherent

to the system itself, i.e., the restoring and resisting forces. In order to impose free

vibrations, nonzero initial conditions should be created, which means that the

system is subjected to some initial displacement and/or initial velocity. Free

vibration may be linear or nonlinear depending on the characteristics of restoring

and resisting forces. Absence of resisting forces leads to the free undamped
vibrations; in this case, the system is subjected only to a restoring force.

Table 6.1 Types of elastic members and their characteristics

Design diagram Characteristic P-y Design diagram Characteristic P-y

y

P

y

P

y

P

y0

P
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y0 y0

y

P

y
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The free vibration occurs at a certain frequency inherent to the system itself.

Therefore, this frequency is called eigenfrequency or just frequency of free vibra-

tion. If a system has two or more degrees of freedom, and the system vibrates at a

single frequency, then the ratio of displacements of two arbitrary points of the

system remains constant. The shape of vibration is the profile of the system at the

specified frequency of the system and is therefore known as the eigenfunction or

just mode shapes of vibration. Due to the fact that dampening forces are always

present in any structure, free vibrations will always decrease in magnitude as a

function of time. However, knowing the frequencies and shapes of free vibrations is

necessary for further analysis of the system and determining these frequencies and

shapes is the primary problem of free vibration.

Vibration of a system caused by any disturbing forces is called a forced vibra-

tion. Neglecting the resisting forces in the system leads to forced undamped
vibration. Just as in the case of free vibrations, forced vibrations may be linear or

nonlinear. The ratio of any dynamical quantity (displacement, reaction, etc.) to a

static quantity due to the maximal disturbing force is called dynamic coefficient.

6.1.2 Discrete Models of the Arches

In the general case, transversal vibrations of the arch are described by a complicated

partial differential equation; special modification of the equation are discussed in

[Chu52], [Rek73]. Generally, it is extremely difficult to obtain analytical solutions

for vibration of an arch as a system with distributed parameters. For approximate

vibration analysis the arch will be presented in discrete form as a system with finite

number of degrees of freedom. Discretization of an arch may be performed by

several different ways. Perhaps the most common one is to replace the mass

distributed along the axis of an arch by a series of point masses. Is it possible to

approximate the arch by a set of absolutely rigid chords with elastic connections

between them [Ter54], [Kis80].

Vibration of arches has some features. In the arch, unlike beam, the different

masses are displaced in nonparallel directions [Rab58]. The second feature of

dynamical behavior of the arch is that during vibrations horizontal inertial forces

are of the same order as the vertical ones, and in the case of a tall arch the magnitude

of horizontal forces can exceed that of vertical forces.

Figure 6.2a presents an arch with distributed mass, which is replaced by three

point masses; the axis of the arch remains curvilinear. In this case, we have a system

with six degrees of freedom.

It is possible to replace the curvilinear axis of the arch by a set of straight

members; in fact, the arch is replaced by some frame. Different types of possible

approximating frames are shown in Fig. 6.2b–d.

In Fig. 6.2b, the arch is replaced by four straight rods and masses are

concentrated in the joint of the frame. This structure has two degrees of freedom.
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In Fig. 6.2c, the arch is replaced by six rods and as before by three lumped

masses, which are still located at the joints. This structure has four degrees of

freedom.

In Fig. 6.2d, the arch is replaced by five rods and as before by three lumped

masses, which differs from the one in Fig. 6.2b by the fact that the masses are

located at the center of straight member. This structure has six degrees of freedom.

We can see that the simplest scheme is the one under which the mass of each

straight member is replaced by two point masses, applied at the ends of this

member. It is evident that any type of shown discretization types may be applied

to arches with variable cross-section, arbitrary shape, and various boundary

conditions.

The difference in each arch-approximating scheme is that for each of scheme in

Fig. 6.2 the number of the frequencies, correspondingly, mode shape of vibrations,

is different. However, the lowest frequencies of vibration for various approximation

schemes of the arch are close. The increase in the number of elements that

approximate the frame leads to a rapid pursuit of the true frequency.

In determining the fundamental frequency of vibration, one should choose a

scheme of approximation which leads to a simple and obvious computational

procedure that yields accurate results. It must be remembered that the replacement

of the arch by a frame leads to a decrease in fundamental frequency in comparison

with the frequency for the arch [Pro48].

Approximate Solutions of Dynamic Analysis

of the Discrete Models of the Arches

If a frame with sidesway, which is an approximate model of an arch, has two or

more point masses then theirs displacements (and the number of degrees of freedom

and the choice of generalized coordinates) are not always obvious.

a
m1

m2
m3

n=6 

m2

b m1 m3

n=2

c
m1 m3

m2

n=4

m2
m1 m3d

n=6

Fig. 6.2 Possible discretization of the arch and degrees of freedom
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Figure 6.3a presents an arched structure after it has been replaced by a set of

straight members with point masses at the rigid joints. A structure contains four

point masses. In the case of antisymmetric vibration, the equivalent half-structure is

shown in Fig. 6.3b. It is evident that virtual displacement q1 of mass m1 is directed

perpendicular to rod AB. The support D does not prevent horizontal displacement.

Therefore, the displacement of the joint C is not obvious. Assume that this structure

has two degrees of freedom. For convenience, let us show q2 perpendicular to the

rod BC. It is clear that if rod BC was an extension of the rod AB, then this

representation of q2 would be exact. In our case, q2 does not account for displace-
ment m2 along the rod BC. Therefore, given such a choice of the generalized

coordinates, the corresponding analysis of structure with two degrees of freedom

is only approximate. Since the frame approximating the arch is piecewise-linear, it

is difficult to show the exact direction of q2 [Pro48].
More exact solution can be obtained by considering the structure as a system

with three degrees of freedom. For this, we must show a virtual displacement of

joint C, consisting of two components: one of them is q2, which is directed

perpendicular to the rod BC and other component, q3, is directed along the rod

BC (Fig. 6.3c). Both of schemes in Fig. 6.3b, c will be analyzed later.

Dynamic analysis of arch is approximate not only because we replace initial

design diagram of an arch by its discrete model, but also because different terms of

the Maxwell–Mohr integral may be taken into account while calculating unit and

load displacements. Neglecting of shear and/or axial forces also leads to approxi-

mate analysis of the arch.

Unless stated otherwise, we will consider vibration of arches under the following

assumptions:

1. The arch material is linearly elastic (Hooke’s law applies).

2. The center line of an arch is incompressible.

3. Resisting forces in the material of a structure and at connections are ignored.

4. Effects of shear and rotary inertia are neglected.
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Fig. 6.3 Discrete arch models and generalized coordinates
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6.2 Eigenvalues and Eigenfunctions of Arches with Finite

Number Degrees of Freedom

Behavior of structures with finite number degrees of freedom may be described by

two types of differential equations. They are equations in displacement (i.e., in the

form of the Force method) and equations in reactions (i.e., in the form of the

Displacement method). Below we consider only undamped vibration in form of

the Force method. Analysis of free vibration of the framed structures in form of the

Displacement method is presented in refs. [Kle72], [Kar01], [Kar04], and [Kar10].

6.2.1 Differential Equations of Vibration

Let us consider a structure with concentrated masses (Fig. 6.4). Express the forces

of inertia as function of unit displacements.
In case of free vibration, each mass is subjected to forces of inertia only.

Displacement of each mass may be presented as

y1 ¼ d11Fin
1 þ d12Fin

2 þ � � � þ d1nFin
n ;

y2 ¼ d21Fin
1 þ d22Fin

2 þ � � � þ d2nFin
n ;

: : : : : : : : : : : :

yn ¼ dn1Fin
1 þ dn2Fin

2 þ � � � þ dnnFin
n ; (6.1)

where dik is displacement in ith direction caused by unit force acting in the kth
direction. Since the force of inertia of mass mi is F

in
i ¼ �mi€yi, then the differential

equations become

d11m1€y1 þ d12m2€y2 þ ::: þ d1nmn€yn þ y1 ¼ 0;

: : : : : : : : : : : : : : :

dn1m1€y1 þ dn2m2€y2 þ ::: þ dnnmn€yn þ yn ¼ 0: (6.1a)

yn

d11 d1nd12

m1 m1 m1

dn1 dn2 dnn

m2 m2 m2
m1 m2

mn

mn mn
mn

y1

F1
in F2

in

Fn
in

F1
in   = 1 F2

in   = 1

Fin
n = 1

y2 d21 d22 d2n

Fig. 6.4 Design diagram and unit conditions
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In matrix form, this system may be presented as

FM€Yþ Y ¼ 0; (6.1b)

where F is the flexibility matrix (or matrix of unit displacements),M is the diagonal

mass matrix, and Y represents the vector displacements

F ¼
d11 d12 ::: d1n
d21 d22 ::: d2n
::: ::: ::: :::
dn1 dn2 ::: dnn

2
664

3
775; M ¼

m1 0 ::: 0

0 m2 ::: 0

::: ::: ::: :::
0 0 ::: mn

2
664

3
775;Y ¼

y1
y2
:::
yn

2
66666

3
77777
:

The term dikmk€yk represents the displacement in the ith direction caused by the

force of inertia � mk€yk, which acts in the kth direction. Each equation in (6.1a)

presents the compatibility condition. The differential equations of motion are

coupled dynamically because the second derivative of all coordinates appears in

each equation.

6.2.2 Frequency Equation

Solution of system of differential equations (6.1) is

y1 ¼ A1 sin o tþ ’0ð Þ; y2 ¼ A2 sin o tþ ’0ð Þ; yn ¼ An sin o tþ ’0ð Þ; (6.2)

where Ai are the amplitudes of the corresponding masses mi and ’0 is the initial

phase of vibration. The second derivatives of these displacements over time are

€y1 ¼ �A1o2 sin otþ ’0ð Þ; €y2 ¼ �A2o2 sin otþ ’0ð Þ; � � �
€yn ¼ �Ano2 sin otþ ’0ð Þ: (6.2a)

By substituting (6.2) and (6.2a) into (6.1a) and reducing byo2 sin otþ ’0ð Þ, we get

m1d11o2 � 1
� �

A1 þ m2d12o2A2 þ � � � þ mnd1no2An ¼ 0;

m1d21o2A1 þ m2d22o2 � 1
� �

A2 þ � � � þ mnd2no2An ¼ 0;

: : : : : : : : : : : : :

m1dn1o2A1 þ m2dn2o2A2 þ � � � þ mndnno2 � 1
� �

An ¼ 0: (6.3)

Equations (6.3) are homogeneous algebraic equations with respect to unknown

amplitudes A. Trivial solution Ai ¼ 0 corresponds to the system at rest. Nontrivial

solution (nonzero amplitudes Ai) is possible, if the determinant of the coefficients of

amplitude is zero
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D ¼
m1d11o2 � 1 m2d12o2 ::: mnd1no2

m1d21o2 m2d22o2 � 1 ::: mnd2no2

::: ::: ::: :::
m1dn1o2 m2dn2o2 ::: mndnno2 � 1

2
664

3
775 ¼ 0: (6.4)

This equation is called the frequency equation in terms of displacement. Solution

of this equation o1; o2; :::;on presents the natural frequencies of a structure. The

number of the frequencies of free vibration equals to the number of degrees of

freedom.

6.2.3 Mode Shape of Vibration

The set of equations (6.3) are homogeneous algebraic equations with respect to

unknown amplitudes Ai. This system does not allow us to find unknown amplitudes.

However, we can find ratios between different amplitudes. If a structure has two

degrees of freedom, then system (6.3) becomes

m1d11o2 � 1
� �

A1 þ m2d12o2A2 ¼ 0;

m1d21o2A1 þ m2d22o2 � 1
� �

A2 ¼ 0:

From these equations, we can find the following ratios

A1

A2

¼ � m2d12o2

m1d11o2 � 1

or

A1

A2

¼ �m2d22o2 � 1

m1d21o2
: (6.5)

If we substitute the first frequency of vibration o1 into any of the two equations

(6.5), then we can find A1 A2=ð Þo1
. Then we can assume that A2 ¼ 1 and calculate

the corresponding A1 (or vice versa). The numbers A2 ¼ 1 and A1 defines the

distribution of amplitudes at the first frequency of vibration o1; such distribution

is referred as the first mode shape of vibration. This distribution is presented in form

of vector-column ’1, whose elements are A2 ¼ 1 and the calculated A1; this column

vector is called a first eigenvector ’1. Thus, the set of equations (6.3) for o1 define

the first eigenvector to within an arbitrary constant.

Second mode shape of vibration or second eigenvector, which corresponds to the

second frequency vibration o2, can be found in a similar manner. After that we can

construct a modal matrix F ¼ ’1 ’2b c.
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If a structure has n degrees of freedom, then the modal matrix becomes [Tho81],

[Wea90], [Kar10].

F ¼ ’1 ’2 ::: ’nb c:

6.3 Examples

Example 6.1. Circular clumped-free uniform rod of radius R and central angle

g ¼ 90� has lumped mass M at the free end (Fig. 6.5a). Flexural rigidity of the

arch is EI, distributed mass of the arch itself is neglected. Calculate the frequencies

of the free vibrations.

Solution. The structure has two degrees of freedom. The first and second

generalized coordinates y1 and y2 are directed along the radial and tangential

lines (Fig. 6.5b), respectively; corresponding unit states and unit displacements

are shown in Fig. 6.5c, d.

According to Table A.7, the unit displacements are

d11 ¼ R2ay
g
2
� sin 2g

4

� �
; d12 ¼ d21 ¼ R2ay

1� cos gð Þ2
2

;

d22 ¼ R2ay
3g
2
þ sin 2g

4
� 2 sin g

� �
; ay ¼ R

EI
:

For given central angle g ¼ 90� we get

d11 ¼ 0:7854R3

EI
; d12 ¼ d21 ¼ 0:5R3

EI
; d22 ¼ R3

EI

3p
4
� 2

� �
¼ 0:3562

R3

EI
:

R

R
g

M

y1

M

P1=1

y2

d11

d21 P2=1 

d12

d22

1.5172

A2 =1.0
A2 =1.0

0.659

a b c d

e f

Fig. 6.5 (a) Design diagram; (b) generalized coordinates; (c, d) unit states; (e, f) mode shapes

vibrations
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Since mass M moves in the directions y1 and y2, then (6.3) become

Md11o2 � 1
� �

A1 þMd12o2A2 ¼ 0;

Md21o2A1 þ Md22o2 � 1
� �

A2 ¼ 0:

Let denote eigenvalue l ¼ EI=MR3o2. The frequency equation becomes

0:7854� l 0:5
0:5 0:3562� l

����
���� ¼ 0:

Roots in descending order are l1 ¼ 1:1150 and l2 ¼ 0:02655. Frequencies of
free vibrations in increasing order are

o2
1 ¼

1

l1

EI

MR3
¼ 0:8969

EI

MR3
ðs�2Þ; o2

2 ¼
1

l2

EI

MR3
¼ 37:665

EI

MR3
ðs�2Þ:

Mode shape vibration may be determined on the basis of (6.5). For the first mode

(l1 ¼ 1:1150), ratio of amplitudes is

A1

A2

����
o1

¼ � Md12o2

Md11o2 � 1

����
o1

¼ �
M

0:5R3

EI
0:8969

EI

MR3

M 0:7854R3

EI
0:8969

EI

MR3
� 1

¼ 1:5172

or

A1

A2

����
o1

¼ �Md22o2 � 1

Md21o2

����
o1

¼ � 0:3562� 0:8969� 1

0:5� 0:8969
¼ 1:5175:

Assume that A2 ¼ 1, so the first eigenvector becomes ’ ¼ ’11 ’21b cT ¼
1:5175 1:0b cT.
For the second mode (l2 ¼ 0:02655), ratio of amplitudes is

A1

A2

����
o2

¼ � Md12o2

Md11o2 � 1

����
o2

¼ � 0:5� 37:665

0:7854� 37:665� 1
¼ �0:6589

or

A1

A2

����
o2

¼ �Md22o2 � 1

Md21o2

����
o2

¼ � 0:3562� 37:665� 1

0:5� 37:665
¼ �0:6593:
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The modal matrix is defined as

F ¼ 1:5175 �0:6590
1:0 1:0

� �
:

Corresponding mode shapes of vibration are shown in Fig. 6.5e, f.

Orthogonality condition: 1:5175� ð�0:6590ÞM þ 1:0� 1:0M ¼ 0:0.

Example 6.2. Two-hinged symmetrical uniform arch with four lumped masses m0

is shown by a dotted line in Fig. 6.6a. The flexural rigidity of arch is EI; the span and

rise of arch is l ¼ 40 m, and f ¼ 14 m, respectively. Compute the frequencies of

antisymmetrical vibration.

Solution. Approximate model of the half-arch is a frame with two lumped masses

m0, as shown in Fig. 6.6a by solid lines. The rolled support D on the axis of

symmetry corresponds to the antisymmetrical vibration. Generalized coordinates

q1 and q2 are directed perpendicular to elements AB and BC, respectively, while
coordinate q3 is directed along the member BC. The unit states due to the

generalized forces and corresponding bending moment diagrams are shown in

Fig. 6.6b–d.

m0
D

m0

A

B

C

6m 6m8m

6m

8m

q1

q2 q3

sina=0.6
cosa=0.8

l / 2=20m

Axis of 
symmetry

m0

m0

D

A

P1=1

7.0

3.0

VD=0.5

M1

90º

D

A

3.72
VD=0.98P2=1

5.88

M2

90º

D

1.96

P3=1

VD=0.14

0.84

M3

a

b c d

a

Fig. 6.6 (a) Approximate design diagram of half-arch; (b) unit states and corresponding bending

moment diagrams
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The unit displacements are dik ¼
PR ðMiMk=EIÞds. In our case, we get

EId11 ¼ 1

2
� 10� 7� 2

3
� 7þ 10

6
2� 7� 7þ 2� 3� 3þ 7� 3þ 3� 7ð Þ

þ 1

2
� 6� 3� 2

3
� 3 ¼ 444:66 ðm3Þ;

EId22 ¼ 349:56; EId33 ¼ 34:86; EId12 ¼ 354:88; EId13 ¼ �124:50;

EId23 ¼ �99:37:

Now we will consider two cases. In the first case, we take into account only two
generalized coordinates q1 and q2, while in the second case all coordinates q1, q2,
and q3 are considered. Note that in both cases we are dealing with the same design
diagram.

1. Approximate design diagram of half-arch has two degrees of freedom. In this

case, the equation for frequency of vibration (6.4) becomes

444:67� y 354:88
354:88 349:56� y

����
���� ¼ 0; where y ¼ EI

m0o 2
ðm3Þ:

Roots of this equation are called eigenvalues and they are y1 ¼ 755:206;
y2 ¼ 39:114.

Frequency vibrations are

o ¼ 1ffiffiffi
y

p
ffiffiffiffiffiffi
EI

m0

r
s�1
� �

;

so

o1 ¼ 0:0364

ffiffiffiffiffiffi
EI

m0

r
; o2 ¼ 0:160

ffiffiffiffiffiffi
EI

m0

r
:

2. The same design diagram of half-arch is treated as a structure with three degrees
of freedom. In this case, the equation for frequency of vibration (6.4) becomes

444:67� y 354:88 �124:51
354:88 349:56� y �99:37
�124:51 �99:37 34:86� y

������
������ ¼ 0:

Roots of this equation are y1 ¼ 788:56; y2 ¼ 40:331; y3 ffi 0.

The last root y3 ffi 0 means that system in fact has two degrees of freedom.

Indeed, we can see that a ratio between elements of the first and third rows is

constant

444:67

�124:51
¼ 354:88

�99:37
¼ �124:51

34:86
¼ �3:571:
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i.e., displacements q1 and q3 are dependent. This is expected, since diagramsM1

and M3 are dependent (7:0=1:96 ¼ 3:0=0:84 ¼ 0:5=0:14 ¼ 3:571).
Frequencies of vibrations are

o1 ¼ 0:0356

ffiffiffiffiffiffi
EI

m0

r
; o2 ¼ 0:157

ffiffiffiffiffiffi
EI

m0

r
:

Presentation of q2 as a perpendicular to BC is approximate; however, this leads

to simple calculations with a desired accuracy for the first and second frequencies.

Possible options for consideration of the forces of inertia of mass at joint C are

discussed in [Pro48].

Let us find the shape of vibration (eigenfunction) considering the structure with

two degrees of freedom (case 1).

For the first frequency of vibration o1 ¼ 0:0364
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=m0

p
; according to (6.5) we

have

A1

A2

¼ � m2d12o2

m1d11o2 � 1
¼ �

m0

354:88

EI
0:03642

EI

m0

m0

444:66

EI
0:03642

EI

m0

� 1

¼ 1:144;

or

A1

A2

¼ �m2d22o2 � 1

m1d21o2
¼ � 349:56� 0:03642 � 1

354:88� 0:03642
¼ 1:142:

The relative error is 0.23%. Thus, if the displacement of joint B is equals to 1.0,

then the displacement of joint C is equal to 1.142. The positive sign means that

displacements occur in the same directions as the forces P1 and P2, as shown in

Fig. 6.6b, c (or in the opposite direction).

The second eigenfunction may be constructed similarly. Approximate presenta-

tion of q2 as a perpendicular to BC leads to a larger error for shape A1 A2= , according

to the two expressions (6.5).

Example 6.3. Parabolic three-hinged symmetric arch with three equal lumped

masses is shown in Fig. 6.7a. Parameters of the arch are l ¼ 16 m, f ¼ 0.25l ¼ 4m.

Lumped masses are m1 ¼ m2 ¼ m3 ¼ m0 [Pro48]. Flexural stiffness of the arch is

EI ¼ const. Calculate the frequencies of the free vibrations.

Solution. Equation of the axis of the arch is yðxÞ ¼ ð4f=l2Þx l� xð Þ, therefore
y1 ¼ 3 m. Axis of the arch is replaced by straight members. All dimensions of

the arch and the straight segments (in meters) are shown in Fig. 6.7b.

This structure has two degrees of freedom; however, presentation of generalized

coordinates, as in the previous example, is not entirely clear. So the Bresse group

unknowns will be applied [Bre54c], [Ber57]. For symmetric vibration, we have
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group (or paired) unknowns X1 and simple unknown X2. For antisymmetric vibra-

tion, we have group unknowns X3 and simple unknown X4. Unit states,

corresponding reactions, and bending moment diagrams are shown in Fig. 6.7c.

Unit displacements are

EId11 ¼ M1 �M1 ¼ 2
1

2
� 5� 1:25� 2

3
� 1:25þ 1

2
� 4:123� 1:25� 2

3
� 1:25

� �

¼ 9:5 ðm3Þ;

EId22 ¼ M2 �M2 ¼ 6:08; EId33 ¼ 38:01; EId44 ¼ 1:52;

EId12 ¼ EId21 ¼ M1 �M2 ¼ �7:6; EId34 ¼ EId43 ¼ 7:6;

d13 ¼ d31 ¼ 0; d14 ¼ d41 ¼ 0; d23 ¼ d32 ¼ 0; d24 ¼ d42 ¼ 0:

l

fy1

l/4

y(x)

x

y m1

m2
m3

16m

3m

4

4.123

5.0

m0

m0
m0

4m

a b

a

90º

X1=1 X1=1

H=0.65

R=0.8 R

H

M1

1.25 1.25

X2=1

H=1.0

R=0.5 R

H

M2

1.0 1.0

X4=1

H=0.5

R=0.25 R

H

M4

0.5

0.5

X3=1

H=0.6

R=0.175 R

H

M3

2.5

2.5

X3=1

0.8
0.6

90º

c a

A1

A2

Symmetrical vibration Antisymmetric vibration 

A3

A4d

Fig. 6.7 (a) Design diagram of three-hinged arch with lumped masses; (b) modified design

diagram; (c) Unit states and corresponding bending moment diagrams; (d) Mode shape of

vibrations
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Equations (6.3) is separated into subsystems; since all masses are equal then

m0d11o2 � 1
� �

A1 þm0d12o2A2 ¼ 0;
and

m0d33o2 � 1
� �

A3 þm0d34o2A4 ¼ 0;

m0d21o2A1 þ m0d22o2 � 1
� �

A2 ¼ 0; m0d34o2A3 þ m0d44o2 � 1
� �

A4 ¼ 0:

Let us denote the eigenvalue by

l ¼ EI

m0o2
ðm3Þ ! o2 ¼ EI

lm0

ðs�2Þ:

Since we use the paired unknown, the frequency equations should be modified,

introducing coefficient 0.5 as shown below:

Symmetrical Vibration

The frequency equation becomes [Pro48]

Dsym ¼
1

2
d11 � l d12

1

2
d21 d22 � l

�������

�������
¼ 0 or Dsym ¼

0:5� 9:5

EI
� l � 7:60

EI

�0:5� 7:60

EI

6:08

EI
� l

�������

�������
¼ 0:

Roots of this equation are l1 ¼ 0; l2 ¼ 10:83, therefore

o2
sym ¼ ð1=10:83Þ � ðEI=m0Þ ! osym ¼ 0:304

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=m0

p
.

Antisymmetrical Vibration

Similarly, the frequency equation should be presented in the form

Dantisym ¼
1

2
d33 � l d34

1

2
d43 d44 � l

�������

�������
¼ 0 or

Dantisym ¼
0:5� 38:01

EI
� l

7:60

EI

0:5� 7:60

EI

1:52

EI
� l

�������

�������
¼ 0:
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Roots of this equation are l1 ¼ 0; l2 ¼ 20:526, therefore

o2
antisym ¼ 1

20:526
� EI

m0

! oantisym ¼ 0:221

ffiffiffiffiffiffi
EI

m0

r
:

Verification

The sum of the eigenvalues is 10:83þ 20:526 ¼ 31:356. On the other hand, the

sum of traces of two matrices is 9:5 2= þ 6:08þ 38:01 2= þ 1:52 ¼ 31:355.

Mode Shape of Vibration

We can use expressions for mode shapes in terms of eigenvalues. For symmetrical

form, we get

A1

A2

¼ � d12
0:5d11 � l

¼ � d22 � l
0:5d21

:

For nonzero eigenvalue (l ¼ 10:83), we have

A1

A2

¼ � �7:6ð Þ
0:5� 9:5� 10:83

¼ � 6:08� 10:83

0:5� �7:6ð Þ ¼ �1:25:

For antisymmetrical form, we have

A3

A4

¼ � d34
0:5d33 � l

¼ � d44 � l
0:5d43

:

For nonzero eigenvalue of antisymmetrical vibration l ¼ 20:526ð Þ, we have

A3

A4

¼ � 7:6

0:5� 38:01� 20:526
¼ � 1:52� 20:526

0:5� 7:6
¼ 5:0:

Corresponding mode shapes of vibrations are shown in Fig. 6.7d.

Discussion

1. For symmetric and antisymmetric vibrations, we obtained two roots l ¼ 0.

It means that two degrees of freedom (two zero roots) should be eliminated

from the total number of degrees of freedom (which was assumed to be four).
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Thus, in fact, the arch with three lumped masses shown in Fig. 6.7a, b has two

degrees of freedom.

2. The lowest frequency of free vibration corresponds to the antisymmetric form of

vibration.

6.4 Vibration of Circular Uniform Arches

This section is devoted to determination of frequencies of in-plane bending vibration

of circular arches based on the Lamb’s equation. Two approaches are considered. The

first approach presents exact solution of the Lamb’s differential equation, while the

second one is based on the application of the variational Bubnov–Galerkin method

[Vol67].

6.4.1 Lamb’s Differential Equation of In-Plane
Bending Vibration

Let us consider a symmetrical circular arch of constant cross-section with a central

angle 2a and radius of curvature R. The moment of inertia of cross-section is I and
mass of the arch per unit its length is m. We will consider two types of in-plane

vibration. They are the bending and radial vibrations. General assumptions in

Sect. 6.1.2 allow us to rewrite the equation of in-plane vibration of the arch in the

form of a partial differential equation [Lam1888], [Rek73], [Chu52], [Dem49].

@6u

@’6
þ 2

@4u

@’4
þ @2u

@’2
¼ mR4

EI

@2

@t2
u� @2u

@’2

� �
: (6.6)

where j defines the position of the point on the nondeformable axial line of the arch

� a�’� a, u ¼ u ’; tð Þ is tangential displacement of the circle in the direction in

which ’ increases (Fig. 6.8).

The radial and tangential displacements are related by u ¼ du=d’.

A B

R

M

M

u

j

aa

u

O
Fig. 6.8 Circular arch and

notation of displacements
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6.4.2 Frequency Equation of Bending Vibration.
Demidovich’s Solution

Let the displacement be u ¼ U ’ð Þ cosot, then for U we have the Lamb’s ordinary

differential equation [Lam1888]

d6U

d’6
þ 2

d4U

d’4
þ d2U

d’2
� mR4o2

EI

d2U

d’2
� U

� �
¼ 0: (6.7)

Assume the expression for U has the form [Lov20]

U ¼
X2
i¼0

Ai cos ni’þ Bi sin ni’ð Þ: (6.8)

where Ai and Bi are constant. Substitution of (6.8) into (6.7) leads to the equation

n2 n2 � 1
� �2 ¼ n2 þ 1

� �mo2R4

EI
: (6.9)

It can be shown that if o2 � 0, (6.9) has at least one pair of the real roots 	n0
[Dem49]. This root is uniquely and will be referred to as the basic root. Equation

(6.9) may be rewritten as

n20 n20 � 1
� �2 ¼ n20 þ 1

� �mo2R4

EI
: (6.10)

Hence, it follows that

mo2R4

EI
¼ n20 n20 � 1

� �2
n20 þ 1
� � : (6.11)

So the circular frequency of vibration may be expressed in terms of the basic root

o ¼ C

R2

ffiffiffiffiffi
EI

m

r
ðs�1Þ; C ¼ n0 n20 � 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ 1

p : (6.12)

However, the basic root is still unknown. Substitution of (6.11) in (6.9) leads to

the governing equation

n2 n2 � 1
� �2 � n20 n20 � 1

� �2
n20 þ 1
� � n2 þ 1

� � ¼ 0: (6.13)
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Detailed analysis of (6.13) [Dem49] shows that the other two pairs of roots of

(6.9) are purely imaginary, namely, 	n1i and 	n2i, i ¼ ffiffiffiffiffiffiffi�1
p� �

. They may be

expressed in terms of basic root n0 as follows

n1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
n20 � 2
� �	 1

2
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n40 � 7n20 þ 8

n20 þ 1

svuut : (6.14)

Analysis of the roots of the characteristic equation was done by Waltking

[Wal34] and Demidovich [Dem49]. The roots are multiple only in the three special

cases:

1: n0 ¼ 1; n1 ¼ 0; n2 ¼ i;

2: n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
7�

ffiffiffiffiffi
17

p
 �r
¼ 1:199; n1 ¼ n2 ¼ 1

2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

p
� 3

q
¼ 0:5299i;

3: n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
7þ

ffiffiffiffiffi
17

p
 �r
¼ 2:358; n1 ¼ n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

p
þ 3

q
¼ 1:334:

The graphs of n1j j and n2j j as a function of the base root n0 is shown in Fig. 6.9

[Dem49]

Solution (6.7) must be conformed to the boundary conditions. If both ends of the

arch are fixed then the tangential and radial displacements, as well the slopes at the

supports are zero, i.e., U ¼ U0 ¼ U00 ¼ 0.

n0

n

0 1 2 3 42.3581.199

1

2

1.334

0.5299

1n

n2

n2n1 =

n1

n2

Real rootsComplex rootsPure imaginary roots

Fig. 6.9 Absolute values of roots n1 and n2 in terms of base root n0

288 6 Free Vibration of Arches



If both ends of the arch are hinged then U ¼ U0 ¼ U000 ¼ 0.

Since the roots of (6.9) are not multiple, general solution (6.7) should be adopted

in the modified form, which involves the hyperbolic functions

U ¼ A0 cos n0’þ A1 cosh n1’þ A2 cosh n2’

þ B0 sin n0’þ B1 sinh n1’þ B2 sinh n2’:

Let us consider the antisymmetrical and symmetrical vibration separately.

Antisymmetrical Vibration of Two-Hinged and Hingeless Arches

In this case, the function U should be assumed in the form

U ¼ A0 cos n0’þ A1 cosh n1’þ A2 cosh n2’:

Hingeless Arch

Taking into account the boundary conditions, we get the following expressions (at

’ ¼ 	a)

U ¼ A0 cos n0’þ A1 cosh n1’þ A2 cosh n2’ ¼ 0;

U0 ¼ �A0n0 sin n0’þ A1n1 sinh n1’þ A2n2 sinh n2’ ¼ 0;

U00 ¼ �A0n
2
0 cos n0’þ A1n

2
1 cosh n1’þ A2n

2
2 cosh n2’ ¼ 0:

Nontrivial solution occurs if

cos n0’ cosh n1’ cosh n2’
�n0 sin n0’ n1 sinh n1’ n2 sinh n2’
�n20 cos n0’ n21 cosh n1’ n22 cosh n2’

2
4

3
5
’¼	a

¼ 0: (6.15)

After rearrangements, the frequency equation (6.15) may be presented in the

form

tan n0a ¼ K1 tanh n1aþ K2 tanh n2a;

where

K1 ¼
n1 n20 þ n22
� �

n0 n21 � n22
� � ; K2 ¼ � n2 n20 þ n21

� �
n0 n21 � n22
� � :
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Two-Hinged Arch

In this case, the boundary conditions are U ¼ U0 ¼ U000 ¼ 0. The frequency equa-

tion may be derived in a similar manner:

cot n0a ¼ �F1 coth n1a� F2 coth n2a;

where

F1 ¼ � n0 n20 þ n22
� �

n1 n21 � n22
� � ; F2 ¼

n0 n20 þ n21
� �

n2 n21 � n22
� � :

Symmetrical Vibration

In this case, the function U should be assumed in the form

U ¼ B0 sin n0’þ B1 sinh n1’þ B2 sinh n2’:

The final frequency equation for arches with specific boundary conditions is

shown below.

Hingeless arch: cot n0a ¼ �K1 coth n1a� K2 coth n2a.

Two-hinged arch: tan n0a ¼ F1 tanh n1aþ F2 tanh n2a.

In these formulas, coefficients K1,2 and F1,2 are assumed as in the case of

antisymmetric vibration.

According to (6.14), coefficients K1, K2, F1, and F2 are functions of one

unknown basic root n0. The frequency equations are transcendental and theirs

solutions can be obtained by numerical methods. The first and second roots n0 of
the frequency equation and the corresponding parameter C, according to (6.12), are
presented in Table 6.2.

Finally, the circular frequency of bending in-plane vibration of an arch is

determined by (6.12). The lowest frequency of the free vibration for circular arches,

as for parabolic ones, corresponds to antisymmetric mode of vibration [Dem49],

[Rab51], [Rab54b], [Rab58].

6.4.3 Variational Approach

The bending in-plane vibration of the arch is described by (6.6); as before, the

central angle of the arch is 2a. Angle ’ is measured from a vertical axis of
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symmetry, so � a�’� a. For the first form of antisymmetric vibration of

two-hinged arch, we assume

uðtÞ ¼ f ðtÞ cos p’
a

: (6.16)

According to Bunnov–Galerkin procedure [Vol67], we take the derivatives

@2u

@’2
¼�f ðtÞ p

a


 �2

cos
p’
a
;

@4u

@’4
¼ f ðtÞ p

a


 �4

cos
p’
a
;
@6u

@’6
¼�f ðtÞ p

a


 �6

cos
p’
a
;

@2u

@t2
¼ €f ðtÞcosp’

a
;

@4u

@t2@’2
¼�€f ðtÞ p

a


 �2

cos
p’
a
;

substitute them into (6.6), multiply by cosðp’=aÞ, integrate and equate to zero

Z a

�a

@6u

@’6
þ 2

@4u

@’4
þ @2u

@’2
� mR4

EI

@2

@t2
u� @2u

@’2

� �� �
cos

p’
a
d’ ¼ 0:

As a result, we get the following ordinary second-order differential equation

with respect to the unknown time-dependent function f ðtÞ
mR4

EI
x2 þ 1
� �

€f ðtÞ þ x2 x2 � 1
� �2

f ðtÞ ¼ 0; x ¼ p
a

or €f ðtÞ þ o2
1f ðtÞ ¼ 0;

Table 6.2 Basic roots n0 and parameters Ck of circular frequency of vibrations

Antisymmetric vibration Symmetrical vibration

Central angle

2a

Arch with fixed ends

Two-hinged

arch

Arch with fixed

ends

Two-hinged

arch

n0 Ck n0 Ck n0 Ck n0 Ck

p=6 n01 ¼ 14.962 C1 ¼ 222.36 11.959 141.52 20.114 403.07 17.526 305.63

n02 ¼ 26.973 C2 ¼ 726.04 23.980 573.54 32.488 1053.9 29.732 882.49

p=3 7.431 53.735 5.925 34.033 10.047 93.45 8.750 75.07

13.448 179.35 11.962 141.59 16.235 262.08 14.858 219.26

p=2 4.908 22.623 3.900 13.764 6.689 43.262 5.820 32.397

8.929 78.238 7.947 61.668 10.813 115.43 9.896 96.439

2p=3 3.645 11.848 2.886 6.925 5.008 23.614 4.353 17.492

6.665 42.941 5.937 33.772 8.100 64.123 7.413 53.468

5p=6 2.892 6.959 2.283 3.858 4.000 14.552 3.472 10.623

5.306 26.683 4.731 20.920 6.471 40.394 5.923 33.606

p 2.398 4.384 1.888 2.266 3.328 9.649 2.8857 6.919

4.402 17.921 3.9237 13.944 5.384 27.516 4.9279 22.81
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For the first frequency of antisymmetric vibration, we get

o2
1 ¼

x2 x2 � 1
� �2
x2 þ 1

1

R4

EI

m
: (6.16a)

Approximate formula for frequencies of free bending in-plane vibration of uniform

two-hinged and hingeless circular arches (a0 is a central angle) [Uma72–73] is

oi ¼ ki
R2a20

ffiffiffiffiffiffiffi
EI

m

r
ðs�1Þ: (6.16b)

Coefficients ki for first and second symmetric and antisymmetric forms are

presented in Tables A.43 and A.44; these coefficients are presented in terms of a

central angle a0.
In the case of two-hinged uniform circular arch with lumped mass M at the

crown, the lowest frequency of free antisymmetric vibration may be obtained by

Bolotin’s approximate formula [Bol64]:

o ¼ p
R2a

p2

a2
� 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

4M

Ra
þ m

p2

a2
þ 3

� �
vuuut ; (6.16c)

where 2a is the central angle.

Comparison of the lowest frequencies of antisymmetric vibration of the circular

arch according to the different approaches is presented in Table 6.3.

Computation of frequencies of free vibration of circular arches taking into

account additional effects (damping, shear forces, etc,) is presented in refs.

[Hen81], [Tuf98].

6.4.4 Radial Vibration

Such vibrations occur due to the change in length of the axis of the arch. The

frequency of the radial vibration of the circular uniform arch of radius R, with
central angle a0 and distributed mass m is [Uma72-73]

oi ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l4i

a40

I

R2A

s ffiffiffiffiffiffi
EA

m

r
ðs�1Þ;
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where A is an area of the cross-section of an arch, I is the moment of inertia of a

cross-section. Coefficients li for the first and second frequencies of free vibrations

of two-hinged arch are l1 ¼ 3:1416; l2 ¼ 6:2832; for arch with fixed supports

l1 ¼ 4:7300; l2 ¼ 7:8532. It should be noted that the frequencies of radial

vibration are significantly higher than the frequencies of the bending vibration;

the frequencies of radial vibration would probably be difficult to excite [Lov20].

6.5 Rabinovich’s Method for Parabolic Arch

At the present moment in time, there are several approaches for approximate

vibration analysis of arches. The most natural approach consists of replacing the

curvilinear axis of the arch by a discrete set of straight elements while the

distributed mass is approximated by a set of lumped masses. Given these

approximations, the following different modifications are possible.

1. One can replace the arch by a frame with straight, absolutely rigid members and

lumped masses at the midpoints of these members. Given this, it is assumed that

the members are connected by means of the elastic constraints.

2. Terenin’s method [Ter54] takes into account the finite stiffness of the rods, their
rigid connections, and lumped masses at the rigid joints. The method is based on

the following assumptions: Curvilinear axis of the arch is replaced by six
straight members of equal length; the members are not compressed and

nonextended, but able to exert bending moments. The mixed method [Dar89]

was applied as a possible solution to this problem.

3. Rabinovich’ method [Rab51, 58] also takes into account the finite stiffness of the

rods, their rigid connections, and lumped masses at the rigid joints. Contrary to

Terenin’s method, Rabinovich’ method is based on the concept of a hinged

chain; this approach is more effective than Terenin’s method. Concept of

kinematical chain allows establishing the simple geometrical relationships

between displacements of the joints. Corresponding vibration model of the

parabolic arch is called Rabinovich’s model.

Table 6.3 Parameter K for circular frequency of vibration, oi ¼ ðK=R2Þ ffiffiffiffiffiffiffiffiffiffiffi
EI=m

p ðs�1Þ
Type of

circular arch

Central

angle

Exact result

(Table 6.2)

Galerkin

procedure (6.16a)

Approximate

approach (Table A.43)

Bolotin

formula (6.16c)

Hingeless p/3 53.735 – 53.69 –

p/2 22.623 – 22.62 –

p 4.384 – 4.38 –

Two-hinged p/3 34.033 34.52 33.61 33.62

p/2 13.764 14.55 12.79 13.76

p 2.266 2.68 2.26 2.27
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6.5.1 Geometry of Parabolic Polygon

Equation of axis of a parabolic arch is given by y ¼ ð4f=l2Þx l� xð Þ; where l and f
are span and rise of the arch, respectively. The arch is replaced by an inscribed

polygon; the horizontal projections of all sides of polygon are equal to l ¼ l k= ,

where k is the number of sides of a polygon. Such polygon is called parabolic.

Numeration of the rods, joints (bold), theirs coordinates, and angles of inclination

from the x-axis are shown in Fig. 6.10a.

Parameters of parabolic polygon are

xn ¼ nl; yn ¼ 4f

l2
xn l� xnð Þ ¼ 4f

k2
n k � nð Þ: (6.17)

The length of the side n of a parabolic polygon is

sn ¼ l
cos bn

¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2bn

p
: (6.17a)

The slope of the side n is

tan bn ¼
yn � yn�1

l
¼ 4f

k2l
n k � nð Þ � n� 1ð Þ k � nþ 1ð Þ½ 
:

Last equation may be presented in terms of l, or l as follows

tan bn ¼
4f

k2l
k � 2nþ 1ð Þ ¼ 4f

kl
k � 2nþ 1ð Þ: (6.17b)

The angles of inclination of the parabolic polygon have the following properties:

1. The slopes form the arithmetic progression

tan bn � tan bnþ1 ¼
8f

k2l
¼ 8f

kl
¼ const:

n
n+1

x

y

yn–1 yn
bn–1

b1

bn
bn+1

a

n–1

yn–2 yn+1

a = bn

n

x

y

yn–1

A
xi

 o
f 

 
sy
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b2
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1

n–1 n

… 

yn–2

n–2

a b c

l l l l l l l l

Fig. 6.10 Geometry of parabolic polygon
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2. If one connects the ends of the chain consisting of three consecutive members

n � 1, n, and n + 1, then this chord will be parallel to the element n, i.e., a ¼ bn
(Fig. 6.10b).

3. Assume that number K is even. For the two last elements, which belong to the

left half-arch and are adjacent to the axis of the symmetry, the ratio

tan bn�1= tan bn ¼ 3 (Fig. 6.10c). Indeed, the number of sides of polygon is

n ¼ k 2= . Two last members are denoted by n � 1 and n. According to (6.17b),

the following properties hold true

tan bn ¼
4f

kl
k � 2nþ 1ð Þ ¼ 4f

kl
k � 2

k

2
þ 1

� �
¼ 4f

kl
;

tan bn�1 ¼
4f

kl
k � 2

k

2
� 1

� �
þ 1

� �
¼ 3 tan bn:

Such an approximation of a symmetrical parabolic arch is called Rabinovich’s

model [Rab56]. This model also includes some additional information. They are

supports of half-arch, lumped masses, kinematical properties of the kinematical

chain, etc. These will be considered later.

6.5.2 Kinematics of Parabolic Polygon

Figure 6.11a presents a frame (parabolic polygon), consisting of n rigid members.

The structure has three support constraints. This structure has n � 1 independent

joint displacements.

Indeed, if one were to construct a hinged scheme of the frame (Fig. 6.11b), then

introducing n � 1 arbitrary-oriented additional constraints (shown by double lines)

leads to an absolutely rigid structure (Fig. 6.11c). It is clear that if one were to

introduce only n � 2 additional constraints, then the structure would be divided

into two distinct parts. They are three-element system and absolutely

rigid disk (shown by a solid line) (Fig. 6.11d). Three-element system has only

1

2

3

…
n

Three - element system
with one degree of freedom

Absolutely rigid disk

a b c d

Fig. 6.11 Kinematical analysis of parabolic polygon
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one degree of freedom. Thus, the displacement of the entire chain depends on the

sum of displacements of the simplest three-element systems. We now focus on

the analysis of the three-element system.

6.5.2.1 Kinematics of the Three-Element Chain

Three-element hinged chain is shown in Fig. 6.12. The support constraint at pointD
prevents vertical displacements, so this scheme has two degrees of freedom. If one

were to introduce additional constraint at point D (shown by double line), then new

structure will have only one degree of freedom, as a bottom part in Fig. 6.11d. We

establish the relationships between displacements of the joints B and C.
The displacement of point B, dB, is directed perpendicular to AB. Displacement

of point C, dC, is perpendicular to CD. Projections of these displacements on the

vertical and horizontal axis are denoted by wB and uB for point B, and wC and uC for

point C. Let the generalized coordinate for three-member system be the vertical

displacement wB. It is clear that

uB ¼ wB tan b1: (6.18)

We express wC and uC in terms of independent variable wB. During displacements

of joint B, the member BC executes planar motion and therefore, from the theorem of

the projections of displacements dB and dC on the line BC, we get

dB cos 90� b1 � b2ð Þ½ 
 ¼ dC cos 90� b2 � b3ð Þ½ 
:

This leads to the formula

dC ¼ dB
sin b1 � b2ð Þ
sin b2 � b3ð Þ ¼

wB

cos b1
� sin b1 � b2ð Þ
sin b2 � b3ð Þ :

+u

+w

A b1

b2

b3

B
C 

D
wC

wB

uC

uB

dB

dCFig. 6.12 Kinematics of the

hinged three-element chain
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From displacement triangle at joint C, we have

wC ¼ dC cos b3 ¼
wB

cos b1
� sin b1 � b2ð Þ
sin b2 � b3ð Þ � cos b3:

After some elementary simplifications, we get

wC ¼ wB
tan b1 � tan b2
tan b2 � tan b3

: (6.19)

Taking into account the first property of the parabolic polygon, we get

wC ¼ �wB. The negative sign is injected on the basis of the rule of signs

(Fig. 6.12). Projection dC onto the horizontal axis give us the relationship

uC ¼ wC tan b3 ¼ �wB tan b3: (6.20)

6.5.2.2 Kinematics of a Two-Element Chain

In the case of symmetrical arch, it is worthwhile to investigate the symmetric and

antisymmetric vibration of the arch separately. For this, we must move to the

equivalent half-arch. In case of symmetric vibration of the three-hinged arch on

the axis of symmetry, it is necessary to introduce a constraint which prevents

horizontal displacements (Fig. 6.13a). In case of antisymmetrical vibration on the

axis of symmetry, one should also include a constraint which prevents vertical

displacements (Fig. 6.13b).

We proceed to construct a hinged chain and extract from it the three-element part

ABCD which is adjacent to the axis of symmetry. This part of structure has two

A
b1

b2

b3

B

C
D

B

C D

wC
uC

E

dD

dD

dC wC
uC

dC

b2b2

b3

b3
A b1

b2

b3

B

C

D

B

C
D

F

a b

Fig. 6.13 Kinematics of the two element chain
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degrees of freedom. If we introduce a constraint which prevents displacements of

the joint B, then we get a subsystem BCD with one degree of freedom (Fig. 6.13).

For such structures, we establish the relationships between the virtual

displacements of the joints C and D.

6.5.2.3 Symmetrical Vibration (Fig. 6.13a)

Virtual displacement dC is directed perpendicularly to BC, and virtual displacement

dD is directed perpendicularly to support constraint DE. It is obvious that

wC ¼ dC cos b2; uC ¼ dC sin b2 and uD ¼ 0: (6.21)

Projections of dC and dD on line CD are equal, so

dC cos 90� b2 þ b3ð Þ ¼ dD cos 90� b3ð Þ:

If follows that

dD ¼ dC
sin b3 � b2ð Þ

sin b3
¼ wC

cos b2

sin b3 � b2ð Þ
sinb3

:

After some elementary simplifications, we get

dD ¼ wC 1� tan b2
tan b3

� �
:

According to property 3ofparabolic polygon, tanb2= tanb3 ¼ 3, andfinallyweget

dD ¼ �2wC: (6.22)

6.5.2.4 Antisymmetric Vibration (Fig. 6.13b)

Virtual displacement dC is directed perpendicularly to BC, a virtual displacement

dD is directed perpendicularly to support constraint DF. It is clear that wD ¼ 0.

Projections of dC and dD onto the line CD are equal, thus

dC cos 90� b2 þ b3ð Þ ¼ dD cos b3:

298 6 Free Vibration of Arches



Thus,

dD ¼ dC
sin b2 � b3ð Þ

cos b3
¼ wC

cos b2

sin b2 � b3ð Þ
cos b3

:

After some elementary simplifications, we get

dD ¼ uD ¼ wC tan b2 � tan b3ð Þ: (6.23)

Kinematical relationships will be used later on.

6.5.3 Inertial Forces

The general method for determining the frequencies and mode shapes of vibration

of elastic structures with lumped masses is discussed in Sect. 6.2. In order to form

the approximate model of the free vibration of parabolic arch, we need to construct

parabolic polygon as shown in Sect. 6.4. For practical purposes for symmetrical and

antisymmetrical vibrations, it is sufficient to calculate two frequencies. For this

purpose, each half-arch should contain three straight members with lumped masses

at the ends (Fig. 6.14).

If vibrations of the structure occur with a frequency o, then each mass is

subjected to the following inertial forces

P1 ¼ o2m1wB; P2 ¼ o2m1uB;

P3 ¼ o2m2wC; P4 ¼ o2m2uC;

P5 ¼ o2m3wD; P6 ¼ o2m3uD:

A

B

C
DP1

P2

P3

P4

P5
P6

l l l

Fig. 6.14 Parabolic polygon

for half-arch. Design diagram

is loaded by the inertial forces

P1 � P6
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Rabinovich’s model of parabolic arch allows us to take into account arbitrary

distribution of mass along the axis of the arch, so computation of lumped mass does

not cause problems. It is then necessary to construct the bending moment diagrams

due to all inertial forces, to choose generalized coordinates, to create unit states,

which corresponds to the generalized coordinates and to calculate the unit

displacements. For the last stage, it is convenient to apply Mohr method in the

form of Vereshchagin or Simpson rule.

The concept of a kinematical chain allows us to significantly simplify the

numerical procedure: instead of computing six displacements we can consider

two partial systems, for each system with one degree of freedom calculate only

one displacement, and for computation of all other displacements apply the

kinematical relationships for the chain.

Additional Parameters for Parabolic Polygon (k ¼ 6) for Different f l=

Rabinovich model for symmetrical parabolic arch of span l and rise f for k ¼ 6 is

presented in Fig. 6.15; lumped masses at the joints are not shown. The arch may be

two-hinged, three-hinged, or hingeless.

Coordinates of the joint points are defined by (6.17), i.e.,

yn ¼ 4f

k2
n k � nð Þ:

In our case,

yB ¼ 4f

62
� 1� 6� 1ð Þ ¼ 5

9
f ; yC ¼ 4f

62
� 2� 6� 2ð Þ ¼ 8

9
f ;

yD ¼ 4f

62
� 3� 6� 3ð Þ ¼ f :

Slopes for each inclined member is defined by (6.17b), i.e.,

tan bn ¼
4f

kl
k � 2nþ 1ð Þ:

A
b1

b2
b3B

D
C

l=6l

yB

yC
yD= f

s1

s2
s3

l l l

C

B

A

Fig. 6.15 Rabinovich model

of symmetric parabolic arch

for the case k ¼ 6
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In our case,

tan b1 ¼
4f

6l
6� 2� 1þ 1ð Þ ¼ 10f

3l
; tan b2 ¼

4f

6l
6� 2� 2þ 1ð Þ ¼ 2

f

l
;

tan b3 ¼
4f

6l
6� 2� 3þ 1ð Þ ¼ 2f

3l
:

The length of each member is defined by (6.17a), i.e.,

sn ¼ l
cos bn

¼ l

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2bn

p
¼ l

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2bn

p
:

If an arch has a constant cross-section and the mass per unit length is m, then the
lumped masses at the joints are

mA ¼ s1
2
m; mB ¼ s1 þ s2

2
m; mC ¼ s2 þ s3

2
m; mD ¼ s3

2
m:

Here mD is the lumped mass at joint D considering portion DC. The same mass

occurs at joint D considering portion DC’, thus the total mass at joint D is equal to

2mD.

For arches with different ratios of f l= and k ¼ 6, parameters

y=l; tan b; s=l; m=ml of the Rabinovich model are presented in Table A.36.

Application of Rabinovich’s method for symmetrical and antisymmetric

vibrations of parabolic arch is shown in Sects. 6.6–6.8.

6.6 Symmetrical Vibrations of Three-Hinged Parabolic Arch

This section shows vibration analysis of a parabolic arch by Rabinovich’s method,

which required the following steps:

• Construction of equivalent design diagram, taking into account the type of

vibration (symmetrical/antisymmetrical).

• Expressing nodal displacements in terms of generalized coordinates.

• Calculation of inertial forces based on expressions of nodal displacements.

• Finding displacements caused by inertial forces.

• Determining frequencies and shape modes of vibration from the frequency

equation.

• Showing bending moment diagrams for internal forces due to free vibration.

These steps are considered below.
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6.6.1 Equivalent Design Diagram. Displacements

In the case of symmetrical vibration, the section on the axis of symmetry is displaced

vertically. Therefore, in the equivalent half-arch, it is necessary to introduce support

constraint which prevents horizontal displacement and allows vertical displacements.

Design diagram of the equivalent half-arch for k ¼ 6 is shown in Fig. 6.16. The

mass mA and horizontal force of inertia which acts on the mass mD are not shown.

This structure has two degrees of freedom. Displacement of the structure may be

considered as a sum of displacements which occur in two systems, each with one

degree of freedom. Such systems are called partial systems [Kar01]. Figure 6.17

demonstrates two partial systems. In Fig. 6.17a, an additional constraint is

introduced at joint D (presented by double line) and in Fig. 6.17b at joint B.
Let the generalized coordinate be the vertical displacements of joints B and C,

i.e., wB and wC. Table 6.4 shows the kinematical relationships for joints B, C, andD.
For example, let us consider total horizontal displacement of joint C. For the first

A

mB

mC
mD

P2

P1 P4

P3

P5

B

C
D

f

yB=5f/9
yC=8f/9

l l l

Fig. 6.16 Design diagram of half-arch for symmetrical vibration

+u

+wA
b1

b3

B
C

D
wC = −wB

wB

uC = –wB tanb3

uB = wB tanb1
uC = wCtanb2

dC

dC

dB

First partial system

IC

A

b2 B

C D

wC

E

wD = –2wC

Second partial system

IC

a b

Fig. 6.17 Displacements in the partial systems, IC – introduced constraints
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partial system (Fig. 6.17a) u
ð1Þ
C ¼ �wB tan b3, while for the second partial system

(Fig. 6.17b) u
ð2Þ
C ¼ þwC tan b2

According to Table 6.4, the inertial forces which act on the half-arch are

P1 ¼ o2mBwB; P2 ¼ o2mBwB tan b1;

P3 ¼ o2mC �wB þ wCð Þ; P4 ¼ o2mC �wB tan b3 þ wC tan b2ð Þ;
P5 ¼ o2mD �2wCð Þ:

Table A.36 allows us to determine the values of the lumped masses in terms of

rise–span ratio. In particularly, for a uniform arch with parameter

f l= ¼ 0:5[Rab58], we get

mB ¼ 0:280m l; mC ¼ 0:206m l; mD ¼ 0:0880m l:

Corresponding forces of inertia in terms of generalized coordinates becomes

P1 ¼ 0:280o2m lwB; P2 ¼ 0:280 � 1:667wB � o2m l ¼ 0:4667o2m lwB;

P3 ¼ 0:206o2m l �wB þ wCð Þ; P4 ¼ 0:206o2m l �0:3333wB þ 1:00� wCð Þ;
P5 ¼ 0:0880o2m l �2wCð Þ ¼ �0:176o2m lwC:

Now let us determine the displacements in the direction of the generalized

coordinates wB and wC. For this, we need to construct the bending moment diagram

caused by all inertial forces Pi.

The vertical and horizontal reactions at A (Fig. 6.18) caused by the forces of

inertia are

V ¼ P1 þ P3 þ P5 ¼ 0:074wB þ 0:030wCð Þo2m l;

H ¼ 1

f
V � 3l� P1 � 2l� P3 � lð Þ � 1

f
P2 � f � yBð Þ � P4 � f � yCð Þ½ 
:

Since for points B and C, we have yB ¼ 5f 9= ; yC ¼ 8f 9= (Fig. 6.16), then for

horizontal reactions we get

H ¼ �0:2438wB � 0:062wCð Þo2m l:

Table 6.4 Symmetrical vibrations: Total displacements of the joints B, C, and D in terms of

displacements of the partial systems [Rab58]

Joint

Total vertical

displacement w0
Total horizontal

displacement u0 Notes

B w0
B ¼ wB u0B ¼ wB tan b1 Geometrical representation

of these formulas is shown

in Figs. 6.12 and 6.17a, b

C w0
C ¼ �wB þ wC u0C ¼ �wB tan b3 þ wC tanb2

D w0
D ¼ �2wC u0D ¼ 0
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The bending moments at joints B and C are

MB ¼ Vl� HyB ¼ 0:4803wB þ 0:1333wCð Þo2l m l;

MC ¼ V2l� HyC � P1l� P2 yC � yBð Þ
¼ 0:0514wB þ 0:2253wCð Þo2l m l: (6.24)

Bending moment diagram caused by all inertial forces is shown in Fig. 6.18.

Ordinates (6.24) of this diagram are functions of generalized coordinates wB and wC.

Unit states, which correspond to the generalized coordinates and the

corresponding bending moment diagrams, are shown in Fig. 6.19.

Reactions and bending moments for both conditions are

State 1.

V1 ¼ 1; H1 ¼ l
f
; MB1 ¼ V1l� H1

5

9
f ¼ 4

9
l ¼ 2

27
l;

MC1 ¼ V12l� H1

8

9
f ¼ 1

54
l:

V

A

P2

P1 P4

P3

P5

B

C
D

H

MB

MC

MP

H

Fig. 6.18 Bending moment diagram caused by all inertial forces Pi
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H1 H2
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P2=1

MB1

MB2
MC1 MC2

M1

H1=l/f H2=2 l/f

A

B

C
D

M2

a b

Fig. 6.19 Unit states and corresponding bending moment diagrams
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State 2.

V2 ¼ 1; H2 ¼ 2l
f
; MB2 ¼ � 1

54
l; MC2 ¼ 1

27
l:

Now we can calculate the displacement in direction of each generalized coordi-

nate caused by all the forces of inertia. Vertical displacement of joint B is

w0
B ¼

XZ
MPM1

EI
ds:

Multiplication of diagrams along s1 and s3 is done by formula “triangle by

triangle” and along s2 using the trapezoid formula, so

w0
B ¼

s1
3
MBMB1þ

s2
6

2MBMB1þ2MCMC1þMBMC1þMCMB1ð Þþ s3
3
MCMC1

h i 1

EI
:

If we take into account the expressions for bending momentsMB andMC caused

by inertial forces (Fig. 6.18), then we get the following expression for total

displacement in terms of these moments

w0
B ¼ 4

27
s1 þ 1

6
s2

� �
MB þ 1

9
s2 þ 1

27
s3

� �
MC

� �
l
EI

¼ 8s1 þ 9s2ð ÞMB þ 6s2 þ 2s3ð ÞMC½ 
 l
54EI

: (6.25)

Vertical displacement of joint C caused by all inertial forces is

w0
C ¼ �wBþwCð Þ¼

XZ
MPM2

EI
ds

¼ s1
3
MBMB2þ

s2
6

2MBMB2þ2MCMC2þMBMC2þMCMB2ð Þþ s3
3
MCMC2

h i 1

EI
:

Upon rearrangement, this result can be rewritten as

w0
C ¼ � 1

27
s1MB þ 1

18
s2 þ 2

27
s3

� �
MC

� �
l
EI

¼ �2s1MB þ 3s2 þ 4s3ð ÞMC½ 
 l
54EI

: (6.26)

All other displacements may be calculated using kinematical relationships

shown in Table 6.4. Note that (6.25) and (6.26) are valid for symmetric arches

with any ratio f/l.
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6.6.2 Frequencies and Mode Shape of Vibrations

Expressions (6.24) for MB and MC should be substituted into (6.25), take into

account the relationship w0
B ¼ wB (Table 6.4) and the values for s1 � s3 according

to Table A.36 for a given rise–span ratio. As a result, we obtain [Rab58]

wB ¼ 0:0436wB þ 0:019018wCð Þo
2m l 2 l2

EI
:

If we introduce the dimensionless frequency parameter

EI

o 2m l 2 l2
¼ y ! o ¼ 1ffiffiffi

y
p

ll

ffiffiffiffiffi
EI

m

s
¼ 1ffiffiffi

y
p 1

l
6
l

ffiffiffiffiffi
EI

m

s
¼ 1ffiffiffi

y
p 6

l2

ffiffiffiffiffi
EI

m

s
;

then the previous equation may be rewritten as follows

0:0436� yð ÞwB þ 0:019018wC ¼ 0: (6.27)

Similarly, if (6.24) for MB and MC are substituted into (6.26), then take into

account the relationship w0
C ¼ �wB þ wC (Table 6.4) and the values for s1 � s3

according to Table A.36, we obtain

�0:00442þ yð ÞwB þ 0:00429� yð ÞwC ¼ 0: (6.28)

Thus, for generalized coordinates wB and wC, we have obtained two homoge-

neous linear algebraic equations (6.27) and (6.28) with respect to wB and wC.

Nontrivial solution of these equations presents the frequency equation

det
0:0436� y 0:019018

�0:00442 þ y 0:00429� y

� �
¼ 0:

The roots of this equation in decreasing order are

y1 ¼ 0:06257; y2 ¼ 0:004333:

The frequencies of free vibration of an arch in increasing order become

o1 ¼ 1ffiffiffiffiffi
y1

p 6

l2

ffiffiffiffiffi
EI

m

s
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:06257
p 6

l2

ffiffiffiffiffi
EI

m

s
¼ 23:98

l2

ffiffiffiffiffi
EI

m

s
;

o2 ¼ 1ffiffiffiffiffi
y2

p 6

l2

ffiffiffiffiffi
EI

m

s
¼ 91:18

l2

ffiffiffiffiffi
EI

m

s
:
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6.6.2.1 First Form of Symmetrical Vibrations

Equations (6.27) and (6.28) do not allow us to find wB and wC. However, we can find

the ratios between generalized coordinates. Since the determinant is equal to zero,

(6.27) and (6.28) are dependent, and the ratio may be calculated from any equation.

Vertical Displacements

From (6.27) and (6.28), respectively, we get

wC

wB
¼ � 0:0436� y1

0:019018
¼ � 0:0436� 0:06257

0:019018
¼ 0:997;

wC

wB
¼ ��0:00442þ y1

0:00429� y1
¼ ��0:00442þ 0:06257

0:00429� 0:06257
¼ 0:997:

According to Table 6.4, the ratio of total vertical displacements of the joint

points are

w0
C

wB
¼ �wB þ wC

wB
¼ �1þ wC

wB
¼ �1þ 0:997 ¼ �0:003;

w0
D

wB
¼ �2wC

wB
¼ �2 � 0:997 ¼ �1:994:

The vertical displacements, which correspond to the first mode of symmetrical

vibration, are shown in Fig. 6.20a. If the mass B is displaced upward, then masses C
and D are displaced downward, and vice versa.

A

a b

mB

mC
2mD

B

C
D

1.994

0.003

1.000

w1

1.667

0.664C

B

A

Fig. 6.20 First form of symmetrical vibration: (a) vertical displacements; (b) horizontal

displacements
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Horizontal Displacements

Assume that wB ¼ 1 and determine the total horizontal displacements of the joints.

According to Table 6.4, we have

u0B ¼ wB tan b1 ¼ 1� 1:667 ¼ 1:667;

u0C ¼ �wB tan b3 þ wC tan b2 ¼ �1� 0:333þ 0:997� 1:000 ¼ 0:664;

u0D ¼ 0:00:

Horizontal displacements, which correspond to the first form of symmetrical

vibrations, are shown in Fig. 6.20b. It can be seen that masses which belongs to the

left and right half-arches are displaced in the opposite direction, while masses

which belong to a particular half-arch are all displaced in one direction. For a

given ratio f l= ¼ 0:5, even for symmetrical vibration, the horizontal and vertical

displacements of the joints are of the same order. In particular, for joint B we get

u0B ¼ 1:667wB.

6.6.2.2 Second Form of Symmetrical Vibrations

Vertical Displacements

From (6.27) and (6.28), respectively, we have

wC

wB
¼ � 0:0436� y2

0:019018
¼ � 0:0436� 0:004333

0:019018
¼ �2:065;

wC

wB
¼ ��0:00442 þ y2

0:00429� y2
¼ ��0:00442þ 0:004333

0:00429� 0:004333
¼ �2:023:

The relative error is about 2.0%. Assume, that wC=wB ¼ �2:044.
According to Table 6.4, the ratio of total vertical displacements of the joint

points are

w0
C

wB
¼ �wB þ wC

wB
¼ �1þ wC

wB
¼ �1� 2:044 ¼ �3:044;

w0
D

wB
¼ �2wC

wB
¼ �2 � �2:044ð Þ ¼ 4:088:

The second form of vertical displacement is shown in Fig. 6.21a.

If masses B and D are displaced upwards, then mass C is displaced downwards,

and vice versa.
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Horizontal Displacements

Assume that wB ¼ 1 and determine the total horizontal displacements of the joints.

For this, we apply the formulas according to Table 6.4. The vertical and horizontal

displacements of the joint points are presented in Table 6.5.

Horizontal displacements which arise at the second mode of symmetrical vibra-

tion are shown in Fig. 6.21b.

Orthogonality condition of the form of vibration can be verified by the formula

X
miw

0
1w

0
2 þ

X
mi u

0
1u

0
2 ¼ 0:

3.044

4.088

1.000

w2

1.667

A

mB

mC
2mD

B

C
D

2.377

a b
C

B

A

Fig. 6.21 Second form of symmetrical vibration: (a) vertical displacements; (b) horizontal

displacements

Table 6.5 Symmetrical vibrations: the total vertical and horizontal displacements of the joints B,
C, and D of the arch

Mode

Total vertical

displacement

of the joints w0 Total horizontal displacement of the joints u0

First B w0
B ¼ wB ¼ 1 u0B ¼ wB tanb1 ¼ 1� 1:667 ¼ 1:667

C w0
C ¼ �wB þ wC

¼ �1þ 0:997 ¼ �0:003

u0C ¼ �wB tanb3 þ wC tan b2
¼ �1� 0:333þ 0:997� 1:000 ¼ 0:664

D w0
D ¼ �2wC ¼ �1:994 u0D ¼ 0:00

Second B w0
B ¼ wB ¼ 1 u0B ¼ wB tanb1 ¼ 1 � 1:667 ¼ 1:667

C w0
C ¼ �wB þ wC

¼ �1� 2:044 ¼ �3:044

u0C ¼ �wB tanb3 þ wC tan b2
¼ �1� 0:333þ �2:044ð Þ � 1:000 ¼ �2:377

D w0
D ¼ �2wC ¼ 4:088 u0D ¼ 0:00
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Here the subscripts 1 and 2 represent the number of the mode of vibration;

summation is performed over the index i. In the expanded form, this expression

becomes

0:280� 1� 1þ 0:280� 1:667� 1:667

þ 0:206� �0:003ð Þ � �3:044ð Þ þ 0:206� 0:664� �2:377ð Þ
þ 0:088� �1:994ð Þ � 4:088 ¼ 1:05997� 1:0424:

The difference between positive and negative terms is 0.01757; the relative error

is approximately 1.6%.

6.6.3 Internal Forces for First and Second Modes of Vibration

Now we can determine the bending moments which arise at the first and second

mode of the free vibration. For this, we can use two approaches.

First Approach

Bendingmoments at joints B andC, caused by inertial forces, according to (6.24) are

MB ¼ 0:4803wB þ 0:1333wCð Þo2l m l;

MC ¼ 0:0514wB þ 0:2253wCð Þo2l m l:

First Form of Vibration

y1 ¼ 0:06257. Let wB ¼ 1, then wC ¼ 0:997 and for bending moments we get

MB ¼ 0:4803wB þ 0:1333wCð Þ 1

y1

EI

ml2l2
m ll;

¼ 0:4803� 1:0þ 0:1333� 0:997ð Þ 1

0:06257

EI

ll
¼ 15:98

6EI

l2
¼ 58:80

EI

l2
;

MC ¼ 0:0514� 1:0þ 0:2253� 0:997ð Þ 1

0:06257

6EI

l2
¼ 26:47

EI

l2
:
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Second Form of Vibration

y2 ¼ 0:004333. Similarly, let wB ¼ 1, then wC ¼ �2:044 and for bending

moments, we get

MB ¼ 0:4803wB þ 0:1333wCð Þ 1

y2

EI

ml2l2
m ll;

¼ 0:4803 � 1:0� 0:1333 � 2:044ð Þ 1

0:004333

6EI

l2
¼ 287:80

EI

l2
;

MC ¼ 0:0514 � 1:0� 0:2253 � 2:044ð Þ 1

0:004333

6EI

l2
¼ �566:50

EI

l2
:

Corresponding bendingmoment diagrams are shown in Fig. 6.22; (factor ofEI l2
�

).

Second Approach

Equations (6.25) and (6.26) may be solved with respect to the momentsMB andMC

MB ¼ 36EI
½ 3s2 þ 4s3ð Þw0

B � 2 3s2 þ s3ð Þw0
C


lD0

;

MC ¼ 36EI
½2s1w0

B þ 8s1 þ 9s2ð Þw0
C


lD0

; D0 ¼ 4s1 s2 þ s3ð Þ þ s2 3s2 þ 4s3ð Þ:

If the values s1 ¼ 0:324l; s2 ¼ 0:236l; s3 ¼ 0:176l (Table A.36) are

substituted into expression for MB, then we get

MB ¼ 36EI

l2
1:6283w0

B � 2:0388w0
Cð Þ:

According to Table 6.5, for the first form of vibration, we get w0
B ¼ 1:0; w0

C ¼
�0:003. Therefore, the bending moment at point B becomesM

ð1Þ
B ¼ 58:84EI l2

�
.

A

B
C D

B

A

C
58.80

26.47

A

B

C
D

B

A

C
287.80

566.50

First form
q1= 0.06257

Second form
q2= 0.004333

Fig. 6.22 Bending moment diagrams for the first and second forms of symmetrical vibration
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For the second form of vibration, w0
B ¼ 1:0; w0

C ¼ �3:037. Therefore,M
ð2Þ
B ¼

281:5EI l2
�

.

Similarly, we can calculate the bending moments at point C for each form of

vibration.

Bending moment diagrams Mð1Þ and Mð2Þ for first and second form of vibration

satisfy the orthogonality condition

XZ D

A

Mð1ÞMð2Þ

EI
ds ¼ 0:

Multiplication of both diagrams should be performed via the Vereshchagin and

Simpson formulas.

The frequencies, displacements, and bending moments for symmetric vibration

of parabolic three-hinged uniform arches with different ratios f l= are presented in

Tables A.37, A.38, A.39, and A.40 which serve for antisymmetrical vibrations.

6.7 Antisymmetrical Vibration of Three-Hinged

Parabolic Arch

As in the previous paragraph, we will consider equivalent design diagram, find

displacements caused by inertial forces, and determine frequencies and shape of

antisymmetrical vibrations for three-hinged parabolic arch.

6.7.1 Equivalent Design Diagram. Displacements

In the case of antisymmetrical vibration, the section on the axis of symmetry is

displaced in the horizontal direction. Therefore, in the equivalent half-arch, it is

necessary to introduce a support constraint which prevents vertical displacement

and allows horizontal displacement. Rabinovich’s model for k ¼ 6 is shown in

Fig. 6.23; the mass mA is not shown.

This structure has two degrees of freedom. As in the case of symmetrical

vibration, displacement of structure may be considered as a sum of displacements,

which occurs in two partial systems, each with one degree of freedom. Note that in

the case of antisymmetrical vibration of a two-hinged arch, Rabinovich’s model

does not differ from design diagram in Fig. 6.23.

Figure 6.24a presents partial system with additional constraint at the joint D and

the partial system in Fig. 6.24b contains additional constraint at joint B; all

introduced constraints are shown by doubled lines. It can be seen that the first
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partial system for symmetrical and antisymmetrical vibrations coincide with each

other (Figs. 6.17a and 6.24a).

Let the generalized coordinates be the vertical displacements of the joints B and C,
i.e.,wB andwC. Table 6.6 presents the kinematical relationships for joints B,C, andD.

According to Table 6.6, the inertial forces which act on the half-arch are

P1 ¼ o2mBwB; P2 ¼ o2mBwB tan b1;

P3 ¼ o2mC �wB þ wCð Þ; P4 ¼ o2mC �wB tan b3 þ wC tan b2ð Þ;
P5 ¼ 0; P6 ¼ o2mDwC tan b2 � tan b3ð Þ:

Inertial forces in terms of generalized coordinates ( f ¼ 0.5 l) become

A

mB

mC

mD

P2

P1 P4

P3

P5

P6

B

C
D 

H

V

f

yB=5f/9 yC=8f/9s1

s2

s3

l l l

Fig. 6.23 Design diagram of the half-arch for antisymmetric vibration

+u

+wA b1

b3

B
C

D
wC = –wB

wB uB = wB tanb1
uC = wC tanb2

dD = uD = wC (tanb2 - tanb3)

uC=–wB tanb3

dC

dB

First partial system

IC

A

b2

b3

B

C
D dD

dC

Second partial system

IC

wC

a b

Fig. 6.24 Partial systems for the analysis of antisymmetrical vibration; IC – introduced constraints
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P1 ¼ 0:280o2m lwB; P2 ¼ 0:280� 1:667o2m lwB ¼ 0:4667o2m lwB;

P3 ¼ 0:206o2m l �wB þ wCð Þ; P4 ¼ 0:206o2m l �0:3333wB þ 1:00� wCð Þ;
P5 ¼ 0; P6 ¼ 0:088o2m l 1� 0:333ð ÞwC ¼ 0:05867o2m lwC:

Now we can calculate the displacements caused by all inertial forces. The

reactions of support A and bending moments at joints B and C (Fig. 6.25) are

H ¼ P2 þ P4 þ P6;

V ¼ 2

3
P1 þ 1

3
P3 � 5

27

f

l
P2 � 8

27

f

l
P4 � 1

3

f

l
P6;

MB ¼ Vlþ H
5

9
f ¼ V þ H

5

9

f

l

� �
l;

MC ¼ V � 2lþ 8

9
fH � P1l� P2

f

3
¼ 2V þ 16

3

f

l
H � P1 � 2f

l
P2

� �
l:

If we take into account the expressions for inertial forces, then bending moments

at joints B and C may be presented in terms of generalized coordinates wB and wC,

as follows

Table 6.6 Antisymmetric vibrations: total displacements of the joints B, C, and D in terms of

displacements of the partial systems

Joint

Total vertical

displacement

Total horizontal

displacement Notes

B w0
B ¼ wB u0B ¼ wB tan b1 See Fig. 6.12

C w0
C ¼ �wB þ wC u0C ¼ �wB tanb3 þ wC tanb2 Geometrical representation

is shown in Fig. 6.24a, b

D w0
D ¼ 0 u0D ¼ wC tan b2 � tan b3ð Þ

A

P2

P1 P4

P3
P6

B

C
D

H

V

MB

MC

Mtotal

VD

Fig. 6.25 Bending moment

diagram due to all inertial

forces
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MB ¼ V þ H
5

9

f

l

� �
l ¼ 0:58293wB þ 0:26801wCð Þo2m ll;

MC ¼ 2V þ 16

3

f

l
H � P1 � 2f

l
P2

� �
l ¼ 0:1538wB þ 0:35956wCð Þo2m ll:

Let us determine the displacements in direction of P1 and P6. Corresponding unit

states and bending moment diagrams are shown in Fig. 6.26.

The total vertical displacement w0
B in direction P1 and horizontal displacement

u0D in direction P6 is

EIw0
B ¼

XZ
MtotalM1ds ¼ l

18
4s1 þ 5s2ð ÞMB þ 4s2 þ 2s3ð ÞMC½ 
;

EIu0D ¼
XZ

MtotalM6ds ¼ l
9

2s1 þ 3s2ð ÞMB þ 3s2 þ 2s3ð ÞMC½ 
:

These displacements are caused by all inertial forces. Substitution of si,MB, and

MC into these formulas, allow us to present the displacements in terms of

generalized coordinates wB and wC, as follows

EIwB ¼ o2m l2l2

18
½ 4� 0:324þ 5� 0:236ð Þ 0:58293wB þ 0:26801wCð Þ

þ 4� 0:236þ 2� 0:176ð Þ 0:1538wB þ 0:35956wCð Þ

¼ o2m l2l2 0:091254wB þ 0:06275wCð Þ:

Joint B is characterized by only one of the generalized coordinate (see Fig. 6.24

and Table 6.6) so w0
B ¼ wB, therefore, the prime superscript at the displacement in

the left part of equation above is omitted.

Since

u0D ¼ wC tan b2 � tan b3ð Þ ¼ wC
f

3l
� f

9l

� �
¼ 4f

3l
wC;

D

A

P1=1

B

C

2/3

l/3

M1

1/3
2l/3

A

B

C
D

1

2f / l=1

P6=1

M6

2f / l=12l/3

2l/3

Fig. 6.26 Unit states and corresponding bending moment diagrams
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then

EIu0D ¼ EI
4f

3l
wC

¼ o2m l2l2

9
ð2� 0:324þ 3� 0:236½ Þ 0:58293wB þ 0:26801wCð Þ

þ 3� 0:236þ 2� 0:176ð Þ 0:1538wB þ 0:35956wCð Þ

¼ o2m l2l2 0:10594wB þ 0:08273wCð Þ:

6.7.2 Frequencies and Mode Shape of Vibrations

If we denote y ¼ EI=o2m l2l2, and take into account yð4=3Þðf=lÞwC ¼ yð2=3ÞwC,

then the two last equations may be rewritten as follows

0:09125� yð ÞwB þ 0:06275wC ¼ 0;

0:10594wB þ 0:08273 � 2

3
y

� �
wC ¼ 0: (6.29)

Nontrivial solution of the set of homogeneous linear algebraic equations leads to

the frequency equation

det
0:09125� y 0:06275
0:10594 0:08273� 2

3
y

����
���� ¼ 0:

The roots of this equation, in decreasing order are y1 ¼ 0:20887; y2 ¼ 0:006475.
The frequencies of free vibration in increasing order are

o1 ¼ 1ffiffiffiffiffi
y1

p
ll

ffiffiffiffiffi
EI

m

s
¼ 1ffiffiffiffiffi

y1
p 6

l2

ffiffiffiffiffi
EI

m

s
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:20887
p 6

l2

ffiffiffiffiffi
EI

m

s
¼ 13� 128

l2

ffiffiffiffiffi
EI

m

s
;

o2 ¼ 1ffiffiffiffiffi
y2

p 6

l2

ffiffiffiffiffi
EI

m

s
¼ 74:56

l2

ffiffiffiffiffi
EI

m

s
:

Mode Shapes of Antisymmetrical Vibration

First mode. For the first eigenvalue y1 ¼ 0:20887 from the first equation of (6.29),

we have
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wC

wB
¼ � 0:09125� y

0:06275
¼ � 0:09125� 0:20887

0:06275
¼ 1:874:

Second mode. For the second eigenvalue y2 ¼ 0:006475 from the first equation of

(6.29), we have

wC

wB
¼ � 0:09125� y

0:06275
¼ � 0:09125� 0:006475

0:06275
¼ �1:351:

The same results may be obtained from the second equation of the system (6.29).

Computation of the total displacements of the joints is presented in Table 6.7.

We assume that wB ¼ 1.

The total displacements for the first and second forms of antisymmetric vibration

are shown in Fig. 6.27.

Verification of orthogonality condition and computation of internal forces for

each mode of vibration should be performed as in the case of symmetrical vibration

(see Sects. 6.5.2–6.5.3).

The frequencies, eigenfunctions, and bending moments for antisymmetric vibra-

tion of parabolic three-hinged and two-hinged uniform arches with different ratios

of f l= are presented in Tables A.39 and A.40.

Tables A.41 and A.42 serve for symmetric vibration of parabolic two-hinged

uniform arches with different ratios of f l= .

Studies have shown [Rab58] that for two-hinged arches with the same f l= ,

the smallest frequency of vibration for circular and parabolic arches satisfy the

condition ocirc<oparab. This happens because the length of parabolic arch is less

Table 6.7 Antisymmetrical vibrations: total vertical and horizontal displacements of the joints B,
C, and D of the arch

Mode Joint Total vertical displacement w0 Total horizontal displacement u0

First B w0
B ¼ 1 u0B ¼ wB tanb1 ¼ 1:667

C
w0

C ¼ wB �1þ wC

wB

� �

¼ �1þ 1:874 ¼ 0:874

u0C ¼ wB � tanb3 þ
wC

wB
tan b2

� �

¼ �0:333þ 1:874� 1:0 ¼ 1:541

D w0
D ¼ 0 u0D ¼ wC

wB
tan b2 � tanb3ð Þ

¼ 1:874� 1:0� 0:333ð Þ ¼ 1:249

Second B w0
B ¼ 1 u0B ¼ wB tanb1 ¼ 1:667

C
w0

C ¼ wB �1þ wC

wB

� �

¼ �1� 1:351 ¼ �2:351

u0C ¼ wB � tanb3 þ
wC

wB
tan b2

� �

¼ �0:333� 1:351� 1:0 ¼ �1:684

D w0
D ¼ 0 u0D ¼ wC

wB
tan b2 � tanb3ð Þ

¼ �1:351 � 1:0� 0:333ð Þ ¼ �0:901
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than the length of the circular arch. For small values of f l= � 0:1ð Þ we get

ocirc ¼ 0:97� 0:98ð Þoparab: If f l= ¼ 0:5, we get ocirc ¼ 0:69oparab. Indeed, for

central angle 2a ¼ p of a circular arch, we have ocirc
antis ¼ 2:266=R2

ffiffiffiffiffiffiffiffiffiffi
EI=m

p ¼
ð9:064=l2Þ ffiffiffiffiffiffiffiffiffiffi

EI=m
p

, while for parabolic arch oparab
antis ¼ 13:13=l2

ffiffiffiffiffiffiffiffiffiffi
EI=m

p
.

6.8 Parabolic Two-Hinged Uniform Arch

This section shows vibration analysis of symmetrical two-hinged arch based on

Rabinovich’s method.

Since the arch is symmetric, the symmetrical and antisymmetrical vibrations are

considered separately.

A feature of this analysis is that for symmetrical vibrations, the equivalent half-

arch is a redundant structure.

2mD

A

mB

mC
B

C
D

2.351

1.00

1.667

0.901
1.884

w2

2mD

A

mB

mC
B

C
D

0.8741.00

1.667

1.249
1.541

w1

C

B

A

C

B

A

Fig. 6.27 First and second forms of antisymmetrical vibration
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6.8.1 Symmetrical Vibration

Design diagram of equivalent half-arch is shown in Fig. 6.28a. At point D on the

axis of symmetry is a constraint which prevents horizontal and angular

displacements. This structure is statically indeterminate of the first degree. Let

the primary unknown be moment X1 at support D. Bending moment diagram in

primary system of the force method caused by X1 ¼ 1 is shown in Fig. 6.28b. This

diagram does not depend on the ratio f/l.
Canonical equation of the force method is d11X1 þ D1P ¼ 0. Unit displacement

is

EId11 ¼
XZ

M1 �M1ds

¼ s1
3

5

9

� �2

þ s2
6

2� 5

9

� �2

þ 2� 8

9

� �2

þ 2� 5

9
� 8

9

" #

¼ 25

243
s1 þ 129

243
s2 þ 434

81
s3:

For an arch with a ratio of f=l ¼ 0:5 [Rab58], we get

EId11 ¼ 25

243
� 0:324þ 129

243
� 0:236þ 434

81
� 0:178

� �
l ¼ 0:3157l:

For computation of the free term, the bending moment diagram in Fig. 6.18

should be used:

f

A

mB

mC mD
B

C

D

yB=5f/9 yC=8f /9

s1

s2

s3

A

B

C

1/f

1/fD

X1=15/9

8/9

M1

a b

l l l

Fig. 6.28 (a) Design diagram of the half-arch for symmetrical vibration; (b) primary system and

bending moment diagram due to X1 ¼ 1

6.8 Parabolic Two-Hinged Uniform Arch 319



EID1P ¼
XZ

M1�MPds;

¼ s1
3
MB �5

9

� �
þ s2

6
2MB �5

9

� �
þ2MC �8

9

� �
þMB �8

9

� �
þMC �5

9

� �� �

þ s3
3

2MC �8

9

� �
þMC �1ð Þ

� �

¼� 1

54
10s1þ18s2ð ÞMBþ 21s2þ25s3ð ÞMC½ 
:

Expressions (6.24) for moments MB and MC caused by the all inertial forces

allow us to present the free term of canonical equation in terms of wB and wC

EID1P ¼ �o2ml2l
54

�
ð10� 0:324þ 18� 0:236Þ ð0:4803wB þ 0:1333wCÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MB; ð6:24Þ

þ 21� 0:236þ 25 � 0:176ð Þ 0:0514wB þ 0:2253wCð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MC; 6:24ð Þ

�

¼ � 0:07550wB þ 0:05750wCð Þo2ml2l:

Primary unknown becomes

X1 ¼ �D1P

d11
¼ 0:2391wB þ 0:1821wCð Þo2mll:

The bending moments for a redundant structure is determined by the formula

M ¼ M1X1 þMP.

At the joints B, C, and D,the bending moments are

M0
B ¼ 0:4803wB þ 0:1333wCð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MB

� 5

9|{z}
M1

0:2391wB þ 0:1821wCð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X1

2
6664

3
7775 o2mll

¼ 0:3475wB þ 0:0321wCð Þo2mll;

M0
C ¼ 0:0514wB þ 0:2253wCð Þ � 8

9
0:2391wB þ 0:1821wCð Þ

� �
o2mll

¼ �0:1611wB þ 0:1821wCð Þo2mll;

M0
D ¼ � X1 ¼ � 0:2391wB þ 0:1821wCð Þo2mll:

(6.30)
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Frequency Vibration

The total vertical displacements of the joints B and D are

Joint B

EIw0
B ¼ EIwB ¼

XZ
MM1ds

¼ l
54

8s1 þ 9s2ð Þ MB|{z}
M0

B

þ 6s2 þ 2s3ð ÞMC þ 2s3MD

2
4

3
5;

where M is a just constructed bending moment diagram (6.30) of the redundant

half-arch, and diagram M1 is shown in Fig. 6.19a.

Joint D

EIw0
D ¼

XZ
MM5ds ¼ � l

9
2s1 þ 3s2ð ÞMB þ 3s2 þ 2s3ð ÞMC þ s3MD½ 
;

where bending moment diagram M5 is shown in Fig. 6.29.

The remainder of the procedures is the same as in the case of three-hinged arch.

Substitution of si for a given span–rise ratio, the moments MB, MC, and MD into

formulas for displacements according to (6.30), and taking into account a kinematical

relationship w0
D ¼ �2wC allow us to construct the following expressions

EIwB ¼ a11wB þ a12wCð Þo2ml2l2;

2EIwC ¼ a21wB þ a22wCð Þo2ml2l2:

We then introduce the dimensionless parameter y ¼ EI=ðo2m l2l2Þ for fre-

quency of the free vibration. For determination of the generalized coordinates wB

and wC, we get a system of linear homogeneous equations

A

B

C

3l /f

3l /fD

P5=1

2l /3

2l /3

M5

1

)

Fig. 6.29 Bending moment

diagram due to P5 ¼ 1
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a11 � yð ÞwB þ a12wC ¼ 0;

a21wB þ a22 þ 2yð ÞwC ¼ 0:

where, according to Rabinovich et al. [Rab58], we have a11 ¼ 0:02351; a12 ¼
0:003692; a21 ¼ 0:02871; a22 ¼ �0:008745.

Nontrivial solution presents the frequency equation. Construction of the mode of

shape vibration, verification of the orthogonality condition, computation of the

internal forces according to the first and second modes should be done as in the

case of a three-hinged arch.

Tables A.41 and A.42 contain the frequencies of symmetric vibrations,

eigenfunctions, and bending moments for two-hinged arches according to the first

and second mode for different ratios f/l.
In order to form design diagram of the arch in the case of antisymmetrical

vibration, we need to introduce a constraint which prevents the vertical displace-

ment on the axis of entire arch. Such scheme had been considered previously for the

analysis of antisymmetrical vibration of a three-hinged arch. Therefore, frequencies

of free vibration, mode shape vibration, and internal forces for three-hinged and

two-hinged arches coincide (see Tables A.39 and A.40).

Extensive numerical material for different shapes of arches (catenary, cycloid,

spiral, parabola, etc.) are presented in [Rom72].

6.8.2 Advantages and Disadvantage of the Rabinovich’ Method

1. Rabinovich’ method provides effective dynamical analysis of arches. Effective-

ness of the method is based on two fundamental propositions. The first proposi-

tion is associated with a very simple construction of an approximate model of the

arch: the axis of the arch is replaced by a set of inscribed straight members with

the equal horizontal projection. The second proposition is based on algebraic

transformations over the fundamental relationships for displacements of the

joints of a hinged chain; the structure and parameters of this chain are deter-

mined by the model of the arch.

2. Effectiveness of the method can be traced on the analysis of the approximate

model of the arch, presented in Sect. 6.5. This model contains three masses and

has two degrees of freedom. Its six displacements in the directions of the inertial

forces can be represented as a linear combination of two independent kinematic

parameters. Therefore, it suffices to calculate only two displacements, while for

the calculation of others we can apply the kinematical relationships. This

procedure may also be simplified by considering two partial systems, each

with one degree of freedom.

3. Rabinovich’s method allows us to perform analysis of nonsymmetrical arches

with arbitrary distributed masses and arbitrary law of change of flexural stiffness
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along the axis of the arch. The method leads to approximate results because the

curvilinear axis of the arch is replaced by a set of chords.

4. Rabinovich’s method admits different versions of the definition of the

eigenvalues and eigenforms. Instead of two independent kinematic parameters

(displacement joints of a kinematical chain), it is possible to take two ordinates

of bending moments. Any version leads to the system of two linear homoge-

neous algebraic equations; they allow us to find the frequencies of free vibrations

and corresponding shapes of vibrations. Next advantage of the Rabinovich’s

method is the following: the method allows us to easily investigate the transient

vibration of the arch, to construct the dynamical bending moment diagram for

any type of excitations, and to calculate the dynamical coefficients. This proce-

dure is shown in the next chapter.

5. Construction of a Rabinovich’s model and algorithms for determining the

frequencies and mode shapes of vibrations are much easier, clearer, and more

efficient than those which discussed in the method of Smirnov. However,

limitation of the Rabinovich’s method is associated with only the shape of the

arch, which is parabolic, while Smirnoff’s method does not impose limitation on

the shape of the axis of an arch.

6. It should be mentioned that the Snitko method [Sni57] may be used for deter-

mining frequencies of free vibrations of arches. This method uses the concept of

kinematical chain. However, Snitko method is not tied to a parabolic arch and

the way of its approximation (as in the case of Rabinovich’s model). The method

consists of the following: constructing a kinematical chain of the arch and

deriving its kinematical relations; in the case of the parabolic arch as a special

case, we can use Rabinovich’s kinematical relationships. For computation of the

frequency of free vibration, it is necessary to construct expression for work done

by the inertial forces and the joint moments along the virtual displacements. The

concept of kinematical chain also may be applied for stability problems, as

shown in [Kar10].

6.9 Parabolic Nonuniform Hingeless Arch

Symmetrical parabolic arch with span l and rise f is shown in Fig. 6.30. Assume that

Ix ¼ IC cos’x= , where ’x is the angle between horizontal and the tangent to the axis

of the arch at the section with coordinate x; IC and Ix are moment of inertia at the

crown and at section x away from crown, respectively.

l

f

x

x

y

IC AC

jx

Fig. 6.30 Design diagram of

nonuniform symmetric arch
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Assume that the distributed mass m per unit length of the arch is constant. Area of

the cross section and radius of inertia at the crown are AC and rC, respectively. The
formulas for frequencies of free vibration are as follows [Bon52b], [Uma72–73].

Antisymmetrical Vibration

In this case,

oi ¼ k2i
l2

ffiffiffiffiffiffiffiffi
EIC
m

r
ðs�1Þ;

where k1 ¼ 3:9266; k2 ¼ 7:0685; k3 ¼ 10:210; k4 ¼ 13:352; k5 ¼ 16:494; :::;
kn ¼ ð4nþ 1=4Þp:

Symmetrical Vibration

In this case,

oi ¼ 4k2i
l2

ffiffiffiffiffiffiffiffi
EIC
m

r
ðs�1Þ:

Eigenvalues ki are the roots of the frequency equation

cosh k � brð Þ sin k þ cos k � grð Þ sinh k ¼ 0;

where

b ¼ 1:33

k3
� 1þ 3

k2

� �
sinh k þ 3

k
cosh k

� �
;

g ¼ 1:33

k3
1� 3

k2

� �
sin k þ 3

k
cos k

� �
;

r ¼ f 2

i2C
; iC ¼

ffiffiffiffiffiffi
IC
AC

r
:

The roots ki of the frequency equation are presented in Table A.45.
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6.10 Rayleigh–Ritz Method1

This section is devoted to numerical computation of frequency of vibration of the

arch by the Rayleigh–Ritz method. According to this method, we need to aply the

following procedure:

• Accept expressions for displacements, which satisfy the boundary conditions.

• Construct the expressions for strain and kinetic energies.

• By finding the extreme values of the two quantities, and equating them, we can

calculate the corresponding frequency of vibration [Tho81].

This method is especially effective in the cases of the nonuniform arches and

arches with nonuniform radius of curvature.

6.10.1 Circular Uniform Arch

Let us consider a circular uniform arch with arbitrary boundary conditions. Let R be

the radius of the arch and 2a be the central angle. Assume that the axial strain e is
neglected. The strain and kinetic energy for bending vibration of arch may be

written as [Mau90]

U ¼ EI

R3

Z a

0

@u

@’
þ @2u
@’2

� �2

d’;

T ¼ Rm

Z a

0

@u

@t

� �2

þ @u
@t

� �2
" #

d’: (6.31)

where ’ is the angle measured from the vertical axis of symmetry, E and m are

Young’s modulus and a mass of the arch per unit length, u and u are tangential and
radial displacement components, respectively.

For a two-hinged arch, the following coordinate functions satisfy the geometric

conditions u ¼ u ¼ 0 at ’ ¼ 	a [Den28], [Rom72]:

u ¼ A sin
p’
a


 �
sinot;

u ¼ �A
a
p

1þ cos
p’
a


 �
sinot: (6.32)

Substitution of these expressions into (6.31) leads to the following expressions

for U and T

U ¼ EIA2

2R3a3
a2 � p2
� �2

sin2o t;

T ¼ mRA2

2

a
p2

o2 3a2 þ p2
� �

cos2o t:

1 This section was written in collaboration with Evgeniy Lebed.
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The Rayleigh–Ritz method states that [Tho81]

Umax ¼ Tmax: (6.32a)

From (6.32a), follows Bolotin’s formula for smallest frequency vibration of the

circular arch [Bol64]

o ¼ p
R2a

p2

a2
� 1

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ p2

a2

r
ffiffiffiffiffi
EI

m

r
: (6.33)

Since axial strain e is neglected, then according to (1.32), we get u ¼ @u=@’ and

(6.31) may be rewritten in terms of the tangential displacement only

U ¼ 1

EI

Z a

0

M2d’ ¼ EI

R3

Z a

0

@u

@’
þ @3u

@’3

� �2

d’;

T ¼ mR

Z a

0

@u

@t

� �2

þ @2u

@’ @t

� �2
" #

d’:

(6.31a)

If we adopt expressions for energy in the form of (6.31a), then we only need to

consider the expression for tangential displacement. Rayleigh–Ritz procedure

remains the same: we need to determine the strain and the kinetic energy of an

arch, calculate their extreme values and equate them according to (6.32a). It is then

easy to check that this procedure leads to (6.33).

If an arch has peculiarities, then (6.31) for strain and kinetic energy should be

modified. Such peculiarities include piecewise constant rigidity, variable radius of

curvature, elastic supports, the presence of lumped masses on the arch, etc.

6.10.2 Circular Arch with Piecewise Constant Rigidity

In the case of a nonuniform arch, expressions for strain and kinetic energy for

bending vibration of the arch may be written as [Mau90]

U ¼ E

2R3

Z a

�a
I ’ð Þ @u

@’
þ @2u
@’2

� �2

d’;

T ¼ R

2

Z a

�a
m ’ð Þ @u

@t

� �2

þ @u
@t

� �2
" #

d’: (6.34)
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Assume that an arch has a piecewise constant moment of inertia of the cross

section I ’ð Þ, which is symmetrical with respect to the axis of symmetry. The

function I ’ð Þ describes the moment of inertia. We assume this function to be

piecewise constant with two jump discontinuities. In this case, the function I ’ð Þ
is defined as follows

I ’; pð Þ ¼ Imax if ’j j � ap=2;
Imin if ’j j>ap=2:

�
(6.35)

The variable p is fraction (in percent) of the portion of an axis of the arch with a

moment of inertia of a cross section equal to Imax. Correspondingly, the percentage

of the length of the axis of the arch with a moment of inertia of cross section of Imin

is 1 � p.
Let the mass m per unit length for portions with Imax and Imin remain the same,

therefore, as before, we can use the expression for kinetic energy (6.31). In case of

antisymmetric vibration, we still use the assumed coordinate functions (6.32).

To evaluate the integral U, we use Romberg integration [Bur01]. Romberg

integration uses the composite trapezoidal rule to give preliminary approximation

to the integral and then applies Richardson extrapolation [Bur01] to improve the

approximations thus giving a high-order numerical approximation to the integral.

For the particular choice of I ’ð Þ, Romberg integration produces approximations of

forth order accuracy.

For a particular example, we take an arch with the following parameters: radius

R ¼ 180 (ft), central angle 2a ¼ 30�, mass distribution m ¼ 30 (lb s2/ft2), and

E ¼ 400 � 107 (lb/ft2). Let Imin ¼ 1.4 (ft4) and Imax ¼ 3.0 (ft4). Some particular

functions Ið’Þ for p ¼ 25; 50; and 90% ?are shown in Fig. 6.31.

The resulting smallest frequencies of vibration are shown in Fig. 6.32.

The extreme conditions (p ¼ 0 and p ¼ 100%) can be verified analytically by

Bolotin formula; oðIminÞ ¼ 14:18 (1/sec) and oðImaxÞ ¼ 20:76 for the particular

choices of Imin and Imax. As one can see from Fig. 6.32, the function ominðIðpÞÞ is a

aº

I

Imax

Imin

0 5 10 15

p=90%
p=50%
p=25%

–10 –5–15

Fig. 6.31 Different shapes of the arch with a piecewise constant moment of inertia
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monotonically increasing function. The values of this function at the end points can

be verified analytically.

Note that evaluating the integrals in (6.34) numerically allows us to consider a

whole new type of problems, namely, optimal design of arches. In this scope, two

such problems may be formulated as follows [Gri79], [Olh77]:

1. The volume–frequency problem: find a configuration of the cross-sectional area

A(x) along the arch for the minimum (or maximum) frequency o, if the volume

of the arch V0 is given.

2. The frequency–volume problem: Find a configuration of the cross-sectional area

A(x) along the arch for the minimum (or maximum) volume V of the arch is

known, and the frequency o ¼ o0 of the arch is given.

We note that with the use of (6.31a), we can easily derive Lamb’s equation for a

uniform circular arch. Indeed, the Hamilton principle [Ham35] states that

d
Z t

t0

U � Tð Þdt ¼ 0:

For strain and kinetic energy given by (6.31a), we have

d
Z t

t0

Z a

�a

Z
m

2

@u

@t

� �2

þ m

2

@2u

@’ @t

� �2

� EI

2R4

@u

@’
þ @3u

@’3

� �2
" #

Rd’

" #
dt ¼ 0:

The corresponding Euler–Lagrange equation exactly represents Lamb’s equa-

tion (6.6) [Rek73].
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wmin
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Fig. 6.32 Smallest

frequencies of vibration as a

function of the percentage p
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6.11 Conclusion

This chapter presents the methods for the determination of the frequencies of free

vibration of circular and parabolic arches with different boundary conditions. In the

case of a circular uniform arch, analytical solution on the basis of the Lamb

equation is presented. The Rayleigh–Ritz method becomes an effective tool for

determining frequencies of free vibrations when the circular arch has a nonuniform

moment of inertia. For parabolic uniform arches, Rabinovich method is utilized.

Even if the exact analytical procedures are applied, the method leads to approxi-

mate result because the initial arch with distributed masses is replaced by a frame

with lumped masses.

It is worth-while to also note that the well-known Dunkerley approximate

formula [Bir68] [Kar10] and Bernshtein and Smirnov estimations [Bir68] allow

us to calculate the smallest frequency of vibration.

We also note the importance of numerical methods, which allow us to determine

the natural frequencies of arches with peculiarities (arches of different shapes, arches

with continuously and discontinuously varying cross-section, non-symmetrical

arches, arches with distributed and lumped masses, arches with elastic supports,

etc.) as well as to take into account the secondary effects. Numerous and varied

examples can be found in the works of Laura [Lau87], [Lau88], Romanelli [Rom72],

Filipich [Fil88], [Fil90], Rossi [Ros89], Lee [Lee89], De Rosa [DeR91], [Cha69],

[Den28], [Sak85], [Volter60], [Volter61a, b], [Wan72], [Wan73], [Wan75], [Was78],

[Wol71], and others. Validation and comparison of results which are obtained using

different numerical methods are presented by Gutierrez et al. [Gut89]. Out-of-plane

vibration of arches is presented in the works of [Bon50], [Suz78], [Iri82]. A large set

of the formulas for natural frequency and mode shapes of vibration of deformable

structures can be found in [Ble79], [Kar04].
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Chapter 7

Forced Vibrations of Arches

This chapter is devoted to forced vibration analysis of arches and arched structures

subjected to disturbing loads. Different types of arches and theirs loading are

considered. Analytical methods of analysis are applied.

7.1 General

7.1.1 Types of Disturbing Loads

Forced vibrations of engineering structures are brought about by dynamic

(or disturbing) loads. These forces are functions of time. The nature of these

loads is diverse. Generally, disturbing forces may be of the following types:

1. Immovable periodical loads produced by stationary units and mechanisms with

moving parts. These loads have a periodical, but not necessary a harmonic

(according to the law of sine or cosine) character and generally do not depend

on the elastic properties of the structure.

2. Impulsive loads are produced by a blast, falling weights (pile drivers, hammers,

etc.), or collision of bodies. Impulsive loads are characterized by a very short

duration of their action and depend on the elastic properties of the structure

which is subjected to such loads.

3. Moving loads act on structures by transference through wheels of a moving train

or truck moving across the deck. The availability of the rail joints on a railway

bridge or irregularities of the deck on a car bridge lead to appearance of inertial

forces. This type of moving loads takes into account dynamical effects,

and therefore, should be distinguished from moving loads, which has been

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_7, # Springer Science+Business Media, LLC 2012
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studied in the sections “Influence lines” where the term “moving load” implies

only that position of the load is arbitrary, i.e., this is a static load, which may

have different positions along the structure.

4. Seismic loads arise due to earthquakes. The reason for the presence of seismic

load on a structure is acceleration of the supports caused by acceleration of the

ground. This type of disturbance is called kinematical disturbance. The acceler-

ation of supports leads to the acceleration of the individual parts of the structure,

and as a result inertial forces act on these parts. Seismic forces which arise in the

individual elements of the structure are dependent on the type and the amount of

ground acceleration, distribution of the mass within the elements of the structure,

as well as their elastic properties [Clo75].

7.1.2 Classification of Forced Vibration

Forced vibration may be classified according to:

1. The number of degrees of freedom of the structure (either lumped or distributed

parameters). From methodological point of view, structures with lumped

parameters are divided into those with one degree of freedom and structures

with two or more degrees of freedom.

2. According to the type of relationship “P–y” (Table 6.1), the vibration is divided

into linear and nonlinear vibrations.

3. Resisting forces which arise in the structure – these may be taken into account or

neglected.

4. If forces which act on the structure are characterized by the preciseness of their

parameters, then the corresponding vibrations are called determinate vibrations.

There exists a series of dynamical loads which are characterized by the lack of

preciseness of their parameters. These include loads created by wind, loads which

arise on account of irregularities of the deck on car bridges, seismic loads, etc.

In all these cases, it is impossible to set factual parameters to these loads.

Such occurrences are called nondeterminate and the corresponding vibrations

are random vibrations [Bol84].

We will consider determinate in-plane bending vibration of arches neglecting

the secondary effects.

7.2 Structures with One Degree of Freedom

This section contains analysis of the forced vibration of the structure with one

degree of freedom; the structure is subjected to typical disturbing forces.
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7.2.1 Dugamel Integral

The forced undamped vibration of a system with a single degree of freedom,

subjected to an arbitrary disturbing force FðtÞ, is described by the equation

m€yþ ky ¼ FðtÞ; (7.1)

where y is the displacement of the mass m, the stiffness coefficients is denoted as k.
General solution of this equation is

yðtÞ ¼ y0 cos o tþ u0
o

sin o tþ y�ðtÞ: (7.2)

The first two terms in (7.2) describes free vibration of a mass m with its initial

position y0 and initial velocity u0. These vibrations occur with the frequency of free
vibration o ¼ ffiffiffiffiffiffiffiffiffi

k m=
p

. Last term in (7.2), y�ðtÞ, describes the forced vibration which
depends on the disturbing force FðtÞ. Equation (7.1) and its solution do not take into
account the resisting forces; due to the inevitable presence of various damping

forces in the structure, the free vibration rapidly disappears and only the purely

forces component remains.

y�ðtÞ ¼ 1

om

Z t

0

FðtÞ sin oðt� tÞ dt: (7.3)

Expression (7.3) is called Duhamel’s integral [Duh43] (convolution integral).

This formula allow us to determine the response of the linear system with a single

degree of freedom in the case of an arbitrary disturbing force FðtÞ. Formula (7.3)

is derived on the basis of the superposition of the responses of the system to a

sequence of impulses [Wea90]. The Handbooks [Har61], [Har88] contain forced

component (7.3) for a system with a single degree of freedom subjected to numer-

ous types of impact loads.

7.2.2 Application of the Duhamel Integral for a Bar Structure

Integral (7.3) may be presented in the form applicable for bar structure. Approxi-

mate analysis of a structure subjected to arbitrary loads (impact, harmonic, etc.)

is based on the following assumptions:

1. Vibration of the bar structure occurs as in a system with a single degree of

freedom.

2. The shape of vibration coincides with elastic line which corresponds to specific

equivalent static load.
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Assume that at moment t ¼ 0, the structure is subjected to load [Rab54a]

qðx; tÞ ¼ qðxÞ’ðtÞ; (7.4)

where qðxÞ is any distributed function of x and ’ðtÞ is arbitrary function of t.
Assume that the structure has one degree of freedom and the mode of shape

vibration XðxÞ is an elastic curve which corresponds to a static load qðxÞ. Since
1 ðomÞ= ¼ od11, then

y�ðtÞ ¼ od11

Z t

0

FðtÞ sin oðt� tÞ dt: (7.5)

This formula means that at any moment the displacement of the bar system is

determined by the static equivalent load

Feq ¼ o
Z t

0

FðtÞ sin oðt� tÞ dt: (7.6)

Taking into account (7.4), we can say that at any moment t the displacement

at any point of a structure will be such as if the structure would be subjected to a

static load

qstat ¼ o qðxÞ
Z t

0

’ðtÞ sin oðt� tÞ dt:

Now the displacements of the bar structure may be presented in terms of shape

XðxÞ

yðx; tÞ ¼ o XðxÞ
Z t

0

’ðtÞ sinoðt� tÞdt: (7.7)

7.2.3 Special Types of Disturbance Forces

Let us show an application of (7.7) for different excitations [Rab54a], [Har88].

Constant-Force Excitation

A weight of mass m is attached to the end of a vertical spring of stiffness k.
At moment t ¼ 0, a force F0 suddenly is applied to the mass and then remains

constantly applied to the mass (Fig. 7.1a)
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Integral (7.3) becomes

y�ðtÞ ¼ F0

om

Z t

0

sinoðt� tÞ dt ¼ F0

o2m
ð1� coso tÞ ¼ ystatð1� coso tÞ; (7.8)

where ystat is the displacement of the mass caused by static load F0, i.e.,

ystat ¼ F0

k
and o ¼

ffiffiffiffi
k

m

r
:

According to (7.8), the displacement of the mass occurs by harmonic law

with frequency o of the free vibration around position y ¼ ystat. Dynamical effect

of such application of load, as shown in Fig. 7.1b, is twice as much as the static

one, i.e.,

ymax ¼ 2ystatðF0Þ:

For bar structure, expression (7.7) becomes

yðx; tÞ ¼ o XðxÞ
Z t

0

’ðtÞ sinoðt� tÞdt ¼ XðxÞð1� coso tÞ ¼ ystatð1� coso tÞ;

uðx; tÞ ¼ dyðx; tÞ
dt

¼ oXðxÞ sin o t: ð7:9Þ

The bar executes harmonic vibration around the static elastic curve XðxÞ. For
any point on the bar, the maximum displacement is twice more than the static

displacement at the same point.

Pulse of Duration t

The load q(x) is suddenly appeared at time t ¼ 0. This load remains constant

until the time t ¼ t and then suddenly disappeared (rectangular pulse). Assume

that the duration of load actions t and the period of free vibration T satisfy the

condition t � 0:25 T. In this case, a maximum displacement occurs after the load

is disappeared.

t

F0

F(t)

t

ystat

y(t)
baFig. 7.1 Constant force

excitation and the

corresponding forced

response
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Within the interval t < t, the displacement is described by (7.9). For t > t,
it may be considered that the structure is subjected to actions of two loads q(x) and
�q(x). This again allows us to apply solution (7.9)

yðx; tÞ ¼ XðxÞð1� coso tÞ � XðxÞ½1� cosoð t� tÞ�
¼ XðxÞ ½cosoð t� tÞ � coso t�:

This solution may be rewritten in the following form

yðx; tÞ ¼ 2XðxÞ sinot
2

sin o t� t
2

� �
:

Thus, the structure executes vibration around unloaded state with frequency of

the free vibration o and amplitude 2XðxÞ sinðot=2Þ. Therefore,

yðx; tÞmax;min ¼ �2XðxÞ sin ot
2

� �
(7.10)

and dynamical coefficient is

mdyn ¼
ymax

ystat
¼ ymax

X
¼ 2 sin

pt
T
; (7.11)

where T is the period of free vibration. Thus, the effect of the short-term load

depends on the parameter t T= . Maximum of the dynamical coefficient is equal to 2.

For t < T 6= , dynamical coefficient is mdyn < 1 (Table 7.1).

Impulse Excitation

A bar structure is subjected to a distributed load qðxÞ. This load acts within a very

small time interval t. Impulse of the elementary load qðxÞdx is equal to

t qðxÞdx ¼ sðxÞdx; thus qðxÞ ¼ sðxÞ t= :

According to (7.10), the maximum displacement becomes

y0 ¼ yðx; tÞmax;min ¼ �2XðxÞ sin ot
2

� �
¼ �XðxÞot sinðot=2Þ

ot=2
; and

y ¼ y0 sino t:

Table 7.1 Dynamical coefficient vs. parameter t T= [Rab54a]

t T= 0.01 0.02 0.05 0.10 0.167 0.20 0.30 0.40 0.50 >0.50

mdyn 0.0628 0.126 0.313 0.618 1.000 1.175 1.617 1.902 2.000 2.000
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Since XðxÞ is an elastic curve, which corresponds to a static load qðxÞ,
then XðxÞot is the elastic curve due to the static load o qðxÞ t ¼ o sðxÞ. Thus,
the action of any distributed impulse sðxÞ is equivalent to a static distributed load

qeqðxÞ with the intensity at any point of a structure being

qeqðxÞ ¼ �o sðxÞ sinðot=2Þ
ot=2

: (7.12)

The unit of distributed impulse sðxÞ is ðkNs m= Þ. If impulse SðkNsÞ is applied at a
single point, then equivalent static force Feq at the same point is

Feq ¼ o S
sinðot=2Þ

ot=2
: (7.12a)

Since ½ðsin aÞ=aÞ < 1 and lima!0
½ðsin aÞ=a� ¼ 1, then for two impulses with

equal S but different t, the impulse with smaller t is more dangerous. Therefore,

the instantaneous impulse is most dangerous. Equivalent load for this case is

qeqðxÞ ¼ �o sðxÞ;
Feq ¼ �o S:

With the decrease of time t, effect of the constant force F trends to zero, but the

effect of constant impulse S trends to a maximum. In the first case, the impulse of a

force S ¼ Ft, with decreasing of t, trends to zero, while in the second case the

impulse S for any t retains its magnitude.

Equivalent static load depends not only on the values of the impulse, but also on

the properties of the structure. The greater the stiffness and the lighter the structure,

the greater is its frequency o, and thus the greater is the equivalent load.

Example 7.1. Determine the effect of instantaneous impulse s which acts on the

uniform simply supported beam. This impulse is uniformly distributed within

the entire span l. Parameters of the beam are: flexural rigidity EI; mass per unit

length m.

Solution. The frequency of the free vibration is o ¼ ðp2=l2Þ ffiffiffiffiffiffiffiffiffiffi
EI=m

p
. Equivalent

static load on the beam is

qeq ¼ o s ¼ p2s
l2

ffiffiffiffiffi
EI

m

s
; (7.13)

so the reactions of the beam are

Rmax;min ¼ qeql

2
¼ o s ¼ � p2s

2l

ffiffiffiffiffi
EI

m

s
:
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Bending moment and shear force are

Mmax;min ¼ � qeql
2

8
¼ � p2s

8

ffiffiffiffiffi
EI

m

s
;

Qmax;min ¼ � qeql

2
¼ � p2s

2l

ffiffiffiffiffi
EI

m

s
:

Displacement of the beam is

ymax ¼ 5

384

qeql
4

EI
¼ 5p2

384

sl2ffiffiffiffiffiffiffiffiffi
EI m

p :

Maximum normal stresses occur at the extreme fibers of the beam and are

sn ¼ �M

I
e ¼ � M

Ar2
e ¼ � p2s

8

e

r

ffiffiffiffiffiffi
E

Am

s
;

where e is the distance from the neutral line to an extreme fiber of the beam, r is the
radius of inertia, and A is the area of the cross section of the beam.

Maximum shear stress occurs at the neutral line and is

st ¼ �QU

bI
¼ � p2s

2l

U

br
�

ffiffiffiffiffiffi
E

Am

s
;

where b is the width of the cross section at the neutral line and U is the first moment

of the cross-sectional area above (or below) of the neutral axis with respect to the

neutral axis.

Discussion [Rab54a]

Comparison of the static loading and impulsive excitation has fundamental

differences:

1. Even if the entire beam presents a statically determinate structure, in the case of

impulsive excitation, the reactions and internal forces depend on the flexural

rigidity EI of the beam, while in case of static loading these parameters do not

depend on the rigidity EI.
2. Increasing of flexural rigidity EI of a beam by n times leads to decreasing of

displacement by n times for any static loading and by
ffiffiffi
n

p
times at the impulsive

excitation.
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3. In the case of impulsive excitation, the expressions for the reactions, internal

forces, stresses, and displacements have a factor 1
ffiffiffi
m

p�
while in the case of static

loading, these expressions have a factor m. Indeed, the uniformly distributed load

q may be presented in term of the mass per unit length as q ¼ m g, where g is the
acceleration due to gravity.

4. The bending moment due to impulsive loading does not depend on the length of

the beam, while the shear force is inversely proportional to the length of the

beam. In the case of a simply supported beam of length l, subjected to

static, uniformly distributed load, the bending moment and shear are propor-

tional to l2 and l, respectively.

Note: on the basis of (7.1), detailed response of the structure subjected to

numerous types of different impact loads is presented in [Har88].

Harmonic Excitation

Such excitation of the bar system may be realized, particularly, by a harmonic

distributed load qðx; tÞ ¼ qðxÞ cos y t or a concentrated force FðtÞ ¼ F0 cos y t,
where y is a frequency of an external excitation. Duhamel’s integral (7.7) leads to

the following result

yðx; tÞ ¼ oXðxÞ
Z t

0

cos yt� sinoðt� tÞdt

¼ XðxÞ
1� ðy o= Þ2 ðcos y t� coso tÞ: (7.14)

where XðxÞ is the elastic curve which satisfies the boundary conditions. Vibrations

(7.14) are combination of forced vibration with frequency y of disturbing force

(the fist term) and natural vibration with frequency o of free vibration (the second

term). Both vibrations have amplitude

A ¼ XðxÞ
1� ðy o= Þ2 :

In practice, due to the inevitable presence of various damping forces, the natural

vibrations with frequency o rapidly disappear. The steady-state forced vibration

yðx; tÞ ¼ A cos y t

is a sustained periodic motion with an amplitude A and a frequency y of the

frequency of the disturbing force. The factor

mdyn ¼
1

1� ðy o= Þ2
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is called the dynamical coefficient. This coefficient is the ratio of maximum

displacement of any point of the structure and displacement due to the amplitude

of the static load qðxÞ. The factor mdyn vs. l ¼ y o= is presented in Fig. 7.2;

for undamped vibration the parameter 2n o= is 0.0.

1. If l ¼ y o= is almost unity, the amplitude of forced vibrations becomes very

large. This phenomenon is called resonance. Precise analysis shows that in this

case

yðx; tÞ ¼ XðxÞo t

2
sino t ¼ XðxÞo t

2
cos o t� p

2

� �
: (7.14a)

The first term of (7.14) and formula (7.14a) shows the following: at resonance,

the displacement yðx; tÞ and disturbing force qðx; tÞ ¼ qðxÞ cos y t (or FðtÞ ¼
F0 cos y t) have a phase shift p 2= . It means that the displacements become

extreme at the moments when disturbing force is zero.

2. If the frequency ratio l ¼ y o= is very large, the dynamical coefficient becomes

very small. This case is of special interest for the problem of the suppression of

the forced vibrations in structures.

l= q /w
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0.5

0.0

1.0

1.5

2.5

3.5

4.5
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4.0

5.0

0.2

Fig 7.2 Dynamic coefficient mdyn vs. l ¼ y/o; parameter h ¼ 2n/o
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Damped forced vibration. Now let us consider the dynamical system with one

degree of freedom and take the resisting force into account. Assume that this force

is proportional to the first degree of the velocity, i.e., R ¼ �b _y (the minus sign

indicates that force R and velocity _y are oppositely directed). Let c is a stiffness of a
system. The mass m is subjected to a disturbed harmonic force FðtÞ ¼ F0 sin y t.
Forced vibration is described by the equation

€yþ 2n _yþ o2y ¼ P0 sin y t; 2n ¼ b
m
; o2 ¼ c

m
; P0 ¼ F0

m
:

Duhamel’s integral should be presented in the modified form, which takes into

account the resisting force [Clo75].

Partial solution of this equation (forced vibration) is

y�ðtÞ ¼ A sinðy t� gÞ:
This is a steady-state forced vibration, a sustained periodic motion with an

amplitude A, and a frequency y which is equal to the frequency of the disturbing

force. The quantity g characterizes the phase shift of forced vibration with respect to
the disturbing force. It is easy to show that

A ¼ d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þ2 þ h2l2

q ; tan g ¼ lh

1� l2
;

where d0 ¼ F0 c= is a static displacement of mass m caused by the load F0;

the frequency ratio and a quantity characterizing the damping effect are

l ¼ y
o
; h ¼ 2

n

o
:

Thus, the amplitude and phase shift depend on two dimensionless parameters

l and h. As before, the quantity A d0= presents the dynamic coefficient

mdyn ¼
A

d0
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� l2Þ2 þ h2l2
q :

Graphs of dynamic coefficient and for phase shift for certain values of l are

given in Figs. 7.2 and 7.3 [Clo75].

1. If l ¼ y o= < 1, then the phase shift is g < 90�, and amplitude of forced

vibration is A > d0. However, if the frequency ratio l is very small y 	 oð Þ,
then the amplitude of forced vibration is approximately equal to the static

displacement of the mass m, i.e., A ffi d0 and the phase shift is g ¼ 0. Starting

approximately from y o ¼ 0:25= the dynamical coefficients and the phase shift

rapidly increase. Note that an increase of the damping parameter h leads to a

decrease of dynamic coefficient and an increase of the phase shift.
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2. At resonance (l ¼ 1), the amplitude of forced vibration and phase shift

are Ares ¼ d0=2h and gres ¼ p=2, respectively. In the case of damped forced

vibration, the displacement lags behind the disturbing force by 90�. As this

place, the maximum values of dynamic coefficients are shifted left from the

vertical line l ¼ 1. The damping forces significantly decrease the amplitudes at

the resonance.

3. If the frequency ratio is very large ðy � oÞ, the dynamic coefficient is mdyn 	 1,

i.e., the amplitude A of forced vibration is very small. For example, if

l ¼ y o= ¼ 2:5; and h ¼ 0, then A ¼ 0:2d0.
4. The smaller coefficient of resistance n (or dimensionless parameter h), the larger

the amplitude A of forced vibration.

5. The phase angle smoothly changes from zero until 180�, with the change

occurring very rapidly in the resonance zone.

7.3 The Steady-State Vibrations of the Structure

with a Finite Number of Degrees of Freedom

When a structure is subjected to any type of an exciting force, the vibration of the

structure presents a combination of free and forced vibrations. Vibrations, which

are caused by the disturbing forces only, are called the steady-state vibrations.
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5p /6

p
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h=0.5
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0.3
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0.4

0.1

0.5

l= q /w

Fig. 7.3 Phase shift g, rad, vs. l ¼ y/o; parameter h ¼ 2n/o
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The vibrations that occur in the structure, before it fully achieves a steady state,

are called transient vibrations. This paragraph considers only steady-state vibrations

of the arch, while the following paragraph considers transient vibrations.

If a structure with a finite number of degrees of freedom is subjected to a

harmonic load, then the reactions, internal forces, and displacements will also

change by a harmonic law. With this, their amplitudes will depend on the relation-

ship between the frequency of free vibration and frequency of the harmonic force.

If a structure is subjected to several harmonic loads, and all of them have the same

frequency and act in the same phase, then inertial forces and displacements

approach their respective extreme values simultaneously. Dynamic analysis

involves computation of the amplitudes for internal forces and displacements,

as well as testing the structure for possible resonance. The Force method in

canonical form may be applied for these purposes.

7.3.1 Application of the Force Method

Elastic structure with lumped masses mkðk ¼ 1; . . . ; nÞ is subjected to harmonic

forces PkðtÞ ¼ Pk sin yt (Fig. 7.4).
Displacement of any mass mi at time t is given by the formula

yi ¼ di1X1 þ di2X2 þ � � � þ diiXi þ � � � þ dinXn þ DiP; (7.15)

where Xi are inertial forces of the corresponding masses, di1; di2; . . . ; din are

displacements in the directions of the force Xi caused by unit forces

X1; X2; . . . ; Xn, DiP is displacement in the direction of Xi caused by amplitude

values of harmonic loads.

Displacement of mass mi and its acceleration for forced harmonic vibrations

occurs with the frequency of exciting force y according to the expressions

yi ¼ Ai sin yt; €yi ¼ �Aiy
2 sin yt ¼ �yiy

2:

Since the inertial force for mass mi is Xi ¼ �mi€yi ¼ miyiy
2, then

yi ¼ Xi= miy
2

� �
. Now (7.15) may be rewritten in the form

di1X1 þ di2X2 þ � � � þ d�iiXi þ � � � þ dinXn þ DiP ¼ 0; (7.16)

where d�ii ¼ d11 � 1 miy
2

� �
:

�

P1(t) Pk(t) 

m1

y1 yk

mk

Fig. 7.4 Harmonic excitation

of a structure with a finite

number of degrees of freedom
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As a result, we get a set of equations to calculate the amplitudes of the inertial

forces Xi.

d�11X1 þ d12X2 þ � � � þ d1nXn þ D1P ¼ 0;

d21X1 þ d�22X2 þ � � � þ d2nXn þ D2P ¼ 0;

: : : : : : : : : : : : : :

dn1X1 þ dn2X2 þ � � � þ d�nnXn þ DnP ¼ 0: (7.17)

Once the amplitudes of the inertial forces Xi are calculated from (7.17), dynamic

bending moments are

M ¼ �M1X1 þ �M2X2 þ � � � þ �MnXn þMP: (7.18)

7.3.2 The Steady-State Vibrations of the Arch

Parabolic three-hinged uniform symmetric arch with three equal lumped masses

mi ¼ m0 is subjected to harmonic excitation PðtÞ ¼ P0 sin yt; P0 ¼ 2 kN as shown

in Fig. 7.5. The span and rise of the arch are l ¼ 16 m; f ¼ 0:25l ¼ 4 m [Pro48].

Let us show an application of (7.17)–(7.18) for the computation of dynamic

bending moments for steady-state vibrations of the arch.

Free vibration of this structure has been considered in Sect. 6.2.3, Example 6.3.

Group unknowns X1 and X3 and single unknowns X2 and X4 and corresponding unit

bending moment diagram are shown in Fig. 6.7c. Unit displacements and

frequencies of the antisymmetrical and symmetrical free vibrations are

d11 ¼ 9:50

EI
; d22 ¼ 6:08

EI
; d33 ¼ 38:01

EI
; d44 ¼ 1:52

EI
; d12 ¼ d21 ¼ � 7:60

EI
;

d13 ¼ d31 ¼ 0; d14 ¼ d41 ¼ 0; d23 ¼ d32 ¼ 0; d24 ¼ d42 ¼ 0:

oantisym ¼ 0:221

ffiffiffiffiffiffi
EI

m0

r
; osym ¼ 0:304

ffiffiffiffiffiffi
EI

m0

r
:

l

fy1

l /4

y(x)

x

y
m1

m2

m3

P(t)

16m

3m

4m

4.123m

5m

m0

m0

m0

4m
a

P(t)a b

Fig. 7.5 (a) Design diagram of three-hinged arch with lumped masses and (b) modified design

diagram (all dimensions are in meters)
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Let the frequency of the harmonic excitation be y ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
EI/m0

p
, so k2EI ¼ y2m0,

where k is any number.

Therefore, main displacements become

d�11 ¼ d11 � 2

m0y
2
¼ d11 � 2

k2EI
¼ 1

EI
9:5� 2

k2

� 	
; d�22 ¼ d22 � 1

m0y
2
¼ 1

EI
6:08� 1

k2

� 	
;

d�33 ¼ d33 � 2

m0y
2
¼ 1

EI
38:0� 2

k2

� 	
; d�44 ¼ d44 � 1

m0y
2
¼ 1

EI
1:52� 1

k2

� 	
:

Bending moment diagram caused by the amplitude force P0 ¼ 2 kN is shown in

Fig. 7.6.

Loading terms are

EID1P ¼ �M1 �MP ¼ 1

2
� 5� 1:25� 2

3
� 3þ 1

2
� 4:123� 1:25� 2

3
� 3

� 1

2
� 5� 1:25� 2

3
� 1� 1

2
� 4:123� 1:25� 2

3
� 1 ¼ 7:60:

D2P ¼
�M2 �MP

EI
¼ � 6:08

EI
; D3P ¼ 30:41

EI
; D4P ¼ 6:08

EI
:

Equation (7.17) serve for the calculation of amplitudes of the inertial forces

Xi. In our case, these equations fall down into two separate subsystem for

antisymmetrical and symmetrical vibrations.

Antisymmetrical vibrations

38:0� 2

k2

� 	
X3 þ 7:6X4 þ 30:41 ¼ 0;

7:60X3 þ 1:52� 1

k2

� 	
X4 þ 6:08 ¼ 0: (7.19)

Symmetrical vibrations

9:5� 2

k2

� 	
X1 � 7:6X2 þ 7:6 ¼ 0;

�7:6X1 þ 6:08� 1

k2

� 	
X2 � 6:08 ¼ 0:

(7.20)

P0=2kN

H=1.1

RA=1.5 RB=0.5

H3.0

1.0

MP

BA

Fig. 7.6 Bending moment

diagram caused by the

amplitude of exciting force
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Two points, k ¼ 0.221 and 0.304, which correspond to the resonance

frequencies, are shown on a frequency axis. These frequencies partition the fre-

quency axis into three intervals (Fig. 7.7).

At k ¼ 0:221, the determinant of system (7.19), for antisymmetrical vibration,

becomes

38:0� 2

k2
7:6

7:6 1:52� 1

k2


















¼ �2:949 7:6

7:6 �18:95










 ¼ 55:88� 57:76 ffi 0:

At k ¼ 0:304, the determinant of system (7.20), for symmetrical vibration,

becomes

9:5� 2

k2
�7:6

�7:6 6:08� 1

k2


















¼ �12:14 �7:6

�7:6 �4:74










 ¼ 57:55� 57:75 ffi 0:

Therefore, at k ¼ 0:221, the forces X3 ¼ X4 ¼ 1 and at k ¼ 0:304, the forces

X1 ¼ X2 ¼ 1. Amplitude values of inertial forces for different parameter k are

presented in Table 7.2.

Dynamical bending moment diagram for each parameter k may be constructed

by the formula

Mdyn ¼ MP þ
X

�MiXi:

Bending moment diagram for k ¼ 0.20 and 1.0 are shown in Fig. 7.8; the index

of nodal points is shown by bold numbers.

k=0.221

First
resonance

k=0.304

Second
resonance

0 k
Fig. 7.7 Three frequency

intervals

Table 7.2 Amplitude values of inertial forces Xi for different parameters k, y ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=m0

p
Type of

unknowns Unknowns 0.10 0.20 0.221 0.25 0.28 0.304 0.32 1.0 Equation

Symmetric X1 0.04 0.22 * 0.73 1.97 1 4.10 4.35 (7.20)

X2 �0.07 �0.18 * �1.17 �3.15 1 6.55 5.32

Antisymmetric X3 0.19 1.97 1 �3.56 �1.95 * �2.33 �0.81 (7.19)

X4 0.08 0.90 1 �1.34 �0.74 * 1.58 �0.16

For resonance parameters k, the values of inertial forces (shown by asterisks) are not calculated

because two other inertial forces equal infinity
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Dynamic coefficient at points 1 and 3 for k ¼ 0.20 are 8:83 3:0 ¼ 2:94= and

5:91 1:0 ¼ 5:91= , respectively.

Note: Nonlinear vibration of a shallow arch as a jump-system (Fig. 4.3) has been

considered in detail by Kazakevich [Kaz89]. In particularly, he described a period-

doubling for such system. Further details of this unique property is described in

[Stro94].

7.4 Transient Vibration of the Arch

Rabinovich’s method allows us to investigate the transient vibration of the arch and

for any type of exciting force to construct the dynamical bending moment diagram

without calculating displacements of the arch. The method is based on resolving the

bending moment diagram into mode shapes of vibration.

7.4.1 Procedure of Analysis

Let the arch be subjected to an arbitrary distributed and/or to concentrated time-

dependent loading.

To construct the dynamical bending moment diagram, the following procedure

is used [Rab58], [Sni66].

1. For the given arch, construct a parabolic polygon and determine its parameters

(parameters of polygon for six portions are presented in Table A.36).

2. Arbitrary dynamic loads on the arch should be presented as a set of concentrated

time-dependent forces, which are applied at the nodal points of the Rabinovich’s

model. These forces may be written in the form PBf ðtÞ; PCf ðtÞ; :::where f ðtÞ is a
certain time-dependent function, and PB; PC; :::may be treated as static loads at

the nodal points B, C,. . .
3. Resolve the arbitrary nodal loads into symmetrical and antisymmetrical

components. The following steps should be performed for each component of

load separately; for now let us consider symmetrical loading.

4. We initially consider the nodal forces as static ðf ðtÞ ¼ 1Þ. Construct the bending
moment diagram for symmetrical loading; this diagram is denoted Mstat.

5.91

8.83

Mdyn Mdyn

BA

1
2

3k=0.20

1.22

1.02 BA

1 2
3

k=1.00

Fig. 7.8 Dynamic bending moment diagram
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5. Resolve bending moment diagram Mstat for symmetrical loading into two

components by the first and second mode of symmetrical vibrations. Ordinates

of these diagrams for three-hinged arch are presented in Tables A.37 and A.38;

for two-hinged arch in Tables A.41 and A.42.

6. Form the following equations for two nodal points B and C of the arch

k1MB1 þ k2MB2 ¼ Mstat
B ;

k1MC1 þ k2MC2 ¼ Mstat
C : (7.21)

and calculate coefficients k1 and k2. For a two-hinged arch, either of the two

equations (7.21) may be replaced by the similar equation for point D at the

crown, namely, k1MD1 þ k2MD2 ¼ Mstat
D :

7. For any function f ðtÞ, the dynamic bending moment for each point may be

presented as a sum of two diagrams

MðtÞ ¼
X

kiMioi

Z t

0

f ðtÞ sinoiðt� tÞdt; i ¼ 1; 2: (7.22)

where the first and second terms of (7.22) correspond to the first and second forms

of symmetrical vibrations.

Duhamel integrals in (7.22), for some loadings, are presented in Sect. 7.2.3.

The steps 1–7 and (7.22) allow us to construct the bending moment diagram as a

sum of two diagrams corresponding to the symmetrical modes of vibrations of the

arch. It is very important that in the case of any excitation f(t), we do not need to

determine the displacements of the arch.

7.4.2 Impulsive Load

Parabolic symmetrical three-hinged uniform arch A–A0 of span l and rise f ¼ 0:2l is
subjected to the impulsive excitation as shown in Fig. 7.9a; maximum ordinate at

crown D equals s(Ns/m). Let us calculate the dynamic bending moment at specified

points.

The span of the arch is divided into six equal portions. Ordinates at the specific

points are yB ¼ l 9= and yC ¼ 8l 45= (Fig. 7.9b) [Rab58], [Sni66].

Step 1. First of all we will consider the given load as static. Distributed load is

replaced by a set of the nodal forces. For this purpose, we will consider three simply

supported beams; the span of each beam is l ¼ l/6. General design diagram of each

beam of span l and corresponding reactions R1 and R2 are shown in Fig. 7.9b.

Specific forces for each nodal point of the arch are shown in Fig. 7.9c, with factor

k ¼ sl/108.
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For example, the force at node B is

FB ¼ l
6
ðs1 þ 2s2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
R2 portion AB

þ l
6
ð2s1 þ s2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
R1 portion BC

¼ l
6

0þ 2
s

3

� �
þ l
6

2
s

3
þ 2s

3

� 	
¼ s l

18
¼ 6k:

The factor k becomes k ¼ s l 108= . Vertical reactions of the arch are

RA ¼ RA0 ¼ 27k. Bending moment at D for substitute beam is M0
D ¼ sl2 12= ,

so the thrust of the arch becomes H ¼ M0
D=f ¼ ðsl=2:4ÞðkNÞ.

Bending moments at joints B and C are

Mstat
B ¼ ðRA � 1Þ k � l� H � yB ¼ �0:0062sl2;

Mstat
C ¼ ðRA � 1Þ k � 2l� 6k � l� H � yC ¼ �0:0031sl2:

The bending moments at the nodal points B and C for the first and second mode

of vibrations, according to Tables A.37 and A.38, are

MB1 ¼ 78:12EI l2;
�

MB2 ¼ 253:96EI l2;
�

MC1 ¼ 51:51EI l2;
�

MC2 ¼ �348:62EI l2:
�

Equations (7.21) for nodal points B and C become

78:12k1 þ 253:96k2ð ÞEI l2 ¼ �0:0062sl2;
�

51:51k1 � 348:62k2ð ÞEI l2 ¼ �0:0031sl2:
�

s2
s1

l
R1 R2

lR1 (2s1+s2)
6

=

lR2 (s1+2s2)
6

=

D

l

0.2l

A A¢

s
s /3

2s/3

Factor
108
sl

k =

H

B
C

D

l=l/6

0.2lyB
yC

B¢
C¢

l l l l l

A A¢

1k

6k
12k

16k 12k
6k

1k

RA RA¢

H H=sl/2.4

RA=27k

a

c

b

Fig. 7.9 (a) Design diagram of the arch subjected to impulsive excitation; (b) loading and

reactions for any portion of span l; and (c) loading of the arch by loads at the nodal points
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Solution of these equations is

k1 ¼ �7:314� 10�5 sl
4

EI
; k2 ¼ �0:1914� 10�5 sl

4

EI
:

Step 2. Dynamic bending moment at joint B is

Mdyn
B ðtÞ ¼ k1MB1o1

Z t

0

f ðtÞ sino1ðt� tÞdtþ k2MB2o2

Z t

0

f ðtÞ sino2ðt� tÞdt:

Duhamel integral for different types of loads is presented in [Har88]. Taking into

account Duhamel integral for a given impulsive loading, the last expression

becomes

Mdyn
B ðtÞ ¼ k1MB1o1 sino1tþ k2MB2o2 sino2t:

According to Tables A.37 and A.38, the first and second frequency of symmet-

rical vibration are

o1 ¼ 43:54

l2

ffiffiffiffiffi
EI

m

s
; o2 ¼ 138:73

l2

ffiffiffiffiffi
EI

m

s
:

Finally, for bending moment at point B, we need to use the maximum ordinate of

impulse s, thus, we get

Mdyn
B ðtÞ ¼ �sð0:259 sino1tþ 0:0674 sino2tÞ

ffiffiffiffiffi
EI

m

s
ðNmÞ:

Note that this expression contains the span l in the frequencies oi only.

Similarly we can calculate the dynamic bending moment at joint C. Finding the

extremes of these functions poses no difficulty. In the case of antisymmetrical

vibration of three-hinged arch, we need to use Tables A.39 and A.40. This proce-

dure is the same for other types of arches.

Let us consider another excitation. Assume that triangle impulse in Fig. 7.9a acts

within a short time t and after that vanishes. The maximum displacement occurs

after the disappearance of the load [Tho81], [Wea90]. As this takes place

MðtÞ ¼ 2
X

ki
oit
2

sinoi t� t
2

� �
; i ¼ 1; 2:

Similar expressions may be formed for any joint of the Rabinovich model in the

case of an antisymmetric vibration. Procedure for vibration analysis of the other

types of arches is the same.
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Part IV

Special Arch Problems



Chapter 8

Special Statics Topics

This chapter contains two topics, which significantly extend the classic static

analysis of arches. They are the plastic analysis of arches and analysis of arched

structures with one-sided constraints.

These problems are nonlinear. The reason for their nonlinearity for both topics is

the same – some constraints are eliminated from the work of a structure. However,

the reasons for this elimination for both cases are different. In the case of plastic

analysis, this occurs because the bearing capability of these constrains become

exhausted. In the case of structures with one-sided constraints, we deal with

constraints which are unable to perceive the internal force of a certain sign.

In both cases, the design diagram of a structure, in the process of loading, is

undergoing change, i.e., we have a system with a variable structure. In such

problems, application of the superposition principle as well as general theorems

of elastic structures requires rigorous justification.

Analysis of such problems falls in the category of the most difficult problems in

structural mechanics.

8.1 Plastic Analysis of the Arches

In the previous chapters, we considered structures taking into account only elastic

properties of materials for all members of a structure. Analysis of a structure based

on elastic properties of material is called the elastic (or linear) analysis. Elastic

analysis does not allow us to find out the reserve of strength of the structure beyond
its elastic limit. Also this analysis cannot answer the question: what would happen

with the structure, if the stresses in its members will be larger than the proportional

limit? Therefore, a problem concerning to the actual strength of a structure cannot

be solved using elastic analysis. Plastic analysis allows us to use the reserves of

strength of material, which remains unused considering material of structure as

elastic. Therefore, plastic analysis allows us to define the limit load on the structure

and to design a more economical structure.

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_8, # Springer Science+Business Media, LLC 2012
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Fundamental idea of the plastic analysis is discussed using the direct method.

Kinematical and statical methods of calculation of the limit loads are considered.

Detailed plastic analysis of the arches is presented.

8.1.1 Idealized Stress–Strain Diagrams

The typical stress–strain diagram for the specimen of structural steel is presented in

Fig. 8.1. Elastic analysis corresponds to the initial straight portion of the s–e
diagram. If a specimen is loaded into the proportional limit (or below) and then

released, then material will unload along the loading path back to the origin.

So, there are no residual strains. This property of unloaded specimen to return to

its original dimensions is called elasticity, and material in this region is called the

linearly elastic. Within the elastic region, a relationship between stress and strain

obeys to Hooke’s law s ¼ Ee.
Let a specimen is loaded into the elastic limit. The stress at this point slightly

exceeds the proportional limit. From this point, the material unloads along the line

that is parallel to straight portion of the diagram and thus, the material has the very

small residual strain (Fig. 8.1).

Plastic behavior starts at the elastic limit. The region CD is referred as the

perfect plastic zone. In this region, the specimen continues to elongate without

any increase in stress. Above the yield plateau, starting from point D, the behavior
of the specimen is described by nonlinear relationships s–e. If the specimen will be

unloaded at point A (Fig. 8.2), then unloading line will be parallel to the load

straight line, so the specimen returns only partially to its original length. Total strain

of the specimen is ON, while the strain MN has been recovered elastically and the

strain OM remains as residual one [Cra00].

If the material remains within the elastic region, it can be loaded, unloaded,

and loaded again without significantly changing the behavior. However, when the

load is reapplied in a plastic region, the internal structure of material is altered,

Proportional limit

Elastic limit

Yield stress

Yield plateau

Ultimate stress

Fracture stress

∗

∗
∗∗

∗True
  fracture stress

Elastic
region

Plastic behaviour

O
Unloading line

Yielding Strain
hardening

Necking

C D ∗

Elastic
behavior

s

Fig. 8.1 Typical stress–strain diagram for structural steel
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its properties change, and the material obeys to Hook’s law within the straight

lineMA; it means that the proportional limit of the material has been increased. This

process is referred to as the strain-hardening.
For plastic analysis, we change the typical diagram by its idealized diagram.

Different idealized diagrams are considered in engineering practice [Bir68],

[Cra00]. Some of idealized models are presented in Table 8.1.

For further analysis, we will consider idealized elasto-plastic material and rigid-

plastic material. We starts from elasto-plastic material; corresponding diagram

is called Prandtl diagram. This diagram has two portions – linear “stress–strain” part

and the yield plateau. Elastic properties ofmaterial are holds up to yield point stress sy.
The yield plateau shows that displacement ofmaterial can become indeterminate large

under the same stress. Idealized elasto-plastic material does not have effect of harden-

ing. This diagram may be applicable for a structural steel and for reinforced concrete.

Structural analysis on the basis of idealized diagram is referred as the plastic analysis.
The quantitative results of plastic analysis are much closer to the actual behavior of a

structure than the results obtained on the basis of elastic properties of material.

In case of statically determinate structure, yielding of any members leads to the

failure of the structure as a whole. Other situation occurs in case of statically

indeterminate structure. Assume that for all members of the structure, the Prandtl

diagram is applicable. On the first stage, when loads are small, behavior of all

members follows the first portion of the Prandtl diagram. Proportional increase of

all loads leads to the yielding in the most loaded member. It means that the degree

A

Unloading path

Residual strain Elastic strain

Total strain

O NM

*
* *

*
*

sFig. 8.2 Loading–unloading

diagram

Table 8.1 Idealized relationship s–e for axially loaded members

Material Elasto-plastic Rigid-plastic
Elasto-plastic with
linear hardening

Rigid-plastic with
linear hardening

Diagram
sy sy sy

a0 a0

sy
A

s

e e e e

aaaa

s s s
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of statical indeterminacy is decreased by one. The following proportional increase

of all loads leads to the following effect: the internal force in the yielding member

remains the same, while the forces in the other members will be increased.

This effect will be continues until the next member starts to yield. Finally,

the structure becomes statically determinate and yielding of any member of this

structure immediately leads to the failure of the structure, since the structure is

transformed into a mechanism. In general, if the structure has n redundant

constrains, then its failure occurs when the number of yielding member becomes

n + 1. It means that capability of a structure to carry out the increasing load

has been exhausted. This condition is called limit equilibrium condition. In this

condition, the limit loads and internal forces satisfy to equilibrium condition. The

following increase of a load is impossible. In this condition, the displacement of

the structure becomes undefined. While the linear portion of typical stress–strain

diagram leads to linear problems of structural analysis (elastic problems), the

Prandtl diagram leads to nonlinear problems of plastic behavior of structures.

Indeed, the design diagram of a structure is changed upon different levels of

loads. Transition from one design diagram to another happens abruptly.

Let us consider the plane bending of a beam with a rectangular (b � h) cross
section. In the elastic region of the stress–strain diagram, the normal stresses are

distributed within the height of a cross section of the beam linearly. The maximum

tensile and compressed stresses are located at the extreme fibers of the beam.

The stress sy corresponds to the yield plateau (Fig. 8.3a). Increasing of the load

leads to appearance and developing of the yield zone and decreasing of the “elastic

core” of the section of the beam. Figure 8.3b, c corresponds to partially plastic bending

of a beam, whichmeans that the middle part of the cross section is in elastic condition,

while the bottom and top parts of the beam are in plastic condition [Cra00].

Further increasing of load leads to complete plastic state (Fig. 8.3d), which

corresponds to the limit equilibrium, i.e., we are talking about the appearance of

so-called plastic hinge (Fig. 8.3d, e). It is obvious that all sections of the beam are in

different states. Defining the location of the plastic hinge is an additional problem

of plastic analysis. This problem will be considered below.

Plastic hinge

sy sy

sy

sy

F

F

h

Plastic zone

Plastic zone

Elastic
core

b

a b c

d e

Fig. 8.3 Distribution of normal stresses within the height of a beam
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What is the difference between plastic and ideal hinge? First, the plastic hinge

disappears if the structure is unloaded, so the plastic hinge may be considered as

fully recoverable or one-sided hinge. Second, in the ideal hinge, the bending

moment equals to zero, while the plastic hinge is characterized by the appearance

of bending moment, which is equal to the limit (or plastic) moment of internal

forces F ¼ syðbh=2Þ (Fig. 8.3d). A bearing capability of a structure is characterized

by the plastic moment MP ¼ Fðh=2Þ ¼ syðbh2=4Þ.
Plastic analysis involves determination of limit load, which structure can resist

before full failure due to yielding of some elements. The limiting load does not depend

on settlements of supports, errors of fabrication, prestressed tension, and temperature

changes; this is the fundamental difference between plastic and elastic analysis. In the

following sections, we consider different methods of determining plastic loads.

8.1.2 Direct Method of Plastic Analysis

The fundamental concept of plastic analysis of a structure may be clearly presented

using the direct method [Kar10]. Let us consider the structure shown in Fig. 8.4a

subjected to load P at point K [Rzh82]. The horizontal rod is absolutely rigid. All

hangers have constant stiffness EA. The plastic analysis must be preceded by the

elastic analysis.

Elastic Analysis

This analysis should be performed on the basis of any appropriate method of

analysis of statically indeterminate structures. Omitting this analysis, which is

familiar for reader and presents no difficulties, the distribution of internal forces

in members 1–4 of the structure is as follows (Fig. 8.4b):

N1 ¼ 0:4P; N2 ¼ 0:3P; N3 ¼ 0:2P; and N4 ¼ 0:1P:

Plastic Analysis

Step 1. Increasing of load leads to the appearance of yield stresses. They are reached

in the most highly stressed member. In our case, this member is element 1.

P

0.4P 0.3P 0.2P 0.1P

P

d
ld d

41 32

K

a b

Fig. 8.4 (a, b) Design diagram and distribution of internal forces according to elastic analysis
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Let N1 become equal to limit load, i.e., N1 ¼ Ny. Since N1 ¼ 0:4P, then it occurs

if external load would be equal to P ¼ ðNy=0:4Þ ¼ 2:5Ny. For this load P, the limit

tension will be reached in the first hanger. Internal forces in other members are

(Fig. 8.5).

N2 ¼ 0:3P ¼ 0:3� 2:5Ny ¼ 0:75Ny; N3 ¼ 0:5Ny; N4 ¼ 0:25Ny:

Step 2. If load P will be increased by the value DP2, then N1 ¼ Ny remains without

changes. It means that additional load will be distributed between the three

members 2–4, i.e., the design diagram had been changed (Fig. 8.6). This structure

is statically indeterminate to the first degree. Elastic analysis of this structure due to

load DP2 leads to the following internal forces

�N2 ¼ 0:833DP2; �N3 ¼ 0:333DP2; �N4 ¼ �0:167DP2:

As always, the most highly stressed member will reach the yield stress first.

Since first hanger is already in yield condition (and cannot resist any additional

load), the most highly stressed member due to load DP2 is the second hanger.

The total limit load in this element equals

N2 ¼ 0:75Ny þ 0:833DP2:

In this formula, the first term corresponds to initially applied load P ¼ 2.5Ny

(Fig. 8.5), while the second term corresponds to additional load DP2. The limit

load for the second hanger is N2 ¼ Ny. Thus, the equation

N2 ¼ 0:75Ny þ 0:833DP2 ¼ Ny

Ny 

P = 2.5Ny

0.5Ny 0.25Ny0.75Ny

Fig. 8.5 Step 1 – plastic state

in the member 1 and internal

forces in the rest members

Ny

DP2

N2 N3 N4

Fig. 8.6 Step 2 – internal

forces in the members 2–4

due to load DP2
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leads to the following value for the increment of load DP2 ¼ ð0:25NyÞ=0:833
¼ 0:3Ny. Thus, the value DP2 ¼ 0:3Ny represents additional load, which is required

so that the second hanger reaches its yielding state. Therefore, if load

P ¼ 2:5Ny þ 0:3Ny ¼ 2:8Ny;

then both members 1 and 2 reach their limit state. As this takes place (Fig. 8.7), the

internal forces in hangers 3 and 4 are the following

N3 ¼ 0:5Ny þ 0:333� 0:3Ny ¼ 0:6Ny;

N4 ¼ 0:25Ny � 0:167� 0:3Ny ¼ 0:20Ny:

Step 3. Since internal forces in hangers 1 and 2 reached the limit values, then the

following increase of the load by the value DP3 (Fig. 8.8) affects the members 3

and 4 only. Elastic analysis of this statically determinate structure leads to the

following internal forces in members 3 and 4: �N3 ¼ 2DP3 and �N4 ¼ �DP3.

Step 4. Similarly as above, the limit state for this case occurs if internal force

in hanger 3 reaches its limit value

N3 ¼ 0:6Ny þ 2DP3 ¼ Ny:

This equation leads to the following value for the increment of load

DP3 ¼ 0:4Ny

2
¼ 0:2Ny:

Ny Ny 0.20Ny0.6Ny

P = P+DP2= 2.8N y

Fig. 8.7 Step 2 – plastic state

in the members 1 and 2

Ny Ny

DP3

N3 N4

Fig. 8.8 Step 3 – internal

forces in the members 3–4

due to load DP3
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The total value of external force (Fig. 8.9) is given as follows

P ¼ 2:5Ny þ DP2 þ DP3 ¼ 2:5Ny þ 0:3Ny þ 0:2Ny ¼ 3:0Ny:

The first term in this formula corresponds to limit load in the first member;

increment of the force by 0.3Ny leads to the limit state in the second member.

The following increment of the force by 0.2Ny leads to the limit state in the third

member. After that the load-carrying capacity of the structure is exhausted. From

the equilibrium equation for the entire structure, we can see that on this stage

N4 ¼ 0 (Fig. 8.9).

All forces satisfy to equilibrium condition. Plastic behavior analysis leads to the

increment of the limit load by ½ð3� 2:5Þ=2:5� 100% ¼ 20%.

Plastic displacements. If internal force in some of the elements reached its limiting

value and the load continues to increase, then we cannot determine displacements

of the system using only elastic analysis. However, plastic analysis allows calcu-

lating displacements of a structure on each stage of loading. Let us show the graph

of displacement of the point application of force P (point K).
If load P ¼ 2.5Ny, then internal force in second element equals 0.75Ny (Fig. 8.5)

and vertical displacement of point K is DK ¼ 0:75Nyl EA= .

If load P ¼ 2.8Ny, then internal force in second element equals Ny (Fig. 8.7) and

vertical displacement of point K is DK ¼ Nyl EA= .

If load P ¼ 3.0Ny, then internal force in third element equals Ny (Fig. 8.9) and

deflection of this element equals Nyl EA= . Since internal force in fourth element

equals zero, its deflection is zero and required displacement DK ¼ 2Nyl EA= .

Ny Ny

3.0Ny

Ny N4=0

Fig. 8.9 Step 4 – plastic state

in the members 1–3

3.0
2.8
2.5

0.75 DK

P

1.0 2.0

Fig. 8.10 P� DK diagram in

plastic analysis
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Corresponding P� DK diagram is shown in Fig. 8.10; the factors l=EA and Ny

for horizontal and vertical axis, respectively. This diagram shows that P� DK

relationship is nonlinear. This is typical for plastic analysis.

8.1.3 Mechanisms of Failure in Arches

We will consider in-plane failure of the arches. A fundamental difficulty of the

plastic analysis of the arches is determining the real form of their failure, i.e.,

determining location of the plastic hinges.

For a two-hinged arch, the different mechanisms of failure are shown in

Fig. 8.11a–c. In case of main form of failure, the arch exhibits the mechanism of

sideway displacement (Fig. 8.11a). Symmetric forms of failure are also possible

(Fig. 8.11b, c). However, such mechanisms may be realized if additional

constraints, which prevent sideway failure, are introduced into the structure.

For two-hinged arch with tie mechanism of failure can be characterized by the

appearance of the yield in the tie and one plastic hinge in the arch (Fig. 8.11d).

If a hingeless arch is subjected to load P at the crown (Fig. 8.11e), then the

mechanism of failure is characterized by the appearance of five plastic hinges

[Kle80]. Their locations (except at the supports) are initially unknown.

8.1.4 Limiting Plastic Analysis of Parabolic Arches

Two-hinged uniform parabolic arch is subjected to force P as shown in Fig. 8.12a.

Determine the limit load P and find the location of the plastic hinges, if l ¼ 12 m,

My

Hy

My

MyPlima b

c d

e

Fig. 8.11 Arch mechanisms of failure

8.1 Plastic Analysis of the Arches 361



f ¼ 3 m, and bearing capacity of all cross sections within the arch is

My ¼ 112.5 kN m

Solution. First, let us consider the behavior of structure subjected to given load and

the failure mechanism.

First stage. From the elastic analysis of the arch we know, that the maximum

moment occurs at the point of application of load P, i.e., at point E. Therefore, just
here will be located the first plastic hinge and the entire two-hinged arch is

transformed into three-hinged nonsymmetrical arch. The maximum possible bend-

ing moment at the point Ewill be equal to the limit bending momentMy (Fig. 8.12b).

Second stage. Again, we will increase the load P. The second plastic hinge occurs

at point D with the maximum bending moment. However, the location of this point

is unknown yet. We note that on the arch, in addition to the two support hinges A
and B, two plastic hinges E and D are also added. The nature of these hinges is

different. Hinge at the support points are ideal ones, while two other hinges are

plastic ones and they are result of exhausted bearing capability of the beam.

The first plastic hinge with opening below occurs at point E. The bending

moment at this point for the reference beam is

M0
E ¼ Plim

ab

l
¼ Plimuul ¼ Plimuð1� uÞl ¼ Plim � 0:75� 0:25� 12 ¼ 2:25Plim:

The bending moment at any section x caused by thrust H is

MxðHÞ ¼ �Hy ¼ H
4f

l2
xðl� xÞ ¼ H

4x
l
xðl� xÞ ¼ H

4� 0:25

12
xð12� xÞ

¼ Hx 1� x

12

� �
: (8.1)

l=12m

P

x

y

A
B

C

E

a=ul=9m b=vl

f= l

Parabola

a

b

c

My

My

Plim

D E

xD

MD
lim = 5.112

ME
lim = 112.5

Plim

H

xD

H

D

yD

E

yE

M0 diagram
Hy diagram

HyD=249.63

HyE=218.56

ME
0 = 2.25 Plim = 331.06

MD
0 = 137.13

M(kNm)

+
−

Fig. 8.12 Design diagram of the arch and mechanism of failure
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At point E, we get

MEðHÞ ¼ H � 9 1� 9

12

� �
¼ 2:25H:

Finally, the bending moment at section E is

ME ¼ M0
E �MEðHÞ ¼ 2:25Plim � 2:25H: (8.2)

For computation of the thrust H, the elastic analysis methods cannot be applied;

therefore, for now the thrust H remains unknown.

The second plastic hinge with opening above occurs at point D. The bending

moment at point D for the reference beam is

M0
D ¼ M0

E

xD
ul

¼ Plimuð1� uÞ l xD
ul

¼ 0:25PlimxD:

The bending moment at point D caused by thrust H according to (8.1) is

MDðHÞ ¼ HyD ¼ H xD � x2D
12

� �
:

The bending moment at section D becomes

MD ¼ M0
D �MDðHÞ ¼ 0:25PlimxD � H xD � x2D

12

� �
: (8.3)

The maximum bending moment occurs when dMD/dxD ¼ 0:25Plim�
Hð1� ðxD=6ÞÞ ¼ 0. Solution of this equation is

xD ¼ 6� 1:5Plim

H
: (8.4)

Substituting (8.4) into (8.3) yields

MD ¼ 1:5Plim � 3H � 0:1875P2
lim

H
: (8.5)

Taking into account the limit plastic moment My we get

Mlim
E ¼ 2:25Plim � 2:25H ¼ My ¼ 112:5:

Thus, we obtain the following relationships between thrust and limit load

H ¼ Plim � 50: (8.6)
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Substitution of (8.6) into (8.5) and taking into account the limit plastic moment

Mlim
D ¼ �112:5, we get a following algebraic equation with respect to Plim

1:6875P2
lim � 337:5Plim þ 13; 125 ¼ 0:

This equation leads to the limit load

Plim 1 ¼ 147:14 kN and Plim 2 ¼ 52:86 kN:

Thefirst root leads to the following results for thrust and location of the plastic hinge

H1 ¼ Plim 1 � 50 ¼ 97:14 ðkNÞ; xD 1 ¼ 6� 1:5Plim 1

H1

¼ 3:728 ðmÞ:

The second root Plim 2 leads to the xD 2 ¼ �21:7ðmÞ and should be discarded.

General expression for bending moment in plastic condition M ¼ M0 � Hy
is realized in Fig. 8.12c. Here M0 is a bending moment diagram for reference beam,

the term Hy ¼ Hx½1� ðx=12Þ� for points E and D becomes 218.56 and 249.63,

respectively. In fact, this diagram presents the staticmethod of plastic analysis [Kar10].

In case of nonsymmetrical loading of the hingeless arch, four plastic hinges

appear in the system (Fig. 8.13).

A bending moment diagram in plastic state is combined from four diagrams.

We construct the bending moment diagram a–d–b for substitute beam (M0 diagram)

from the base line a–b. Bending moment diagrams a–a0–b and a–b–b0 are diagrams

caused by plastic moments My at the supports. Bending moment diagram due to

thrust is denoted as Hy diagram. Limit moments My at the sections A–D have

alternating signs.

My

My

My

My

My

My

My

MyPlim

M0 diagram

Hy diagram  

M

–

HH

VA VB

a

a´

b´

b

d

A B

C
D

Fig. 8.13 Design diagram of

the hingeless arch,

mechanism of failure, and

bending moment diagram in

plastic state
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8.2 Arched Structures with One-Sided Constraints

So far it has been assumed that all constraints of the structure are two-sided.

It means that if a constraint prevents displacements in some direction, then this

constraint also prevents displacements in the opposite direction. However, the one-

sided constraints often appear in design practice. The word “constraints” means not

only support constraints, but any member of a structure, for example, the diagonal

members of a truss.

A classic example of a structure with one-sided constraints is a beam on an

elastic foundation. The foundation acts back on the beam within the portion where

the beam touches the ground, and ceases to act on the beam in the zone where

the beam is separated from the ground. The zone of contact of the beam with the

foundation (or separation of beam from the ground) depends on the load value and

its location.

Analysis of structures with one-sided constraints falls into a category of the most

difficult problems in structural mechanics.

8.2.1 General Properties of Structures
with One-Sided Constraints

One-sided constraint, which perceives the internal force, is called an active one-

sided constraint. One-sided constraint which cannot resist the load is known as an

inactive one-sided constraint. Active one-sided constraint works, while inactive

one-sided constraint does not work. It is obvious that a one-sided constraint may be

active for some special location and value of a load and for other location and value

of a load the same one-sided constraint becomes inactive.

Assume that one-sided constraints are absent among absolutely required

constraints and is present only among the redundant constraints. It means that the

structure is geometrically unchangeable [Kar10].

Some properties of structures with one-sided constraints:

1. A structure with one-sided (even ideal-elastic) constraints is a nonlinear

structure.

2. As the load that acts on the structure changes, some constraints become inactive

(excluded from work) while others, previously inactive, become active (included

in work); therefore the principle of superposition is not applicable.

3. As a one-sided active constraint becomes inactive or as a one-sided inactive

constraint becomes active, the reciprocal works and reciprocal displacements

theorems can become invalid.

If a structure contains n one-sided constraints, then considering different

combinations of the members as active and inactive members, it is possible to

generate 2n different systems. For example, if n ¼ 10, then the number of possible
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structures is 2n ¼ 1; 024 [Rab54a]. The main problem of analysis of structures with

one-sided constraints is to determine the constraints which are active (works) for a

given load [Pro48], [Rab50].

8.2.2 Criteria of the Working System

Assume that a system has n one-sided constraints, and under the given load

the one-sided redundant constraints C1; C2; :::; Cm are active, while constraints

Cmþ1; Cmþ2; :::; Cn are inactive. If we assume that active constraints

C1; C2; :::; Cm are two-sided, we can determine internal forces (reactions) in

these constraints by any method for analysis of redundant structures and after that

determine displacements along the inactive constraints Cmþ1; Cmþ2; :::; Cn.

Assume that internal forces and deflections of the one-sided constraints in the

operating state are positive.

If forces in active (working) constraints C1; C2; :::; Cm are positive, while

displacements along the inactive constraints Cmþ1; Cmþ2; :::; Cn are negative,

then the working system is chosen correctly. It means that forces and deflections

of the one-sided constraints correspond to the entire working system.

The first paper devoted to analysis of structures with one-sided constraints was

published in 1852. The author, D.I. Jourawsky, considered a truss with crossed

diagonals. He showed that wood diagonals can resist only compressive internal

forces, while the ends of the extended diagonals being dislodged from their original

positions, and cease to work in the entire structure as an element which can resist

internal forces [Tim53], [Ber57]. Some fundamental theorems related to analysis of

structures with one-sided constraints are presented in ref. [Rab50].

8.2.3 Analysis of Structures with One-Sided Constraints

Analysis of structures with one-sided constraints contains minimum of two steps.

In the first step, we assume that all constraints are two-sided. Then we analyze

the structure and mark those constraints, which are not be able to resist the given

load. For example, the hangers of the cable bridge are constraints with compressed

internal forces.

In the second step, we change the design diagram of the structure. For this, we

exclude the inactive constraints and perform new analysis of the structure, consid-

ering all remaining constraints as two-sided. After that we verify the criteria of the

working system. If this criteria is satisfied, then the analysis is finished. Otherwise

it is necessary to adopt a new working system and repeat the entire procedure.
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Herein lies the difficulty in analyzing systems with one-sided constraints: to this

day, it is impossible to chose the correct system that satisfies the criteria of the

working system without first performing the analysis described in Step 1.

The procedure for construction of influence lines for a system with one-sided

constraints becomes especially difficult.

Let us consider the arched structure which consists of the arch itself, a beam, and

the vertical poles. Each pole and beam are connected by means of simple hinges

(Fig. 8.14a). Therefore, the beam may be treated as a continuous beam on elastic

supports, and the structure in whole becomes statically indeterminate. Assume that

the poles can resist tensioned and compressed forces. Analysis of this structure may

be performed using the Force method.

The equation of the neutral line of the arch is y ¼ yðxÞ. Let l, f, and hk be the span
of the arch, rise, and length of the kth pole, respectively. The flexural stiffness of the
arch is EaIa, of beam it is EbIb and axial stiffness of poles is E0A0. One version of

the primary system is shown in Fig. 8.14b.

Next we need to construct the internal force diagrams for primary system due to

the unit primary unknowns, as well as the diagram due to the external load. Unit and

loaded displacements are calculated using graph multiplication method. In doing so

we take into account the bending moments in the beam and arch as well as the axial

forces in the poles. For multiplication of diagrams along the arch, the length of the

arch is approximated by a set of the chords with length s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
.

Canonical equations are

d11X1 þ � � � þ d14X4 þ D1P ¼ 0

: : : : : :

d41X1 þ � � � þ d44X4 þ D4P ¼ 0:

Solution of these equations are Xi. Bending moment diagram for beam is

constructed immediately since the primary unknowns are bending moments at the

elastic supports. Bending moments for arch may be calculated by the formulaM ¼P
�MiXi þM0

P. Axial forces in the poles may be constructed by the formula

A B  X4

X1 X2 X3
P

A B

1

432
5

EaIa

EbIb

E0A0

a b

Fig. 8.14 Design diagram of arched structure and primary system
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N ¼ P
�NiXi þ N0

P, where
�Ni is axial forces in the ith unit state. This classic

procedure describes analysis of a structure with two-sided constraints.

Let for a given location of the force P, an elastic line of the beam is shown by a

dotted line (Fig. 8.14a). If we assume that the poles can resist only compressed

forces then the design diagram in Fig. 8.14a does not reflect a real behavior of the

structure. Therefore, the extended poles should be omitted from the following

analysis. Let the external force P be located over pole 3. In this case, it is obvious

that poles 2 and 4 has the positive internal forces. Design diagram which

corresponds to omitted extended constraints is shown in Fig. 8.15a. The primary

system is shown in Fig. 8.15b.

Now we need to perform analysis of structure in Fig. 8.15b, determine internal

forces in members 1, 3, and 5 and displacements along omitted constraints 2 and 4,

and finally, apply the criteria of the working system.

Another example of the arched structure with one-sided constraints is shown in

Fig. 8.16. The hangers are connected with the arch by simple hinges (except crown C)
and by multiple hinges with the horizontal part AB. Inclined hangers distribute the

forces in the arch better than the vertical hangers. The degree of redundancy of such

a structure equals to the number of joints on the horizontal part AB, which contains

two hangers (in our case, degree of redundancy equals to six).

It is easy to show that internal forces in the hangers which are concurrent in the

unloaded joint of the part AB are equal to zero. Indeed, equilibrium equation

∑Y ¼ 0 for each unloaded joint shows that one of the two hangers is extended

P

P

A B

1

3

5

EaIa

EbIb

E0A0

a b

2 4

A B X2

X1

Fig. 8.15 Design diagram of arched structure without inactive constraints 2 and 4 and the primary

system

P1

S1 X1

1
A B

C

y

a b

P1 P2 P3

1 2 3

Fig. 8.16 Design diagram of arched structure with inclined hangers
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while other is compressed. A compressed hanger may be discarded, considering it

as a one-sided constraint. Then internal force in the second hanger turns out to

equals to zero, because the joint becomes a three-member unloaded joint.

Now let us consider the loaded joints of contour AB with two paired hangers;

such joints in Fig. 8.16a are denoted as 1, 2, 3. One force for each such joint is

considered as the primary unknown X1; X2; ::: (Fig. 8.16b). Assuming that all

hungers are two-sided, form the canonical equations of the Force method and

determine all primary unknowns X1; X2; ::: Given this, if all primary unknowns

Xi and all internal forces Si turn out to be positive, then this means that the assumed

scheme is operational. If one or several internal forces turns out to be negative then

the corresponding one-sided constrains should be omitted from consideration.

As result, we obtain a new design diagram with a new number of primary

unknowns; eventually a set of calculations allow us to find the working system

for the entire design diagram.
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Chapter 9

Special Stability and Dynamic Topics

This chapter contains two topics which extend the stability and vibration analysis of

the arches. They are the dynamical stability of arch and dynamic action of the

moving load on the arched structure.

The feature of these problems lies in the fact that dynamic loading of the arch in

both cases leads to an effect which can be treated as a loss of stability.

9.1 Dynamical Stability of Arches

Analysis of the elastic structures from the point of view of its dynamical stability is

considered to be an important problem of the theory of structures. This analysis

allows us to determine the parameters of a “structure-load” system which lead to the

intense vibration of the structure; such vibration can lead to its collapse. The task of

the engineer is to prevent such vibrations.

The problem of dynamical stability of an elastic structure is as follows: structure

is loaded in such a way that its stiffness changes. Therefore, such loading (and the

problem as a whole) often is called parametric excitation [New89].

The first analysis of dynamical stability of simply supported column was

performed by Beljaev (1924) [Smi47]. Later outstanding scientists Krylov and

Bogoliubov (1935), Chelomey (1939), Smirnov (1947), and many others devoted

theirs works to this problem. This problem has been investigated in great detail

by Bolotin [Bol64]. Dynamical stability of arches was investigated by Morgaevsky

[Mor61]. A detailed literature review on this issue is presented by Kazakevich

[Kaz09].

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_9, # Springer Science+Business Media, LLC 2012
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9.1.1 Dynamical Stability of a Simply Supported Column

Let us consider a column which is subjected to the axial harmonic force S(t); the
form of transversal vibration is shown in Fig. 9.1. This vibration of a structure is

called parametric vibration. The meaning of this term will become clear later.

At the certain frequency of excitation, the force in the system causes significant

increase of transversal vibrations. Such phenomena is called the dynamical loss

of stability.

The scheme in Fig. 9.1 allows us to show a fundamental difference of the

parametric vibration from pure forced vibration: if the vibrations of hinge A in

the axial direction occur with frequency y of the disturbing force S(t), then the

vibrations of mass m in the transversal direction occur with frequency ’0 ¼ y 2=
[Smi47].

From Bernoulli–Euler theory, the transversal vibration of the beam with

distributed mass is described by the equation EI½ð@4yÞ=@x4� þ m½ð@2yÞ=@t2� ¼ 0,

where m is the mass per unit length of the beam. If we take into account the axial

force, the behavior of the beam is described by the equation

EI
@4y

@x4
þ SðtÞ @

2y

@x2
þ m

@2y

@t2
¼ 0: (9.1)

If S ¼ SðtÞ ¼ S0 cos y t [Now61], [New89], then (9.1) becomes

EI
@4y

@x4
þ S0 cos yt

@2y

@x2
þ m

@2y

@t2
¼ 0: (9.2)

This equation has a fundamental difference from the equation of forced

vibrations. Indeed, the disturbing force appears in the left-hand side of the equation

as the coefficient of the second derivative term. In this manner, the disturbing force

influences the parameters of the system, and therefore such excitation is called

parametric excitation.

S(t)

A

m

Fig. 9.1 Design diagram of

the column subjected to axial

harmonic force S(t)
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The transverse displacement of a beam depends on the axial coordinate x and

time t, i.e., y ¼ y(x, t). A solution of differential equation (9.2) may be presented in

the form

yðx; tÞ ¼ TðtÞ sin px
l
; (9.3)

where T(t) is some time-dependent function and sinðpx=lÞ is a function which

satisfies the boundary condition of a simply supported beam.

Substitution of this expression into (9.2) leads to the equation [Fil70]

m
d2T

dt2
þ EI

p4

l4
1� l2

EIp2
SðtÞ

� �
TðtÞ ¼ 0

or

d2T

dt2
þ o2 1� S0

Pcr

cos y t
� �

TðtÞ ¼ 0; (9.4)

where o ¼ ðp2=l2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
and Pcr ¼ ðp2EIÞ=l2 are the frequency of transversal

vibration (assuming the axial force vanishes) and the Euler critical force for simply

supported beam, respectively. Equation (9.4) is an ordinary differential equation of

the second order. This equation describes the response of a linear dynamical

structure with time-varying stiffness. Indeed, this equation contains time-dependent

stiffness which depends on the parameters of structure itself (frequency o of

transversal vibration and the Euler critical force) as well as the parameters of

disturbing force (amplitude value S0 and frequency y of axial force).

Equation (9.4) takes its name from the first paper by Mathieu [Mat68]. Solution

of this equation have been studied extensively by Haupt [Hau19], Goldshtein

[Gol27], Strutt [Str32], McLachlan [Mcl47], and Stoker [Sto50].

9.1.2 Ince–Strutt Diagram

The main feature of Mathieu equation lies in the fact that depending on the

relationship between the parameters of the system and the disturbing force,

the solutions of the equation can be bounded or grow infinitely in time.

Let z ¼ y t. Substituting this change of variable into (9.4), we get

d2T

dz2
þ o2

y2
1� S0

PE
cos z

� �
T ¼ 0
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or

d2T

dz2
þ ðn� c cos zÞT ¼ 0; n ¼ o2

y2
; c ¼ o2

y2
S

0

PE
: (9.5)

Solutions of this equation are a periodic functions with period p or 2p. These
solutions are presented in n� c Ince–Strutt diagram [Inc25-27], [Str32] by solid

lines (Fig. 9.2). These lines divide the n� c plane into regions. The diagram in

Fig. 9.2 presents the stable and unstable regions of (9.5) as a function of parameters

n and c; this diagram is symmetric about the horizontal axis. Equation of solid lines

may be presented in terms of n and c in algebraic form [Bol78]; this book also

contains the useful technical application of parametric excitations.

Stability region of solution to Mathieu equation is indicated by cross-hatched

area. Boundaries are unstable. If parameters of the system n and c turn out to be in

the unshaded region, the system exhibits vibrations which grow in time (parametric

resonance). If damping is present in the system, the stability region will be larger

than if no damping was present in the system.

9.1.3 Dynamical Stability of Circular Arch

Let us consider a circular two-hinged uniform arch which is subjected to a radial

load qðtÞ ¼ q0 cos y t (Fig. 9.3). The problem of dynamical stability of the arch we

will consider in a simplest formulation.

–2 0 2 4 6 8 9
0

2

4

6

8

1/4 1 9/4 25/4
10

Stable

n

y

Fig. 9.2 Ince–Strutt diagram
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Governing equation of vibration with respect to tangential displacement u of the
points on an axis of the arch (equation of dynamic stability) becomes [Chu52],

[Bir68], [Bol64]

L ¼ @6u

@’6
þ 2

@4u

@’4
þ @2u

@’2
þ qR3

EI

@4u

@’4
þ @2u

@’2

� �
þ mR4

EI

@2

@t2
@2u

@’2
� u

� �
¼ 0; (9.6)

where

u is a tangential displacement of a point on the axis of the arch and m is mass per

unit length of the arch.

’ ð�a � ’ � aÞ is the angle that determines location of the point on the

nondeformable axis of the arch. The boundary conditions for hinged ends are

u ¼ 0; @u=@’ ¼ 0; @3u=@’3 ¼ 0.

Two-Hinged Arch

Assume the approximate solution for two-hinged arch in the form

uðtÞ ¼ �f ðtÞ a
p

1þ cos
p’
a

� �
;

where f ðtÞ depends on time. This expression satisfies all the boundary conditions.

Apply Bubnov–Galerkin procedure to (9.6)

Z a

�a
L 1þ cos

p’
a

� �
d’ ¼ 0; (9.7)

where L is an operator in the left part of expression (9.6). As a result, we obtain

ðx2 þ 1ÞmR
4

EI
€f ðtÞ þ x2ðx2 � 1Þ2f ðtÞ � qR3

EI
ðx4 � x2Þf ðtÞ ¼ 0:

This equation may be rewritten as

€f ðtÞ þ o2 1� q

mRo2
g

� �
f ðtÞ ¼ 0 or €f ðtÞ þ o2 1� q

qcr

� �
f ðtÞ ¼ 0; (9.7a)

2a

EI

q(t)

R

A B

j

Fig. 9.3 Design diagram of

the arch
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where

o ¼ xðx2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p 1

R2

ffiffiffiffiffi
EI

m

r
; g ¼ x4 � x2

x2 þ 1
;

qcr ¼ mRo2

g
¼ ðx3 � xÞ2

x4 � x2
EI

R3
; x ¼ p

a
:

Formulas for critical radial load and frequency of free vibration have been

obtained earlier; see (4.11) and (6.16a), respectively.

Since q ¼ q0 cos y t, then (9.7) becomes

€f ðtÞ þ o2 1� q0
qcr

cos yt
� �

f ðtÞ ¼ 0:

Dimensionless parameters of Ince–Strutt diagram are n ¼ o2=y2 and

c ¼ ðo2=y2Þðq
0
=qcrÞ.

If disturbing harmonic load has a constant term q0, i.e., q ¼ q0 þ q1 cos y t,
then we get the following equation of parametric vibration

d2f

dt2
þ o2 1� q0

mRo2
g� q1

mRo2
g cos y t

� �
f ðtÞ ¼ 0

or

d2f

dt2
þ o2 1� q0

qcr
� q1
qcr

cos y t
� �

f ðtÞ ¼ 0:

This equation may also be easily presented in standard forms (9.4) and (9.5).

Arch with Fixed Ends

For hingeless arch uð’; tÞ ¼ P
j f ðtÞ ujð’Þ;

ujð’Þ ¼ 1� aj cos yþ bj cos kjy;

aj ¼
k2j

k2j � 1
sec a; bj ¼ 1

k2j � 1
sec kja;

where kj are roots of the transcendental equation kj tan a ¼ tan kja.
Detailed solution of this problem, using Bubnov–Galerkin procedure, is

presented in [Guz61].
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9.2 Arched Structure Subjected to Moving Loads

This section is devoted to the analysis of structures subjected to moving loads.

So far the moving load was associated only with the position of a load and any

dynamical effects have not been taken into account; this fact is a fundamental

assumption of influence line concepts.

In Sect. 9.2.1, we consider different dynamic states of problems regarding moving

loads and discuss the important case of loading of the beam (quasi-static state).

In Sect. 9.2.2, following the Morgaevsky procedure, we consider quasi-static loading

of the arch.

9.2.1 Beam with a Traveling Load

Figure 9.4 presents the four possible design diagrams for dynamical analysis of the

beam subjected to a moving concentrated load. Parameters that are taken into

account (mass of moving load M and distributed mass of a beam m0) are shown

in bold and thick solid lines. The scheme (a) does not take into account neither the

mass of the beam nor the mass of the load; therefore, the inertial forces are absent.

This case corresponds to static loading, and speed u only means that force Pmay be

located at any point; this case of loading is assumed for the construction of influence

lines. Case (b) takes into account only the mass of the moving load. Case (c)

corresponds to the motion of a massless force along the beam with distributed

mass per unit length. Case (d) takes into account the mass of the load and mass of

the beam. The difficulty in solving these dynamical problems increases from case

(b) to case (d).

Chester bridge (England) was designed by Robert Stephenson. The bridge

collapsed when a train was passing over it (May 24, 1847). This catastrophe led

scientists to focus on the problem of dynamic stresses arising in beams subjected to

moving loads. Solution of the classical problem in Fig. 9.4a was independently

solved by Winkler and Mohr in 1868. The problem in Fig. 9.4b was formulated

by Willis in 1849 [Tim53]; Stokes solved this problem (1849) and derived the

expression for dynamical coefficient m ¼ 1þMlu2 3EI= . The problem in Fig. 9.4c

P
M

m0 m0

P
M

a

c

b

d

u

u

u

u

Fig. 9.4 Design diagrams for

beam subjected to moving

load
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was thoroughly examined by Kryloff [Kru05]. Problem in Fig. 9.4d was explored

by Schallenkamp [Sch37], Inglis [Ing34], and Bolotin [Bol64].

It is possible to have situations where a distributed load is moving. A beam is

subjected to a uniformly distributed load, with intensity q0, which is moving along

the beam with a constant speed u; the mass of this load per unit length ismq. Assume

that the load covers only part of the beam, so the following cases of loading are

possible: load oncoming onto the beam (Fig. 9.5a), moving load within a beam

(Fig. 9.5b), or outgoing load from the beam (Fig. 9.5c). In these cases, the vibration

of the beam takes on a nonstationary character; these vibrations are described by

partial differential equations with variable coefficients.

Let us consider the quasi-static loading of the beam by a traveling inertial load.

Such loading arises if a beam is fully covered by the traveling load (Fig. 9.6)

[Kar70].

The vibrations of the above beam are governed by the differential equation

EI
@4y

@x4
¼ q: (9.8)

Intensity of the external load q is the sum of the inertial forces of the elements of

the beam and inertial forces of the moving load

q ¼ �m0

@2y

@t2
þ q0 � mq

d2y

dt2

� �
: (9.9)

Determine the inertial forces of the moving load. For this we need to calculate

the total derivative of the displacement with respect to time. It should be kept in

mind that an element of the load executes a complex motion. Indeed, we have two

frames of reference. One of them is a moving frame (vibrating beam) and another

we assumed is fixed (nonvibrating beam). The element of load performs the relative

motion with respect to the moving coordinate system; the transport motion is

performed by the moving frame together with the load with respect to fixed system,

EI, m0

q0
a b c

u u u

Fig. 9.5 Nonstationary loading of a beam by a moving distributed load

y

q0, mq

EI, m0

x

y

l

u

Fig. 9.6 Stationary loading of a beam by a moving load
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and absolute motion with respect to fixed coordinate system. Coordinate x of the

element of the load depends on time, i.e., x ¼ ut. Therefore, projection of velocity

of the moving load onto the у-axis equals

dy

dt
¼ @y

@ t
þ @y

@ x

@x

@ t
¼ @y

@ t
þ @y

@ x
u:

Similarly, the vertical acceleration of the element of the moving load is

d2y

dt2
¼ @

@ t

@y

@ t

� �
þ @

@ t

@y

@ x
u

� �
:

After rearrangement of each term we get

d

d t

@y

@ t

� �
¼ @2y

@ t2
þ @2y

@ t@ x

@x

@ t
¼ @2y

@ t2
þ @2y

@ t@ x
u;

d

d t

@y

@ x
u

� �
¼ @2y

@ t@ x
uþ @2y

@ x2
@x

@t
u ¼ @2y

@ x@ t
uþ @2y

@ x2
u2:

Thus, the vertical acceleration of the element of the moving load becomes

d2y

dt2
¼ @2y

@ t2
þ 2u

@2y

@ t@ x
þ u2

@2y

@ x2
: (9.10)

Here, the first term represents the transport acceleration, the second term

represents the supplementary or Coriolis acceleration, and third term is a normal

(relative) acceleration. It can be seen that intensity of the load q depends on the

speed of the load. If we assume that Coriolis acceleration may be neglected

[Kar70], then substitution of (9.9) and (9.10) into (9.8) leads to the differential

equation

EI
@4y

@x4
þ m0

@2y

@t2
þ mq

@2y

@ t2
þ u2

@2y

@ x2

� �
þ q0 ¼ 0: (9.11)

Assume that the solution of this equation may be presented in the form

yðx; tÞ ¼ f ðtÞ sin px
l
;

where f ðtÞ is an unknown time-depending function. This expression satisfies the

following boundary conditions yð0Þ ¼ yðlÞ ¼ 0 and y00ð0Þ ¼ y00ðlÞ ¼ 0. Corres-

ponding derivatives are

@2y

@ x2
¼ �f ðtÞ p

l

� �2

sin
px
l

� �
;
@4y

@x4
¼ f ðtÞ p

l

� �4

sin
px
l

� �
;
@2y

@t2
¼ €f ðtÞ sin px

l

� �
:
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Bubnov–Galerkin procedure

Z l

0

EI
@4y

@x4
þ m0

@2y

@t2
þ mq

@2y

@ t2
þ u2

@2y

@ x2

� �
þ q0

� �
sin

px
l
dx ¼ 0

leads to the following ordinary differential equation with respect to the function f ðtÞ

€f ðtÞ ðm0 þ mqÞ þ f ðtÞ EI
p
l

� �2

� mqu2
� �

p
l

� �2

¼ q0
2l

p
:

The frequency of vibration squared is

o2 ¼ 1

ðm0 þ mqÞ EI
p
l

� �2

� mqu2
� �

p
l

� �2

:

If EIðp=lÞ2 � mqu2 ¼ 0, then the beam losses its stability. The critical speed is

ucr ¼ p
l

ffiffiffiffiffiffi
EI

mq

s
:

Notice that the loss of stability occurs even if the beam is not subjected to a

compressed load.

Formulation of the problem about dynamical influence of a moving load can be

complicated by taking into account various factors. Among them the axial com-

pressed force [New89], elastic foundation [Fil70], variable speed of the moving

load, one-sided constraints, etc.

9.2.2 Arch Subjected to Inertial Traveling Load:
Morgaevsky Solution

Design diagram of the arch with an over-arch construction is shown in Fig. 9.7.

Loaded contour may be within the rise of an arch, on the same level of the crown or

above the crown (as shown in Fig. 9.7). The uniform circular arch of radius R has a

central angle of 2a. The flexural stiffness of the arch and mass per unit length of the

arch are EI, q0 and m0, respectively. The over-arch structure is loaded by the

uniformly distributed, moving load. The intensity of the moving load, its mass

per unit length, and speed are q1, mq, and u, respectively. We consider a stationary

vibration of the arch, which occurs if the arch is totally covered by the moving load.

A feature of this problem: the mass of the moving load is taken into account. It

means that a moving load is inertial.
The total load on the arch consists of two parts. They are the constant static load

qstð’Þ (the weight of the arch itself, weight of the over-arch structure, and weight of
the moving load) and disturbing load qtð’; tÞ, i.e., the total load is

q ¼ qstð’Þ þ qtð’; tÞ.
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Assumptions

1. The moving load totally covers the entire span of the arch.

2. Only linear (geometrical and physical) vibrations of arch are considered.

3. The bend of the over-arch-structure is neglected, therefore, displacements of the

element of the moving load are equal to the displacements of u and w of

the element ds of an arc of the arch.

Notations

The moving axis x and z are directed along a radius of the arch and along a tangent

to the axis of the arch, respectively; the moving axis y is perpendicular to the x–z
plane of the arch (Fig. 9.7b). The tangential and radial displacements of any point of

the arch are denoted by u and w, respectively (Fig. 9.7c).

Mst
y ; Q

st
x ; N

st
z are bending moment in the plane of the arch, shear, and axial

forces due to constant static load qstð’Þ.
Mt

y; Q
t
x; N

t
z are the same internal forces due to the load qtð’; tÞ.

my is the intensity of the distributed moment.

Morgaevsky equation. Stationary vibration of a circular arch subjected to

moving vertical inertial load is described by the Morgaevsky equation [Mor59],

[Mor60].

Lð’; tÞ ¼ @3Mt
y

@’3
þ @Mt

y

@’
� R2

EI

@

@’
Nst
z M

t
y

� �
� R2

EI

@

@’
Qst

x M
t
y

� �
þ m0R

2 @
2

@t2
@w

@’
� u

� �

�R2 @qtx
@’

� qtz

� �
þ R

@2my

@’2
þ my

� �
¼ 0:

This equation corresponds to the tracking load (Fig. 4.1a).

x

z

y

w

u

q1, mq

EI, q0m0

R
a

j

u

dj

ds
x0 f h

a b

c

y  z-x plane

Fig. 9.7 (a) Stationary uploading of the arch by the moving load; (b) moving axis; and

(c) displacement components

9.2 Arched Structure Subjected to Moving Loads 381



Internal forces are

Nst
z ¼ �qstRð� cos’þ sin2’Þ;

Qst
x ¼ qstRð� sin’� 0:5 sin 2’Þ;

where parameter � ¼ H=ðqstRÞ is a dimensionless trust of the arch.

Assume that disturbing forces qtx and qtz are equal to the inertial forces of the

moving load on the displacements u and w; these distributed forces in projection

onto the moving axis x and z, taking into account the expressions for total

derivatives, are

qtx ¼ �mq
@2

@t2
@u

@’

� �
cos’þ 2

u
R

@

@t

@2u

@’2
þ u

� �
þ u2

R2

@2u

@’2
þ @u

@’

� �
sec’

�

þ tan’ sec’
@2u

@’2
þ u

� ��
; qtz ¼ �mq

@2u

@t2
cos’� u2

R2

@2u

@’2
þ u

� �
sec’

� �
:

These forces are applied on the level of the loaded contour. They are transferred

into the center of gravity of the cross section of the arch. If inertia of rotation is

neglected, then for distributed moment we get the following expression

my ¼ R qtz cos’ð1� cos’Þ � qtx sin’ð1� cos’Þ	 

:

In the case of uniform motion, the velocity and acceleration of the element of the

moving load in direction u become

du

dt
¼ @u

@ t
þ u

@u

@ x0
;
d2u

dt2
¼ @2u

@ t2
þ 2u

@2u

@ t@ x0
þ u2

@2u

@ x20
:

Similarly, we can determine the first and second total derivatives of displace-

ment w. As in the case of the beam, these formulas present the total velocity and

acceleration of a point (absolute velocity and acceleration) in the two systems of

coordinates, one of them is moving and second is conventionally stationary.

Tangential displacement which satisfy the boundary condition for

antisymmetrical vibration of the arch is

uðx; tÞ ¼ f ðtÞ a
p

1þ cos
p
a
’

� �
:

Bubnov–Galerkin procedure is

Z þa

�a
Lð’; tÞ ð1þ cos n’Þ d’ ¼ 0:
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If location of a loaded contour satisfies the condition f 3= � h � 2f 3= , then the

distributed moments may be neglected, so R ðð@2myÞ=@’2Þ þ my

	 
 ¼ 0. In this case,

Bubnov–Galerkin procedure leads to the following ordinary differential equation of

the second order, with respect to the function f ðtÞ

1þ mq

m0

�1

� �
€f ðtÞ þ o2

0 1� Kq

K
� u2

R2

mq

m0

1

o2
0

C1

� �
f ðtÞ ¼ 0;

o2
0 ¼

n2ðn2 � 1Þ2
ðn2 þ 3Þ

EI

R4m0

; n ¼ p
a
; Kq ¼ ðq0 þ q1ÞR3

EI
:

Coefficient K presents the stability coefficient for a uniform circular two-hinged

arch, subjected to a uniform vertical load within the entire span of the arch,

qcr ¼ KEI R3
�

. This coefficient, as well as parameter C1, is presented in Table 9.1.

Expression for o0 coincides with Bolotin’s formula (6.33) for first frequency of

the antisymmetric vibration of the uniform arch without external loading.

The frequency of antisymmetric vibration of the arch, taking into account the

mass and speed of the moving load, is

ou ¼ o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmq=m0Þm1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kq

K
� u2

R2

mq

m0

1

o2
0

C1

s
:

With the additional fixed ðu ¼ 0Þ distributed load q1 at the loaded contour,

the frequency of antisymmetric vibration of the arch is

ou¼0 ¼ o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmq=m0Þm1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kq

K

r
:

Condition ou ¼ 0 leads to the formula for critical speed of the moving load

ucr ¼ Ro0ffiffiffiffiffiffi
C1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kq

K

� �
m0

mq

s
:

In this case, the in-plane vibration of the arch becomes unstable.

Table 9.1 Parameters m1, K, and C1 for arch with central angle 2a
2a f/l m1 K C1

45� 0.094 0.9781 63.10 61.161

90� 0.207 0.9242 16.22 13.930

120� 0.289 0.8770 8.293 7.724
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Parameters m1,K, and C1 for arch with central angle 2a are presented in Table 9.1
[Mor59], [Mor60].

If a loaded contour is located on the level of the crown, then the distributed

moments my cannot be neglected. Corresponding results are presented in [Mor60].

Dynamical action of moving loads on different structures, such as continuous

beams, arches, combined arched structures, plates, and shells are presented in

[Mor61], [Kol77], [Kar70], [Fil70], etc. Optimal parametric suppression of vibra-

tion of shells subjected to inertial moving loads is presented in [Kar89].
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Chapter 10

Conclusion

To this day, when it comes down to analyzing arches for their strength, stability,

and vibration, the theory of arches is well developed and mature. On the other hand,

in some cases, real-world engineering requirements are unable to be satisfied with

the current theory of arches. These requirements are related to arch-like structures

becoming more and more complex, being subjected to different loading conditions,

and generally being exploited to a greater extent, and as a result exhibiting a

completely new pattern of behavior. We list several problems related to the theory

of arches that require extra careful attention from engineers and researchers.

1. As opposed to static problems, reference data for problems related to stability of

arches is scarcely available. Analytical solutions are only available for the

classical arches and for arches with a very simplistic loading scheme. In the

framework of classical analysis of arches that is presented in this book (Dinnik’s,

Smirnov’s and displacement methods), the peculiarities of arches (asymmetry,

skewness, complex ties, overarched structures, etc.) and their methods of loading

suffer from some serious, sometimes intractable drawbacks. It is these scenarios

where the finite element method becomes the only possible solution to tackle

these problems. There is a vast amount of literature available on the finite

element method, with some of the fundamental textbooks being Weaver and

Johnson [Wea84], Bathe [Bat96], to name a few.

2. To this day, analysis of the arches subjected to combined in-plane and out-of-

plane bending still awaits a solution. Such complex loading of arches leads to

warping torsion with inevitable appearances of bi-moments, and as a result,

additional stresses. It is very interesting to expand the warping torsion problems

of arches to the cases of stability and vibrations. These problems become very

important in the cases when external loads are only partial determined. The

general theory of warping torsion of straight bars was originally developed by

Vlasov [Vla40], [Vla59] and presented in detail by Feodosiev [Feo70], Urban

[Urb55], Tatur [Tat66], to name a few.

3. To this day, there are very few problems related to the synthesis of arches. These

problems can be formulated as optimization problems that must satisfy some

I.A. Karnovsky, Theory of Arched Structures: Strength, Stability, Vibration,
DOI 10.1007/978-1-4614-0469-9_10, # Springer Science+Business Media, LLC 2012

385



predefined boundary conditions. In the most simplistic cases, these can be

formulated as purely static problems. However, in more complicated cases,

one must incorporate the dynamical characteristics, stability, and reliability

parameters into the model. One must pay special attention to the formulation

of certain optimization criteria and restrictions. Problems including arches that

must simultaneously satisfy several criteria are of great interest. The relevant

fields of optimization theory are well developed and quite mature, but their

applications to the theory of arches are scarcely present in the literature. Some

serious works related to mathematical optimization of deformable objects can be

found in Haug and Arora [Hau79]; Armand [Arm72]; Gill et al. [Gil81];

Rozvany [Roz76]; Troitskiy and Petukhov [Tro82]; Grinev and Filippov

[Gri79], to name a few. Several simplistic static problems related to optimizing

the shape of the arch may be found in Ju Gol’dshtein and Solomeshch [Gol80].

4. Structural failure can lead to significant monetary losses and even to the loss of

life. The designer of a structure must take into account the expected lifespan of a

structure and make the structure reliable enough so that it can withstand it’s

required loading tasks. Statistical analysis of reliability, stability, and vibrations

of arches becomes a very important problem. Analyzing structures by statistical

methods becomes especially important when ones must design structures that

are subjected to a type of loading that caries a probabilistic component (wind

gusts, snow, earthquakes, etc.). Considerable effort and progress has been made

on this subject by Clough and Penzien [Clo75]; Rzhanitsun [Rzh82]; Bolotin

[Bol84] to name a few.

5. It should be noted that among the most important problems of modern engineer-

ing is the problem of vibration protection, or more specifically, controlling

vibrations of deformable structures. A successful solution to this problem will

allow the engineer to lower the overall vibrations to a specified tolerance and

thus ensuring normal functionality of the structure. The results of passive

vibration protection can be significantly improved if one utilizes the theory of

optimal control of vibrations. There exist many scenarios where one must use a

probabilistic approach to solve the problem of vibration protection of arches.

Some of the fundamental works utilizing this approach are Athans and Falb

[Ath66]; Komkov [Kom72]; Pontryagin et. al. [Pon62]; Luzin and Kuznetsov

[Luz51], to name a few. A lot of these problems are very complex in nature and

require a combination of deterministic/probabilistic approaches, utilizing a wide

range of mathematical tools.

By all means, this short list is not an exhaustive description of all real-life

problems and approaches.
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Appendix

Arches of Different Shapes. Equation of Neutral Line Tables A.1 and A.2

Table A.1 Equation of neutral line in terms of span l and arch rise f [Lee89]

Type of arch Notation Equation of neutral line

Parabolic

x 
y 

f

l

y ¼ 4f

l2
l� xð Þx

Circle

R 

•

x 

y 
f

l 

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f
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For an elliptic arch, the equations of neutral line are in standard form and the

radius of curvature are as follows:

x2

a2
þ y2

b2
¼ 1; R ¼ a2b2

1þ tan2 a
a2 tan2 aþ b2

� �3=2

:

The instantaneous radius of curvature R, of an axis of any type of arch is

expressed in terms of polar coordinates r and a as follows:

R ¼
r2 þ r0ð Þ2
h i3=2

r2 � rr00 þ 2 r0ð Þ2 ; r0 ¼ dr
da

; r00 ¼ d2r
da2

:

Table A.2 Geometric relationships of the arches with different equations of the neutral line. The

radius of curvature is given by the functional relation R að Þ ¼ R0 cos
n a where R0 is the radius of

curvature at a ¼ 0 and n is an integer specified for a typical line [Rom72]

0 x

y
R0

α

α
l

f
R (  )α

•

•

α0

Curve Parameter n Equation of the neutral line

l

R0

f

R0

Parabola �3
y ¼ x2

2R0

2 tan a0 1
2
tan2 a0

Catenary �2 y ¼ R0 cosh x=R0 � 1ð Þ 2 sinh�1 tan a0ð Þ 1=cos a0 � 1

Spiral �1 y ¼ �R0 ln cos x=R0 2a0 � ln cos a0

Circle 0 y ¼ R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � x2

p
2 sin a0 1� cos a0

Cycloid 1
x ¼ R0

4
arccos

4y

R0

� 1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

R0

2
� y

� �s
� R0p

4

a0 þ 1

2
sin 2a0

1� cos 2a0
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Geometrical Parameters of Arches (Tables A.3–A.5)

l

f

x

y

0 2 4 6 8 10 20

α

Table A.3 Geometrical parameters of a parabolic arch; y ¼ ð4f=l2Þx l� xð Þ,
tan a ¼ ð4f=l2Þ l� 2xð Þ
# of sectiona x y tan a Section x x y tan a

0 0.00 0.00 4.00 0 0.000 0.00 4.00

1 0.05 0.19 3.60 1/8 0.125 0.438 3.00

2 0.10 0.36 3.20 1/6 0.167 0.556 2.667

3 0.15 0.51 2.80 1/4 0.250 0.750 2.00

4 0.20 0.64 2.40 3/8 0.375 0.938 1.00

5 0.25 0.75 2.00 1/2 0.500 1.000 0.00

6 0.30 0.84 1.60 5/8 0.625 0.938 �1.00

7 0.35 0.91 1.20 3/4 0.750 0.750 �2.00

8 0.40 0.96 0.80 5/6 0.833 0.556 �2.667

9 0.45 0.99 0.40 7/8 0.875 0438 �3.00

10 0.50 1.00 0.00 1.0 1.000 0.000 �4.00

Factor l l f

l

l l f f

l
a The total span is divided into 20 equal portions

Table A.4 Trigonometric functions of angle a for parabolic arch

f

l

x

l

0.0 0.05 0.10 0.15 0.20 025 030 0.35 0.40 0.45 0.50

1/2 sin a 0.894 0.874 0.839 0.814 0.768 0.707 0.625 0.515 0.371 0.196 0.0

cos a 0.447 0.485 0.545 0.581 0.640 0.707 0.781 0.857 0.928 0.981 1.00

1/3 sin a 0.800 0.768 0.730 0.682 0.625 0.555 0.470 0.371 0.258 0.132 0.0

cos a 0.600 0.640 0.684 0.731 0.781 0.832 0.882 0.928 0.966 0.991 1.00

1/4 sin a 0.707 0.669 0.625 0.574 0.515 0.447 0.371 0.287 0.196 0.100 0.0

cos a 0.707 0.743 0.781 0.819 0.857 0.894 0.928 0.958 0.981 0.995 1.00

1/5 sin a 0.625 0.584 0.539 0.489 0.433 0.371 0.305 0.233 0.158 0.080 0.0

cos a 0.781 0.812 0.833 0.872 0.901 0.928 0.952 0.972 0.987 0.996 1.00

1/6 sin a 0.555 0.515 0.470 0.423 0.371 0.316 0.258 0.196 0.132 0.067 0.0

cos a 0.832 0.857 0.882 0.906 0.928 0.949 0.966 0.981 0.991 0.997 1.00

1/7 sin a 0.496 0.457 0.416 0.371 0.324 0.275 0.223 0.168 0.113 0.057 0.0

cos a 0.868 0.889 0.909 0.928 0.946 0.961 0.975 0.986 0.994 0.998 1.00

1/8 sin a 0.447 0.410 0.371 0.330 0.287 0.242 0.196 0.148 0.100 0.050 0.0

cos a 0.894 0.912 0.928 0.944 0.958 0.970 0.981 0.989 0.995 0.999 1.00

1/10 sin a 0.371 0.339 0.305 0.270 0.233 0.196 0.158 0.119 0.080 0.040 0.0

cos a 0.928 0.941 0.952 0.963 0.972 0.981 0.987 0.983 0.997 0.999 1.00

1/12 sin a 0.316 0.287 0.258 0.227 0.196 0.165 0.132 0.100 0.067 0.015 0.0

cos a 0.949 0.958 0.966 0.974 0.981 0.986 0.991 0.995 0.998 0.999 1.00

Appendix 389



Table A.5 Geometrical parameters of a circular arch

f

l a0

x

l

s:l R:l e:l0.0 0.10 0.20 0.30 0.40 0.50

1/2 90� y:f 0.0 0.600 0.800 0.916 0.980 1.000 1.5708 0.5000 0.000

sin a 1.0 0.800 0.600 0.400 0.200 0.0

cos a 0.0 0.600 0.800 0.916 0.980 1.000

1/2.383 80� y:f 0.0 0.535 0.765 0.902 0.976 1.000 1.4179 0.5077 0.0881

sin a 0.985 0.788 0.591 0.394 0.197 0.0

cos a 0.174 0.616 0.807 0.919 0.980 1.000

1/2.856 70� y:f 0.0 0.482 0.735 0.889 0.973 1.000 1.3001 0.5321 0.1820

sin a 0.940 0.752 0.564 0.376 0.188 0.0

cos a 0.342 0.659 0.826 0.927 0.982 1.000

1/3 72�2204800 y:f 0.0 0.471 0.728 0.885 0.972 1.000 1.2740 0.5417 0.2083

sin a 0.923 0.738 0.554 0.367 0.185 0.0

cos a 0.385 0.674 0.832 0.929 0.983 1.000

1/3.464 60� y:f 0.0 0.442 0.709 0.876 0.970 1.000 1.2092 0.5774 0.2887

sin a 0.866 0.693 0.520 0.346 0.173 0.0

cos a 0.500 0.721 0.854 0.938 0.985 1.000

1/4 53�704800 y:f 0.0 0.421 0.693 0.868 0.968 1.000 1.1591 0.6250 0.3750

sin a 0.800 0.640 0.480 0.320 0.160 0.0

cos a 0.600 0.768 0.877 0.947 0.987 1.000

1/5 43�3601000 y:f 0.0 0.398 0.675 0.859 0.965 1.000 1.1033 0.7250 0.5250

sin a 0.690 0.552 0.414 0.276 0.138 0.0

cos a 0.724 0.834 0.910 0.961 0.990 1.000

1/6 36�5201000 y:f 0.0 0.386 0.665 0.854 0.964 1.000 1.0731 0.8333 0.6667

sin a 0.600 0.480 0.360 0.240 0.120 0.0

cos a 0.800 0.877 0.933 0.971 0.993 1.000

1/7 32�5302700 y:f 0.0 0.379 0.658 0.850 0.963 1.000 1.0536 0.9464 0.8036

sin a 0.528 0.423 0.317 0.211 0.106 0.0

cos a 0.849 0.906 0.948 0.977 0.994 1.000

1/8 28�0402000 y:f 0.0 0.375 0.654 0.848 0.962 1.000 1.0411 1.0625 0.9375

sin a 0.471 0.378 0.282 0.188 0.094 0.0

cos a 0.882 0.926 0.959 0.982 0.996 1.000

1/10 22�370500 y:f 0.0 0.369 0.649 0.845 0.961 1.000 1.0265 1.3000 1.200

sin a 0.385 0.308 0.231 0.154 0.077 0.0

cos a 0.923 0.951 0.973 0.988 0.997 1.000

Nomenclature: span l, rise f, radius R, central angle 2a, length of the arc s. Origin on the left

support; e ¼ R� f
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Three-Hinged Parabolic Arch. Bending Moments, Reactions, and Thrust Due

to Force P (Tables A.8 and A.9)

y ¼ 4fx l� xð Þ 1
l2

This table may be used for the construction of influence lines for bending

moment. Two position of load P ¼ 1 should be considered.

1. If load P is located on the left part of the arch (u < 0.5), then ordinates of IL are

taken from the table immediately.

2. If load P is located on the right part of the arch (u > 0.5), then we need to take the

ordinates for symmetrical section: for section 5 we use ordinates of section 15.

A

C

l

f
B

P 

H H

RA RB

y=f(x)
ul

2 4 6 8 10 14 1612 18

x

y

Table A.8 Bending moments (factor Pl) [Uma72]

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.036 0.029 0.021 0.014 0.006 0.000 �0.008 �0.015 �0.023

2 0.072 0.058 0.044 0.030 0.016 0.002 �0.012 �0.026 �0.040

3 0.060 0.090 0.069 0.049 0.028 0.009 �0.012 �0.032 �0.053

4 0.048 0.072 0.096 0.070 0.044 0.018 �0.008 �0.034 �0.060

5 0.043 0.057 0.075 0.094 0.062 0.032 0.000 �0.031 �0.063

6 0.028 0.042 0.056 0.070 0.084 0.048 0.012 �0.024 �0.060

7 0.020 0.030 0.039 0.047 0.058 0.069 0.028 �0.012 �0.053

8 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0.004 �0.040

9 0.006 0.009 0.011 0.014 0.016 0.020 0.022 0.025 �0.023

10(C) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 �0.005 �0.006 0.009 0.011 �0.014 �0.015 �0.018 �0.023 �0.023

12 �0.008 �0.012 �0.016 �0.020 �0.021 �0.028 �0.032 �0.036 �0.040

13 �0.011 �0.015 �0.021 �0.026 �0.032 �0.036 �0.042 �0.047 �0.053

14 �0.012 �0.018 �0.024 �0.030 �0.036 �0.042 �0.048 �0.054 �0.060

15 �0.013 �0.018 �0.025 �0.031 �0.038 �0.043 �0.050 �0.056 �0.063

16 �0.012 �0.018 �0.024 �0.030 �0.036 �0.042 �0.048 �0.054 �0.060

17 �0.011 �0.015 �0.021 �0.026 �0.032 �0.036 �0.042 �0.017 �0.053

18 �0.008 �0.012 �0.016 �0.020 �0.024 �0.028 �0.032 �0.036 �0.040

19 �0.005 �0.007 �0.009 �0.011 �0.014 �0.015 �0.018 �0.020 �0.023

Table A.9 Reactions (factor P) and thrust (factor Pl/f)

Reactions u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

RA 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 0.500

RB 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

H 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
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Symmetrical Three-Hinged Arch of any Shape. Reactions, Thrust, and

Bending Moments Due to Different Vertical Loads (Table A.10)

Mk ¼ M0
k � Hyk;

Qk ¼ Q0
k cos ’k � H sin ’k;

Nk ¼ �Q0
k sin ’k � H cos ’k;

x ¼ xk
l
; x0 ¼ x0k

l
¼ 1� x;

� ¼ yk
f
:

A

C

l

f
B

y 

H H

RA RB

y=f(x)ϕk

xk x′k

yk

k

x

Table A.10 Special cases of loading [Uma72]

Loading RA RB H Mk

1

P

k
P

2

P

2

Pl

4f

Pl

4
2x� �ð Þ

2

ul P υl

k
Pu Pu

Pul

2f

Pul

2
2
u
u
x� �

� �

3

q

k

ql

2

ql

2

ql2

8f

ql2

8
4 x� x2
� �� �

	 

Mk ¼ 0 if arch shape

is a quadratic parabola

4

q

k
3ql

8

ql

8

ql2

16f

ql2

16
8 x� x2
� �� 2x� �

	 


5

q

k 5ql

24

ql

24

ql2

48f

ql2

48
2xþ 8 x0 � x03 � xþ x3

� �
� �

h i

6

q q

k

ql

4

ql

4

ql2

24f

ql2

24
2xþ 4 x0 � x03 � xþ x3

� �
� �

h i

7

q q

k

parabola

ql

6

ql

6

ql2

48f

ql2

48
8 x� x2
� �

1� 2xþ 2x2
� �� �

	 


M0
k and Q0

k represent the bending moment and shear force at the section k for the reference beam
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Three-Hinged Parabolic Arch. Bending Moments, Reactions, and Thrust

Due to A One-side Distributed Load q Within Some Portion of the Arch

(Tables A.11 and A.12)

y ¼ 4fx l� xð Þ 1
l2

Table A.11 Bending moments (factor ql2) [Uma72]

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50 u ¼ 1.00

1 0.0030 0.0046 0.0069 0.0170 0.0071 0.0073 0.0072 0.0065 0.0056 0.00

2 0.0036 0.0069 0.0094 0.0112 0.0122 0.0127 0.0126 0.0115 0.0100 0.00

3 0.0030 0.0065 0.0105 0.0136 0.0153 0.0163 0.0164 0.0151 0.0131 0.00

4 0.0026 0.0052 0.0094 0.0138 0.0163 0.0180 0.0184 0.0172 0.0150 0.00

5 0.0019 0.0041 0.0075 0.0115 0.0152 0.0177 0.0188 0.0177 0.0156 0.00

6 0.0014 0.0030 0.0056 0.0085 0.0122 0.0157 0.0174 0.0169 0.0150 0.00

7 0.0010 0.0021 0.0039 0.0059 0.0084 0.0115 0.0144 0.0145 0.0131 0.00

8 0.0006 0.0012 0.0024 0.0035 0.0049 0.0074 0.0096 0.0106 0.0100 0.00

9 0.0003 0.0006 0.0011 0.0016 0.0025 0.0033 0.0044 0.0051 0.0056 0.00

10(C) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00

11 �0.0002 �0.0005 �0.0009 �0.0015 �0.0022 �0.0028 �0.0036 �0.0050 �0.0056 0.00

12 �0.0004 �0.0010 �0.0016 �0.0027 �0.0041 �0.0054 �0.0064 �0.0086 �0.0100 0.00

13 �0.0005 �0.0012 �0.0021 �0.0034 �0.0051 �0.0068 �0.0084 �0.0110 �0.0131 0.00

14 �0.0006 �0.0014 �0.0024 �0.0039 �0.0058 �0.0077 �0.0096 �0.0125 �0.0150 0.00

15 �0.0006 �0.0018 �0.0025 �0.0040 �0.0060 �0.0080 �0.0100 �0.0130 �0.0156 0.00

16 �0.0006 �0.0014 �0.0024 �0.0038 �0.0057 �0.0076 �0.0096 �0.0124 �0.0150 0.00

17 �0.0005 �0.0012 �0.0021 �0.0033 �0.0049 �0.0066 �0.0084 0.0108 �0.0131 0.00

18 �0.0004 �0.0009 �0.0016 �0.0026 �0.0038 �0.0051 �0.0064 �0.0083 �0.0100 0.00

19 �0.0002 �0.0005 �0.0009 �0.0014 �0.0021 �0.0028 �0.0036 �0.0046 �0.0056 0.00

xA

C

l

f
B 

q

H H

RA RB

ul

2 4 6 8 10 14 1612 18

y

y=f(x)

Table A.12 Vertical reactions R (factor ql) and thrust H (factor ql2=f )

u ¼ 0.05 u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50 u ¼ 1.00

RA 0.049 0.095 0.139 0.180 0.219 0.255 0.289 0.320 0.349 0.375 0.500

RB 0.001 0.005 0.011 0.020 0.031 0.045 0.061 0.080 0.101 0.125 0.500

H 0.0006 0.0025 0.0056 0.0100 0.0156 0.0230 0.0310 0.0400 0.0510 0.0625 0.1250
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Example 1. The parabolic arch is subjected to distributed loads q1 and q2. Calculate
the reactions and bending moment at section 3.

The principle of superposition and symmetry property of an arch are used.

A

C

l

f
B

H H

RA RB

3 17 

q1

0.4l
q2

0.3l

∗ ∗

Reaction RA ¼ 0:320q1lþ 0:045q2l

Thrust H ¼ 0:0400q1 þ 0:023q2ð Þ l2

f

� �

Bending moment M3 ¼ 0:0164q1l
2 � 0:0049q2l

2

Example 2. The parabolic arch is subjected to distributed loads q. Calculate the

reactions and bending moment at section 3.

The given load may be considered as resulting from two loads: distributed load q
with parameter u ¼ 0.5 (load within the entire left part of the arch) and distributed

load q1 ¼ q with parameter u ¼ 0.2 and directed upward. Principle of superposi-

tion leads to the following results.

A

C

l

f B
H H

R A R B

3 17 

q

0.3l

∗ ∗

Reaction RA ¼ 0:375ql� 0:180q1l ¼ 0:195ql

Thrust H ¼ 0:0625q� 0:010q1ð Þðl2=f Þ ¼ 0:0525ðql2=f Þ
Bending moment M3 ¼ 0:0131ql2 � 0:0105q1l

2 ¼ 0:0026ql2
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Three-Hinged Parabolic Arch. Bending Moments, Reactions,

and Thrust Due to Symmetrical Distributed Load q Within Some Portion

of the Arch y ¼ 4fx l � xð Þ 1=l2ð Þ (Tables A.13–A.15)

xA

C

l

f
B

q

H H

RA RB
RA RB

y(x) y(x)

b=ul

2 4 6 8 10 14 1612 18

y
b b

Loading 1 Loading 2

A

C

l

f
B 

q 

H H

b=ul

2 4 6 8 10 14 1612 18

b b

Two-Hinged Parabolic Nonuniform Symmetric Arch. Bending Moments,

Reactions, and Thrust Due to Different Loads (Tables A.16–A.18)

Notation

IC, AC – the moment of inertia and cross-sectional area of the arch at the crown C

E, Et – the modulus of elasticity of the material of the arch and tie

At – cross-sectional area of the tie

Table A.13 Bending moments (factor ql2); for loading 2 use parameter u in brackets and change

signs for moments [Uma72]

Sections

u ¼ 0.45

(0.05)

u ¼ 0.40

(0.10)

u ¼ 0.35

(0.15)

u ¼ 0.30

(0.20)

u ¼ 0.25

(0.25)

u ¼ 0.20

(0.30)

u ¼ 0.15

(0.35)

u ¼ 0.10

(0.40)

u ¼ 0.05

(0.45)

1 �0.0009 �0.0028 �0.0041 �0.0060 �0.0056 �0.0050 �0.0045 �0.0036 �0.0019

2 �0.0008 �0.0032 �0.0061 �0.0078 �0.0086 �0.0084 �0.0076 �0.0062 �0.0032

3 �0.0006 �0.0025 �0.0053 �0.0084 �0.0103 �0.0104 �0.0097 �0.0080 �0.0043

4 �0.0004 �0.0020 �0.0038 �0.0070 �0.0088 �0.0106 �0.0104 �0.0088 �0.0048

5 �0.0002 �0.0013 �0.0023 �0.0050 �0.0075 �0.0092 �0.0097 �0.0088 �0.0047

6 �0.0002 �0.0008 �0.0016 �0.0032 �0.0046 �0.0064 �0.0087 �0.0078 �0.0044

7 �0.0002 �0.0005 �0.0009 �0.0018 �0.0025 �0.0033 �0.0047 �0.0060 �0.0035

8 0.0000 �0.0002 �0.0002 �0.0008 �0.0008 �0.0008 �0.0020 �0.0032 �0.0020

9 0.0000 �0.0001 �0.0001 �0.0002 �0.0001 �0.0003 �0.0005 �0.0008 �0.0001

Table A.14 Loading 1: Reactions R (factor ql) and thrust H (factor ql2=f )

u ¼ 0.45 u ¼ 0.40 u ¼ 0.35 u ¼ 0.30 u ¼ 0.25 u ¼ 0.20 u ¼ 0.15 u ¼ 0.10 u ¼ 0.05

RA ¼ RB 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

H 0.1283 0.1200 0.1138 0.1050 0.0938 0.0790 0.0630 0.0450 0.0230

Table A.15 Loading 2: Reactions R (factor ql) and thrust H (factor ql2=f )

u ¼ 0.05 u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45

RA ¼ RB 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

H 0.0012 0.0050 0.0112 0.0200 0.0312 0.0460 0.0620 0.0800 0.1020
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Coefficient k takes into account the axial force in the arch (Tables A.16 and A.17).

A

C

l

f
B 

y 

H H

RA RB
RA RB

y=f(x) y=f(x)ϕkk

x

Arch without tie

l/2 l/2

xA

C

l

f
B

y 
ϕkk

Arch with tie

Tie

a b

y ¼ 4fx l� xð Þ 1
l2
; Ik cos ’k ¼ IC; b ¼ EIC

EtAt

The formulae in Tables A.16 and A.17 may also be used for uniform arches

[Uma72].

Table A.16 Reactions, thrust, and bending moments [Uma72]

Loading Reactions and moments Loading Reactions and moments

P

C

H ¼ 25

128
P
l

f
k

MC ¼ 0:25� 25

128
k

� �
Pl

P
C

ul H ¼ 5

8
P
l

f
k u� 2u3 þ u4
� �

MC ¼ Pl

8
4u� 5k u� 2u3 þ u4

� �	 


q

C

H ¼ ql2

8f
k

MC ¼ ql2

8
1� kð Þ

q

C

l/2

l/4

m

H ¼ ql2

16f
k

MC ¼ ql2

16
1� kð Þ

Mm ¼ 1

16
� 3

64
k

� �
ql2

q

C

ul H ¼ ql2

16f
u2k 5� 5u2 þ 2u3

� �

RA ¼ ql

2
u 2� uð Þ

l/2

q

C

RA ¼ 5

24
ql; RB ¼ 1

24
ql

H ¼ 0:0228
ql2

f
k

M0

C
ul RA ¼ �M0

l
; RB ¼ M0

l

H ¼ 5

8

M0

f
k 1� 6u2 þ 4u3
� �

q q

k

parabola RA ¼ RB ¼ ql

6

H ¼ 0:024
ql2

f
k

Relative horizontal

displacement

of supports

C

Δ

RA ¼ RB ¼ 0

H ¼ 15

8

EIC
f 2l

kD

MC ¼ �Hf

Uniform change

of temperature

by t�

C

RA ¼ RB ¼ 0

H ¼ 15

8

EIC
f 2

kat

MC ¼ �Hf

a is thermal coefficient
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Coefficients n depend on the ratio f/l (Table A.18).

Two-Hinged Symmetric Parabolic Nonuniform Arch. Bending Moments,

Reactions, and Thrust Due to A Single Force P (Tables A.19–A.21)

y ¼ 4fx l� xð Þ 1
l2

Ik cos ’k ¼ IC

Bending moment at

any section of the arch

Mx ¼ M0
x � Hyk

Coefficient k should be

taken from Table A.17.

Table A.18 Coefficient n

f=l 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/15 1/20

n 0.6960 0.7852 0.8434 0.8812 0.9110 0.9306 0.9424 0.9521 0.9706 0.9888

A

C

l

f
B

P 

H H

RA RB

y=f(x)
ul

2 4 6 8 10 14 1612 18

x

y

x

y

Table A.19 Bending moments M0
x for simply supported beam (factor Pl) [Uma72]

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.0450 0.0425 0.0400 0.0375 0.0350 0.0325 0.0300 0.0275 0.0250

2 0.0900 0.0850 0.0800 0.0750 0.0700 0.0650 0.0600 0.0550 0.0500

3 0.0850 0.1275 0.1200 0.1125 0.1050 0.0975 0.0900 0.0825 0.0750

4 0.0800 0.1200 0.1600 0.1500 0.1400 0.1300 0.1200 0.1100 0.1000

5 0.0750 0.1125 0.1500 0.1875 0.1750 0.1625 0.1500 0.1375 0.1250

6 0.0700 0.1050 0.1400 0.1750 0.2100 0.1950 0.1800 0.1650 0.1500

7 0.0650 0.0975 0.1300 0.1625 0.1950 0.2275 0.2100 0.1925 0.1750

8 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400 0.2200 0.2000

9 0.0550 0.0825 0.1100 0.1375 0.1650 0.1925 0.2200 0.2475 0.2250

10(C) 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750 0.2000 0.2250 0.2500

11 0.0450 0.0675 0.0900 0.1125 0.1350 0.1575 0.1800 0.2025 0.2250

12 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

13 0.0350 0.0525 0.0700 0.0875 0.1050 0.1225 0.1400 0.1575 0.1750

14 0.0300 0.0450 0.0600 0.0750 0.0900 0.1050 0.1200 0.1350 0.1500

15 0.0250 0.0375 0.0500 0.0625 0.0750 0.0875 0.1000 0.1125 0.1250

16 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000

17 0.0150 0.0225 0.0300 0.0375 0.0450 0.0525 0.0600 0.0675 0.0750

18 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0.0400 0.0450 0.0500

19 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250

Table A.17 Coefficient k

Type of the arch

Axial force influence

on the arch and tie

Axial force influence

only on the tie

Arch without tie
k ¼ 1

1þ n
; n ¼ 15

8

ICn

ACf 2
k ¼ 1; n ¼ 0

Arch with tie
k ¼ 1

1þ n1
; n1 ¼ 15

8

ICn

ACf 2
EAC

EtAtn
þ 1

� �
k ¼ 1

1þ n2
;n2 ¼ 15

8

b
f 2
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Example. Two-hinged symmetrical parabolic nonuniform arch with tie is

subjected to load P at u ¼ 0.30. Parameters of the arch are the following:

Ik cos ’k ¼ IC, the length l and rise f, f=l ¼ 1=6. Parameters of the tie are Et and

At. Calculate the bending moments at sections 4 and 16, taking into account the

influence of the axial force on the arch and tie. Required bending moments are

M4 ¼ 0:140Pl� 0:1016Plk

M16 ¼ 0:060Pl� 0:1016Plk;

where k ¼ 1=ð1þ :n1Þ, n1 ¼ ð15=8ÞðICn=ACf
2ÞðEAC=EtAtnþ 1Þ, (Table A.17),

and n ¼ 0.8812 (Table A.18).

Two-Hinged Parabolic Symmetric Nonuniform Arch. Bending Moments,

Reactions, and Thrust Due to Partial Distributed Load q (Tables A.22–A.24)

y ¼ 4fx l� xð Þ 1
l2

Ik cos ’k ¼ IC

Bending moment at

any section of the arch

Mx ¼ M0
x � Hyk

Coefficient k should be

taken from Table A.17.

Table A.20 Complex Hy (factor Pl)

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.0117 0.0171 0.0220 0.0264 0.0302 0.0332 0.0353 0.0367 0.0371

2 0.0221 0.0324 0.0418 0.0501 0.0572 0.0628 0.0670 0.0695 0.0703

3 0.0313 0.0458 0.0592 0.0710 0.0810 0.0890 0.0949 0.0984 0.0996

4 0.0392 0.0575 0.0742 0.0891 0.1016 0.1117 0.1190 0.1235 0.1250

5 0.0460 0.0674 0.0870 0.1044 0.1191 0.1309 0.1395 0.1447 0.1465

6 0.0516 0.0755 0.0974 0.1169 0.1334 0.1466 0.1562 0.1621 0.1641

7 0.0558 0.0818 0.1056 0.1266 0.1445 0.1589 0.1693 0.1756 0.1777

8 0.0589 0.0863 0.1114 0.1336 0.1525 0.1676 0.1786 0.1853 0.1875

9 0.0607 0.0890 0.1148 0.1378 0.1572 0.1728 0.1842 0.1911 0.1934

10(C) 0.0613 0.0899 0.1160 0.1392 0.1588 0.1746 0.1860 0.1930 0.1953

Table A.21 Reactions (factor P) and thrust (factor Pl/f )

Reactions u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

RA 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50

RB 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

H 0.0613 0.0898 0.1160 0.1392 0.1588 0.1146 0.1860 0.1930 0.1953

A

C

l

f
B

H H

RBRA

y=f(x)

2 4 6 8 10 14 1612 18

x

y

a=
1

y

q

ul Loading 1
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Table A.22 Bending moments M0
x for simply supported beam (factor ql2 � 10�2) [Uma72]

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.3500 0.5688 0.7750 0.9688 1.1500 1.3188 1.4750 1.6188 1.7500

2 0.4500 0.8875 1.300 1.6875 2.0500 2.3875 2.7000 2.9875 3.2500

3 0.4250 0.9563 1.5750 2.1563 2.7000 3.2063 3.6750 4.0063 4.5000

4 0.4000 0.9000 1.6000 2.3750 3.1000 3.7750 4.4000 4.9750 5.5000

5 0.3750 0.8438 1.5000 2.3238 3.2500 4.0938 4.8750 5.5938 6.2500

6 0.3500 0.7875 1.4000 2.1875 3.1500 4.1625 5.1000 5.9625 6.7500

7 0.3250 0.7313 1.3000 2.0313 2.9250 3.9813 5.0750 6.0813 7.0000

8 0.3000 0.6750 1.2000 1.8750 2.7000 3.6750 4.8000 5.9500 7.0000

9 0.2750 0.6188 1.1000 1.7188 2.4750 3.3688 4.4000 5.5688 6.7500

10(C) 0.2500 0.5625 1.0000 1.5625 2.2500 3.0625 4.0000 5.0625 6.2500

11 0.2250 0.5063 0.9000 1.4063 2.0250 2.7563 3.6000 4.5563 5.6250

12 0.2000 0.4500 0.8000 1.2500 1.8000 2.4500 3.2000 4.0500 5.0000

13 0.1750 0.3938 0.7000 1.0938 1.5750 2.1438 2.8000 3.5438 4.3750

14 0.1500 0.3375 0.6000 0.9375 1.3500 1.8375 2.4000 3.0375 3.7500

15 0.1250 0.2813 0.5000 0.7813 1.1250 1.5313 2.0000 2.5313 3.1250

16 0.1000 0.2250 0.4000 0.6250 0.9000 1.2250 1.6000 2.0250 2.5000

17 0.0750 0.1688 0.3000 0.4688 0.6750 0.9188 1.2000 1.5188 1.8750

18 0.0500 0.1125 0.2000 0.3125 0.4500 0.6125 0.8000 1.0125 1.2500

19 0.0250 0.0563 0.1000 0.1563 0.2250 0.3063 0.4000 0.5063 0.6250

Table A.23 Complex Hy (factor ql2 � 10�2)

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.0588 0.1309 0.2288 0.3510 0.4921 0.6507 0.8216 1.0027 1.1875

2 0.1114 0.2478 0.4334 0.6650 0.9323 1.2329 1.5566 1.8998 2.2500

3 0.1579 0.3510 0.6140 0.9421 1.3208 1.7467 2.2052 2.6914 3.1875

4 0.1981 0.4405 0.7706 1.1822 1.6574 2.1919 2.7674 3.3775 4.0000

5 0.2321 0.5162 0.9030 1.3854 1.9423 2.5686 3.2430 3.9580 4.6875

6 0.2600 0.5781 1.0114 1.5516 2.1754 2.8769 3.6322 4.4330 5.2500

7 0.2817 0.6263 1.0956 1.6809 2.3567 3.1166 3.9348 4.8024 5.6875

8 0.2971 0.6607 1.1558 1.7733 2.4862 3.2878 4.1510 5.0663 6.0000

9 0.3064 0.6813 1.1920 1.8287 2.5639 3.3906 4.2808 5.2246 6.1875

10(C) 0.3095 0.6882 1.2040 1.8472 2.5898 3.4248 4.3240 5.2773 6.2500

Table A.24 Reactions (factor ql) and thrust (factor ðql2=f Þ � 10�2)

Reactions u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

RA 0.095 0.139 0.180 0.219 0.255 0.289 0.320 0.349 0.375

RB 0.005 0.011 0.020 0.031 0.045 0.061 0.080 0.101 0.125

H 0.3095 0.6882 1.2040 1.8472 2.5898 3.4248 4.3240 5.2273 6.250
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Two-Hinged Parabolic Symmetric Nonuniform arch. Bending Moments,

Reactions, and Thrust Due to Partial Distributed Load q (Tables A.25–A.27)

y ¼ 4fx l� xð Þ 1
l2

Ik cos ’k ¼ IC

Bending moment at any

section of the arch

Mx ¼ M0
x � Hyk

Coefficient k should be

taken from Table A.17.

A

C

l

f
B

H H

RA RB

x

y

x

y

q
a=ul

Loading 2 y=f(x)

2 4 6 8 10 14 1612 18

Table A.25 Bending moments M0
x for simply supported beam (factor ql2 � 10�2) [Uma72]

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.2750 0.4313 0.6000 0.7813 0.9750 1.1813 1.4000 1.6313 1.7500

2 0.5500 0.8625 1.2000 1.5625 1.9500 2.3625 2.8000 3.1388 3.2500

3 0.8250 1.2938 1.8000 2.3438 2.9250 3.5438 4.1750 4.3938 4.5000

4 1.1000 1.7250 2.4000 3.1250 3.9000 4.6000 5.1000 5.4000 5.5000

5 1.3750 2.1568 3.0000 3.9263 4.7500 5.4063 5.8750 6.1564 6.2500

6 1.6500 2.5875 3.6000 4.6625 5.3500 5.9625 6.4000 6.6625 6.7500

7 1.9250 3.0188 4.0750 4.9688 5.7000 6.2688 6.6750 6.9188 7.0000

8 2.2000 3.3250 4.3000 5.1250 5.8000 6.3250 6.7000 6.9250 7.0000

9 2.3500 3.4438 4.2750 5.0313 5.6500 6.1313 6.4750 6.6813 6.7500

10(C) 2.2500 3.1875 4.0000 4.6875 5.2500 5.6875 6.0000 6.1875 6.2500

11 2.0250 2.8688 3.6000 4.2188 4.7000 5.1188 5.4000 5.5688 5.6250

12 1.8000 2.5500 3.2000 3.7500 4.2000 4.5500 4.8000 4.9500 5.0000

13 1.5750 2.2313 2.8000 3.2813 3.6750 3.9813 4.2000 4.3313 4.3750

14 1.3500 1.9125 2.4000 2.8125 3.1500 3.4125 3.6000 3.7125 3.7500

15 1.1250 1.5938 2.0000 2.3438 2.6250 2.8438 3.0000 3.0938 3.1250

16 0.9000 1.2750 1.6000 1.8750 2.1000 2.2750 2.4000 2.4750 2.5000

17 0.6750 0.9563 1.2000 1.4063 1.5750 1.7063 1.8000 1.8563 1.8750

18 0.4500 0.6375 0.8000 0.9375 1.0500 1.1375 1.2000 1.2375 1.2500

19 0.2250 0.3188 0.4000 0.4688 0.5250 0.5688 0.6000 0.6188 0.6250

Table A.26 Complex Hy (factor ql2 � 10�2)

Section u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1 0.3659 0.5368 0.6955 0.8365 0.9587 1.0567 1.1287 1.1727 1.1875

2 0.6934 1.0175 1.3177 1.5850 1.8166 2.0022 2.1386 2.2220 2.2500

3 0.9823 1.4408 1.8667 2.2454 2.5735 2.8365 3.0297 3.1478 3.1875

4 1.2326 1.8081 2.3426 2.8178 3.2294 3.5595 3.8019 3.9501 4.0000

5 1.4445 2.1189 2.7452 3.3021 3.7845 4.1713 4.4554 4.6291 4.6875

6 1.6178 2.3731 3.0746 3.6984 4.2386 4.6719 4.9900 5.1845 5.2500

7 1.7527 2.5709 3.3308 4.0066 4.5919 5.0612 5.4059 5.6166 6.6875

8 1.8490 2.7121 3.5138 4.2267 4.8442 5.3393 5.7029 5.9252 6.0000

9 1.9067 2.7969 3.6237 4.3588 4.9955 5.5062 5.8811 6.1104 6.1875

10(C) 1.9260 2.8252 3.6603 4.4028 5.0460 5.5618 5.9405 6.1721 6.2500
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Two-Hinged Circle Uniform Arch. Bending Moments and Thrust Due

to Single Force P (EI ¼ const) (Table A.28)

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ; R ¼ f

2
þ l2

8f

Bending moment, shear, and axial force

Mx ¼ M0
x � Hy, M0

x see Table A.19.

Qk ¼ Q0
k cos ’k � H sin ’k

Nk ¼ �Q0
k sin ’k � H cos ’k

Formulas for internal forces for hingeless circular uniform arches loaded normal

to the plane of curvature are presented in [Uma72-73], [You89], [Roa75].

Two-Hinged Circular Symmetric Uniform Arch. Bending Moments,

Reactions, and Thrust Due to Partial Distributed Load q (Tables A.29–A.30)

y

q 

b=ul

A

C

l

f B

H H

circle 

x

R R

Loading 1
y q

b=ul

A

C

l

f B

H H

RA RB
RA RB

circle

x

R R

Loading 2

2 0α 2 0α

Table A.27 Reactions (factor ql) and thrust (factor ðql2=f Þ � 10�2)

Reactions u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

RA 0.055 0.086 0.120 0.156 0.195 0.236 0.280 0.326 0.375

RB 0.045 0.064 0.080 0.094 0.105 0.114 0.120 0.124 0.125

H 1.9260 2.8252 3.6603 4.4028 5.0460 5.5618 5.9405 6.1721 6.250

A

C

l

f
B

P

H H

RA RB

ul

x

y

α
0 α0

y=f(x)

Table A.28 Thrust (factor Pk), coefficient k should be taken from Table A.17 [Uma72]

f=l or a0 u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1/2 0.1146 0.1623 0.2037 0.2387 0.2673 0.2896 0.3055 0.3151 0.3182

80� 0.1428 0.2023 0.2539 0.2976 0.3333 0.3610 0.3809 0.3928 0.3967

70� 0.1768 0.2504 0.3142 0.3682 0.4124 0.4468 0.4714 0.4861 0.4910

1/3 0.1861 0.2636 0.3308 0.3877 0.4341 0.4692 0.4962 0.5117 0.5169

60� 0.2195 0.3110 0.3902 0.4573 0.5122 0.5549 0.5854 0.6037 0.6097

1/4 0.2541 0.3600 0.4517 0.5924 0.5929 0.6407 0.6776 0.6988 0.7059

1/5 0.3256 0.4612 0.5787 0.6783 0.7592 0.8209 0.8681 0.8952 0.9043

1/6 0.3911 0.5541 0.6953 0.8149 0.9125 0.9862 1.0429 1.0755 1.0865

1/7 0.4595 0.6510 0.8169 0.9574 1.0721 1.1587 1.2254 1.2636 1.2765

1/8 0.5272 0.7468 0.9371 1.0983 1.2299 1.3292 1.4057 1.4497 1.4644

1/10 0.6682 0.9466 1.1878 1.3921 1.5588 1.6847 1.7817 1.8374 1.8561

1/12 0.7950 1.1261 1.4131 1.6562 1.8546 2.0044 2.1197 2.2871 2.2082
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The shape equation is y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � l

2
� x

� �2
s

� Rþ f ; R ¼ f

2
þ l2

8f
.

The bending moment, shear, and axial forces at any section of the arch are

Mx ¼ M0
x � Hy;

Qk ¼ Q0
k cos ’k � H sin ’k

Nk ¼ �Q0
k sin ’k � H cos ’k:

Tables A.29 and A.30 contains thrust H for two cases of loading. If arch ratio

f < l/6 then for a thrust H, the factor k should be included (Table A.17).

Example. The arch is loaded by a uniformly distributed load q across the entire

span l. The central angle of the arch is 120�. The thrust of the arch equals

H ¼ 2� 0:2032ql ¼ 0:4064ql. Bending moment at C is MC ¼ ql2=8� 0:4064qlf :

Table A.29 Loading 1: Thrust (factor ql) [Uma72]

f=l or a0 u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1/2 0.0059 0.0128 0.0220 0.0330 0.0457 0.0596 0.0744 0.0899 0.1061

80� 0.0074 0.0160 0.0274 0.0412 0.0571 0.0734 0.0920 0.1120 0.1322

70� 0.0091 0.0198 0.0339 0.0510 0.0705 0.0919 0.1149 0.1388 0.1636

1/3 0.0096 0.0208 0.0356 0.0536 0.0741 0.0957 0.1208 0.1460 0.1718

60� 0.0113 0.0246 00422 0.0634 0.0877 0.1144 0.1429 0.1727 0.2032

1/4 0.0131 0.0284 0.0487 0.0732 0.1012 0.1321 0.1640 0.1984 0.2346

1/5 0.0167 0.0364 0.0624 0.0928 0.1297 0.1692 0.2114 0.2555 0.3006

1/6 0.0201 0.0437 0.0749 0.1127 0.1558 0.2033 0.2540 0.3069 0.3611

1/7 0.0236 0.0514 0.0880 0.1324 0.1831 0.2389 0.2985 0.3607 0.4243

1/8 0.0271 0.0589 0.1010 0.1519 0.2100 0.2740 0.3423 0.4137 0.4867

1/10 0.0343 0.0747 0.1280 0.1925 0.2662 0.3473 0.4339 0.5244 0.6169

1/12 0.0409 0.0889 0.1523 0.2290 0.3168 0.4132 0.5163 0.6239 0.7339

Table A.30 Loading 2: Thrust (factor ql)

f=l or a0 u ¼ 0.10 u ¼ 0.15 u ¼ 0.20 u ¼ 0.25 u ¼ 0.30 u ¼ 0.35 u ¼ 0.40 u ¼ 0.45 u ¼ 0.50

1/2 0.0317 0.0465 0.0604 0.0731 0.0841 0.0933 0.1002 0.1046 0.1061

80� 0.0402 0.0588 0.0751 0.0910 0.1048 0.1162 0.1248 0.1303 0.1322

70� 0.0487 0.0717 0.0931 0.1126 0.1297 0.1438 0.1545 0.1613 0.1636

1/3 00510 0.0761 0.0977 0.1182 0.1362 0.1510 0.1622 0.1693 0.1718

60� 0.0603 0.0888 0.1155 0.1398 0.1610 0.1786 0.1919 0.2003 0.2032

1/4 0.0706 0.1025 0.1334 0.1614 0.1859 0.2062 0.2215 0.2313 0.2346

1/5 0.0892 0.1314 0.1709 0.2078 0.2382 0.2642 0.2839 0.2963 0.3006

1/6 0.1071 0.1578 0.2053 0.2484 0.2862 0.3174 0.3410 0.3559 0.3611

1/7 0.1258 0.1854 0.2412 0.2919 0.3363 0.3729 0.4007 0.4182 0.4243

1/8 0.1444 0.2127 0.2767 0.3348 0.3857 0.4278 0.4596 0.4798 0.4867

1/10 0.1830 0.2696 0.3507 0.4244 0.4889 0.5422 0.5826 0.6081 0.6169

1/12 0.2176 0.3207 0.4171 0.5049 0.5816 0.6450 0.6930 0.7234 0.7339
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Hingeless Parabolic Nonuniform Arch. Influence Lines for Reactions,

Thrust, and Bending Moments at Support and Crown; Ix ¼ IC=coswx

[Uma72], [Kar10] (Table A.32)
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Table A.33 Reactions of uniform beams subjected to compressed load and unit settlement

of support, u ¼ l
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p� �
, i ¼ EI=l, EC – elastic curve [Bol64], [Smi84], [Kar10]
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Critical Loads for Circular and Parabolic Arches with Different

Boundary Conditions (Tables A.34–A.35)

Table A.33a Special functions for stability analysis [Smi47], [Bol64]

Functions Form 1 Form 2 Maclaurin series

’1 uð Þ u2 tan u
3 tan u� uð Þ

1

3

u2 sin u
sin u� u cos u

1� u2

15
� u4

525
þ � � �

’2 uð Þ u tan u� uð Þ
8 tan u tan

u
2
� u
2

� � 1

4

u sin u� u2 cos u
2� 2 cos u� u sin u

1� u2

30
� 11u4

25200
þ � � �

’3 uð Þ u u� sin uð Þ
4 sin u tan

u
2
� u
2

� � 1

2

u u� sin uð Þ
2� 2 cos u� u sin u

1þ u2

60
þ 13u4

25200
þ � � �

’4 uð Þ ’1

u
2

� �
1

6

u2 sin u
2 sin u� u� u cos u

1� u2

60
� u4

84000
þ � � �

�1 uð Þ u3

3 tan u� uð Þ
1

3

u3 cos u
sin u� u cos u

1� 2u2

5
� u4

525
þ � � �

�2 uð Þ �1
u
2

� �
1

12

u3 1þ cos uð Þ
2 sin u� u� u cos u

1� u2

10
� u4

8400
þ � � �

u
sin u

u
sin u

u
sin u 1þ u2

6
þ 7u4

360
þ � � �

u
tan u

u
tan u

u cos

sin u 1� u2

3
� u4

45
þ � � �

u tan u u tan u u sin u
cos u 0þ u2 þ u4

3
þ � � �

Numerical values of these functions in terms of dimensionless parameter u, 0<u<2p; may be

found in [Smi47], [Kar10]

Table A.34 Critical parameter K for circular arch subjected to uniform radial load q. Critical load

qcr ¼ KðEI=R3Þ, EI ¼ const, 2a is a central angle [Sni66]

a� (half
of a

central

angle)

Coefficient K

Three-hinged

arch

Two-hinged arch

One-hinged

arch

Hingeless arch

First

form

Second

form

First

form

Second

form

15 107 143 320 162 294 484

30 27.1 35 79.2 40.2 73.3 120

45 12.0 15 34.7 17.9 32.4 53.2

60 6.75 8 19.1 10.2 18.1 29.7

75 4.32 4.76 11.9 – 11.6 18.8

90 3.0 3.0 8.0 4.61 8.0 12.9
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Table A.36 Parameters of parabolic polygon (k ¼ 6) [Rab58]

Parameters

Ratio
f
l

Factor0.1 0.2 0.3 0.4 0.5

yB 0.0556 0.1111 0.1667 0.2222 0.2778 l

yC 0.0889 0.1778 0.2667 0.3556 0.4444 l

yD 0.1000 0.2000 0.3000 0.4000 0.5000 l

tan b1 0.3333 0.6667 1.0000 1.3333 1.6667

tan b2 0.2000 0.4000 0.6000 0.8000 1.0000

tan b3 0.0667 0.1333 0.2000 0.2667 0.3333

s1 0.1757 0.2003 0.2357 0.2778 0.3240 l

s2 0.1700 0.1795 0.1944 0.2134 0.2360 l

s3 0.1670 0.1681 0.1700 0.1725 0.1760 l

mB 0.1728 0.1899 0.2150 0.2456 0.2800 ml
mC 0.1685 0.1738 0.1822 0.1930 0.2060 ml
mD 0.0835 0.0840 0.0850 0.0863 0.0880 ml
Nomenclature: Span l, rise f, mB, mC, mD are lumped masses at joints B, C, D (Figs. 6.15 and 6.16),

EI ¼ const, m is mass per unit length

Table A.35 Critical parameters K, K1 for parabolic symmetrical arch subjected to vertical

uniform load q within the entire span, EI ¼ const, span l, rise f [Sni66]

Critical load (first form) qcr ¼ K
EI

l3
Critical thrust Hcr ¼ K1

EI

l2

f=l

Coefficient K Coefficient K1

Three-

hinged

Two-

hinged

One-

hinged Hingeless f=l

Three-

hinged

Two-

hinged

One-

hinged Hingeless

0.1 22.5 28.5 33.8 60.7 0.1 28.1 35.6 42.2 75.8

0.2 39.6 45.4 59.0 101.0 0.2 24.8 28.4 36.8 63.0

0.3 47.3 46.5 84.0 115.0 0.3 19.7 19.4 33.0 48.0

0.4 49.2 43.9 96.0 111.0 0.4 15.4 13.5 30.0 34.7

0.5 43.0 38.4 87.0 97.4 0.5 11.5 9.6 23.0 24.4

0.6 38.0 30.5 80.0 83.8 0.6 7.9 6.4 16.8 17.5

0.8 28.8 20.0 63.0 59.1 0.8 4.5 3.1 9.7 9.2

1.0 22.1 14.1 48.0 43.7 1.0 2.8 1.8 6.0 5.5
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Three-Hinged Parabolic Uniform Arch. Frequencies, Displacements,

Bending Moments (Tables A.37 and A.38)

Table A.38 The second mode of symmetrical vibration [Rab58]

Parameters

Ratio f=l

Factor0.1 0.2 0.3 0.4 0.5

Frequency o2 154.16 138.73 121.25 105.25 91.18 1

l2

ffiffiffiffiffi
EI

m

s

Displacements w0
B 1.0 1.0 1.0 1.0 1.0

w0
C �1.417 �1.616 �1.967 �2.768 �3.041

w0
D 0.832 1.231 1.935 2.935 4.088

u0B 0.333 0.667 1.000 1.333 1.667

u0C �0.150 �0.379 �0.780 �1.441 �2.377

u0D 0.0 0.0 0.0 0.0 0.0

Bending moments MB 254.80 253.96 258.26 294.46 287.80 EI=l2

MC �313.60 �348.62 �408.14 �551.22 �566.50 EI=l2

Table A.37 The first mode of symmetrical vibration [Rab58] (Span l, rise f, EI ¼ const)

Parameters

Ratio f=l

Factor0.1 0.2 0.3 0.4 0.5

Frequency o1 48.58 43.54 36.82 29.98 23.98 1

l2

ffiffiffiffiffi
EI

m

s

Displacements w0
B 1.0 1.0 1.0 1.0 1.0

w0
C 0.131 0.096 0.057 0.023 �0.003

w0
D �2.262 �2.192 �2.114 �2.046 �1.994

u0B 0.333 0.667 1.000 1.333 1.667

u0C 0.160 0.305 0.434 0.552 0.664

u0D 0.0 0.0 0.0 0.0 0.0

Bending moments MB 82.28 78.12 71.94 65.30 58.80 EI=l2

MC 60.63 51.51 41.47 32.88 26.46 EI=l2
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Three-Hinged and Two-Hinged Parabolic Uniform Arches. Frequencies,

Displacements, Bending Moments (Tables A.39 and A.40)

Table A.40 The second mode of antisymmetrical vibration [Rab58]

Parameters

Ratio f=l

Factor0.1 0.2 0.3 0.4 0.5

Frequency o2 147.42 131.67 108.22 92.22 74.56 1

l2

ffiffiffiffiffi
EI

m

s

Displacements w0
B 1.0 1.0 1.0 1.0 1.0

w0
C �1.294 �1.554 �1.762 �2.112 �2.351

w0
D 0.0 0.0 0.0 0.0 0.0

u0B 0.333 0.667 1.000 1.333 1.667

u0C �0.0925 �0.355 �0.657 �1.156 �1.684

u0D �0.0172 �0.148 �0.305 �0.593 �0.901

Bending moments MB 224.91 234.87 221.40 224.62 204.65 EI=l2

MC �237.62 �270.89 �281.80 �317.22 �307.64 EI=l2

Table A.39 The first mode of antisymmetrical vibration [Rab58] (Span l, rise f, EI ¼ const, m is

mass per unit length)

Parameters

Ratio f=l

Factor0.1 0.2 0.3 0.4 0.5

Frequency o1 36.72 28.60 22.51 17.52 13.13 1

l2

ffiffiffiffiffi
EI

m

s

Displacements w0
B 1.0 1.0 1.0 1.0 1.0

w0
C 0.923 0.963 0.922 0.677 0.874

w0
D 0.0 0.0 0.0 0.0 0.0

u0B 0.333 0.667 1.000 1.333 1.667

u0C 0.318 0.652 0.953 1.075 1.541

u0D 0.256 0.524 0.769 0.894 1.249

Bending moments MB 42.976 40.307 37.974 34.90 31.173 EI=l2

MC 40.539 37.512 31.585 26.48 23.774 EI=l2
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Two-Hinged Parabolic Uniform Arches. Frequencies, Displacements,

Bending Moments (Tables A.41 and A.42)

Table A.42 The second mode of symmetrical vibration [Rab58]

Parameters

Ratio f=l

Factor0.1 0.2 0.3 0.4 0.5

Frequency o2 196.14 183.83 168.65 152.94 136.83 1

l2

ffiffiffiffiffi
EI

m

s

Displacements w0
B 1.0 1.0 1.0 1.0 1.0

w0
C �2.379 �2.857 �3.799 �5.166 �6.848

w0
D 2.658 3.714 5.598 8.332 11.696

u0B 0.333 0.667 1.000 1.333 1.667

u0C �0.332 �0.876 �1.879 �3.599 �6.181

u0D 0.0 0.0 0.0 0.0 0.0

Bending moments MB 321.85 341.31 380.22 436.62 498.57 EI=l2

MC �660.37 �794.14 �1024.03 �1329.35 �1659.89 EI=l2

MD 822.55 1043.65 1428.34 1964.85 2575.90 EI=l2

Table A.41 The first mode of symmetrical vibration [Rab58] (span l, rise f, EI ¼ const, m is mass

per unit length)

Parameters

Ratio f=l

Factor0.1 0.2 0.3 0.4 0.5

Frequency o1 82.84 72.26 59.25 47.14 37.23 1

l2

ffiffiffiffiffi
EI

m

s

Displacements w0
B 1.0 1.0 1.0 1.0 1.0

w0
C �0.223 �0.255 �0.289 �0.316 �0.335

w0
D �1.554 �1.490 �1.422 �1.368 �1.329

u0B 0.333 0.667 1.000 1.333 1.667

u0C 0.0887 0.165 0.267 0.281 0.331

u0D 0.0 0.0 0.0 0.0 0.0

Bending moments MB 128.12 118.36 107.08 95.54 85.32 EI=l2

MC �4.232 �12.44 �20.070 �25.00 �27.53 EI=l2

MD �133.94 �119.30 �104.19 �92.19 �83.30 EI=l2
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Circular Uniform Arches with Different Boundary Conditions. Frequencies

of Free Vibration (Tables A.43–A.44)

oi ¼ ðki=R2a20Þ
ffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
, a0 is a central angle, b ¼ a0=p, EI is a const, m is mass per

unit length.

Parabolic Nonuniform Hingeless Arch

Frequency of symmetrical vibration oi ¼ ð4k2i =l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIC=m

p ðs�1Þ; EIC is the flex-

ural rigidity at crown, Ix ¼ Icr sec ’, span l, rise f, rcr is the radius of inertia of the
cross-section at the crown, m is the mass per unit length [Bon52b], [Uma72-73].

Table A.45 Paramters k for first and second frequencies of symmetrical vibration

f=rcr k1 k2 f=rcr k1 k2

2 2.55 5.51 12 4.44 5.67

4 2.93 5.52 14 4.69 5.75

6 3.36 5.54 16 4.88 5.89

8 3.76 5.57 18 4.99 6.26

10 4.12 5.61 20 5.05 9.00

Table A.43 Parameter ki for two-hinged arch [Uma72,73]

Mode of vibration Shape of vibration Parameter ki

First anti-symmetrical 4p2 � a20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:75b2

p

First symmetrical 9p2 � a20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1652b2

p

Second anti-symmetrical 16p2 � a20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1875b2

p

Table A.44 Parameter ki for hingeless arch

Mode of vibration Shape of vibration Parameter ki

First anti-symmetrical
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3; 803:2� 92:101a20 þ a40

1þ 0:06054a20

s

First symmetrical
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14; 620� 197:84a20 þ a40

1þ 0:01227a20

s

Second anti-symmetrical
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
39; 942� 343:16a20 þ a40

1þ 0:02148a20

s
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Pressure Curve

Curve of pressure (funicular polygon) allows us to obtain comprehensive informa-

tion about functionality of the three-hinged arch. Construction of the curve of

pressure starts from construction of the force polygon.

Force Polygon

Three-hinged arch ACB is subjected to forces Pi (i ¼ 1, 2, 3) as shown in Fig. A.1a

(supports are not shown). Polygon P1–P2–P3–RB–RA in Fig. A.1b presents force

polygon. Construction of this polygon is based on the principle of superposition.

Initially, we consider forces P1–P2 on the left-hand side of the arch. Their resultant

is R; corresponding reaction B1 passes through a hinge C. Intersection point of R
and B1 (point K1) defines the direction of reaction A1. Considering the polygon

P1–P2–B1–A1 (or R–B1–A1) we obtain reactions B1 and A1.

Force polygon P3–A2–B2 defines the vectors A2 and B2. The vector A2 is

translated to the initial point of the vector A1; this vector is shown by dotted line.

Initial point of vector A2 defines the point K (Fig. A.1b). Both vectors A2–A1 give us

the total reaction RA. Similarly, the vector B1 is translated to the end point of the

vector B2. Thus, we get the total reaction RB. Intersection point of the vectors RA

and RB is point K. The forces RA–P1–P2–P3–RB define a closed polygon.

Next we connect the point K with the vertices of the force polygon. These lines

are denoted as RA, 1–2 (between forces P1 and P2), 2–3, and RB. It is obvious that

resultant of the forces RA and P1 is presented by the vector 1–2, and resultant of the

forces RA, P1, and P2 is presented by the vector 2–3.

Line of Pressure

The first ray a (Fig. A.1a) passes through support hinge A parallel to reaction RA,

the next ray 1–2 between forces P1 and P2 is parallel to the corresponding vector

1–2 of the force polygon. The last ray b is parallel to the reaction RB. A ray between

the forces P2 and P3 pass through the hinge C. This polygon is called the polygon of
pressure; in the case of distributed load the pressure polygon becomes the curve of

pressure.

Any line of the polygon of pressure represents the direction of the resultant of all forces

which act to the left (or to the right) of the section under consideration. The magnitude of

this resultant is determined from the force polygon in the scale of forces Pi.

Pressure polygon provides a very clear picture of the functionality of the arch.

Figure A.1a shows that the pressure polygon (or the resultant of all the one-sided

forces) for the left part of the arch is placed above of the center line of the arch. It
means that the curvature within the left-hand part of the arch will decrease.
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The force polygon and pressure polygon allow us to determine all the internal

forces in the any section of the arch. The bending moment at any section n equals

Rr, where R is a resultant and r is an arm of the resultant about the center of gravity

of the cross section (Fig. A.1c). Given this, resultant of the one-sided forces is taken

from the force polygon, while the arm is taken from the pressure polygon. In order

to determine the axial and shear forces at any section n, we need to resolve the

resultant, which acts in this section into two components; one of them is parallel to

the tangent at section n and other is perpendicular to the tangent.

Construction of the pressure polygon in the case of an arch which is subjected to

vertical forces only is shown in Fig. A.1d. The following procedure may be

recommended [Rab60], [Dar89].

1. Determine the location of the resultant R1 of all external forces (without

reactions) which act on the left part of the arch. A funicular polygon a–b–g
with arbitrary center O1 may be used for this purpose.

2. The resultant R2 of all external forces (without reactions) which act on the right

part of the arch R2 ¼ P3.

3. Determine reactions RA and RB caused by resultants R1 and R2.

4. Construct the force polygon and pressure polygon.

Since all external forces lie on one vertical (Fig. A.1e), then the total reactions

RA and RB have the same horizontal projection H, which is a thrust of the arch.

It can be shown that in the case of the parallel forces all the vertical segments у
between the central line of the arch and pressure polygon (Fig. A.1d) in the constant

scale for all arch comprise the bending moment diagram; this diagram is

constructed on the compressed fibers. The closer the pressure polygon is to the

center line of the arch, the smaller the eccentricity of the compressed force about

neutral axis of the arch. In the case of an optimal shape of the arch, the axial line

coincides with a pressure curve. In this case the bending moments are zero.
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